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ABSTRACT 
 

3-Pyridine substituted naphthalenes constitute a class of potent inhibitors of 

aldosterone synthase (CYP11B2), an innovative target for the treatment of 

aldosterone-mediated disorders such as congestive heart failure and myocardial 

fibrosis. However, these early leads exhibit several major pharmacological draw-

backs, above all undesirable hepatic CYP interactions and lacking in vivo activity. 

In order to overcome these obstacles, a drug design program toward a develop-

ment candidate was launched following a combined ligand- and structure-based 

approach. The optimization process yielded 110 new compounds, classified into 

four main molecular scaffolds, most of which are highly potent CYP11B2 inhibi-

tors with IC50 values in the low nanomolar to picomolar range. Beside a striking 

selectivity toward the highly homologous 11β-hydroxylase (CYP11B1), the most 

promising compounds of the present study show virtually no inhibition of the six 

most important hepatic CYP enzymes as well as CYP17 and CYP19, both crucial 

enzymes for the metabolism of steroid hormones. A subset of the investigated 

inhibitors reaches excellent plasma-levels in the range of the marketed drug 

fadrozole after peroral application to rats. Furthermore, a derivative of the 

dihydro-1H-quinolin-2-one series exerts potent aldosterone-lowering effects in 

vivo using ACTH stimulated rats. In conclusion, the current work might give rise 

to a development candidate after further optimization and biological testing. 
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ZUSAMMENFASSUNG 
 

3-Pyridinsubstituierte Naphthalene sind potente Hemmstoffe der Aldosteron-

synthase (CYP11B2), einem innovativen Target zur Behandlung von Herzinsuffi-

zienz und Myokardfibrose. Die entwickelten Leitverbindungen weisen jedoch uner-

wünschte Wechselwirkungen mit hepatischen CYP Enzymen auf und können die 

Aldosteronbiosynthese in vivo nicht hemmen. In der vorliegenden Arbeit wurden 

110 neuartige Hemmstoffe, entwickelt durch Ligand- und Struktur-basiertes Design, 

synthetisiert und auf biologische Aktivität getestet, um diese Hindernisse auf dem 

Weg zu einem Entwicklungskandidaten zu überwinden. Die meisten der hierin 

vorgestellten Verbindungen sind nicht nur hochpotente CYP11B2 Inhibitoren mit 

IC50-Werten im nano- bis picomolaren Bereich, sondern auch besonders selektiv 

gegenüber CYP11B1 (11β-Hydroxylase), einem Enzym mit hoher Homolgie zu 

dem eigentlichen Target. Außerdem weisen die vielversprechenden Hemmstoffe ein 

deutlich verbessertes pharmakologisches Gesamtprofil gegenüber den entsprechen-

den Naphthalenderivaten auf: Keine oder nur geringe Hemmung der sechs wich-

tigsten hepatischen CYP-Enzyme sowie den steroidmetabolisierenden Enzymen 

CYP17 und CYP19, keine Zytotoxizität, niedrige Plasmaproteinbindung, eine 

exzellente Bioverfügbarkeit und eine starke Hemmung der Aldosteronbiosynthese 

in vivo. Nach erweiterten pharmakologischen Untersuchungen und gegebenenfalls 

erforderlichen strukturellen Optimierungen sollen aus den vorgestellten Substanz-

klassen Entwicklungskandidaten hervorgehen. 
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1 Introduction 
 

 
1.1 Adrenal corticosteroids 

1.1.1 Mineralocorticoid physiology: The role of aldosterone 

The most important circulating mineralocorticoid, aldosterone, is mainly secreted by the zona 

glomerulosa of the adrenal gland and plays a crucial role in the electrolyte and fluid homeostasis. Its 

biosynthesis is accomplished by the mitochondrial cytochrome P450 enzyme aldosterone synthase 

(CYP11B2) and proceeds via oxidation of the substrate 11-deoxycorticosterone to corticosterone and 

subsequently to aldosterone.1 Since its isolation and characterization by Tait et al. some 50 years ago,2 

the traditional view of aldosterone action has been that the hormone binds to specific mineralo-

corticoid receptors (MR) located in the cytosol of target epithelial cells.3 The steroid receptor complex 

translocates to the nucleus upon ligand binding where it acts as a transcription factor modulating gene 

expression and translation of proteins. The prevalent final effectors of aldosterone action are the apical 

amiloride-sensitive epithelial sodium channel (ENaC)4 and the basolateral Na+/K+-ATPase.5 As a con-

sequence, renal sodium reabsorption and potassium secretion are promoted in the distal tubule and the 

collecting duct of the nephron.6 Elevated blood volume and thus blood pressure result from water that 

follows the sodium movement via osmosis. Mineralocorticoid receptors have also been localized in 

nonepithelial tissues, particularly in the central nervous system (CNS)7 and in the cardiovascular 

system8 where they mediate diverse effects. 

Various factors control the aldosterone production, whereof the principal regulator is the renin-

angiotensin-aldosterone system (RAAS).9 This compensatory mechanism reacts in response to a de-

creased blood pressure or a decreased sodium level by release of renin, a proteolytic enzyme, from the 

juxtaglomerular cells of the kidney. Renin cleaves its glycoprotein substrate angiotensinogen between 

Leu10 and Val11 to form the biologically inert decapeptide angiotensin I (Ang I) which is thereupon 

converted to angiotensin II (Ang II) by the angiotensin-converting enzyme (ACE), present in the vas-

cular endothelium. Angiotensin II is a highly potent vasoconstrictor agent and can elevate the blood 

pressure. Furthermore, it stimulates the adrenal cortex to secrete aldosterone, leading to sodium and 

water retention. The biosynthesis of renin is in turn under control of the RAAS in a negative feedback 

loop by direct action of Ang II on the juxtaglomerular apparatus. Other key regulators of aldosterone 

release are the plasma potassium concentration and to a minor extent the adrenocorticotrophic hor-

mone (corticotrophin, ACTH). 
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Recent studies, mostly of nonepithelial cells, revealed that some aldosterone effects are not mediated 

by classical MR binding.10 These rapid actions that are referred to as nongenomic effects are inde-

pendent of gene transcription and translation and were first identified in erythrocytes which lack 

nuclei.11 Further insight has been gained by experiments using skin fibroblasts from MR knockout 

mice.12 Therein, treatment with aldosterone excited a calcium and cAMP increase within minutes. In 

most cases, the induced nongenomic effects proved to be insensitive to specific MR antagonists which 

are contrariwise capable of blocking the genomic actions.13 The latter findings gave reason to the 

suggestion that a distinct, novel receptor is responsible for the nongenomic aldosterone effects, 

presumably associated with the cell membrane and showing high affinity for aldosterone. Although 

Eisen et al. have isolated a putative nongenomic aldosterone receptor, an approximately 50 kDa mem-

brane protein with high affinity for aldosterone but not for glucocorticoids, its structure and function 

have not yet been fully characterized.14 Furthermore, there are suggestions that these fast aldosterone 

effects may also be mediated by the classical MR or a closely related protein. 

Beside the classical adrenal biosynthetic pathway, extra-adrenal sites of aldosterone production have 

been identified.15 The aldosterone biosynthesis in the CNS is well-documented and aldosterone syn-

thase mRNA was found in whole brain and cortex, cerebellum, brain stem, hippocampus and amyg-

dale homogenates.16 Whether aldosterone is also synthesized locally in the cardiovascular system is 

controversially discussed.17 Silvestre et al. observed aldosterone formation in both homogenate and 

perfusate of isolated rat hearts which was increasable by Ang II and the measured aldosterone concen-

trations in the heart were found to be 17-fold higher than in plasma.18 By contrast, other studies 

suggest that cardiac aldosterone derives from circulation.19 

 

1.1.2 Glucocorticoid physiology: The role of cortisol 

Glucocorticoids stimulate processes, such as de novo synthesis and uptake of glucose, that serve to 

control the glucose levels.20 They typically exert anti-inflammatory, immune-modulating as well as 

bone-catabolizing functions.21 The major glucocorticoid in humans, cortisol, is synthesized by the 

enzyme 11β-hydroxylase (CYP11B1) which is located in the zona fasciculata of the adrenal gland.1 

The production of cortisol is under control of the hypothalamic-pituitary-adrenal (HPA) axis, an ex-

tremely sensitive signaling pathway which reacts upon physical, psychological or inflammatory stimu-

lation by expressing the corticotrophin-releasing hormone (CRH) in the hypothalamus. This, in turn, 

acts on the pituitary to release the effector peptide ACTH into the circulation which stimulates the bio-

synthesis of glucocorticoids in the adrenal cortex. The HPA axis is self-regulated by the negative feed-

back exerted by cortisol on the pituitary and the hypothalamus to suppress further CRH release. 

Interestingly, cortisol shows in vitro a similar high affinity to the mineralocorticoid receptor as aldo-

sterone.22 On the other hand, several mechanisms trigger specificity for aldosterone in vivo although 

cortisol is present at 1000-fold higher level in the plasma. These mechanisms include a different 
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binding to plasma proteins23 and a different dissociation rate from the MR.24 Most attention has yet 

been attracted by the role of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2), an enzyme that 

converts cortisol to its inactive metabolite cortisone and colocalizes with MRs in aldosterone target 

tissues.25 Analogously metabolizing aldosterone by 11βHSD2 can not be accomplished because the 

hydroxy group in 11β-position is protected by cyclization. Under normal conditions, with these speci-

ficity mechanisms operating, approximately 90 % of the epithelial MR and 99 % of the nonepithelial 

MRs are still occupied by cortisol. However, this occupancy can turn into an agonistic mode when 

11βHSD2 is blocked as it is in the case of tissue damage, changed redox state by reactive oxygen 

species, or inappropriate salt status, leading to hypertension and hypokalemia.26 

 

1.1.3 Cytochrome P450 enzymes in the biosynthesis of mineralo- and glucocorticoids  

The adrenal corticosteroids are produced by multi-step syntheses with participation of cytochrome 

P450 (CYP) enzymes. These enzymes belong to a vast family of cysteinato-heme enzymes that are 

present in all forms of life (plants, bacteria, and mammals) and ‘activate’ molecular oxygen for the 

metabolism of both endogenous and exogenous substrates.27 A main structural feature of all CYP 

enzymes is the prosthetic group, that is constituted of an iron(III)porphyrin, covalently linked to the 

protein by a proximal cysteine ligand. The naming ‘P450’ can be traced back to studies of Garfinkel28 

and Klingenberg29 in 1958 who identified a carbon monoxide-binding ‘pigment’ in the microsomal 

fraction of rat liver cells. Omura and Sato characterized the responsible ‘pigment’ as a hemoprotein 

with a characteristic shift of the absorption peak in the carbon monoxide adduct to approximately 

450 nm.30  

The cytochromes P450 are potent oxidation catalysts that use molecular oxygen as oxidant. Specifi-

cally, they are monooxygenases or mixed function oxidases because only one oxygen atom is inserted 

into the substrate while the second oxygen atom is reduced to a water molecule. The catalytic cycle 

starts with entropy driven substrate binding and release of an axial water molecule from the low spin 

resting state A (Figure 1).31 This event displaces the iron out of the porphyrin plane and changes to a 

pentacoordinated high spin state in the substrate bound complex B. The so changed redox potential 

makes the heme a better electron acceptor and triggers electron transfer from NADPH via a reductase 

protein, giving rise to the iron(II)porphyrin complex C which is an efficient reducing agent. Triplet 

dioxygen binds in η1-mode by accepting an electron from iron(II), forming the relatively stable inter-

mediate D. The formally negatively charged iron(III)peroxo complex E results from the rate-deter-

mining second reduction step. Once at this stage, a network of specific amino acids affords a fast pro-

tonation to the hydroperoxo species F and subsequently to the iron(IV)oxo-porphyrinradical cation G 

under release of a water molecule. Insertion of oxygen into a carbon–hydrogen bond finally affords the 

hydroxylation product. By this or closely related mechanisms CYP enzymes can carry out a wide va-

riety of oxidative biotransformations such as epoxidations, dehalogenations, dealkylations or cleavage 

of carbon–carbon bonds. 
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Figure 1. Catalytic cycle of cytochrome P450 mediated oxidations 

 

Depending on the electron providing system, CYP enzymes are classified into two main biochemical 

classes. Type I enzymes (including CYP11B2 and CYP11B1) which are present in the mitochondrial 

membrane receive their electrons from NADPH via a ferredoxin reductase and ferredoxin. Microsomal 

type II enzymes, found in the endoplasmatic reticulum (ER), receive their electrons from NADPH 

through the intermediacy of a P450-oxidoreductase, sometimes under assistance of cytochrome b5.
32  

Aldosterone and cortisol are synthesized starting from cholesterol by a cascade of several enzymes, 

many of which belong to the P450 superfamily (Figure 2).33 The initial step is the conversion of 

cholesterol to pregnenolone, mediated by cholesterol desmolase CYP11A1 (side chain cleavage 

enzyme) at the inner mitochondrial membrane. The enzyme catalyzes three reactions including 20α-

hydroxylation, 22-hydroxylation, and cleavage of the carbon–carbon bond between C20 and C22.
34 

Pregnenolone returns to the cytosolic compartment and undergoes dehydrogenation of the 3β-hydroxy 

group and subsequent isomerization of the double bond at C5 to afford progesterone. These reactions 

are carried out by the enzyme 3β-hydroxysteroid dehydrogenase (3βHSD), located on the membrane 

of the smooth endoplasmatic reticulum. Alternatively, pregnenolone can be hydroxylated at position 

17 by 17α-hydroxylase (CYP17) and subsequently transferred to 17α-hydroxyprogesterone by 3βHSD, 

initiating the cortisol synthesis. Progesterone and its 17-hydroxylated derivative, which can also be 

synthesized from progesterone by CYP17, undergo 21-hydroxylation by CYP21A on the smooth ER 

cytoplasmic surface, giving rise either to 11-deoxycorticosterone or 11-deoxycortisol. The synthesis of 

aldosterone takes place in the zona glomerulosa of the adrenal gland and involves three consecutive 

reactions. Aldosterone synthase (CYP11B2) initially hydroxylates 11-deoxycorticosterone at 11β-po-

sition to yield corticosterone. Finally, two subsequent CYP11B2 catalyzed oxidations at C18 and water 

release yield the mineralocorticoid aldosterone. In the zona fasciculata of the adrenal gland, 11β-hy-

droxylase (CYP11B1) oxidizes its substrate 11-deoxycortisol, giving rise to the glucocorticoid corti-
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sol. A major difference of CYP11B1 compared to CYP11B2 is the lacking 18-hydroxylase activity. 

CYP11B1 can only introduce a hydroxy group in 11β-position in both 11-deoxycortisol and 11-deoxy-

corticosterone whereas CYP11B2 can also carry out oxidations in 18-position.1 

Figure 2. Steroidogenic pathway to aldosterone and cortisol 

 

1.1.4 Aldosterone synthase (CYP11B2) and 11β-hydroxylase (CYP11B1), the key 

enzymes in corticosteroid biosynthesis 

The corticosteroid synthesizing enzymes CYP11B2 and CYP11B1 are not coexpressed within the 

adrenal cortex. Aldosterone synthase is found only in the zona glomerulosa, 11β-hydroxylase in the 

zona fasciculata. The genes encoding both enzymes are arranged in a tandem on human chromosome 

8q, approximately 45 kB from each other, and their nucleotide sequences are 95 % identical in coding 

regions and about 90 % identical in introns.35 The primary protein sequences differ only in 32 out of 

503 amino acid positions and in the mature enzymes which are bound to the inner mitochondrial 

membrane, only 29 out of 479 residues are not identical.36,37 This high sequence identity (approxi-

mately 93 %) is reflected in the shared 11β-hydroxylase function of both CYP11B isoforms. However, 

CYP11B1 is a pure 11β-hydroxylase catalyst without 18-hydroxylase activity and can not even 11β-

hydroxylate 18-hydroxy-11-deoxycorticosterone.38 By contrast, CYP11B2 catalyzes also oxidations at 

the steroidal 18-position, mainly in the course of converting corticosterone to 18-hydroxycortico-

sterone and subsequently to aldosterone, but it can also 18-hydroxylate cortisol. An interesting feature 

is the interspecies differences of these enzymes. In human and mouse, the corticoid synthesis involves 

two CYP11B isoforms, CYP11B1 and CYP11B2, as explained above. Bovine, pig and frog possess 

only a single enzyme CYP11B.36 Four isoforms are present in the rat, whereof CYP11B1 and 

CYP11B2 are the most important. CYP11B3, expressed exclusively in neonatal rat, has the same 

activity as CYP11B2 and CYP11B4 encodes a pseudogene.3 
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In order to spot the amino acids responsible for the catalytic specificity, a series of site-directed 

mutagenesis experiments was performed attracting the putative I-helix. It was demonstrated by 

Böttner et al. that the aldosterone synthase activity decreases to approximately 10 % compared to the 

CYP11B2 wild type in the case of modifying the positions 301 (leucine to proline), 302 (glutamic to 

aspartic acid), and 320 (alanine to valine) whereas the 11β-hydroxylase activity simultaneously in-

creases. Vice versa swapping the aldosterone synthase specific amino acid at position 320 of 

CYP11B1 from valine to alanine induced aldosterone synthase activity without significant impact on 

the 11β-hydroxylase efficacy.39  

A 3D structure of either CYP11B2 or CYP11B1 is presently not at hand which is referable to the 

common difficulties with crystallizing membrane bound proteins. However, recently established ho-

mology models provide elementary insight into the protein structures and inhibitor binding modes.37,40 

It has been shown by our group that docking into the homology models of CYP11B2 and CYP11B1 

built on the X-ray structure of human CYP2C9 is a useful tool to explain differences in activity and 

selectivity of nonsteroidal aldosterone synthase inhibitors.41,42 The binding affinity to either enzyme 

was found to be highly dependent to the geometry of the coordinative interaction between the heme 

iron and the heterocyclic nitrogen. An angle of the Fe–N straight line with the porphyrin plane close to 

90° (i.e., when the heterocyclic nitrogen lone pair arranges in perpendicular position to the heme 

group) provides an optimal orbital overlap and corresponds with a high inhibitory potency. Any distor-

tion of this geometry weakens the coordinative bond and hence the inhibitory potency. 

 

 

1.2 Aldosterone synthase as drug target  

1.2.1 Congestive heart failure, myocardial fibrosis, and the role of aldosterone 

Congestive heart failure (CHF) is a condition of insufficient cardiac output and reduced systemic 

blood flow, most frequently provoked by arterial hypertension and coronary artery disease, and goes 

along with dispnoea, fatigue and edema. The prognosis is poor: 30 % of the patients die within one 

year and the mortality rises to 60–70 % after five years.43 The progressive nature of the disease is a 

consequence of a neurohormonal imbalance and involves a chronic activation of the renin-angiotensin-

aldosterone system (RAAS) in response to the reduced cardiac output and the reduced renal perfusion. 

Aldosterone and Ang II are released excessively, leading to increased blood volume and blood 

pressure as a consequence of epithelial sodium retention as well as Ang II mediated vasoconstriction 

and finally to a further reduction of cardiac output. The RAAS is pathophysiologically stimulated in a 

vicious circle of neurohormonal activation that counteracts the normal negative feedback loop 

regulation (Figure 3). As a consequence, the aldosterone plasma levels may reach 300 ng/dL in CHF 

patients compared to 5–15 ng/ in normal subjects whose sodium intake is normal.44 A decreased meta-

bolic clearance due to reduced hepatic perfusion contributes to further aldosterone accumulation.45  
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In addition to these indirect effects on the heart function, aldosterone exerts direct effects on the heart 

by binding to and activating nonepithelial MRs in cardiomyocytes, fibroblasts, and endothelial cells.46 

In response, aldosterone increases the expression of endothelin 1 in cardiac fibroblasts which is a 

growth factor stimulating collagen synthesis. As a consequence, collagen type I and type III are pro-

duced in the fibroblasts as procollagen, containing an amino-terminal and a carboxy-terminal propep-

tide.47 Upon release in the extracellular space, the propetides are cleaved by specific proteinases and 

the rigid collagen triple helix integrates into growing fibrils. Aldosterone may also act by increasing 

the endothelin receptor numbers which in turn increases the collagen synthesis.48 In addition, Ang II, 

the other main effector hormone of the RAAS cascade, decreases the activity of matrix metalloprotein-

ase 1 (MMP 1) which is the key enzyme for interstitial collagen degradation.49 The progressive syn-

thesis and deposition of fibrillar collagens in the fibroblasts results in myocardial fibrosis. Relatively 

inelastic collagen fibers stiffen the heart muscle which deteriorates the myocardial function and as a 

consequence enforces the neurohormonal imbalance by stimulating the RAAS. In addition to the 

effects of circulating aldosterone deriving from adrenal secretion, Satoh et al. reported that aldosterone 

produced locally in the heart can trigger myocardial fibrosis, too.50  In endomyocardial tissue from 

CHF patients, the CYP11B2 mRNA expression was significantly increased compared to the control 

group, particularly in the case of advanced cardiac dysfunction. The mRNA levels correlated posi-

tively with the measured collagen volume fraction, suggesting that cardiac CYP11B2 activity has 

pathophysiological importance in the progression of myocardial fibrosis.  

Figure 3. Pathophysiology of the renin-angiotensin-aldosterone system 

 

 

1.2.2 Significance of aldosterone receptor antagonists in cardiovascular therapy 

Until today, various drug classes targeting the RAAS have been developed, acting either by inhibi-

tion of the key regulator enzymes or by blocking the actions of the effector hormones by functional 

antagonism, affording a successful treatment of heart failure and hypertension. The beneficial effect of 

inhibiting the biosynthesis of Ang II by the angiotensin converting enzyme inhibitor enalapril (Figure 

4) has been shown in the CONSENSUS trial in the 1980s. The risk of mortality turned out to be re-

duced by 50 % within 6 months and by 46 % within 12 months upon enalapril treatment.51 However, 
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undesirable effects such as dry cough are observed due to potentiation of endogenous kinins. In addi-

tion, ACE independent pathways to Ang II are not blocked. Moreover, ACE inhibitors can indeed 

trigger an initial downregulation of circulating aldosterone, but increased levels of aldosterone may be 

seen after several months of therapy, presumably due to potassium stimulated secretion.52 This pheno-

menon termed ‘aldosterone escape’ is a limiting factor of ACE inhibitors and shows that novel thera-

peutic concepts combating the effects of elevated aldosterone levels are needed. Angiotensin II type 1 

receptor blockers such as losartan (Figure 1), that were developed in the 1990s, antagonize the Ang II 

effects independent of their source and clearly proved to reduce mortality in heart failure but under 

long-term treatment, the Ang II levels are chronically elevated.53 Very recently, aliskiren, the first mar-

keted orally active renin inhibitor, co-developed by NOVARTIS and SPEEDEL, received regulatory 

approval by the U. S. Food and Drug Administration for the treatment of hypertension.54 Aliskiren 

binds tightly and selectively to the active site of renin (IC50 = 0.6 nM) with a half-life of 20–45 h in the 

plasma and its efficacy and safety have been evaluated in several clinical trials.55 Other drugs for the 

treatment of heart failure are beta-blockers, diuretics and digoxin. However, these drugs can not re-

verse cardiac fibrosis. 

Figure 4. The RAAS targeting drugs enalapril, losartan and aliskiren 
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The persistence of aldosterone secretion despite treatment with ACE inhibitors and the evidence of 

the deleterious effects of aldosterone on cardiovascular function led to the hypothesis that blocking the 

mineralocorticoid receptor might provide additional benefit. In the Randomized Aldactone Evaluation 

Study (RALES), published in 1999, patients with moderately severe or severe congestive heart failure 

were treated with a 25 mg daily dose of the MR antagonist spironolactone (Figure 5) in addition to the 

standard therapy (ACE inhibitor, loop diuretic, digoxin) and compared to patients who received a 

placebo.56 The trial was discontinued early, when the interim analysis demonstrated a reduction of 

mortality by 30 % and a reduction of hospitalization by 35 % compared to the placebo group. In 

addition, follow-up studies suggested that spironolactone treatment can not only prevent but also 

reverse cardiac fibrosis,57 as reflected by reduced levels of serum procollagen type III peptides.58 

However, severe progestational and antiandrogenic side effects such as gynecomastia or menstrual 

disturbances were observed. In vitro studies revealed, that spironolactone possesses only sixfold selec-

tivity against the androgen receptor and also activates the progesterone receptor.20 Moreover, the 

publication of RALES was accompanied with increases in the rate of prescriptions for spironolactone 

and in hyperkalemia-associated morbidity and mortality.59  
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In 2003, the cardioprotective effect of eplerenone (Figure 5), a more selective MR antagonist, was 

shown in the Eplerenone Post-acute Myocardial Infarction Heart Failure Efficacy and Survival Study 

(EPHESUS).60 In the group of patients who received eplerenone (43 mg average dose daily) in addi-

tion to the standard therapy within two weeks after acute myocardial infarction, the overall mortality 

decreased by 15 % compared to the placebo group. Recent findings in animal models suggest that 

eplerenone can induse a reversal of cardiac fibrosis,61 as it has been described for spironolactone. 

Since eplerenone has greater selectivity for the mineralocorticoid receptor, the rate of observed endo-

crine side effects during the EPHESUS trial was low, although there was an increased incidence of 

hyperkalemia. Very recently, Bell et al. from ELI LILLY described the development of a series of indole 

analogues as MR antagonists.62 Their research culminated in the discovery of the methanesulfonamide 

derivative I (Figure 5) that shows picomolar binding affinity and in vivo blood pressure lowering 

superior to eplerenone at pharmaceutically relevant doses. Moreover, the selectivity profile of I against 

the androgen and progesterone receptor exceeds that of spironolactone and eplerenone. 

Figure 5. The mineralocorticoid receptor antagonists spironolactone, eplerenone and compound I 

 

 

1.2.3 Inhibition of CYP11B2 as promising cardiovascular therapy concept 

The clinical studies with MR antagonists gave evidence for the pivotal role of aldosterone in the pro-

gression of cardiovascular diseases. Blocking the aldosterone action by functional antagonism of its 

receptor reduced the mortality and significantly reduced the symptoms of heart failure. Furthermore, 

cardiac fibrosis could not only be prevented but also reversed by use of spironolactone. However, 

several issues remain unsolved by this therapeutic strategy. Spironolactone binds rather unselectively 

to the aldosterone receptor and also has some affinity to other steroid receptors. This often results in 

adverse side effects during MR antagonistic therapy. Although eplerenone is more selective, clinically 

relevant hyperkalemia remains a principal therapy risk. Another crucial point is the high concentration 

of circulating aldosterone which is not lowered by MR antagonists and raises several issues. First, the 

elevated aldosterone plasma levels do not induce a homologous downregulation but an upregulation of 

the aldosterone receptor.63 This fact complicates a long-term therapy as antagonists are likely to be-

come ineffective. Furthermore, the high concentrations promote nongenomic actions of aldosterone 

which are in general not blocked by receptor antagonists. Pathological aldosterone concentrations have 

been identified to induce a negative inotropic effect in human trabeculae and to potentiate the vasocon-
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strictor effect of Ang II in coronary arteries in rapid, nongenomic manner.64 Thus, aldosterone is in-

trinsically capable to further deteriorate the heart function by acting nongenomically.  

A novel therapy option, targeting cardiovascular diseases by interruption of the RAAS, is the 

blockade of aldosterone production, preferably by inhibiting CYP11B2, the key enzyme of its biosyn-

thesis. Aldosterone synthase was proposed as a potential pharmacological target by our group as early 

as 1994,65 followed soon thereafter by the hypothesis, that inhibitors of CYP11B2 could serve as drugs 

for the treatment of hyperaldosteronism, congestive heart failure, and myocardial fibrosis.66,67 This 

therapeutic strategy has two main advantages compared to receptor antagonism. Foremost, there is no 

nonsteroidal inhibitor of a steroidogenic CYP enzyme known to have affinity for a steroid receptor 

which is why fewer side effects on the endocrine system can be expected. Furthermore, CYP11B2 

inhibition can reduce the pathologically elevated aldosterone levels, whereas interfering one step later 

at the receptor level leaves them unaffected. In the development process toward aldosterone synthase 

inhibitors, investigating the selectivity profile toward other cytochrome P450 enzymes at an early 

stage is a crucial point. It is known that the concept of heme-iron complexation (e.g., by nitrogen-

containing heterocycles) is an appropriate strategy to discover highly potent and selective inhibitors.68 

Due to this binding mechanism, however, a putative CYP11B2 inhibitor is potentially capable of 

interacting with other CYP enzymes by similarly binding to the heme co-factor with its metal binding 

moiety. Taking into consideration that the key enzyme of glucocorticoid biosynthesis, 11β-hydroxy-

lase (CYP11B1), and CYP11B2 have a sequence homology of approximately 93 %, the selectivity 

issue is especially critical for the design of CYP11B2 inhibitors.69  

Recent experimental data presented by Fiebeler et al. point at the potential therapeutic utility of 

aldosterone synthase inhibition.19 Their studies revealed, that the R(+)-enantiomer of fadrozole, 

FAD 286A, ameliorates angiotensin II induced organ damage in transgenic rats. Fadrozole, an aroma-

tase (CYP19) inhibitor which is used for the therapy of breast cancer, is the first described compound 

with ability to reduce corticoid formation.70,71 In their studies, Fiebeler et al. demonstrated, that 

untreated transgenic rats overexpressing both the human renin and angiotensinogen genes had a 40 % 

mortality rate (5/13) after 7 weeks and developed hypertension and cardiac and renal damage. FAD 

286A reduced the mortality to 10 % (1/10) and also ameliorated cardiac hypertrophy. In week seven, a 

slight decrease of blood pressure was observed. In addition, it was shown very recently, that fadrozole 

reverses cardiac fibrosis in spontaneously hypertensive heart failure rats.72 Whether MR blockade 

should be preferred rather than lowering the aldosterone synthesis is a moot question and contro-

versially debated in the literature.73 The preliminary studies toward aldosterone-lowering effects in 

disease-oriented models, however, underline the potential therapeutic utility of aldosterone synthase 

inhibition. Thus, the approach to reduce aldosterone action by CYP11B2 blockade and thus tackling 

mineralocorticoid mediated pathologies is a promising pharmacological concept, although its clinical 

value still has to be proven. 
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In addition to the potential therapeutic utility in cardiovascular diseases, radiolabeled ligands of 

CYP11B enzymes might be a useful tool for molecular imaging of CYP11B expression in adreno-

cortical tissue and thus for the diagnosis of adrenal tumors.74 Due to selectively binding to CYP11B2, 

these compounds are also interesting for the imaging of Conn adenomas which are characterized by 

high expression of CYP11B2.75 

 

1.3 State of knowledge: Inhibitors of CYP11B2  

1.3.1 Compounds with inhibitory effect on aldosterone biosynthesis 

Several compounds are known to suppress the aldosterone formation. In the course of an evaluation 

of MR antagonists, the spironolactone derivative mespirenone (Figure 6) was found to exert an inhi-

bitory effect on the adrenal corticosteroid synthesis. The aldosterone formation was inhibited by 40 % 

at a concentration of 100 µM in rat adrenal glands.76 Among the class of steroidal compounds, 

progesterone and deoxycorticosterone derivatives with unsaturated C18-substituents such as 18-vinyl-

progesterone (18-VP), 18-ethynylprogesterone (18-EP)77 and 18-vinyldeoxycorticosterone (18-

VDOC)78 bind covalently to the bovine CYP11B enzyme. For 18-VP it was shown by difference 

spectroscopy that the inactivation proceeds via binding to the prosthetic heme. Catalytic oxidative 

activation generates a reactive intermediate which N-alkylates the porphyrin and as a result induces a 

destruction of the P450 chromophore. By this ‘suicide mechanism’ they block the 18-hydroxylation of 

corticosterone to aldosterone with Ki values in the low micromolar range.  

Figure 6. Steroidal compounds with inhibitory effect on aldosterone formation 
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Few nonsteroidal compounds have been identified as CYP11B2 inhibitors. Moderately potent 

inhibitors were discovered by screening azole type fungicides.79 The most active compound of this 

screening turned out to be ketoconazole (Figure 7), an unspecific inhibitor of many CYP enzymes 

(IC50 = 81 nM).42 Staurosporine, a very potent broad-range kinase inhibitor, significantly reduces the 

aldosterone synthase activity in V79MZh cells expressing human CYP11B2 (IC50 = 11 nM).80 Other 

compounds with well-known inhibitory action on CYP11B2 are metyrapone (IC50 = 208 nM), a 

CYP11B1 inhibitor which is used in the diagnosis of Cushing’s syndrome,81 R-etomidate (IC50 = 1.7 

nM), a clinically used anesthetic,82 and fadrozole which is used for the therapy of breast cancer. 
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Amongst the latter compounds, fadrozole is certainly the best investigated relating to aldosterone 

synthase inhibition. Its racemic form, CGS 16949 A, was originally designed to selectively inhibit 

aromatase (CYP19), the key enzyme for the conversion of adrenal androgen substrates to estrogens, 

for the treatment of hormone dependent breast cancer.83 CYP19 is closely related to CYP11B2 as it 

oxidizes steroids at C19 and fadrozole was accordingly found to inhibit aldosterone synthase with 

considerable potency in vitro as well.70 Furthermore, treatment with a 16 mg daily dose led to a sig-

nificant suppression of both basal and ACTH-stimulated aldosterone production in postmenopausal 

patients with metastatic breast cancer.71 The R(+)-enantiomer (Figure 7), FAD 286A, proved to be a 

potent and relatively specific aldosterone synthase inhibitor (CYP11B2, IC50 = 6 nM; CYP11B1, IC50 

= 119 nM)40 and often serves as a prototype to investigate effects of aldosterone synthase inhibition in 

vivo.19,72,84 

Figure 7.  Nonsteroidal aldosterone synthase inhibitors  

 

 

 
1.3.2 Further developments of the aromatase inhibitor fadrozole 

Several fused heterocycles, primarily fused imidazole compounds, have been described as aldo-

sterone synthase inhibitors in recently filed patents by SPEEDEL
85 and NOVARTIS.86 From Figure 8 it 

becomes apparent, that most of these compounds are further developments of the aromatase inhibitor 

fadrozole (Figure 8a), consisting of a heterocycle, in most cases imidazole, condensed to a derivatized 

carbocycle. The carbocyclic moiety of the presented compounds has been extensively modified, for 

example by introduction of heteroatoms or variation of ring-size. The para-cyanophenyl motive of 

fadrozole can also be found in most of the derivatives shown in Figure 8 and is generally represented 

by the substituents R1 and/or R2 or by a spirocyclic connection to the bicyclic core (WO2006128852 

and WO2006128851). However, some structures do not obviously derive from fadrozole. This particu-

larly applies to recent patents of NOVARTIS (WO2008076862, WO2008076860, WO2008076336, and 

WO2007117982), that focus on dihydroisochromen-1-one and dihydroisoquinoline-1-one type inhi-

bitors. 
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Figure 8.  General structures with international publication number of nonsteroidal CYP11B2 inhibitors derived 
from fadrozole (a): Patents of SPEEDEL (b) and NOVARTIS (c)  
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1.3.3 Development of heteroaryl substituted methyleneindanes and -tetrahydronaph-

thalenes 

In our effort to identify a lead structure, that can be optimized as selective aldosterone synthase 

inhibitor, we performed a screening of our in-house compound library consisting of cytochrome P450 

inhibitors. This search resulted in several hits. Amongst them, the hydroxylated indane derivative 

HB60 (Figure 9) turned out to be of particular interest due to its strong inhibition of CYP11B2 (IC50 = 

59 nM) together with slight selectivity versus CYP11B1 (IC50 = 273 nM) and no inhibition of CYP5, 

CYP11A1, CYP17, and CYP19.67 Structural optimization led to imidazolyl substituted methylene-

indanes and -tetrahydronaphthalenes as potent but rather unselective aldosterone synthase inhibitors 

such as MMZ41 and MMZ43 (Figure 9).41 The latter compounds have also been shown to reduce the 

aldosterone plasma levels in vivo by approximately 35–50 % in adult male rats. However, the poor 

selectivity makes them unsuitable drug candidates. The best compound within this series MMZ43 

displays only 5-fold selectivity versus CYP11B1 and also strongly inhibits aromatase (IC50 = 39 nM). 

