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  1   

SUMMARY 

Lung cancer is one of the main causes of cancer-related death worldwide. One of the 

reasons behind the extensive tumour growth is telomerase enzyme, which is notably 

expressed in cancer cells. Recent strategies for cancer therapy include, therefore, 

telomerase inhibition with antisense RNA. A major challenge is the weak cellular uptake 

of these nucleotide-based drugs which necessitates the choice of appropriate carrier 

systems. The aim of this study was hence to evaluate chitosan-modified PLGA 

nanoparticles (cNP) as carrier for the antisense oligonucleotide 2´-O-Methyl-RNA (OMR) 

and their efficacy as inhalation therapy. 

Modification of the process parameters revealed the tuneability of the NP synthesis in 

terms of size and surface charge. Studying the cellular uptake of fluorescent cNPs with 

increasing amounts of chitosan showed better uptake in A549 than in Calu-3 cells. 

Chitosan significantly improved the uptake and binding with OMR; however, higher 

chitosan content reduced the uptake efficiency. Uptake studies under in vivo mimicking 

conditions using air-interface cultures showed superior cellular uptake of OMR/cNP 

nanoplexes compared to free OMR. As a proof of the concept, the ability of OMR to 

reduce telomerase activity was demonstrated.  

In conclusion, the concept of telomerase inhibition based on nanoscale delivery of 

antisense oligonucleotides represents a step forward to a new generation of cancer 

therapeutics. 
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ZUSAMMENFASSUNG 

Lungenkrebs ist einer der Hauptgründe für krebsbasierten Todesfälle weltweit. Mit einer 

der Ursachen für das ungehemmte Wachstum von Krebszellen ist das Enzym Telomerase, 

das in vermehrtem Maße in Krebszellen auftritt. Eine interessante Behandlungsstrategie 

besteht daher in der Hemmung dieses Enzyms. Eine Hemmung der Telomerase ist mit 

antisens-RNA möglich. Um solche Arzneistoffe  in die Zelle zu transportieren sind jedoch 

geeignete Trägersysteme notwendig. Das Hauptziel der vorliegenden Arbeit war die 

Untersuchung von Chitosan-modifizierten PLGA Nanopartikeln (cNP) als Trägersystem 

für das Antisense-Oligonukleotid 2'-O-Methyl-RNA (OMR) sowie ihres möglichen 

Einsatzes für einer Inhalationstherapie. 

Die Änderung der Prozessparameter erlaubt eine maßgeschneiderte Synthese der cNP 

hinsichtlich Größe und Ladung. Die Untersuchung der NP in Zellkultur-Modellen  ergab 

eine bessere Aufnahme in A549 als in Calu-3 Zellen. Die zelluläre Aufnahme unter 

Verwendung von realitätsnahen „Air-interface“-Kulturen zeigte zudem auch eine 

überlegene Aufnahme von partikelbasierten Systemen im Vergleich zu freien 

Oligonukleotiden. Außerdem konnte gezeigt werden, dass die Telomerase -Aktivität in 

diesen Zellen tatsächlich gehemmt war.  

In der vorliegenden Arbeit konnte das Konzept der Telomerase-Hemmung zur 

Krebsbehandlung, basierend auf Komplexen von Antisense-Oligonukleotiden mit 

nanoskaligen Trägersystemen, erfolgreich in vitro demonstriert werden. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Chapter 1 

General introduction * 
 

 
 
 
 
 
 
 
 
 
* Parts of this chapter have been published as book chapters: 

- N. Nafee, M. Schneider, C-M. Lehr. (2008) Charge modification of pharmaceutical 

nanocarriers: biological implications. In Multifunctional pharmaceutical nanocarriers. V. 

Torchilin, Ed.; Springer, New York, USA. 

- N. Nafee, V. Bhardwaj, M. Schneider. (2008) Transport across biological barriers. In 

Nanotherapeutics – drug delivery concepts in nanosciences, A. Lamprecht, Ed.; WSPC: 

Singapore. 
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I. Lung cancer 

Lung cancer is one of the leading causes of cancer-related death worldwide; in the 

United States, an estimated 213,380 new cases (114,760 men and 98,620 women) of lung 

and bronchus cancer were diagnosed in 2007 and 160,390 deaths (89,510 in men and 

70,880 in women) were registered because of the disease. In the UK, lung cancer is the 

third most common cause of death after heart disease and pneumonia (nearly 29,000 deaths 

in 2002 with a male to female ratio of approximately two to one). The incidence and death 

figures in UK are worse than in Europe and USA (965,241 men and 386,891 women). 

The lungs are unique among all organs in having a very high degree of exposure to the 

internal environment through the pulmonary blood flow and to the outside by exposure to 

air flow. In patients suffering from metastatic cancer, the lungs are continually exposed to 

neoplastic cells that are shed from the primary tumor and circulate in their blood. Despite 

the natural defence mechanism in the lungs, few cells survive and proliferate into 

metastasis, Figure 1. 

                           (A)                                                                   (B) 

        

Figure 1: (A) human healthy lung taken from (http://www.freewebs.com), (B) human lung 

tumor taken from (http://www.taconichills.k12.ny.us/.../lungcancerpic.jpg) 
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There are two main types of lung cancer based on the characteristics of the disease and 

its response to treatment; Non-small-cell lung cancer (NSCLC) and Small-cell lung cancer 

(SCLC). NSCLC accounts for ~85% of all lung cancer; NSCLC patients have poor 

prognosis with 5-year survival rates of ~14% for all stages. It is subdivided into 3 major 

types: 

- Adenocarcinoma, which arises from mucous glands and scar tissues. It is most 

frequently occurring in non-smokers, women and elderly. 

- Squamous cell (epidermoid) carcinoma, which accounts for 35% of all cancer 

cases. Cells are usually well differentiated and locally spread. 

- Large-cell carcinoma, which accounts for 10% only of all cancer cases and is less 

well differentiated.   

SCLC constitutes ~20% of all cancers. Arising from endocrine cells, these tumors secrete 

many polypeptide hormones. Some of these hormones provide feedback to the cancer cells 

and cause tumor growth. Therefore, this type of tumor grows rapidly, taking ~ 3 years from 

initial malignant change to presentation. 

Treatment of lung cancer 

Current cancer therapy in general usually involves intrusive processes including 

application of catheters to allow chemotherapy, initial chemotherapy to shrink any cancer 

present, surgery to then remove the tumor(s) if possible, followed by more chemotherapy 

and radiation. The purpose of the chemotherapy and radiation is to kill the tumor cells as 

these cells are more susceptible to the actions of these drugs and methods because of their 

growth at a much faster rate than healthy cells, at least in adults. 

Due to the importance of the lungs for survival, it is often not possible to remove 

tumors completely without dramatically reducing the lung function. Therefore, lung tumors 

are mainly treated by radiation therapy and/or chemotherapy. 
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Chemotherapy plays an important role in treating many patients with both NSCLC 

and SCLC. The effectiveness of the treatment is directly related to the treatment’s ability to 

target and to kill the cancer cells while affecting as few healthy cells as possible. However, 

the regular administration of high doses of these intense drugs is always encountered with 

some side effects which are sometimes so intense that the patient must discontinue therapy 

before the drugs have a chance to eradicate the cancer. 

Many chemotherapeutics are now available on the market such as paclitaxel, 

doxorubicin, 5-fluorouracil and camptothecin-based drugs. Paclitaxel is a microtubule-

stabilizing agent which promotes polymerization of tubulin causing cell death by 

disrupting the dynamics necessary for cell division. It has antineoplastic activity especially 

against primary epithelial ovarian carcinoma, breast, colon, and non-small cell lung 

cancers. The currently available formulation includes Chremophor EL containing 

polyethoxylated castor oil and ethanol for solubilisation. However, Chremophor EL is 

poorly tolerated and shows side effects such as hypersensitivity reactions, nephrotoxicity 

and neurotoxicity [1]. 

One of the most potent and widely used anticancer drugs is doxorubicin which works 

by inhibiting the synthesis of nucleic acids within cancer cells [2]. Doxorubicin has a 

number of undesirable side effects such as cardiotoxicity and myelosuppression which 

leads to a very narrow therapeutic index. Various researchers have studied ways to target 

doxorubicin delivery to cancer tissues or at least to diminish its side effects. 

Antineoplastic agents Camptothecin-based drugs, specifically irinotecan (Camptosar) 

and topotecan (Hycamptin) have been approved by the FDA and are used most often either 

in conjunction with 5-fluorouracil as a first therapy or sometimes used alone after 5-

fluorouracil has failed. Analogs of these molecules have shown up to 1000- fold higher 

activity but are a great challenge to delivery because of their extreme hydrophobicity [3]. 
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As mentioned above, the usefulness of cancer chemotherapy is restricted by the dose-

limiting toxicity of cytotoxic anticancer drugs and the occurrence of side effects, for 

example, renal tubular damage induced by cisplatin [4], or peripheral neuropathy induced 

by cisplatin [5], paclitaxel [6], or oxaliplatin [7]. Therefore, various researchers have 

studied ways to target these chemotherapeutic drugs to cancer tissues or at least to diminish 

their side effects. Attempts to explore the potential of specific and target-oriented delivery 

systems include the use of antibodies [8], monoclonal antibodies [9], growth factors [10] 

[11], transferrin [12, 13] [14], cytokines [15], folate [16, 17] and low-density lipoprotein 

(LDL) [18]. Plant lectins, which are proteins that specifically recognize and agglutinate 

cell-associated carbohydrates, were also suggested to have the potential to select cancer 

cells [19] [20]. 

In addition, formulation strategies such as co-solvent systems, emulsification, inclusion 

in cyclodextrins, micellization, and liposome formation have been studied to alter the 

pharmacokinetics and the biodistribution of chemotherapeutics. One of the successful 

approaches for small-molecule drugs has been the use of colloidal drug delivery systems – 

nanoparticles, in today’s parlance - as will be described in the next section. 

 

One of the best and most recent prospects for attaining versatile targeted therapeutics is 

the use of antisense oligonucleotides as therapeutic agents against cancer [21]. This is 

because, theoretically, they can be adapted to control genetic processes in a manner that 

regulates any pathological process in any disease, and in a highly selective way that 

minimizes unwanted side effects. Unlike conventional drugs acting on proteins, nucleic 

acids can be used for either ‘gain of function’ actions, i.e. gene therapy, or ‘loss of 

function’ activity, such as antisense oligonucleotides that require a match only to a short, 

unique sequence in the gene [22]. A more precise, stable and highly efficient ‘knockdown 

effect’ was introduced using small-interfering RNA (siRNA). The short double-stranded 
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siRNA (around 22 nucleotides long) is taken up by a protein complex in the cytoplasm 

called RNA-induced silencing complex (RISC) that unwinds the dsRNA oligonucleotide, 

uses one strand to identify mRNA with a matching sequence segment, catalytically 

degrades the mRNA and thus abolishes the expression of the encoded protein [23]. 

Nowadays promising approaches focus on such therapies that target specific proteins 

and pathways involved in the growth and proliferation of cancer cells. Much interest has 

recently focused on telomerase, a ribonucleoprotein that adds telomeric repeats to the end 

of the telomeres [24] and therefore prevents telomere shortening occurring during 

replication of the cell cycle. The ribonucleoprotein complex consists of two major 

components, the protein subunit human telomerase reverse trancriptase (hTERT) which 

has catalytic activity [25, 26] and the human telomerase RNA component (hTR) which 

serves as a template for the synthesis of telomeric repeats [27], Figure 2.  

 

 

Figure 2: Schematic presentation of telomere on the chromosome ends. 

 

Telomerase activity has been detected in most human cancers and cancer cell lines as 

well as in stem cells and regenerative tissues, but not in most normal somatic cells [28]. 

Telomerase activity is required for continuous cell proliferation and allows cells to 
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overcome senescence. Therefore, activation of telomerase is considered to be one of the 

key mechanisms leading to immortalization of tumor cells and tumor progression. 

Telomerase activity has been detected in 80% of NSCLC but not in non-cancerous lung 

tissue. Furthermore, it has been shown that telomerase activity is associated with advanced 

stage of NSCLC patients and poor prognosis. These findings suggest that telomerase may 

represent a promising target for anticancer treatment. 

In recent years, several classes of telomerase inhibitors targeting different sites of the 

telomerase complex or the telomeres have been evaluated [29]. The RNA template hTR is 

an ideal target for inhibition by oligonucleotides because it is intrinsically accessible to 

nucleic acids. The antisense oligonucleotide 2´-O-methyl-RNA (OMR) with a 

phosphorothioate backbone is a potent and sequence-selective inhibitor of telomerase. 2´-

O-methyl-RNA binds to the complementary hTR template sequence with high affinity 

acting as a competitive enzyme inhibitor of telomerase [30]. However, the application of 

these nucleotide based drugs is limited by many problems namely their premature 

degradation in the body and their poor cellular uptake [23]. Accordingly, successful 

delivery of such drugs requires the proper choice of the suitable carrier system that targets 

them to their site of action. 

Nowadays, nanocarriers have gained a great attention as promising gene delivery 

systems for both plasmid DNA and antisense oligonucleotides, among which nanoparticles 

have shown broad application. On this basis, our main goal is the application of 

nanoparticles as carrier for the antisense oligonucleotides, OMR. PLGA nanoparticles were 

extensively applied as efficient, biodegradable delivery system. However, the negative 

surface charge of these particles limits their binding potential to the negatively charged 

plasmid and minimizes their interaction with the cell membrane. The surface modification 

of these particles with a cationic polymer would be expected to improve their interaction 

with the oligonucleotides and enhance their internalization by the targeted cells. Owing to 
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its relative safety, permeability enhancing properties, and efficiency as gene carrier, 

chitosan was selected as the cationic polymer to modify the surface charge of PLGA 

nanoparticles. 

Improvement of the cellular uptake of the nanoparticles necessitates the reduction of 

their size. In addition, more effective binding with OMR requires the augmentation of the 

surface charge. Therefore, the impact of the formulation parameters on the colloidal 

characteristics of chitosan-modified PLGA nanoparticles (cNP) needs to be essentially 

studied in order to obtain tuneable delivery system in dependence of the payload. 

Thereafter, the influence of these properties on the binding and uptake of the antisense 

oligonucleotides is to be investigated. Meanwhile, the most suitable purification techniques 

from the unbound polymers are to be selected and the possible cytotoxic effects caused by 

the nanoparticles need to be explored. The use of OMR/cNP nanoplexes for the treatment 

of lung cancer involves the possibility to apply them in the form of inhalation therapy. For 

this reason, the proper choice of the nebulization technique/device that retains the colloidal 

characters of the particles is considered to be a matter of interest. A step forward to the in 

vivo conditions is then to test the uptake of these nanoplexes in air interface-cultured cell 

lines. 
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II. State of the art - Nanocarriers & targeted treatment of lung cancer 

The use of various pharmaceutical carriers to enhance the in vivo efficiency of many 

drugs and drug administration protocols has been well established during the last decade in 

both pharmaceutical research and clinical setting. Among these carriers, pharmaceutical 

nanocarriers have been recently developed and have shown tremendous progress in drug 

and gene delivery. Nanotechnology focuses on formulating therapeutic agents in 

biocompatible nanocomposites such as nanoparticles, nanocapsules, nanoemulsions, 

liposomes, micellar systems, and conjugates [31].  

In the context of cancer therapy, nanocarriers improved the effect of chemotherapeutic 

agents through their protection during blood circulation, better delivery to the diseased 

area, higher encapsulation efficiency, or prolonged release of the therapeutic payload, 

Figure 3. Numerous examples in this context were reviewed in details by Brannon-Peppas 

and Blanchette [13].  

Many years of work have yielded several successful products, including Ambisome™ 

(Liposomal Amphotericin B), Doxil™ (Stealth™ liposomal doxorubicin) and, recently, 

Abraxane™ (nanoparticle albumin paclitaxel). These ‘passive’ nanoparticle formulations 

improve the drug pharmacokinetics and tissue distribution, eventually releasing the drug 

into surrounding tissues due to the lack of targeting moities. 

While some of these nanocarriers have already made their way into clinics, there are 

still others under preclinical development and research. Among the recent advances in this 

area hydrophobically-modified glycol chitosan nanoparticles loaded with docetaxel [32], 

ligand based dendrimers [33], long circulating stealth immunoliposomes [34], 

immunonanoparticles [35] can be mentioned.  
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Figure 3: Different types of nanocarriers applied for cancer detection and therapy 

 

More recently, is the treatment of cancer through the application of nucleotide based 

drugs having the ability to interfere with the pathway of cancer cells. Essentially, this 

group of compounds needs to be delivered intracellularly and in case of siRNA to the 

cytosol to exert their action. Figure 4 shows the many barriers to using siRNA as a 

therapeutic. The first hurdle for these nucleic acids, surprisingly, is just keeping them from 

being removed from the blood and excreted by the kidney. They are also subject to 

enzymatic degradation and must be kept from being distributed too widely, so that they can 

be concentrated at the pathological tissue. Moreover, the application of therapies based on 

antisense oligonucleotides is hampered by their instability to cellular nuclease and their 

weak penetration to the lipophilic cellular membrane. Overcoming these hurdles has posed 
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the greatest barriers to oligonucleotide therapeutics. Nanoparticles seem to be among the 

right choices for this purpose since they have similar sizes compared to certain viruses 

which are the natural but pathogenic gene delivery systems [23]. 
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Figure 4: Schematic presentation role of nanoparticles in overcoming the different 

hurdles of intracellular delivery of nucleotide-based drugs 

 

Improved efficacy of these nanocarriers can be achieved by the association of different 

functional groups that increase the targetability, the longevity and/or the intracellular 

penetration of the nanocarriers. For example, plasmid pCMVLuc which codes for 

luciferase production was incorporated into nanoparticles composed of polyethylenimine 

(PEI) linked to poly(ethylene glycol) (PEG) which are then coated with either transferrin 

or epithelial growth factor. In vivo studies in mice showed that the gene expression from 

administration of targeted systems was 10–100 higher in tumors than in other organs [36]. 

Similarly, Gopalan et al. [37] used DOTAP:cholesterol nanoparticles as an alternate non-

immunogenic gene delivery vector for the systemic therapy of lung cancer. In another 

study, Kaul et al [38] encapsulated reporter plasmid DNA encoding for β-galactosidase 

(pCMV-β) in gelatine and PEGylated gelatine nanoparticles for Lewis lung carcinoma. 
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Recently, a ligand targeted and sterically stabilized nanoparticles formulation for the 

targeted delivery of antisense oligodeoxynucleotides and small interference RNA into lung 

cancer cells was developed [39]. 

 

Decisive parameters for improved cellular uptake of nanoparticles 

Due to their subcellular size, nanoparticles can penetrate into tissues and be efficiently 

taken up by the cells. By modulating polymer characteristics or surface properties one can 

control the release of therapeutic agent and/or deliver it to distant target sites. 

 1. Size-dependent uptake of nanocarriers 

Size is considered to be of utmost importance and it was demonstrated repeatedly that 

small particles are more efficiently taken up into cells [31] or accumulated in tissue [40] 

than larger particles. In some cell lines (e.g. Hepa 1-6, HepG2, and KLN 205), only the 

submicron size particles are taken up efficiently but not microparticles [41]. 

Prabha et al. [42] investigated the gene transfection levels of different size fractions of 

PLGA nanoparticles and found that the lower size nanoparticle fraction resulted in a 27-

fold higher transfection in COS-7 cells and 4-fold higher transfection in HEK293 cells for 

the same dose of nanoparticles. Similarly, the efficiency of uptake of 100 nm size particles 

was 15-250 fold greater than larger size (1 and 10 µm) microparticles [43]. Nanoparticles 

were also able to penetrate throughout the submucosal layers while the larger size 

microparticles were predominantly localized in the epithelium lining [43]. In addition, 

chitosan nanoparticles are shown to be internalized into intestinal, nasal, and ocular 

epithelial cells [44, 45]. Furthermore, cationically-modified silica nanoparticles with sizes 

between 10 and 100 nm complexed with plasmid DNA were found to be colocalized inside 

and around the nucleus and to promote gene expression in COS-1 cells [46]. 
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Even though size plays a crucial role, other factors such as surface chemistry and 

charge influence the important molecular routes as well in a non negligible way [47, 48] 

and need to be considered for the optimal design of the carrier system. 

 

2. Surface modification of nanocarriers 

Surface modification of pharmaceutical nanocarriers, such as liposomes, micelles, 

nanocapsules, polymeric nanoparticles, solid lipid particles, and niosomes, is normally 

used to control their biological properties in a desirable fashion and to simultaneously 

make them perform various therapeutically or diagnostically important functions. The most 

important results of such modification include an increased stability and half-life of drug 

carriers in the circulation, required biodistribution, passive or active targeting into the 

required pathological zone, responsiveness to local physiological stimuli, and ability to 

serve as contrast agents for various imaging modalities (gamma-scintigraphy, magnetic 

resonance imaging, computed tomography, ultra-sonography). 

Polyion complex micelles (PIC) using Poly (L-lysine) (PLL)-PEG block copolymer, in 

which PLL segments and plasmid DNA formed a hydrophobic core by charge 

neutralization and PEG plays a role as a surrounding hydrophilic shell layer showed a 

prolonged in vivo circulation time after systemic administration [49], whereas 

polyethyleneimine (PEI)-grafted PEGs were synthesized to address the cytotoxicity and 

aggregation problems of PEI [50]. 

Liposomes have been demonstrated to be an efficient drug and gene carrier system [51, 

52]. Surface modification of liposomes achieved by inserting PEG, dextran, galactose or 

mannose to the surface was found to increase liposome stability and to introduce some 

specificity in binding to particular cell types [53-55]. Ligand-targeted stealth liposomes 

utilizing targeting moieties like transferrin coupled to the liposome surface were shown to 
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selectively deliver their payload to target tumor cells via receptor-mediated internalization 

for the treatment of lung cancer, murine bladder tumor, adult T-cell leukaemia [12, 56]. 

2.1. Charge modification of nanocarriers 

One of the most basic and crucial properties influencing the environmental 

interaction of nanoparticulate matter is their charge. This is attributed to the stability of the 

suspension which is achieved by electrostatic repulsion or, less often, by steric hindrance. 

Therefore, the surface charge of the nanoscale particles is a standard parameter to be 

characterized and reported. Positively charged carriers are mainly employed for 

complexation purposes; this especially holds for the intracellular delivery of genetic 

material (RNA, DNA, and oligonucleotides) which is typically negatively charged [57].  

Charge is a key parameter assumed to play an essential role in cellular drug/gene 

delivery [47, 48, 58] and is also known to have an influence on the cytotoxicity [59-63] as 

well as the barrier integrity [60, 64]. In addition, it is known that a charge facilitates the 

transfection to cells [65-69]. Therefore, trials to augment the surface charge in order to 

enhance the transfection efficiency of the nanoplexes should not negatively affect the 

safety aspects of these carriers [70, 71]. 

Poly (lactic-co-glycolic acid) (PLGA) is one of the most common biodegradable 

polymers used for drug delivery purposes. Typically possessing a negative surface charge, 

interaction of PLGA nanoparticles with the negatively charged DNA is limited and their 

transport through the cell membrane is restricted. A novel cationic modification of PLGA 

was recently developed based on poly[vinyl-3-(dialkylamino)alkylcarbamate-co-vinyl 

acetate-co-vinyl alcohol]-graft-poly(D,L-lactide-co-glycolide) [72]. The branched 

polyesters are biodegradable and positively charged depending on the type and degree of 

amine substitution. Accordingly, they have been successfully used for DNA delivery [73], 

transmucosal insulin delivery [74] and pulmonary drug delivery [75]. Similarly, poly ε-
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caprolactone nanoparticles coated with trimethyl chitosan proved to bind efficiently DNA 

and enhance its internalization by COS-1 cells [76]. 

Chitosan has a strong affinity for DNA and protect against the degradation with 

DNAse. Attempts have been recently made to provide cell-specific targeting and/or 

improved transfection efficiency. For instance, methylation [77], PEGylation [78], 

thiolation, mannosylation [79] and galactosylation of chitosan [80, 81], Figure 5, were 

aiming for fine-tuned adjustments towards targeted delivery of therapeutic genes despite 

the partial reduction in the net positive charge [45, 82]. Chitosan nanoparticles were 

widely used for the delivery of macromolecules such as vaccines and proteins across the 

oral and nasal mucosa [83]. For example, ovalbumin was adsorbed on the surface of 

chitosan particles to enhance their uptake by the M-cells of the Peyer’s patches. Additional 

coating of particles with sodium alginate was able to prevent the burst release of the loaded 

antigen and improve the nanoparticle stability in gastrointestinal fluid [84]. One other way 

to enhance the interaction of chitosan nanoparticles with M-cells is their coating with 

carbohydrates having an affinity for the mannose receptors in the epithelial cells like 

glucomannan. Coating was evidenced by the conversion of the zeta potential to negative 

values. These particles were efficiently loaded with the inmunomodulatory protein 

complex P1 for the peroral administration [85]. 
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2.2. Multifunctional nanocarriers 

Numerous studies described modified nanocarriers as well as their use for the delivery 

of various drugs and genes. However, to encounter the complexity of biological systems, 

environments of different polarities, pH values, viscosities, and presence of molecular 

targets, modern nanocarrier systems need to combine a multitude of functionalities. 

Therefore, looking into the future of the whole field of drug delivery, we have to think 

about the development of the next generation of pharmaceutical nanocarriers, combining 

variety of properties and allowing for the simultaneous performance of multiple functions. 

Multicomponent targeting, exploiting the huge available surface of the nanoscale transport 

vehicles, the use of different ligands and surrounding susceptible molecules is considered 

to be essential for future improvements [86, 87]. All these factors need be considered and 
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adapted to the target area designing multifunctional nanocarrier systems. The most 

important results of such modification include an increased stability and half-life of drug 

carriers in the circulation, required biodistribution, passive or active targeting into the 

required pathological zone, responsiveness to local physiological stimuli, and ability to 

serve as contrast agents for various imaging modalities (gamma-scintigraphy, magnetic 

resonance imaging, computed tomography, ultra-sonography), Figure 6. 
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Figure 6: Schematic presentation of multifunctional pharmaceutical nanocarriers (a: drug 

loaded into the carrier, b: magnetic particles loaded into the nanocarrier, c: charged polymer 

on the surface, d: cell penetrating peptide, e: surface attached polymer e.g. PEG for long 

circulating nanocarrier, f: monoclonal antibody on surface of immunocarrier, g: heavy metal 

atom for contrast gamma- or MR imaging)  

 

Recently, Li et al [88] have developed a self-assembled non-viral nanoparticle 

formulation, which was prepared by condensing the siRNA and calf thymus DNA with 

protamine into a compact complex, followed by coating with cationic liposomes [39]. To 

further stabilize the formulation, PEG conjugated lipids were post-inserted into the outer 

lipid membrane. A targeting ligand (anisamide) was conjugated to the distal end of PEG 

for targeting sigma receptor expressing tumor cells. The targeted nanoparticle formulation 

was shown to selectively deliver siRNA to receptor positive tumor cells in vitro [39, 88] 
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and in vivo [89]. In addition, a single I.V. injection of the targeted nanoparticles resulted in 

70-80% gene silencing in an experimental metastatic tumor, B16F10 lung metastasis in 

mice and prolonged the survival time of the animals by 30% [90]. 

 

Mechanism of uptake of nanocarriers 

1. Biodistribution 

Nanoparticles will usually be taken up by the liver, spleen and other parts of the 

reticuloendothelial system (RES) depending on their surface characteristics. Particles with 

more hydrophobic surfaces will preferentially be taken up by the liver, followed by the 

spleen and lungs [91]. Hydrophilic nanoparticles (35 nm diameter), such as those prepared 

from poly(vinyl pyrrolidone), show less than 1% uptake by the spleen and liver and 8 h 

after injection show 5–10% still circulating in the bloodstream. However, nanoparticles 

prepared of 50% PNVP and 50% N-isopropyl acrylamide (45 or 126 nm diameter) instead 

showed preferential uptake by the liver [92]. Particles with longer circulation times, and 

hence greater ability to target the site of interest, should be 100 nm or less in diameter and 

have a hydrophilic surface in order to reduce clearance by macrophages [93]. Therefore, 

coating of nanoparticle surface with hydrophilic polymers can create a cloud of chains at 

the particle surface which will repel plasma proteins and work in this area began by 

adsorbing surfactants to the nanoparticles surface. Other trials include forming the particles 

from branched or block copolymers with hydrophilic and hydrophobic domains. 

2. Opsonization  

One of the most important biological barriers to controlled drug or gene delivery is the 

process of opsonization. This is the process by which a foreign organism or particle 

becomes covered with opsonin proteins, thereby making it more visible to phagocytic cells 

[94]. A widely used method to slow the opsonization of nanoparticles is the use 

hydrophilic polymers such as PEG, poloxamers and poloxamines, which can block the 
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electrostatic and hydrophobic interaction of opsonin with the particle surface and hence 

imparts stealth and sterically stabilized properties to the nanoparticles [95]. The 

characteristics of this layer; thickness, charge, grafting density, molecular conformation 

and functional groups, all impact the way in which it interacts with opsonin. 

3. Active and passive targeting 

In general, cellular uptake of nanocarriers is phrased as targeted delivery. This can be 

subdivided into passive targeting - based on effects such as enhanced permeability and 

retention (EPR) [96, 97], tumor environment and direct local delivery - and active 

targeting which makes use of the coupling of a tissue/cell specific marker leading to 

localized accumulation of the nanocarriers [98]. The defective vascular architecture, 

created due to the rapid vascularization necessary to serve fast-growing cancers, coupled 

with poor lymphatic drainage allows an enhanced permeation and retention effect (EPR 

effect) [99, 100]. 

Considering cellular interaction, passive and active processes might be further 

specified and sub-divided; paracellular and transcellular route comprising the passive 

[101], and concentration dependent barrier transport and the endocytotic pathways 

comprising the active transport. These mechanisms are based on different aspects for 

uptake like clathrin-mediated, ligand-activated, non-coated vesicular internalization as well 

as phago- and pinocytosis [102, 103]. 

Regarding the nanocarrier size and cellular uptake several thresholds have been 

speculated. Particles of size up to 200 nm are internalized using clathrin-coated pits [104] 

whereas larger objects are taken up via caveolae membrane invaginations. Other 

pathways are still under research and not clarified yet [105]. Particles as large as 500 nm 

can be taken up by non-phagocytic cells using an energy-dependent process [106]. 

Panyam et al. [107] investigated the uptake and distribution of PLGA nanoparticles in 

various cell lines. In vascular smooth muscle cells, the nanoparticle internalization was 
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found to be incorporated through fluid phase pinocytosis and in part through clathrin--

coated pits [31]. The uptake was concentration and time dependent; efficiency decreased at 

higher doses, suggesting that the uptake pathway is a saturable process. Following their 

uptake, nanoparticles were transported to primary endosomes, then to sorting endosomes 

[31]. A fraction is then sorted out of the cell through recycling endosomes while the 

remaining fraction is transported to secondary endosomes, which then fuse with 

lysosomes. In the acidic pH of the endo-lysosomes, charge reversal of the nanoparticles 

occurs due to transfer of the proton/hydronium ions from the bulk solution to the particle 

surface [103]. This allows stronger electrostatic interactions leading to localized 

destabilization of the membrane and escape of the nanoparticles to the cytoplasmic 

compartment. In another study, the ζ-potential of chitosan-tripolyphosphate nanoparticles 

was found to be very sensitive to changing pH values, indicating that the surface density of 

protonated amino groups and the degree of protonation are reversibly responsive to pH 

changes [108]. On the other hand, polystyrene nanoparticles are unable to escape the endo-

lysosomal compartment because they do not exhibit a charge reversal with pH changes 

[107]. 

Accordingly, nanoparticles which show transition in their surface charge from anionic 

at pH 7 to cationic in the acidic endosomal pH (pH 4–5) were found to escape the 

endosomal compartment whereas the nanoparticles which remain negatively charged at pH 

4–5 were retained mostly in the endosomal compartment [31]. Nanoparticles could hence 

be directed to different cell compartments either by the proper choice of the polymers or 

surface modification of the nanoparticles with cationic polymers like chitosan [45, 109], 

PEI [110, 111] or poly (2-dimethyl-amino)ethyl methacrylate [112].  

Once the extracellular concentration of nanoparticles decreases, exocytosis begins. 

Proteins (e.g. albumin) are responsible for inducing nanoparticle exocytosis. While the 

drop in intracellular nanoparticle levels could lead to lower efficiency of the encapsulated 
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therapeutic agent, it has to be realized that nanoparticle concentration outside the cell may 

not fall so rapidly in vivo. Thus, there could be a constant presence of nanoparticles next to 

the cells, which might lead to mass transport equilibrium being reached, resulting in higher 

intracellular nanoparticle levels [31]. 

Chitosan is known to be a penetration enhancer in acidic environment towards 

monostratified and pluristratified epithelia both endowed with and lacking tight junctions 

[113]. Chitosan nanoparticles are able to be internalized into intestinal, nasal, and ocular 

epithelial cells [44, 45]. The uptake of chitosan nanoparticles seems to be related to the 

size and the superficial charge: the higher the superficial positive charge, the stronger is the 

affinity between the nanoparticles and the negatively charged cell membranes and mucus, 

respectively [44]. The contact time of the carrier systems with the membrane might 

increase uptake probability [114, 115]. Nevertheless, opposite results were found as well, 

where negatively charged and neutral particles showed an increased uptake into the Peyer's 

patches of mice [116]. 

In order to promote the internalization into the cells, several cell receptor ligands have 

been used to take advantage of receptor-mediated endocytosis. Among which galactose-, 

folate- and transferrin-bound cationized polymers have shown to be effective [53, 56, 81, 

117]. Recently, chitosan oligomers were substituted with a trisaccharide branch that targets 

cell-surface lectins to improve the gene delivery to lungs [118]. The results indicated a 10-

fold increase in gene expression levels in human bronchial epithelial cell line (16HBE14o-) 

as well as in human liver hepatocyte (HepG2) cells. Furthermore, in vitro and in vivo 

transfection confirmed lectin-mediated uptake [118]. 

 

Safety aspects of inhaled nanocarriers 

The fast growth of nanoparticle-mediated drug or gene delivery calls for concerns 

about the potential health and environmental risks related to their use.  Such risks include 
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deposition and clearance of solid nanoparticles, systemic translocation and body 

distribution as well as direct effects on the central nervous system [119]. Studies showed 

that nanoparticles can translocate from the respiratory tract via different pathways to other 

organs/tissues and induce direct adverse responses in remote organs. In particular, such 

responses may be initiated through the interaction of nanoparticles with subcellular 

structures following endocytosis by different target cells. Therefore, special attention must 

be given to such effects, which could have serious consequences in a compromised 

organism or a compromised organ.  

In the field of nanotoxicology, most of the toxicological data are based on our 

knowledge either from ultrafine nanoparticles (<100 nm in diameter) inhaled during daily 

life such as carbon black, diesel particulates, silica and titanium oxide nanoparticles or 

from the widespread production of nanomaterials even for non-medical purposes [120, 

121]. Single wall carbon nanotubes also showed some degree of toxicity such as multifocal 

granulomas and unusual inflammatory responses after inhalation [122, 123]. On the other 

hand, cationic polystyrene nanospheres induced mitochondrial damage and cell death 

without inflammation [121], while cerium oxide (CeO2) nanoparticles generate free 

radicals that produce significant oxidative stress in the cells as reflected by reduced 

glutathione and α-tocopherol levels, these toxic effects of CeO2 nanoparticles are dose and 

time dependent [124]. 

On the other hand, in the field of nanomedicine, the toxicological study of nanoscaled 

drug/gene delivery systems is a critical branch of research as the processing of 

nanoparticles in biological systems could lead to unpredictable effects. For deep lung 

delivery there are different aspects which have to be considered; one is the acute toxicity of 

the drug delivery system on the epithelia; and secondly the interaction of nanoparticles 

with the alveolar environment. Brzoska et al. [125] investigated the suitability of 

nanoparticles synthesized from porcine gelatine, human serum albumin and 
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polyalkylcyanoacrylate as drug and gene carriers for pulmonary administration. The results 

showed little or no cytotoxicity into bronchial epithelia cells 16HBE14o-cells. Besides, 

Dailey et al. [126] suggest that biodegradable polymeric nanoparticles of PLGA and 

diethylaminopropylamine polyvinyl alcohol-grafted-PLGA may not induce the same 

inflammatory response as non-biodegradable polystyrene particles of comparable size. 

 

Inhalation therapy of nanocarriers 

Inhalation therapy, as the name suggests, involves the delivery of drugs to the 

respiratory tract for either local or systemic effects. The lung’s anatomy and its transport 

function between the external environment and the systemic circulation are perfectly 

matched. The large alveolar surface area (70-100 m2) suitable for drug absorption, the low 

thickness of the epithelial barrier, extensive vascularisation and relatively low proteolytic 

activity in the alveolar space compared to other routes of administration and the absence of 

the first pass metabolism favored drug delivery through the pulmonary route.  

Nanoparticle delivery to the lungs is an attractive concept; large porous nanoparticles 

matrices can be retained in the lungs leading to a prolonged drug release, while particles 

smaller than 260 nm showed reduced uptake by alveolar macrophages [127]. Therefore, 

successful delivery of inhaled particles depends mostly on particle size, particle density 

and consequently the mass median aerodynamic diameter. Particles with an aerodynamic 

diameter of 3 µm are mainly deposited in the alveolar region, beyond this level bronchial 

deposition starts to increase. On this basis, pulmonary delivery of nanoparticles either via 

dry powder formulations [128, 129] or nebulised suspensions [130] has gained more 

attention in recent years for the local treatment of lung diseases [131, 132] and potentially 

for the systemic delivery of nanosized drug delivery systems [133]. 
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III. Aim of the thesis 

 

In this thesis, the main goal was to develop nanoparticulate carrier system for the 

pulmonary delivery of nucleotide-based drugs. In particular, we studied the application of 

PLGA nanoparticles as carrier for the telomerase inhibitor, 2’-O-MethylRNA, for the 

treatment of lung cancer. In order to improve the binding of the negatively charged 

oligonucleotide and the nanoparticles, the nanoparticle surfaces were modified with the 

positively charged polymer, chitosan. Therefore, the main aim can be subdivided into the 

following objectives: 

 

- Preparation and characterization of chitosan-modified PLGA nanoparticles, in 

addition to the study of the effect of polymer content and the process parameters on 

the particle size and surface charge in order to obtain small, positively charged 

particles with predictive good complexation and uptake behavior. 

 

- Binding to the antisense oligonucleotides, 2’-O-MethylRNA, including 

characterization of the nanoplexes, their uptake in human cancer cell lines as well 

as the dependence of this binding and uptake on the surface charge of the particles. 

 

- Investigation of the toxicity aspects of the nanoparticles with different colloidal 

properties and the factors interfering with the study. 

 

- Application of the nanoplexes as inhalation therapy; selection of the nebulization 

technique and study of the cellular uptake after air-interface deposition. 
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Chapter 2 

 

Chitosan-modified PLGA nanoparticles 

Preparation, characterization and effect of the process parameters on their 

colloidal characteristics* 

 
 
 
 
 
 
 
 
 
 
 
 
 
*This chapter has been published in: 

N. Nafee, S. Taetz, M. Schneider, U. F. Schaefer and C.-M. Lehr. (2007) Chitosan-coated PLGA 

nanoparticles for DNA/RNA delivery: effect of formulation parameters on the complexation and 

transfection of antisense oligonuceotides. Nanomedicine: Nanotechnology , biology, and medicine 

3: 173 – 183. 
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Abstract 

Purpose: Cationically-modified PLGA nanoparticles have recently been introduced as novel 

carriers for DNA/RNA delivery. The colloidal characteristics of the nanoparticles – particle size 

and surface charge – are considered the most significant determinants in the cellular uptake and 

trafficking of the nanoparticles. Therefore, our aim was to prepare chitosan-coated PLGA 

nanoparticles, and modulate the effect of the formulation parameters to tailor the nanoparticles’ 

size and charge for their special application as carrier for the cellular delivery of nucleotide-based 

drugs. 

Methods: Many formulation parameters including the PVA content, the type and concentration of 

PLGA, the type and concentration of chitosan and the ratio of the organic to the aqueous phase of 

the emulsion were studied. In addition, the effect of other process parameters, on the particle size 

was also studied, such as the emulsification and homogenization time and speed. 

Results: The results showed that a wide range of particle sizes (135.95 – 514.3 nm) and surface 

charges (13.5 – 60.4 mV) can be adjusted in dependence of the process parameters to adapt the 

carrier system for the envisaged task.  

Conclusions: The study proved the efficacy of chitosan-coated PLGA nanoparticles as a flexible 

and efficient delivery system for antisense oligonucleotides to lung cancer cells. 
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Background 

Biodegradable nanoparticles are an important area of research in the field of drug and 

gene delivery. One of the most widely used polymers for nanoparticles is the 

biodegradable and biocompatible poly (D,L-lactide-co-glycolide) (PLGA). PLGA 

nanoparticles have been extensively investigated for sustained [1] and targeted [2] / 

localized [3] delivery of different agents including anti-cancer drugs [4], plasmid DNA [5], 

proteins and peptides [6, 7] and low molecular weight compounds [8]. PLGA nanoparticles 

have hence shown great efficiency as drug delivery vehicles increasing the drug amount 

crossing various biological barriers such as the Blood rain Barrier [9, 10], gastrointestinal 

mucosa [11], nasal mucosa [12], ocular tissue [13]. 

In context of DNA/RNA delivery, the major limitation in the application of these 

nanoparticles is primarily their negative charge, which limits the interaction with the 

negatively charged DNA, in addition to the poor transport characteristics of the DNA-

encapsulated PLGA nanoparticles through the cell membrane. PLGA nanoparticles with 

cationic surface modification can overcome these disadvantages and hence readily bind 

and condense DNA. Several polycations were used to accomplish this cationic surface 

modification including polyethyleneimine [14], cetyltrimethylamonium bromide [15], 

poly(2-dimethyl-amino)ethyl methacrylate [16], didodecyl dimethyl ammonium bromide 

[17] and chitosan [18].  

The naturally occurring linear polysaccharide, chitosan, is considered to be a good 

candidate for gene transfection and expression owing to its biodegradability, 

biocompatibility, mucoadhesive and permeability enhancing properties [19]. In a recent 

comparative study, the efficiency of poly (lactide) nanoparticles coated with the cationic 

polymers; polyethyleneimine, chitosan and poly(2-dimethyl-amino)ethyl methacrylate 

(pDMAEMA) as DNA carriers was studied. Chitosan-modified nanoparticles were found 

to be best suited for transfection. Although nanoparticles modified with pDMAEMA 
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showed the highest transfection efficiency, chitosan-modified nanoparticles were the only 

carrier that released DNA at pH 7, which is a pre-requisite for the successful delivery [16]. 

The addition of chitosan to the surface of PLGA nanoparticles was also found to increase 

the penetration of the encapsulated macromolecules in mucosal surfaces [20]. Moreover, 

chitosan-modified nanoparticles were found to facilitate gene delivery and expression in 

vivo with increased efficiency and without causing inflammation [21]. 

The transfection efficiency of the cationically modified particles depends strongly on 

the particle size, which determines their cellular uptake, and the surface charge, which 

influences the ability of the particles to efficiently condense plasmid DNA/polynucleotides 

and to interact with cells. Prabha et al. [22] investigated the gene transfection levels of 

different size fractions of PLGA nanoparticles and found that the lower size nanoparticle 

fraction resulted in a 27-fold higher transfection in COS-7 cells and 4-fold higher 

transfection in HEK293 cells for the same dose of nanoparticles. 

Therefore, the ability to control the colloidal characteristics of the nanoparticles, most 

importantly particle size and surface charge, is central in determining the transfection 

efficiency. Hence, the aim of our study was to modulate the effect of the formulation 

parameters to tailor the nanocarriers’ size and charge for their special application, to 

optimize payload, and appropriately address the target system. Accordingly, many 

formulation parameters including the content of the emulsifier, the type and concentration 

of PLGA, the type and concentration of chitosan and the ratio of the organic to the aqueous 

phase of the emulsion were studied. In addition, the effect of other process parameters, on 

the particle size was also studied, such as the emulsification and homogenization time and 

speed.  
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Materials and methods 

Materials 

Poly(D,L-lactide-co-glycolide) 70:30 (Polysciences Europe GmbH, Eppelheim, 

Germany), poly(D,L-lactide-co-glycolide) 50:50 (Sigma Chemical Co., St. Louis, Mo., 

USA), polyvinyl alcohol Mowiol® 4-88 (Kuraray Specialities Europe GmbH, Frankfurt, 

Germany), two types of ultrapure chitosan chloride: Protasan® UP CL113 and Protasan® 

UP CL213 with a molecular weight of < 150 and 150 – 400 kDa, respectively (FMC 

BioPolymer AS, Oslo, Norway), ethyl acetate (Fluka Chemie GmbH, Buchs, Switzerland) 

were used as obtained.  

 

Methods 

1. Preparation of the nanoparticles 

Nanoparticle formulations were prepared by the emulsion-diffusion-evaporation 

technique [18]. PLGA 70:30 was dissolved in 5 ml ethyl acetate at room temperature. The 

aqueous phase was prepared by dissolving polyvinyl alcohol (PVA) in MilliQ water. In 

case of chitosan-modified nanoparticles (cNP), chitosan chloride (Protasan® UP CL113) is 

added to the aqueous phase. The organic phase was added dropwise to an equal volume of 

the aqueous phase under stirring using a magnetic stirrer, at 1000 rpm, for 1 h, at room 

temperature. The emulsion was then homogenized (Ultra-Turrax T25, Janke & Kunkel 

GmbH & Co-KG, Germany) at 13,500 rpm for 10 min. Nanoparticles were obtained by 

adding MilliQ water dropwise under gentle stirring to reach a final volume of the 

suspension of 50 ml. Stirring is continued overnight at room temperature to evaporate the 

organic solvent. The so-prepared nanoparticle suspension contains 2 mg/ml PLGA, 1 

mg/ml PVA and 0.3 mg/ml chitosan and was considered as our reference nanoparticle 

formulation. In order to investigate the effect of the formulation parameters on the 

colloidal characteristics of the nanoparticles, other formulations with different 
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concentrations and/or compositions were prepared following the same procedure and 

compared to the original particles. 

2. Determination of the colloidal characteristics 

The mean particle size and size distribution were determined in MilliQ water using the 

Malvern Zetasizer Nano (Malvern Instruments, Malvern, UK). Measurements were based 

on the Photon Correlation Spectroscopy (PCS) at 25oC. The surface charge was estimated 

by measuring the zeta potential based on the electrophoretic mobility (Zetasizer Nano, 

Malvern Instruments, Malvern, UK). All zeta potential measurements were performed with 

diluted nanoparticle suspensions (pH 3.5 – 4). Samples were measured in triplicates. 

3. ζ-potential – pH titration profile 

To measure the zeta potential of the nanoparticles as a function of pH, both chitosan-

modified and non-modified nanoparticle suspension were diluted with McIlvaine buffer of 

different pH-values ranging from 2 to 8. The ζ-potential was measured as previously 

mentioned. 

4. Scanning Probe Microscopy (SPM) 

The surface morphology and the shape of the nanoparticles were examined by 

Scanning Probe Microscopy with a BioscopeTM equipped with a Nanoscope IVTM 

controller (Digital Instruments, Veeco, Santa Barbara, California, USA). The nanoparticles 

were investigated under ambient conditions in tapping mode using a scanning probe with a 

force constant of 40 N/m at resonant frequency of ~170 kHz (Anfatec, Oelsnitz, Germany). 

5. Stability of nanoparticles in different buffers and culture media 

The complexation procedures with anionic plasmids as well as the transfection studies 

necessitate the use of certain buffer solutions of different pH values and some culture 

media of various compositions. These media are expected to have a great influence on the 
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size and charge of the nanoparticles, especially in the presence of the pH sensitive 

polymer, chitosan. To determine the effect of the type of buffering solution, three 

formulations of nanoparticle (F1, F2 and F3) of different sizes and surface charges were 

applied. The particle size and ζ-potential were measured in MilliQ water and in different 

solutions including Phosphate Buffer Saline (PBS) pH 7.4, HBSS buffer pH 7.4, HEPES 

buffer; 4-(2- Hydroxyethyl) piperazine-1-ethanesulfonic acid; 10 mM pH 7.4, sodium 

chloride solution  10 mM. In addition, the influence of the buffer molarity was verified by 

measuring the size and ζ-potential of the nanoparticle formulations (F1, F2 and F3) in 

HEPES buffer pH 7.4 of two different molarities (10 and 25 mM) and in sodium chloride 

solution (1, 10 and 100 mM). 

 

Results 

1. Chitosan-modified versus non-modified PLGA nanoparticles 

Chitosan-modified (cNP) and non-modified nanoparticles (ncNP) were prepared with 

PLGA 70:30 and PVA as stabilizer using the emulsion-diffusion-evaporation technique. 

Measurements of the particle size showed slight increase in the mean nanoparticle diameter 

from (271.1 ± 1.03) nm to (278.95 ± 4.95) nm by the addition of chitosan to the aqueous 

phase. In both cases, the nanoparticles are monodisperse (polydispersity index, P.I., 0.04 – 

0.06), spherical and have smooth surfaces as revealed by the SPM micrographs, Figure 1. 

The pH of the standard nanoparticle suspension was found to be around 4. The addition of 

chitosan increases the ζ-potential of the particles to 17.1 mV compared to -10 mV for the 

ncNP in MilliQ water. 
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   (A)                                                              (B) 

        

Figure 1: Morphology of non-modified (A) and chitosan-modified (B) PLGA nanoparticles as 

observed by the SPM 

The effect of pH on the surface charge of chitosan-modified and non-modified PLGA 

nanoparticles was investigated by measuring the ζ-potential versus pH. As shown in Figure 

2, the ζ-potential of the non-modified PLGA nanoparticles is almost constant (0.4 – 3.5 

mV) at all pH values tested. In comparison, chitosan-modified nanoparticles exhibited a 

positive potential of 33.6 mV in acidic medium, which decreased by increasing pH values. 

 

Figure 2: ζ-potential – pH profile for non-modified and chitosan-modified PLGA 

nanoparticles 

 

In addition to the surface charge of the nanoparticles, the particle size is also 

considered one of the most important parameters in the mucosal and tissue uptake of the 

nanoparticles. Smaller nanoparticles are able to penetrate through the sub-mucosal layers 

while larger size particles were found to be localized in the epithelial lining [23]. 
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Moreover, smaller nanoparticles were found to show significantly higher transfection 

efficiency as compared to larger nanoparticles [22]. Therefore, our study aimed to produce 

nanoparticles of relatively small(er) size and more pronounced positive charge on the 

surface while being able to adjust these parameters deliberately. This necessitates the study 

of the effect of different formulation variables on the colloidal characteristics of these 

particles. 