Consecutive studies revealed that exchange of imidazole by pyridine or pyrimidine as heme com-

plexing heterocycle clearly increases the inhibitory potency and especially the selectivity.42  
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Figure 9. Heteroaryl (Het) substituted methyleneindanes and -tetrahydronaphthalenes (general structure II) 
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The 5-fluoro substituted E-methyleneindanes SU11A and SU20A (Figure 9) inhibit CYP11B2 46- 

and 118-fold stronger than CYP11B1. However, although the compounds are more selective toward 

CYP11B1 and also CYP19, several issues remain unsolved. First, compounds of the pyridyl-

methyleneindane type turned out to be inhibitors of several hepatic drug-metabolizing CYP enzymes, 

above all CYP1A2, but also CYP2B6 and CYP2C19. Hepatic CYP enzymes are the most important 

catalysts for the oxidative metabolism of exogenous substrates such as drugs.87 Inhibition of these 

enzymes by concomitant administration of other drugs can lead to adverse drug-drug interactions and 

therefore has to be avoided in either case. Furthermore, no significant lowering of aldosterone plasma 

levels in vivo could be observed in the previously used rat model. Slight variation of the lead structure 

which has subsequently been performed to further increase the selectivity resulted in the discovery of 

heteroaryl substituted naphthalenes and dihydronaphthalenes as potent and selective aldosterone 

synthase inhibitors. 

 
1.3.4 Development of heteroaryl substituted naphthalenes and structurally modified 

derivatives 

By keeping two pharmacophore points of the pyridylmethyleneindanes III (i.e., the aromatic ring 

centroid and the heterocyclic nitrogen) pyridylnaphthalenes and -dihydronaphthalenes IV were de-

signed (Figure 10). The exocyclic double bond present in III was incorporated into a carbocycle or 

heterocycle (not shown) condensed to the conserved aromatic ring and the partly saturated 5-mem-

bered ring was removed to afford a naphthalene or dihydronaphthalene skeleton.88,89 In the corres-

ponding acenaphthene derivatives such as SU43, three ring centroids are present by conserving the 5-

membered ring.90 

Figure 10.  Development of pyridylnaphthalenes and -dihydronaphthalenes IV by variation of pyridyl-
methyleneindanes III 
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Structural optimization of this new lead (general structure V in Figure 11) revealed clear SAR. A 3-

pyridine moiety as heme complexing heterocycle proved to be of high importance for a strong inhi-

bitory potency and high selectivity toward CYP11B1. Substituents in 6-position of the naphthalene 

core, preferably cyano and small alkoxy residues, as accomplished in compounds MV23 and MV55 

(Figure 11) were shown to further improve the selectivity. Some other substituents were also tolerated 

in terms of both activity and selectivity, e.g., 1-methyl in compound MV51. The indene derivative 

MV49 turned out to be the most selective CYP11B2 inhibitor with a striking selectivity factor of 

1500. However, these compounds exhibited no inhibitory effect on the aldosterone production in vivo. 

Another major drawback of the naphthalene and dihydronaphthalene type CYP11B2 inhibitors is a 

strong inhibition of the hepatic CYP1A2 enzyme that makes up approximately 10 % of the overall 

cytochrome P450 content in the liver and contributes to the metabolism of aromatic and heterocyclic 

amines as well as polycyclic aromatic hydrocarbons.91 At a concentration of 2 µM, CYP1A2 was 

inhibited by more than 95 %, with only a few exceptions displaying approximately 80 % inhibition 

which is not tolerable for a drug candidate. 

Figure 11. Heteroaryl (Het) substituted naphthalenes, dihydronaphthalenes and indenes (general structure V) 
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2  Aim of the present study 
 

 

 
2.1 Scientific objective 

Pyridine substituted naphthalenes (e.g., MV23) and structurally related compounds constitute a class 

of potent inhibitors of aldosterone synthase (CYP11B2) that affect the highly homologous 11β-

hydroxylase CYP11B1 only to a minor degree (selectivity factors up to 1500). In addition, exami-

nation of availability in plasma following peroral administration of these compounds to rats showed 

good half-lifes and reasonable to excellent plasma levels. However, these nonsteroidal inhibitors 

revealed two major pharmacological drawbacks: A strong inhibition of the hepatic drug metabolizing 

enzyme CYP1A2 and no inhibitory effect on the aldosterone production in vivo by using a rat model. 

Hepatic CYP enzymes are the most important catalysts for the oxidative metabolism of xenobiotics, 

and approximately 80 % of all Phase I reactions are carried out by the CYP families 1–3. Amongst the 

latter, CYP1A2 makes up approximately 10 % of the overall cytochrome P450 content in the liver and 

mainly metabolizes amines and aromatic hydrocarbons. Inhibition of these enzymes by concomitant 

administration of other drugs can lead to adverse drug-drug interactions and therefore has to be 

avoided in either case. Hence, one major goal of the present thesis was the optimization of the selec-

tivity profile mainly by overcoming the unwanted inhibition of hepatic CYP enzymes and CYP1A2 in 

particular. To achieve this goal, novel aldosterone synthase inhibitors have been designed using 

several rational drug design approaches. 

Some highly potent and selective CYP11B2 inhibitors of the naphthalene type were investigated for 

their ability to reduce aldosterone levels in vivo using the animal model of Häusler et al.92 However, 

none of the investigated compounds displayed a statistically significant lowering of the aldosterone 

plasma levels, although being highly available in the plasma (e.g., MV23 displays an AUC of 1753 

ng·h/mL following a 5 mg/kg peroral dose). In the sequel, it has been shown in our laboratories that 

the lacking in vivo efficacy is due to species differences of the CYP11B2 enzymes (Ries et al., 

unpublished results). The investigated molecules proved to exhibit no blockade of the aldosterone 

biosynthesis in V79 MZh cells expressing rat CYP11B2. Therefore, the present study aimed to bring 

forth a proof of concept by showing that a nonsteroidal in vitro potent CYP11B2 inhibitor has also 

aldosterone-lowering effects in vivo. To achieve this goal, the new inhibitors were routinely investi-

gated for their ability to inhibit aldosterone formation catalyzed by the rat CYP11B2 enzyme in a 
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recently established assay using V79 MZh cells expressing rat CYP11B2 (unpublished) prior to in vivo 

experiments in the modified rat model of Häusler et al. In parallel, initial studies toward in vivo trials 

in other species were performed (e.g., ex vivo and pharmacokinetic investigations, unpublished). 

Apart from this rather ‘pragmatic’ approach of optimizing an early lead into an in vivo active drug 

candidate, the present thesis aims to elucidate several other issues that are of major relevance for the 

understanding of structure activity relationships (SAR) as well as for the future design of CYP11B 

inhibitors. First, an extended pharmacophore model was generated following the discovery of 

structurally diverse molecules with inhibitory action on CYP11B2 by a compound library screening. 

The present work was intended to point out the scope of and thus validate the model following a 

pharmacophore-based synthesis project. Furthermore, docking studies in our CYP11B2 protein model 

were performed in order to check for consistency with the pharmacophore hypothesis. In addition, the 

influence of certain structural modifications on the 11β-hydroxylase (CYP11B1) activity is of particu-

lar interest. On the one hand, CYP11B1 inhibition is an important selectivity criterion for aldosterone 

synthase inhibitors. On the other hand, selective CYP11B1 inhibitors could be used for the treatment 

of Cushing’s syndrome and metabolic syndrome. Although several potent CYP11B1 inhibitors have 

been described previously, in-depth SAR studies are essentially absent. In the present work, these 

issues were scrutinized in detail. 

 

 

2.2 Working strategy: Inhibitor design concept 

The preliminary studies of Voets et al. aiming at the design of nonsteroidal aldosterone synthase 

inhibitors have demonstrated, that 3-pyridine substituted naphthalenes provide an ideal molecular 

scaffold for a strong inhibition of the target enzyme CYP11B2 as well as high selectivity versus 

several other CYP enzymes (e.g., CYP11B1, CYP17, CYP19).88 These molecules can be considered to 

be ABD-ring mimetics of aldosterone, imitating the AB-moiety by a naphthalene molecular scaffold 

and the D-ring by a 3-pyridine that binds to the heme-cofactor (Figure 12).  

Figure 12. Chemical structures of aldosterone and the ABD-ring mimetic MV26 
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The previous structural optimization was focused on the carbocyclic skeleton (AB-moiety) and 

revealed that residues in 6-position, which obviously imitate the keto-group in the steroidal 3-position, 

significantly increase both activity and selectivity of the compounds. Rationalizing the obtained SAR 
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from the preliminary work, a potent aldosterone synthase inhibitor should at least exploit the following 

pharmacophoric features: A bicyclic core structure with a substituent in 6-position mimicking the 

steroidal AB-moiety and a derivative of 3-pyridine in the naphthalene 2-position imitating the D-ring 

to provide the appropriate molecular geometry for binding to the heme-cofactor. In the present work, 

pyridylnaphthalene MV23 serves as a lead structure for further structural optimization. The particular 

variations of the MV23 core are outlined in Figure 13: Variation of the heterocyclic (D-ring) substi-

tution pattern (VI), extension of the carbocycle by introduction of benzylic substituents into the B-ring 

(VII) and A-ring modifications giving rise to compounds with the general structures VIII–XII. 

Figure 13. Inhibitor design concept 

 

In the preliminary work, the substitution pattern of the AB-moiety of MV23 has been extensively 

modified. The influence of substituents in the heterocyclic moiety on potency and selectivity, how-

ever, was not investigated in detail. In one subproject of the present thesis, a series of molecules (VI, 

Figure 13) bearing various substituents in the pyridine D-ring and with retained MV23-backbone (i.e., 

6-methoxy-2-napthyl) has been prepared following a synthesis-based strategy (Paper I). The sub-

project was rooted in and clearly benefited from the facile and quick synthesis, affording a consider-

able number of compounds over a relatively short period.93 The key synthetic transformation was a 

microwave enhanced Suzuki coupling, starting from either commercially available or easily accessible 

building blocks (Figure 14). The results of these investigations are presented in Chapter 3.1. 

Figure 14. Synthesis of compounds with the general structure VI  

 
 
In another subproject, novel aldosterone synthase inhibitors with extended carbocyclic skeleton (VII, 

Figure 13) were designed by a combined ligand- and structure-based approach (Paper II).94 In our 

search for new lead compounds as CYP11B2 inhibitors imidazolylmethylene-substituted flavones 

were found to be aldosterone synthase inhibitors with moderate to high inhibitory potency by 
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compound library screening (for structures see Chapter 3.2). These molecules that originally have been 

described as aromatase inhibitors95 display a considerable CYP11B2 inhibition, albeit without being 

selective toward the highly homologous CYP11B1. The chemical structures of the most potent 

inhibitors of this series were used for the generation of an extended pharmacophore model. The 

pharmacophore hypothesis led to the design of sample molecules that exploit the newly discovered 

pharmacophoric features (i.e., a voluminous hydrophobic area next to the heterocycle, along with two 

acceptor atom features) by modifying the MV23 lead structure. Subsequently, docking studies in our 

CYP11B2 protein model41 were performed in order to check for spatial consistency with the pharma-

cophore hypothesis. It was found that 3-benzyl substituted derivatives of MV23 such as VII (Figure 

13) adequately fit into the binding site by exploiting a previously unexplored sub-pocket (for details of 

the pharmacophore modeling and docking see Chapter 3.2). Upon hit identification, a series of com-

pounds was synthesized with the benzyl moiety being the site of major chemical modification and 

evaluated in several assays for biological activity. The typical synthetic procedure toward the title 

compounds is outlined in Figure 15 as retrosynthetic sketch. The heterocycle was introduced to the 

naphthalene skeleton via Pd-catalyzed cross coupling starting from a 3-benzoyl-2-naphthol derivative. 

This key intermediate was obtained either by ortho-lithiation of a 2-methoxynaphthalene derivative 

and subsequent addition to a Weinreb amide or by Grignard-addition of a functionalized phenyl-

magnesium reagent to a 2-naphthalene-carbaldehyde derivative.  

Figure 15.  Synthesis of compounds with the general structure VII  

 

As mentioned above, naphthalene and to a minor degree also methyleneindane type CYP11B2 

inhibitors proved to be highly potent inhibitors of the hepatic drug-metabolizing enzyme CYP1A2 in 

en extended selectivity screening. A survey of the chemical structures revealed that these molecules 

largely consist of aromatic carbon atoms, thus being present in rather planar conformations. Interes-

tingly, aromaticity has been identified to correlate positively with CYP1A2 inhibition in recent QSAR 

studies.96 Furthermore, both CYP1A2 substrates and inhibitors are usually small-volume molecules 

with a planar shape (e.g., caffeine97 and furafylline98). Rationalizing these findings, our design strategy 

aimed at reducing the aromaticity and disturbing the planarity of the molecules while keeping the 

pharmacophoric points of the naphthalene molecular scaffold of MV23 in order to reduce the 

CYP1A2 potency. The above considerations led to the development of pyridine substituted tetrahydro-

naphthalene (e.g., VIII, Figure 13) and tetralone (IX) derivatives with (partly) saturated A-ring moiety 

(Paper III). Bioisosteric exchange due to cytotoxic side effects of tetralone IX afforded a series of 
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highly potent and selective 3,4-dihydro-1H-quinolin-2-one derivatives (X, Paper III).99 Rigidification 

of these molecules by incorporation of the lactam residue into a 5- or 6-membered ring afforded 

compounds with a pyrroloquinolinone or pyridoquinolinone (not shown) molecular scaffold (XI, 

Figure 13, Paper IV).100 Introduction of an additional benzene moiety into the heterocycle (XII) was 

accomplished with the aid of the SAR of the preceding studies (Paper I and Paper II). Figure 16 

outlines the typical synthetic procedure toward derivatives with the general structures XI and XII 

comprising Suzuki coupling reactions to form the biaryl bonds and Friedel Crafts cyclization reactions 

to synthesize the tricyclic molecular backbone as key transformations. 

Figure 16.  Synthesis of compounds with the general structures XI and XII  
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Paper I 

 

Abstract: Recently, we reported on the development of potent and selective inhibitors of aldosterone 

synthase (CYP11B2) for the treatment of congestive heart failure and myocardial fibrosis. A major 

drawback of these non-steroidal compounds was a strong inhibition of the hepatic drug-metabolizing 

enzyme CYP1A2. In the present study, we examined the influence of substituents in the heterocycle of 

lead structures with a naphthalene molecular scaffold to overcome this unwanted side effect. With 

respect to CYP11B2 inhibition, some substituents induced a dramatic increase in inhibitory potency. 

The methoxyalkyl derivatives 22 and 26 are the most potent CYP11B2 inhibitors up to now (IC50 = 

0.2 nM). Most compounds also clearly discriminated between CYP11B2 and CYP11B1 and the 

CYP1A2 potency significantly decreased in some cases (e.g., isoquinoline derivative 30 displayed 

only 6 % CYP1A2 inhibition at 2 µM concentration). Furthermore, isoquinoline derivative 28 proved 

to be capable of passing the gastrointestinal tract and reached the general circulation after peroral 

administration to male Wistar rats. 
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Introduction 

The most important circulating mineralocorticoid aldosterone is secreted by the zona glomerulosa of 

the adrenal gland and is to a minor extent also synthesized in the cardiovascular system.1 The hormone 

plays a key role in the electrolyte and fluid homeostasis and thus for the regulation of blood pressure. 

Its biosynthesis is accomplished by the mitochondrial cytochrome P450 enzyme aldosterone synthase 

(CYP11B2) and proceeds via catalytic oxidation of the substrate 11-deoxycorticosterone to 

corticosterone and subsequently to aldosterone.2 The adrenal aldosterone synthesis is regulated by 

several physiological parameters such as the renin-angiotensin-aldosterone system (RAAS) and the 

plasma potassium concentration. Chronically elevated plasma aldosterone levels increase the blood 

pressure and are closely associated with certain forms of myocardial fibrosis and congestive heart 

failure.3 An insufficient renal flow chronically activates the RAAS and aldosterone is excessively 

released. The therapeutic benefit of reducing aldosterone effects by use of the mineralocorticoid 

receptor (MR) antagonists spironolactone and eplerenone has been reported in two recent clinical 

studies (RALES and EPHESUS).4,5 The studies showed that treatment with these antagonists reduces 

mortality in patients with chronic congestive heart failure and in patients after myocardial infarction, 

respectively. Spironolactone, however, showed severe side effects presumably due to its steroidal 

structure.4,6 Although the development of non-steroidal aldosterone receptor antagonists has been 

reported recently,7 several issues associated with the unaffected and pathophysiologically elevated 

plasma aldosterone levels remain unsolved by this therapeutic strategy such as the up-regulation of the 

mineralocorticoid receptor expression8 and non-genomic aldosterone effects.9 A novel approach for 

the treatment of diseases affected by elevated aldosterone levels is the blockade of aldosterone 

biosynthesis by inhibition of CYP11B2.10,11 Aldosterone synthase has previously been proposed as a 

potential pharmacological target,12 and preliminary work focused on the development of steroidal 

inhibitors, i.e., progesterone13 and deoxycorticosterone14 derivatives with unsaturated C18-substituents. 

These compounds were found to be mechanism-based inhibitors binding covalently to the active site 

of bovine CYP11B, however, data on inhibitory action towards human enzyme are essentially absent 

in these studies. The strategy of inhibiting the aldosterone formation has two main advantages 

compared to MR antagonism. First, there is no non-steroidal inhibitor of a steroidogenic CYP enzyme 

known to have affinity to a steroid receptor. For this reason, fewer side effects on the endocrine 

system should be expected. Furthermore, CYP11B2 inhibition can reduce the pathologically elevated 

aldosterone levels whereas the latter remain unaffected by interfering one step later at the receptor 

level. By this approach, however, it is a challenge to reach selectivity versus other CYP enzymes. 

Taking into consideration that the key enzyme of glucocorticoid biosynthesis, 11β-hydroxylase 

(CYP11B1), and CYP11B2 have a sequence homology of more than 93 %,15 the selectivity issue 

becomes especially critical for the design of CYP11B2 inhibitors.  

The aromatase (CYP19) inhibitor fadrozole (I, Chart 1) which is used in the therapy of breast cancer 

was found to significantly reduce the corticoid formation.16 This compound is a potent inhibitor of 
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CYP11B2 displaying an IC50 value of 1 nM (Table 1). The R(+)-enantiomer of fadrozole (FAD 286) 

was recently shown to reduce mortality and to ameliorate angiotensin II-induced organ damage in 

transgenic rats overexpressing both the human renin and angiotensinogen genes.17 These findings 

underline the potential therapeutic utility of aldosterone synthase inhibition, and up to now, several 

structurally modified fadrozole derivatives are investigated as CYP11B2 inhibitors.18,19 Recently, the 

development of imidazolyl- and pyridylmethylenetetrahydronaphthalenes and -indanes as highly 

active and in some cases selective CYP11B2 inhibitors has been described by our group.20,21 By 

keeping the pharmacophore and rigidization of the core structure, pyridine substituted naphthalenes22 

II and dihydronaphthalenes23 III were shown to be potent and selective CYP11B2 inhibitors (Chart 1). 

Combining the structural features of these substance classes to a hybrid core structure led to pyridine 

substituted acenaphthenes as potent CYP11B2 inhibitors with remarkable selectivity.24 Furthermore, 

most of the naphthalene and dihydronaphthalene type compounds exhibited a favorable selectivity 

profile versus selected hepatic CYP enzymes. However, they turned out to be potent inhibitors of the 

hepatic CYP1A2 enzyme (see examples 1, 3, and 4 in Table 1). CYP1A2 makes up about 10 % of the 

overall cytochrome P450 content in the liver and metabolizes aromatic and heterocyclic amines as 

well as polycyclic aromatic hydrocarbons.25 This experimental result turned these naphthalene type 

aldosterone synthase inhibitors into unsuitable drug candidates since adverse drug-drug interactions 

are mainly caused by inhibition of hepatic cytochrome P450 enzymes and have to be avoided in either 

case. In our preceding studies, the attention was focused on the optimization of the naphthalene 

skeleton, the substitution pattern of the heme complexing 3-pyridine moiety, however, was not 

investigated in detail. Herein, we describe the synthesis of a series of naphthalenes and dihydro-

naphthalenes with various substituents in the pyridine heterocycle to examine their influence on 

potency and selectivity (Table 1). The biological activity of the synthesized compounds was deter-

mined in vitro on human CYP11B2 for potency and human CYP11B1 and CYP1A2 for selectivity. In 

addition, selected compounds were tested for inhibitory activity at human CYP17 (17α-hydroxylase-

C17,20-lyase), CYP19, and selected hepatic CYP enzymes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, 

CYP3A4). The in vivo pharmacokinetic profile of two promising compounds was determined in a 

cassette dosing experiment using male Wistar rats. 

Chart 1. Non-steroidal inhibitors of CYP11B2 
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Results 

Chemistry 

The key step for the synthesis of pyridine substituted naphthalenes was a Suzuki cross coupling 

(Scheme 1).26 A microwave enhanced method developed by van der Eycken et al. was chosen for this 

purpose.27 By applying this method, various substituted bromopyridines were coupled with 6-

methoxy-2-naphthaleneboronic acid to afford compounds 7, 9–11, 14, 15, 17–19, 21, 23, 27, and 28. 

Compound 8 was obtained by coupling of 4-methyl-3-pyridineboronic acid with triflate 8a which was 

accessible by treating 6-cyano-2-naphthol with Tf2NPh and K2CO3 in THF under microwave 

irradiation.28 The bromopyridines could be derivatized prior to Suzuki coupling according to Scheme 2 

to provide heterocycles bearing a hydroxy, ethoxy or hydroxymethyl substituent (10a, 14a, 21a, and 

23a).29  

Scheme 1a 

 
a Reagents and conditions: i) Pd(PPh3)4, DMF, aq. NaHCO3, µw, 150 °C; ii) Tf2NPh, 
K2CO3, THF, µw, 120 °C; iii) Pd(dppf)Cl2, toluene/acetone, aq. Na2CO3, µw, 150 °C. 

 

Scheme 2a 

 
a Reagents and conditions: i) conc. HBr, 
reflux; ii) EtBr, K2CO3, DMF, rt; iii) 
NaBH4, methanol, 0 °C.  

 

For compounds 21–26, the substitution pattern was modified after the cross-coupling reaction as 

shown in Scheme 3 by sodium borohydride reduction and optional methylation. Esterification of the 

carboxylic acids 15 and 19 by refluxing in methanol under acid catalysis afforded the corresponding 
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methyl esters 16 and 20. The synthesis of 6-cyanodihydronaphthalene 6 was accomplished by the 

sequence shown in Scheme 4. Using 6-bromo-2-tetralone, Pd-catalyzed cyanation30 led to intermediate 

6b which was transformed into the alkenyltriflate 6a by deprotonation with KHMDS and subsequent 

treatment with Tf2NPh.31 Compound 6a underwent Suzuki coupling with 3-pyridineboronic acid to 

afford 6.  

Scheme 3a 

 
a Reagents and conditions: i) NaBH4, methanol, 0 °C; ii) MeI, NaH, THF, rt; 
iii) methanol, H2SO4, reflux. 

 

Scheme 4a 
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6b  
a Reagents and conditions: i) Zn(CN)2, Pd(PPh3)4, DMF, 100 °C; ii) Tf2NPh, 
KHMDS, THF/toluene, –78 °C; iii) 3-pyridineboronic acid, Pd(PPh3)4, DMF, 
aq. NaHCO3, µw, 150 °C. 

 

The naphthalenes 2, 12, 29 and the dihydronaphthalenes 5, 13, 30 were obtained as shown in 

Scheme 5. The sequence for the synthesis of intermediate 2e was described previously and was only 

slightly modified by us (see supplementary material).32 Regioselective α-bromination was 

accomplished by treating 2e with CuBr2 in refluxing ethyl acetate/CHCl3.
33 After a subsequent 

reduction/elimination step,23 the intermediate alkenylbromide 2b underwent Suzuki coupling34 with 

the appropriate boronic acid to afford the dihydronaphthalenes 5, 13, and 30. The corresponding 

naphthalenes 2, 12, and 29 were obtained by aromatization of 2b with DDQ in refluxing toluene35 

followed by Suzuki coupling.27 The synthesis of compounds 1, 3, and 4 has been reported previously 

by our group.22,23   
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Scheme 5a 

 
a Reagents and conditions: i) 3-methoxyphenylmagnesium bromide, THF, –5 °C; ii) 
KOH, NaOH/water, reflux; iii) H2, Pd/C, AcOH, 60 °C; iv) (COCl)2, CH2Cl2, rt, then 
AlCl 3, CH2Cl2, –10 °C; v) CuBr2, ethyl acetate/CHCl3, reflux; vi) NaBH4, methanol, 0 
°C; vii) p-toluenesulfonic acid, toluene, reflux; viii) boronic acid, Pd(OAc)2, TBAB, 
acetone, aq. Na2CO3, µw, 150 °C; ix) DDQ, toluene, reflux; x) boronic acid, Pd(PPh3)4, 
DMF, aq. NaHCO3, µw, 150 °C. 

 

Biological Results 

Inhibition of Human Adrenal Corticoid Producing CYP11B2 and CYP11B1 In Vitro (Table 1). 

The inhibitory activities of the compounds were determined in V79 MZh cells expressing either 

human CYP11B2 or CYP11B1.10,36 The V79 MZh cells were incubated with [14C]-deoxycortico-

sterone as substrate and the inhibitor at different concentrations. The product formation was monitored 

by HPTLC using a phosphoimager. Fadrozole, an aromatase (CYP19) inhibitor with proven ability to 

reduce corticoid formation in vitro and in vivo was used as a reference compound (CYP11B2, IC50 = 1 

nM; CYP11B1, IC50 = 10 nM).16  

Most of the substituted pyridylnaphthalenes showed a high inhibitory activity at the target enzyme 

CYP11B2 with IC50 values in the low nanomolar range (Table 1). Some of the compounds displayed 

subnanomolar potency (IC50 < 1 nM) and turned out to be even stronger aldosterone synthase 

inhibitors than the reference substance fadrozole. The methoxyalkyl substituted compounds 22 and 26 

exhibited IC50 values of 0.2 nM each. Hence, they are 5-fold more active than fadrozole (IC50 = 1 nM) 

and 30-fold more active than the unsubstituted parent compound 1 (IC50 = 6.2 nM). However, 

derivatization by polar and acidic residues in 5’-position resulted in a decrease in potency. This 

particularly applies to the carboxylic acids 15 and 19 showing no or only low inhibitory activity and to 

a minor extent also to the phenolic compound 10 and the carboxamide 17 with IC50 values of 94 nM 

each. 
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Table 1. Inhibition of human adrenal CYP11B2, CYP11B1 and human CYP1A2 in vitro 

 
   IC50 valuea (nM)   

   V79 11B2b V79 11B1c selectivity % inhibitione 

compd R1 R2 hCYP11B2 hCYP11B1 factord CYP1A2f 

1g 6-OMe H 6.2 1577 254 98 

2 6-OMe-3-Me H 7.0 1047 150 93 

3g 6-CN H 2.9 691 239 97 

4g 6-OMe H 2.1 578 275 98 

5 6-OMe-3-Me H 3.3 248 79 73 

6 6-CN H 4.5 461 103 91 

7 6-OMe 4’-Me 0.8 114 143 98 

8 6-CN 4’-Me 0.6 52 87 86 

9 6-OMe 4’-NH2 13 1521 117 58 

10 6-OMe 5’-OH 94 8925 95 93 

11 6-OMe 5’-OMe 4.2 238 57 91 

12 6-OMe-3-Me 5’-OMe 3.8 875 230 91 

13 6-OMe-3-Me 5’-OMe 1.2 100 83 18 

14 6-OMe 5’-OEt 5.1 373 73 85 

15 6-OMe 5’-COOH n.a.h n.d. n.d. n.d. 

16 6-OMe 5’-COOMe 0.8 15 19 n.d. 

17 6-OMe 5’-CONH2 94 41557 442 n.d. 

18 6-OMe 5’-COMe 2.1 255 121 80 

19 6-OMe 5’-CH2COOH 1216 37796 31 n.d. 

20 6-OMe 5’-CH2COOMe 6.9 199 29 n.d. 

21 6-OMe 5’-CH2OH 9.1 614 68 93 

22 6-OMe 5’-CH2OMe 0.2 31 155 83 

23 6-OMe 4’-CH2OH 22 1760 80 92 

24 6-OMe 4’-CH2OMe 2.2 435 198 97 

25 6-OMe 5’-CH(OH)Me 0.5 99 198 78 

26 6-OMe 5’-CH(OMe)Me 0.2 10 50 n.d. 

27 6-OMe 5’-Ph 4.8 151 32 n.d. 

28 6-OMe - 0.6 67 112 57 

29 6-OMe-3-Me - 3.1 843 272 45 

30 - - 0.5 64 128 6 

fadrozole - - 1.0 10 10 8 
a Mean value of four experiments, standard deviation usually less than 25 %, n.d. = not determined. b Hamster fibroblasts expressing human 
CYP11B2; substrate deoxycorticosterone, 100 nM. c Hamster fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 
nM. d IC50 CYP11B1/IC50 CYP11B2. e Mean value of two experiments, standard deviation less than 5 %; n.d. = not determined. f 
Recombinantly expressed enzyme from baculovirus-infected insect microsomes (Supersomes); inhibitor concentration, 2.0 µM; furafylline, 
55 % inhibition. g These compounds were described previously.22,23 h n.a. = no acivity (7 % inhibition at an inhibitor concentration of 500 
nM). 
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Beside introduction of small residues in 4’- and 5’-position, an extension of the heterocyclic moiety 

by a condensed phenyl ring afforded the extraordinary potent isoquinoline compounds 28–30 with IC50 

values in the range of 0.5–3.1 nM. Even the sterically demanding 5’-phenyl residue of compound 27 

was still tolerated (IC50 = 4.8 nM). In general, changing the carbocyclic core (naphthalene, 3-methyl- 

or dihydro-derivative) while simultaneously keeping the substitution pattern of the heterocycle had 

only little effect on the CYP11B2 inhibition as shown by the series 11–13 (IC50 = 1.2–4.2 nM) and 

28–30 (IC50 = 0.5–3.1 nM). With regard to the inhibitory activity at the highly homologous CYP11B1, 

most of the tested compounds were less active than at CYP11B2. However, a noticeable inhibition 

with IC50 values in the range of 10–100 nM was observed in some cases. In particular, the 5’-

methoxyalkylpyridine derivatives 22 (IC50 = 31 nM) and 26 (IC50 = 10 nM) as well as the methyl ester 

16 (IC50 = 15 nM) turned out to be potent CYP11B1 inhibitors. Although introduction of substituents 

in the heterocyclic moiety mostly resulted in a moderate decrease in selectivity compared to the 

unsubstituted derivatives, the selectivity factors were still high for most of the tested compounds 

(factor 100–200). In case of 6-methoxy-3-methylnaphthalene 2, the introduction of substituents in the 

heterocyclic moiety led to an enhanced selectivity. A methoxy substituent in 5’-position as accom-

plished in compound 12 increased the selectivity factor from 150 to 230 and the isoquinoline 

derivative 29 proved to be one of the most selective CYP11B2 inhibitors of the series with a 

selectivity factor of 272, thus being 27-fold more selective than fadrozole (selectivity factor = 10). 

Inhibition of Hepatic and Steroidogenic CYP Enzymes (Tables 1 and 2). In order to further 

examine the influence of heteroaryl substitution on selectivity, the compounds were tested for 

inhibition of the hepatic CYP1A2 enzyme. CYP1A2 was strongly inhibited by all previous CYP11B2 

inhibitors of the naphthalene and dihydronaphthalene type with unsubstituted heme-coordinating 

heterocycle, e.g., 1–4 exhibited more than 90 % inhibition at an inhibitor concentration of 2 µM (Table 

1). With regard to the potent CYP1A2 inhibitor 1, derivatization of the heterocycle gave rise to 

compounds with a slightly reduced inhibitory potency, e.g., compounds 14, 18, 22, and 25 displaying 

approximately 80 % inhibition. A pronounced decrease of CYP1A2 inhibition was observed in case of 

compounds 9, 13, and 29–30 (6 –57 %). However, the dihydronaphthalenes 6, 13, and 30 turned out to 

be chemically unstable and decomposition in DMSO solution was observed after storage at 2 °C (~80 

% purity after three days) yielding considerable amounts of the aromatized analogues and traces of 

unidentified degradation products. Therefore, they were not taken into account for further biological 

evaluations despite their outstanding CYP1A2 selectivity. The CYP1A2 inhibition of some com-

pounds was not determined at all due to either a low CYP11B2 potency (15, 17, and 19) or low 

CYP11B1 selectivity (16, 20, 26, and 27). 

For a set of four structurally diverse compounds (9, 11, 18, and 28), an extended selectivity profile 

including inhibition of the steroidogenic enzymes CYP17 and CYP19 as well as inhibition of some 

crucial hepatic CYP enzymes (CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4) was determined 

(Table 2). The inhibition of CYP17 was determined with the 50,000 g sediment of the E. coli homo-
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genate recombinantly expressing human CYP17, progesterone (25 µM) as substrate, and the inhibitors 

at a concentration of 2 µM.37 The tested compounds turned out to be moderately potent inhibitors of 

CYP17. The inhibition values ranked around 40 % corresponding with IC50 values of approximately 

2000 nM or higher. The inhibition of CYP19 at an inhibitor concentration of 500 nM was determined 

in vitro by use of human placental microsomes and [1β-3H]androstenedione as substrate as described 

by Thompson and Siiteri38 using our modification.39 In this assay, no inhibition of CYP19 was 

observed for compounds 11, 18, and 28. Only the amino substituted compound 9 displayed a moderate 

inhibition of 47 %. The IC50 values of the compounds for the inhibition of the hepatic CYP enzymes 

CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4 were determined using recom-

binantly expressed enzymes from baculovirus-infected insect microsomes (Supersomes). The values 

of the CYP1A2 inhibition matched well the previously determined percental inhibition (Table 1). 