2. Factors affecting the colloidal characteristics of the nanoparticles 

2.1. Effect of the stabilizer and type of PLGA     

The influence of PVA content on the colloidal properties of the chitosan-modified 

PLGA nanoparticles was studied. Nanoparticles containing various concentrations of PVA 

ranging from 1 to 5 mg/ml of the nanoparticle suspension were prepared using two 

different types of PLGA copolymer based on its lactide/glycolide content (PLGA 70:30 

and PLGA 50:50). In general, it was observed that increasing the concentration of PVA 

resulted in a statistically significant decrease in the mean particle size (p < 0.05), Figure 3. 

When the concentration of PVA is increased from 1 to 2 mg/ml, the mean particle diameter 

was significantly reduced whereas further increase in the PVA concentration lead to 

smaller reduction in the particle size, Figure 3. Similar results were also reported by 

Mainardes & Evangelista [24]. The size reduction was significantly more pronounced in 

case of nanoparticles prepared with PLGA 70:30 than those prepared with PLGA 50:50 (p 

< 0.05), Figure 3. Similarly, measurements of the ζ-potential indicate that nanoparticles 

containing PLGA 70:30 are characterized by a significantly higher ζ-potential (28.3 – 

35.38 mV) compared to those containing PLGA 50:50 (16.4 – 22.9 mV), (p < 0.05), 

Figure 3. The ratio of lactide/glycolide content in the PLGA polymer is known to influence 

the degradation rate of the polymers [25] as well as their release properties. Therefore, it 

was interesting to investigate their effect on the colloidal characteristics of the 
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nanoparticles. Nevertheless, due to the biological requirements and goals we did not test all 

available ratios of lactide/glycolide units. Only short degradation times were considered 

and therefore only two types of PLGA copolymers were investigated. No significant 

correlation was found between increasing PVA concentration and the surface charge of the 

nanoparticles (p < 0.05). Formulations containing different amounts of PVA are all 

characterized by unimodal size distribution (P.I. 0.08 - 0.15). 

 

Figure 3: Effect of the concentration of PVA on the particle size and the surface charge of 

chitosan-modified PLGA nanoparticles (Mean ± S.D.) 

 

2.2. Effect of PLGA concentration 

 Nanoparticle suspensions containing half and double the concentration of PLGA 

70:30 present in the original nanoparticle formulation were prepared. It was observed that 

by increasing the polymer concentration, nanoparticles of larger sizes were produced, 

Figure 4. This is in agreement with the findings of Kown et al. [17] and Chorny et al. [8]. 

However, the change in particle size did not affect the polydispersity of the nanoparticles; 

mean P.I. of the three formulations is 0.09 ± 0.012. Measurements of the ζ-potential 
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showed that the surface charge is weakly affected by the variation in the polymer 

concentration, Figure 4.  

 

Figure 4: Effect of the concentration of PLGA on the colloidal characteristics of chitosan-

modified PLGA nanoparticles (Mean ± S.D.) 

2.3. Effect of chitosan 

In order to study the effect of chitosan concentration on the colloidal characteristics of 

the nanoparticles, two non-modified nanoparticle formulations F1 and F2 of two different 

particle sizes (249.8 and 148.2 nm) were prepared and compared with two formulations of 

increasing chitosan concentrations from 0.15 – 1.5 mg/ml (all other parameters were 

unchanged). As observed in Figure 5A, increasing the concentration of chitosan showed a 

gradual increase in the particle size of the nanoparticles, which become significantly more 

pronounced for nanoparticles containing more than 0.9 mg/ml chitosan (p < 0.05). On the 

other hand, measurement of the ζ-potential of the different formulations indicates a 

significant increase in the surface charge with increasing concentration of chitosan (p < 

0.05). The connecting line between the data points were obtained using 

)1(0
bxeayy −−+= , (R2 = 0.999, 0.996) as a fit function, Figure 5B. However, the small 

nanoparticles F2 are characterized by a higher surface charge using the same concentration 
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of chitosan; the ζ-potential of F1 and F2 containing both 0.6 mg/ml chitosan was found to 

be 33.03 and 46.43 mV, respectively.  

 

          

Figure 5: Effect of the concentration of chitosan on (A) the particle size and (B) the surface 

charge of chitosan-modified PLGA nanoparticles (Mean ± S.D.) 

 

The influence of chitosan properties on the size and surface charge of the nanoparticles 

was also investigated. Ultrapure chitosan chloride Protasan® UP CL 213 was used to 

prepare nanoparticles. The polymers are characterized by different molecular weight and 

viscosity, Table 1. Different molecular weight of the outer polymer might influence the 

overall charge of the particles.  

Table 1: Effect of chitosan properties on the colloidal characteristics of nanoparticles: 

 

a Approximate molecular weight (weight average molecular weight). 
b Standard viscosity ranges (1% solution, 20oC). 
c S.D. denotes the standard deviation of (n = 3). 
 

Chitosan properties Colloidal characteristics of the nanoparticles  

Type of chitosan Molecular weight 

[kDa]a 

Viscosity 

[mPa.s]b 

Mean particle size 

[nm] ± S.D.c 

Polydispersity Index 

(P.I.) ± S.D.c  

Zeta potential  

[mV] ± S.D.c 

 

Protasan® UP CL113 

Protasan® UP CL213 

 

< 150 

150 - 400 

 

< 20 

20 - 200 

 

166.05 ± 1.5 

167.7 ± 0.5 

 

0.122 ± 0.02 

0.13 ± 0.01 

 

13.32 ± 0.83 

14.4 ± 1.67 
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The viscosity of chitosan is expected to influence the formation of the nanoparticles 

which depends on the diffusion and therefore on the viscosity. However, it was noticed that 

nanoparticles prepared using either type of chitosan have the same mean particle size and 

surface charge considering the error (Table 1). 

2.4. Effect of organic to aqueous phase volume ratio  

The ratio between the organic and aqueous phase of the emulsion is of great 

importance regarding the stability of the emulsion and is expected to influence the size of 

the dispersed globules. Therefore, the organic to aqueous phase volume ratio was varied 

between 2:1, 1:1 and 1:2. The results demonstrate a gradual decrease in particle size by 

changing the ratio from 2:1 to 1:2 (Figure 6A) as well as a corresponding significant 

increase in surface charge (p < 0.05), Figure 6B.  

      

Figure 6: Effect of the organic to aqueous phase volume ratio on (A) the particle size and (B) 

the surface charge of chitosan-modified PLGA nanoparticles (Mean ± S.D.) 

 

2.5. Effect of process parameters  

Attempts to reduce the particle size by increasing the speed of magnetic stirrer or the 

homogenizer or the number of the homogenization cycles were previously reported [17, 

26]. According to Kown et al. [17], an increase in homogenization speed resulted in a 
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corresponding decrease in the particle size, however, no significant reduction in size was 

observed by increasing the speed above 12,000 rpm. It can be noticed that the modification 

of the stirring time of the emulsion, the homogenization speed or time, or sonication 

resulted in minor reduction in the particle size (Table 2). Further increase in the 

homogenization time and/or speed was not favorable because the high energy provided 

lead to particle fusion and aggregation rather than particle size reduction. 

 

Table 2: Effect of different technical parameters on the nanoparticle size 

 
Parameter 

 
Duration 

Mean particle size [nm] ± 
S.D.a 

Polydispersity Index (P.I.) 
± S.D.a 

Stirring time 1h 
2h 
3h 

277.6 ± 1.3 
± 2.08 

271.5  ± 2.02 

0.048 ± 0.008 
0.057 ± 0.01 

0.047 ± 0.016 

Homogenization time 10 min 
15 min 

273.5 ± 1.15 
271.2 ± 3.4 

0.036 ± 0.02 
0.049 ± 0.011 

Sonication time 1 min 
6 min 

275.7 ± 1.9 
274.6 ± 3.4 

0.059 ± 0.01 
0.078 ± 0.009 

a S.D. denotes the standard deviation of  (n = 3). 

 

Based on the aforementioned results chitosan-modified PLGA nanoparticles can be 

produced over a wide range of size and surface charge. For DNA/RNA delivery purposes, 

nanoparticles of small size and high surface charge are mandatory. Therefore, we selected 

a chitosan-modified PLGA nanoparticle formulation characterized by a size of 172.3 ± 4.5 

nm and a surface charge of 38.6 ± 1.96 mV to study binding and uptake.  

3. Stability of nanoparticles in different buffers 

To study the effect of type of buffering solution on the colloidal characteristics of 

chitosan- modified nanoparticles, three nanoparticle formulations (F1, F2, and F3) of 

different mean particle size and surface charge density were prepared. The colloidal 

characteristics of these formulations are represented in Table 3. 
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Table 3: Colloidal characteristics of chitosan modified nanoparticles in MilliQ water 

 F1 F2 F3 

Particle size (nm) ± SD 

Polydispersity Index ± SD 

ζ-potential (mV) ± SD 

274.0 ± 2.8 

0.042 ± 0.019 

13.0 ± 0.3 

154.9 ± 0.9 

0.115 ± 0.007 

14.08 ± 2.19 

135.95± 0.8 

0.233 ± 0.005 

26.25 ± 4.2 

 

Dilutions of the nanoparticle suspensions were prepared in the following solutions; 

Phosphate Buffer Saline (PBS) pH 7.4, HBSS buffer pH 7.4, HEPES buffer 10 mM pH 

7.4, and sodium chloride solution 10 mM. The mean particle size and ζ-potential for 

formulae F1, F2 and F3 are plotted in Figure 7A & B.  

 

 

Figure 7: Particle size (A) and ζ-potential (B) of chitosan-modified PLGA nanoparticles in 

different buffer solutions 

 



                  Chapter 2: Chitosan-modified PLGA nanoparticles: Preparation & characterization 

 52

The Figure indicates that the nanoparticles exhibit almost the same mean particle size 

in the different solutions tested. On the other hand, the ζ-potential measurements indicate 

that the surface charge density is greatly reduced in buffer solutions compared to MilliQ 

water. It could be expected that the presence of counter ions in the buffer solutions together 

with the alkaline environment play a significant role in the surface charge density of the 

nanoparticles.  

In order to investigate the effect of molarity of the buffer solution, the particle size and 

ζ- potential for the three previously mentioned nanoparticle formulations (F1, F2 and F3) 

were measured in HEPES buffer pH 7.4 of two molarities 10 and 25 mM. Changes in the 

measured particle size and ζ-potential with the molarity are illustrated in Figure 8 A & B, 

respectively. The diagrams indicate that the molarity of HEPES buffer has no sharp 

influence on the colloidal characteristics of the nanoparticles.  
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Figure 8: Particle size (A) and ζ-potential (B) of formulae F1, F2 and F3 in HEPES buffer pH 

7.4, 10 and 25 mM 

 

The same observation was observed when sodium chloride solution of different 

molarities (1, 10 and 100 mM) was used during the measurements, Figure 9. 
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Figure 9: Particle size (A) and ζ-potential (B) of formulae F1 and F2 in NaCl solution 1, 10 

and 100 mM 

 

Discussion 

Recent studies showed that the adsorption of a cationic hydrophilic polymer on the 

nanoparticle surface improves not only their transmucosal transport but also their 

efficiency as gene carriers [16, 27]. In this context, both the size and surface charge of 

nanoparticles are considered the major determinants for successful gene delivery. PLGA 

nanoparticles are known to be negatively charged due to the presence of ionized carboxyl 

groups. The presence of amphiphilic polymers as PVA forms a stable network on the 

polymer surface. This network shields the surface charge and moves the shear plane 

outwards from the particle surface, which resulted consequently in a slightly negative ζ-

potential [28]. Despite this comparatively weak ζ-potential, the nanoparticles were 

stabilized by the layers of PVA surrounding the nanoparticles by steric hindrance [18, 29]. 

PVA has been extensively used as promising stabilizer for PLGA nanoparticles [7, 30]. 

The mechanism of PVA binding with PLGA has been proposed to be due to the 

interpenetration of PVA and PLGA molecules during nanoparticle formation. PVA is a 

copolymer of poly (vinyl acetate) and poly (vinyl alcohol) with considerable block 

copolymer character. The hydrophobic segments of PVA, the vinyl acetate part, penetrate 



                  Chapter 2: Chitosan-modified PLGA nanoparticles: Preparation & characterization 

 54

into the organic phase and remain entrapped into the polymeric matrix of the nanoparticles. 

The binding of PVA on the nanoparticle surface is likely to happen when the organic 

solvent is removed from the interface in which interpenetration of PVA and PLGA 

molecules takes place [28]. 

Unlike the non-modified PLGA nanoparticles, chitosan-modified nanoparticles are 

characterized by a strongly positive ζ-potential. Hence these nanoparticles are stabilized by 

electrostatic repulsion, which prevents their aggregation. Chitosan is a weak base 

polysaccharide, consisting of beta-(1,4) linked monomers of D-glucosamine and N-acetyl-

D-glucosamine. In acidic medium, the amine groups of the polysaccharide will be 

positively charged allocating a high surface charge to the nanoparticles [31]. The pH 

titration profile, Figure 2, depicts a variation in ζ-potential with pH, which reveals that the 

surface charge of chitosan-modified nanoparticles is strongly dependent on pH. Thus, the 

ζ-potential titration provided proof of successful cationic surface modification by the 

addition of chitosan.  

The amount of surfactant plays an important role as a stabilizing agent in the 

emulsification process and in the protection of the droplets. Increasing the concentration of 

PVA in the aqueous phase resulted in a corresponding increase in the viscosity. This 

contributes in the formation of a stable emulsion with smaller and uniform droplet size, 

leading to the formation of smaller sized nanoparticles [28]. However, as revealed from 

Figure 3, the decrease in particle size with the PVA concentration is not linear and levels 

off for higher PVA concentrations. Furthermore, the reduction of nanoparticle size is a 

function of the type of PLGA; PLGA 70:30 formed smaller nanoparticles compared with 

PLGA 50:50 using the same concentration of PVA. In contrast to the effect of PVA, results 

showed a significant increase in particle size with higher PLGA concentration, Figure 4. 

As the polymer concentration increases, the viscosity of the organic solution (dispersed 

phase) increases, resulting in a poorer dispersability of the PLGA solution into the aqueous 
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phase. The molecules are expected to coalesce in a more concentrated solution, thereby 

forming larger particles [24]. The same effect was also noticed by reducing the volume of 

the inner aqueous phase in relation to the organic phase, Figure 6 A&B. Dissolving the 

same amount of PVA/chitosan in half the volume of water resulted in a remarkable 

increase in the viscosity which renders the dispersion of PLGA solution rather difficult and 

in turn larger nanoparticles were formed. These findings emphasize the great influence of 

the viscosity on the colloidal characteristics of the nanoparticles. 

The addition of chitosan to the aqueous phase during nanoparticles formulation imparts 

a positive ζ-potential to the nanoparticles, which is a function of chitosan concentration, 

Figure 5. However, the charge density on the surface remains in dependence of the 

nanoparticle size according to the free surface area with respect to the chitosan amount. As 

illustrated in Figure 5B, the smaller particles show a fast increase in surface charge which 

levels off as the surface is close to saturation, whereas, the same amount of chitosan leads 

for larger particles to a partially covered surface. Finally, a zeta potential of ~ 58–60 mV 

seems to indicate the saturation of the nanoparticle surface with the polycation in both 

cases. This behavior might be easily exploited for modulating the particle surface charge to 

facilitate both the transport properties as well as the mucoadhesive properties of the 

nanoparticles.  

The relation between the particle size and the surface charge on the nanoparticles is 

quite of interest. Smaller particles acquire a higher zeta potential compared to larger 

particles using the same concentration of chitosan, Figure 5B. This reflects the dependency 

of the zeta potential from the charge density. The smaller the particle size, the larger will 

be the relative surface area of the nanoparticles available for interaction with chitosan. 

Hence, using constant chitosan concentration, one can improve the surface charge of the 

nanoparticles by varying the mean nanoparticle diameter. 
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In theory, mucoadhesion can be promoted by the positively charged groups on the 

nanoparticle surface through their electrical interaction with the negatively charged mucus 

[18]. In addition, the positively charged particle surface may be expected to facilitate 

adherence to the negatively charged cellular membranes by localized destabilization of the 

membrane, thus inducing their intracellular uptake into the cytoplasmic compartment [22]. 

Additionally, nanoparticles carrying positive charge in the acidic solution of endo-

lysosomes are more prone to escape into the cytoplasmic compartment for effective release 

and gene expression [31]. Thus, by varying the surface charge, one could potentially be 

able to direct the nanoparticles either to lysosomes or to cytoplasm. 

Studying the influence of chitosan properties on the colloidal characteristics of the 

nanoparticles, it was expected that the use of chitosan of a relatively higher molecular 

weight and higher viscosity would have a more pronounced impact on the particle size and 

the surface charge of the nanoparticles. However, the effect of chitosan properties was 

found to be without impact. This might be attributed to the relatively low concentration of 

chitosan included in the nanoparticle suspension. Therefore, the viscosity is not 

significantly altered and the particle’s size is not influenced. Due to the fact that every 

monomer may have a charge, the amount of monomers on the surface of the nanoparticles 

determines the zeta potential and the size of the molecule itself plays a minor role. On the 

contrary, a remarkable increase in the size and surface charge of the nanoparticles was 

observed by Gan et al. [31] when higher molecular weight chitosan-tripolyphosphate was 

used. In the aforementioned study, nanoparticles were produced via tripolyphosphate 

initiated ionic gelation mechanism, whereas in our study chitosan is thought to form a thin 

coat around the PLGA nanoparticles as suggested by the linear increase in the surface 

charge with increasing chitosan concentration previously discussed.  
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Conclusions 

Chitosan-modified PLGA nanoparticles offer a flexible technology platform for 

DNA/RNA delivery. By varying the formulation parameters, a wide range of particle sizes 

(135.95 – 514.3 nm) and surface charges (13.5 – 60.4 mV) can be adjusted to adapt the 

carrier system for the envisaged task.  
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Abstract 

Purpose: The potential use of nanoparticles along pulmonary route implies an intensive 

purification from residual organic solvents, emulsifiers and/or monomers used during the 

preparation procedure to insure the biological tolerance for the product. The presence of these 

impurities may alter the physicochemical and release characteristics of the nanoparticles. 

Additionally, significant amounts of surfactants may disturb the naturally regulated surface tension 

of the pulmonary lining leading to impaired lung function or inflammation. In this chapter, we 

aimed to select the most appropriate techniques for purification of the nanoparticles that preserve 

their colloidal properties. 

Methods: Different techniques for the purification of chitosan modified PLGA nanoparticles from 

residual polymers were investigated. In addition, quantitative estimation of the amount of residual 

polymers during the preparation process and investigation of the behaviour of the purified 

nanoparticles versus original nanoparticles with respect to pH were done. 

Results: Nanoparticles were efficiently purified (on a small-scale) by centrifugal ultrafiltration 

using Centrisart I® and by size exclusion chromatography (on a large-scale) using FPLC. The 

purified particles retained their size and charge along the purification procedure. Quantitative 

determination of the residual polymers revealed that 2/3 of the emulsifier was bound to the 

nanoparticles, while the amount of chitosan used was not enough to saturate the nanoparticles 

surface. 

Conclusions: From this study, it can be concluded that the Centrisart I® and the FPLC are 

promising techniques for small- and large-scale purification of chitosan-modified PLGA 

nanoparticles, respectively. 



                                                  Chapter 3: Purification of chitosan-modified PLGA nanoparticles 

  63

Background 

The potential use of nanoparticles along pulmonary route implies an intensive 

purification from residual organic solvents, emulsifiers and/or monomers used during the 

preparation procedure to insure the biological tolerance for the product. The presence of 

these impurities may alter the physicochemical and release characteristics of the 

nanoparticles. Additionally, significant amounts of surfactants may disturb the naturally 

regulated surface tension of the pulmonary lining, thus leading to impaired lung function or 

inflammation [1]. In the area of gene delivery, excessive amounts of the stabilizers can also 

have negative effects on the transfection efficiency of the nanoparticles [2]. Furthermore, 

in the case of cationically modified PLGA nanoparticles, the presence of residual amounts 

of the unbound cationic polymer may form undesirable complexes with the negatively 

charged plasmid resulting in misleading observations. Hence, the investigation of the 

settlement of a purification procedure with the potential of removing undesirable 

components, while reserving the colloidal stability of the nanoparticles and providing 

minimum loss of the particles is a matter of great interest. 

A range of approaches have been used for the purification of nanoparticles. Among 

these techniques, dialysis [3], ultrafiltration [4], gel filtration [5], centrifugation and 

ultracentrifugation [6] have been investigated. Although dialysis is a simple procedure, it is 

considered a time-consuming process with a risk of microbial contamination. Besides, 

molecules of medium size such as the emulsifiers cannot be completely removed with 

dense dialysis membranes. In addition, dialysis can also result in premature release of 

nanoparticle payload during the extended purification procedure [7]. The pressure driven 

processes such as diafiltration, ultrafiltration or microfiltration are of limited efficiency due 

to the formation of a cake of precipitated particles on the membrane surface. If the 

adhesion of the particles is stronger than the repulsion, the cake formation is irreversible 

and membrane permeability decreases dramatically. In addition, gel filtration may cause 
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irreversible adsorption of the active moieties on the column’s stationary phase as well as 

poor resolution between the large impurities and small nanoparticles [7]. 

Centrifugation or ultracentrifugation, in combination with washing nanoparticles with 

an appropriate medium such as deionised water, is the most common approach to remove 

large quantities of process impurities. However, the impact of the centrifugation force can 

cause caking and difficulties in the nanoparticle redispersion, whereas insufficient 

centrifugation force can lead to significant loss of nanoparticles in the supernatant. 

Despite the great number of publications that demonstrate the efficacy of polymeric 

nanoparticles for pulmonary drug/gene delivery, very few of them were concerned about 

purification from residual unbound polymers. In this chapter we aimed to select the most 

appropriate small- and large-scale techniques for purification of the nanoparticles that 

preserve their colloidal properties. In addition, quantitative estimation of the amount of 

residual polymers during the preparation process and investigation of the behavior of the 

purified nanoparticles versus original nanoparticles with respect to pH were done. 

 

Materials and Methods 

Materials 

Poly(D,L-lactide-co-glycolide) 70:30 (Polysciences Europe GmbH, Eppelheim, 

Germany), polyvinyl alcohol; Mowiol® 4-88 (Kuraray Specialities Europe GmbH, 

Frankfurt, Germany), ultrapure chitosan chloride: Protasan® UP CL113 with a molecular 

weight of < 150 kDa (FMC BioPolymer AS, Oslo, Norway), Cibacron Brilliant Red 3B-

A® (Sigma-Aldrich Co., St Louis, USA) and ethyl acetate (Fluka Chemie GmbH, Buchs, 

Switzerland). Other chemicals were of analytical grade. 
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Methods 

 1. Preparation of nanoparticles 

Cationically modified nanoparticles were prepared using the emulsion diffusion 

evaporation technique previously described [8, 9]. Briefly, solution of PLGA 70:30 in 

ethyl acetate was added dropwise to 5 ml aqueous solution of PVA and chitosan while 

stirring at 1000 rpm. The emulsion was stirred for 1h, and then homogenized at 13,500 

rpm, for 10 min (Ultra-Turrax® T 25 Mixer, Janke und Kunkel GmbH & Co., Staufen, 

Germany).  Nanoparticles were obtained by adding demineralised water to 50 ml. The 

suspension was stirred overnight to evaporate the organic solvent.  

2. Purification of nanoparticles 

Nanoparticles were purified on a laboratory scale using Centrisart I® (Sartorius AG, 

Goettingen, Germany), which is a ready to use unit for small volume (up to 2.5 ml) 

centrifugal ultrafiltration, Figure 1.  Centrisart I® consists of an outer centrifuge tube, in 

which the sample is placed, and a free-sliding inner tube, closed on the underside with an 

ultrafilter. During centrifugation, the inner tube is pulled down against the sample, so that 

liquid is forced through the ultrafilter, while particles are simultaneously pulled away from 

it to the bottom.  

Outer centrifuge tube

Inner centrifuge tube

Supernatant

Ultrafilter
Nanoparticles

Direction of 
ultrafiltration

Centrifugal 
force

Outer centrifuge tube

Inner centrifuge tube

Supernatant

Ultrafilter
Nanoparticles

Direction of 
ultrafiltration

Centrifugal 
force

 

Figure 1: Schematic presentation of Centrisart I® and the forces acting during the 

separation procedure 
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The nanoparticles were centrifuged (Universal 30RF, Hettich Centrifuges, Tuttlingen, 

Germany). After centrifugation of the nanoparticles, supernatant was collected for 

quantitative determination of unbound PVA and chitosan, while the nanoparticles retained 

were washed with water and redispersed. This purification cycle was repeated several 

times. Various parameters were investigated to optimize the purification process in terms 

of best separation without affecting the nanoparticles integrity or causing their aggregation. 

The factors studied are molecular weight cut-off (MWCO) of the filter, the Relative 

Centrifugal Force (RCF) and the Centrifugal time. 

Large-scale purification of nanoparticles was carried out by preparative size 

exclusion chromatography (SEC) using an FPLC® system from Pharmacia Biotech (now 

Amersham Biosciences; Uppsala, Sweden) equipped with two P-500 pumps, LCC-501 

Plus controller, MV-7 injection valve, 50 ml Superloop, C 16/70 column with one AC 16 

adaptor, Uvicord SII detector with an interference filter of 206 nm and FRAC-100 fraction 

collector, Figure 2. 

 

Figure 2: FPLC for large scale purification of nanoparticles 
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The stationary phase was Sephacryl 1000-SF® from GE Healthcare (Munich, 

Germany) with a dimension of 65 cm in height and 1.6 cm in diameter. Mobile phase is 

composed of degased MilliQ-water containing 0.1 mM HCl in a flow rate of 1 ml/min 

under isocratic conditions. The system was operated by the FPLCdirectorTM version 1.3 

(Pharmacia Biotech). 

Nanoparticles injection volumes were 5 – 7 ml per run. Purified particles were 

collected and concentrated by ultrafiltration using Vivaspin 20® (Sartorius, Göttingen, 

Germany) with a MWCO of 300,000 Da at 1000 x g followed by sterile filteration 

(0.2/0.45 µm, Minisart® sterile cellulose acetate filter, Sartorius). 

3. Quantitative determination of PVA concentration 

Following small-scale purification with Centrisart I®, samples from the supernatant 

collected after every centrifugation cycle were analysed for the amount of unbound PVA. 

The PVA content in the supernatant was determined by a colorimetric method based on the 

formation of a greenish coloured complex between two adjacent hydroxyl groups of PVA 

and iodine molecule in the presence of boric acid [10]. Appropriate volumes from the 

supernatant were diluted to 5 ml with water. The diluted solution was mixed with 3 ml 

boric acid solution (3.8 % w/v) and 0.6 ml 0.1 M iodine solution (prepared from iodine and 

potassium iodide), and then the volume was made up to 10 ml with water. The UV 

absorbance of the final solution was measured by a UV/VIS spectrophotometer at 640 nm 

using boric acid/iodine solution as a blank solution. A calibration curve was prepared 

under identical conditions using PVA solution in the concentration range from 0 to 400 

µg/ml. The PVA assay was validated for its linearity, accuracy, specificity and 

reproducibility. In order to investigate the effect of chitosan on the complex formation, 

another calibration curve was done using a mixture of PVA and chitosan (in the maximum 

concentration that can be present in the nanoparticle suspension). 
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4. Quantitative determination of chitosan concentration 

The amount of chitosan in the supernatant during the purification procedure was assessed 

using a colorimetric assay [11], adopted in our laboratory for the specific application. The 

assay is based on the ionic interaction between the protonated amino groups of chitosan and 

sulfonic acid groups on the anionic dye, Cibacron Brilliant Red®. In this method, 5 ml of 

aqueous dye solution (0.15 % w/v) were diluted to 100 ml with 0.1 M glycine hydrochloride 

buffer. The buffer is prepared by dissolving 7.48 g/L glycine and 5.84 g/L sodium chloride in 

MilliQ water followed by the addition of 0.1 M HCl to obtain a final pH of 3.2. Samples from 

the supernatant after each purification step were diluted with glycine buffer to 300 µl. Then, 

3 ml of the dye solution were added. The absorbance values were measured at 578 nm using 

UV/VIS spectrophotometer using a solution of buffer (0.3 ml) and dye (3 ml) as reference 

solution. A standard curve was done using different dilutions of chitosan. The linearity, 

accuracy and reproducibility of the assay were verified. In addition, the effect of PVA (which 

is also present in the supernatant) on the assay was investigated. 

5. Effect of the purification process on the colloidal characteristics 

The size and ζ−potential of the original nanoparticle suspension was determined 

using the Malvern Zetasizer Nano (Malvern Instruments, Malvern, UK) in demineralised 

water. Size measurements were based on the Photon Correlation Spectroscopy (PCS) at 

25oC, whereas the ζ−potential was estimated based on the electrophoretic mobility. After 

each purification step, samples from the nanoparticle suspension were also characterized. 

A mean of three determinations ± SD was calculated for each sample. 

In addition, the particle size and ζ−potential of non-purified and purified nanoparticles 

were measured at different pH values from 3 to 11 using the automatic titration device 

MPT-2 (Malvern Instruments, Malvern, UK). 
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Results and Discussion 

 1. Characterization of nanoparticles 

Chitosan-modified PLGA nanoparticle suspension containing 3 and 0.3 mg/ml PVA 

and chitosan, respectively, was prepared using the emulsion-diffusion-evaporation 

technique. The nanoparticles are characterized by a mean particle size of (166.2 ± 1.3) nm, 

a polydispersity index of 0.164 and a surface charge of (26.7 ± 1.5) mV. 

2. Purification of the nanoparticles 

Preliminary trials for the purification of nanoparticles based on ultracentrifugation or 

filtration resulted in either particle aggregation or partial loss of the nanoparticles through 

the membrane filter, respectively (data not shown). Purification of nanoparticles using the 

Centrisart I® appeared to be the most promising technique on a laboratory scale. For 

optimal purification conditions, the effect of different parameters including the MWCO of 

the ultrafilter, the RCF, and the centrifugation time on the colloidal characteristics of the 

particles were investigated. Centrisart I® of different MWCO ranging from 5,000 to 

300,000 were applied. It was observed that using the smallest MWCO (5,000), no 

separation could be performed because the polymeric materials were not able to cross the 

filters into the supernatant; the suspension remained intact. Increasing the MWCO made 

the separation procedure feasible. In general, higher MWCO is expected to ensure better 

migration of the large, soluble molecules of chitosan and PVA in the filtrate. Measurement 

of the particle size indicates that the MWCO does not affect the size of the particles except 

an increase in the distribution (PI), Figure 3A. 

The centrifugal force plays an essential role in the separation process; low centrifugal 

force usually results in a poor separation whereas high force may cause particle 

aggregation. To find optimal condition, the effect of increasing the RCF on the particle size 

was studied. Lower RCF could not allow complete separation of the nanoparticles. On the 



                                                  Chapter 3: Purification of chitosan-modified PLGA nanoparticles 

  70

other hand, higher RCF (> 3000 ×g) lead to particle aggregation, as shown in Figure 3B by 

the increased particle size and polydispersity index. Additionally, the centrifugation time 

was varied between 15 and 60 min at a fixed RCF of 2795 ×g. As depicted in Figure 3C, 

longer centrifugation time lead to particle aggregation.  

 

 

 

Figure 3: Factors affecting the purification efficiency of chitosan-modified PLGA 

nanoparticles using the Centrisart I®: (A) MWCO, (B) RCF, and (C) centrifugation time 
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It should be noted that these parameters are generally dependent on the particle size 

range of the nanoparticles; larger particles are expected to be separated at comparatively 

lower RCF and in a shorter time. 

Based on these preliminary investigations, optimum purification conditions with respect 

to the stability/resuspendability of the suspension were identified and applied for the 

successive studies. 

3. Quantitative determination of PVA concentration 

The PVA assay used in the present study was adopted from the colorimetric method 

developed by Finely [12]. The greenish colored complex formed between PVA and iodine 

in the presence of boric acid was measured spectrophotometrically. The mechanism of this 

complex formation was discussed by Prichard et al. [13]. Briefly, the green color is found 

to be due to helical envelopment of iodine molecules by PVA chains stiffened by scattered 

cyclic groups [13]. 

Assay validation demonstrated that the reaction is linear in the concentration range of 

50 - 250 µg/ml (correlation coefficient r2 = 0.999). The reproducibility was checked by 

comparing intraday and interday variation of the absorbance values. Calibration curves 

made using a mixture of PVA and chitosan demonstrate a shift in the λmax from 640 to 

620 nm, Figure 4A; however, the shift in wavelength had a minor effect on the absorbance 

values due to the broad absorption peak, Figure 4B. 

The concentration of unbound PVA was determined by analysing appropriate volumes of 

the supernatant collected after each centrifugation step. It was noted that the samples 

analysed showed a λmax of 640 nm, i.e. similar to the calibration curve of PVA alone not 

that of PVA/chitosan. This might give us already a rough idea that the concentration of 

unbound chitosan in the supernatant is low and therefore no shift in the λmax was detected. 

Figure 4C shows the amount of PVA at each purification step. The initial concentration of 
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unbound PVA in the nanoparticle suspension was found to be around 1 mg/ml. As a 

consequence, 66.6 % of the PVA were bound to the nanoparticles.   

 

 

 

 

Figure 4: (A) Effect of chitosan on the PVA/iodine reaction, (B) calibration curves using 

PVA alone and PVA/chitosan solutions, (C) residual amounts of PVA during the 

purification procedure (n = 3) 
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Successive washing steps reduce the amount of PVA gradually to 50 µg/ml after 10 

washing steps. The fit of the data can be done using an exponential relationship as 

indicated in the following equation:  

                                                  )*(* xbeay −=                                 (R2 = 0.9958) 

This allows for predictable estimation of the amount of PVA at any point. 

4. Quantitative determination of chitosan concentration 

Although chitosan nanoparticles and chitosan coated nanoparticles were extensively 

formulated for drug and gene delivery, no method (to our knowledge) was identified to 

quantify the actual amount of chitosan on the nanoparticle surface. In this study, we tried 

to determine the concentration of chitosan through a colorimetric assay developed by 

Muzzarelli [11]. 

The linearity of the assay was obtained in the concentration range 120 - 240 µg/ml. A 

sigmoidal curve was obtained when higher and lower chitosan concentrations were used. 

The addition of PVA in the same concentration as present in the nanoparticle suspension 

did not affect the linearity of the assay or alter the λmax, however, relatively higher 

absorbance values were obtained, Figure 5A, thus slightly increasing the sensitivity. 

Analysis of the supernatant obtained from nanoparticle purification indicated very weak 

absorbance values corresponding to unbound chitosan concentration lower than 20 µg/ml, 

which is beyond the linearity limit of the assay, Figure 5B.  
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Figure 5: (A) Calibration curves using chitosan alone and chitosan/PVA solutions, (B) 

quantitative determination of chitosan in the nanoparticle suspension 

 

Hence, although this colorimetric assay was not appropriate to estimate precisely the 

chitosan concentrations applied, it proved that more than 90% of the chitosan added is 

actually bound to the nanoparticle surface. Referring to the surface charge measurements 

as a function of chitosan concentration in our previous study [9], it was observed that the 

surface charge is directly proportional to the concentration of chitosan added, which means 

that the concentration of chitosan used here (0.3 mg/ml) is not sufficient to cover the whole 

particle surface or at least does not form a dense layer around the particles. 
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5. Effect of the purification procedure on the colloidal stability 

Although the removal of unbound polymers is an important issue, the maintenance of 

the colloidal characteristics of the nanoparticles keeps its significance and remains a big 

challenge. Therefore, the changes in the mean nanoparticle diameter, the size distribution 

and surface charge of the nanoparticles were followed along the purification procedure. As 

shown in Figure 6A, the particles retain their mean diameter along the purification steps. A 

small increase in the mean size by 13 % was observed at the end of 10 purification steps. 

Besides, a relative broadening in the size distribution was noticed, Figure 6B.  

On the other hand, the ζ- potential was varying with no descriptive trend, Figure 6C, 

but was always positive as envisaged for successful complexation with genetic material 

and improved cellular uptake. 

 

The behavior of the purified nanoparticles as a function of pH in comparison to the non 

purified particles was determined using the autotitration technique in Malvern Zetasizer 

Nano (Malvern Instruments, Malvern, UK). As shown in Figure 7A, the purified particles 

are characterized by a slightly smaller mean particle diameter compared to the non purified 

particles. The effect was much more distinct in the acidic pH values, lower than the pKa of 

chitosan, where chitosan is expected to be fully ionized. Similarly, the ζ- potential – pH 

profile, Figure 7B, indicates more pronounced surface charge of the non-purified particles 

in the acidic medium compared to the purified particles. 
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Figure 6: Effect of the purification procedure on (A) particle size, (B) size distribution, 

and (C) ζ-potential of the nanoparticles 
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Chitosan molecules in the surrounding medium of the non-purified nanoparticles tend 

to bind to the nanoparticles surface especially when they are positively charged at lower 

pH values. This might explain the comparatively larger hydrodynamic nanoparticle size 

and higher surface charge of the non-purified nanoparticles in the acidic medium. During 

purification, the loosely bound chitosan molecules are easily detached from the 

nanoparticle surface. Therefore, the purified nanoparticles are characterized by slightly 

lower but more stable surface charge at the pH range tested. 

 

 

 

 

Figure 7: (A) Particle size- , (B) ζ-potential- pH profile of purified and non-purified 

nanoparticles 
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6. Large scale purification of nanoparticles 

Larger volumes of the nanoparticles were purified based on size exclusion 

chromatography using FPLC. Nanoparticles prepared with 1 and 2.5% w/v PVA – denoted 

by cNP-1% and cNP-2.5%, respectively - were purified. As mentioned in the preceding 

chapter, particles with higher PVA content are smaller in size. Particle size measurements 

indicate a size of 337 and 184 nm for cNP-1% and cNP-2.5%, respectively. Figure 7A 

shows the chromatograms of both nanoparticle preparations; smaller particles, cNP-2.5%, 

were excluded faster (20 min) than larger ones (40 min). In addition, the shoulder 

belonging to the unbound PVA (~ 80 min) is more pronounced in case of cNP-2.5% 

indicating a comparatively higher amount of unbound PVA.  

On the other side, nanoparticles containing increasing chitosan concentration, 0.3 and 

0.6% (cNP-3 and cNP-6) were prepared and were characterized by a surface charge of 

21.23 and 33.2 mV, respectively. Their corresponding chromatograms were almost 

superimposable, Figure 7B. 
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Figure 7: FPLC chromatograms of chitosan-modified PLGA nanoparticles of different (A) 

particle sizes and (B) ζ-potential 

 

 

Checking the change in the colloidal properties of the previously mentioned 

nanoparticles after purification revealed no remarkable change in their size and/or charge 

as indicated in the histograms, Figure 8 A & B. 
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Figure 8: Effect of nanoparticle purification by FPLC on (A) particle size and size 

distribution, (B) ζ-potential 
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Conclusions 

From this study, it was shown that the centrifugal ultrafiltration technique is a 

convenient way to remove and estimate quantitatively the residual amounts of unbound 

polymers from the nanoparticles suspension. The unpurified nanoparticle suspensions 

investigated contains ~1/3 of the PVA unbound in the surrounding medium, while no 

excessive chitosan was detected. The purified nanoparticles are successfully recovered 

with a minimum weight loss and their colloidal stability was maintained. Therefore, it can 

be concluded that the Centrisart I® and the FPLC are promising techniques for small- and 

large-scale purification of chitosan-modified PLGA nanoparticles, respectively.  
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Chapter 4 

Chitosan-modified PLGA nanoparticles as carrier for antisense 

oligonucleotides 

Influence of surface charge on the binding and uptake of nanoparticles and 

nanoplexes in different human cancer cell lines* 

 

 

 

 

 

 

 

* This chapter is prepared for publication as a journal article: 

N. Nafee, K. Friebel, M. Schneider, U. F. Schaefer and C.-M. Lehr. Role of chitosan in 

improving the uptake of PLGA nanoparticles and their nanoplexes with antisense 

oligonucleotides in different cell lines. 
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Abstract 

Purpose: In this chapter, we aimed to investigate the role of chitosan and the influence of its 

concentration on the nanoparticle surface in improving both the binding with antisense 

oligonucleotides, OMR, and the uptake of NP/OMR nanoplexes in human lung cancer cell lines. 

Methods: The uptake of fluorescently labelled PLGA nanoparticles loaded with increasing chitosan 

concentrations in A549 and Calu-3 cells was studied by flow cytometry and CLSM. The potential 

of binding of these particles with the antisense oligonucleotides as well as the intracellular uptake 

the nanoplexes in dependence of the surface charge was investigated. 

Results: The surface modification of PLGA nanoparticles significantly increases their potential of 

binding with OMR and their intracellular uptake. However, further increase in chitosan content was 

not accompanied by a corresponding improvement in transfection efficiency. The uptake was 

dependent on the cell type. Furthermore, nanoplexes formed with chitosan solution were not able to 

be internalized. 

Conclusions: Chitosan plays an essential role in improving the binding and uptake of antisense 

oligonucleotides in human cancer cell lines. Optimum chitosan concentrations on the nanoparticle 

surface were needed to get the maximum transfection efficiency. 



                              Chapter 4: cNP as carrier for antisense oligonucleotides: Binding and uptake 

  85

Background 
DNA/RNA delivery is gaining growing attention for the treatment of genetic 

deficiencies and is still a hope for successful future medical treatment [1, 2]. Gene therapy 

can be defined as the transfer of a genetic material to specific cells in order to have a 

therapeutic effect. At the present time, major gene delivery systems employ either viral or 

non-viral vectors [3, 4]. Although viral systems are very efficient for in vivo transfection, 

as well as immunization, their major drawback is their possible toxicity, immunogenicity 

and inflammatory responses [5, 6]. Non-viral systems based on biocompatible polymers 

are preferred in terms of safety, stability, relative ease of large scale production and 

characterization, and the lack of intrinsic immunogenicity [7]. Non-viral vectors include 

liposomes, complexes of the negatively charged plasmid with cationic polymers and 

nanoparticles. Even though liposome vesicles prepared from lipids may protect the loaded 

drugs or proteins from degradation and target them to the site of action [8], they have 

shown a relatively low encapsulation efficiency, poor storage stability and rapid clearance 

from the blood [9]. The formation of complexes from cationic polymer with anionic DNA 

or oligonucleotide solutions was applied by many research groups [10-12]. The simplicity 

of these self-assembling polyelectrolyte complexes is both an advantage and a drawback. 

Though such complexes are easy to generate and they can protect DNA from enzymatic 

degradation, they are always characterized by a broad size distribution and variable shape 

[12].  

Solid, biodegradable nanoparticles have shown their advantage over other carriers by 

their increased stability and their controlled release ability. Furthermore, the small 

polydispersity allows better control when used as delivery vehicles. The intracellular 

delivery of genetic material (RNA, DNA, and oligonucleotides), which is typically 

negatively charged, requires a positively charged carrier [13]. PLGA nanoparticles are 

known to be negatively charged due to the presence of ionized carboxyl groups. This 
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negative charge limits their binding efficiency with these genetic materials and their 

transport through the cell membrane. PLGA nanoparticles with cationic surface 

modification can overcome these disadvantages. 

Lung cancer is the main cause of cancer-related mortality in western world. A new 

promising approach for treatment of non-small cell lung cancer (NSCLC) is based on the 

inhibition of telomerase in cancer cells. Telomerase, a ribonucleoprotein that adds 

telomeric repeats to the end of the telomeres [14] and therefore prevents telomere 

shortening occurring during replication of the cell cycle. Telomerase activity has been 

detected in most human cancers and cancer cell lines as well as in stem cells and 

regenerative tissues, but not in most normal somatic cells [15]. Telomerase activity is 

required for continuous cell proliferation and allows cells to overcome senescence. 

Therefore, activation of telomerase is considered to be one of the key mechanisms leading 

to immortalization of tumor cells and tumor progression. The antisense oligonucleotide 2´-

O-methyl-RNA (OMR) with a phosphorothioate backbone is a potent and sequence-

selective inhibitor of telomerase. 2´-O-methyl-RNA binds to the complementary hTR 

template sequence with high affinity acting as a competitive enzyme inhibitor of 

telomerase [16]. 

In this chapter, we investigated the potential of fluorescently-labeled nanoparticles 

containing increasing concentrations of chitosan to be taken up by human cancer cell lines 

A549 and Calu-3 cells. In addition, the efficiency of these chitosan-modified PLGA 

nanoparticles as carrier for nucleotide-based drugs was studied. Their binding with the 

13mer antisense oligonucleotide, OMR, as well as the intracellular uptake of cNP/OMR 

polyplexes in dependence of the surface charge was demonstrated.  
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Materials and methods 

Materials 

Poly(D,L-lactide-co-glycolide) 70:30 (Polysciences Europe GmbH, Eppelheim, 

Germany), polyvinyl alcohol Mowiol® 4-88 (Kuraray Specialities Europe GmbH, 

Frankfurt, Germany), different types of ultrapure chitosan: the chloride salts; Protasan® UP 

CL113 and Protasan® UP CL213, and the glutamate salts;  Protasan® UP CG113 and 

Protasan® UP CG213 with different properties (see Table 1) (FMC BioPolymer AS, Oslo, 

Norway), 5-Fluoresceinamin (FA) and 1-ethyl-3-(3-Dimethylaminopropyl)-carbodiimide 

hydrochloride (DMAP) were obtained from Sigma (Sigma Chemical Co., St. Louis, MO, 

USA), ethyl acetate (Fluka Chemie GmbH, Buchs, Switzerland) were used as obtained. 

The antisense oligonucleotide 2’-O-Methyl-RNA (OMR) with a phosphorothioate (ps) 

backbone (5' -2' -O- methyl [C(ps)A(ps)GUUAGGGUU(ps)A(ps)G]-3') was obtained from 

(Biomers.net GmbH, Ulm, Germany). For the uptake studies, the carboxyfluoresceinamine 

labeled derivative 5'-FAM-OMR was used.  

 

Table 1: Properties of different types of chitosan: 

Chitosan properties 
 

Type of chitosan 
Molecular weight 

[kDa]* 

Viscosity 

[mPa.s]† 

Protasan® UP CL113 

Protasan® UP CL213 

Protasan® UP G113 

Protasan® UP G213 

< 150 

150 – 400 

< 200 

200-600 

< 20 

20 – 200 

< 20 

20 – 200 
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Methods 

1. Fluorescent labeling of PLGA 

Fluoresceineamine-bound PLGA (FA-PLGA) was prepared based upon the method 

described by Horisawa et al. [17] and Weiss et al. [18]. Briefly, PLGA (3.07 g) and FA 

(0.0583 g) were dissolved entirely in 30 ml of acetonitrile with 0.0408 g of DMAP and 

incubated at room temperature for 24 h under light protection and gentle stirring. The 

resulting FA-PLGA was precipitated by the addition of purified water and separated by 

centrifugation. The polymer was rinsed from excessive reagents (repeated dissolvation in 

acetone and precipitation with ethanol) and then lyophilized (Alpha 2-4 LSC, Martin 

Christ Gefriertrocknungsanlagen GmbH, Osterode, GE). 

 

2. Preparation of the nanoparticles 

PLGA nanoparticles (NP-0) and chitosan-modified PLGA nanoparticles containing 

increasing concentration of chitosan 0.3 – 1.2 %w/v (denoted by NP-3 - NP-12, 

respectively) were prepared by the emulsion-diffusion-evaporation technique as described 

in the previous chapters. Fluorescently labeled nanoparticles of the same formulations 

mentioned above were prepared using the fluorescinamine-labeled PLGA polymer (FA-

PLGA); these particles are denoted by the abbreviations FA-NP-0 to FA-NP-12 (Table 2). 

 

3. Loading of nanoparticles with oligonucleotides; formation of 

nanoplexes 

In order to study the ability of the different nanoparticles as a carrier for gene delivery, 

nanoparticles were loaded with the antisense oligonucleotide, 2’-O-Methyl RNA. 

Predetermined volumes of the nanoparticle suspensions were mixed with an aqueous 
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solution of the oligonucleotide at room temperature and vortexed for 30 s followed by 

incubation on an orbital shaker at room temperature. The factors affecting the binding 

conditions including the incubation medium, the incubation time and the OMR:NP weight 

ratio were investigated. The binding conditions were optimized to ensure maximum 

binding ability of the oligonucleotide to the nanoparticles.  

 

4. Characterization of nanoplexes 

The colloidal characteristics of different plain nanoparticles, the FA-nanoparticles as 

well as the NP/OMR nanoplexes were determined using the Malvern Zetasizer Nano 

(Malvern Instruments, Malvern, UK). The effect of the change in OMR:NP ratio, the 

incubation medium and the incubation time on the size and surface charge of the 

nanoparticles was studied. The morphology of the nanoplexes was examined by Scanning 

Force Microscopy with a BioscopeTM equipped with a Nanoscope IVTM controller (Digital 

Instruments, Veeco, Santa Barbara, California, USA). The nanoparticles were investigated 

under ambient conditions in tapping mode using a scanning probe with a force constant of 

40 N/m at resonant frequency of ~170 kHz (Anfatec, Oelsnitz, Germany). 

 

5. Binding and uptake to A549 cells 

5.1. Cell cultures and treatments 

A549 cells (CCL-185; ATCC, Manassas, VA, USA) were cultivated in RPMI with L- 

glutamine (PAA Laboratories GmbH, Pasching, Austria) supplemented with 10% fetal calf 

serum (FCS). One day prior to experiments, A549 cells were detached using trypsin-EDTA 

and seeded at a density of 100,000 cell/ml, in 24-well or 96-well plates 0.5 or 0.2 ml/well, 

respectively. 
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Calu-3 cells (HTB- 55; ATCC) were cultivated in Minimum Essential Medium (MEM) 

with Earl’s Salts and L- glutamine (PAA Laboratories GmbH) supplemented with 10% 

FCS, 1% MEM non- essential amino acid (NEAA) solution and 1 mM sodium pyruvate 

(all from Sigma- Aldrich Chemie GmbH, Steinheim, Germany). 

Cells were kept in an incubator set to 37°C, 5% CO2 and 95% humidity. On the day of 

experiment, cells were washed with PBS and medium was changed. 

5.2. Experimental design 

The binding and intracellular uptake of 5’-FAM-2OMR (4 µM) to A549 cells were 

studied by flow cytometry (FACS) and confocal laser scanning microscopy (CLSM), 

respectively. For comparison, binding and uptake of the fluorescently labeled nanoparticles 

(FA-NP-0 to FA-NP-12) were investigated. Non-treated cells, cells treated with 

fluorescently labeled oligonucleotides in addition to cells treated with nanoparticles only 

were used as control. Nanoplexes of 5’-FAM-2OMR prepared with different nanoparticle 

formulations were incubated with A549 cells for 6h, after which the nanoplexes were 

replaced with fresh medium and the cells were incubated till the next day where the green 

fluorescence of the oligonucleotides was measured. The effect of OMR:NP ratio was 

investigated by using two ratios (1:50 and 1:100). Besides, the binding and uptake of 

nanoplexes formed with chitosan solutions of different properties (CL113, CL213, CG113 

and CG213) were studied. Chitosan concentration in these solutions was equivalent to that 

used during the preparation of nanoparticles.  