Methoxy compound 11 with 91 % inhibition at 500 nM turned out to be a potent CYP1A2 inhibitor 

(IC50 = 83 nM) whereas the inhibitory potency decreased to 488 nM in case of the ketone derivative 

18. A pronounced selectivity regarding the CYP1A2 inhibition was observed in case of compounds 9 

and 28 with IC50 values of approximately 1.5 µM. In most cases, the other investigated CYP enzymes 

were unaffected, e.g., IC50 values of 9 were greater than 10 µM versus CYP2B6, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A4. 

Table 2. Inhibition of selected steroidogenic and hepatic CYP enzymes in vitro 

 % inhibitiona  IC50 valueb (nM) 

compd CYP17c CYP19d  CYP1A2e,f CYP2B6e,g CYP2C9e,h CYP2C19e,i CYP2D6e,j CYP3A4e,k 

9 42 47  1420 > 50000 48970 45800 11100 21070 

11 41 14  83 > 25000 1888 > 25000 > 25000 1913 

18 36 < 5  488 > 50000 > 200000 > 200000 > 200000 9070 

28 39 7  1619 16540 1270 3540 33110 3540 
a Mean value of four experiments, standard deviation less than 10 %. b Mean value of two experiments, standard deviation less than 5 %. c 

E. coli expressing human CYP17; substrate progesterone, 25 µM; inhibitor concentration 2.0 µM; ketoconazole, IC50 = 2780 nM. d Human 
placental CYP19; substrate androstenedione, 500 nM, inhibitor concentration 500 nM; fadrozole, IC50 = 30 nM. e Recombinantly expressed 
enzymes from baculovirus-infected insect microsomes (Supersomes). f Furafylline, IC50 = 2419 nM. g Tranylcypromine, IC50 = 6240 nM. h 
Sulfaphenazole, IC50 = 318 nM. i Tranylcypromine, IC50 = 5950 nM. j Quinidine, IC50 = 14 nM. k Ketoconazole, IC50 = 57 nM. 

 

Pharmacokinetic Profile of Compounds 1, 9, and 28 (Table 3). The pharmacokinetic profile of 

compounds 9 and 28 was determined after peroral application to male Wistar rats and compared to the 

unsubstituted parent compound 1. After administration of a 5 mg/kg dose in a cassette (N = 5), plasma 

samples were collected over 24 h and plasma concentrations were determined by HPLC-MS/MS. 

Fadrozole which was used as a reference compound displayed the highest plasma levels (AUC0-∞ = 

3575 ng·h/mL), followed by 1 (1544 ng·h/mL) and 28 (762 ng·h/mL). At all sampling points, the 

amounts of 9 detected were found below the limit of quantification (1.5 ng per mL plasma). This 

experimental result may be either due to a fast metabolism of the aromatic amine or due to a lacking 

ability of this compound to permeate the cell membrane under physiological conditions. The half-lives 

were between 2.2–5.4 h in which the elimination of fadrozole occurs faster than the elimination of the 
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naphthalenes 1 and 28. Compound 28 is slowly absorbed as indicated by the tmax of 6 h whereas 1 is 

absorbed as fast as fadrozole (tmax = 1 h). Furthermore, no obvious sign of toxicity was noted in any 

animal over the duration of the experiment (24 h). 

Table 3. Pharmacokinetic profile of compounds 1, 9, and 28 

compda t1/2 z (h)b  tmax (h)c Cmax (ng/mL)d AUC0-∞ (ng·h/mL)e 

1 5.4 1.0 222 1544 

9 n.d.f n.d. f < 1.5g n.d. f 

28 3.2 6.0 81 762 

fadrozole 2.2 1.0 454 3575 
a All compounds were applied perorally at a dose of 5 mg per kg body weight in four different cassette 
dosing experiments using male Wistar rats. b Terminal half-life. c Time of maximal concentration. d Maximal 
concentration. e Area under the curve. f n.d. = not detectable. g Below the limit of quantification. 

 

Discussion and Conclusion 

The results obtained in the present study revealed that a variety of substituents in 4’- and 5’-position 

is tolerated with regard to the CYP11B2 potency. Most of the tested compounds were more potent 

than the unsubstituted parent compounds and IC50 values less than 1 nM were observed in 7 cases 

(e.g., 22 and 26, IC50 = 0.2 nM). Some of the compounds were also potent CYP11B1 inhibitors (e.g., 

26, IC50 = 10 nM). Interestingly, a precise relationship between the inhibition of CYP11B2 and 

CYP11B1 was observed: An increased or decreased inhibitory activity at the one enzyme was 

accompanied by an increased or decreased inhibitory activity at the other enzyme. For instance, based 

on the unsubstituted parent compound 1, introduction of the methoxyalkyl substituent in compound 26 

resulted in an enhanced inhibition of both CYP11B2 (IC50 = 0.2 nM) and CYP11B1 (IC50 = 10 nM), 

whereas introduction of the hydroxy group in compound 10 resulted in a decreased inhibitory potency 

at both CYP11B isoforms in a comparable order of magnitude (CYP11B2, IC50 = 94 nM; CYP11B1, 

IC50 = 8925 nM). This trend becomes particularly evident when plotting the CYP11B2 versus the 

CYP11B1 pIC50 values of the compounds presented in Table 1 revealing a reasonable linear 

correlation (r2 = 0.86, n = 29). The finding that it is to some extent possible to change the inhibitory 

potency by the heteroaryl derivatization without significantly changing the selectivity versus either 

CYP11B2 or CYP11B1 is an indication that the inhibitor binding proceeds via similar protein-

inhibitor interactions of the heterocyclic moiety with both CYP11B isoforms. Contrariwise, it has been 

shown earlier by us that variation of the carbocyclic skeleton instead of the heterocycle can 

significantly influence the selectivity. Therefore, no correlation is observed for a plot of the CYP11B2 

and CYP11B1 pIC50 values of the naphthalenes22 and dihydronaphthalenes23 described previously by 

us that are functionalized with an unsubstituted 3-pyridine as heme complexing heterocycle (r2 = 0.30, 

n = 20). Consistent with these findings, it can be assumed that both enzymes, CYP11B2 and 

CYP11B1, are structurally more diverse in the naphthalene binding site than in the heterocyclic 

binding site. Interesting structure-activity relationships could also be observed with respect to elec-

tronic properties. Compounds bearing protic substituents in 5’-position rather poorly inhibited 
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CYP11B2 whereas bioisosteric exchange by aprotic residues gave rise to highly potent aldosterone 

synthase inhibitors, e.g., the inhibitory potency increased by a factor of 40 from carboxamide 17 (IC50 

= 94 nM) to the ethanone 18 (IC50 = 2.1 nM). A comparable increase of potency was observed when 

the protic hydroxy group was replaced by the aprotic methoxy group, e.g., the IC50 value decreased by 

a factor of 20 in case of compound 11 compared to the phenol 10 or by a factor of 40 in case of 

compound 22 compared to the primary alcohol 21. Similarly, the methyl esters 16 and 20 were more 

active than the corresponding carboxylic acids 15 and 19. However, a lack of membrane permeability 

must be taken into consideration as an alternative explanation. Figure 1 shows the molecular electro-

static potentials (MEP) mapped on the electron density surface of compounds 17, 10, and 21 and their 

bioisosteric analogues 18, 11, and 22. Both the shape and the geometry of the compounds as well as 

the electrostatic potential distribution in the naphthalene moiety are very similar. In addition, all com-

pounds contain a region in which the nitrogen of the pyridine ring presents a negative potential. 

However, areas with a distinct positive potential in the pyridine moiety are present in compounds 17, 

10, and 21 showing low inhibitory potency. In case of the highly potent bioisosters, these areas display 

less positive potential values with a more uniformly distributed electron charge. Hence, the difference 

in the electrostatic potential distribution is a reasonable explanation for the varying binding behavior 

within this set of compounds.  

Figure 1a 
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a MEP of compounds 17, 18, 10, 11, 21, and 22 (front and back view). The electrostatic potential surfaces were plotted with 
GaussView 3.0 in a range of –18.83 kcal/mol (red) to +21.96 kcal/mol (blue). 

 

The heteroaryl derivatization had also a noticeable influence on the CYP1A2 potency of the 

compounds. Most of the substituted derivatives were still inhibiting CYP1A2 for more than 90 % at a 

concentration of 2 µM. With respect to the compounds with a 6-methoxynaphthalene core, a slight 

decrease to approximately 80 % inhibition was observed in some cases. This effect was due to the 

introduction of substituents in 5’-position of the heterocycle. While no decrease of CYP1A2 inhibition 

was observed in case of the rather small substituents in compounds 10, 11, and 21 (hydroxy, methoxy, 

and hydroxymethyl), a slight increase of the sterical bulk in compounds 14, 18, 22, and 25 (ethoxy, 

acetyl, methoxymethyl, and hydroxyethyl) resulted in a decrease in CYP1A2 inhibition to 78–85 %. 

On the other hand, some derivatives proved to be significantly less active with approximately 50 % 

inhibition of CYP1A2, including the 4’-amino-substituted compound 9 and the isoquinoline 28 with 
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IC50 values of 1420 nM and 1619 nM, respectively. The effect of changing 3-pyridine by 4-

isoquinoline as heme-complexing heterocycle is particularly noteworthy. The three isoquinoline 

derivatives 28, 29, and 30 are considerably less active at CYP1A2 (6–57 % inhibition) than their 

unsubstituted analogues 1, 2, and 5 (73–98 % inhibition). An explanation might be found in the 

geometry of these molecules. The isoquinoline constrains the rotation around the carbon–carbon bond 

between the heterocycle and the naphthalene, especially in presence of the additional ortho-methyl 

groups in 29 and 30. Thus, a coplanar conformation becomes energetically disfavored compared to the 

pyridine analogues and the sterically demanding heterocycle rotates out of the naphthalene plane. This 

loss of planarity is a reasonable explanation for the reduced inhibitory potency since both CYP1A2 

substrates and inhibitors are usually small-volume molecules with a planar shape (e.g., caffeine40 and 

furafylline41). An even more drastic effect on the CYP1A2 potency was observed in case of the 

dihydronaphthalene type compounds. While the unsubstituted parent compound 5 exhibited 74 % 

inhibition, introduction of the methoxy substituent in compound 13 led to a reduction to 18 % and the 

isoquinoline derivative 30 displayed only 6 % inhibition. The partly saturated core structure becomes 

flexible and disturbs the planarity. Factors other than steric might play an additional role for the 

decreased CYP1A2 inhibition, e.g., disturbed π-π-stacking contacts with aromatic amino acids in the 

CYP1A2 binding pocket due to the reduced number of aromatic carbons. Aromaticity has been identi-

fied to correlate positively with CYP1A2 inhibition in recent QSAR studies.42 As dihydronaphthalenes 

13 and 30 were found to be unstable in DMSO solution, the low potencies might be due to substance 

degradation. However, the decomposition (~20 % after three days) afforded mainly the aromatized 

naphthalene analogues, i.e., 12 and 29 both displaying higher CYP1A2 inhibition than 13 and 30. 

In conclusion, we have shown that modifying the lead compounds I and II by introduction of 

substituents in the heterocyclic moiety has a clear effect on the activity and selectivity profile. Some 

substituents induced a significant increase in inhibitory potency versus CYP11B2. Compounds 22 and 

26 with subnanomolar IC50 values are the most potent aldosterone synthase inhibitors so far. The 

undesirable high CYP1A2 inhibition that is present in the previously investigated derivatives could be 

overcome by certain residues, giving rise to compounds with an advantageous overall selectivity 

profile. It was also demonstrated that the naphthalene type aldosterone synthase inhibitors 1 and 28 

were able to cross the gastrointestinal tract and reached the general circulation. Presently, the 

elucidated concepts are used to systematically modify other lead structures whereof some are under 

investigation for their ability to reduce aldosterone levels in vivo.  

 

Experimental Section 

Chemical and Analytical Methods. Melting points were measured on a Mettler FP1 melting point 

apparatus and are uncorrected. 1H NMR and 13C spectra were recorded on a Bruker DRX-500 

instrument. Chemical shifts are given in parts per million (ppm), and tetramethylsilane (TMS) was 

used as internal standard for spectra obtained in DMSO-d6 and CDCl3. All coupling constants (J) are 
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given in hertz. Mass spectra (LC/MS) were measured on a TSQ Quantum (Thermo Electron 

Corporation) instrument with a RP18 100-3 column (Macherey Nagel) and with water/acetonitrile 

mixtures as eluents. Elemental analyses were carried out at the Department of Chemistry, University 

of Saarbrücken. Reagents were used as obtained from commercial suppliers without further 

purification. Solvents were distilled before use. Dry solvents were obtained by distillation from 

appropriate drying reagents and stored over molecular sieves. Flash chromatography was performed 

on silica gel 40 (35/40–63/70 µM) with hexane/ethyl acetate mixtures as eluents, and the reaction 

progress was determined by thin-layer chromatography analyses on Alugram SIL G/UV254 

(Macherey Nagel). Visualization was accomplished with UV light and KMnO4 solution. All 

microwave irradiation experiments were carried out in a CEM-Discover monomode microwave 

apparatus.  

The following compounds were prepared according to previously described procedures: 6-Methoxy-

3-methyl-3,4-dihydronaphthalen-1(2H)-one (2e),32 (2E)-4-hydroxy-4-(3-methoxyphenyl)-3-methyl-2-

butenoic acid (2g),32 5-bromopyridin-3-ol (10a).29  

Synthesis of the Target Compounds 

Procedure A.27 Pyridine boronic acid (0.75 mmol, 1 equivalent), aryl bromide or -triflate (0.9–1.3 

equivalents), and tetrakis(triphenylphosphane)palladium(0) (43 mg, 37.5 µmol, 5 mol %) were 

suspended in 1.5 mL DMF in a 10 mL septum-capped tube containing a stirring magnet. To this was 

added a solution of NaHCO3 (189 mg, 2.25 mmol, 3 equivalents) in 1.5 mL water and the vial was 

sealed with a Teflon cap. The mixture was irradiated with microwaves for 15 min at a temperature of 

150 °C with an initial irradiation power of 100 W. After the reaction, the vial was cooled to 40 °C, the 

crude mixture was partitioned between ethyl acetate and water and the aqueous layer was extracted 

three times with ethyl acetate. The combined organic layers were dried over MgSO4 and the solvents 

were removed in vacuo. The coupling products were obtained after flash chromatography on silica gel 

(petroleum ether/ethyl acetate mixtures) and/or crystallization. If an oil was obtained, it was 

transferred into the hydrochloride salt by 1N HCl solution in diethyl ether. 

Procedure B.34 In a microwave tube alkenyl bromide 7 (1 equivalent), pyridine boronic acid (1.3 

equivalent), tetrabutylammonium bromide (1 equivalent), sodium carbonate (3.5 equivalents) and 

palladium acetate (1.5 mol %) were suspended in water/acetone 3.5/3 to give a 0.15 M solution of 

bromide 7 under an atmosphere of nitrogen. The septum sealed vessel was irradiated under stirring and 

simultaneous cooling for 15 min at 150 °C with an initial irradiation power of 150 W. The reaction 

mixture was cooled to room temperature, diluted with a saturated ammonium chloride solution and 

extracted several times with diethyl ether. The combined extracts were washed with brine, dried over 

MgSO4, concentrated and purified by flash chromatography on silica gel. The resulting oil was 

transferred into the hydrochloride salt by a 5-6 N HCl solution in 2-propanol and crystallized from 

ethanol. 
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Procedure C. To a suspension of NaH (1.15 equivalents, 60 % dispersion in oil) in 5 mL dry THF 

at was added dropwise a solution of alcohol (1 equivalent) in 5 mL THF at room temperature under an 

atmosphere of nitrogen. After hydrogen evolution ceased, a solution of methyliodide (3.3 equivalents) 

in 5 mL THF was added dropwise, and the resulting mixture was stirred for 5 h at room temperature. 

The mixture was then treated with saturated aqueous NH4Cl solution and extracted three times with 

ethyl acetate. The combined organic layers were washed with water and brine, dried over MgSO4 and 

the solvent was evaporated in vacuo. The crude product was flash chromatographed on silica gel 

(petroleum ether/ethyl acetate mixtures) to afford the pure methylether. If an oil was obtained, it was 

transferred into the hydrochloride salt by 1N HCl solution in diethyl ether. 

Procedure D. To a 0.05 M solution of carbonyl compound in dry methanol was added sodium 

borohydride (2 equivalents). The reaction mixture was stirred for 1 h, diluted with diehtylether and 

treated with saturated aqueous NaHCO3 solution. The mixture was then extracted three times with 

ethyl acetate, washed twice with saturated aqueous NaHCO3 solution and once with brine and dried 

over MgSO4. The filtrate was concentrated in vacuo, and the residue was filtered through a short pad 

of silica gel or flash chromatographed on silica gel (petroleum ether/ethyl acetate mixtures) to afford 

the corresponding alcohols. 

3-(6-Methoxy-3-methylnaphthalen-2-yl)pyridine (2) was obtained according to procedure A 

starting from 2a (377 mg, 1.50 mmol) and 3-pyridineboronic acid (240 mg, 1.95 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.16) as a white solid (304 mg, 

1.22 mmol, 81 %), mp 106–107 °C. MS m/z 250.06 (MH+). Anal. (C17H15NO) C, H, N. 

3-(6-Methoxy-3-methyl-3,4-dihydronaphthalen-2-yl)pyridine (5) was obtained according to 

procedure B starting from 2b (127 mg, 0.50 mmol) and 3-pyridineboronic acid (80 mg, 0.65 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.20), precipitation as 

HCl salt and crystallization from ethanol as a white solid (50 mg, 0.17 mmol, 35 %), mp (HCl salt) 

186–187 °C. MS m/z 252.02 (MH+). Anal. (C17H17NO·HCl·0.2H2O) C, H, N.  

6-(Pyridin-3-yl)-7,8-dihydronaphthalene-2-carbonitrile (6) was prepared according to procedure 

A starting from 3-pyridineboronic acid (107 mg, 0.87 mmol) and 6a (189 mg, 0.62 mmol). After flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 2/1, Rf = 0.10) pure 6 was obtained as a 

white, crystalline solid (100 mg, 0.43 mmol, 69 %). Treatment with hydrochloride acid (0.1 N in Et2O) 

yielded the hydrochloride salt of 6 (110 mg, 0.41 mmol, 66 %) as a white solid, mp (HCl salt) 264–

268 °C. MS m/z 223.23 (MH+). Anal. (C16H12N2·HCl·0.4H2O) C, H, N. 

3-(6-Methoxynaphthalen-2-yl)-4-methylpyridine (7) was prepared according to procedure A 

starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 3-bromo-4-

methylpyridine (86 mg, 0.50 mmol). After flash chromatography on silica gel (petroleum ether/ethyl 

acetate, 7/3, Rf = 0.10) pure 7 was obtained as a white solid (65 mg, 0.26 mmol, 52 %), mp (HCl salt) 

172–174 °C. MS m/z 250.30 (MH+). Anal. (C17H15NO·HCl·0.1H2O) C, H, N. 
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6-(4-Methylpyridin-3-yl)-2-naphthonitrile (8). Triflate 8a (151 mg, 0.50 mmol), 4-methyl-3-

pyridineboronic acid (89 mg, 0.65 mmol), K2CO3 (138 mg, 1.0 mmol) and Pd(dppf)Cl2 (37 mg, 0.05 

mmol) were suspended in 4.0 mL of a 4:4:1 mixture of toluene/acetone/water. This mixture was 

heated to 125 °C by microwave irradiation for 15 minutes (initial irradiation power 150 W). After 

cooling to room temperature, 15 mL of distilled water were added and the reaction mixture was 

extracted four times with 10 mL of Et2O. After washing the combined organic fractions with water 

(twice) and brine, drying over MgSO4 and evaporation of the solvent crude product 8 was obtained as 

a yellow solid (127 mg). Further purification by flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 2/5, Rf = 0.20) and subsequent crystallization of the free base as hydrochloride salt 

gave 52 mg (0.19 mmol, 37 %) of pure 8 (HCl salt) as an yellowish solid, mp (HCl salt) decompo-

sition above 210 °C. MS m/z 245.30 (MH+). Anal. (C17H12N2·HCl·0.5H2O) C, H, N. 

3-(6-Methoxynaphthalen-2-yl)pyridin-4-amine (9) was prepared according to procedure A 

starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 3-bromopyridin-4-

amine (86 mg, 0.50 mmol). After crystallization from acetone pure 9 was obtained as a white solid (39 

mg, 0.16 mmol, 31 %), mp 155–156 °C. MS m/z 251.28 (MH+). Anal. (C16H14N2O) C, H, N. 

5-(6-Methoxynaphthalen-2-yl)pyridin-3-ol (10) was prepared according to procedure A starting 

from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 10a (87 mg, 0.50 mmol). After 

crystallization from acetone/diethyl ether pure 10 was obtained as an off-white solid (86 mg, 0.34 

mmol, 68 %), mp 172–175 °C. MS m/z 252.02 (MH+). Anal. (C16H13NO2·0.7H2O) C, H, N: calcd, 

5.31, found, 5.79. 

3-Methoxy-5-(6-methoxynaphthalen-2-yl)pyridine (11) was prepared according to procedure A 

starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 3-bromo-5-

methoxypyridine (94 mg, 0.50 mmol). After flash chromatography on silica gel (petroleum ether/ethyl 

acetate, 7/3, Rf = 0.10) pure 11 was obtained as a white solid (80 mg, 0.30 mmol, 60 %), mp (HCl salt) 

211–214 °C. 1H-NMR (500 MHz, CD3OD): δ = 3.96 (s, 3H), 4.15 (s, 3H), 7.23 (dd, 3J = 9.1 Hz, 4J = 

2.5 Hz, 1H), 7.32 (d, 4J = 2.2 Hz, 1H), 7.85 (dd, 3J = 8.5 Hz, 4J = 1.9 Hz, 1H), 7.92 (d, 3J = 8.8 Hz, 

1H), 7.97 (d, 3J = 8.5 Hz, 1H), 8.29 (d, 4J = 1.5 Hz, 1H), 8.52 (s, 1H), 8.54 (s, 1H), 8.86 (s, 1H). 13C-

NMR (125 MHz, CD3OD): δ = 57.9, 58.3, 108.5, 120.9, 121.9, 128.1, 128.5, 130.2, 131.4, 132.5, 

134.5, 136.7, 138.9, 139.1, 142.6, 158.4, 160.4. MS m/z 266.26 (MH+). Anal. 

(C17H15NO2·HCl·0.3H2O) C, H, N. 

3-Methoxy-5-(6-methoxy-3-methylnaphthalen-2-yl)pyridine (12) was obtained according to 

procedure A starting from 2a (377 mg, 1.50 mmol) and 5-methoxy-3-pyridineboronic acid (298 mg, 

1.95 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 3/1, Rf = 0.16) as a 

white solid (328 mg, 1.17 mmol, 78 %), mp 106–107 °C. 1H-NMR (500 MHz, CDCl3): δ = 2.40 (s, 

3H), 3.91 (s, 3H), 3.94 (s, 3H), 7.12 (m, 2H), 7.23 (dd, 4J = 2.8 Hz, 4J = 1.9 Hz, 1H), 7.62 (s, 1H), 7.64 

(s, 1H), 7.71 (d, 3J = 8.8 Hz, 1H), 8.28 (d, 4J = 1.9 Hz, 1H), 8.33 (d, 4J = 2.8 Hz, 1H). 13C-NMR (125 
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MHz, CDCl3): δ = 21.0, 55.3, 55.6, 104.9, 118.6, 121.5, 127.4, 127.5, 128.6, 129.2, 134.1, 134.4, 

134.5, 135.8, 138.0, 142.6, 155.2, 158.1. MS m/z 280.08 (MH+). Anal. (C18H17NO2) C, H, N. 

3-Methoxy-5-(6-methoxy-3-methyl-3,4-dihydronaphthalen-2-yl)pyridine (13) was obtained 

according to procedure B starting from 2b (253 mg, 1.00 mmol) and 5-methoxy-3-pyridineboronic 

acid (199 mg, 1.30 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, 

Rf = 0.14), precipitation as HCl salt and crystallization from ethanol as a yellow solid (84 mg, 0.26 

mmol, 26 %), mp (HCl salt) 181–182 °C. 1H-NMR (500 MHz, CD3OD): δ = 0.94 (d, 3J = 7.0 Hz, 3H), 

2.71 (dd, 2J = 15.3 Hz, 3J = 1.2 Hz, 1H), 3.02 (m, 1H), 3.13 (dd, 2J = 15.5 Hz, 3J = 6.4 Hz, 1H), 3.74 

(s, 3H), 4.01 (s, 3H), 6.72 (m, 2H), 7.15 (d, 3J = 8.2 Hz, 1H), 7.19 (s, 1H), 8.22 (m, 1H), 8.34 (d, 4J = 

2.4 Hz, 1H), 8.59 (d, 4J = 1.5 Hz, 1H). 13C-NMR (125 MHz, CD3OD): δ = 17.8, 30.6, 36.7, 55.8, 57.9, 

112.9, 115.6, 116.6, 127.0, 127.2, 127.8, 129.8, 130.3, 132.3, 137.1, 137.2, 150.9, 160.1. MS m/z 

281.96 (MH+). Anal. (C18H19NO2·HCl·0.2H2O) C, H, N. 

3-Ethoxy-5-(6-methoxynaphthalen-2-yl)pyridine (14) was prepared according to procedure A 

starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 14a (101 mg, 0.50 

mmol). After crystallization from ethyl acetate/petroleum ether pure 14 was obtained as a white solid 

(33 mg, 0.17 mmol, 23 %), mp decomposition above 130 °C. MS m/z 280.05 (MH+). Anal. 

(C18H17NO2·0.2H2O) C, H, N. 

5-(6-Methoxynaphthalen-2-yl)pyridine-3-carboxylic acid (15) was prepared according to 

procedure A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 5-

bromonicotinic acid (101 mg, 0.50 mmol). After crystallization from methanol/water pure 15 was 

obtained as an off-white solid (74 mg, 0.26 mmol, 53 %), mp decomposition above 300 °C. MS m/z 

279.98 (MH+). Anal. (C17H13NO3·HCl·0.3H2O) C, H, N. 

Methyl 5-(6-methoxynaphthalen-2-yl)pyridine-3-carboxylate (16). Carboxylic acid 15 (45 mg, 

0.16 mmol) was dissolved in 20 mL dry methanol and 0.05 mL concentrated H2SO4 (98%) was added. 

The whole mixture was refluxed for 10 h and thereafter the excess methanol was distilled off. The 

residue was taken up in 50 mL ethyl acetate and the organic layer was washed several times with 5 % 

aqueous Na2CO3 solution, water and brine. After drying over MgSO4, the solvent was evaporated in 

vacuo. After flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.34) pure 16 

was obtained as an off-white solid (28 mg, 0.10 mmol, 60 %), mp 150–151 °C. MS m/z 293.97 (MH+). 

Anal. (C18H14NO3) C, H, N. 

5-(6-Methoxynaphthalen-2-yl)pyridine-3-carboxamide (17) was prepared according to procedure 

A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 5-bromonicotinamide 

(92 mg, 0.50 mmol). After crystallization from acetone/diethyl ether pure 17 was obtained as a white 

solid (55 mg, 0.20 mmol, 40 %), mp 245–247 °C. MS m/z 279.07 (MH+). Anal. (C17H14N2O2) C, H, N. 

1-[5-(6-Methoxynaphthalen-2-yl)pyridin-3-yl]ethanone (18) was prepared according to pro-

cedure A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 3-acetyl-5-

bromopyridine (100 mg, 0.50 mmol). After crystallization from acetone/diethyl ether pure 18 was 
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obtained as a white solid (75 mg, 0.27 mmol, 54 %), mp 159–160 °C. MS m/z 278.09 (MH+). Anal. 

(C18H15NO2·0.1H2O) C, H, N. 

[5-(6-Methoxynaphthalen-2-yl)pyridin-3-yl]acetic acid (19) was prepared according to procedure 

A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 5-bromo-3-pyridine-

acetic acid (108 mg, 0.50 mmol). After crystallization from methanol/water pure 19 was obtained as a 

white solid (70 mg, 0.24 mmol, 48 %), mp decomposition above 210 °C. MS m/z 293.97 (MH+). Anal. 

(C18H15NO3·0.5H2O) C, H, N. 

Methyl [5-(6-methoxynaphthalen-2-yl)pyridin-3-yl]acetate (20) was prepared as described for 16 

starting from 19 (145 mg, 0.49 mmol). After flash chromatography on silica gel (petroleum ether/ethyl 

acetate, 1/1, Rf = 0.18) pure 20 was obtained as a white solid (81 mg, 0.26 mmol, 53 %), mp 145–146 

°C. MS m/z 308.04 (MH+). Anal. (C19H17NO3) C: calcd, 74.25, found, 74.72, H, N. 

[5-(6-Methoxynaphthalen-2-yl)pyridin-3-yl]methanol (21) was prepared according to procedure 

A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 21a (94 mg, 0.50 

mmol). After crystallization from acetone/diethyl ether pure 21 was obtained as a white solid (86 mg, 

0.32 mmol, 65 %), mp 193–194 °C. MS m/z 266.05 (MH+). Anal. (C17H15NO2·0.1H2O) C, H, N. 

3-(Methoxymethyl)-5-(6-methoxynaphthalen-2-yl)pyridine (22) was prepared according to 

procedure C starting from 21 (150 mg, 0.57 mmol) using methyl iodide (82 µL, 1.32 mmol). After 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.22) pure 22 was obtained 

as an off-white solid (80 mg, 0.29 mmol, 50 %), mp 121–122 °C. MS m/z 279.91 (MH+). Anal. 

(C18H17NO2) C, H, N. 

[4-(6-Methoxynaphthalen-2-yl)pyridin-3-yl]methanol (23) was prepared according to procedure 

A starting from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 23a (94 mg, 0.50 

mmol). After crystallization from acetone/diethyl ether pure 23 was obtained as a white solid (90 mg, 

0.34 mmol, 68 %), mp decomposition above 240 °C. MS m/z 266.05 (MH+). Anal. 

(C17H15NO2·0.2H2O) C, H, N. 

4-(Methoxymethyl)-3-(6-methoxynaphthalen-2-yl)pyridine (24) was prepared according to 

procedure C starting from 23 (150 mg, 0.57 mmol) using methyl iodide (82 µL, 1.32 mmol). After 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.23) pure 24 was obtained 

as an off-white solid (74 mg, 0.26 mmol, 46 %), mp (HCl salt) 174–177 °C. MS m/z 279.91 (MH+). 

Anal. (C18H17NO2·0.2H2O) C, H, N. 

1-[5-(6-Methoxynaphthalen-2-yl)-pyridin-3-yl]ethanol (25) was prepared according to procedure 

D starting from 18 (50 mg, 0.18 mmol) using NaBH4 (8.0 mg, 0.21 mmol). After flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.24) pure 25 was obtained as a 

white solid (28 mg, 0.10 mmol, 56 %), mp 154–155 °C. MS m/z 280.05 (MH+). Anal. (C18H17NO2) C, 

H, N. 

3-(1-Methoxyethyl)-5-(6-methoxynaphthalen-2-yl)pyridine (26) was prepared according to 

procedure C starting from 25 (70 mg, 0.25 mmol) using methyl iodide (41 µL, 0.66 mmol). After flash 
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chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.23) pure 26 was obtained as an 

yellowish solid (26 mg, 0.08 mmol, 35 %), mp 124–125 °C. MS m/z 294.11 (MH+). Anal. 

(C19H19NO2) C, H, N. 

3-(6-Methoxynaphthalen-2-yl)-5-phenylpyridine (27) was prepared according to procedure A 

starting from 6-methoxy-2-naphthaleneboronic acid (394 mg, 1.95 mmol) and 3-bromo-5-

phenylpyridine (351 mg, 1.50 mmol). After flash chromatography on silica gel (petroleum ether/ethyl 

acetate, 2/1, Rf = 0.23) pure 27 was obtained as a white, crystalline solid (455 mg, 1.46 mmol, 97 %), 

mp 216–217 °C. MS m/z 312.09 (MH+). Anal. (C22H17NO·0.4H2O) C, H, N. 

4-(6-Methoxynaphthalen-2-yl)isoquinoline (28) was prepared according to procedure A starting 

from 6-methoxy-2-naphthaleneboronic acid (131 mg, 0.65 mmol) and 4-bromoisoquinoline (104 mg, 

0.50 mmol). After flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.21) 

pure 28 was obtained as a white solid (44 mg, 0.16 mmol, 31 %), mp 185–186 °C. MS m/z 286.07 

(MH+). Anal. (C20H15NO·0.1H2O) C, H, N. 

4-(6-Methoxy-3-methylnaphthalen-2-yl)isoquinoline (29) was obtained according to procedure A 

starting from 2a (377 mg, 1.50 mmol) and 4-isoquinolineboronic acid (337 mg, 1.95 mmol) after flash 

chromatography on silica gel (dichloromethane/methanol 99/1, Rf = 0.26) as yellow oil which 

solidified with diethyl ether as a pale yellow solid (178 mg, 0.59 mmol, 40 %), mp 156–157 °C. MS 

m/z 300.10 (MH+). Anal. (C21H11NO) C, H, N. 

4-(6-Methoxy-3-methyl-3,4-dihydronaphthalen-2-yl)isoquinoline (30) was obtained according to 

procedure B starting from 2b (253 mg, 1.00 mmol) and 4-isoquinolineboronic acid (225 mg, 1.30 

mmol) after two flash chromatographical separations on silica gel (petroleum ether/ethyl acetate, 5/1, 

Rf = 0.20 and dichloromethane/methanol 99/1, Rf = 0.27) and precipitation as HCl salt as a yellow 

solid (112 mg, 0.33 mmol, 17 %), mp 149–150 °C. MS m/z 302.18 (MH+). Anal. 

(C21H19NO·HCl·0.2H2O) C, H, N. 

Biological Methods. 1. Enzyme Preparations. CYP17 and CYP19 preparations were obtained by 

described methods: the 50,000 g sediment of E. coli expressing human CYP1737 and microsomes from 

human placenta for CYP19.39 2. Enzyme Assays. The following enzyme assays were performed as 

previously described: CY1737 and CYP19.39 3. Activity and Selectivity Assay Using V79 Cells. V79 

MZh 11B1 and V79 MZh 11B2 cells36 were incubated with [4-14C]-11-deoxycorticosterone as 

substrate and inhibitor in at least three different concentrations. The enzyme reactions were stopped by 

addition of ethyl acetate. After vigorous shaking and a centrifugation step (10,000 g, 2 min), the 

steroids were extracted into the organic phase, which was then separated. The conversion of the 

substrate was analyzed by HPTLC and a phosphoimaging system as described.10,22 4. Inhibition of 

Human Hepatic CYP Enzymes. The recombinantly expressed enzymes from baculovirus-infected 

insect microsomes (Supersomes) were used and the manufacturer’s instructions (www.gentest.com) 

were followed. 5. In Vivo Pharmacokinetics. Animal trials were conducted in accordance with 

institutional and international ethical guidelines for the use of laboratory animals. Male Wistar rats 
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weighing 317–322 g (Janvier, France) were housed in a temperature-controlled room (20–22 °C) and 

maintained in a 12 h light/12 h dark cycle. Food and water were available ad libitum. The animals 

were anaesthetised with a ketamine (135mg/kg)/xylazine (10mg/kg) mixture, and cannulated with 

silicone tubing via the right jugular vein. Prior to the first blood sampling, animals were connected to a 

counterbalanced system and tubing, to perform blood sampling in the freely moving rat. Separate 

stock solutions (5 mg/mL) were prepared for the tested compounds in Labrasol/Water (1:1; v/v), 

leading to a clear solution. Immediately before application, the cassette dosing mixture was prepared 

by adding equal volumes of the 5 stock solutions to end up with a final concentration of 1 mg/mL for 

each compound. The mixture was applied perorally to 3 rats with an injection volume of 5 mL/kg 

(Time 0). 400 µL of blood were taken via jugularis catheter 1 hour before application and then 1 and 2 

hours after application. Immediately, equal volume (400 µL) of 0.9 % NaCl (37 °C) was re-injected 

intravenously to keep the blood volume stable. 4, 6, 8, 10 and 24 hours after application 250 µL of 

blood were sampled without balancing the blood volume. Blood samples were centrifuged at 3000 g 

for 10 minutes at 4 °C. Plasma was harvested and kept at –20 °C until analysis. The mean of absolute 

plasma concentrations (±SEM) was calculated for the 3 rats and the regression was performed on 

group mean values. The pharmacokinetic analysis was performed using a noncompartment model (PK 

Solutions 2.0, Summit Research Services). HPLC-MS/MS analysis and quantification of the samples 

was carried out on a Surveyor-HPLC-system coupled with a TSQ Quantum (ThermoFinnigan) triple 

quadrupole mass spectrometer equipped with an electrospray interface (ESI). 

Computational Methods. MEP. For each docked compound geometry optimization was performed 

at the B3LYP/6-31G* density functional levels by means of the Gaussian03 software and the 

molecular electrostatic potential (MEP) maps were plotted using GaussView3, the 3-D molecular 

graphics package of Gaussian.43 These electrostatic potential surfaces were generated by mapping 6-

31G* electrostatic potentials onto surfaces of molecular electron density (isovalue = 0.002 

electron/Å).44 
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Abstract: Pharmacophore modeling of a series of aldosterone synthase (CYP11B2) inhibitors 

triggered the design of compounds 11 and 12 by extending a previously established naphthalene 

molecular scaffold (e.g., present in molecules 1 and 2) via introduction of a phenyl or benzyl residue 

in 3-position. These additional aromatic moieties have been hypothesized to fit into the newly 

identified hydrophobic pharmacophore feature HY3. Subsequent docking studies in our refined 

CYP11B2 protein model have been performed prior to synthesis to estimate the inhibitory properties 

of the proposed molecules. While phenyl-substituted compound 11 (IC50 > 500 nM) did not dock 

under the given pharmacophore constraint (i.e., the Fe(heme)-N(ligand) interaction), benzyl-

substituted compound 12 (IC50 = 154 nM) was found to exploit a previously unexplored sub-pocket of 

the inhibitor binding site. By structural optimization based on the pharmacophore hypothesis, 25 novel 

compounds were synthesized, amongst them highly potent CYP11B2 inhibitors (e.g., 17, IC50 = 2.7 

nM) with pronounced selectivity toward the most important steroidogenic and hepatic CYP enzymes. 
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Introduction 

Aldosterone synthase (CYP11B2), a mitochondrial cytochrome P450 enzyme that is localized 

mainly in the adrenal cortex, is the key enzyme of mineralocorticoid biosynthesis. It catalyzes the 

terminal three oxidation steps in the biogenesis of aldosterone in humans.1 This hormone is the most 

important circulating mineralocorticoid and plays a crucial role in the electrolyte and fluid homeostasis 

mainly by binding to epithelial mineralocorticoid receptors (MR) promoting sodium reabsorption and 

potassium secretion. Since the sodium movement is followed by water via osmosis, aldosterone is a 

key regulator of blood volume and blood pressure. Abnormally increased plasma levels of aldosterone 

have been diagnosed in different cardiovascular diseases such as elevated blood pressure, congestive 

heart failure, and myocardial fibrosis.2 Inhibitors of the angiotensin-converting enzyme (ACE) which 

are in use for the treatment of hypertension and congestive heart failure can initially induce a down-

regulation of circulating aldosterone. However, increased levels of aldosterone are frequently observed 

after several months of therapy.3 This phenomenon termed ‘aldosterone escape’ is a limiting factor of 

ACE inhibitors and shows that novel therapeutic concepts combating the effects of elevated 

aldosterone levels are needed. Two recent clinical studies (RALES and EPHESUS) demonstrated that 

treatment with mineralocorticoid receptor antagonists in addition to the standard therapy resulted in a 

decrease of mortality in patients with chronic congestive heart failure and in patients after myocardial 

infarction, respectively.4,5 The use of spironolactone, however, is accompanied by severe 

progestational and antiandrogenic side effects due to its affinity to other steroid receptors. Moreover, 

the elevated plasma aldosterone concentrations are left unaffected on a pathological level which raises 

several issues. First, the elevated aldosterone plasma levels do not induce a homologous down-

regulation but an up-regulation of the aldosterone receptor.6 This fact complicates a long-term therapy 

as MR antagonists are likely to become ineffective. Furthermore, the high concentrations promote 

nongenomic actions of aldosterone which are in general not blocked by receptor antagonists.7 

Pathological aldosterone concentrations have been identified to induce a negative inotropic effect in 

human trabeculae and to potentiate the vasoconstrictor effect of angiotensin II in coronary arteries in 

rapid, nongenomic manner.8 Thus, aldosterone is intrinsically capable to further deteriorate heart 

function by acting nongenomically. 

A novel therapeutic strategy with potential to overcome the drawbacks of MR antagonists is the 

blockade of aldosterone formation, preferably by inhibiting CYP11B2, the key enzyme of its biosyn-

thesis. Aldosterone synthase has been proposed as a potential pharmacological target by our group as 

early as 1994,9 followed soon thereafter by the hypothesis that inhibitors of CYP11B2 could serve as 

drugs for the treatment of hyperaldosteronism, congestive heart failure and myocardial fibrosis.10,11 

Consequent structural optimization of a hit discovered by a compound library screening led to a series 

of nonsteroidal aldosterone synthase inhibitors with high selectivity toward other cytochrome P450 

enzymes.12–15 
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In the present study, we describe the design and synthesis of a series of 3-benzyl-substituted 

pyridylnaphthalenes and structurally related compounds (Chart 1) by a combined ligand-based and 

structure-based drug design approach as well as the determination of their biological activity regarding 

human CYP11B2 for potency. Selectivity is a prerequisite for a CYP11B2 inhibitor, especially with 

regard to other cytochrome P450 enzymes as they are likely to interact with other CYP enzymes in a 

similar way (e.g., by complexation of the heme iron). Taking into consideration that the key enzyme of 

glucocorticoid biosynthesis, 11β-hydroxylase (CYP11B1), and CYP11B2 have a sequence homology 

of approximately 93 %,16 the selectivity issue becomes especially critical for the design of CYP11B2 

inhibitors. On that account, all compounds were tested for their inhibitory potency versus CYP11B1 to 

determine their selectivity. A set of compounds was additionally tested for inhibitory activity versus 

the steroidogenic enzymes CYP17 (17α-hydroxylase-C17,20-lyase) and CYP19 (aromatase) as well as 

selected hepatic drug-metabolizing CYP enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, 

CYP2D6, and CYP3A4).  
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Results  

Inhibitor Design Concept 

In our search for new lead compounds as CYP11B2 inhibitors structurally differing from the 

previously discovered pyridylnaphthalenes such as 1 and 2,14 we identified imidazolylmethylene-

substituted flavones (e.g., 3–10) to be aldosterone synthase inhibitors with moderate to high inhibitory 

potency by compound library screening (Table 1). These compounds that originally have been 

described as aromatase inhibitors17 display CYP11B2 inhibition in a range of 73–94 % at a con-
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centration of 500 nM with methoxy-functionalized 6 being most active (IC50 = 11 nM), albeit without 

showing selectivity versus the highly homologous CYP11B1 (see supplementary material for 

selectivity data).  

Table 1. Inhibition of Human Adrenal CYP11B2 

In Vitro (Compounds 1–10) 

 
  % inhibitiona CYP11B2b  

compd R [IC50 (nM)c] 

1 H 92 [28] 

2 OMe 91 [6.2] 

3 H 88 [28] 

4 NO2 81 [95] 

5 Br 90 [25] 

6 OMe 94 [11] 

7 H 86 [124] 

8 Br 80 [n.d.] 

9 NO2 73 [n.d.] 

10  77 [187] 
a Mean value of at least two experiments, standard deviation usually 
less than 10 %; inhibitor concentration, 500 nM. b Hamster fibroblasts 
expressing human CYP11B2; substrate deoxycorticosterone, 100 nM. c 
Mean value of at least four experiments, standard deviation usually 
less than 25 %, n.d. = not determined; fadrozole, IC50 = 1 nM. 

 

Recently, a pharmacophore model for aldosterone synthase inhibitors was built by superimposition 

of a series of heteroaryl-substituted methyleneindanes12,13 and naphthalenes14,15 synthesized in our 

laboratory and subsequently validated by pyridine-substituted acenaphthenes as hybrid structures that 

fit into the four identified pharmacophoric points (i.e., a heterocyclic nitrogen and three ring cen-

troids).18 The most potent compounds of the latter substance classes together with the most potent 

flavone type inhibitors were used as training set for the generation of an extended pharmacophore 

model by applying the GALAHAD19 pharmacophore generation module of SYBYL molecular 

modeling software. In the top ranked pharmacophore model, best in three of the most indicative 

ranking criteria of this software (Pareto ranking,20 Specificity, and Mol-query), the earlier pharma-
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cophoric points18 were confirmed, namely the hydrophobic features HY0, HY1, HY2a, HY2b as well 

as the acceptor atom features AA1, AA2a, and AA2b (Figure 1).  

Figure 1a 

 
a Compound 1 mapped to the pharmacophore model. The 
newly identified hydrophobic feature HY3 as well as the 
acceptor atom features AA3a and AA3b are not exploited by 
inhibitors with a naphthalene molecular scaffold. Pharmaco-
phoric features are color-coded: Cyan for hydrophobic regions 
(HY0–HY3) and green for acceptor atom features (AA1–4). 

 

A novel and voluminous hydrophobic area HY3 was identified next to HY1, along with the acceptor 

atom features AA3a and AA3b (see supplementary material for exact pharmacophore geometric 

properties) as well as an additional acceptor atom feature AA4. Rationalizing the given information, 

the two sample compounds 11 and 12 (Chart 2) were designed by modifying our previously reported 

naphthalene derivatives 1 and 2 to exploit the newly discovered pharmacophoric feature HY3. As 

suggested by the model and visualized in Figure 1, introduction of a hydrophobic substituent in 3-

position of the naphthalene skeleton should be favorable to exploit the voluminous hydrophobic 

feature HY3 of the pharmacophore. The phenyl residue directly bound to the naphthalene core in 

compound 11 creates a conformationally constrained structure in which both rotational degrees of 

freedom of the two aryl–aryl bonds are limited since they are located ortho to each other. The benzyl 

motive in compound 12 leads to an increased flexibility of the spatial property distribution by rotation 

around the two benzylic carbon–carbon bonds. Furthermore, the aromatic ring moves apart from the 

naphthalene core by one methylene unit.  

Chart 2. Proposed Lead Structures 11 and 12 

11

N

1
2

3

12

N

1
2

3

 

 

In order to elucidate the role of conformational flexibility and the exact position of the aryl moiety 

for optimal inhibitor binding, docking studies were performed (Figure 2). For this purpose, we used 
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the CYP11B2 protein model that has been built12 and subsequently validated13–15 by our group as well 

as the same docking calculations that have been performed in these studies.  

Figure 2a 

 
a Structure of the CYP11B2–inhibitor complexes 
of 3 (a), 2 (b) and 12 (c). Surface of the binding 
pocket (grey) surrounding the inhibitor and the 
heme co-factor (light blue). The inhibitors are 
presented in yellow; nitrogen atoms are colored 
in blue and oxygen atoms are in red. Unlike 2, the 
inhibitors 3 and 12 exploit an additional sub-
pocket of the inhibitor binding site. 

 

Previous investigations have identified the binding affinity to the target enzyme to be highly 

dependent on the geometry of the coordinative bond between the heme iron and the heterocyclic 

nitrogen. An angle of the Fe–N straight line with the porphyrin plane close to 90° (i.e., the hetero-
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cyclic nitrogen lone pair arranges perpendicular to the heme group) provides an optimal orbital 

overlap corresponding to a high inhibitory potency.14,15 The analysis of the docking mode of 

compound 3 led to the identification of a new sub-pocket which interacts with the aryl moiety (Figure 

2a). This sub-pocket was not considered as potential binding site during our previous design efforts 

due to the fact that the formerly investigated compounds such as 2 did not occupy this binding site 

(Figure 2b). The above considerations led to the design of compounds 11 and 12. Both compounds 

combine the pyridylnaphthalene skeleton of compound 1 with an additional aryl motive which should 

be able to interact with the newly identified sub-pocket. However, compound 11 proved to be too rigid 

to fit into the binding site and could thus not be docked successfully into the binding pocket under the 

given pharmacophore constraint, that is the Fe(heme)-N(ligand) interaction. A directed heme-Fe–N 

interaction was defined perpendicular to the heme-plane. This pharmacophore constraint was applied 

to ensure the right binding mode of the inhibitors with the heme-cofactor. The constraint requires the 

existence of an inhibitor-nitrogen-atom on the surface of an interaction cone with a 20 degree radius, 

which has its origin at the Fe-atom and points perpendicular to the heme-plane (with a length of 2.2 

Å). Obviously, the conformationally restricted phenyl moiety of compound 11 undergoes repulsive 

interaction with amino acids of the binding pocket or with the heme-cofactor under the above 

mentioned constraint (i.e., when the pyridine moiety forms a coordinative bond to the heme iron), thus 

preventing that the molecule successfully docks into the CYP11B2 protein model. Contrariwise, the 3-

benzyl substituted analog 12 is more flexible due to an additional methylene spacer between the two 

ring systems and thus fitted adequately into the binding site (Figure 2c). From these docking results 

we concluded that the methylene group of the potential inhibitor should provide the flexibility 

necessary to adapt to the binding site geometry. 

 

Chemistry 

The phenyl-substituted pyridylnaphthalene 11 was obtained as shown in Scheme 1 by two 

subsequent Suzuki coupling21 steps, whereof the first proceeded between 3-bromopyridine and 3-

methoxy-2-naphthaleneboronic acid 11d. The boronic acid 11d was accessible by ortho-lithiation of 

2-methoxynaphthalene and in situ addition of trimethylborate as described previously.22 After 

demethylation of 11c by refluxing in concentrated hydrobromic acid, the intermediate naphthol was 

transferred into the triflate 11a by a microwave-enhanced method described by Bengtson et al.23 A 

second Suzuki coupling using controlled microwave heating afforded compound 11.24 

The benzyl-substituted derivatives 12–16, 19, and 21–25 were synthesized by the route shown in 

Scheme 2. Starting from a 3-hydroxy-2-naphtoic acid, few functional group inversions led to the 

carbaldehydes 12e–14e. These transformations were performed by a 4-step sequence starting with an 

esterification25 and subsequent introduction of a protection group to the naphthalene hydroxy group of 

12h and 13h (i.e., methyl in 12g or benzyl in 13g and 14g).26 Lithium borohydride reduction27 

followed by TEMPO oxidation28 (of primary alcohol 12f) or Parik-Doehring oxidation29 (of 13f and 
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14f) afforded the corresponding carbaldehydes 12e–14e. Grignard reaction with various substituted 

phenylmagnesium halogenides afforded the phenyl-naphthylalcohols 12d–16d, and 19d. Hydro-

genolytic removal of the hydroxy group was accomplished by treatment with NaBH4 and AlCl3 in 

refluxing THF.30 After deprotection using BBr3 (for de-methylation of 12c) or ammonium formate 

under Pd-catalysis31 (for de-benzylation of 13c–16c, and 19c) and subsequent triflate formation,23 the 

heterocycle was introduced by microwave-enhanced Suzuki coupling24 giving rise to the benzyl-

substituted pyridylnaphthalenes 12–16, 19, and 21–25. 

Scheme 1a 

 
a Reagents and conditions: i) nBuLi, B(OMe)3, THF, –78 °C, then 
HCl/water; ii) 3-bromopyridine, Pd(PPh3)4, toluene/ethanol, aq. 
Na2CO3, reflux; iii) conc. HBr, reflux; iv) Tf2NPh, K2CO2, THF, 
µw, 120 °C; v) phenylboronic acid, Pd(PPh3)4, aq. NaHCO3, 
DMF, µw, 150 °C. 

Scheme 2a 

 
a Reagents and conditions: i) methanol, H2SO4, reflux; ii) MeI, K2CO3, 18-crown-6,  acetone, reflux (for R = Me); iii) BnBr, 
K2CO3, 18-crown-6, acetone, reflux (for R = Bn); iv) LiBH4, THF/toluene, reflux; v) NCS, TEMPO, nBu4NCl, aq. 
Na2CO3/NaHCO3, CH2Cl2; rt (for R = Me); vi) SO3·py, NEt3, DMSO, rt (for R = Bn); vii) ArMgX, THF, 0 °C, then aq. 
NH4Cl; viii) NaBH4, AlCl3, THF, reflux; ix) BBr3, CH2Cl2, –20 °C; x) Tf2NPh, K2CO2, THF, µw, 120 °C; xi) ammonium 
formate, Pd/C, THF/methanol, reflux; xii) heteroarylboronic acid, Pd(PPh3)4, aq. NaHCO3, DMF, µw, 150 °C. 
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Alternatively, the benzyl-substituted pyridylnaphthalenes 17, 18, and 20 were obtained by the route 

shown in Scheme 3. Applying the presented transformations afforded the benzoyl-substituted deri-

vatives 26–30 and the corresponding hydroxymethylene analogues 31–34 as reaction intermediates. 

The sequence toward the 3-benzoyl-substituted 2-naphthols 26b–30b was reported previously by Li et 

al. and starts with an ortho-lithiation of 2-methoxy- or 2,7-dimethoxynaphthalene, followed by in situ 

addition of a Weinreb amide. Regioselective demethylation of the obtained methanones 26c–30c at the 

naphthalene-position ortho to the benzoyl residue was accomplished by treatment with BCl3/nBu4NI at 

–78 °C.32 After triflate formation, a 3-pyridyl residue was introduced by Suzuki coupling to afford 

compounds 26–30. The corresponding alcohols 20a and 31–34 were obtained by sodium borohydride 

reduction. The methyl ether 35 was synthesized by treating 31 with methyl iodide and NaH in THF. 

The benzyl-substituted pyridylnaphthalenes 17, 18, and 20 were obtained by in situ iodotrimethyl-

silane mediated reduction.33,34 However, reduction by this method did not succeed in the case of 32, 

neither by other commonly used hydrogenolysis protocols.30,35 

Scheme 3a 

 
a Reagents and conditions: i) N,O-dimethylhydroxylamine hydrochloride, NEt3, CH2Cl2, rt; ii)

 

nBuLi, 2-methoxynaphthalene (for R1 = H) or 2,7-dimethoxynaphthalene (for R1 = OMe), 
TMEDA, THF, –78 °C, then HCl/water; iii) BCl3, nBu4NI, CH2Cl2, –78 °C to rt; iv) Tf2O, 
pyridine, CH2Cl2, 0 °C; v) pyridineboronic acid, Pd(PPh3)4, aq. Na2CO3, toluene/ethanol, 
reflux; vi) NaBH4, methanol, 0 °C; vii) Me3SiCl, NaI, CH3CN, 55 °C; viii) MeI, NaH, THF, rt. 

 

Biological Results 

Inhibition of Human Adrenal Corticoid Producing CYP11B2 and CYP11B1 In Vitro (Table 

2). The inhibitory activities of the compounds were determined in V79 MZh cells expressing either 

human CYP11B2 or CYP11B1.10,36 The V79 MZh cells were incubated with [14C]-deoxycortico-

sterone as substrate and the inhibitor in different concentrations. The product formation was monitored 

by HPTLC using a phosphoimager. Fadrozole, an aromatase (CYP19) inhibitor with proven ability to 
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reduce corticoid formation in vitro37 and in vivo38 was used as a reference (CYP11B2, IC50 = 1 nM; 

CYP11B1, IC50 = 10 nM).  

Table 2. Inhibition of Human Adrenal CYP11B2 and CYP11B1 In Vitro (Compounds 11–35) 

 
     % inhibitiona IC50 valueb (nM)  

     V79 11B2c V79 11B2c V79 11B1d selectivity 

compd R1 R2 R3 R hCYP11B2 hCYP11B2 hCYP11B1 factore 

11     8 n.d. n.d. n.d. 

12 H H H H 76 154 953 6 

13 6-OMe H H H 85 53 640 12 

14 H o-OMe H H 24 n.d. n.d. n.d. 

15 H m-OMe H H 62 n.d. n.d. n.d. 

16 H p-OMe H H 89 7.8 2804 359 

17 H p-CN H H 93 2.7 1956 724 

18 H p-OCF3 H H 95 3.9 3559 913 

19 6-OMe p-OMe H H 95 11 4329 394 

20 7-OMe p-OMe H H 35 n.d. n.d. n.d. 

21 H p-OMe OMe H 93 7.7 1811 235 

22 6-OMe p-OMe OMe H 96 7.6 2452 322 

23 6-OMe H OMe H 90 24 2936 122 

24 H    98 3.0 785 262 

25 OMe    94 5.0 735 147 

26 H p-OMe H  79 119 24003 202 

27 H m-F-p-OMe H  78 65 19816 305 

28 H p-CN H  88 30 9639 321 

29 H p-OCF3 H  91 28 11307 404 

30 OMe p-OMe H  25 n.d. n.d. n.d. 

31 H p-OMe H OH 57 n.d. n.d. n.d. 

32 H m-F-p-OMe H OH 51 n.d. n.d. n.d. 

33 H p-CN H OH 59 n.d. n.d. n.d. 

34 H p-OCF3 H OH 63 n.d. n.d. n.d. 

35 H p-OMe H OMe 23 n.d. n.d. n.d. 

fadrozole     - 1 10 10 
a Mean value of at least two experiments, standard deviation usually less than 10 %; inhibitor concentration, 500 nM. b Mean value of at least 
four experiments, standard deviation usually less than 25 %, n.d. = not determined. c Hamster fibroblasts expressing human CYP11B2; 
substrate deoxycorticosterone, 100 nM. d Hamster fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 nM. e IC50 
CYP11B1/IC50 CYP11B2, n.d. = not determined.  

 

Compound 11 with a phenyl residue directly bound to the naphthalene core shows no significant 

activity at the target enzyme with only 8 % inhibition at an inhibitor concentration of 500 nM (Table 



 55

2). Insertion of a methylene linker into the biaryl bond results in an increased inhibitory potency at 

CYP11B2 in compound 12 (IC50 = 154 nM). Introduction of a methoxy residue in ortho- or meta-

position of the benzylic moiety as accomplished in compounds 14 and 15 results in a significantly 

decreased inhibitory potency whereas the same substituent in para-position gives rise to the highly 

potent CYP11B2 inhibitor 16 (IC50 = 7.8 nM) with pronounced selectivity versus CYP11B1 (IC50 = 

2804). The cyano and trifluoromethoxy-substituted analogues 17 and 18 are highly potent as well and 

about 700-fold and 900-fold more selective for CYP11B2. Derivatization of the naphthalene core by a 

methoxy group is readily tolerated in 6-position as accomplished in compounds 13, 19, 22, 23, and 25. 

The inhibitory profile of the 6-methoxy derivatives regarding the two CYP11B isoforms is thereby 

comparable to the corresponding hydrogen analogues with a slightly increased selectivity factor in 

most cases. On the other hand, introduction of methoxy in 7-position results in a decrease of the 

inhibition to less than 40 % at an inhibitor concentration of 500 nM (20 and 30). Modification of the 

pyridine moiety which has recently been shown to increase the activity and selectivity of naphthalene 

type CYP11B2 inhibitors39 affords compounds 21–25 with IC50 values in the range of 3–24 nM. 

Replacing the methylene linker by a carbonyl group as accomplished in compounds 26–29 results in a 

slightly reduced inhibitory potency (IC50 = 16–118 nM), albeit the high CYP11B1 selectivity is 

retained (factor 200–500). Introducing hydroxymethylene (31–34) or methoxymethylene (35) as linker 

between the aryls leads to a significant loss of inhibitory activity to approximately 60 % at an inhibitor 

concentration of 500 nM in the case of compounds 31–34 and to an almost complete loss in the case of 

compound 35. 

Inhibition of Steroidogenic and Hepatic CYP Enzymes (Tables 3 and 4). A set of 12 compounds 

was investigated for inhibition of the steroidogenic enzymes CYP17 and CYP19 (Table 3). The 

inhibition of CYP17 was investigated using the 50,000 g sediment of the E. coli homogenate 

recombinantly expressing human CYP17 and progesterone (25 µM) as substrate.40 The inhibition 

values were measured at an inhibitor concentration of 2 µM. In general, the compounds show no or 

only little inhibition of less than 25 %. As an exception, compound 22 exhibits 51 % inhibition which 

is in the range of the reference ketoconazole (IC50 = 2780 nM). The inhibition of CYP19 at an 

inhibitor concentration of 500 nM was determined in vitro with human placental microsomes and [1β-
3H]androstenedione as substrate as described by Thompson and Siiteri41 using our modification.42 

Most of the compounds display only a moderate aromatase inhibition of less than 40 % whereof four 

compounds do not inhibit CYP19 at all (21, 24, 25, and 28). The para-cyano-substituted derivative 17 

shows a pronounced activity (60 %) and introduction of methoxy in 6-position of the naphthalene core 

as accomplished in compounds 19, 22, and 23 results likewise in a remarkably increased inhibition. 

Most notably, compound 19 is a highly potent CYP19 inhibitor exhibiting an IC50 value of 38 nM, 

thus being almost as active as the reference fadrozole (IC50 = 30 nM). 
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Table 3. Inhibition of Human CYP17 and CYP19 In Vitro 

 % inhibitiona   % inhibitiona 

compd CYP17b CYP19c  compd CYP17b CYP19c 

16 < 5 39  23 26 73 

17 25 60  24 < 5 < 5 

18 10 45  25 21 6 

19 < 5 92d  26 5 19 

21 28 6  28 7 < 5 

22 51 49  29 8 17 
a Mean value of three experiments, standard deviation usually less than 10 %. b E. coli expressing 
human CYP17; substrate progesterone, 25 µM; inhibitor concentration, 2.0 µM; ketoconazole, 
IC50 = 2.78 µM. c Human placental CYP19; substrate androstenedione, 500 nM; inhibitor 
concentration, 500 nM; fadrozole, IC50 = 30 nM. d IC50 = 38 nM. 

 

A selectivity profile relating to inhibition of crucial hepatic CYP enzymes (CYP1A2, CYP2B6, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4) was determined for compounds 16, 17, 19, and 28 by 

use of recombinantly expressed enzymes from baculovirus-infected insect microsomes. Table 4 shows 

the inhibition at a concentration of 10 µM and 1 µM. It becomes apparent that some enzymes are 

affected only to a minor degree by all compounds including CYB2B6 and CYP2D6. On the other 

hand, CYP2C9 is strongly inhibited in most cases. The benzoyl derivative 28 with less than 40 % 

inhibition at 1 µM concentration at all CYP enzymes is the most selective compound within this series. 

The worst selectivity profile is observed in the case of 19 inhibiting CYP2C9, CYP2C19, and 

CYP3A4 with pronounced potency. 

Table 4. Inhibition of Selected Hepatic CYP Enzymes In Vitro 

      % inhibitiona      

 CYP1A2b,c CYP2B6b,d CYP2C9b,e CYP2C19b,f CYP2D6b,g CYP3A4b,h 

compd 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 

16 77 23 48 < 5 92 51 32 < 5 6 < 5 79 30 

17 83 41 69 24 96 78 87 62 62 23 17 9 

19 59 13 61 8 98i 96i 96 74 7 < 5 89 60 

28 47 22 43 14 74 35 43 < 5 51 23 62 23 
a Mean value of two experiments, standard deviation usually less than 10 %. b Recombinantly expressed enzymes from baculovirus-infected 
insect microsomes (Supersomes). c Furafylline, IC50 = 2.42 µM. d Tranylcypromine, IC50 = 6.24 µM. e Sulfaphenazole, IC50 = 318 nM. f 
Tranylcypromine, IC50 = 5.95 µM. g Quinidine, IC50 = 14 nM. h Ketoconazole, IC50 = 57 nM. i IC50 = 64 nM. 

 

Discussion and Conclusion 

The inhibitor design concept of the present study triggered the synthesis of compounds 11 and 12 as 

potential new lead structures by extending a previously established naphthalene molecular scaffold via 

introduction of a phenyl or benzyl residue in 3-position. Subsequently, docking studies in our 

CYP11B2 protein model were performed in order to check for spatial consistency with the 

pharmacophore hypothesis. It was found that while phenyl-substituted 11 did not dock under the given 

pharmacophore constraint (Fe(heme)-N(ligand) interaction), benzyl-substituted 12 adequately fits into 
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the binding site by exploiting a previously unexplored sub-pocket. These findings were confirmed by 

experimental results showing that 3-phenyl-substituted pyridylnaphthalene 11 exhibits no significant 

CYP11B2 inhibition in vitro. In accordance with the docking results, benzyl analog 12 is a moderately 

potent aldosterone synthase inhibitor (IC50 = 154 nM). The selectivity versus CYP11B1, however, is 

rather poor with an only 6-fold increased IC50 value compared to CYP11B2. The following lead 

optimization was accomplished by considering the SAR results obtained previously from the struc-

tures of the known inhibitors which have been used for the generation of the pharmacophore model 

(e.g., 1–10). Methoxy substitution in compound 6 afforded the most active compound of the flavone 

series (IC50 = 11 nM) and was therefore chosen as a model substituent to figure out the optimal 

substituent position in the benzyl moiety of 12. In case of the pyridylnaphthalenes, methoxy in 6-

position as accomplished in 2 proved to be favorable in terms of both inhibitory potency and 

selectivity.14 

Within the present set of compounds, interesting structure-activity and structure-selectivity 

relationships can be observed, particularly with regard to the benzyl and the naphthalene moieties. The 

benzylic part of the investigated molecules represents a pivotal region for structural optimization and 

is to a great extent dependent on the position of substituents in terms of both inhibitory activity and 

selectivity toward the highly homologous CYP11B1. Placing methoxy in ortho- or meta-position of 

the benzyl residue significantly reduces the inhibitory potency. Most notably, the inhibition decreases 

to 24 % at an inhibitor concentration of 500 nM in case of ortho-methoxy-derivatized compound 14. 

Contrariwise, methoxy in para-position as accomplished in compound 16 increases the CYP11B2 

activity by a factor of 20 compared to the hydrogen analog 12 and the selectivity toward CYP11B1 

clearly improves (selectivity factor = 359). The experimental observations can be explained by the 

docking results of compounds 16 and 19, both bearing a para-methoxy group (Figure 3). The 

introduction of this substituent into the benzyl moiety as accomplished in 16 leads to interactions of 

the compound with the residues of Pro452, Val339, and Thr279, thus stabilizing the complex formed 

by coordination of the heme iron by the heterocyclic nitrogen considerably (Figure 3a). In compound 

19, a second methoxy group was introduced at the 6-position of the naphthalene scaffold (Figure 3b). 

This leads to no additional stabilization of the complex, but to a slightly increased selectivity versus 

CYP11B1. The same trend was observed previously for the binding properties of a series of 

substituted pyridylnaphthalenes.14,15 The para-cyano and para-trifluoromethoxy derivatives 17 and 18 

are likewise highly potent and display IC50 values of 2.7 nM and 3.9 nM, respectively, which 

corroborates the importance of para-substitution for activity. Keeping in mind the high homology of 

the two CYP11B isoforms, the selectivity factors relating to CYP11B1 inhibition of the latter 

compounds are particularly noteworthy. Compound 17 displays an approximately 700-fold and 

compound 18 a 900-fold stronger inhibition of CYP11B2 versus CYP11B1.  
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Figure 3. 

 
Figure 3. Structure of the CYP11B2 binding pocket 
with the docked inhibitors 16 (a) and 19 (b). Details of 
the active site, showing inhibitor, heme co-factor and 
the interacting residues of Pro452, Val339, and Thr279. 

 

In the naphthalene molecular scaffold, introduction of a methoxy substituent in 7-position results in 

a decreased inhibitory potency (20, 30) whereas the same substituent is readily tolerated in 6-position 

and even slightly increases the CYP11B1 selectivity in most cases. Figure 4 shows the 6-methoxy 

substituted derivative 19 mapped to the pharmacophore model. It is obvious that this compound nearly 

perfectly exploits both the well known (HY0, HY1, HY2a, AA1, AA2a) and the newly identified 

(HY3, AA3b) interaction areas which is reflected by the high inhibitory potency of this compound and 

underlines the predictive power of our pharmacophore hypothesis.  

The para-methoxy group in the benzyl moiety of 19 which has been found to be responsible for 

both high inhibitory activity at CYP11B2 and selectivity versus CYP11B1 fits to the acceptor atom 

feature AA3b. Hence, targeting this interaction area is a promising strategy in the future design of 

potent and selective aldosterone synthase inhibitors. With respect to the selectivity profile relating to 

inhibition of several other CYP enzymes, it becomes apparent that 6-methoxylation endows the 

benzylnaphthalenes with an increased inhibitory potency at CYP19 as in the case of compounds 19, 

22, and 23, for example 6-methoxy derivative 19 is a highly potent CYP19 inhibitor displaying an 

activity similar to fadrozole. In addition, the latter compound strongly inhibits several hepatic CYP 

enzymes (i.e., CYP2C9, CYP2C19, and CYP3A4).  
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Figure 4. 

 
Compound 19 shows an enhanced fit to the pharmacophore 
hypothesis compared to 1 by additionally exploiting the 
features HY3 and AA3b. Pharmacophoric features are color-
coded: Cyan for hydrophobic regions (HY0–HY3) and green 
for acceptor atom features (AA1–4). 