5.3. Flow cytometry 

 A549 cells were seeded in 6-well plates at a density of 100,000 cells per well and 

grown for 1 day. Nanoplexes prepared as mentioned above were diluted with RPMI cell 

culture medium containing 10% FCS. After incubation with the cells, the suspensions were 

removed and replaced with normal cell culture medium. Analysis by flow cytometry was 
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performed the next day with a FACSCalibur flow cytometer from Becton Dickinson (BD) 

Biosciences (Heidelberg, Germany) using the software CellQuestTM Pro Version 4.02 (BD 

Biosciences). For this purpose cells were detached by incubation with trypsin/EDTA, 

washed with PBS and resuspended in sheath fluid (BD Biosciences). Green fluorescence 

was excited at 488 nm and measured after passing a 530/30 nm band pass filter. During 

each run 15,000 cells were counted. Nanoplex uptake was evaluated after gating and 

definition of a fluorescence threshold with non-treated cells. 

5.4. Cellular uptake of NP/OMR nanoplexes 

A549 cells were seeded on LabTec chamber slides (Nunc GmbH, Wiesbaden, 

Germany) at a density of 12,500 cells/ml. Nanoplexes prepared as mentioned above were 

incubated with the cells. After 6h of incubation, the medium was replaced by normal cell 

culture medium. The cells were stained after 24 h then examined by CLSM. 

Cell membranes were stained with the red fluorescent rhodamine labeled ricinus 

communis agglutinin I (RRCA; excitation maximum 552 nm, emission maximum 577 nm; 

Vector Laboratories Peterborough, England). Cells were washed once with PBS and 

afterwards incubated with 25 µg/ml of RRCA in PBS for 15 min in the incubator. After 

two washing steps with PBS the cells were fixed with 4% paraformaldehyde in PBS for 10 

min at room temperature. The nuclei were then stained with 4’,6-Diamidino-2-

phenylindole dihydrochloride (DAPI, Emmax: 461 nm, Exc.: 374 nm; Fluka Chemie 

GmbH, Buchs, Switzerland). 

Fluorescence imaging was performed using a BioRad MRC-1024 confocal laser 

scanning microscope equipped with an argon/krypton laser. The objective used was an oil 

immersion objective 100x NA=1.3. The excitation was performed using λ = 488 nm and 

the fluorescence signal was collected after a band pass filter (522/35). A step motor was 

used to perform 3D sections through the cells. The green fluorescent particles were located 
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with respect to the red stained cell membrane and the blue stained nuclei. Data evaluation 

and 3D reconstruction was done using volocity software (Improvision, Tübingen, 

Germany). 

 

Results 

1. Characterization of nanoparticles 

Nanoparticles (both plain and fluorescently-labeled) containing increasing 

concentrations of chitosan were characterized in term of particle size, size distribution and 

surface charge. The colloidal characteristics of these particles are summarized in Table 2. 

 

2. Formation and characterization of nanoplexes 

In order to investigate the behavior of the nanoplexes during cellular uptake 

experiments, binding was carried out in various incubation media including MilliQ water, 

sodium chloride (NaCl) 10 mM, phosphate buffer saline (PBS) pH 7.4 and Hank’s 

balanced salt solution (HBSS) pH 7.4. The colloidal characteristics of the OMR-loaded 

nanoparticles were compared to the unloaded nanoparticles (NP-3). As shown in Figure 

1A, dynamic light scattering did not show a noticeable increase in size of the nanoparticles 

due to oligonucleotide adsorption. In addition, changing the incubation medium did not 

result in a corresponding change in the size of the nanoparticles. On the other hand, 

binding of the OMR to particles was confirmed by the surface charge measurements, 

Figure 1B. OMR-loaded particles are characterized by lower ζ-potential values (in MilliQ 

water and sodium chloride solution) in comparison to unloaded particles, whereas in PBS 

and HBSS buffers pH 7.4, a weak ζ-potential was recorded with either non-loaded or 

OMR-loaded nanoparticles.  
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Table 2: Colloidal characteristics of PLGA nanoparticles modified with different 

concentrations of chitosan: 

 

 

Plain nanoparticles Fluorescently labeled nanoparticles Chitosan 

content 

(%w/v) Code 
Particle size 

(nm) 
PI 

ζ-potential 

(mV) 
Code 

Particle size 

(nm) 
PI 

ζ-potential 

(mV) 

 

0 NP-0 145.7 ± 1.6 0.05 ± 0.02 -19.2 ± 0.1 FA-NP-0 156.3 ± 4.9 0.037 ± 0.015 3.2 ± 0.3 

0.3 NP-3 203.1 ± 1.7  0.16 ± 0.01 30.5 ± 1.24 FA-NP-3 177.7 ± 3.1 0.07 ± 0.021 22.3 ± 2.7 

0.6 NP-6 228.1 ± 3.3 0.18 ± 0.02 39.2 ± 2.1 FA-NP-6 174.9 ± 2.1 0.113 ± 0.014 33.7 ± 0.6 

0.9 NP-9 250.8 ± 0.9 0.22 ± 0.01 52.6 ± 0.76 FA-NP-9 198.2 ± 2.0 0.127 ± 0.018 39.1 ± 0.7 

1.2 NP-12 250.3 ± 3.17 0.20 ± 0.01 55.9 ± 0.14 FA-NP-12 201.7 ± 3.7 0.148 ± 0.012 46.2 ± 4.0 
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Figure 1: Effect of the incubation medium on the binding of OMR to cNP (A) particle size 

and size distribution, (B) ζ-potential 

 

Our binding experiments reflected that the addition of oligonucleotides to the 

nanoparticles caused a reduction in the surface charge especially in MilliQ water and 

sodium chloride solution 10 mM indicating electrostatic binding of the negatively charged 

oligonucleotides to the positively charged nanoparticles. 

This effect was more pronounced when MilliQ water was used as incubation medium 

than in sodium chloride reflecting the ionic strength of the medium which in turns affects 

the surface charge and hence the binding efficiency of the OMR to the nanoparticles. The 

pH of the incubation medium also plays an important role in the OMR binding to the 
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nanoparticles. The electrostatic forces involved in the binding process are relatively weak 

at pH 7.4 as deduced from the low ζ-potential of the nanoparticles in PBS and HBSS 

buffers. Thus, less OMR molecules is expected to be attracted to the surface at this pH. 

The incubation time (tinc =15 – 60 min), referring to the duration of mixing of the 

nanoparticles with OMR in MilliQ water, was tested with the OMR:NP-3 weight ratio 

(1:50) and was found to have no effect on the size and ζ-potential, Figure 2A & B. 

 

 

Figure 2: Effect of the incubation time on the binding of OMR to cNP (A) particle size and 

size distribution, (B) ζ-potential (the properties of pure nanoparticles, cNP, are represented 

by the dark bars for comparison) 
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The binding was investigated as a function of the weight ratio between the NP and 

OMR. Besides, the influence of increasing the surface charge on the nanoparticles on the 

extent of binding was also studied. For the different nanoparticle formulations (NP-0 – NP-

12), various OMR:NP weight ratios (ranging from 1:100 to 1:1) were mixed in MilliQ 

water and incubated for 15 min. The size of the nanoplexes formed, their size distribution 

and surface charge were measured. Figure 3A demonstrates the change of the nanoplex 

size by gradual increase in the concentration of OMR. In general, all NP preparations 

showed the same tendency; at lower OMR ratios, a considerable increase in the size was 

noticed which is negligible in case of PLGA NPs (NP-0). Increasing OMR concentration 

lead to the formation of more compact nanoplexes with a size almost comparable to the 

plain NPs. Interestingly, at the OMR:NP ratio 1:10, a distinct increase in size and PI of 

chitosan-modified PLGA NPs were observed revealing certain sort of agglomeration, 

Figure 3 A&B. 

In addition, increasing the oligonucleotide concentration resulted in gradual reduction 

of the surface charge, Figure 3C, indicating surface binding or loading of the negatively 

charged OMR on the nanoparticle surface. In the area between the OMR:NP ratio 1:10 and 

1:1, the surface charge is crossing the zero point which might explain the agglomerate 

formation around this area. Equal weight concentration of the OMR and NPs lead to 

complete saturation of the NP surface with the oligonucleotides and a net negative ζ-

potential of -20 mV was recorded for all NP preparations tested.  

The morphology of NP-3 as well as their nanoplexes with OMR (OMR:NP ratio 1:50) 

was examined by the SFM, Figure 4 A&B, respectively. They showed no changes in the 

surface morphology of the particles and were in the size range found by PCS.  
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Figure 3: Effect of the OMR concentration on the binding of OMR to cNP (A) particle size, 

(B) size distribution, and (C) ζ-potential 
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Figure 4: Morphology and section analysis of (A) cNP, (B) cNP/OMR nanoplexes as observed 

by the SFM 

 

3. Uptake of fluorescently labeled nanoparticles in different cell lines 

The ability of the nanoparticles to be taken up intracellularly and in a significant 

amount is a prerequisite for their use as carrier for nucleotide-based drugs. Besides, the 

influence of chitosan on the NP surface on their uptake is worth to be investigated. 

Accordingly, fluorescently labeled NPs (FA-NP-0 - FA-NP-12) were incubated with A549 

and Calu-3 cells for 6 h, the uptake was tested next day by CLSM. 

Flow cytometry, Figure 5, showed the binding of different fluorescent nanoparticles to 

A549 cells. A remarkable shift in fluorescence peak was observed in case of FA-NP-3 

compared to the control. Interestingly, further increase in the chitosan content on the NP 

surface was not accompanied by an increase in cell binding, on the contrary, the peaks 

were shifted backwards to get very weak fluorescence with FA-NP-12. 

 

 

156.3       156.3      179.7 

A B 

179.7  164.0      105.5 
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Figure 5: Binding of fluorescently labeled nanoparticles to A549 cells by flow cytometry: 

control; black, FA-NP-3; green, FA-NP-6; pink, FA-NP-9; cyan, and FA-NP-12; brown 

 

The results of the uptake studies (CLSM) were in accordance with the FACS 

experiments. Figure 6 demonstrates an overview of the A549 cell monolayer where the 

membranes were stained with RRCA - an adsorbing red dye bound to a lectin - and the 

nuclei stained in blue with DAPI. A significant green fluorescence was observed in A549 

cells incubated with FA-NP-3 compared to the control (non-treated cells) and those 

incubated with FA-NP-0. Further increase in chitosan content, FA-NP-6 and FA-NP-9, 

also showed cellular uptake but relatively lower than FA-NP-3. On the other hand, FA-NP-

12 containing highest content of chitosan were very poorly internalized.  
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(A) (B)

(C) (D)

(E) (F)

(A)(A) (B)(B)

(C)(C) (D)(D)

(E)(E) (F)(F)

 

Figure 6: Uptake of fluorescently labeled nanoparticles in A549 cells – An overview: (A) 

control, (B) FA-NP-0, (C) FA-NP-3, (D) FA-NP-6, (E) FA-NP-9 and (F) FA-NP-12 

 

A better parameter for comparison is to calculate the transfection efficiency of every 

NP formulation. The number of transfected cells relative to the total number of cells was 
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used as a measure of the transfection efficiency in different areas (~ 10 areas) of the 

sample. As a comparative measure, the transfection efficiency was categorized into 4 

groups as indicated in the following Table 3. 

Table 3: degree of transfection 

Transfection efficiency Symbol 

< 20 % + 

20 – 40 % ++ 

40 – 60 % +++ 

> 60 % ++++ 

 

While no uptake of fluorescent PLGA NPs was observed, around 50% of the cells were 

transfected with FA-NP-3, indicating the essential role of surface modification of NP with 

chitosan in improving the intracellular uptake of the particles. However, the efficiency 

decreased gradually with higher amounts of chitosan to be < 10 % in case of FA-NP-12.  

Table 4: Transfection efficiency of different NP formulations in A549 cells 

Nanoparticles Degree of transfection 

FA-NP-0 0 

FA-NP-3 +++ 

FA-NP-6 ++ 

FA-NP-9 + 

FA-NP-12 + 

 

Internalization of FA-NPs was proved by making sections in the z-direction of the 

cells. Figure 7 depicts the xy-plane of the cells after incubation with the fluorescent 

nanoparticles out of a 3-dimensional stack. In addition, cuts along the xz- and the yz-

direction are shown. These cross sections allow determining the location of the particles 

relative to apical cell surface labeled with RRCA and the nuclei labeled with DAPI. On the 

enlarged and focused xz-section the green fluorescence of all NP preparations can be 

clearly seen inside the cell, mainly in the cytoplasm and appeared to be point-shaped 
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indicating that the particles are entrapped in intracellular vesicles. Besides, in case of FA-

NP-12, some agglomerates were observed on the cell surface. Agglomeration of NP 

induced by higher concentration of chitosan might be the reason behind the reduced 

cellular uptake of the particles. 

(A) (B)

(C) (D)

(E) (F)

(A)(A) (B)(B)

(C)(C) (D)(D)

(E)(E) (F)(F)

 

Figure 7: Uptake of fluorescently labeled nanoparticles in A549 cells – Z-sections: (A) control, 

(B) FA-NP-0, (C) FA-NP-3, (D) FA-NP-6, (E) FA-NP-9 and (F) FA-NP-12 
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Incubation of FA-NPs with Calu-3 cells resulted in a relatively weak uptake. This was 

demonstrated by the negligible increase in fluorescence detected by flow cytometry (data 

not shown), in addition to the very weak intracellular uptake illustrated by the CLSM 

images. In case of Calu-3 cells the transfection efficiency of all NPs was < 20 %, Figure 8. 

(A) (B)

(C) (D)

(E) (F)

(A)(A) (B)(B)

(C)(C) (D)(D)

(E)(E) (F)(F)

 

Figure 8: Uptake of fluorescently labeled nanoparticles in Calu-3 cells - An overview: (A) 

control, (B) FA-NP-0, (C) FA-NP-3, (D) FA-NP-6, (E) FA-NP-9 and (F) FA-NP-12 
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Besides, no distinct effect of the chitosan content on the uptake was observed. Calu-3 

cells are known by their slow rate of division and growth compared to A549 cells; this 

might explain their relative weak transfection efficiency. A higher level of transfection 

would be expected if cells were allowed to grow for longer duration. On the other hand, 

transfected A549 cells replicate very fast and the number of transfected cells can be 

significantly increased during the 24 h prior to fixation. 

Despite the low level of transfection, transfected particles appear as spots in the 

cytoplasm, while no particles were observed in the cores, as observed in the Z-sections of 

the cells, Figure 9 and the zoomed cells, Figure 10. 



                              Chapter 4: cNP as carrier for antisense oligonucleotides: Binding and uptake 

  105

(A)

(C) (D)

(F)(E)

(B)(A)(A)

(C)(C) (D)(D)
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Figure 9: Uptake of fluorescently labeled nanoparticles in Calu-3 cells-Z-sections: (A) control, 

(B) FA-NP-0, (C) FA-NP-3, (D) FA-NP-6, (E) FA-NP-9 and (F) FA-NP-12 
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(A) (B)

(C) (D)

(A)(A) (B)(B)

(C)(C) (D)(D)

 
Figure 10: Colocalization study of fluorescently labeled nanoparticles in Calu-3 cells: (A) FA-

NP-3, (B) FA-NP-6, (C) FA-NP-9, and (D) FA-NP-12 

 

 

4. Binding and uptake of nanoplexes 

Our main goal was essentially the application of chitosan-modified PLGA 

nanoparticles as carrier to enhance the intracellular uptake of the antisense 

oligonucleotides. Therefore, after improving the preparation of nanoparticles and the 

formation of nanoplexes, it is quite important to check the efficacy of these nanoplexes to 

be taken up by the cells as good as the plain FA-NPs. For this purpose, the intracellular 

uptake of OMR nanoplexes in A549 cells was studied as previously described by CLSM. 
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A549 cells were selected to continue our uptake studies as Calu-3 cells showed weak/slow 

uptake of FA-NPs in general. 

FAM-OMR nanoplexes with non-labeled NP formulations (NP-0 – NP-12) were 

prepared in the OMR:NP weight ratio 1:50 and incubated with the cells for 6 h. Figure 11 

represents an overview of the uptake of the nanoplexes 24 h after incubation with A549 

cells. OMR/NP-0 nanoplexes were poorly taken up, Figure 11B, whereas OMR/NP-3 were 

efficiently internalized as noticed by the huge amount of fluorescent spots in the cells, 

Figure 11C. In correlation with uptake results of FA-NPs, the uptake of OMR nanoplexes 

with NP-6 – NP-12 was lower compared to OMR/NP-3 nanoplexes indicating that 

increasing chitosan content in the nanoparticles above certain limit is not correlated with a 

consequent improvement in cellular uptake. As shown in Figure 11F, agglomerates of 

OMR/NP-12 nanoplexes on the cell surface can be observed, which might explain their 

poor internalization as in case of FA-NP-12.   

For the different OMR/NP nanoplexes tested, the transfection efficiency was maximum 

for NP-3 (~ 75 %), followed by NP-6 & NP-9 (30 – 40 %), and then NP-0 & NP-12 (< 10 

%), Table 5. 

Table 5: Tranfection efficiency of OMR/NP nanoplexes in A549 cells 

Nanoplexes Degree of transfection 

OMR/NP-0 + 

OMR/NP-3 ++++ 

OMR/NP-6 ++ 

OMR/NP-9 ++ 

OMR/NP-12 + 
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(A) (B)

(C) (D)

(E) (F)

(A)(A) (B)(B)

(C)(C) (D)(D)

(E)(E) (F)(F)

 

Figure 11: Uptake of OMR nanoplexes with different nanoparticles in A549 cells - An 

overview: (A) control, (B) OMR/NP-0, (C) OMR/NP-3, (D) OMR/NP-6, (E) OMR/NP-9 and 

(F) OMR/NP-12 
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Independent of the magnitude, OMR nanoplexes with all nanoparticle formulations 

were successfully internalized in A549 cells and localized in the cytoplasm as clearly 

illustrated in the z-stacks, Figure 12. This hence proves the potential of our nanoparticles 

as carrier for OMR oligonucleotides. 

(A)

(D)(C)

(B)

(E) (F)

(A)(A)

(D)(D)(C)(C)

(B)(B)

(E)(E) (F)(F)

 

Figure 12: Uptake of FAM-OMR nanoplexes with different nanoparticles in A549 cells-Z-

sections: (A) control, (B) OMR/NP-0, (C) OMR/NP-3, (D) OMR/NP-6, (E) OMR/NP-9 and 

(F) OMR/NP-12 
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5. Self-assembled nanoplexes of OMR with chitosan solution 

Owing to the significant improvement in intracellular uptake due to surface 

modification of nanoparticles using chitosan, it was necessary to investigate the potential 

of chitosan solution alone as carrier for OMR and the impact of chitosan properties on this 

uptake. Self assembled complexes of FAM-OMR with chitosan were prepared by simple 

mixing of the solutions and charge interaction. Four types of chitosan salts (refer to Table 

1) with different viscosities and/or molecular weights were applied. FACS analysis 

revealed the association of OMR nanoplexes with chitosan solution to A549 cells, Figure 

13. The dot plots showed a noticeable shift in fluorescence to the upper right quadrant by 

60-63% for the different chitosan types. 
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Figure 13: Binding of OMR/chitosan nanoplexes to A549 cells by flow cytometry; (A) control: 

non-treated cells, (B) cells treated with OMR/CL113, (C) cells treated with OMR/CL213, (D) 

cells treated with OMR/CG113, (E) cells treated with OMR/CG213, (F) histogram showing 

fluorescence peaks of FAM-OMR nanoplexes with different chitosan solutions compared to 

the control 

 

The uptake of these nanoplexes in A549 cells was visualized by CLSM, Figure 14. The 

images showed significant amount of fluorescent nanoplexes agglomerated as patches on 

the outer surface of the cell membrane as indicated by the overlap of the green labeled 
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nanoplexes and red fluorescence of the membrane giving bright yellow areas, indicating 

strong interaction with the cell membrane. The internalization of these self-assembled 

nanoplexes was thus prohibited by the preferential interaction between chitosan and the 

cell membrane.  

 

(A) (B)

(C) (D)

(A)(A) (B)(B)

(C)(C) (D)(D)

 
Figure 14: Uptake of FAM-OMR complexes with chitosan solutions of different types: (A) 

CL113, (B) CL213, (C) CG113, (D) CG213, in A549 cells 
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6. Effect of OMR:NP ratio on the uptake of nanoplexes 

Based on the previous observation, nanoplexes of the FAM labeled oligonucleotides 

with NP-3 were prepared in two OMR:NP ratio (1:50 and 1:100). Their binding was found 

to increase by increasing the OMR:NP ratio, Figure 15. 
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Figure 15: Binding of FAM-OMR to cNP in 2 ratios to A549 cells by flow cytometry: (A) 

control: non treated cells, (B) control: cells treated with OMR solution, (C) control: cells 

treated with NP-3, (D) OMR : NP (1:50), (E) OMR : NP (1:100), (F) fluorescence histogram 

of controls A-C; black, red, green, OMR : NP (1:50); pink, OMR : NP (1:100); blue 

 
In order to investigate the impact of the surface charge of nanoplexes on the 

transfection efficiency, nanoplexes of FAM-OMR with NP-6, NP-9 & NP-12 were further 

prepared in the OMR:NP weight ratio 1:15. At this ratio the overall ζ-potential was 

estimated to be approximately similar to that of OMR/NP-3 nanoplexes (ratio 1:50, 

described by maximum cellular uptake). Uptake studies in A549 cells were carried out as 

previously described and the transfection efficiency was determined, Table 6. Reducing the 

surface charge resulted in a considerable increase in the transfection efficiency in case of 

OMR/NP-9 and -12 nanoplexes, which was not observed in OMR/NP-6 nanoplexes. 

However, in general, none of these nanoplexes reached the transfection efficiency of 
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OMR/NP-3 (1:50), indicating that the surface charge cannot be considered the only 

parameter controlling the cellular uptake. 

Table 6: Transfection efficiency of OMR/NPs in different OMR:NP ratios: 

Nanoplexes OMR:NP 1:50 OMR:NP 1:15 

OMR/NP-6 ++ ++ 

OMR/NP-9 ++ +++ 

OMR/NP-12 + ++ 

 

 

Discussion 

Our study revealed that chitosan-modified PLGA nanoparticles can be prepared in a 

tunable way allowing flexible surface charge modification. Measurement of the colloidal 

characteristics gives evidence of the adsorption of OMR molecules on the nanoparticle 

surface in a saturable way till charge reversal occur at equal OMR:NP weight ratios. 

Our main goal is to use these particles as carrier for nucleotide based drugs and deliver 

them intracellularly for the treatment of lung cancer. Therefore, trafficking the uptake of 

the nanoparticles in pulmonary cell lines is an essential concern. In addition, the impact of 

the colloidal characteristics namely the surface charge on the binding and uptake of these 

particles as well as their corresponding nanoplexes with the antisense oligonucleotides in 

A549 cells was studied. The use of fluorescently labeled PLGA polymer was favorable 

over including a certain fluorescent dye in the nanoparticles by simple encapsulation. 

Fixing the fluorescinamine to the polymer by a covalent linkage was expected to guarantee 

more stable fluorescent nanoparticles and minimize the leakage of the fluorescent dye 

along the uptake studies. Detailed investigations concerning the fluorescently labeled 

PLGA nanoparticles were previously fully described [18]. 
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The surface modification of PLGA nanoparticles with chitosan did not only improve 

the binding potential with OMR but also greatly enhance the uptake of nanoplexes as 

revealed by the significant increase in transfection efficiency from < 10% to ~70 % for 

OMR/NP-0 and OMR/NP-3 nanoplexes, respectively. Epithelial cells usually exhibit net 

negative surface charge due to the presence of negatively charged extracellular plasma 

membrane protein moieties [19]. This may account in part for the higher translocation rates 

of positively charged nanoparticles, NP-3, as compared with negatively charged particles, 

NP-0, in our study. The relevance of the surface charge of different types of particles on 

their cellular uptake was previously studied; nevertheless, these data were still missing for 

chitosan-modified PLGA nanoparticles. Lorenz et al. studied the uptake of polystyrene 

particles characterized by increasing densities of amino groups on the surface in different 

cell lines [20]. The results revealed improved uptake in Hela cells (as an adherent cell 

line), Jukat cells (as a model of T cells) and KG1a cells (as a model of CD34+ 

hematopoetic stem cells) by increasing the density of amino groups, whereas no correlation 

was found in case of mesenchymal stem cells. The superior uptake of positively charged 

nanoparticles over negatively charged ones was demonstrated by many authors for other 

types of particles. Recently, trafficking of polystyrene nanoparticles (PNP; 20 and 100 nm; 

carboxylate, sulfate, or aldehyde-sulfate modified [negatively charged] and amidine-

modified [positively charged]) across rat alveolar epithelial cell monolayers was 

investigated. In case of positively charged PNPs, trafficking was 20–40 times faster than 

highly negatively charged PNP of comparable size [21]. Similarly, des Rieux et al. [22] 

reported that cationic (amine coating) polystyrene particles translocate across intestinal 

epithelial cell monolayers significantly faster than anionic (carboxylate coating) 

polystyrene particles. In another study, Geiser et al [23] demonstrated the uptake of 

polystyrene particles (78, 200, and 1000 nm; uncharged, amine-modified, or carboxylate-
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modified) by porcine lung macrophages, but uptake rates of differently charged particles 

were not determined.  