 

Varying the substitution pattern of the pyridine site induces no distinct changes of the CYP11B2 

potency in case of 21 and 22. Again, 6-methoxylation in compound 22 increases the selectivity versus 

CYP11B1 compared to 21. A slightly decreased selectivity versus CYP11B1 is observable in case of 

the isoquinoline derivatives 24 and 25 due to a moderate increase in CYP11B1 potency (IC50 < 1000 

nM) which corresponds to previously observed results within the pyridylnaphthalene series.39 Contrary 

to the finding that 6-methoxylation effects a slightly improved selectivity (as shown in previous 

studies14,15 and observed in case of compounds 13, 19, and 22 compared to 12, 16, and 21), the 6-

methoxynaphthalene compound 25 is less selective than the hydrogen analog 24. Derivatization of the 

methylene linker in compounds 26–35 leads to a decrease in inhibitory potency. The carbonyl 

analogues 26, 28, and 29 are slightly less active than their methylene analogues. On the other hand, 

CYP11B1 inhibition is reduced to the same degree and the high selectivity is maintained. Again, para-

trifluoromethoxy has the strongest effect on the inhibitory discrimination between the two CYP11B 

isoforms and derivative 29 is approximately 400-fold less active at CYP11B1 compared to CYP11B2. 

In case of the para-cyanobenzoyl compound 28, a decreased inhibition of the sex-hormone producing 

CYP17, CYP19 as well as the hepatic CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP2D6 

enzymes is found compared to the benzyl analog 17, thus providing an advantageous overall CYP 

selectivity profile for this compound. Other variations of the methylene moiety as accomplished in the 

hydroxy- and methoxymethylene derivatives 30–35 lead to a pronounced decrease of inhibitory 

activity compared to the unsubstituted analogues. These compounds display 51–63 % inhibition at an 

inhibitor concentration of 500 nM in case of hydroxy substitution (30–34) and only 23 % in case of 

methoxy substitution (35). Obviously, the decrease in potency with increasing substituent size 

(hydrogen < carbonyl < hydroxy < methoxy) reflects the increase of steric repulsion between the aryl–

aryl spacer and the enzyme parts (i.e., Leu343 and heme co-factor) separating the naphthalene binding 

site from the sub-pocket interacting with the benzyl residue. 
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In summary, it has been shown that our CYP11B2 pharmacophore model has predictive power to 

identify prospective lead structures. Based on the results of the pharmacophore model, a new class of 

pyridylnaphthalene derivatives with extended carbocyclic skeleton was synthesized. Derivatives with 

para-functionalized benzyl moiety in 3-position of the naphthalene molecular scaffold thoroughly 

satisfied the spatial constraints imposed by the pharmacophore model and turned out to be highly 

potent aldosterone synthase inhibitors. The most active compound, para-cyanobenzyl derivative 17, 

displayed nanomolar potency at the target enzyme (IC50 = 2.7 nM). In addition, docking studies using 

our CYP11B2 protein model proved to be a useful tool to estimate the inhibitory properties of 

proposed new molecules and to explain structure-activity relationships. The binding behavior of 

compounds 11 and 12 was adequately predicted by the docking results. Furthermore, it was shown that 

the high inhibitory potency of the para-substituted derivative 16 is the outcome of stabilizing 

interactions with the residues of Pro452, Val339, and Thr279. The selectivity versus CYP11B1 (up to 

a factor of 900) which is especially remarkable with respect to the high homology of the two CYP11B 

isoforms was found to be a consequence of para-substitution and hence of exploiting the AA3b 

pharmacophoric feature as well. Currently, further studies are underway to evaluate selected com-

pounds for their in vivo properties.  

 

Experimental Section 

Chemical and Analytical Methods. Melting points were measured on a Mettler FP1 melting point 

apparatus and are uncorrected. 1H NMR and 13C spectra were recorded on a Bruker DRX-500 

instrument. Chemical shifts are given in parts per million (ppm), and tetramethylsilane (TMS) was 

used as internal standard for spectra obtained in DMSO-d6 and CDCl3. All coupling constants (J) are 

given in Hertz. Mass spectra (LC/MS) were measured on a TSQ Quantum (Thermo Electron 

Corporation) instrument with a RP18 100-3 column (Macherey Nagel) and with water/acetonitrile 

mixtures as eluents. Elemental analyses were carried out at the Department of Chemistry, University 

of Saarbrücken. Reagents were used as obtained from commercial suppliers without further 

purification. Solvents were distilled before use. Dry solvents were obtained by distillation from 

appropriate drying reagents and stored over molecular sieves. Flash chromatography was performed 

on silica gel 40 (35/40–63/70 µM) with petroleum ether/ethyl acetate mixtures as eluents, and the 

reaction progress was determined by thin-layer chromatography analyses on Alugram SIL G/UV254 

(Macherey Nagel). Visualization was accomplished with UV light and KMnO4 solution. All 

microwave irradiation experiments were carried out in a CEM-Discover monomode microwave 

apparatus. 

The following compounds were prepared according to previously described procedures: 3-(3-

methoxynaphthalen-2-yl)pyridine (11c),14 (3-methoxynaphtalene-2-yl)boronic acid (11d),22 methyl 3-

methoxynaphthalene-2-carboxylate (12g),26 methyl 3-hydroxynaphthalene-2-carboxylate (12h),25 (3-

hydroxynaphthalen-2-yl)(4-methoxyphenyl)methanone (26b),32 (3-methoxynaphthalen-2-yl)(4-
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methoxyphenyl)methanone (26c),32 N,4-Dimethoxy-N-methylbenzamide (26d),32 4-[(3-hydroxy-

naphthalen-2-yl)carbonyl]benzonitrile (28b),32 4-[(3-mehoxynaphthalen-2-yl)carbonyl]benzonitrile 

(28c),32 4-Cyano-N-methoxy-N-methylbenzamide (28d).32  

Synthesis of the Target Compounds 

Procedure A.24 Boronic acid (0.75 mmol, 1 equivalent), aryl bromide or -triflate (0.9–1.3 

equivalents), and tetrakis(triphenylphosphane)palladium(0) (43 mg, 37.5 µmol, 5 mol %) were sus-

pended in 1.5 mL DMF in a 10 mL septum-capped tube containing a stirring magnet. To this was 

added a solution of NaHCO3 (189 mg, 2.25 mmol, 3 equivalents) in 1.5 mL water and the vial was 

sealed with an Teflon cap. The mixture was irradiated with microwaves for 15 min at a temperature of 

150 °C with an initial irradiation power of 100 W. After the reaction, the vial was cooled to 40 °C, the 

crude mixture was partitioned between ethyl acetate and water and the aqueous layer was extracted 

three times with ethyl acetate. The combined organic layers were dried over MgSO4 and the solvents 

were removed in vacuo. The coupling products were obtained after flash chromatography on silica gel 

(petroleum ether/ethyl acetate mixtures) and/or crystallization. If an oil was obtained, it was dissolved 

in diethyl ether/methanol and tranferred into the hydrochloride salt by 1N HCl solution in iso-

propanol/diethyl ether, followed by filtration and optional crystallization from acetone. Analytical data 

refer to the free base unless otherwise noted. 

Procedure B. Boronic acid (1 equivalent), aryl bromide or -triflate (1.3–1.5 equivalents), and 

tetrakis(triphenylphosphane)palladium(0) (5 mol %) were suspended in toluene/ethanol 4/1 to give a 

0.07–0.1 M solution of boronic acid under an atosphere of nitrogen. To this was added a 1 N aqueous 

solution of Na2CO3 (6 equivalents). The mixture was then refluxed for 12–18 h, cooled to room 

temperature, diluted with water and extracted several times with ethyl acetate. The combined extracts 

were dried over MgSO4, concentrated and purified by flash chromatography on silica gel (petroleum 

ether/ethyl acetate mixtures) and/or crystallization. If an oil was obtained, it was dissolved in diethyl 

ether/methanol and tranferred into the hydrochloride salt by 1N HCl solution in isopropanol/diethyl 

ether, followed by filtration and optional crystallization from acetone. Analytical data refer to the free 

base unless otherwise noted. 

Procedure C.33,34 To a 0.6 M solution of NaI (6 equivalents) in acetonitrile was added 

chlorotrimethylsilane (6 equivalents) at room temperature, and the mixture was stirred for 30 min 

before cooling to 0 °C with an ice-water bath. Then, a 1 M solution of the phenylnaphthylalcohol (1 

equivalent) in acetonitrile was added dropwise. After complete addition the mixture was heated at 55 

°C for 3 h. After recooling to room temperature, the reaction was quenched by addition of saturated 

aqueous NaHCO3 solution. The layers were separated, and the aqueous layer extracted twice with 

ethyl acetate The combined organic layers were washed with a solution of Na2S2O3, water and brine. 

The extracts were dried over MgSO4, concentrated and purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate mixtures). If an oil was obtained, it was dissolved in diethyl 

ether/methanol and tranferred into the hydrochloride salt by 1N HCl solution in isopropanol/diethyl 
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ether, followed by filtration and optional crystallization from acetone. Analytical data refer to the free 

base unless otherwise noted. 

Procedure D. To a 0.05 M solution of benzoylnaphthalene in dry methanol was added sodium 

borohydride (2 equivalents) at such a rate as to maintain the internal reaction temperature below 5 °C. 

The reaction mixture was stirred for 1 h, diluted with diehtylether and treated with saturated aqueous 

NaHCO3 solution. The mixture was then extracted three times with ethyl acetate, washed twice with 

saturated aqueous NaHCO3 solution and once with brine and dried over MgSO4. The filtrate was 

concentrated in vacuo, and the residue was flash chromatographed on silica gel (petroleum ether/ethyl 

acetate mixtures) to afford the corresponding alcohols. 

3-(3-Phenylnaphthalen-2-yl)pyridine (11) was obtained according to procedure A from 11a (657 

mg, 1.86 mmol) and phenylboronic acid (854 mg, 4.00 mmol) after flash chromatography on silica gel 

(petroleum ether/ethyl acetate, 7/3, Rf = 0.22) as a colorless oil (195 mg, 0.69 mmol, 37 %), 

precipitation of the hydrochloride salt afforded a highly hygroscopic solid, mp (HCl salt) 106–109 °C. 

MS m/z 282.70 (MH+). Anal. (C21H15N·HCl·1.5H2O) C, H, N. 

3-(3-Benzylnaphthalen-2-yl)pyridine (12) was obtained according to procedure A from 12a (433 

mg, 1.18 mmol) and 3-pyridineboronic acid (105 mg, 0.85 mmol) after flash chromatography on silica 

gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.19) as a colorless oil (186 mg, 0.63 mmol, 74 %), mp 

(HCl salt) 197–198 °C. MS m/z 296.14 (MH+). Anal. (C22H17N·HCl·0.6H2O) C, H, N. 

3-(3-Benzyl-6-methoxynaphthalen-2-yl)pyridine (13) was obtained according to procedure A 

from 13a (462 mg, 1.17 mmol) and 3-pyridineboronic acid (100 mg, 0.81 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.18) as a colorless oil (196 mg, 

0.60 mmol, 74 %), mp (HCl salt) 170–172 °C. MS m/z  326.09 (MH+). Anal. (C23H19NO·HCl·0.6H2O) 

C, H, N. 

3-[3-(2-Methoxybenzyl)naphthalen-2-yl]pyridine (14) was obtained according to procedure A 

from 14a (462 mg, 1.17 mmol) and 3-pyridineboronic acid (100 mg, 0.81 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.26) as colorless oil (161 mg, 

0.50 mmol, 61 %), mp (HCl salt) 214–216 °C. MS m/z  326.02 (MH+). Anal. (C23H19NO·HCl·0.6H2O) 

C, H, N. 

3-[3-(3-Methoxybenzyl)naphthalen-2-yl]pyridine (15) was obtained according to procedure A 

from 15a (433 mg, 1.09 mmol) and 3-pyridineboronic acid (92 mg, 0.75 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.13) as a colorless oil (162 mg, 

0.50 mmol, 66 %), mp (HCl salt) 161–162 °C. MS m/z 326.02 (MH+). Anal. (C23H19NO·HCl·0.6H2O) 

C, H, N. 

3-[3-(4-Methoxybenzyl)naphthalen-2-yl]pyridine (16) was obtained according to procedure A 

from 16a (476 mg, 1.20 mmol) and 3-pyridineboronic acid (92 mg, 0.75 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 4/1, Rf = 0.14) as a colorless oil (199 mg, 

0.56 mmol, 75 %), mp (HCl salt) 180–182 °C. 1H-NMR (500 MHz, CDCl3): δ = 3.75 (s, 3H), 4.00 (s, 
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2H), 6.72 (d, 3J = 8.8 Hz, 2H), 6.82 (d, 3J = 8.8 Hz, 2H), 7.26 (ddd, 3J = 7.9 Hz, 3J = 4.7 Hz, 5J = 0.9 

Hz, 1H), 7.45–7.52 (m, 3H), 7.68 (s, 1H), 7.70 (s, 1H), 7.79–7.83 (m, 2H), 8.55 (dd, 4J = 2.2 Hz, 5J = 

0.9 Hz, 1H), 8.59 (dd, 3J = 4.7 Hz, 4J = 1.9 Hz, 1H). 13C-NMR (125 MHz, CDCl3): δ = 39.0, 55.2, 

113.7, 122.7, 126.0, 126.4, 127.3, 127.6, 128.9, 129.4, 129.7, 132.0, 132.4, 133.1, 136.6, 137.06, 

137.13, 148.2, 149.9, 157.9. MS m/z 326.16 (MH+). Anal. (C23H19NO·HCl·0.6H2O) C, H, N. 

4-(3-Pyridin-3-yl-naphthalen-2-ylmethyl)benzonitrile (17) was obtained according to procedure 

C from 33 (841 mg, 2.50 mmol), sodium iodide (2.25 g, 15.0 mmol) and chlorotrimethylsilane (1.63 g, 

15.0 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.15) as a 

colorless oil (486 mg, 1.52 mmol, 61 %), mp (HCl salt) 130–131 °C. MS m/z 321.33 (MH+). Anal. 

(C23H16N2·HCl·0.8H2O) C, H, N. 

3-[3-(4-Trifluoromethoxybenzyl)naphthalen-2-yl]pyridine (18) was obtained according to 

procedure C from 34 (395 mg, 1.00 mmol), sodium iodide (899 mg, 6.0 mmol) and 

chlorotrimethylsilane (652 mg, 6.0 mmol) after flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 4/1, Rf = 0.28) as a colorless oil (292 mg, 0.77 mmol, 77 %), precipitation of the 

hydrochloride salt afforded a highly hygroscopic solid, mp (HCl salt) 139–142 °C. MS m/z 379.90 

(MH+). Anal. (C24H17F3NO·HCl·0.2H2O) C, H, N. 

3-[6-Methoxy-3-(4-methoxybenzyl)naphthalen-2-yl]pyridine (19) was obtained according to 

procedure A from 19a (512 mg, 1.20 mmol) and 3-pyridineboronic acid (113 mg, 0.92 mmol) after 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.18) as a colorless oil (189 

mg, 0.55 mmol, 60 %), mp (HCl salt) 114–115 °C. 1H-NMR (500 MHz, CDCl3): δ = 3.75 (s, 3H), 3.91 

(s, 3H), 3.98 (s, 2H), 6.73 (d, 3J = 8.5 Hz, 2H), 6.84 (d, 3J = 8.5 Hz, 2H), 7.09 (d, 4J = 2.5 Hz, 1H), 

7.13 (dd, 3J = 9.0 Hz, 4J = 2.5 Hz, 1H), 7.25 (dd, 3J = 8.0 Hz, 3J = 4.8 Hz, 1H), 7.51 (m, 1H), 7.57 (s, 

1H), 7.60 (s, 1H), 7.71 (d, 3J = 8.9 Hz, 1H), 8.54 (d, 4J = 1.9 Hz, 1H), 8.56 (dd, 3J = 4.8 Hz, 4J = 1.5 

Hz, 1H). 13C-NMR (125 MHz, CDCl3): δ = 38.9, 55.2, 55.3, 105.2, 113.7, 119.0, 122.8, 127.5, 127.8, 

129.1, 129.2, 129.8, 132.6, 134.4, 134.8, 136.8, 137.3, 137.6, 148.1, 150.1, 157.9, 158.1. MS m/z 

356.25 (MH+). Anal. (C24H21NO2·HCl·0.8H2O) C, H, N. 

3-[7-Methoxy-3-(4-methoxybenzyl)naphthalen-2-yl]pyridine (20) was obtained according to 

procedure C from 20a (400 mg, 1.08 mmol), sodium iodide (1.65 g, 11.0 mmol) and 

chlorotrimethylsilane (1.20 g, 11.0 mmol) after flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 7/3, Rf = 0.11) as a colorless oil (148 mg, 0.42 mmol, 39 %), mp (HCl salt) 101–

103 °C. MS m/z 356.04 (MH+). Anal. (C24H21NO2·HCl·0.1H2O) C, H, N. 

3-Methoxy-5-[3-(4-methoxybenzyl)naphthalen-2-yl]pyridine (21) was obtained according to 

procedure A from 16a (396 mg, 1.00 mmol) and 5-methoxy-3-pyridineboronic acid acid (130 mg, 0.85 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.21) as a 

colorless oil (149 mg, 0.42 mmol, 49 %), mp (HCl salt) 106–108 °C. MS m/z 356.09 (MH+). Anal. 

(C24H21NO2·HCl·0.5H2O) C, H, N. 
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3-Methoxy-5-[6-methoxy-3-(4-methoxybenzyl)naphthalen-2-yl]pyridine (22) was obtained 

according to procedure A from 19a (426 mg, 1.00 mmol) and 5-methoxy-3-pyridineboronic acid acid 

(130 mg, 0.85 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 

0.18) as colorless plates (244 mg, 0.63 mmol, 75 %), mp 129–130 °C. MS m/z 385.91 (MH+). Anal. 

(C25H23NO3) C, H, N. 

3-(3-Benzyl-6-methoxynaphthalen-2-yl)5-methoxypyridine (23) was obtained according to 

procedure A from 13a (396 mg, 1.00 mmol) and 5-methoxy-3-pyridineboronic acid acid (130 mg, 0.85 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.21) as a 

colorless oil (221 mg, 0.62 mmol, 73 %), mp (HCl salt) 119–121 °C. MS m/z 356.09 (MH+). Anal. 

(C24H21NO2·HCl·0.2H2O) C, H, N. 

4-[3-(4-Methoxybenzyl)naphthalen-2-yl]isoquinoline (24) was obtained according to procedure A 

from 16a (396 mg, 1.00 mmol) and 4-isoquinolineboronic acid (130 mg, 0.75 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.20) as a colorless oil (178 mg, 

0.47 mmol, 63 %), mp (HCl salt) 202–203 °C. MS m/z 376.12 (MH+). Anal. (C27H21NO·HCl·0.5H2O) 

C, H, N. 

4-[6-Methoxy-3-(4-methoxybenzyl)naphthalen-2-yl]isoquinoline (25) was obtained according to 

procedure A from 19a (456 mg, 1.07 mmol) and 4-isoquinolineboronic acid (130 mg, 0.75 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.18) and 

crystallization from acetone/diethyl ether as colorless plates (178 mg, 0.44 mmol, 59 %), mp 158–159 

°C. MS m/z 406.00 (MH+). Anal. (C28H23NO2) C, H, N. 

(4-Methoxyphenyl)(3-pyridin-3-yl-naphthalen-2-yl)methanone (26) was obtained according to 

procedure B from 26a (4.02 g, 9.80 mmol) and 3-pyridineboronic acid (1.02 g, 8.33 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.22) as an off-white solid (2.66 

g, 7.84 mmol, 94 %), mp 69–72 °C. MS m/z 340.07 (MH+). Anal. (C23H17NO2·0.2H2O) C, H, N.  

(3-Fluoro-4-methoxyphenyl)(3-pyridin-3-yl-naphthalen-2-yl)methanone (27) was obtained 

according to procedure B from 27a (4.19 g, 9.78 mmol) and 3-pyridineboronic acid (1.02 g, 8.33 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.16) as an 

off-white solid (2.52 g, 7.05 mmol, 85 %), mp 96–97 °C.  MS m/z 358.00 (MH+). Anal. 

(C23H16FNO2·0.1H2O) C, H, N. 

4-(3-Pyridin-3-yl-naphthalene-2-carbonyl)benzonitrile (28) was obtained according to procedure 

B from 28a (3.0 g, 7.40 mmol) and 3-pyridineboronic acid (1.0 g, 8.20 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.15) as yellowish needles (1.67 

g, 5.0 mmol, 68 %), mp 135–136 °C. MS m/z 335.05 (MH+). Anal. (C23H14N2O·0.1H2O) C, H, N. 

(3-Pyridin-3-yl-naphthalen-2-yl)(4-trifluoromethoxyphenyl)methanone (29) was obtained 

according to procedure B from 29a (4.57 g, 9.84 mmol) and 3-pyridineboronic acid (1.02 g, 8.33 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.20) as a 

colorless oil (3.20 g, 8.14 mmol, 98 %), precipitation of the hydrochloride salt afforded a highly 
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hygroscopic solid, mp (HCl salt) 116–118 °C.  MS m/z 393.89 (MH+). Anal. (C23H14F3NO2·HCl) C, H, 

N. 

(4-Methoxyphenyl)(6-methoxy-3-pyridin-3-yl-naphthalen-2-yl)methanone (30) was obtained 

according to procedure B from 30a (1.54 g, 3.50 mmol) and 3-pyridineboronic acid (374 mg, 3.0 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.08) and 

crystallization from methanol as a white solid (723 mg, 1.96 mmol, 65 %), mp 140–141 °C. MS m/z 

370.10 (MH+). Anal. (C24H19NO3·0.2H2O) C, H, N. 

 (4-Methoxyphenyl)(3-pyridin-3-yl-naphthalen-2-yl)methanol (31) was obtained according to 

pocedure D from 26 (1.02 g, 3.0 mmol) and sodium borohydride (226 mg, 6.0 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.18) as a colorless solid (597 

mg, 1.75 mmol, 58 %), mp 77–78 °C. MS m/z 342.10 (MH+). Anal. (C23H19NO2·0.3H2O) C, H, N. 

(3-Fluoro-4-methoxyphenyl)(3-pyridin-3-yl-naphthalen-2-yl)methanol (32) was obtained 

according to procedure D from 27 (2.11 g, 5.91 mmol) and sodium borohydride (246 mg, 6.50 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.19) as a yellowish 

solid (543 mg, 1.51 mmol, 26 %), mp 75–76 °C. MS m/z 359.96 (MH+). Anal. (C23H18FNO2·0.5H2O) 

C, H, N. 

4-[Hydroxy-(3-pyridin-3-yl-naphthalen-2-yl)methyl]benzonitrile (33) was obtained according to 

procedure D from 28 (1.46 g, 4.37 mmol) and sodium borohydride (182 mg, 4.80 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.16) as a colorless solid (1.22 g, 

3.63 mmol, 83 %), mp 101–103 °C. MS m/z 336.93 (MH+). Anal. (C23H16N2O·0.5H2O) C, H, N. 

(3-Pyridin-3-yl-naphthalen-2-yl)(4-trifluoromethoxyphenyl)methanol (34) was obtained 

according to Procedure D from 29 (2.80 g, 7.12 mmol) and sodium borohydride (295 mg, 7.80 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.32) as a colorless 

solid (1.86 g, 4.70 mmol, 66 %), mp 65–66 °C. MS m/z 396.20 (MH+). Anal. (C23H16F3NO2·0.2H2O) 

C, H, N. 

3-{3-[Methoxy-(4-methoxyphenyl)methyl]naphthalen-2-yl}pyridine (35). To a suspension of 

NaH (40 mg, 1.0 mmol, 60% dispersion in oil) in 5 mL dry THF at was added dropwise a solution of 

31 (300 mg, 0.88 mmol) in 5 mL THF at room temperature under an atmosphere of nitrogen. After 

hydrogen evolution ceased, a solution of methyliodide (59 µL, 0.95 mmol) in 5 mL THF was added 

dropwise, and the resulting mixture was stirred for 5 h at room temperature. After 2 h an additional 59 

µl methyliodide was added. The mixture was then treated with saturated aqueous NH4Cl solution and 

extracted three times with ethyl acetate. The combined organic layers were washed with water and 

brine, dried over MgSO4 and the solvent was evaporated in vacuo. 35 was obtained after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.39) as colorless oil (226 mg, 

0.64 mmol, 72 %), mp (HCl salt) 113–114 °C. MS m/z 356.11 (MH+). Anal. (C24H21NO2·HCl·0.7H2O) 

C, H, N. 
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Biological Methods. 1. Enzyme Preparations. CYP17 and CYP19 preparations were obtained by 

described methods: the 50,000 g sediment of E. coli expressing human CYP1740 and microsomes from 

human placenta for CYP19.42 2. Enzyme Assays. The following enzyme assays were performed as 

previously described: CY1740 and CYP19.42 3. Activity and Selectivity Assay Using V79 Cells. V79 

MZh 11B1 and V79 MZh 11B2 cells36 were incubated with [4-14C]-11-deoxycorticosterone as 

substrate and inhibitor in at least three different concentrations. The enzyme reactions were stopped by 

addition of ethyl acetate. After vigorous shaking and a centrifugation step (10,000 g, 2 min), the 

steroids were extracted into the organic phase, which was then separated. The conversion of the 

substrate was analyzed by HPTLC and a phosphoimaging system as described.10,36 4. Inhibition of 

Human Hepatic CYP Enzymes. The recombinantly expressed enzymes from baculovirus-infected 

insect microsomes (Supersomes) were used and the manufacturer’s instructions (www.gentest.com) 

were followed.  

Computational Methods. 1. Pharmacophore Modeling. The most potent compounds of the 

heteroaryl substituted methyleneindane and naphthalene derivatives and the most potent flavones were 

selected as training set (see  supplementary material for composition of  the training set) for the 

generation of an extended pharmacophore model. GALAHAD,19 the pharmacophore generation 

module of SYBYL 7.3.2 (Sybyl, Tripos Inc., St. Louis, Missouri, USA), was used to generate 

pharmacophore hypotheses of the series of inhibitors form hypermolecules incorporating the structural 

information of the dataset and alignments from sets of ligand molecules. In the genetic algorithm, 

default values were used. In the present case, 100 models were generated and the best 20 

pharmacophore-hypotheses were saved. GALAHAD takes into account energetics, steric similarity, 

and pharmacophoric overlap, while accommodating conformational flexibility, ambiguous 

stereochemistry, alternative ring configurations, multiple partial match constraints, and alternative 

feature mappings among molecules. All the other molecules of the library were then aligned using 

each of the 20 pharmacophores as a template, and the best pharmacophore was selected. The top 

ranked model was the best in three of the most indicative ranking criteria of the used software (Pareto 

ranking,20 Specificity, and Mol-query). An additional donor site feature not shown in the figures) was 

manually added to simulate the complexation of the heme iron by the sp2-hybridized nitrogen (AA1) 

in order to fix the orientation of the lone pair of the sp2-hybridized nitrogen. This refined 

pharmacophore model was selected as molecular query for the alignment of our database library. The 

core of the pharmacophoric scheme is formed by five hydrophobic features (HY0, HY1, HY2a, 

HY2b) and the acceptor atom (AA) spheres represent the H-bond acceptors. In some cases, the 

acceptor feature AA2a overlapped a donor feature (data not shown), indicating the presence of an OH 

function. The final pharmacophore model consists of 12 pharmacophoric features: 4 essential ones 

(HY0, AA1, HY1), necessary for basal inhibitory potency, and 8 partial matches (HY2, HY2b, AA2a, 

AA2b, HY3, AA3a, AA3b, and AA4). 2. Protein Modeling and Docking. Using the resolved human 

cytochrome CYP2C9 structure (PDB code: 1OG5)43 as template, a homology model was build and 
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refined for CYP11B2. This work has been described in more detail by our group in four recent 

papers.12–15 In this study selected compounds were docked into the refined homology model using 

FlexX-Pharm.44 A pharmacophore constraint was applied to ensure the right binding mode of the 

inhibitors with the heme-cofactor. For this purpose the standard Fe–N interaction parameters of 

FlexX45,46 were modified and a directed heme-Fe–N interaction was defined perpendicular to the 

heme-plane. The constraint requires the existence of an inhibitor-nitrogen-atom on the surface of an 

interaction cone with a 20 degree radius, which has its origin at the Fe-atom and points perpendicular 

to the heme-plane (with a length of 2.2 Ǻ). Only docking solutions were accepted, which fulfill this 

constraint. For all other ligand-protein interactions the standard FlexX interaction parameters and 

geometries were used. The protein-ligand interactions were analyzed using the FlexX software. 
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Abstract: Pyridine substituted naphthalenes (e.g., I–III) constitute a class of potent inhibitors of 

aldosterone synthase (CYP11B2). To overcome the unwanted inhibition of the hepatic enzyme 

CYP1A2, we aimed at reducing the number of aromatic carbons of these molecules since aromaticity 

has previously been identified to correlate positively with CYP1A2 inhibition. As hypothesized, 

inhibitors with a tetrahydronaphthalene type molecular scaffold (1–11) exhibit a decreased CYP1A2 

inhibition, however, tetralone 9 turned out to be cytotoxic to the human cell line U-937 at higher 

concentrations. Consequent structural optimization culminated in the discovery of heteroaryl 

substituted 3,4-dihydro-1H-quinolin-2-ons (12–26), with 12, a bioisoster of 9, being not toxic up to 

200 µM. The investigated molecules are highly selective versus both CYP1A2 and a wide range of 

other cytochrome P450 enzymes and show a good pharmacokinetic profile in vivo (e.g., 12 with a 

peroral bioavailability of 71 %). 
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Introduction 

The progressive nature of congestive heart failure (CHF) is a consequence of a neurohormonal 

imbalance that involves a chronic activation of the renin-angiotensin-aldosterone system (RAAS) in 

response to reduced cardiac output and reduced renal perfusion. Aldosterone and angiotensin II (Ang 

II) are excessively released, leading to increased blood volume and blood pressure as a consequence of 

epithelial sodium retention as well as Ang II mediated vasoconstriction and finally to a further 

reduction of cardiac output.1 The RAAS is pathophysiologically stimulated in a vicious circle of 

neurohormonal activation that counteracts the normal negative feedback loop regulation. The most 

important circulating mineralocorticoid aldosterone acts by binding to specific mineralocorticoid 

receptors (MR) located in the cytosol of target epithelial cells. Thereby, renal sodium reabsorption and 

potassium secretion are promoted in the distal tubule and the collecting duct of the nephron. Elevated 

blood volume and thus blood pressure results from water that follows the sodium movement via 

osmosis. In addition to these indirect effects on heart function, aldosterone exerts direct effects on the 

heart by activating nonepithelial MRs in cardiomyocytes, fibroblasts and endothelial cells. Synthesis 

and deposition of fibrillar collagens in the fibroblasts result in myocardial fibrosis.2 Relatively 

inelastic collagen fibers stiffen the heart muscle which deteriorates the myocardial function and 

consequently enhances the neurohormonal imbalance by further stimulation of the RAAS. In addition 

to the effects of circulating aldosterone deriving from adrenal secretion, Satoh et al. reported that 

aldosterone produced locally in the heart triggers myocardial fibrosis, too.3 Recent clinical studies with 

the MR antagonists spironolactone and eplerenone gave evidence for the pivotal role of aldosterone in 

the progression of cardiovascular diseases. Blocking the aldosterone action by functional antagonism 

of its receptor reduced the mortality and significantly reduced the symptoms of heart failure.4 

Furthermore, follow-up studies revealed that cardiac fibrosis can not only be prevented but also 

reversed by use of spironolactone.5 

However, several issues are unsolved by this therapeutic strategy. Spironolactone binds rather 

unselectively to the aldosterone receptor and also has some affinity to other steroid receptors, pro-

voking adverse side effects.4 Although eplerenone is more selective, clinically relevant hyperkalemia 

remains a principal therapeutic risk.6 Another crucial point is the high concentration of circulating 

aldosterone which is not lowered by MR antagonistic therapy and raises several issues. First, the 

elevated aldosterone plasma levels do not induce a homologous down-regulation but an up-regulation 

of the aldosterone receptor which complicates a long-term therapy since MR antagonists are likely to 

become ineffective.7 Furthermore, the nongenomic actions of aldosterone are in general not blocked 

by receptor antagonists and can occur despite MR antagonistic treatment.8 A novel therapeutic strategy 

for the treatment of hyperaldosteronism, congestive heart failure and myocardial fibrosis with 

potential to overcome the drawbacks of MR antagonists was recently suggested by us:9,10 Blockade of 

aldosterone production by inhibiting the key enzyme of its biosynthesis, aldosterone synthase 

(CYP11B2), a mitochondrial cytochrome P450 enzyme that is localized mainly in the adrenal cortex 
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and catalyzes the terminal three oxidation steps in the biogenesis of aldosterone in humans.11 

Consequent structural optimization of a hit discovered by compound library screening led to a series 

of nonsteroidal aldosterone synthase inhibitors with high selectivity versus other cytochrome P450 

enzymes.12,13 Pyridine-substituted naphthalenes14,15 such as I–III (Chart 1) and dihydronaphthalenes,16 

the most potent and selective compounds that emerged from our drug discovery program, however, 

revealed two major pharmacological drawbacks: A strong inhibition of the hepatic drug metabolizing 

enzyme CYP1A2 and no inhibitory effect on the aldosterone production in vivo by using a rat model.  

Chart 1. Pyridylnaphthalene Type CYP11B2 Inhibitors I–

III and Design Strategy for 3,4-Dihydro-1H-quinolin-2-one 

Derivatives (e.g., 12 and 14) 

 
 

In the present study, we describe the design and the synthesis of pyridine-substituted 3,4-dihydro-

1H-quinolin-2-ones and structurally related compounds as highly potent and selective CYP11B2 

inhibitors (Chart 2). The design concept toward these molecules is based on a systematic reduction of 

aromaticity by saturation of the hydrocarbons C5 to C8 of the naphthalene moiety and subsequent 

chemical modification of the fully saturated ring (Chart 1). The inhibitory activity of the title 

compounds was determined in V79 MZh cells expressing human CYP11B2. The selectivity was 

investigated with respect to the highly homologous 11β-hydroxylase (CYP11B1) as well as other 

crucial steroid- or drug-metabolizing cytochrome P450 enzymes (CYP17, CYP19, CYP1A2, 

CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). The in vivo pharmacokinetic profile of some 

promising compounds was determined in male Wistar rats in both cassette and single dosing 

experiments. Furthermore, plasma protein binding and cytotoxicity studies were performed. 

Chart 2. Title Compounds 
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Results 
Chemistry 

The key step for the synthesis of the title compounds was a Suzuki coupling to introduce the 

heterocycle, mostly 3-pyridine. In case of the unsubstituted tetrahydronaphthalene 1 the cross-

coupling was accomplished by a microwave enhanced method17 using 3-pyridineboronic acid and 

triflate 1a which was prepared from the corresponding tetrahydronaphthol (Scheme 1).18 Compounds 

7, 8, and 26 were synthesized via Suzuki coupling from commercially available arylbromides and 3-

pyridineboronic acid under microwave heating. 

Scheme 1a 

 
a Reagents and conditions: i) Tf2NPh, K2CO2, THF, 
µw, 120 °C; ii) pyridineboronic acid, Pd(PPh3)4, aq. 
NaHCO3, DMF, µw, 150 °C. 

 

The synthesis of compounds 2–6 and 9–11 (Scheme 2) started from either 6-bromo-2-tetralone (n = 

1) or 5-bromo-1-indanone (n = 0) as key building block. Suzuki coupling afforded the heterocycle-

substituted analogues 9–11. Dihydronaphthalene derivative 6 was prepared by treatment of tetralone 9 

with KHMDS, in situ quenching the enolate with Tf2NPh19 and Pd-catalyzed cyanation20 of the 

intermediate enoltriflate. The hydroxy-substituted tetrahydronaphthalene 2 was obtained by sodium 

borohydride reduction of the carbonyl group21 to afford 2a and subsequent Suzuki coupling. O-

Alkylation of 2 afforded the corresponding methoxy- (3) and ethoxy-substituted (4) derivatives. The 6-

cyano-derivatized analog 5 was prepared in three consecutive steps starting with a one-pot 

cyanhydrin/elimination step.22 The intermediate α,β-unsaturated nitrile 5b was treated with NaBH4 in 

refluxing ethanol to reduce the double bond.23 Final Suzuki coupling of 5a with 3-pyridineboronic acid 

afforded the tetrahydronaphthalene 5. 
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Scheme 2a 

 

a Reagents and conditions: i) heteroarylboronic acid, Pd(PPh3)4, aq. NaHCO3, DMF, µw, 150 °C; ii) NaBH4, methanol, 0 °C; 
iii) Me3SiCN, ZnI2, toluene, rt, then POCl3, pyridine, reflux; iv) Tf2NPh, KHMDS, THF/toluene, –78 °C; v) Zn(CN)2, 
Pd(PPh3)4, DMF, 100 °C; vi) NaBH4, ethanol, reflux; vii) alkyl halogenide, NaH, THF, 50 °C. 
 

The synthetic route for the compounds with a dihydro-1H-quinolin-2-one or structurally related 

scaffold was accomplished as outlined in Scheme 3. The initial bromination procedures yielding either 

12a or 13a have been described previously.24,25 Subsequent N-alkylation was accomplished by treating 

the quinolinones with alkyl halogenide and potassium tert-butylate in DMF to afford the intermediates 

14a–16a.26 A nitro substituent was selectively introduced in 8-position of 10a by sulphonitric acid to 

yield 18a.27 The obtained bromoarenes were transformed into the heterocycle-substituted analogues 

12–16 and 18–23 by Suzuki coupling. Treating 12 with N-chlorosuccinimide in DMF at 65 °C 

afforded the 8-chloro derivative 17 as the only regioisomer. Conversion of the dihydroquinolinones 12 

and 17 into the thio analogues 24 and 25 was carried out using Lawessons reagent in refluxing toluene. 

Scheme 3a 

 
a Reagents and conditions: i) NBS, DMF, 0 °C (n = 1) or: Br2, KBr, water, reflux (n = 0); ii) alkyl halogenide, KOtBu, DMF, 
rt; iii) heteroarylboronic acid, Pd(PPh3)4, aq. NaHCO3, DMF, µw, 150 °C or: Pd(PPh3)4, aq. Na2CO3, toluene/ethanol, reflux; 
iv) HNO3/H2SO4, rt; v) NCS, DMF, 65 °C; vi) Lawesson’s reagent, toluene, reflux. 



 77

Biological Results  

Inhibition of Human Adrenal Corticoid Producing CYP11B2 and CYP11B1 In Vitro (Table 

1). The inhibitory activities of the compounds were determined in V79 MZh cells expressing either 

human CYP11B2 or CYP11B1.10,28 The V79 MZh cells were incubated with [14C]-deoxycortico-

sterone as substrate and the inhibitor in different concentrations. The product formation was monitored 

by HPTLC using a phosphoimager. Fadrozole, an aromatase (CYP19) inhibitor with ability to reduce 

corticoid formation in vitro29 and in vivo30 was used as a reference (CYP11B2, IC50 = 1 nM; 

CYP11B1, IC50 = 10 nM). 

Most of the compounds presented in Table 1 show a strong inhibition of the target enzyme. Within 

the tetrahydro- and dihydronaphthalene series (compounds 1–6), a substituent in 6-position of the 

carbocyclic skeleton induces an increased inhibitory potency in case of methoxy- (compound 3) and 

cyano-substituents (compounds 5, 6) as well as a dramatic increase in selectivity toward CYP11B1, 

most notably in methoxy derivative 3 (selectivity factor = 347). Contrariwise, introduction of hetero-

atoms into the saturated ring leads to a decrease of CYP11B2 inhibition (e.g., 7 and 8). The carbonyl 

derivatives 9–11 are also highly potent (IC50 = 1.8–7.8 nM) and selective aldosterone synthase 

inhibitors. Tetralone 9 is the most selective compound of the present series displaying a CYP11B1 

IC50 value 496-fold higher than the CYP11B2 IC50 value. The derivatives with dihydro-1H-quinolin-2-

one molecular scaffold (12–26) exhibit a pronounced inhibitory potency at the target enzyme (IC50 = 

0.1–64 nM) and are selective with respect to CYP11B1 inhibition (selectivity factor = 44–440). A 

significant decrease in inhibitory potency can be observed for derivatization of the lactam nitrogen by 

an isopropyl residue (compound 16) whereas methyl (compound 14) and ethyl (compound 15) are 

tolerated in this position. The activity also decreases for 3-pyridine being replaced by 5-pyrimidine 

(compound 23) as heterocyclic moiety. Introduction of a nitro substituent in 8-position results in the 

rather moderate CYP11B2 inhibitor 18 (IC50 = 64 nM) with lower CYP11B1 selectivity. Contrariwise, 

a chloro substituent in the same position (compound 17) increases the inhibitory potency by a factor of 

7 compared to the hydrogen analog 12. The most potent inhibitors are obtained when the 3-pyridine 

moiety is modified by 5-methoxylation or replaced by 4-isoquinoline resulting in subnanomolar IC50 

values for compounds 20–22 (IC50 = 0.1–0.2 nM). Isoquinoline derivative 22 displays an IC50 value as 

low as 0.1 nM and is the most potent aldosterone synthase inhibitor known so far and also shows a 

pronounced inhibitory potency at CYP11B1 (IC50 = 6.9 nM). The same trend was observed previously 

for the binding properties of a series of heteroaryl-substituted naphthalenes.31 Thionation of the lactam 

carbonyl results in a slightly reduced CYP11B1 selectivity as seen in compounds 24 and 25 compared 

to the oxygen analogues 12 and 17. Moreover, incorporation of a sulfur atom into the lactam moiety in 

compound 26 induces a dramatic loss of CYP11B1 selectivity (selectivity factor = 44). 
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Table 1. Inhibition of Human Adrenal CYP11B2 and CYP11B1 In Vitro 

 
      % inhibitiona IC50 valueb (nM)  

      V79 11B2c V79 11B2c V79 11B1d selectivity 

compd R X Y Het hCYP11B2 hCYP11B2 hCYP11B1 factore 

1 H CH2 CH2  82 29 1977 68 

2 OH CH2 CH2  86 44 4921 112 

3 OMe CH2 CH2  97 3.3 1145 347 

4 OEt CH2 CH2  92 30 4371 146 

5 CN CH2 CH2  94 5.1 745 146 

6     97 1.6 290 181 

7 H NMe O  71 101 5970 59 

8 H O O  70 154 13378 87 

9 H CH2 CH2 3-pyridine 97 7.8 3964 496 

10 H - CH2 3-pyridine 90 4.4 819 186 

11 H CH2 CH2 5-methoxy-3-pyridine 94 1.8 191 106 

12 H NH CH2 3-pyridine 88 28 6746 241 

13 H NH - 3-pyridine 85 14 5952 425 

14 H NMe CH2 3-pyridine 92 2.6 742 289 

15 H NEt CH2 3-pyridine 93 22 5177 235 

16 H NiPr CH2 3-pyridine 39 n.d. n.d. n.d. 

17 Cl NH CH2 3-pyridine 97 3.8 1671 440 

18 NO2 NH CH2 3-pyridine 78 64 5402 84 

19 H NH CH2 5-methoxy-3-pyridine 91 2.7 339 126 

20 H NMe CH2 5-methoxy-3-pyridine 94 0.2 87 435 

21 H NH CH2 4-isoquinoline 94 0.2 33 165 

22 H NMe CH2 4-isoquinoline 99 0.1 6.9 69 

23 H NH CH2 5-pyrimidine 57 n.d. n.d. n.d. 

24 H    97 3.1 580 187 

25 Cl    97 4.2 769 183 

26 H NH S 3-pyridine 92 12 525 44 

fadrozole      1 10 10 
a Mean value of at least four experiments, standard deviation less than 10 %; inhibitor concentration, 500 nM. b Mean value of at least four 
experiments, standard deviation usually less than 25 %, n.d. = not determined. c Hamster fibroblasts expressing human CYP11B2; substrate 
deoxycorticosterone, 100 nM. d Hamster fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 nM. e IC50 
CYP11B1/IC50 CYP11B2, n.d. = not determined.  

 

Inhibition of Steroidogenic and Hepatic CYP Enzymes (Tables 2 and 3). The inhibition of 

CYP17 was investigated using the 50,000 g sediment of the E. coli homogenate recombinantly 

expressing human CYP17 and progesterone (25 µM) as substrate.32 The percental inhibition values 

were measured at an inhibitor concentration of 2.5 µM. Most of the investigated compounds display 

rather low inhibitory action on CYP17 (Table 2). However, a distinct inhibition in the range of 31–74 
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% at a concentration of 2.5 µM is observed in case of the tetrahydro- and dihydronaphthalenes 2–6 

which is comparable to the naphthalene parent compounds I–III (40–73 %). All other derivatives, 

including the keto analogues 9–11 and the investigated dihydro-1H-quinolin-2-ones, are considerably 

less active at CYP17 (< 22 %). Exceptions from this are lactam 12 (41 % inhibition) and the 

thiolactam analog 24 (72 %). The inhibition of CYP19 at a concentration of 500 nM was determined 

in vitro with human placental microsomes and [1β-3H]androstenedione as substrate as described by 

Thompson and Siiteri33 using our modification.34 In most cases, the inhibitory action on CYP19 is low 

(< 30 %) at the chosen concentration (Table 2). Exceptions are observed in case of the keto derivatives 

10 and 11 as well as the lactam derivatives 13–15 displaying aromatase inhibition in the range of 53–

63 %.  

Table 2. Inhibition of Human CYP17, CYP19, 

and CYP1A2 In Vitro 

 
% inhibitiona  

[IC50 valueb (µM)] 

compd CYP17c CYP19d CYP1A2e 

I 40 [5.727] 99 [n.d.] 

II 72 [0.586] 98 [n.d.] 

III 73 [> 36] 97 [n.d.] 

2 49 23 74 [0.598] 

3 44 22 80 [0.443] 

4 31 10 73[0.619] 

5 38 < 5 72 [0.658] 

6 74 < 5 90 [0.181] 

9 20 31 60 [1.55] 

10 < 5 53 57 [1.55] 

11 21 58 57 [1.56] 

12 41 21 50 [1.95]  

13 < 5 62 25 [6.58]  

14 8 54 53 [1.79] 

15 < 5 63 36 [3.48] 

17 7 17 14 [30.6]  

19 12 < 5 25 [5.24] 

20 < 5 5 20 [16.5] 

21 22 < 5 < 5 [> 150] 

24 72 < 5 77 [0.637]  
a Mean value of three experiments, standard deviation less than 10 
%. b Mean value of two experiments, standard deviation less than 5 
%. c E. coli expressing human CYP17; substrate progesterone, 25 
µM; inhibitor concentration, 2.5 µM; ketoconazole, IC50 = 2.78 
µM. d Human placental CYP19; substrate androstenedione, 500 
nM; inhibitor concentration, 500 nM; fadrozole, IC50 = 30 nM. e 
Recombinantly expressed enzymes from baculovirus-infected 
insect microsomes (Supersomes); inhibitor concentration, 2.0 µM; 

furafylline, IC50 = 2.42 µM.  
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A selectivity profile relating to inhibition of crucial hepatic CYP enzymes (CYP1A2, CYP2B6, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4) was determined by use of recombinantly expressed 

enzymes from baculovirus-infected insect microsomes. As previous studies have shown that aldo-

sterone synthase inhibitors of the naphthalene type are potent inhibitors of CYP1A2 but otherwise 

rather selective versus important hepatic CYP enzymes,14,15 most of the newly prepared compounds 

were first and foremost tested for their inhibitory action on CYP1A2 (Table 2). The parent compounds 

I–III are highly potent inhibitors of CYP1A2 (> 95 % inhibition at concentration of 2 µM). Based on 

these naphthalene type compounds, the inhibitory potency slightly decreases in case of the dihydro-

naphthalene derivative 6 (90 %) and the tetrahydronaphthalene derivatives 2–5 (72–80 %). The keto 

analogues 9–11 exhibit 57–60 % inhibition corresponding with IC50 values of 1.55–1.56 µM. A further 

decrease of CYP1A2 inhibition to less than 50 % is observed for the investigated lactam bioisosters 

12–15, 17, and 19–21. This is especially true for chloro-substituted 17 as well as compounds 20 and 

21 with modified heterocycle displaying IC50 values greater than 15 µM, but also for indanone 13 and 

methoxypyridine derivative 19 with IC50 values greater than 5 µM. However, compound 24, the thio 

analog of 12, displays a pronounced inhibitory potency (IC50 = 0.637 µM). Some compounds were 

also scrutinized for inhibition of other crucial hepatic CYP enzymes (Table 3). The data presented in 

Table 3 reveal that the investigated CYP enzymes are rather unaffected by the compounds with tetra-

hydronaphthalene (3), tetralone (9–11) as well as dihydro-1H-quinolin-2-one (12, 14, and 21) type 

molecular scaffold and with few exceptions (i.e., 9, 11 at CYP3A4 and 21 at CYP2C9), the IC50 values 

measured are significantly greater than 10 µM.  

Table 3. Inhibition of Selected Hepatic CYP Enzymes In Vitro 

 IC50 valuea (µM)  

compd CYP2B6b,c CYP2C9b,d CYP2C19b,e CYP2D6b,f CYP3A4b,g 

3 47.4 16.3 > 200 > 200 12.2 

9 > 50 28.3 41.5 171 6.21 

10 > 50 123 147 > 200 > 200 

11 > 50 12.9 45.4 > 200 3.75 

12 > 50 58.9 > 200 171 127 

14 > 50 125 122 > 200 > 200 

21 > 100 2.86 9.15 > 50 > 50 
b Mean value of two experiments, standard deviation less than 5 %. b Recombinantly expressed enzymes 
from baculovirus-infected insect microsomes (Supersomes). c Tranylcypromine, IC50 = 6.24 µM. d 
Sulfaphenazole, IC50 = 318 nM. e Tranylcypromine, IC50 = 5.95 µM. f Quinidine, IC50 = 14 nM. g 
Ketoconazole, IC50 = 57 nM. 

 

Plasma Protein Binding (Table 4). The plasma protein binding of compounds 9, 10, and 12 was 

determined by ultrafiltration. Test solutions of an aliquot of concentrated test compound and rat or 

human plasma were incubated at 37 °C for 1 hour and then centrifuged at 8000 g for 20 min. Ultra-

filtrates were analyzed for drug concentrations by LC-MS/MS. The plasma protein binding of the 

investigated CYP11B2 inhibitors was found to be low. The bound form of keto compounds 9 and 10 
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ranks between 22–25 % in both human and rat plasma. In case of the bioisosteric dihydro-1H-

quinolin-2-one 12, the amount of freely available compound is lower (approximately 60 % bound). 

Table 4. Plasma Protein Binding of Com-

pounds 9, 10, and 12 

 PPBa (% bound)  

compd rat  human  

9 25 24 

10 24 22 

12 60 61 
a Determined by analysis of the ultrafiltrates via LC-MS/MS; 
the degree of binding to the plasma proteins (PPB) is calculated 
by the following equation: % PPB = (1–[ligandultrafiltrate] 
/[ligandtotal])·100. 

 

In Vivo Pharmacokinetics (Table 5). The pharmacokinetic profile of selected compounds was 

determined after peroral application to male Wistar rats. Plasma samples were collected over 24 h and 

plasma concentrations were determined by HPLC-MS/MS. Compounds 9–12 and 14 were investigated 

in cassette dosing experiments (peroral dose = 5 mg/kg) and compared to fadrozole. All five 

compounds show comparable absorption rates (tmax = 4–6 h) and terminal half-lifes (t1/2 z = 2.3–3.9 h). 

The slowest elimination is observed in case of tetralone 11 (t1/2 z = 3.9 h) and dihydro-1H-quinolin-2-

one 12 (t1/2 z = 3.8 h). Within this series, compound 10 shows the highest maximal concentration (Cmax) 

in plasma (300 ng/mL) followed in the same range by compound 12 (261 ng/mL). Using the area 

under the curve (AUC0-∞) as a ranking criterion, the bioavailability after peroral cassette dosing 

increases in the order 11 (212 ng·h/mL) < 14 (659 ng·h/mL) < 9 (727 ng·h/mL) < 12 (1753 ng·h/mL) < 

10 (3178 ng·h/mL). Compounds 12 and 21 were investigated in single dosing experiments (peroral 

dose = 25 mg/kg). The amounts of the test compounds found in the plasma after peroral application 

are rather high in case of 21 (AUC0-∞ = 1658 ng·h/mL) and high in case of 12 (AUC0-∞ = 4762 

ng·h/mL). Comparing the AUC of peroral with intravenous (dose = 1 mg/kg) application of dihydro-

1H-quinolin-2-one 12 reveals an absolute bioavailability of 71 %. 

Table 5. Pharmacokinetic Profile of Compounds 9–12, 14, and 21 

compd dose (mg/kg)a t1/2 z (h)b  tmax (h)c Cmax (ng/mL)d AUC0-∞ (ng·h/mL)e 

9 f 5 3.5 4.0 104 727 

10f 5 2.4 4.0 300 3178 

11 f 5 3.9 4.0 35 212 

12f,g 5 3.8 4.0 261 1753 

12 25 1.2 1.0 1537 4762 

12 1h 1.7 - - 270 

14 f 5 2.3 6.0 86 659 

21 25 2.9 2.0 134 1658 

fadrozole f,g 5 3.2 1.0 471 3207 
a Compounds were applied perorally to male Wistar rats. b Terminal half-life. c Time of maximal concentration. d Maximal 
concentration. e Area under the curve. f These compounds were investigated in a cassette dosing approach. g Mean value of 
two experiments. h Intravenous application. 
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Among the molecules with a cyclic ketone molecular scaffold, indanone 10 shows the highest avai-

lability in the plasma in the cassette dosing experiment with an AUC0-∞ in the range of the marketed 

drug fadrozole (AUC0-∞ = 3207 ng·h/mL). The tetralone derivatives 9 and 11 exhibit significantly 

lower AUC0-∞ values (factor 4–15) albeit being eliminated in a decelerated rate (t1/2 z = 3.5–3.9 h). 

Similarly, N-alkylation of 12 as accomplished in 14 decreases the AUC0-∞ value by a factor of approxi-

mately 3. Obviously, introduction of additional methyl or methylene units lowers the bioavailability 

which might be due to the metabolic vulnerability of these residues and providing potential sites for 

oxidative transformations. In the single dosing experiments, isoquinoline derivative 21 (with addi-

tional benzene moiety compared to 12) displays an AUC0-∞ somewhat lower than that of unsubstituted 

12 (factor 3) as well as a lower maximal concentration in the plasma (factor 11). Contrariwise, the 

terminal half-life of 21 is greater. This becomes particularly apparent from Figure 1 where the mean 

profile of plasma levels (ng/mL) in rat versus time after oral application (25 mg/kg) of compounds 12 

(Figure 1a) and 21 (Figure 1b) are shown. The concentrations of 21 are rather constant and rank 

between 90–130 ng/mL in a timeframe of 0.5–8 hours after application, albeit the plasma levels are 

considerably lower than the plasma levels of 12. 

Figure 1a 

 
a Mean profile (±) SEM of plasma levels (ng/ml) in rat versus 
time after oral application (25 mg/kg) of compounds 12 (a) and 
21 (b) determined in single dosing experiments. 
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Discussion and Conclusion 

Selectivity is a prerequisite of any drug candidate to avoid adverse side effects. In the development 

process of aldosterone synthase inhibitors, it is a crucial point to investigate the selectivity profile 

toward other cytochrome P450 enzymes at an early stage. It is known that the concept of heme-iron 

complexation (e.g., by nitrogen-containing heterocycles) is an appropriate strategy to discover highly 

potent and selective inhibitors. Due to this binding mechanism, however, a putative CYP11B2 inhibi-

tor is potentially capable of interacting with other CYP enzymes by similarly binding to the heme co-

factor with its metal binding moiety. Taking into consideration that the key enzyme of glucocorticoid 

biosynthesis, 11β-hydroxylase (CYP11B1), and CYP11B2 have a sequence homology of approxi-

mately 93 %,35 the selectivity issue is especially critical for the design of CYP11B2 inhibitors. 

Recently, we have demonstrated that 3-pyridine substituted naphthalenes such as I–III provide an 

ideal molecular scaffold for high inhibitory potency at the target enzyme CYP11B2 as well as high 

selectivity toward several other CYP enzymes (e.g., CYP11B1, CYP17, CYP19).14 However, these 

compounds strongly inhibit the hepatic enzyme CYP1A2 (e.g., compounds I–III in Table 2) that 

makes up about 10 % of the overall cytochrome P450 content in the liver and metabolizes aromatic 

and heterocyclic amines as well as polycyclic aromatic hydrocarbons. In recent QSAR studies, 

CYP1A2 inhibition has been identified to correlate positively with aromaticity and lipophilicity.36 

Furthermore, both CYP1A2 substrates and inhibitors are usually small-volume molecules with a pla-

nar shape (e.g., caffeine37 and furafylline38). Rationalizing these findings, our design strategy aimed at 

reducing the aromaticity and disturbing the planarity of the molecules while keeping the pharmaco-

phoric points39 of the naphthalene molecular scaffold (see Chart 1).  

These considerations led to the development of pyridine substituted dihydro- and tetrahydronaph-

thalenes 1–6. The compounds are potent aldosterone synthase inhibitors (IC50 = 1.6–44 nM) with pro-

nounced selectivity versus CYP11B1 (selectivity factor = 68–347). As hypothesized, a decrease of 

CYP1A2 inhibition can be observed along with decreased aromaticity (i.e., number of aromatic 

carbons) and planarity within this series. While the fully aromatized naphthalenes I–III exhibit 97–99 

% inhibition at a concentration of 2 µM, dihydronaphthalene 6 is slightly less potent (90 %) and the 

tetrahydro derivatives 1–5 are significantly less potent (72–80 %) inhibitors of CYP1A2. However, 

IC50 values are still below 1 µM and thus the molecules are rather strongly inhibiting CYP1A2. 

Further increase in CYP1A2 selectivity is achieved by introduction of a keto group into the saturated 

ring as accomplished in compounds 9–11. The inhibitory potencies toward CYP1A2 decrease to IC50 

values in the range of 1.55–1.56 µM. Presumably, the decrease in CYP1A2 inhibition is due to a 

reduced lipophilicity of the cyclic ketone scaffold compared to the tetrahydronaphthalene scaffold. 

Lipophilicity has been hypothesized to be one of the most important variables influencing CYP1A2 

inhibition.36 Furthermore, the highly potent aldosterone synthase inhibitors 9 (IC50 = 7.8 nM) and 10 

(IC50 = 4.4 nM) show reasonable plasma levels after peroral application to male Wistar rats (Table 5). 

However, tetralone 9 turned out to be cytotoxic to the human cell line U-937 at a concentration of 100 
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µM (Figure 2). Subsequent bioisosteric exchange of the cyclic ketone in 9 by a lactam gave rise to the 

dihydro-1H-quinolin-2-one derivatives 12–26. Contrary to tetralone 9, dihydro-1H-quinolin-2-one 12 

exhibits no distinct cytotoxic effect on U-937 cells up to the highest concentration tested (Figure 2). In 

addition, compound 12 is an even slightly less potent inhibitor of CYP1A2 (IC50 = 1.95 µM) than the 

analogous tetralone (IC50 = 1.55 µM) which is again in correspondence with the reduced lipophilicity 

compared to the bioisosteric 9. Contrariwise, lipophilicity does not basically influence the CYP1A2 

potency within the series of dihydro-1H-quinolin-2-ones (12–21) as does the substitution pattern of the 

molecules, especially in the heterocyclic binding site (20, 21). It is also striking that even minor 

structural variations such as introduction of a chloro substituent into the dihydro-1H-quinolin-2-one 

core as accomplished in 17 can trigger an almost complete loss of CYP1A2 activity.  

Figure 2a 

 
a Mean profile (±) SEM of fractional survival (%) of human U-
937 cells in presence of compound 9 or 12. 

 

Pharmacokinetic investigations performed with compound 12 reveal a peroral absolute bioavaila-

bility of 71%. Compounds 14 and 21 are also capable of crossing the gastrointestinal tract and reach 

the general circulation after peroral application. However, their total range of absorption is below that 

of 12. The plasma protein binding of inhibitor 12 was found to be low in both rat and human plasma 

(approximately 60 %), indicating that a sizeable free fraction of circulating compound is present in the 

plasma. Within the series of dihydro-1H-quinolin-2-one type inhibitors 12–26, most compounds are 

highly active at the target enzyme. This particularly applies to the derivatives with a functionalized 

pyridine heterocycle, for example methoxy derivative 20 (IC50 = 0.2 nM) and isoquinoline derivatives 

21 (IC50 = 0.2 nM) and 22 (IC50 = 0.1 nM). By introduction of a chloro substituent in 8-position or 

methoxy in 5-position of the pyridine heterocycle, the selectivity increases to a factor of greater than 

400 (17, 20). Hence, these compounds are approximately 40-fold more selective than fadrozole (selec-

tivity factor = 10). With respect to the high homology of the two CYP11B isoforms, this experimental 

result is particularly noteworthy. 

In order to determine a suitable candidate to investigate aldosterone-lowering effects in rats, we 

investigated the most potent and selective inhibitors of the present series for their ability to block 

aldosterone biosynthesis in V79 MZh cells expressing rat CYP11B2 prior to in vivo experiments. The 
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results revealed that only compound 21 (and to a minor degree also the N-methyl analog 22) shows a 

moderate inhibitory action on rat CYP11B2 in vitro (unpublished results). Recently, this finding was 

corroborated by in vivo trials showing that isoquinoline derivative 21 induces a significant aldo-

sterone-lowering effect in ACTH stimulated rats (data to be published separately). 

In summary, nonsteroidal aldosterone synthase inhibitors with a dihydro-1H-quinolin-2-one 

molecular scaffold are superior to the previously investigated pyridylnaphthalenes such as I–III. Most 

compounds exhibit a potent inhibitory activity at the target enzyme and isoquinoline derivative 22 is 

the most potent CYP11B2 inhibitor described so far (IC50 = 0.1 nM). The selectivity versus other 

steroidogenic as well as hepatic cytochrome P450 enzymes is generally high. Most notably, the strong 

inhibition of the hepatic CYP1A2 enzyme (> 95 % at a concentration of 2 µM) present in the 

naphthalene type inhibitors is significantly lower in case of the dihydro-1H-quinolin-2-ones with IC50 

values up to > 150 µM (21). The investigated molecules reach the circulation after peroral adminis-

tration to rats (e.g., 12 with a peroral bioavailability of 71 %). Moreover, it has been found recently 

that isoquinoline derivative 21 significantly reduces the plasma aldosterone levels of ACTH stimulated 

rats (data to be published separately). Our current research focuses on further in vivo investigations of 

compound 21 and structurally related compounds in disease oriented models to determine their 

capability to prevent or reverse myocardial fibrosis and reduce CHF induced mortality. 

 

Experimental Section 

Chemical and Analytical Methods. Melting points were measured on a Mettler FP1 melting point 

apparatus and are uncorrected. 1H NMR and 13C spectra were recorded on a Bruker DRX-500 

instrument. Chemical shifts are given in parts per million (ppm), and tetramethylsilane (TMS) was 

used as internal standard for spectra obtained in DMSO-d6 and CDCl3. All coupling constants (J) are 

given in hertz. Mass spectra (LC/MS) were measured on a TSQ Quantum (Thermo Electron 

Corporation) instrument with a RP18 100-3 column (Macherey Nagel) and with water/acetonitrile 

mixtures as eluents. GC/MS spectra were measured on a GCD Series G1800A (Hewlett Packard) 

instrument with an Optima-5-MS (0.25 µM, 30 m) column (Macherey Nagel). Elemental analyses 

were carried out at the Department of Chemistry, University of Saarbrücken. Reagents were used as 

obtained from commercial suppliers without further purification. Solvents were distilled before use. 

Dry solvents were obtained by distillation from appropriate drying reagents and stored over molecular 

sieves. Flash chromatography was performed on silica gel 40 (35/40–63/70 µM) with petroleum 

ether/ethyl acetate mixtures as eluents, and the reaction progress was determined by thin-layer 

chromatography analyses on Alugram SIL G/UV254 (Macherey Nagel). Visualization was 

accomplished with UV light and KMnO4 solution. All microwave irradiation experiments were carried 

out in a CEM-Discover monomode microwave apparatus. 
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The following compounds were prepared according to previously described procedures: 6-bromo-

1,2,3,4-tetrahydronaphthalen-2-ol (2a),21 6-bromo-3,4-dihydroquinolin-2(1H)-one (12a),24 5-bromo-

1,3-dihydro-2H-indol-2-one (13a),25 6-bromo-8-nitro-3,4-dihydroquinolin-2(1H)-one (18a).27 

Synthesis of the Target Compounds 

Procedure A.17 Boronic acid (0.75 mmol, 1 equivalent), aryl bromide or -triflate (0.9–1.3 

equivalents), and tetrakis(triphenylphosphane)palladium(0) (43 mg, 37.5 µmol, 5 mol %) were 

suspended in 1.5 mL DMF in a 10 mL septum-capped tube containing a stirring magnet. To this was 

added a solution of NaHCO3 (189 mg, 2.25 mmol, 3 equivalents) in 1.5 mL water and the vial was 

sealed with an Teflon cap. The mixture was irradiated with microwaves for 15 min at a temperature of 

150 °C with an initial irradiation power of 100 W. After the reaction, the vial was cooled to 40 °C, the 

crude mixture was partitioned between ethyl acetate and water and the aqueous layer was extracted 

three times with ethyl acetate. The combined organic layers were dried over MgSO4 and the solvents 

were removed in vacuo. The coupling products were obtained after flash chromatography on silica gel 

(petroleum ether/ethyl acetate mixtures) and/or crystallization.  

Procedure B. Boronic acid (1 equivalent), aryl bromide or (1.3–1.5 equivalents), and 

tetrakis(triphenylphosphane)palladium(0) (5 mol %) were suspended in toluene/ethanol 4/1 to give a 

0.07–0.1 M solution of boronic acid under an atosphere of nitrogen. To this was added a 1 N aqueous 

solution of Na2CO3 (6 equivalents). The mixture was then refluxed for 12–18 h, cooled to room 

temperature, diluted with water and extracted several times with ethyl acetate. The combined extracts 

were dried over MgSO4, concentrated and purified by flash chromatography on silica gel (petroleum 

ether/ethyl acetate mixtures) and/or crystallization.  

3-(5,6,7,8-tetrahydronaphthalen-2-yl)pyridine (1) was obtained according to procedure A from 

1a (280 mg, 1.0 mmol), 3-pyridineboronic acid (160 mg, 1.3 mmol) and NaHCO3 (252 mg, 3.0 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/1, Rf = 0.20) as a pale yellow 

oil (142 mg, 0.68 mmol, 68 %), mp (HCl salt) 200–202 °C. LC/MS m/z 210.27 (MH+). Anal. 

(C15H15N·HCl) C, H, N. 

6-Pyridin-3-yl-1,2,3,4-tetrahydronaphthalen-2-ol (2) was obtained according to procedure A 

from 2a (114 mg, 0.50 mmol) and 3-pyridineboronic acid (80 mg, 0.65 mmol) after flash 

chromatography on silica gel (ethyl acetate, Rf = 0.27) as a colorless solid (96 mg, 0.43 mmol, 86 %), 

mp 118–120 °C. LC/MS m/z 226.23 (MH+). Anal. (C15H15NO·0.1H2O) C, H, N. 

 3-(6-Methoxy-5,6,7,8-tetrahydronaphthalen-2-yl)pyridine (3). To a suspension of NaH (73 mg, 

1.84 mmol, 60 % dispersion in oil) in 10 mL dry THF was added dropwise a solution of 2 (345 mg, 

1.53 mmol) in 5 mL THF at room temperature. The mixture was heated to 50 °C until evolution of 

hydrogen ceased and then cooled to room temperature again. Thereupon, a solution of methyl iodide 

(326 mg, 2.30 mmol) in 5 mL THF was added via canula and stirring was continued at 50 °C for 3 h. 

The mixture was treated with saturated NH4Cl solution and extracted three times with ethyl acetate. 

The combined organic extracts were washed with water and brine, dried over MgSO4 and evaporated 
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to dryness. The crude product was purified by flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 7/3, Rf = 0.09) to afford 3 as a colorless oil (289 mg, 1.21 mmol, 79 %), mp (HCl 

salt) 188–190 °C. LC/MS m/z 240.29 (MH+). Anal. (C16H17NO·HCl·0.6H2O) C, H, N. 

3-(6-Ethoxy-5,6,7,8-tetrahydronaphthalen-2-yl)pyridine (4) was obtained as described for 3 

starting from 2 (270 mg, 1.20 mmol), NaH (58 mg, 1.44 mmol, 60 % dispersion in oil) and ethyl 

bromide (196 mg, 1.80 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 

1/1, Rf = 0.31) as a colorless oil (198 mg, 0.78 mmol, 65 %), mp (HCl salt) 186–188 °C. LC/MS m/z 

254.29 (MH+). Anal. (C17H19NO·HCl·0.5H2O) C, H, N. 