Investigating the influence of chitosan content on the NP surface on the cellular uptake, 

a linear relationship was expected, however, it has been observed that there is an optimum 

chitosan concentration required for maximum transfection efficiency in A549 cells. 

Interestingly, the uptake behavior of the nanoplexes prepared with the different NP 

formulations was in accordance with the uptake of fluorescently labeled plain 

nanoparticles. Further increase in chitosan content might negatively affect the uptake either 

due to preferential adsorption to the cellular membrane or due to increased agglomeration 

of the nanoparticles as shown in the confocal images. The latter could be attributed to 

increased interaction of the positively charged NPs with serum proteins, divalent ions and 

the mulicomponents in the culture medium, which becomes more obvious in case of highly 

positive NPs. Nanoparticle surface interaction with serum proteins was investigated by 

many authors [24]. Chithrani et al. [25] in a study with gold nanoparticles (14, 50, and 75 

nm), showed that uptake into HeLa cells reaches a plateau, mediated in part by nonspecific 

adsorption of serum proteins to particles. Besides, the finding that no steady increase in 

uptake of particles with higher surface charge suggests that this uptake should not only be 

attributed to surface charge but also to other surface properties; [22] suggested that the 

enhanced uptake of amine-coated polystyrene particles over carboxylate-coated would be 

referred to the increased hydrophobicity of the former, assuming that hydrophobicity might 

lead to different binding and uptake mechanisms. From our part to further investigate the 

role of charge, we assumed that the net surface charge (20 - 30 mV) is the one giving 

maximum uptake. Therefore, OMR/NP nanoplexes were prepared using nanoparticles of 

higher surface charges (NP-6, NP-9, and NP-12) but with lower OMR:NP ratio (1:15) 

instead of (1:50) in case of NP-3. The uptake behavior of these nanoplexes was studied in 

A549 cells. Although the uptake was relatively improved the transfection efficiency with 
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these nanoplexes did not reach the value of OMR/NP-3 (1:50) even at the same level of 

surface charge. This further reinforces the evidence that although charge plays an 

important role it cannot be the only parameter managing the cellular uptake. 

Colocalization studies revealed that the nanoparticles were localized mainly in the 

cytoplasm, while the nuclei were devoid of nanoparticles. Similar behavior was previously 

reported for polystyrene nanoparticles in rat alveolar epithelial cells [21] and gold 

nanoparticles in Hela cells [25] and alveolar macrophages [26]. However, mechanisms by 

which nanoparticles interact with the lung alveolar epithelium and their cellular fate once 

internalized, are currently not well understood and require further investigation. 

Coming to the question, if chitosan plays this important role in uptake when added to 

the NP surface, why not to use simply chitosan solution to deliver OMR as was always the 

case in many previous researches [27-29]. Despite the ability of chitosan polymer to easily 

create self-assembled complexes with the negatively charged oligonucleotides, we have 

found out that these nanoplexes were mostly retained associated with cellular membrane 

and not internalized as revealed by the FACS analysis and CLSM images. This proves the 

superior efficacy of chitosan-modified PLGA NP over both plain PLGA NPs and chitosan 

solution as carrier for nucleotide based drugs.  

No clear impact of the chitosan properties on the uptake was observed. Similarly, 

Huang et al. showed that the uptake of chitosan molecules was independent of the 

molecular weight and degree of deacetylation [30]. 

The superior behavior of NP-3 in term of uptake leads us to select this formulation for our 

future investigations such as cytotoxicity and nebulization studies. 

 

Conclusions  

In this chapter, the potential of chitosan-modified PLGA nanoparticles to form 

nanoplexes with the antisense oligonucleotides, 2’-O-Methyl-RNA, and deliver them to 
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A549 cells was demonstrated. Surface modification of the nanoparticles with chitosan 

significantly improves the transfection of nanoplexes in the cells. However, increasing 

chitosan concentration doesn’t lead to a corresponding improvement in uptake. This 

delivery system can be suggested as promising carrier for antisense oligonucleotides. 
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Chapter 5 

Cytotoxicity of chitosan-modified PLGA nanoparticles  

Relevance of the colloidal stability on the toxicity results* 
 

 

 

 

 

 

*This chapter has been submitted for publication as a journal article: 

N. Nafee, M. Schneider, U.F. Schäfer, and C.-M. Lehr. Relevance of the colloidal stability 

of chitosan-modified PLGA nanoparticles on their cytotoxicity profile. International 

Journal of Pharmaceutics. (submitted article) 

 

 

 



                                                  Chapter 5: Cytotoxicity of chitosan-modified PLGA nanoparticles 

  122

Abstract 

Purpose: The application of nanoparticles for cellular delivery of nucleotide-based drugs 

necessitates an in depth study of their biocompatibility. However, complete characterization of the 

particles under the physiological conditions relevant for toxicity studies is still lacking. Our goal is 

therefore to evaluate the possible toxicity aspects of chitosan-modified PLGA nanoparticles on 

different cell lines and relate them to the parameters involved in colloidal stability of the 

nanoparticles.  

Methods: The impact of different factors such as nanoparticle concentration, exposure time, 

chitosan content in the particles and pH fluctuations on the viability of different cell lines - COS-1, 

A549 and Calu-3 cells - were investigated. Meanwhile, the colloidal stability of the particles in cell 

culture media was checked by measuring their size and charge as well as visualizing the particles 

by scanning force microscopy (SFM). 

Results: Cytotoxicity of chitosan-modified PLGA nanoparticles is a function of the cell line. 

Nevertheless, the toxicity is suggested to be underestimated due to the colloidal instability in 

culture media, reduction in effective nanoparticle concentration on the nanosize range, in addition 

to adsorption of medium components to the nanoparticle surface. Slight shift of the surrounding pH 

allows ionization of chitosan and increase in surface charge of the nanoparticles, which as a 

consequence lead to more pronounced loss of membrane integrity of the cells. 

Conclusions: In this chapter, we highlight the key factors predetermining the toxicity of 

nanoparticles as a function of their colloidal state during the assay procedures and their possible 

interaction with the culture media.  
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Background 
In the last decade, an increasing number of investigations concerning the use of 

nanoscale structures for drug and gene delivery purposes have been observed [1, 2]. 

Despite the significant scientific interests and promising potential of nanomedicines in 

numerous applications, the safety aspects of nanoparticulate systems remain a growing 

concern and a good local and systemic tolerance need to be ensured. Especially in the field 

of nanomedicine where the surface area-to-volume ratio significantly increases, the 

toxicity could differ from a similar bulk material [3]. On the other hand, the large-scale 

production of nanoparticles even for non-medical purposes or as side products for 

combustion can lead to numerous negative effects on the environment. Hence, a new 

subdiscipline of nanotechnology called nanotoxicology has emerged [4].  

Poly(D,L-lactide-co-glycolide) (PLGA) is a biodegradable, synthetic polymer 

frequently used in drug/gene delivery [5]. The slight negative surface charge of PLGA 

nanoparticles (PLGA NP) tends to limit their interaction with the negatively charged 

plasmids and their intracellular uptake. Therefore, the surface of PLGA NP was modified 

using cationic polymers such as chitosan [6, 7] retrieved from biological sources. Chitosan 

has been shown to be relatively safe [8, 9]. Moreover, chitosan is approved as a food 

additive in Japan, Italy and Finland and as a wound dressing in the USA [10] and is widely 

used in drug delivery owing to its biocompatibility, mucoadhesive and permeability 

enhancing properties [11]. Nowadays, chitosan gained a great interest as non-viral 

transfection reagent [12]. Many chitosan derivatives such as trimethyl chitosan [13, 14], 

thiolated chitosan [15] and hydrophobically modified chitosan [16, 17] have been recently 

reported as improved gene carrier systems [18]. However, this derivatization was 

sometimes found to influence the safety of the polymer. For instance, Kean et al. [19] 

observed a general increase in cytotoxicity of chitosan with increasing degree of 

trimethylation. On the other hand, thiolation did not significantly alter the toxicity of 
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chitosan [20]. Besides, the cytotoxicity of chitosan nanoparticles was attenuated by 

decreasing the degree of deacetylation but was less affected by a lowering in molecular 

weight when evaluated against A549 cells [21]. Other studies also revealed a size-

dependent toxicity [22, 23]. 

The degree of toxicity of polymeric nanomedicines is strongly influenced by the 

biological conditions of the local environment, which influence the rate of degradation or 

release of polymeric nanomedicines. Many cationic polymers have been found to be toxic 

and it has been suggested that this toxicity is due to interactions with the plasma membrane 

and/ or with negatively charged cell components and proteins [24, 25]. On this basis, the 

physicochemical properties such as size distribution and surface charge and the presence of 

functional groups on the particle surface are considered key factors in judging the 

cytotoxicity. However, a complete understanding of the size, shape, composition and 

aggregation-dependent interactions of nanostructures with biological systems is currently 

still lacking. 

Therefore, the aim of our study was not only the regular in vitro testing of the toxicity 

of chitosan-modified PLGA nanoparticles but also a deeper understanding of the factors 

responsible for the observed cytotoxicity assays results. In this context we investigated the 

influence of the surface modification of PLGA-NP with chitosan, with emphasis on the 

importance of the colloidal stability of the particles along the study. Three different cell 

lines were used within the study; COS-1 cells, human alveolar cancer cells A549, and 

human bronchial epithelial cells Calu-3; COS-1 and A549 cells represent fast growing cell 

lines whereas Calu-3 cells were selected for their ability to form tight monolayer and to 

produce mucus allowing to investigate the toxic effect on a different biological hierarchy 

level. The safety of the particles was checked at different biological endpoints, including 

membrane integrity, mitochondrial activity, ATP release and integrity of the cell 

monolayer. The impact of pH changes, which are expected in the body, on the surface 
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charge and subsequently on cytotoxicity was investigated. In addition, surface interaction 

of serum proteins and the multiple components in the cell culture medium with 

nanoparticle surface and their influence on toxicity and colloidal stability of the particles 

was verified. Scanning force microscopy was applied to visualize and evidence these 

surface interactions. 

 

Materials and methods 

Materials 

Poly(D,L-lactide-co-glycolide) 70:30 (Polysciences Europe GmbH, Eppelheim, Germany), 

polyvinyl alcohol Mowiol® 4-88 (Kuraray Specialities Europe GmbH, Frankfurt, 

Germany), ultrapure chitosan chloride: Protasan® UP CL113 (molecular weight of 50-150 

kDa and a degree of deacetylation between 75 and 90%) from NovaMatrix (FMC 

BioPolymer AS, Oslo, Norway), ethyl acetate (Fluka Chemie GmbH, Buchs, Switzerland) 

were used as obtained. 

 

Methods 

1. Preparation of nanoparticles 

Chitosan-modified PLGA nanoparticles were prepared by an emulsion-diffusion-

evaporation technique as we previously described [6, 7]. In brief, 5 ml of PLGA dissolved 

in ethyl acetate (20 mg/ml) were added dropwise to 5 ml of an aqueous solution of the 

stabilizer PVA (2.5% w/v) and the cationic polymer chitosan under magnetic stirring. The 

emulsion was stirred at 1000 rpm for 1 hour. Afterwards, it was homogenized using an 

UltraTurrax T25 (Janke & Kunkel GmbH & Co-KG, Staufen, Germany) at 13 500 rpm for 

10 minutes. The homogenized emulsion was diluted to a volume of 50 ml under constant 

stirring with MilliQ-water to form the nanoparticles. Remaining ethyl acetate was 
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evaporated by continuous stirring overnight at room temperature. The concentration of 

chitosan in the aqueous phase was varied to obtain nanoparticles with different surface 

charges, Table I. The abbreviations stated in the table will be used throughout the 

document as reference to the different particle preparations.  

 

2. Measurement of colloidal characteristics 

Nanoparticles were characterized with respect to mean diameter, size distribution 

revealed by the polydispersity index (PI) and ζ-potential using the ZetaSizer Nano ZS 

(Malvern Instruments Ltd, Worcestershire, UK). In general, the colloidal properties were 

determined in MilliQ-water. To check the colloidal stability nanoparticle suspensions were 

also diluted (0.9 mg/ml) and investigated in the biological media applied in the study. All 

measurements were performed in triplicates. 

3. Cell cultures and treatments 

COS -1 cells (CCL-185; ATCC, Manassas, VA, USA), passage No 10-20, were 

cultivated in DMEM supplemented with 10% fetal calf serum (FCS), 4500 mg/L glucose, 

GlutamaxTM and 1 mM sodium pyruvate (all from Sigma- Aldrich Chemie GmbH, 

Steinheim, Germany). Cells were seeded in 96-well plates at a density of 20,000 cells/well 

and allowed to attach for 24 h. 

A549 cells (CCL-185; ATCC, Manassas, VA, USA) were cultivated in RPMI with L- 

glutamine (PAA Laboratories GmbH, Pasching, Austria) supplemented with 10% FCS. 

One day prior to experiments, A549 cells were detached using trypsin-EDTA and seeded at 

a density of 100,000 cells/ml, in 24-well or 96-well plates 0.5 or 0.2 ml/well, respectively. 

Calu-3 cells (HTB- 55; ATCC, Manassas, VA, USA) were cultivated in Minimum 

Essential Medium (MEM) with Earl’s Salts and L- glutamine (PAA Laboratories GmbH, 

Pasching Austria) supplemented with 10% FCS, 1% MEM non- essential amino acid 
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(NEAA) solution and 1 mM sodium pyruvate (all from Sigma- Aldrich Chemie GmbH, 

Steinheim, Germany). 

All cells were kept in an incubator set to 37°C, 5% CO2 and 95% humidity. On the day 

of experiment, cells were washed with PBS and medium was changed. 

 

4. Biological endpoints 

- MTT assay 

MTT reduction (cleavage of the yellow tetrazolium salt to purple formazan crystals by 

metabolically active cells) was used to quantify cell viability. Cells were incubated with 

nanoparticle samples in different concentrations, for different time periods as will be 

described later. In addition, cells grown in culture medium only were considered as high 

control (100% cell viability) and others incubated with Triton X-100 (2% w/v) were used 

as low control (0% cell viability). Substance control, composed of nanoparticle suspension 

with the assay reagents only, showed no interference of the particles with the assay 

conditions. Afterwards, cells were washed with PBS and allowed to grow in the culture 

medium. On the next day, MTT solutions (3,4,5 dimethylthiazol-yl)-2,5- diphenyl 

tetrazolium, 5 mg/ml in PBS pH 7.4 were added. Following incubation for 3 h, the 

precipitated formazan was dissolved using acidified isopropanol for 0.5-1 h and quantified 

by measuring the absorbance at 550 nm in a multiwell plate reader (Tecan Deutschland 

GmbH, Crailsheim, Germany). Samples were applied in quadruplicates. Cell viability (%) 

was calculated by the following equation: 

550 550
exp low conrol

550 550
high conrol low conrol

(Abs Abs )
% cell viability 100

(Abs Abs )

−
= ⋅

−
 

Means and relative standard deviations (RSD) were calculated. 
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- LDH assay 

LDH assay is based on the measurement of lactate dehydrogenase (LDH) activity 

released from the cytosol of dead or plasma membrane damaged cells into the culture 

supernatant. LDH assay was performed on the same plates applied for MTT assay. After 

incubation of cells with the samples, the supernatants (100 µl) were transferred to 96-well 

plate for LDH assay whereas the original plates were used for MTT assay. Equal volume 

of the reaction mixture was added per well. Absorbance was measured at 492 nm and the 

cytotoxicity (%) was calculated relative to Triton X-100 as high control (100% 

cytotoxicity), and cells in culture medium as low control (0% cytotoxicity) as follows: 

492 492
exp . low conrol

492 492
high conrol low conrol

(Abs Abs )
% cytotoxicity 100

(Abs Abs )

−
= ⋅

−
 

Interaction of the samples with the assay procedure (substance control) was also checked 

and not detectable. 

 

- ATP (Vialight® Plus) assay 

In this assay, ATP (adenosine triphosphate) was used to assess the functional integrity 

of living cells, since all cells require ATP to remain alive. Any form of cell injury results in 

a rapid decrease in cytoplasmic ATP levels which can be detected utilizing the luciferase 

enzyme to catalyse the formation of light from ATP and luciferin. The emitted light 

intensity is linearly related to the ATP concentration. After incubation of A549 cells with 

the nanoparticle samples, 50 µl/well cell lysis reagent® were added for 10 min. Equal 

volumes of cell lysate and ATP monitoring reagent Plus® (100 µl) were incubated in white 

walled luminometer plate for 2 min  at room temperature then the bioluminescence was 

measured. 

100.% exp

lowcontrollhighcontro

lowcontrol

LumLum
LumLum

ityCellviabil
−

−
=  

Substance control was done in parallel.    
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- Measurement of transepithelial resistance (TEER) 

Measurements of the TEER values are usually used as an indicator for the integrity of 

the tight junctions in the cell monolayer. A decrease in the TEER values reveals certain 

loss in the integrity of the tight junctions which might interpret a sort of toxicity. Calu-3 

cells were seeded on tissue culture treated polyester membrane inserts for 12-well plate at a 

seeding density of 200,000 cells/ml. Culture medium was changed every second day and 

the resistance across the insert membrane was measured using EVOM voltohmmeter 

(World Precision Instruments Inc., Sarasota, FL, USA) connected to a pair of chopstick 

electrodes. When the resistance readings were between 1000-1500 Ω (typically between 8-

10 days), nanoparticle samples, NP-3, were applied in different concentrations to the apical 

chamber and TEER measured at 2 and 4h. Thereafter, nanoparticles were removed and 

replaced with culture medium. The reversibility of the effect was checked by measuring 

TEER after 24 h. The resistance of the empty filter was also determined and subtracted 

from all other values and the data were expressed as percentage of the initial (baseline) 

value. The other cell lines, A549 and COS-1 cells, are lacking the tight junctions and 

therefore are characterized by very low TEER values. Therefore, these cell lines were 

excluded from this study. 

5. Scanning Force Microscopy (SFM) 

In order to investigate the surface morphology of the nanoparticles in the culture 

media, different nanoparticles containing increasing amounts of chitosan were examined 

by Scanning Force Microscopy with a BioscopeTM equipped with a Nanoscope IVTM 

controller (Digital Instruments, Veeco, Santa Barbara, CA, USA). Dried samples 

(nanoparticles/culture media) were investigated under ambient conditions in tapping mode 

using a scanning probe with a force constant of 40 N/m at resonant frequency of ~170 kHz 

(Anfatec, Oelsnitz, Germany). 
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Results 

Chitosan-modified PLGA nanoparticles prepared by the emulsion-diffusion-

evaporation technique were characterized by a homogeneous size distribution and positive 

surface charge in MilliQ water. Increasing chitosan content gradually increases the surface 

charge from 21 – 58 mV, NP-3 – NP-9, as well as the width of the size distribution as can 

be seen from the increasing P.I. values, Table 1. 

 

Table 1: Colloidal properties of different nanoparticles 

 NP-0 NP-3 NP-6 NP-9 

Chitosan (% w/v) 

Particle size (nm) 

PI 

ζ-potential (mV) 

0 

148.2 (2.3)* 

0.03 (0.01) 

-8.62 (0.2) 

0.3 

163.6 (2.9) 

0.14 (0.01) 

32.3 (1.96) 

0.6 

186.2 (5.5) 

0.17 (0.01) 

46.4 (1.65) 

0.9 

247.4 (5.64) 

0.19 (0.01) 

58.0 (1.01) 

* Values between brackets denote the standard deviations (n = 3) 

 

- Parameters investigated 

In order to understand the possible effects of the nanoparticles on the biological activity of 

the cells, several variables were investigated including: 

- Concentration of nanoparticles: different concentrations of the nanoparticle 

suspension (NP-3), Table I, ranging from 0.1 – 2.5 mg/ml were incubated with two 

different cell types, COS-1 & A549 for 6 h, then MTT and LDH assays were 

performed. 

- Contact time: immediate and long term toxicity of the particles (NP-3), Table I, 

were studied by incubating the particles with A549 cells for 2, 4, 6, 8 & 24 h after 

which the cell viability was determined. 

- Surface charge of the nanoparticles: different nanoparticle suspensions containing 

increasing concentrations of chitosan and accordingly carrying higher surface 
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charges were prepared (Table I). The effect of the surface charge on the 

cytotoxicity of the particles was studied on COS-1, A549 and Calu-3 cell lines.  

- pH of the culture medium: RPMI mixed with HEPES buffer 100 mM of two 

different pH values 4.7 & 7.4 were applied during the incubation of the particles 

with A549 cells. The experimental pH of these mixtures was 6.5 and 7.4, 

respectively. The possible effects on cell proliferation (MTT-assay) and/or 

membrane integrity (LDH-assay) were investigated. 

- Presence of FCS in the culture medium: FCS was suggested to affect the colloidal 

stability of the nanoparticles, therefore, nanoparticle samples in serum-free media 

as well as media supplemented with serum were applied and the viability of A549 

cells was determined. 

- Assay procedure: cytotoxicity of nanoparticles with increasing chitosan content 

was assessed by three different assays (MTT, LDH and ATP-assays). The cell 

viability was compared.  

 

1. Nanoparticle concentration 

Our previous studies demonstrated the efficacy of chitosan-modified PLGA 

nanoparticles, NP-3, to be taken up by A549 cells within 6h incubation [7, 26]. The effects 

of these particles on different cell lines were investigated by testing membrane integrity via 

the LDH release and metabolic activity via mitochondrial enzymes. The viability of the 

cells after incubation with nanoparticles, NP-3, of increasing concentrations (0.1 – 2.5 

mg/ml) for 6 h was found to be clearly dependent on the cell type; the viability of COS-1 

cells was remarkably decreased with increasing NP concentration to reach ~35% with the 

highest NP concentration, Figure 1A. On the other hand, 80 – 90% of A549 remained 

metabolically active after incubation with NP in the whole concentration range 

investigated. Cell morphology observed by optical microscopy also showed normal 
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proliferation rate indicating that the cytotoxicity of the nanoparticles was quite low. The 

effect of NP on the membrane integrity (LDH assay) was negligible and independent of the 

NP concentration with both cell lines (within the experimental error), Figure 1B. 

 

 

 
Figure 1: (A) MTT assay, (B) LDH assay of chitosan-modified PLGA nanoparticles at 

different concentrations in COS-1 and A549 cells 

 

2. Contact time 

PLGA nanoparticles are known to be slowly biodegraded; therefore, testing long-term 

toxicity is as interesting as short-term toxicity. Incubation of nanoparticles with COS-1 
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cells showed a remarkable toxicity on short-time incubation periods. Therefore, a less 

sensitive cell line was selected for long-term toxicity investigation. A549 cells were 

incubated with the nanoparticles (0.9 mg/ml) for different time periods ranging from 2 to 

24 h. As shown in Figure 2, the survival rate was comparable to the control during the first 

6h, and then started to decrease to ~ 85% after 24 h. 

 

 
Figure 2: MTT assay for chitosan-modified PLGA nanoparticles at different contact 

times with A549 cells 

 

3. Chitosan content on the nanoparticles 

Cationic polymers are known to exhibit cytotoxic effects [24], however, chitosan can 

be considered as one of the safe polymers. For this reason, it was interesting to study the 

effect of different nanoparticles (NP-3 – NP-9) prepared with increasing chitosan 

concentrations (0.3 - 0.9 mg/ml) - thus characterized by higher surface charge – on the 

viability of different cell lines. The survival rate, estimated by the MTT-test, was 

dependent on the cell type and was in the ranking order: Calu-3 > A549 > COS-1 cells, 

Figure 3A. Around 90% of A549 and Calu-3 cells were metabolically active after 

incubation with NP-9 compared to only 40 % in case of COS-1 cells. 
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Particle size measurement of the nanoparticles in different culture media indicate 

uniform distribution of PLGA nanoparticles, NP-0, in water, RPMI and MEM, Figure 3B. 

In contrast, agglomerates were observed when chitosan-modified particles, NP-3 – NP-9, 

were measured in culture media, Figure 3C-E. Agglomeration was more pronounced in 

MEM than in RPMI. Besides, increasing chitosan concentration increases the tendency 

toward agglomeration. This agglomeration is thought to reduce the effective concentration 

of the particles in the nanosize range, which in turns correlates with the reduced toxic 

effect of NP with higher chitosan content on A549 and Calu-3 cells. 
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Figure 3: (A) MTT assay for nanoparticles with increasing concentrations of chitosan on 

different cell types, (B-E) size distribution curves of nanoparticles (B) NP-0, (C) cNP-3, (D) 

cNP-6 and (E) cNP-9 in water and different culture media 
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4. Incubation medium 

The impact of the medium applied during the incubation of the particles with the cells 

and especially its pH is expected to play an essential role. Chitosan is known to acquire a 

positive charge in acidic media [18], while chitosan-modified nanoparticles in neutral pH 

(as in cell culture medium) are found to have low or negligible surface charge. It is 

therefore essential to investigate the behaviour of the particles when subjected to pH 

fluctuation as would be the case in the human body. In this context, non-modified PLGA 

nanoparticles, NP-0, and chitosan-modified PLGA nanoparticles, NP-3, were diluted in 3 

different media: RPMI, RPMI + (HEPES pH 7.4) in 1:1 mixture and RPMI + (HEPES pH 

4.7), the experimental pH of the latter was found to be 6.5, and incubated with A549 cells 

for 6 h. LDH assay revealed no destructive effect of the nanoparticles, NP-0 and NP-3, on 

the cell membrane in neutral media as seen before; RPMI and RPMI + (HEPES pH 7.4), 

Figure 4, where chitosan is expected to be uncharged. On the other hand, a remarkable 

increase in LDH release was noticed and even more pronounced in NP-3 when (HEPES 

pH 4.7) was mixed with the culture medium. This suggests that the toxicity of chitosan is 

mediated by electrostatic interaction with the negatively charged membrane. Despite the 

influence of the particles on the membrane integrity, negligible effect on the cell 

proliferation was observed as recorded by the MTT assay (data not shown). 