6-Pyridin-3-yl-1,2,3,4-tetrahydronaphthalene-2-carbonitrile (5) was obtained according to 

procedure A from 5a (130 mg, 0.55 mmol) and 3-pyridineboronic acid (88 mg, 0.72 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.17) as a colorless solid (91 mg, 

0.39 mmol, 71 %), mp 110–111 °C. 1H-NMR (500 MHz, CDCl3): δ = 2.12 (m, 1H), 2.23 (m, 1H), 

2.92 (m, 1H), 3.02–3.13 (m, 3H), 3.18 (dd, 2J = 16.4 Hz, 3J = 5.7 Hz, 1H), 7.19 (d, 3J = 7.9 Hz, 1H), 

7.31 (s, 1H), 7.33–7.37 (m, 2H), 7.83 (m, 1H), 8.57 (dd, 3J = 5.0 Hz, 4J = 1.6 Hz, 1H), 8.80 (d, 4J = 1.6 

Hz, 1H). 13C-NMR (125 MHz, CDCl3): δ = 25.5, 26.1, 27.1, 32.1, 121.8, 123.5, 125.1, 127.8, 129.8, 

132.3, 134.2, 135.5, 136.2, 136.4, 148.2, 148.5. LC/MS m/z 235.26 (MH+). Anal. (C16H14N2·0.1H2O) 

C, H, N.  

6-Pyridin-3-yl-3,4-dihydronaphthalene-2-carbonitrile (6). To a solution of 6a (562 mg, 1.58 

mmol) in 10 mL degassed DMF were added zinc cyanide (117 mg, 1.00 mmol) and tetrakis(triphenyl-

phosphane)palladium(0) (173 mg, 0.15 mmol) and the mixture was heated at 100 °C for 2 h. After 

cooling to room temperature, the mixture was diluted with 200 mL of water and extracted three times 

with ethyl acetate. The combined organic extracts were washed with water and brine, dried over 

MgSO4 and evaporated to dryness. The crude product was crystallized from petroleum ether/ethyl 

acetate to afford 6 as colorless needles (286 mg, 1.23 mol, 78 %), mp 142–143 °C. LC/MS m/z 233.23 

(MH+). Anal. (C16H12N2) C, H, N. 

4-Methyl-7-pyridin-3-yl-3,4-dihydro-2H-1,4-benzoxazine (7) was obtained according to 

procedure A from 7-bromo-4-methyl-3,4-dihydro-2H-1,4-benzoxazine (228 mg, 1.00 mmol) and 3-

pyridineboronic acid (160 mg, 1.30 mmol) after flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 1/1, Rf = 0.26) as an off-white solid (102 mg, 0.45 mmol, 45 %), mp 70–72 °C. 

LC/MS m/z 227.21 (MH+). Anal. (C14H14N2O) C, H, N. 

3-(2,3-Dihydro-1,4-benzodioxin-6-yl)pyridine (8) was obtained according to procedure A from 6-

bromo-2,3-dihydro-1,4-benzodioxine (215 mg, 1.00 mmol) and 3-pyridineboronic acid (160 mg, 1.30 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 7/3, Rf = 0.14) as a 

colorless solid (184 mg, 0.86 mmol, 86 %), mp 59–61 °C. LC/MS m/z 214.19 (MH+). Anal. 

(C16H12N2) C, H, N. 

 6-Pyridin-3-yl-3,4-dihydronaphthalen-2(1H)-one (9) was obtained according to procedure A 

from 6-bromo-2-tetralone (113 mg, 0.50 mmol) and 3-pyridineboronic acid (80 mg, 0.65 mmol) after 
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flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.15) as a colorless oil (97 

mg, 0.43 mmol, 86 %), mp (HCl salt) 180–182 °C. LC/MS m/z 224.20 (MH+). Anal. 

(C15H13NO·HCl·0.4H2O) C, H, N.  

5-Pyridin-3-yl-2,3-dihydro-1H-inden-1-one (10) was obtained according to procedure A from 5-

bromo-1-indanone (211 mg, 1.00 mmol) and 3-pyridineboronic acid (160 mg, 1.30 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.14) as a colorless solid (146 

mg, 0.69 mmol, 69 %), mp 122–123 °C. LC/MS m/z 210.69 (MH+). Anal. (C14H11NO·0.1H2O) C, H, 

N.  

6-(5-Methoxypyridin-3-yl)-3,4-dihydronaphthalen-2(1H)-one (11) was obtained according to 

procedure A from 6-bromo-2-tetralone (225 mg, 1.00 mmol) and 5-methoxy-3-pyridineboronic acid 

(199 mg, 1.30 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 

0.15) as an off-white solid (133 mg, 0.53 mmol, 53 %), mp 109–110 °C. LC/MS m/z 254.01 (MH+). 

Anal. (C16H15NO2) C, H, N. 

6-Pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (12) was obtained according to procedure B from 

12a (2.71 g, 12.0 mmol) and 3-pyridineboronic acid (1.23 g, 10.0 mmol) after crystallization from 

acetone/diethyl ether as colorless needles (2.15 g, 9.59 mmol, 96 %), mp 181–183 °C. 1H-NMR (500 

MHz, DMSO-d6): δ = 2.49 (t, 3J = 7.3 Hz, 2H), 2.95 (t, 3J = 7.3 Hz, 2H), 6.95 (d, 3J = 8.2 Hz, 1H), 

7.43 (ddd, 3J = 7.9 Hz, 3J = 4.7 Hz, 5J = 0.6 Hz, 1H), 7.51 (dd, 3J = 8.2 Hz, 4J = 2.2 Hz, 1H), 7.56 (d, 
4J = 2.1 Hz, 1H), 8.00 (ddd, 3J = 7.9 Hz, 4J = 2.2 Hz, 4J = 1.6 Hz, 1H), 8.50 (dd, 3J = 4.7 Hz, 4J = 1.5 

Hz, 1H), 8.84 (d, 4J = 2.2 Hz, 1H), 10.19 (s, 1H). 13C-NMR (125 MHz, DMSO-d6): δ = 24.8, 30.3, 

115.6, 123.8, 124.3, 125.6, 126.2, 130.6, 133.4, 135.2, 138.4, 147.2, 147.8, 170.2. LC/MS m/z 225.25 

(MH+). Anal. (C14H12N2O·0.1H2O) C, H, N. 

5-Pyridin-3-yl-1,3-dihydro-2H-indol-2-one (13) was obtained according to procedure A from 13a 

(159 mg, 0.75 mmol) and 3-pyridineboronic acid (123 mg, 1.00 mmol) after crystallization from 

acetone/diethyl ether as colorless needles (129 mg, 0.61 mmol, 81 %), mp 218–220 °C. LC/MS m/z 

211.01 (MH+). Anal. (C13H10N2O·0.3H2O) C, H, N. 

1-Methyl-6-pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (14) was obtained according to 

procedure A from 14a (110 mg, 0.46 mmol) and 3-pyridineboronic acid (74 mg, 0.60 mmol) after 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.07) as colorless needles 

(83 mg, 0.35 mmol, 76 %), mp 100–101 °C. LC/MS m/z 239.80. Anal. (C15H14N2O·0.1H2O) C, H, N. 

1-Ethyl-6-pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (15) was obtained according to procedure 

A from 15a (229 mg, 0.90 mmol) and 3-pyridineboronic acid (92 mg, 0.75 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.09) and crystallization from 

acetone/diethyl ether as colorless plates (125 mg, 0.50 mmol, 55 %), mp 91–92 °C. LC/MS m/z 253.00 

(MH+). Anal. (C16H16N2O·0.1H2O) C, H, N. 

1-(1-Methylethyl)-6-pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (16) was obtained according to 

procedure A from 16a (174 mg, 0.65 mmol) and 3-pyridineboronic acid (74 mg, 0.60 mmol) after 
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flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.14) as a colorless solid 

(47 mg, 0.18 mmol, 29 %), mp 100–101 °C. LC/MS m/z 267.10 (MH+). Anal. (C17H18N2O) C, H, N. 

8-Chloro-6-pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (17). To a solution of 12 (560 mg, 2.50 

mmol) in 5 mL DMF was added N-chlorosuccinimide (368 mg, 2.75 mmol) in 5 mL DMF over a 

period 2 h at 65 °C. After additional 3 h at 65 °C, the mixture was poured into ice water and extracted 

three times with ethyl acetate. The combined organic layers were washed with water and brine, dried 

over MgSO4 and the solvent was evaporated in vacuo. 17 was obtained after flash chromatography on 

silica gel (petroleum ether/ethyl acetate, 3/7, Rf = 0.15) and crystallization from acetone/diethyl ether 

as colorless needles (225 mg, 0.87 mmol, 35 %), mp 177–178 °C. GC/MS m/z 258.95 (M+). Anal. 

(C14H11ClN2O·0.1H2O) C, H, N. 

8-Nitro-6-pyridin-3-yl-3,4-dihydroquinolin-2(1H)-one (18) was obtained according to procedure 

B from 18a (1.0 g, 3.70 mmol) and 3-pyridineboronic acid (546 mg, 4.44 mmol) after flash 

chromatography on silica gel (ethyl acetate, Rf = 0.15) as yellow needles (311 mg, 1.16 mmol, 31 %), 

mp 187–189 °C. LC/MS m/z 269.94 (MH+). Anal. (C14H11N3O3) C, H, N. 

6-(5-Methoxypyridin-3-yl)-3,4-dihydroquinolin-2(1H)-one (19) was obtained according to 

procedure A from 12a (170 mg, 0.75 mmol) and 5-methoxy-3-pyridineboronic acid (150 mg, 0.98 

mmol) after crystallization from acetone/diethyl ether as colorless needles (77 mg, 0.30 mmol, 40 %), 

mp 213–215 °C. LC/MS m/z 255.02 (MH+). Anal. (C15H14N2O2) C, H, N. 

6-(5-methoxypyridin-3-yl)-1-methyl-3,4-dihydroquinolin-2(1H)-one (20) was obtained according 

to procedure A from 14a (200 mg, 0.83 mmol) and 5-methoxy-3-pyridineboronic acid (115 g, 0.75 

mmol) after crystallization from acetone/diethyl ether as colorless needles (132 mg, 0.49 mmol, 66 %), 

mp 158–159 °C. LC/MS m/z 268.95 (MH+). Anal. (C16H16N2O2·0.1H2O) C, H, N. 

6-Isoquinolin-4-yl-3,4-dihydroquinolin-2(1H)-one (21) was obtained according to procedure B 

from 12a (1.55 g, 6.85 mmol) and 4-isoquinolineboronic acid (950 mg, 5.50 mmol) after 

crystallization from acetone/diethyl ether as colorless needles (800 mg, 2.92 mmol, 53 %), mp 221–

222 °C. LC/MS m/z 275.04 (MH+). Anal. (C18H14N2O·0.1H2O) C, H, N. 

6-Isoquinolin-4-yl-1-methyl-3,4-dihydroquinolin-2(1H)-one (22) was obtained according to 

procedure A from 14a (264 mg, 1.10 mmol) and 4-isoquinolineboronic acid (172 mg, 1.00 mmol) 

after crystallization from acetone/diethyl ether as colorless needles (163 mg, 0.57 mmol, 57 %), mp 

175–176 °C. LC/MS m/z 289.91 (MH+). Anal. (C19H16N2O) C, H, N. 

6-Pyrimidin-5-yl-3,4-dihydroquinolin-2(1H)-one (23) was obtained according to procedure A 

from 12a (226 mg, 1.00 mmol) and 5-pyrimidineboronic acid (103 mg, 0.83 mmol) after 

crystallization from ethanol as colorless needles (75 mg, 0.33 mmol, 40 %), mp 232–233 °C. LC/MS 

m/z 225.74 (MH+). Anal. (C13H11N3O·0.2H2O) C, H, N.  

6-Pyridin-3-yl-3,4-dihydroquinoline-2(1H)-thione (24). A suspension of 12 (395 mg, 1.76 mmol) 

and Lawesson’s reagent (356 mg, 0.88 mmol) in dry toluene was refluxed for 30 min under an 

atmosphere of nitrogen. After cooling to room temperature, the solvent was removed in vacuo and the 
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residue was purified by flash chromatography on silica gel (petroleum ether/ethyl acetate, 3/7, Rf = 

0.31) to afford 24 as yellow plates (63 mg, 0.26 mmol, 15 %), mp 265–267 °C. LC/MS m/z 241.05 

(MH+). Anal. (C14H12N2S) C, H, N. 

8-Chloro-6-pyridin-3-yl-3,4-dihydroquinoline-2(1H)-thione (25) was obtained as described for 

24 starting from 17 (900 mg, 3.48 mmol) and Lawesson’s reagent (985 mg, 2.44 mmol) after flash 

chromatography on silica gel (ethyl acetate, Rf = 0.26) and crystallization from acetone/diethyl ether as 

yellow needles (212 mg, 0.77 mmol, 22 %), mp 174–175 °C. GC/MS m/z 273.95 (M35Cl+), 275.95 

(M37Cl+). Anal. (C14H11ClN2S) C, H, N. 

7-Pyridin-3-yl-2H-1,4-benzothiazin-3(4H)-one (26) was obtained according to general procedure 

B from 7-bromo-2H-1,4-benzothiazin-3(4H)-one (1.15 g, 4.71 mmol) and 3-pyridineboronic acid (695 

mg, 5.56 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.20) 

and crystallization from ethanol as colorless needles (486 mg, 2.01 mmol, 43 %), mp 238–240 °C. 

LC/MS m/z 242.99 (MH+). Anal. (C13H10N2OS·0.2H2O) C, H, N. 

Biological Methods. 1. Enzyme Preparations. CYP17 and CYP19 preparations were obtained by 

described methods: the 50,000 g sediment of E. coli expressing human CYP1732 and microsomes from 

human placenta for CYP19.34 2. Enzyme Assays. The following enzyme assays were performed as 

previously described: CY1732 and CYP19.34 3. Activity and Selectivity Assay Using V79 Cells. V79 

MZh 11B1 and V79 MZh 11B2 cells10,28 were incubated with [4-14C]-11-deoxycorticosterone as 

substrate and inhibitor in at least three different concentrations. The enzyme reactions were stopped by 

addition of ethyl acetate. After vigorous shaking and a centrifugation step (10,000 g, 2 min), the 

steroids were extracted into the organic phase, which was then separated. The conversion of the 

substrate was analyzed by HPTLC and a phosphoimaging system as described. 4. Inhibition of 

Human Hepatic CYP Enzymes. The recombinantly expressed enzymes from baculovirus-infected 

insect microsomes (Supersomes) were used and the manufacturer’s instructions (www.gentest.com) 

were followed. 5. In Vivo Pharmacokinetics. Animal trials were conducted in accordance with 

institutional and international ethical guidelines for the use of laboratory animals. Cassette dosing: 

Male Wistar rats weighing 297–322 g (Janvier, France) were housed in a temperature-controlled room 

(20–24 °C) and maintained in a 12 h light/12 h dark cycle. Food and water were available ad libitum. 

The animals were anaesthetised with a ketamine (135 mg/kg)/xylazine (10 mg/kg) mixture, and 

cannulated with silicone tubing via the right jugular vein. Prior to the first blood sampling, animals 

were connected to a counterbalanced system and tubing, to perform blood sampling in the freely 

moving rat. Separate stock solutions (5 mg/mL) were prepared for the tested compounds in 

labrasol/water (1:1; v/v), leading to a clear solution. Immediately before application, the cassette 

dosing mixture was prepared by adding equal volumes of the stock solutions to end up with a final 

concentration of 1 mg/mL for each compound. The mixture was applied perorally to 3 rats with an 

injection volume of 5 mL/kg (Time 0). Blood samples (250 µl) were collected 1 hour before 

application and 1, 2, 4, 6, 8, and 24 hours thereafter. They were centrifuged at 650 g for 10 minutes at 
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4 °C and then the plasma was harvested and kept at –20 °C until LC/MS analysis. To 50 µL of rat 

plasma sample and calibration standard 100 µL acetonitrile containing the internal standard was 

added. Samples and standards were vigorously shaken and centrifuged for 10 minutes at 6000 g and 

20 °C. For the test items, an additional dilution was performed by mixing 50 µL of the particle free 

supernatant with 50 µL water. An aliquot was transferred to 200 µL sampler vials and subsequently 

subjected to LC-MS/MS. HPLC-MS/MS analysis and quantification of the samples was carried out on 

a Surveyor-HPLC-system coupled with a TSQ Quantum (ThermoFinnigan) triple quadrupole mass 

spectrometer equipped with an electrospray interface (ESI). The mean of absolute plasma 

concentrations (±SEM) was calculated for the 3 rats and the regression was performed on group mean 

values. The pharmacokinetic analysis was performed using a noncompartment model (PK Solutions 

2.0, Summit Research Services). Single dosing: The single dose experiments were performed as 

described for the cassette dosing procedure with male Wistar rats weighing 234–276 g (Janvier, 

France). Separate stock solutions (5 mg/mL) were prepared for compound 12 in 

PEG400/water/ethanol (50:40:10; v/v/v) and for compound 21 in labrasol/water (1:1; v/v), leading to 

clear solutions. Compound 12 was applied at 25 mg/kg perorally and 1 mg/kg intravenously and 

compound 21 at 25 mg/kg perorally to 4 rats each. Additional blood samples were taken 10 and 12 

hours after application in case of peroral application and 0.08, 0.25, 0.50, and 0.75 hours in case of 

intravenous application of compound 12, respectively. 6. Plasma Protein Binding. A 10 mM test 

compound solution and ketoprofen solution is prepared in acetonitrile. The test compound solution is 

diluted with solvent to the 50 fold concentration (150 µM, working solution) used in the assay (3 µM). 

In a 1.5 mL eppendorff vial, 3 µL working solution are given to 147 µL serum (rat or human) and 

mixed. For recovery the same dilutions are done in ultrafiltrated serum. The solutions are incubated 

for 1 hour at 37 °C. The whole samples (6 test solutions, 6 recovery samples) are centrifuged at 8000 g 

for 20 min using Centrifree micropartition devices (Millipore). 75 µL of ultra filtrate (UF) sample is 

removed for sample preparation. To 75 µL of sample or 150 µL calibration standard, 75 µL or 150 µL 

acetonitrile containing the internal standard (ketoprofen, 1 µM) is added to precipitate plasma proteins. 

Samples are then vigorously shaken (10 sec.) and centrifuged for 10 minutes at 6000 g and 20 °C. An 

aliquot (70 µL) of the particle-free supernatant is subsequently subjected to LC-MS/MS. The degree of 

binding to the plasma proteins (PPB) is calculated by the following equation: % Protein binding = (1–

[ligandultrafiltrat]/[ligandtotal])·100. 7. Cytotoxicity. Cell viability upon drug exposure was determined 

using a fluorimetric alamar blue conversion assay using a 96-well plate format. Briefly, U-937 cells 

(human monocytic leukemia) were seeded in growth medium into 96-well plates at a final density of 

5x10E4 cells/ml and exposed to the respective compounds for the indicated time intervals (6 replicates 

per concentration). At the end of the exposure time, alamar blue (Biosource International, Camarillo, 

CA) was added at 10% (v/v) and incubated for 4 hours. Fluorescence intensity was quantitated using a 

Wallac Victor fluorescence plate reader (Perkin Elmer, Wellesley, MA) at 530 nm excitation and 590 

nm emission. Relative viability of cells was determined in relation to the untreated control. Control 
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wells containing compound only were included to detect potential interference of the compound with 

the indicator system. Also, media only controls were included to account for background fluorescence. 

Viability of cells prior to cytotoxicity experiments was determine by Trypan Blue staining. Cells were 

diluted 1:3 in 0.4% (w/v) Trypan Blue (Sigma), and counted in a hemacytomer. 
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Abstract: Pyridine substituted 3,4-dihydro-1H-quinolin-2-ones (e.g., I and II) constitute a class of 

highly potent and selective inhibitors of aldosterone synthase (CYP11B2), a promising target for the 

treatment of hyperaldosteronism, congestive heart failure and myocardial fibrosis. Amongst the latter, 

ethyl-substituted II is particularly striking due to a pronounced CYP1A2 selectivity. Rigidification of 

II by incorporation of the ethyl group into a 5- or 6-membered ring affords compounds with a 

pyrroloquinolinone or pyridoquinolinone molecular scaffold (e.g., 1 and 2). It was found that these 

molecules are even more potent and selective CYP11B2 inhibitors than their corresponding open-

chain analogues. Moreover, pyrroloquinolinone 1 exhibits no inhibition of the six most important 

hepatic CYP enzymes (IC50 > 10 µM) as well as a bioavailability (AUC0-∞ = 3464 ng·h/mL) in the 

range of the marketed drug fadrozole (AUC0-∞ = 3207 ng·h/mL). The SAR studies disclose structural 

features for either strong or weak inhibition of the highly homologous 11β-hydroxylase (CYP11B1). 

These results are not only important for fine-tuning the selectivity but also for the development of 

selective CYP11B1 inhibitors that are of interest for the treatment of Cushing’s syndrome and 

metabolic syndrome. 
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Introduction 

Congestive heart failure (CHF) is a condition of insufficient cardiac output and reduced systemic 

blood flow which provokes a chronic activation of the renin-angiotensin-aldosterone system (RAAS). 

As a consequence, the excessive release of angiotensin II (Ang II) and aldosterone leads to an 

increased blood pressure and finally to a further deterioration of heart function, mainly mediated via 

epithelial sodium retention by mineralocorticoid receptor (MR) activation as well as Ang II mediated 

vasoconstriction.1 Moreover, aldosterone is known to exert direct effects on the heart. Activation of 

nonepithelial MRs stimulates the progressive synthesis and deposition of fibrillar collagens in fibro-

blasts and results in myocardial fibrosis.2 Until today, various drug classes targeting the RAAS have 

been developed in order to interrupt the vicious circle of chronic neurohormonal activation, acting 

either by inhibition of the key regulator enzymes or by blocking the actions of the effector hormones 

by functional antagonism, affording a successful treatment of heart failure and hypertension. Inhibitors 

of the angiotensin converting enzyme (ACE) proved to trigger a down-regulation of circulating aldo-

sterone, but increased levels of aldosterone may be seen after several months of therapy, presumably 

due to potassium stimulated secretion.3 The persistence of aldosterone secretion despite treatment with 

ACE inhibitors and the evidence of the deleterious effects of aldosterone on cardiovascular function 

led to the assumption that blocking the mineralocorticoid receptor might provide additional benefit. 

This hypothesis has been corroborated in two recent clinical trials by using the MR antagonists 

spironolactone and eplerenone in addition to standard therapy of patients with chronic congestive heart 

failure and in patients after myocardial infarction, respectively.4 Aldosterone antagonistic therapy, 

however, raises several issues. Spironolactone can induce severe side effects due to its low selectivity 

toward other steroid hormone receptors. Although eplerenone is more selective, clinically relevant 

hyperkalemia remains a principal therapeutic risk.5 Moreover, the elevated plasma aldosterone 

concentrations are left unaffected on a pathological level, promoting the up-regulation of MR 

expression6 and nongenomic aldosterone effects7 on the insufficient heart. 

Hence, we hypothesized a novel approach for the treatment of hyperaldosteronism, congestive heart 

failure and myocardial fibrosis by combating the elevated plasma aldosterone levels via blockade of 

aldosterone synthase (CYP11B2), the key enzyme of mineralocorticoid biosynthesis.8,9 This mito-

chondrial cytochrome P450 enzyme is localized mainly in the zona glomerulosa of the adrenal gland 

and catalyzes the terminal three oxidation steps in the biogenesis of aldosterone in humans via initial 

hydroxylation of 11-deoxycorticosterone at 11β-position to yield corticosterone, followed by two 

subsequent hydroxylations at C18 and water release to yield aldosterone (Chart 1).10 In addition to the 

potential therapeutic utility in cardiovascular diseases, radiolabelled inhibitors of that enzyme might 

be a useful tool for molecular imaging of CYP11B expression in adrenocortical tissue and thus for the 

diagnosis of adrenal tumors.11 Due to selectively binding to CYP11B2, these compounds are also 

interesting for the imaging of Conn adenomas which are characterized by high expression of 

CYP11B2.12  
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Chart 1. CYP11B2 Catalyzed Biosynthesis of Aldosterone 

 

 

An obstacle in the development of a putative CYP11B2 inhibitor is to accomplish selectivity versus 

other cytochrome P450 (CYP) enzymes since complexation of the heme iron which is a widespread 

interaction motive is likely to occur in other CYP enzymes as well. The selectivity issue becomes 

especially critical with respect to 11β-hydroxylase (CYP11B1), the key enzyme of glucocorticoid bio-

synthesis whose amino acid sequence exhibits a homology of 93 % compared to CYP11B2.13 A drug 

discovery program launched in our laboratory led to a series of nonsteroidal aldosterone synthase 

inhibitors with high selectivity versus other cytochrome P450 enzymes by consequent structural 

optimization of a hit discovered by compound library screening.14,15 Pyridine-substituted naph-

thalenes16,17 and dihydronaphthalenes,18 the most potent and selective compounds that emerged from 

the development process, however, revealed two major pharmacological drawbacks: A strong inhi-

bition of the hepatic drug metabolizing enzyme CYP1A2 and no inhibitory effect on the aldosterone 

production in vivo by using a rat model.  

Chart 2. Title Compounds 
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In the present study, we describe the development of 1,2,5,6-tetrahydropyrrolo[3,2,1-ij ]quinolin-4-

ones and structurally related compounds (Chart 2) as highly potent aldosterone synthase inhibitors 

with improved selectivity against other crucial CYP enzymes, such as CYP11B1, the steroidogenic 

enzymes CYP17 (17α-hydroxylase-C17,20-lyase) and CYP19 (aromatase) as well as the six most 

important drug-metabolizing cytochrome P450 enzymes (CYP1A2, CYP2B6, CYP2C9, CYP2C19, 

CYP2D6 and CYP3A4). The in vivo pharmacokinetic profile of some promising compounds was 

determined in male Wistar rats.  

 

Results 

Inhibitor Design Concept 

Preliminary studies aiming at the design of nonsteroidal aldosterone synthase inhibitors performed 

in our laboratory have demonstrated that 3-pyridine substituted naphthalenes provide an ideal 

molecular scaffold for a strong inhibition of the target enzyme CYP11B2 as well as high selectivity 

versus several other CYP enzymes (e.g., CYP11B1, CYP17, CYP19).16,18 These molecules, however, 

revealed two major pharmacological drawbacks: A strong inhibition of the hepatic drug metabolizing 

enzyme CYP1A2 and no inhibitory effect on the aldosterone production in vivo by using a rat model. 

In a recent study, we demonstrated that changing the naphthalene by a 3,4-dihydro-1H-quinolin-2-one 

skeleton affords highly potent CYP11B2 inhibitors such as I and II (Chart 3) with pronounced 

selectivity versus other CYP enzymes including CYP1A2, as well as aldosterone-lowering properties 

in vivo.19 Amongst the latter compounds, ethyl-substituted derivative II displayed a remarkably little 

inhibition of CYP1A2. Therefore, this molecule was chosen as starting point for further structural 

optimization. Incorporation of the ethyl group into a 5- or 6-membered ring affords the pyrrolo-

quinolinone 1 and the pyridoquinolinone 2, respectively. In the present study, the chemical modify-

cation is mainly directed to the heterocyclic moiety since both potency and selectivity have been 

identified in previous investigations to be highly dependent on heterocyclic derivatization.20 

Chart 3. Development of Compounds 1 and 2 
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Chemistry 

The key synthetic transformation toward the target compounds was a Suzuki coupling to connect the 

pyrrolo- or pyridoquinolinone scaffold to various N-heterocyclic systems, in most cases a derivative of 

3-pyridine (Scheme 1). The advanced intermediates 1a, 2a as well as 29a were prepared in three 

consecutive steps starting from commercially available indoline or 1,2,3,4-tetrahydroquinoline as 

initial building block. The sequence of amide formation and subsequent Friedel-Crafts cyclization to 

afford 1b and 2b has been described previously and was also used for the synthesis of the gem-

dimethyl analog 29a.21 Regioselective bromination was accomplished by treating the fused hetero-

cycles with N-bromosuccinimide in DMF at 0 °C. The pyrrolo- or pyridoquinolinones 1–4, 10–13, and 

29 were obtained by Suzuki coupling of the arylbromides 1a, 2a or 29a with an N-heterocyclic 

boronic acid.22 Copper catalyzed N-arylation of 1a with imidazole gave rise to the 1-imidazolyl deri-

vative 14.23 Alternatively, the bromo-substituted pyrroloquinolinone 1a was transformed into the 

corresponding pinacol boronate 3a by treating with bis(pinacolato)diboron under palladium catalysis24 

and was subsequently used for cross-coupling with a derivatized 3-bromopyridine to afford com-

pounds 5–9, and 15–27. If not commercially available, the 3-bromopyridines used in this step were 

prepared as outlined in Scheme 2 either from 3-bromo-5-methoxypyridine by demethylation and 

subsequent alkylation (5a, 6a) or from 3,5-dibromopyridine by Suzuki coupling with a substituted 

arylboronic acid (16a–27a). The hydroxypyridine 7 was synthesized by treating the corresponding 

methoxy derivative 3 with concentrated hydrobromic acid under reflux. Thionation of pyrroloquino-

linone 1 with Lawessons reagent in dry toluene afforded the thioanalog 28.  

Scheme 1a 

 
a Reagents and conditions: i) 3-chloropropanoyl chloride, acetone reflux; ii) AlCl3, NaCl, 150 °C; iii) NBS, DMF, 0 °C; iv) 
bis(pinacolato)diboron, Pd(dppf)Cl2, KOAc, DMSO, 80 °C; v) heteroarylboronic acid, Pd(PPh3)4, aq. NaHCO3, DMF, µw, 
150 °C or: heteroarylboronic acid, Pd(PPh3)4, aq. Na2CO3, toluene/ethanol, reflux; vi) heteroarylbromide, Pd(PPh3)4, aq. 
Na2CO3, toluene/ethanol, reflux; vii) Cu2SO4, K2CO3, 180 °C; viii) conc HBr, reflux; ix) Lawessons reagent, toluene, reflux, 
x) 3,3-dimethylacryloylchloride, acetone reflux. (Het = heteroaryl, BPin = pinacol boronate) 
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Scheme 2a 
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24a: R = 4-OMe
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26a: R = 3-OCF3
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a Reagents and conditions: i) conc HBr, reflux; ii) 
alkylhalogenide, K2CO3, DMF, rt; iii) arylboronic acid, 
Pd(PPh3)4, aq. Na2CO3, toluene/ethanol, reflux. 

 

Biological Results  

Inhibition of Human Adrenal Corticoid Producing CYP11B2 and CYP11B1 In Vitro (Table 

1). The inhibitory activities of the compounds were determined in V79 MZh cells expressing either 

human CYP11B2 or CYP11B1.9,25 The V79 MZh cells were incubated with [14C]-deoxycorticosterone 

as substrate and the inhibitor in different concentrations. The product formation was monitored by 

HPTLC using a phosphoimager. Fadrozole, an aromatase (CYP19) inhibitor with proven ability to 

reduce corticoid formation in vitro26 and in vivo27 was used as a reference (CYP11B2, IC50 = 1 nM; 

CYP11B1, IC50 = 10 nM). 

Most of the investigated molecules are highly potent aldosterone synthase inhibitors displaying IC50 

values in the low nanomolar range (< 5 nM). An extraordinary high activity is observed in case of the 

isoquinoline derivatives 10 and 11 with sub-nanomolar IC50 values (0.2 nM). Replacing 3-pyridine by 

other nitrogen containing heterocycles induces a decrease in inhibitory potency. The 5-pyrimidine (13) 

and 1-imidazole (14) derivatives are less active (IC50 = 56–89 nM) than the 3-pyridine analog 1 (IC50 = 

1.1 nM) and the corresponding 4-pyridine compound 12 lacks any inhibitory activity on CYP11B2 (< 

10 % inhibition at a concentration of 500 nM). The same trend was observed previously for the 

binding properties of a series of substituted pyridylnaphthalenes.16 A slight decrease in CYP11B2 

potency (IC50 = 16–33 nM) is also observed in case of some aryl-substituents in 5-position of the 

pyridine heterocycle (21, 26, and 27). A gem-dimethyl group in the quinolinone moiety as 

accomplished in compound 29 is not tolerated in terms of CYP11B2 potency. The inhibition of the 

highly homologous CYP11B1 is significantly lower than the CYP11B2 inhibition for all investigated 

molecules resulting in selectivity factors in the range of 15–957 (fadrozole, selectivity factor = 10).  
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Table 1. Inhibition of Human Adrenal CYP11B2 and CYP11B1 In Vitro 

 
    % inhibitiona IC50 valueb (nM)  

    V79 11B2c V79 11B2c V79 11B1d selectivity 

compd n R Het hCYP11B2 hCYP11B2 hCYP11B1 factore 

1 1 H  90 1.1 715 650 

2 2 H  95 2.4 2296 957 

3 1 OMe  98 0.6 247 412 

4 2 OMe  95 0.9 545 606 

5 1 OEt  92 1.0 158 158 

6 1 OiPr  96 2.2 103 47 

7 1 OH  94 4.3 2045 476 

8 1 F  97 4.4 1288 293 

9 1 CF3  96 5.9 141 24 

10 1  4-isoquinoline 98 0.2 13 65 

11 2  4-isoquinoline 95 0.2 34 170 

12 1  4-pyridine 7 n.d. n.d. n.d. 

13 1  5-pyrimidine 81 56 28546 510 

14 1  1-imidazole 87 89 2077 23 

15  H  97 1.3 58 45 

16  2-F  92 0.7 43 61 

17  3-F  97 1.4 490 350 

18  4-F  96 0.9 40 44 

19  2,5-F  80 3.6 183 51 

20  3,4-F  89 2.3 496 215 

21  3,5-F  81 18 1748 97 

22  2-OMe  86 2.4 128 53 

23  3-OMe  86 4.6 1374 299 

24  4-OMe  95 1.4 21 15 

25  3-OH  92 1.2 44 37 

26  3-OCF3  92 16 2058 129 

27  3-CF3  80 33 4646 141 

28    96 1.2 333 278 

29    48 n.d. n.d. n.d. 

fadrozole     1 10 10 
a Mean value of at least four experiments, standard deviation less than 10 %; inhibitor concentration, 500 nM. b Mean value of at least four 
experiments, standard deviation usually less than 25 %, n.d. = not determined. c Hamster fibroblasts expressing human CYP11B2; substrate 
deoxycorticosterone, 100 nM. d Hamster fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 nM. e IC50 
CYP11B1/IC50 CYP11B2, n.d. = not determined.  
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Inhibition of Steroidogenic and Hepatic CYP Enzymes (Tables 2 and 3). A subset of 12 

compounds was investigated for inhibition of the steroidogenic enzymes CYP17 and CYP19 (Table 

2). The inhibition of CYP17 was investigated using the 50,000 g sediment of the E. coli homogenate 

recombinantly expressing human CYP17 and progesterone (25 µM) as substrate.28 The inhibition 

values were measured at an inhibitor concentration of 2 µM. The inhibition of CYP19 at an inhibitor 

concentration of 500 nM was determined in vitro with human placental microsomes and [1β-3H] 

androstenedione as substrate as described by Thompson and Siiteri29 using our modification.30 Pyrido-

quinolinone 2 is a moderately potent aromatase inhibitor (69 % inhibition). All other investigated 

molecules are highly selective toward both CYP17 and CYP19, usually displaying less than 10 % 

inhibition.  