It was hence necessary to check the colloidal stability of the nanoparticles in the 

different media used in this test. Particle size measurements revealed a monomodal 

distribution of PLGA nanoparticles, NP-0, in all media, while a bimodal distribution was 

observed in case of chitosan-modified particles, NP-3, indicating higher affinity of the 

latter to interact with the culture media independent of the presence of HEPES buffer, 

Figure 4 B&C. Similarly, PLGA nanoparticles retained their negative ζ-potential whereas a 

broad distribution of charges was observed for chitosan in culture media giving a 

mathematical mean of nil ζ-potential.  
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Figure 4: (A) LDH assay for PLGA and chitosan-modified PLGA nanoparticles 

incubated with A549 cells in different media, (B & C) size distribution curves of (B) PLGA 

NPs and (C) chitosan/PLGA NPS in these media 
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5. FCS in culture medium 

Another important aspect regarding the influence of the culture medium on the toxicity 

of the particles is the presence of serum. A549 cells were incubated with nanoparticles, 

NP-3, suspended in RPMI both in presence and absence of 10% FCS; the cell viability was 

then determined. From Figure 5A, one can notice a slight reduction in viability in absence 

of FCS, which might indicate the protective role of serum. Several authors reported the 

adsorption of negatively charged serum proteins on the positively charged nanoparticles 

surfaces, therefore shielding or masking their original (probably harmful) effect on the 

cells [27]. Accordingly, it was necessary to investigate the colloidal stability of the 

nanoparticles in the culture medium both in presence and absence of FCS. Measurement of 

the particle size indicates the presence of some agglomerates (~ 1 µm) whereas a 

significant amount of the particles retain their original state in the nanosize range 

independent of the presence of serum, Figure 5B. On the other hand, in absence of serum 

the ζ-potential was found to have a mean value of zero indicating a risk of colloidal 

instability, while in serum-supplemented medium a broad undetermined range of surface 

charges was detected, Figure 5C, which clearly reveals the strong uncontrolled interaction 

of the serum proteins with the nanoparticles surfaces.  

6. Viability assays (MTT vs ATP assay) 

MTT assay is a widespread method to assess cell viability; a more recent method is the 

ATP assay. In order to check their validity to investigate the toxicity of our nanoparticles, a 

comparative experiment was done using nanoparticles with different chitosan content; NP-

0, NP-3, and NP-6. As shown in Figure 6, viability of A549 cells incubated with 

nanoparticles were similar to the control as tested with the ATP assay, whereas a slight 

reduction in viability by ~15-25% was determined with the MTT assay. Despite the 
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difference in magnitude (which is always expected due to the difference in assay principle 

and protocol), both assays showed the same tendency. 
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Figure 5: Effect of the presence of FCS in the culture medium on (A) the viability of A549 

cells, (B) size distribution and (C) ζ-potential of chitosan/PLGA nanoparticles 
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Figure 6: Cytotoxicity testing of chitosan-modified PLGA nanoparticles by different 

viability assays (MTT- and ATP-assays) 

 

7. Colloidal stability of nanoparticles in culture media by SFM 

In order to get a deeper insight on the nanoparticle behavior in different culture media 

as well as nanoparticles-serum surface interaction, the morphology of nanoparticles in 

different culture media, RPMI and MEM, was examined by SFM. Figure 7 represents a 

general overview on the rearrangement of the particles, containing increasing amounts 

chitosan, in RPMI and MEM. Generally speaking, one can remark that the culture media 

tend to form dendritic networks when dried on mica surfaces applied during the 

investigation (diffusion limited aggregation. Network arrangements formed in case of 

MEM are much larger in size compared to those formed in case of RPMI, Figure 7 A&B. 

It can be also noticed that PLGA nanoparticles, NP-0, remain evenly dispersed and can be 

clearly distinguished from the dendritic arrangements of the culture media, Figure 7 C&D. 

On the other hand, chitosan-modified particles were observed to be imbedded in the 

dendritic networks of the medium and usually surrounded by various small structures, 

which are most probably representing smaller protein units, Figure 7 E-H.  
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Figure 7: Surface morphology of (A) RPMI, (B) MEM, (C) NP-0 in RPMI, (D) NP-0 in MEM, 

(E) NP-3 in RPMI, (F) NP-3 in MEM, (G) NP-6 in RPMI and (H) NP-6 in MEM as examined 

by SFM 
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Closer look to the nanoparticle surface in both media is depicted in Figure 8. The 

surface of PLGA nanoparticles, NP-0, remain smooth and the particles retain their 

spherical well-defined shape either in RPMI or MEM as seen from the height, amplitude 

and phase images, Figure 8A. However, chitosan-modified particles, NP-3 and NP-6, are 

characterized by rough, non-uniform surfaces, Figure 8 B&C. Phase images reveal a 

distinct change in phase around each nanoparticle, indicating the absorption of other 

molecules from the medium to the nanoparticle surface. 
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Figure 8: Surface morphology of (A) NP-0, (B) NP-3 and (C) NP-6 in RPMI and MEM as 

examined by SFM. Arrows demonstrate nanoparticles either dispersed (NP-0) or surrounded 

by medium components (NP-3, NP-6) 

 

 

8. TEER measurements 

Chitosan-modified nanoparticles, NP-3, were incubated in different concentrations with 

Calu-3 cells, the TEER values were measured after 2 and 4 h. The reduction in TEER 

values is calculated as % of the initial values measured prior to the addition of particles. As 

shown in Figure 9, diluted nanoparticle concentrations (0.02 – 0.3 mg/ml) resulted in slight 

decrease in the TEER values to ~ 80 % of the baseline values, which is similar to the 

reduction caused in case of the control. Higher nanoparticle concentrations (1.3 mg/ml) 

induced a distinct temporary reduction in TEER values to ~ 45 % after 2 h which started to 

recover again even in presence of the particles. Measurement of TEER values 24 h after 

starting the test reveals complete recovery of the monolayer integrity at all concentrations 

tested.   
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Figure 9: Change in the TEER values of Calu-3 cells after incubation with chitosan-

modified PLGA nanoparticles in different concentrations for different time periods 

 

Discussion 

Insights into the cytotoxic effects of nanoparticulate carriers are essential especially 

when they are intended to be applied on a subcellular level. PLGA is known to be benign 

to the cells and therefore have been frequently applied as drug and gene carrier in different 

forms like implantations, micro- and nanoparticles [5]. On the contrary, cationic polymers 

are reported to induce certain cell damage through their interaction with anionic 

components (sialic acid) of the glycoproteins on the surface of epithelial cells. The necrotic 

cell reaction is not accompanied by apoptosis; the nuclei retain their size and shape [24]. 

Nevertheless, chitosan was found to be less toxic than other cationic polymers such as 

poly-L-lysine and polyethyleneimine in vivo and in vitro [28, 29]. Therefore, chitosan was 

chosen to modify the surface of PLGA nanoparticles aiming to improve their binding 

potential with negatively charged plasmids and enhance their cellular uptake. The 

emulsion-diffusion-evaporation technique produced spherical, smooth surface 

nanoparticles of monomodal size distribution and increasing positive surface charge upon 

adding increasing concentrations of chitosan. The toxicity of these particles was measured 
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by assessing cellular damage. An indication of acute cellular damage is a reduction in 

metabolic activity, which is the principle of MTT and ATP assays, whereas LDH release 

reflects the damage/leakage of plasma membrane. 

Cytotoxicity is known to be a function of the cell type, therefore, three cell lines were 

used in this study; COS-1, A549 and Calu-3 cells. The Calu-3 cells were incorporated in 

the study to investigate the effect of the particles on the integrity of the cell monolayer and 

the possible impact of the surface charge, whereas COS-1 and A549 cells were used as fast 

growing cancerous cell types. In case of COS-1 cells, cytotoxicity of chitosan-modified 

particles was found to be dose dependent, this feature did not hold for A549 cells in the 

investigated dose range. Similarly, the survival of COS-1 cells was negatively affected 

after incubation with particles containing higher amounts of chitosan, while A549 and 

Calu-3 cells were found to be more robust. The dependence of toxicity on cell type was 

previously reported by different other research groups [19, 30]. It is important to note that 

chitosan solutions had the same effect as our chitosan/PLGA nanoparticles when tested on 

A549 cells (data not shown). Similar results were obtained when different types of 

chitosans with increasing molecular weight were tested (data not shown).  

Since the toxicity of cationic polymers is considered an interesting issue, several 

authors discussed the influence of polymer properties such as molecular weight, charge 

density, type of cationic functionalities, structure and sequence (block, random, linear, 

branched) and conformational flexibility [31-33]. Ferruti et al. [31] noted that PLL 

macromolecules with tertiary amine groups exhibit a lower toxicity than those with 

primary and secondary residues. On the other hand, Ryser [34] related the cytotoxicity to 

the charge density, the three dimensional structure and flexibility of the cationic 

macromolecule as it determines the accessibility of the charges to the cell surface. 

Accordingly, branched molecules were found to be more efficient in neutralizing the cell 

surface charge than molecules with linear or globular structures [32], while rigid molecules 
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have more difficulties to attach to the membranes than flexible molecules and the 

interaction is therefore limited [33]. This should be true for the particles as they limit the 

flexibility of the anionic species but was not observed in the experiment that did not result 

in different behavior between chitosan NP and chitosan molecules. 

Toxicity was checked over 6 and 24 h; 6 h to give an indication of the toxicity of the 

particles over the time of an in vitro transfection experiment. Additionally, a 24 h time 

point has been tested to mimic the tissue-therapeutic contact time, which is expected in an 

in vivo experiment where clearance would take longer. Furthermore, the 24 h-exposure is 

important as the cells would be within an exponential growth phase in this period meaning 

that any toxicity, due to inhibition of proliferation and/or cell death, would be clearly 

visible in the assay. The cells showing short term toxicity were not studied for long term 

incubation because of the already present toxicity. However, even the A549 cells showed a 

decrease of viability after 8h to 85% survival rate what is not considered problematic in 

terms of an application. 

One of the interesting points to be discussed is the relation of particle toxicity with the 

composition and pH of the medium, yet this factor was rarely investigated. It is generally 

expected that diverse in vivo routes of administration can present different toxicological 

outcomes that vary with the surrounding pH. In our case, this can be considered a key 

factor, where the toxicity is thought to be due to the positive charge of the particles and the 

surface charge of the NP is pH dependent. Normally, optimum conditions for cell cultures 

maintain pH 7.4, at which chitosan is mostly non-ionized and hence apparently non-toxic. 

The decrease of pH by adding HEPES buffer of pH 4.7 reduced the overall experimental 

pH of the medium to ~ 6.5, the survival rate of the cells under these conditions was high 

enough to perform the study but was relatively lower than cells grown in culture medium 

only. The relative reduction in pH allows a considerable amount of chitosan molecules to 

be ionized, the positive charge acquired on the nanoparticle surface enhance their 
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interaction with the plasma membrane, which was clearly demonstrated by the increase in 

LDH release indicating membrane damage. This suggests that the toxicity of chitosan is 

mediated by electrostatic interaction with the negatively charged membrane. The presence 

of the particles impacts on the toxicity in addition to the unfavourable conditions with the 

medium at pH 6.5. These conditions may further facilitate the toxic impact of the particles 

on the cells what is reflected also in the increased toxicity of the PLGA particles.  

The colloidal behaviour of nanoparticles in different buffers and culture media is rarely 

studied or considered with respect to acute toxicity, although the surface properties of the 

particles are considered to be a relevant factor for cytotoxicity and cellular uptake. 

Generally speaking, the main goal of using nanoparticles is their improved cellular uptake 

compared to larger size carriers. Nevertheless, in our study, a considerable fraction of the 

particles are forming agglomerates in culture media as revealed by particle size 

measurements and morphological examination by SFM. This agglomeration is thought to 

reduce the effective concentration of the particles in the nanosize range, which in turns 

correlates with the reduced toxic effect of NP with higher chitosan content on A549 and 

Calu-3 cells. Therefore, it is not possible to refer our results exclusively to their nanoscale 

properties. Besides, many authors referred the cytotoxic effects of polycations to their 

charge interaction with cell membrane. However, ζ-potential measurements demonstrated 

that this positive surface charge does not exist any longer due to high ionic strength, the 

presence of divalent ions and the possible surface association of serum proteins to the 

nanoparticle surface, even when higher concentrations of chitosan were applied to the 

nanoparticles. Hence, any discussion of cytotoxicity on charge basis might be misleading 

regarding the relevant determinant and not taking into account the Debye length. The 

presence of a variety of nanoscale components in the culture media often complicates the 

measurement and interpretation of size and ζ-potential measurements. Many researchers 

tried to avoid the problem of the colloidal instability of the nanoparticle in culture media 
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by using other buffers. However, this is also thought to be far away from the in vivo 

conditions and any findings based on this do not allow speculating the real behaviour of 

the particles in complex environments. Therefore, there is still a need to establish more 

physiologically relevant in vitro testing models that can efficiently substitute in vivo 

nanotoxicology studies [4].  

We have demonstrated that SFM can be a promising approach to visualize the 

distribution of the nanoparticles within the air dried culture medium. The changed surface 

morphology or at least the change of the close environment of the chitosan coated particles 

compared to the PLGA particles can be clearly seen. In addition, the distribution of the 

particles gives another hint to the presence of interactions within the medium. PLGA 

particles were evenly distributed whereas the chitosan particles were always found within 

the solid residues of the dried media indicating the favored interaction with the included 

materials. It is reasonable to assume that the interactions of nanoparticles with serum 

proteins and the diverse components of the culture media mask not only the charge of the 

particles but also their recognition by the cells as foreign bodies and accordingly their 

harmful effects. However, the overall arrangement in dendritic structures is not 

representative for the general interactions because the arrangement of the molecules will be 

influenced by the drying process of the sample, the changing concentrations and the 

hindered diffusional processes. Therefore, a next step should be the SFM measurement of 

the nanoparticles in culture media under liquid to get a better insight in the situation in the 

medium and to avoid possible artifacts. Furthermore, studying nanoparticle-cell surface 

interactions is an ongoing topic. 

Tight junctions are located at the boundary between apical and basolateral domains in 

epithelial cells and appear as a continuous apical belt around the cell periphery. The 

presence of tight junctions between neighbouring epithelial cells prevents the free diffusion 

of hydrophilic molecules across the epithelium by the paracellular route. An sensitive 
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indicator for sublethal toxicity is the loss of integrity of tight junctions. TEER 

measurement is a method to investigate changes in tight junction’s structure. Our results 

indicate a temporary, concentration-dependent opening of the tight junctions of Calu-3 

cells when exposed to chitosan-modified nanoparticles. Similarly, Smith et al. [35] found 

that chitosan cause a dose-dependent reduction in transepithelial electrical resistance of 

Caco-2 monolayers of up to 83% and that chitosan-mediated tight junction disruption is 

caused by a translocation of tight junction proteins from the membrane to the cytoskeleton. 

Our findings can be summarized in the following; the toxicity of chitosan-modified 

PLGA NP is dependent on the cell type and was found to be in the order COS-1 > A549 > 

Calu-3 cells. The colloidal stability of the nanoparticles is remarkably reduced when 

suspended in the culture media. Due to the formation of agglomerates, a significant 

reduction in the amount of nanosized fraction decreases the actual effective concentration 

of the particles along the study. This is supported by the data of the chitosan particles with 

different chitosan amounts. The higher the amount (ζ-potential) the keener are the particles 

to agglomeration in medium and the less toxic they are on A549 cells. For COS-1 cells 

there seems to be no impact of lower charges (or uncharged); only the highest chitosan 

concentration shows a different toxicity level. Besides, the adsorption of multicomponents 

of the culture medium on the NP surface (as visualized by SFM) limits their recognition by 

the cells as foreign bodies, and hinders the real surface interaction between the 

nanoparticle and the cell. This, together with the reduction in nanoparticle effective 

concentration, might explore the reduced toxicity and supports the idea of underestimated 

nanotoxicity in general. On the other hand, stimulation of chitosan ionization by reducing 

the pH of the incubation medium relatively increases the positive surface charge of the 

particles and in turns destabilize the cell membrane. This clearly demonstrates the role of 

charge in NP-cell surface interaction.   
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Although our chitosan/PLGA nanoparticles did not show evident harmful effects to the 

investigated cell lines, the real interactions between the nanoparticles and the target cells 

on subcellular and molecular levels are still poorly understood. Therefore, the 

identification of fundamental cellular responses to nanoparticles (such as generation of 

reactive oxygen and activation of redox-sensitive signalling cascades) is still necessary to 

complement the toxicological testing with a mechanistic approach. 

 

CONCLUSIONS 

From this study, it can be concluded that the cytotoxicity of chitosan-modified PLGA 

nanoparticles is a function of the cell line. Nevertheless, the toxicity is under estimated due 

to the colloidal instability in culture media, reduction in effective nanoparticle 

concentration on the nanosize range, in addition to adsorption of medium components to 

the nanoparticle surface. Slight shift of the surrounding pH allows ionization of chitosan 

and increase in surface charge of the nanoparticles, which as a consequence lead to more 

pronounced loss of membrane integrity of the cells. 
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Chapter 6  
 

cNPs/OMR nanoplexes as inhalation therapy for lung cancer 

Nebulization and cellular uptake on air interface cultures* 

 

 

 

 

 

 

 

 

*This chapter is prepared to be published as a journal article: 

N. Nafee, M. Schneider, U.F. Schäfer, and C.-M. Lehr. Nanoplexes of antisense 

oligonucleotides as inhalation therapy for lung cancer: nebulization and cellular uptake on 

air interface cultures. 
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Abstract 

Purpose: Aerosol nanoparticulate delivery to the lungs is always associated with serious challenges 

among which is the nebulization of nanoparticles. In this chapter, we aimed to select the most 

appropriate techniques for nebulization of the nanoparticles that preserve their colloidal properties 

as well as the efficiency of the associated antisense oligonucleotide. In addition, a new alternative 

to the conventional liquid cell culture models is the air-interface-culture model (AIC), which 

enables direct contact of the lung epithelial cells with air while the culture medium is supplied to 

the cells only from the basolateral side. Therefore, this in vivo mimicking culture system is applied 

to investigate the deposition and uptake of nanoparticles/nanoplexes on the cell monolayer.  

Methods: Two different nebulizers, a hydraulic liquid microsprayer and an electronic mesh 

nebulizer were tested. The one preserving the colloidal properties of the particles was selected for 

further studies. Thereafter, the nanoplexes were deposited on the surface of air interface cultured 

A549 cells. The uptake behavior and possible cytotoxicity on the cell monolayer were investigated. 

Results: The hydraulic microsprayer offered greater colloidal stability to the nanoparticles during 

nebulization compared to the electronic mesh nebulizer. A significant improvement in the uptake of 

nanoplexes versus naked oligonucleotides was observed when deposited on air interface cultured 

A549 cells, indicating the feasibility of the delivery system for pulmonary application. 

Conclusions: This study shows the feasibility of NP/OMR nanoplexes as inhalation therapy for the 

treatment of lung cancer. Studying the uptake after air interface deposition represents a step 

forward to the in vivo studies. 
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Background 

In the context of pulmonary delivery, polymeric nanoparticles could represent a non-

invasive alternative either for the local targeting of airway epithelium or for systemic 

absorption through the alveolar deposition.  The majority of pulmonary drug delivery 

systems were based on microparticles in the form of dry powder inhalation [1], while few 

studies have recently shown interest in nanoparticle technology [2, 3]. The application of 

non-biodegradable polymers like polystyrene or silica in the lung remains questionable 

especially in cases where multiple dosing is required. Thus, a tendency toward the use of 

biodegradable polymers is always preferable. However, aerosol nanoparticulate delivery to 

the lungs - especially those based on biodegradable polymers - is always associated with 

several serious challenges among which is the nebulization of nanoparticles with minimum 

alteration in their colloidal characteristics, integrity and the full efficiency of the delivered 

drug. 

In comparison to other delivery systems like liposomes, polymeric nanoparticles are 

expected to exhibit a greater stability against the forces generated during the nebulization 

process. Several studies with liposomes have shown that the shear forces generated during 

jet nebulization as well as the high energy produced by ultrasonic nebulization can disturb 

liposomal integrity thus leading to rupture and leakage of the drug compound [4, 5]. 

However, many researches reported the susceptibility of micro- and nanoparticles to 

aggregation during the nebulization [6]. The behavior of the nanoparticles suspension 

during nebulization is assumed, inter alia, to be a function of the original size and surface 

characteristics of the particles and their concentration. A variety of inhalation devices are 

currently on the market including metered dose inhalers (MDI), dry powder inhalers (DPI) 

in addition to modern nebulizers based on pressure-driven atomisation, ultrasonic 

generation and electrospraying. The proper choice of the nebulizer that generates uniform 
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fine flow of the particles suspension with minimum susceptibility of particle aggregation is 

a prerequisite for efficient pulmonary delivery. 

Most studies involving in vivo animal testing or ex vivo lung perfusion models utilise 

different types of nebulizers while very few are concerned with checking the effect of this 

process on the particle integrity and uniformity.  

A new alternative to the conventional liquid cell culture models is the air-interface-

culture model (AIC), which enables direct contact of the lung epithelial cells with air while 

the culture medium is supplied to the cells only from the basolateral side. This in vivo 

mimicking culture system is expected to give a better and more realistic idea about the 

deposition and uptake of nanoparticles/nanoplexes on the cell monolayer [7]. The uptake 

of nanoparticles in liquid cultures is known to be affected by their sedimentation rate on 

the cell surface; not the whole amount of particles added to the culture medium is in 

contact with the cells at once. As shown in Figure 1A, a significant amount remains 

suspended in the medium and probably removed after the incubation period without any 

contact with the cells. The amount of deposited particles is a function of their size, density 

and colloidal stability in the incubation medium. In this case the nanoparticle uptake 

depends on the amount of deposited particles on one hand and on the nanoparticle 

characteristics on the other hand, keeping in mind that the uptake can be a saturable 

process. On the other side, direct deposition of nanoparticles on the cell surface via 

nebulization on AIC, Figure 1B, neglects the effect of sedimentation rate as all the particles 

are almost accumulating on the cell monolayer, giving impression of better contact with 

the cell membrane and improved uptake. However, the hydrophilic/hydrophobic properties 

of the particles affect the water shell on the nanoparticle surface and accordingly their 

interaction with the thin liquid layer on the cell surface as mentioned above, which in turns 

can have a remarkable impact on the uptake. 
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Figure 1: Schematic presentation of nanoparticle deposition on (A) Liquid-liquid culture, 

and (B) AIC 

 

In chapter 4, we demonstrated the potential of chitosan-modified PLGA nanoparticles 

to bind the negatively charged antisense oligonucleotide 2’O-Methyl RNA (OMR) and to 

improve their cellular uptake by human lung cancer cell lines A549 on a liquid interface. In 

this chapter, we aimed to select the most appropriate techniques for nebulization of the 

nanoparticles that preserve their colloidal properties as well as the efficiency of the 

associated antisense oligonucleotide. Thereafter, the nanoplexes will be deposited on the 

surface of air interface cultured A549 cells. The uptake behavior and possible cytotoxicity 

on the cell monolayer will be investigated. 

 

Materials and Methods 

Materials 

Poly(D,L-lactide-co-glycolide) 70:30 (Polysciences Europe GmbH, Eppelheim, 

Germany), polyvinyl alcohol; Mowiol® 4-88 (Kuraray Specialities Europe GmbH, 

Frankfurt, Germany), ultrapure chitosan chloride: Protasan® UP CL113 with a molecular 

weight of < 150 kDa (FMC BioPolymer AS, Oslo, Norway), 4’,6-Diamidino-2-

phenylindole dihydrochloride (DAPI, λEx = 374 nm, λEm = 461 nm) and ethyl acetate 

(Fluka Chemie GmbH, Buchs, Switzerland) were  used as obtained. The antisense 

oligonucleotide, 2’O-MethylRNA with a phosphorothioate (ps) backbone (5′-2′-O-methyl 
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[C(ps)A(ps)GUUAGGGUU (ps)A(ps)G]-3′) was obtained from (Biomers.net GmbH, Ulm, 

Germany). For the uptake studies, the carboxyfluoresceinamine-labeled derivative 5′-

FAM-OMR was used. RPMI 1640 supplemented with L-glutamine and 10% fetal calf 

serum (PAA Laboratories GmbH, Pasching, Austria) was used as cell culture medium. 

Rhodamine-labeled ricinus communis agglutinin I (RRCA, λEx = 522 nm, λEm = 577 nm) 

from Vector Laboratories Peterborough, England, was applied for cell membrane staining. 

 

Methods 

1. Preparation of nanoparticles 

Cationically modified nanoparticles, cNP, were prepared using the emulsion 

diffusion evaporation technique previously described. To prepare the nanoplexes, cNP 

were mixed with an aqueous solution of the oligonucleotide 2OMR in a weight ratio cNP : 

2OMR (50:1) at room temperature and vortexed for 30 s followed by 15 min incubation at 

room temperature. The nanoplexes formed were nebulized as described with the 

nanoparticles.  

 

2. Nebulization of nanoparticles/nanoplexes 

2.1. Colloidal characterization after nebulization 

Two different nebulizers were used in this study: the hydraulic liquid microsprayer 

Penn Century® (Model IA-1C, Penn Century Inc., Philadelphia, USA) and the electronic 

mesh nebulizer, eFlow® (Pari, Starnberg, Germany), Figure 2 A & B, respectively. 

Samples of the nanoparticles suspension/nanoplexes were nebulized and collected in 

falcon tubes for further investigations. The colloidal characteristics and the particle 

morphology were determined using the  Malvern Zetasizer Nano (Malvern Instruments, 
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Malvern, UK) and scanning probe microscopy (Digital Instruments, Veeco, Santa 

Barbara, California, USA), respectively. 

 

                                                (A)                                                                  (B) 

    

Figure 2: (A) Penn Century nebulizer, (B) eFlow, Pari nebulizer. 

2.2. Cytotoxicity of nanoparticles after nebulization applied as suspension 

The effect of chitosan modified PLGA nanoparticles on the cell viability and the 

membrane integrity was studied by the MTT and LDH assays, respectively. Human lung 

carcinoma A549 cell lines (100,000 cells/ml) were seeded in 24-well plates using RPMI 

supplemented with 10% FCS as culture medium. The cells were incubated at 37oC, 95% 

RH and 10% CO2 and allowed to adhere overnight. Samples of the nanoparticles before 

and after nebulization were incubated with the cells for 6h. After the incubation period, the 

supernatants were used for the LDH assay whereas the cell surface was washed twice with 

warm, sterile phosphate buffer saline (PBS) then incubated with fresh culture medium. On 

the next day the cells were incubated with MTT solution for 3-4 h. The formazan crystals 

were dissolved using acidified isopropanol. The absorbance was measured at 550 nm. The 

viability was determined as a percentage of the control cells cultivated in culture medium. 

Measurements were performed in quadruplicates.  
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2.3. Cellular uptake of cNP/OMR nanoplexes after nebulization applied as 

suspension 

The uptake of the nanoplexes before and after nebulization was investigated using 

A549 human lung carcinoma cells. The cells were seeded on LabTec chamber slides (Nunc 

GmbH, Wiesbaden, Germany) at a density of 100,000 cells/ml. Nanoparticles incubated 

with fluorescently labeled oligonucleotides 5’-FAM-2’-OMR were mixed with the culture 

medium RPMI supplemented with 10 % FCS then added to the cells. After 6 h of 

incubation, the medium was replaced by normal cell culture medium. After 24 h, cell 

membranes were stained red with RRCA and then fixed with 4% paraformaldehyde in 

PBS. The uptake was then examined by confocal laser scanning microscopy (CLSM) as 

will be described. For comparison control cells incubated with medium and with the 

labeled oligonucleotide in the medium were investigated as well. 

2.4. Confocal Laser Scanning Microscopy 

 Fluorescence imaging was performed using a BioRad MRC-1024 confocal laser 

scanning microscope equipped with an argon/krypton laser. The objective used was an oil 

immersion objective 40x NA=1.3. The excitation was performed using λ = 488 nm.  

Furthermore, a Zeiss510LSM META NLO system (Jena, Germany) was used. The set-

up made use 100x objective and of an argon ion laser line at λ = 488 nm to excite the 

oligonucleotides, a HeNe-laser with λ = 524 nm to excite the Rhodamin-labeled RCA (cell 

membrane staining) and a pulsed Ti:Sapphire laser operating at λ = 730 nm (~150 fs 

pulses, 80 MHz repetition rate) to excite DAPI based on the absorption of two or more 

photons.  

The green fluorescent particles were located with respect to the red stained cell 

membrane and the blue stained cores. 
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3. Nanoparticle deposition on air interface culture 

3.1. Air interface culture 

A549 cells were seeded at 200,000 cells/ml onto the membrane culture insert (Costar 

Transwell 3460, pore size 0.4 µm, Corning, Cambridge, MA, USA). Initially, culture 

medium was added to both apical (Ap) and basolateral (BL) sides. The formation of cell 

monolayer was assessed microscopically and by measuring the transepithelial resistance 

(TEER) reflecting the development of tight junctions in the cell layer. A549 cells were 

cultured in liquid phase until the TEER showed constant values of ~ 50 Ω after subtraction 

of the resistance of the empty filter. Then, the culture medium was removed from the Ap 

side and cell monlayers continued to grow on AIC for ~ 5 days. 

3.2. Cytotoxicity of nanoparticles/nanoplexes after air deposition 

Nanoparticles (0.9 mg/ml) as well as their nanoplexes with 2OMR (50:1) in NaCl 

solution 10 mM were sprayed on the surface of AI-cultured A549 cell monolayer using the 

Penn Century®. In addition, AIC cells as well as cells treated with NaCl solution were used 

as control. After 6h of incubation with the samples, NaCl solution (200 µl/well) were 

added to the Ap side to extract the LDH released and the LDH assay was carried out as 

previously described. Samples from the BL side were also collected to check the amount of 

LDH in the lower compartment. Acute and prolonged toxicity due to nebulization and/or 

NP deposition were determined by monitoring the LDH release after 0, 2, and 24 h. In 

addition, cell viability was checked by ATP assay as described in the previous chapter. 

3.3. Uptake of cNP/OMR nanoplexes after air deposition 

Nanoplexes of cNPs with FAM-labeled-OMR in the weight ratio 50:1 were prepared in 

3 different media; MilliQ water, NaCl solution 10 mM and HEPES buffer 25 mM. AI-

cultured A549 cells were sprayed with nanoplexes and incubated for 6 h. The uptake of 
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nanoplexes (indicated by the green fluorescence) was examined by CLSM after staining 

the cell membrane (red) with RRCA and the nuclei (blue) with DAPI as previously 

described. 

Results and Discussion 

1. Nebulization of nanoparticles 

1.1. Colloidal properties of nebulized nanoparticles 

It is well known that the particle deposition in the respiratory system is greatly 

influenced by the aerodynamic particle behaviour (including size, density, hygroscopicity, 

shape, and electrostatics). Therefore, the efficiency of a nebulizer is mainly judged by the 

determination of Mass Median Aerodynamic Diameter (MMAD). In general, particles with 

an aerodynamic diameter of 3 µm are mainly deposited in the alveolar region, beyond this 

level bronchial deposition starts to increase. Most of the studies are always interested in 

determining the MMAD to show the efficacy of the nebulization process; however, very 

few investigate the colloidal stability of the nanoparticles within the aerosolised droplets. 

Nevertheless, the stability of the nanoparticles is crucial for the use of nanoscale carriers. 

In this study, nanoparticle suspensions were nebulized using the microsprayer Penn 

Century® as well as the electronic mesh nebulizer eFlow® (Pari). Figure 3A-C 

demonstrates the stability of the nanoparticles in term of size, charge and morphology after 

nebulization using the hydraulic microsprayer Penn Century; the particles preserve their 

integrity, spherical shape, mean diameter and surface charge despite the small change in 

their polydispersity. 

In contrast, the eFlow® (Pari) utilizes advanced technology in order to increase the 

efficiency and effectiveness of medication delivery while significantly decreasing standard 
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treatment times. The device contains a perforated flat stainless steel membrane with 

tapered holes (several hundreds to several thousands).  

            

Before nebulization After nebulization

(C)

Before nebulization After nebulizationBefore nebulizationBefore nebulization After nebulizationAfter nebulization

(C)

 

Figure 3: Nebulization of nanoparticles using the microsprayer Penn Century® (A) particle 

size & size distribution, (B) ζ-potential and (C) particle morphology as observed by SPM. 

 

A piezoelectric actuator is used to induce the vibration of the membrane. The liquid is 

drawn through these tapered apertures to give a droplet size specified by the manufacturer 

as having a volume median diameter (VMD) ranging from 2.5 - 4.5 µm. In our 

experiments, two different aerosol heads characterized by two mesh sizes and resulting 

different particles distributions 25L and 30L were used. Measurements of the nanoparticle 

size after nebulization using the Malvern Zetasizer Nano revealed minor changes in the 

mean nanoparticle diameter (monomodal size distribution) when the mesh 25L was used 

(Figure 4A), however, a distinct drop in the count rate was observed together with the 
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appearance of agglomerates of the particles floating on the surface of the sample collected 

after nebulization. Examination of this sample by the SPM (Figure 4C) demonstrates the 

presence of dispersed nanoparticles as well as aggregates of deformed nanoparticles. The 

effect was more distinct when the mesh 30L was used during nebulization; the mean size 

and charge of the particles were almost doubled; Figure 4A & B, and huge aggregates of 

fused particles (> 1 µm) were observed by the SPM, Figure 4C. Particle aggregation may 

not only affect the properties of the suspension during nebulization, but also influence the 

overall dose to be applied. In addition, aggregates could block the apertures of the aerosol 

generating nozzle system, thereby affecting the aerosol formation. Particle adhesion to the 

surface of the nebulizer and the formation of multimodal particle size distributions have 

also been reported for polycation-DNA polyplexes when a vibrating mesh nebulizer was 

used [8]. The forces acting on nebulized droplets such as electrostatic charges and high 

shear forces could be responsible for particle destabilization. The energy involved in the 

generation of the aerosol and the elevated temperatures contribute to a high frequency of 

particle contact and accordingly promote a tendency towards aggregations. 

Previous studies demonstrated clearly that a certain degree of surface hydrophilicity 

was essential to prevent particle aggregation within aerosolized fluid droplets during 

nebulization [6]. On the other hand, it was also observed that anionic nanoparticles are 

more stable during nebulization compared to positively charged nanoparticles [2]. 

Based on the previously shown findings, we decided to continue our investigations 

using the Penn Century®. 
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Figure 3: Nebulization of nanoparticles using the electronic mesh nebulizer eFlow® (A) 

particle size and size distribution, (B) ζ-potential and (C) particle morphology as 

observed by SPM. 

 

1.2. Cytotoxicity of the nebulized nanoparticles 

As for any substance or treatment, the possible effect of the nebulization on the 

cytotoxicity needs to be carefully investigated (e.g. surface modification). This especially 

holds for nanoparticulate material. Therefore, after checking the colloidal stability of 

chitosan modified nanoparticles during nebulization with the Penn Century®, it was 

important to check the effect of the nebulization process on the cytotoxicity of the 

nanoparticles. For this reason, original nanoparticles as well as nanoparticles collected 

after nebulization with the Penn Century® were tested on A549 cell lines using MTT and 

LDH assays. The incubation of the cells with the nanoparticles (whether nebulized or not) 
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for 6 h had no effect on the cell viability compared to the control cells in the culture 

medium, Figure 5A, indicating that nebulization of the nanoparticles had no harmful effect 

on cell viability. Similarly, negligible changes in the integrity of the cell membrane were 

noticed from LDH assay, Figure 5B. 

 

 

 

 

Figure 5: Cytotoxicity study of nanoparticles before and after nebulization (A) MTT assay, 

(B) LDH assay. 
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1.3. Uptake of OMR/cNP nanoplexes pre- and post-nebulization 

The main objective behind our study is improving the uptake of the antisense 

oligonucleotide inside the lung cancer cells. Therefore, it was very important to investigate 

whether the nebulization process would affect the cellular uptake of these nanoplexes as a 

prerequisite prior to ex vivo or in vivo applications. A549 cells were incubated with non-

nebulized FAM-OMR/cNP nanoplexes and nanoplexes collected after nebulization with 

Penn Century ®. The internalization of the FAM-OMR indicated by the green fluorescence 

in the cells (cell membrane stained red with RRCA) was demonstrated by CLSM. In 

comparison to the control cells and those incubated with the FAM-OMR alone, a 

significant increase in the green fluorescence connected to the uptake of nanoplexes was 

observed, Figure 6A-C. 
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Figure 6: Uptake of cNP/OMR nanoplexes in A549 cell lines (A) control cells, (B) FAM-

OMR, (C) cNP/FAM-OMR nanoplexes before nebulization and (D) cNP/FAM-OMR 

nanoplexes after nebulization. 
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 The ability of the nanoparticles to act as a delivery system for OMR was already 

shown in chapter 4 with non-aerosolized particles [9]. Further studies indicated that 

nebulization of our nanoparticles using the Penn Century preserve the colloidal stability of 

the particles, the cell viability and membrane integrity. In addition, the potential of binding 

of cNP/OMR nanoplexes to A549 cells was maintained after nebulization, Figure 6D.  

2. Air interface deposition of nanoparticles 

2.1. Cytotoxicity of nanoparticles after air deposition 

In the previous part, we demonstrated that nebulized nanoparticles are benign to the 

cells when cultured on a liquid-liquid interface. However, the nebulization process itself 

can cause certain stress on the cell monolayer when grown at air interface. Besides, 

nebulized nanoparticles are directly deposited on the AI-cultured cell surface opposite to 

those suspended in the culture medium above the cells and need certain time to sediment 

and come into direct contact with the cells.  

Preliminary studies on nebulization of nanoparticles in suspension form produced a 

high mechanical pressure on the cell monolayer, as illustrated in the membrane cross 

section, Figure 7A, showing severe destruction of the monolayer independent of the 

sample applied. For this reason, the spraying procedure was modified in order to minimize 

the pressure on the cells and preserve the cell membrane integrity. Microscopical 

examination of the membrane cross sections showed no disruption in the cell monolayer, 

Figure 7B. 
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                                  (A)                                                                         (B) 

        

Figure 7: Membrane cross section showing destruction of A549 cell monolayer after 

nebulization (A) preliminary trial and (B) modified nebulization technique 

 

Furthermore, LDH assay (performed directly after spraying, 2 and 24 h later) showed 

LDH levels released in case of nanoparticles/nanoplexes comparable to the control. This 

proves that the membrane integrity was retained after nebulization and along the study 

period, Figure 8A. Similarly, checking the cell viability under the same condition by 

detecting the ATP level showed no remarkable differences between the cells sprayed with 

NaCl solution, cNPs and their nanoplexes with the oligonucleotides, Figure 8B. 
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Figure 8: Effect of nebulization on air interface cultured A549 cells: (A) LDH assay, (B) 

ATP assay 

2.2. Uptake of nanoplexes after air deposition 

As previously mentioned, higher amounts of nanoparticles/nanoplexes can be deposited 

on the cell surface via nebulization compared with those in conventional liquid phase 

loading; accordingly, different uptake behavior could be predicted.  

The uptake of naked oligonucleotide solution and their nanoplexes with chitosan-

modified PLGA nanoparticles on AI-cultured A549 cells was studied. CLSM images, 

Figure 9 A-C, shows AI-cultured A549 cells after incubation with FAM-OMR and the 

nanoplexes for 6 h. the images revealed the significantly higher amount of FAM-OMR 

internalized when applied as nanoplexes, Figure 9C, compared to the FAM-OMR solution 

sprayed alone, Figure 9B. In addition, the XZ-sections showed the localization of 

nanoplexes in the cytoplasm as spots or point shaped, while naked oligonucleotides are 

mostly attached to the membrane. 
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Figure 9: Uptake of FAM-OMR after nebulization on AI-cultured A549 cells: (A) Control, 

(B) FAM-OMR solution in water, and (C) FAM-OMR/cNP nanoplexes in water 

 

The influence of the medium used to prepare the nanoplexes on the uptake was verified 

by substituting water with NaCl solution 100mM and HEPES buffer 25 mM. As shown in 

Figure 10, the uptake was also improved by applying the nanoplexes instead of the 

oligonucleotides alone. Nanoplexes prepared in NaCl solution are observed to fill the 

cytoplasm around the cores and probably a considerable amount in the cores as well, as 

illustrated in the CLSM image and the corresponding XZ-section underneath, Figure 10C. 
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Figure 10: Uptake of FAM-OMR after nebulization on AI-cultured A549 cells: (A) Control, 

(B) FAM-OMR solution in NaCl solution, and (C) FAM-OMR/cNP nanoplexes in NaCl 

solution 
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The same enhancement in uptake by using the nanocarrier system was also noticed when 

the nanoplexes were prepared in HEPES buffer, Figure 11. 
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Figure 11: Uptake of FAM-OMR after nebulization on AI-cultured A549 cells: (A) Control, 

(B) FAM-OMR solution in HEPES buffer, and (C) FAM-OMR/cNP nanoplexes in HEPES 

buffer 

 

Generally speaking, several aspects can influence the nanoparticle uptake through AIC 

compared to conventional liquid cultures. Cells grown on air interface are known to be 

covered by a thin liquid film on their surface. The existence of an aqueous lining layer 

covering the surface of the conducting airways and a surfactant film at the air-liquid 

interface was previously demonstrated [10]. The surfactant lining layer (10–20nm in 

thickness) that covers the alveolar surface is composed of 90% in weight of water-

insoluble long chain phospholipids and 10% in weight of specific proteins [11]. The 

principle role of these pulmonary surfactants is to stabilize the gas-exchange region of the 

lung by reducing the surface tension at the air-liquid interface of the alveoli. Once 

deposited within the lung lining via nebulization, nanoparticles are expected to interact 

with this surfactant film. It was found that regardless of the nature of the nanomaterials 

surfaces, they will be submersed into the lining fluids after their deposition [12]. Many 

groups were interested in studying the interaction of nanocarriers with lung surfactants [13-



                                                     Chapter 6: Nebulization of cNP & uptake of nanoplexes on AIC 

   174

15]. Such interaction is thought to be dependent on the physicochemical properties of the 

particles from one side and on the cell type from the other side. Inhaled nanomaterials that 

are either lipid-soluble or soluble in intracellular or extracellular fluids undergo chemical 

dissolution in situ. Low molecular weight hydrophobic molecules are thought to be rapidly 

absorbed (within seconds) by passive diffusion through the lung epithelial membrane [16]. 

Low molecular weight hydrophilic molecules can be absorbed by active transport via 

specific transporters, or by passing through the tight junctions [17]. Inhaled nanomaterials 

that are insoluble in mucus and lining fluid, are not able to be rapidly absorbed, and may 

undergo physical translocation. 

In general, cells grown on air interface can build up a tight monolayer through the 

formation of tight junctions between the cells. Pulmonary cell lines like Calu-3 cells are 

characterized by remarkably high TEER values > 1000 Ωcm2, reflecting the formation of a 

very tight monolayer. On the other hand, A549 cells in AIC build up only TEER < 200 

Ωcm2. By immunostaining of tight junction protein zonula occludens (ZO-1), they show a 

broken tight junction belt. This is obviously expected to influence the paracellular uptake 

and the transport rate of the nanoparticles across such a monolayer. 

Studying the uptake of nanoparticles and/or nanoplexes on AIC represents a real big 

step towards the in vivo expectations. The ability of our nanocarrier system to be 

internalized and in a significant amount under these conditions while preserving the 

integrity of the cell monolayer enables to predict efficient pulmonary delivery in future ex 

vivo studies using lung perfusion models or in vivo studies on experimental animals. 

 

Conclusions 

Efficient aerosol delivery of the nanoparticles necessitates the proper choice of the 

nebulizer as well as the application procedure. Essential parameters to be considered are 
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the colloidal stability of the particles, good spreadability, the full efficiency of the 

delivered payload and preservation of an intact cell monolayer. Nanoparticles nebulized 

using the hydraulic liquid microsprayer reserve their characteristics, morphology, their 

safety as well as their efficacy to form nanoplexes with antisense oligonucleotide and their 

potential to promote their intracellular uptake. However, electronic mesh nebulizer caused 

particle aggregation and fusion. An in vivo-mimicking step was to investigate the uptake of 

nanoplexes on air interface-cultured A549 cells. A significant improvement in uptake of 

nanoplexes versus naked oligonucleotides was observed, indicating the feasibility of the 

delivery system for pulmonary application. 
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SUMMARY 
 

Lung cancer is one of the leading causes of cancer-related death worldwide. Current 

cancer therapy usually involves intrusive processes including chemotherapy, radiation and 

surgery. 

Gene therapy provides a novel strategy for cancer treatment; promising approaches 

focus on such therapies that target specific proteins and pathways involved in the growth 

and proliferation of cancer cells. Much interest has recently been focused on telomerase, a 

ribonucleoprotein that adds telomeric repeats to the end of the telomeres and therefore 

prevents telomere shortening occurring during replication of the cell cycle. Telomerase 

activity is required for continuous cell proliferation and allows cells to overcome 

senescence. Therefore telomerase inhibition using antisense oligonucleotides may 

represent a promising strategy for anticancer treatment. In our study, we chose the 

antisense oligonucleotide 2´-O-methyl-RNA (OMR) as a potent and sequence-selective 

inhibitor of telomerase. 

The major challenge in nucleotide-based therapy is the development of appropriate 

vectors. Nowadays, nanocarriers have gained great attention as promising drug/gene 

delivery systems, among which nanoparticles have shown broad applicability. Our main 

aim was hence to evaluate the potential of the biodegradable PLGA nanoparticle (NP) as 

carrier for OMR and the efficacy of the nano-delivery system as inhalation therapy for 

treatment of lung cancer. In order to improve the binding and uptake efficiency, the surface 

of PLGA nanoparticles was modified with the cationic polymer, chitosan, to establish an 

electrostatic interaction. 
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The working plan was as follows: 

- Improvement of the physicochemical properties of the nanoparticles 

In this part (Chapter 2), we investigated the effect of polymer concentration, process 

parameters on the colloidal characteristics of the NP. As a result, a wide range of particle 

sizes (136 – 520 nm) and surface charges (13 – 60 mV) could be obtained. This reveals the 

flexibility and tune-ability of our delivery system in dependence of the payload. 

- Purification of the nanoparticles 

The removal of excessive polymers and stabilizers from the NP suspension is a 

prerequisite for their in vivo application. Significant amounts of surfactants might lead to 

impaired lung function, inflammation or poor transfection efficiency. In this thesis, small-

scale purification of NP was based on the centrifugal ultrafiltration while large-scale 

purification was done by size exclusion chromatography. Both techniques allowed efficient 

separation of the nanoparticles from the residual polymers while preserving the colloidal 

characteristics of the NP. In addition, the amount of the excessive polymers was quantified 

by colorimetric assays, revealing that all of the chitosan is bound while only 66 % of the 

stabilizer was consumed for the NP synthesis. 

- Effect of surface charge of NP on their binding and uptake in lung cancer cell lines 

and their efficiency as carrier for the antisense oligonucleotides (OMR): 

A net positive charge on the NP surface is intended to increase both their binding 

potential with the negatively charged oligonucleotides and their tranfection efficiency. 

However, a linear correlation between the surface charge and the transfection efficiency 

cannot be assumed. Therefore, the uptake efficiency of fluorescently labeled NPs 

containing increasing concentrations of chitosan (and accordingly carrying higher surface 

charges) was studied in two human pulmonary cancer cell lines. The results showed better 

uptake in A549 cells compared to Calu-3 cells. Surface modification with chitosan 

significantly improved the nanoparticles uptake in comparison to PLGA NPs; however, 
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increasing chitosan concentration above certain limit remarkably reduces the uptake 

efficiency.  In addition, the binding potential with OMR increased by increasing the charge 

of the NP, indeed, a common saturation point was reached at equal OMR:NP ratio. The 

uptake of OMR:NP nanoplexes followed the same tendency as the fluorescent NPs alone. 

Despite the essential role of chitosan in improving the cellular uptake, self-assembled 

nanoplexes of OMR with chitosan solution were found to bind preferentially to the cell 

surface, while a poor internalization was observed. 

- Cytotoxicity of chitosan-modified PLGA NP 

Although a positive surface charge of the NPs plays an essential role in cellular uptake, 

it is also known to have a negative influence on the cell membrane integrity and cell 

viability. Thus, it was necessary to verify the safety of our chitosan-modified PLGA 

nanoparticles on different cell lines. The study revealed that cytotoxicity of cNPs is a 

function of the cell line, being acceptable for A549 and Calu-3 cells (viability ~ 80%), 

even at longer incubation times (~ 24 h) and higher concentrations of chitosan on the NP 

surface. Nevertheless, the toxicity is thought to be underestimated due to the colloidal 

instability of the NPs in culture media, reduction in effective nanoparticle concentration in 

the nanosize range, in addition to adsorption of medium components to the nanoparticle 

surface. Slight shift of the surrounding pH allows ionization of chitosan and increase in 

surface charge of the nanoparticles, which as a consequence lead to more pronounced loss 

of membrane integrity of the cells.  

- Nebulization of chitosan-modified PLGA NPs & uptake of OMR/NP nanoplexes  on 

air-interface cultures (AIC) 

The application of our delivery system for cancer therapy involves its use in the form 

of inhalation product. Therefore, the proper choice of the nebulization technique that 

effectively delivers the system in the airways while preserving the colloidal characteristics, 

integrity and the full efficiency of the delivered payload is quite of interest. For this 
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purpose, two nebulizers were applied; a hydraulic liquid microsprayer and an electronic 

mesh nebulizer. Nanoparticles were stable after nebulization with the microsprayer, 

whereas agglomerates were obtained in case of the electronic mesh nebulizer. 

An in vivo-mimicking step was to investigate the uptake of nanoplexes on AIC. In this 

part, naked oligonucleotides as well as their nanoplexes were sprayed on the surface of air 

interface-cultured A549 cells. A significant improvement in uptake of nanoplexes versus 

naked oligonucleotides was observed, indicating the feasibility of the delivery system for 

pulmonary application. 

 

In conclusion, chitosan-modified PLGA nanoparticles can be considered as promising 

carrier for nucleotide-based drugs. Surface modification of nanoparticles with chitosan 

significantly improved the intracellular delivery of the oligonucleotides without being 

harmful for the cellular systems, which are prerequisites for their functionality. The 

efficacy of the delivery system on AIC reveals its suitability for in vivo applications, 

making real steps towards a new generation of cancer therapeutics. 
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