Table 2. Inhibition of Human CYP17 and CYP19 In Vitro 

 % inhibitiona   % inhibitiona 

compd CYP17b CYP19c  compd CYP17b CYP19c 

1 6 18  11 5 < 5 

2 6 69  13 5 5 

3 < 5 5  17 7 6 

4 < 5 5  20 < 5 < 5 

8 < 5 < 5  23 < 5 < 5 

10 6 < 5  28 11 5 
a Mean value of three experiments, standard deviation less than 10 %. b E. coli expressing human 
CYP17; substrate progesterone, 25 µM; inhibitor concentration, 2.0 µM; ketoconazole, IC50 = 
2.78 µM. c Human placental CYP19; substrate androstenedione, 500 nM; inhibitor concentration, 
500 nM; fadrozole, IC50 = 30 nM. 

 

A selectivity profile relating to inhibition of crucial hepatic CYP enzymes (CYP1A2, CYP2B6, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4) was determined for compounds 1–4, 11, and 17 by use 

of recombinantly expressed enzymes from baculovirus-infected insect microsomes. The unsubstituted 

pyrroloquinolinone 1 exhibits a pronounced selectivity toward all investigated CYP enzymes. 

CYP2B6, CYP2C19, CYP2D6, and CYP3A4 are not inhibited at all (< 5 % inhibition at a concen-

tration of 10 µM). The inhibition of CYP1A2 and CYP2C9 is in the range of 41–43 % corresponding 

with IC50 values of approximately 10 µM or higher. Compounds 2–4, and 11 display an increased 

CYP1A2 inhibition (24–47 % at a concentration of 1 µM) compared to 1 whereas the CYP1A2 

potency of 17 is in the range of the unsubstituted analog 1. Furthermore, isoquinoline derivative 11 is 

a rather potent inhibitor of both CYP2C9 and CYP2C19 (IC50 < 1 µM). Compound 17 displays a 

distinct inhibition of CYP2C9 (79 % at a concentration of 10 µM) but is otherwise rather selective 

toward the other CYP enzymes investigated (IC50 > 10 µM). However, it becomes apparent from the 

results presented in Table 3 that none of the substituted derivatives 2–4, 11 and 17 matches the 

selectivity of the unsubstituted parent compound 1. 
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Table 3. Inhibition of Selected Hepatic CYP Enzymes In Vitro 

      % inhibitiona      

 CYP1A2b,c CYP2B6b,d CYP2C9b,e CYP2C19b,f CYP2D6b,g CYP3A4b,h 

compd 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 10 µM 1 µM 

1 43 8 < 5 < 5 41 6 < 5 < 5 < 5 < 5 < 5 < 5 

2 83 41 36 27 40 19 44 8 n.d. n.d. 21 6 

3 72 37 8 < 5 42 23 30 7 13 9 19 14 

4 87 47 n.d. n.d. 63 34 61 11 n.d. n.d. 24 12 

11 63 24 n.d. n.d. 97 73 96 67 n.d. n.d. < 5 < 5 

17 38 9 13 < 5 79 39 21 n.d. 9 < 5 43 37 
a Mean value of two experiments, standard deviation less than 5 %. b Recombinantly expressed enzymes from baculovirus-infected insect 
microsomes (Supersomes). c Furafylline, IC50 = 2.42 µM. d Tranylcypromine, IC50 = 6.24 µM. e Sulfaphenazole, IC50 = 318 nM. f 
Tranylcypromine, IC50 = 5.95 µM. g Quinidine, IC50 = 14 nM. h Ketoconazole, IC50 = 57 nM.  

 

In Vivo Pharmacokinetics (Table 4). The pharmacokinetic profile of selected compounds was 

determined after peroral application to male Wistar rats. Plasma samples were collected over 24 h and 

the concentrations were determined by HPLC-MS/MS. Compounds 1, 3, and 4 were investigated in a 

cassette dosing approach (peroral dose = 5 mg/kg) and compared to fadrozole. All three compounds 

show comparable terminal half-lifes (t1/2 z = 2.0–2.9 h) which are in the range of the reference fadro-

zole (t1/2 z = 3.2 h). Contrariwise, the absorbance of compounds 1 and 3 (tmax = 4 h) is slower as the 

absorbance of fadrozole (tmax = 1 h). Within this series, fadrozole shows the highest maximal concen-

tration (Cmax) in plasma (471 ng/mL) followed by compound 1 (317 ng/mL). The maximal amount of 

the other test items (3 and 4) found in the plasma after peroral application is significantly lower (< 50 

ng/mL). Using the area under the curve (AUC0-∞) as a ranking criterion, pyrroloquinolinone 1 exhibits 

the highest bioavailability (3464 ng·h/mL), thus slightly exceeding the bioavailability of the reference 

compound (3207 ng·h/mL). Methoxylation of the heterocycle as accomplished in 3 results in a 

significant decrease of the AUC0-∞ (557 ng·h/mL). A further decrease is observed for the corres-

ponding pyridoquinolinone 4 (51 ng·h/mL). The influence of varying the molecular scaffold of com-

pound 1 becomes particularly apparent from Figure 1 where the mean profile of plasma levels (ng/mL) 

in rat versus time after oral application (5 mg/kg) in a cassette of compounds 1, 3 and 4 are shown. In 

the course of the in vivo experiment, no obvious sign of toxicity was noted in any animal over the 

duration of the experiment (24 h).  

Table 4. Pharmacokinetic Profile of Compounds 1, 3, and 4 

compd t1/2 z (h)b  tmax (h)c Cmax (ng/mL)d AUC0-∞ (ng·h/mL)e 

1 2.4 4.0 317 3464 

3 2.9 4.0 60 557 

4 2.0 2.0 4.9 51 

fadrozolef  3.2 1.0 471 3207 
a All compounds were applied perorally (5 mg/kg) to male Wistar rats in a cassette dosing approach. b 
Terminal half-life. c Time of maximal concentration. d Maximal concentration. e Area under the curve. 
f Mean value of two experiments. 
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Figure 1a 

 
a Mean profile (±) SEM of plasma levels (ng/ml) in rat versus 
time after oral application (5 mg/kg) of compounds 1, 3, and 4 
determined in a cassette dosing experiment. 

 

 

Discussion and Conclusion 

Within the present set of compounds, interesting structure-activity relationships (SAR) can be 

observed, especially with respect to the inhibition of 11β-hydroxylase (CYP11B1) and thus selectivity. 

On the one hand, selectivity is influenced by the ring-size of the carbocycle condensed to the quino-

linone moiety. Within the series of pyrido-condensed compounds (2, 4, and 11), the CYP11B1 inhi-

bition is significantly decreased compared to the corresponding pyrroloquinolinone analogues (1, 3, 

and 10), whereas the CYP11B2 inhibition is in a comparable range. This leads to an enhanced 

selectivity for the pyridoquinolinone derivatives. Pyridoquinolinone 2 is the most selective compound 

of the present series (selectivity factor = 957). Hence, the selectivity increases nearly by a factor of 

100 compared to fadrozole (selectivity factor = 10). This experimental result is particularly noteworthy 

with respect to the high homology of the two CYP11B isoforms. However, it was demonstrated by 

pharmacokinetic studies of 3 and 4 that ring expansion to the 6-membered carbocycle is accompanied 

by an approximately 10-fold decrease in bioavailability as indicated by an AUC0-∞ of 557 ng·h/mL (3) 

and 51 ng·h/mL (4), respectively. On the other hand, the substitution pattern of the pyridine moiety 

was found to significantly influence the CYP11B1 selectivity. Obviously, the size of substituents in 5-

position of the heterocycle plays a crucial role in CYP11B1 inhibition. This becomes particularly 

evident in the series of pyrroloquinolinone compounds with alkoxy derivatized heterocycle. The inhi-

bitory potency at CYP11B1 increases with the substituent size in the order 1 (R = H, IC50 = 715 nM) < 

3 (R = OMe, IC50 = 247 nM) < 5 (R = OEt, IC50 = 158 nM) < 6 (R = OiPr, IC50 = 103 nM). 

Contrariwise, the inhibition of CYP11B2 is in a comparable range for these compounds (IC50 = 0.6–

2.2 nM), that is the selectivity factor decreases in the same order from 650 (1) to 47 (6). A pronounced 

increase in CYP11B1 inhibition is observed in case of the introduction of additional aryl moieties. 

Replacing 3-pyridine by 4-isoquinoline results in a dramatic increase in CYP11B1 potency for both 

the pyrrolo-condensed (10, increase by a factor of 55) and pyrido-condensed (11, factor 68) derivative 



 107

whereas the CYP11B2 inhibition increases to a minor degree (factor 6–12). The same trend can be 

observed for several compounds with additional aryl substituent in 5-position of the pyridine moiety 

(e.g., 15, 16, 18, 22, 24, and 25). The latter compounds display a CYP11B2 inhibition in a range of 

0.7–2.4 nM which is readily comparable to the unsubstituted parent compound 1 (IC50 = 1.1 nM). 

Contrariwise, the CYP11B1 inhibition increases up to 36-fold compared to 1 (IC50 = 715 nM) to IC50 

values of 21–128 nM corresponding to a rather low selectivity (factor 15–61). Obviously, the intro-

duction of additional aromatic rings and to a minor degree also sterically demanding aliphatic residues 

(e.g., isopropoxy) in the pyridine moiety leads to additional interactions of the inhibitors with 

CYP11B1, thus stabilizing the formed CYP11B1-inhibitor complexes considerably. This observation 

correlates with homology modeling results suggesting that the putative binding sites of both CYP11B 

isoforms contain many hydrophobic amino acids (e.g., Ala313, Phe321, Pro322, Val378, Phe381, 

Leu382, Tyr485, and Ile488).31 In principal, these residues can interact with the additional aryl moiety 

by hydrophobic or π-π stacking contacts. Docking studies of imidazolylmethyleneindanes into our 

CYP11B2 model revealed that the inhibitor is predominantly bound through hydrophobic interactions 

with residues of the I-helix and Phe106, except for the nitrogen-metal coordination with the heme 

iron.14 Since the position of the heme has been hypothesized to be shifted by approximately 20° in the 

two CYP11B enzymes,32 it is likely that the ‘network’ of hydrophobic groups in the binding pocket 

accommodates the inhibitors in a different way in CYP11B1, thus affording additional stabilization of 

the phenyl moiety.  

Moreover, it is striking that meta substituents in the aryl moiety can trigger CYP11B1 selectivity 

again. With exception of the 3-hydroxy derivative 25, all compounds bearing a substituent in 3-posi-

tion of the benzene moiety (i.e., 17, 20, 21, 23, 26, and 27) exhibit a decreased CYP11B1 potency with 

IC50 values in a range of 490–4646 nM and thus selectivity factors up to 350 (17). This obvious off/on-

switch of CYP11B1 potency is of particular interest. From unsubstituted parent compound 1 (IC50 = 

715 nM), derivatization with phenyl in 5-position of the pyridine moiety leads to a significant increase 

of inhibitory potency in compound 15 (IC50 = 58 nM) whereas the meta-fluorophenyl analog 17 

exhibits a low inhibitory potency again (IC50 = 490 nM). Coevally, these three compounds display 

virtually the same aldosterone synthase inhibition (IC50 = 1.1–1.4 nM), which means that a variety of 

sterically demanding substituents in the pyridine moiety is readily tolerated in the CYP11B2 binding 

pocket, however, lead to no further stabilization of the complexes formed by coordination of the heme 

iron by the heterocyclic nitrogen. Contrariwise, 3-pyridine substituted pyrroloquinolinone derivatives 

such as 1 are per se rather poor CYP11B1 inhibitors and require an additional benzene moiety, and 

thus a further stabilization of the formed complexes mainly through hydrophobic or π-π stacking inter-

actions, for basal inhibitory potency. Amongst these compounds are highly potent CYP11B1 

inhibitors, for example isoquinoline derivative 10 (IC50 = 13 nM) and para-methoxyphenyl derivative 

24 (IC50 = 21 nM). Obviously the meta-substituted analogues do not adequately fit into the CYP11B1 

binding pocket or loose contact to the heme iron while minimizing unfavorable contacts with the 
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enzyme. Only 3-hydroxy derivative 25 displays a pronounced CYP11B1 inhibition (IC50 = 44 nM). 

This is an indication for stabilizing interactions by the hydroxy group acting as hydrogen bond donor 

which might compensate an eventual weakening of the Fe–N interaction.  

The above biological results that derivatization of the 3-pyridine moiety of pyrroloquinolinone type 

compounds is a tool for fine-tuning the CYP11B1 selectivity are in contrast to previous findings in the 

series of inhibitors with a naphthalene molecular scaffold. In the latter case, substituents in the 

heterocyclic moiety led to a change of inhibition of both the CYP11B isoforms in a comparable order 

of magnitude, resulting in a reasonable linear correlation of the corresponding pIC50 values (r2 = 0.86) 

and thus a rather constant selectivity factor.20 We interpreted this finding as a consequence of similar 

protein-inhibitor interactions of the heterocyclic moiety with both CYP11B isoforms due to structural 

similarities in the heterocyclic binding site. As a matter of fact, the selectivity is significantly 

influenced by the substitution pattern of the heterocycle within the present set of compounds which is 

an indication for a binding mode of the pyrroloquinolinone derivatives different from that of the 

naphthalene analogues.  

In summary, the present study provides extensive SAR results relating to CYP11B2 and CYP11B1 

inhibition. The influence of certain structural modifications on the 11β-hydroxylase (CYP11B1) 

activity is particularly noteworthy. On the one hand, CYP11B1 inhibition is an important selectivity 

criterion for aldosterone synthase inhibitors. On the other hand, selective CYP11B1 inhibitors could 

be used for the treatment of Cushing’s syndrome and metabolic syndrome. Although several potent 

CYP11B1 inhibitors have been described previously, in-depth SAR studies were usually focused on 

the concurrent CYP11B2 activity. Herein, we clearly identified structural features important for high 

inhibitory CYP11B1 potency, namely sterically demanding lipophilic residues or aromatic residues in 

the heterocyclic moiety or condensed to the heterocycle, giving rise to a series of highly potent 11β-

hydroxylase inhibitors (e.g., para-methoxyphenyl derivative 24, IC50 = 21 nM). Slight variation of 

these compounds, for example introduction of meta-substituents into the phenyl moiety, led to a 

significant loss of CYP11B1 inhibition again, providing selective CYP11B2 inhibitors. In the majority 

of cases, the investigated molecules are potent aldosterone synthase inhibitors selective toward the 

steroidogenic enzymes CYP11B1, CYP17, and CYP19 displaying no significant inhibition (except for 

2). The unsubstituted parent compound 1 shows also no significant inhibition of the six most important 

hepatic CYP enzymes (IC50 > 10 µM). In addition, this highly potent and selective aldosterone 

synthase inhibitor reaches high plasma concentrations (AUC0-∞ = 3464 ng·h/mL) after peroral appli-

cation to rats and even slightly exceeds the bioavailability of the marketed drug fadrozole (AUC0-∞ = 

3207 ng·h/mL). Currently, further studies with inhibitor 1 are underway to evaluate aldosterone-

lowering effects in vivo. 
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Experimental section 

Chemical and Analytical Methods. Melting points were measured on a Mettler FP1 melting point 

apparatus and are uncorrected. 1H NMR and 13C spectra were recorded on a Bruker DRX-500 

instrument. Chemical shifts are given in parts per million (ppm), and tetramethylsilane (TMS) was 

used as internal standard for spectra obtained in DMSO-d6 and CDCl3. All coupling constants (J) are 

given in hertz. Mass spectra (LC/MS) were measured on a TSQ Quantum (Thermo Electron 

Corporation) instrument with a RP18 100-3 column (Macherey Nagel) and with water/acetonitrile 

mixtures as eluents. GC/MS spectra were measured on a GCD Series G1800A (Hewlett Packard) 

instrument with an Optima-5-MS (0.25 µM, 30 m) column (Macherey Nagel). Elemental analyses 

were carried out at the Department of Chemistry, University of Saarbrücken. Reagents were used as 

obtained from commercial suppliers without further purification. Solvents were distilled before use. 

Dry solvents were obtained by distillation from appropriate drying reagents and stored over molecular 

sieves. Flash chromatography was performed on silica gel 40 (35/40–63/70 µM) with petroleum 

ether/ethyl acetate mixtures as eluents, and the reaction progress was determined by thin-layer 

chromatography analyses on Alugram SIL G/UV254 (Macherey Nagel). Visualization was 

accomplished with UV light and KMnO4 solution. All microwave irradiation experiments were carried 

out in a CEM-Discover monomode microwave apparatus. 

The following compounds were prepared according to previously described procedures: 1,2,5,6-

tetrahydro-4H-pyrrolo[3,2,1-ij ]quinolin-4-one (1b),21 2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij ]quino-

lin-5-one (2b),21 5-bromopyridin-3-ol (5b),20 3-bromo-5-ethoxypyridine (5a).20 

Synthesis of the Target Compounds 

Procedure A.22 Boronic acid (0.75 mmol, 1 equivalent), aryl bromide or -triflate (0.9–1.3 

equivalents), and tetrakis(triphenylphosphane)palladium(0) (43 mg, 37.5 µmol, 5 mol %) were 

suspended in 1.5 mL DMF in a 10 mL septum-capped tube containing a stirring magnet. To this was 

added a solution of NaHCO3 (189 mg, 2.25 mmol, 3 equivalents) in 1.5 mL water and the vial was 

sealed with an Teflon cap. The mixture was irradiated with microwaves for 15 min at a temperature of 

150 °C with an initial irradiation power of 100 W. After the reaction, the vial was cooled to 40 °C, the 

crude mixture was partitioned between ethyl acetate and water and the aqueous layer was extracted 

three times with ethyl acetate. The combined organic layers were dried over MgSO4 and the solvents 

were removed in vacuo. The coupling products were obtained after flash chromatography on silica gel 

(petroleum ether/ethyl acetate mixtures) and/or crystallization. If an oil was obtained, it was tranferred 

into the hydrochloride salt by 1N HCl solution in diethyl ether.  

Procedure B. Boronic acid (1 equivalent), aryl bromide or (1.3–1.5 equivalents), and 

tetrakis(triphenylphosphane)palladium(0) (5 mol %) were suspended in toluene/ethanol 4/1 to give a 

0.07–0.1 M solution of boronic acid under an atosphere of nitrogen. To this was added a 1 N aqueous 

solution of Na2CO3 (6 equivalents). The mixture was then refluxed for 12–18 h, cooled to room 

temperature, diluted with water and extracted several times with ethyl acetate. The combined extracts 
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were dried over MgSO4, concentrated and purified by flash chromatography on silica gel (petroleum 

ether/ethyl acetate mixtures) and/or crystallization. If an oil was obtained, it was tranferred into the 

hydrochloride salt by 1 N HCl solution in diethyl ether. 

8-Pyridin-3-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (1) was obtained according 

to procedure B from 1a (5.19 g, 20.6 mmol) and 3-pyridineboronic acid (2.30 g, 18.7 mmol) after 

flash chromatography on silica gel (ethyl acetate, Rf = 0.08) and crystallization from 

acetone/diethylether as colorless plates (83 mg, 0.33 mmol, 49 %), mp 153–154 °C. 1H-NMR (500 

MHz, CDCl3): δ = 2.72 (t, 3J = 7.8 Hz, 2H), 3.03 (t, 3J = 7.8 Hz, 2H), 3.25 (t, 3J = 8.5 Hz, 2H), 4.13 (t, 
3J = 8.5 Hz, 2H), 7.20 (s, 1H), 7.28 (s, 1H), 7.32 (ddd, 3J = 7.8 Hz, 3J = 4.8 Hz, 5J = 0.5 Hz, 1H), 7.79 

(ddd, 3J = 7.8 Hz, 4J = 2.2 Hz, 4J = 1.6 Hz, 1H), 8.54 (dd, 3J = 4.7 Hz, 4J = 1.4 Hz, 1H), 8.59 (d, 4J = 

2.0 Hz, 1H). 13C-NMR (125 MHz, CDCl3): δ = 24.5, 27.7, 31.6, 45.5, 120.7, 122.4, 123.5, 124.7, 

129.9, 133.5, 134.0, 136.7, 141.6, 148.1, 167.6. MS m/z 251.22 (MH+). Anal. (C16H14N2O) C, H, N. 

9-Pyridin-3-yl-1,2,6,7-tetrahydro-5H-pyrido[3,2,1-ij]quinolin-3-one (2) was obtained according 

to procedure A from 2a (266 mg, 1.0 mmol) and 3-pyridineboronic acid (92 mg, 0.75 mmol) after 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.12) and crystallization 

from acetone/diethylether as colorless needles (116 mg, 0.44 mmol, 59 %), mp 122–123 °C. MS m/z 

265.07 (MH+). Anal. (C17H16N2O2) C, H, N. 

8-(5-Methoxypyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (3) was 

obtained according to procedure A from 1a (252 mg, 1.0 mmol) and 5-methoxy-3-pyridineboronic 

acid (115 mg, 0.75 mmol) after flash chromatography on silica gel (ethyl acetate, Rf = 0.09) as 

colorless needles (74 mg, 0.26 mmol, 35 %), mp 171–172 °C. MS m/z 281.02 (MH+). Anal. 

(C17H16N2O2) C, H, N 

9-(5-Methoxypyridin-3-yl)-1,2,6,7-tetrahydro-5H-pyrido[3,2,1-ij]quinolin-3-one (4) was 

obtained according to procedure A from 2a (266 mg, 1.0 mmol) and 5-methoxy-3-pyridineboronic 

acid (115 mg, 0.75 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, 

Rf = 0.08) and crystallization from acetone/diethylether as colorless needles (63 mg, 0.21 mmol, 28 

%), mp 148–150 °C. MS m/z 295.02 (MH+). Anal. (C18H18N2O2·0.2H2O) C, H, N. 

8-(5-Ethoxypyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (5) was 

obtained according to procedure B from 3a (300 mg, 1.0 mmol) and 5a (242 mg, 1.2 mmol) after flash 

chromatography on silica gel (petroleum ether/ethyl acetate, 1/9, Rf = 0.10) and crystallization from 

acetone/diethylether as colorless needles (132 mg, 0.45 mmol, 45 %), mp 171–172 °C. MS m/z 295.16 

(MH+). Anal. (C18H18N2O2) C, H, N. 

8-(5-Isopropoxypyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (6) was 

obtained according to procedure B from 3a (359 mg, 1.20 mmol) and 6a (281 mg, 1.30 mmol) after 

flash chromatography on silica gel (petroleum ether/ethyl acetate, 3/7, Rf = 0.07) as colorless plates 

(196 mg, 0.63 mmol, 53 %), mp 154–155 °C. MS m/z 309.15 (MH+). Anal. (C19H20N2O2·0.2H2O) C, 

H, N. 
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8-(5-Hydroxypyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (7). A solution 

of 3 (95 mg, 0.34 mmol) in 35 ml concentrated hydrobromic acid was heated under reflux for 18 h. 

After cooling to room temperature, the reaction mixture was neutralized with saturated NaHCO3 

solution and extracted with ethyl acetate (3 x 200 ml). The crude product which was obtained after 

evaporation of the solvent was purified by flash chromatography on silica gel (ethyl acetate, Rf = 0.06) 

and washing with ethanol, yielding the hydroxy compound 7 as colorless solid (75 mg, 0.28 mmol, 83 

%). The solid was dissolved in diethyl THF/methanol and tranferred into the hydrochloride salt by 1N 

HCl solution in isopropanol/diethyl ether, followed by filtration and crystallization from acetone, mp 

(HCl salt) >300 °C. MS m/z 267.94 (MH+). Anal. (C16H14N2O2) C, H, N. 

8-(5-Fluoropyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (8) was obtained 

according to procedure B from 3a (359 mg, 1.2 mmol) and 3-bromo-5-fluoropyridine (211 mg, 1.2 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/1, Rf = 0.09) and 

crystallization from acetone/diethylether as colorless needles (202 mg, 0.75 mmol, 63 %), mp 157–

158 °C. MS m/z 269.83 (MH+). Anal. (C16H13FN2O·0.3H2O) C, H, N. 

8-[5-(Trifluoromethyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (9) 

was obtained according to procedure B from 3a (329 mg, 1.1 mmol) and 3-bromo-5-

(trifluoromethyl)pyridine (249 mg, 1.1 mmol) after flash chromatography on silica gel (petroleum 

ether/ethyl acetate, 1/1, Rf = 0.14) and crystallization from acetone/diethylether as colorless needles 

(248 mg, 0.78 mmol, 71 %), mp 211–212 °C. MS m/z 318.95 (MH+). Anal. (C17H13F3N2O) C, H, N. 

8-Isoquinolin-4-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (10) was obtained 

according to procedure A from 1a (252 mg, 1.0 mmol) and 4-isoquinolineboronic acid (227 mg, 0.9 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.13) as 

colorless needles (93 mg, 0.31 mmol, 34 %), mp 184–185 °C. MS m/z 301.15 (MH+). Anal. 

(C20H16N2O·0.2H2O) C, H, N. 

9-Isoquinolin-4-yl-1,2,6,7-tetrahydro-5H-pyrido[3,2,1-ij]quinolin-3-one (11) was obtained 

according to procedure A from 2a (266 mg, 1.0 mmol) and 4-isoquinolineboronic acid (227 mg, 0.9 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.10) and 

crystallization from acetone/diethylether as colorless needles (173 mg, 0.55 mmol, 61 %), mp 158–

159 °C. MS m/z 315.24 (MH+). Anal. (C21H18N2O) C, H, N. 

8-Pyridin-4-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (12) was obtained 

according to procedure B from 1a (627 mg, 3.50 mmol) and 4-pyridineboronic acid (369 mg, 3.0 

mmol) after crystallization from ethanol as yellow crystals (225 mg, 0.90 mmol, 30 %), mp 173–174 

°C. MS m/z 251.01 (MH+). Anal. (C16H14N2O) C, H, N. 

8-Pyrimidin-5-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (13) was obtained 

according to procedure B from 1a (627 mg, 3.50 mmol) and 5-pyrimidineboronic acid (372 mg, 3.0 

mmol) after crystallization from acetone as a yellow crystals (324 mg, 1.29 mmol, 43 %), mp 185–186 

°C. MS m/z 251.85 (MH+). Anal. (C15H13N3O·0.3H2O) C, H, N. 



 112 

8-Imidazol-1-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (14). Imidazole (628 mg, 

9.23 mmol), 1a (2.12 g, 8.39 mmol), potassium carbonate (1.28 g, 9.23 mmol) and copper(II)sulfate 

(160 mg, 1.0 mmol) were mixed and heated at 180 °C for 10 h under an atmosphrere of dry nitrogen. 

After being cooled to room temperature, the reaction mixture was poured into 150 ml water and 

extracted with ethyl acetate (3 x 100 ml). After drying with MgSO4 and evaporating of the solvent, the 

crude product was purified by two subsequent crystallizations from acetone to yield a colorless solid 

(674 mg, 2.82 mg, 34 %), mp 123–124 °C. MS m/z 240.02 (MH+). Anal. (C14H13N3O·0.2H2O) C, H, 

N. 

8-(5-Phenylpyridin-3-yl)-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (15) was 

obtained according to procedure B from 3a (325 mg, 1.07 mmol) and 3-bromo-5-phenylpyridine (301 

mg, 1.28 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.09) 

as colorless plates (150 mg, 0.46 mmol, 43 %), mp 188–189 °C. MS m/z 326.79 (MH+). Anal. 

(C22H18N2O·0.4H2O) C, H, N. 

8-[5-(2-Fluorophenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (16) 

was obtained according to procedure B from 3a (389 mg, 1.30 mmol) and 16a (311 mg, 1.12 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.09) as colorless 

solid (239 mg, 0.69 mmol, 56 %), mp 245–247 °C. MS m/z 345.19 (MH+). Anal. 

(C22H17FN2O·0.3H2O) C, H, N. 

8-[5-(3-Fluorophenyl)-pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (17) 

was obtained according to procedure B from 3a (360 mg, 1.20 mmol) and 17a (378 mg, 1.50 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.08) as colorless 

needles (97 mg, 0.28 mmol, 23 %), mp 181–182 °C. MS m/z 345.26 (MH+). Anal. (C22H17FN2O) C, H, 

N. 

8-[5-(4-Fluorophenyl)-pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (18) 

was obtained according to procedure B from 3a (463 mg, 1.55 mmol) and 18a (440 mg, 1.75 mmol) 

after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.05) as colorless 

needles (189 mg, 0.55 mmol, 35 %), mp 233–234 °C. MS m/z 345.05 (MH+). Anal. 

(C22H17FN2O·0.6H2O) C, H, N. 

8-[5-(2,5-Difluorophenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(19) was obtained according to procedure B from 3a (430 mg, 1.44 mmol) and 19a (338 mg, 1.25 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 3/7, Rf = 0.08) as 

colorless solid (371 mg, 1.02 mmol, 82 %), mp 189–190 °C. MS m/z 362.97 (MH+). Anal. 

(C22H16F2N2O·0.2H2O) C, H, N. 

8-[5-(3,4-Difluorophenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(20) was obtained according to procedure B from 3a (449 mg, 1.50 mmol) and 20a (367 mg, 1.36 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/4, Rf = 0.07) as 
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colorless needles (110 mg, 0.30 mmol, 22 %), mp 204–205 °C. MS m/z 363.11 (MH+). Anal. 

(C22H16F2N2O·0.3H2O) C, H, N. 

8-[5-(3,5-Difluorophenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(21) was obtained according to procedure B from 3a (404 mg, 1.35 mmol) and 21a (315 mg, 1.17 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 3/7, Rf = 0.10) as 

colorless solid (104 mg, 0.29 mmol, 25 %), mp 228–229 °C. MS m/z 363.81 (MH+). Anal. 

(C22H16F2N2O·0.6H2O) C, H, N. 

8-[5-(2-Methoxyphenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(22) was obtained according to procedure B from 3a (512 mg, 1.71 mmol) and 22a (430 mg, 1.63 

mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/4, Rf = 0.10) as 

colorless needles (106 mg, 0.29 mmol, 18 %), mp 186–187 °C. MS m/z 356.95 (MH+). Anal. 

(C23H20N2O2) C, H, N. 

8-[5-(3-Methoxyphenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(23) was obtained according to procedure B from 3a (329 mg, 1.10 mmol) and 23a (270 mg, 1.02 

mmol) after flash chromatography on silica gel (ethyl acetate, Rf = 0.09) as colorless solid (62 mg, 

0.17 mmol, 17 %), mp 207–208 °C. MS m/z 357.09 (MH+). Anal. (C23H20N2O2·0.2H2O) C, H, N. 

8-[5-(4-Methoxyphenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one 

(24) was obtained according to procedure B from 3a (389 mg, 1.30 mmol) and 24a (315 mg, 1.19 

mmol) after flash chromatography on silica gel (ethyl acetate, Rf = 0.08) as colorless needles (182 mg, 

0.51 mmol, 43 %), mp 220–221 °C. MS m/z 357.09 (MH+). Anal. (C23H20N2O2·0.5H2O) C, H, N. 

8-[5-(3-hydroxyphenyl)pyridin-3-yl]-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (25) 

was obtained according to procedure B from 3a (430 mg, 1.44 mmol) and 25a (313 mg, 1.25 mmol) 

after crystallization from ethanol as colorless needles (93 mg, 0.27 mmol, 22 %), mp 286–288 °C. MS 

m/z 343.03 (MH+). Anal. (C22H18N2O2·0.7H2O) C, H, N. 

8-{5-[3-(Trifluoromethoxy)phenyl]pyridin-3-yl}-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-

ij]quinolin-4-one (26) was obtained according to procedure B from 3a (382 mg, 1.28 mmol) and 26a 

(370 mg, 1.16 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/4, Rf = 

0.11) as colorless solid (332 mg, 0.81 mmol, 70 %), mp 160–161 °C. MS m/z 410.90 (MH+). Anal. 

(C23H17F3N2O2) C, H, N. 

8-{5-[3-(Trifluoromethyl)phenyl]pyridin-3-yl}-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-

4-one (27) was obtained according to procedure B from 3a (344 mg, 1.15 mmol) and 27a (330 mg, 

1.09 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 2/3, Rf = 0.05) as 

colorless solid (276 mg, 0.70 mmol, 64 %), mp 154–153 °C. MS m/z 395.01 (MH+). Anal. 

(C23H14F3N2O) C, H, N. 

8-Pyridin-3-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinoline-4-thione (28). A suspension of 1 

(900 mg, 3.60 mmol) and Lawesson’s reagent (1.45 g, 3.60 mmol) in 50 ml dry toluene and 5 ml dry 

THF was refluxed for 30 min under an atmosphere of nitrogen. After cooling to room temperature, the 
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solvent was removed in vacuo and the residue was purified by flash chromatography on silica gel 

(petroleum ether/ethyl acetate, 1/1, Rf = 0.25) to afford 28 as yellow solid (155 mg, 0.58 mmol, 16 %). 

The solid was dissolved in diethyl ether/methanol and tranferred into the hydrochloride salt by 1N HCl 

solution in isopropanol/diethyl ether, followed by filtration and crystallization from acetone, mp (HCl 

salt) 281–283 °C. MS m/z 267.10 (MH+). Anal. (C16H14N2S·HCl·0.2H2O) C, H, N. 

6,6-Dimethyl-8-pyridin-3-yl-1,2,5,6-tetrahydro-4H-pyrrolo[3,2,1-ij]quinolin-4-one (29) was 

obtained according to procedure B from 29a (280 mg, 1.0 mmol) and 3-pyridineboronic acid (92 mg, 

0.75 mmol) after flash chromatography on silica gel (petroleum ether/ethyl acetate, 1/9, Rf = 0.09) and 

crystallization from acetone as colorless needles (48 mg, 0.17 mmol, 23 %), mp 178–180 °C. MS m/z 

279.14 (MH+). Anal. (C18H18N2O·0.2H2O) C, H, N. 

Biological Methods. 1. Enzyme Preparations. CYP17 and CYP19 preparations were obtained by 

described methods: the 50,000 g sediment of E. coli expressing human CYP1728 and microsomes from 

human placenta for CYP19.30 2. Enzyme Assays. The following enzyme assays were performed as 

previously described: CY1728 and CYP19.30 3. Activity and Selectivity Assay Using V79 Cells. V79 

MZh 11B1 and V79 MZh 11B2 cells9,25 were incubated with [4-14C]-11-deoxycorticosterone as 

substrate and inhibitor in at least three different concentrations. The enzyme reactions were stopped by 

addition of ethyl acetate. After vigorous shaking and a centrifugation step (10,000 g, 2 min), the 

steroids were extracted into the organic phase, which was then separated. The conversion of the 

substrate was analyzed by HPTLC and a phosphoimaging system as described.9,25 4. Inhibition of 

Human Hepatic CYP Enzymes. The recombinantly expressed enzymes from baculovirus-infected 

insect microsomes (Supersomes) were used and the manufacturer’s instructions (www.gentest.com) 

were followed. 5. In Vivo Pharmacokinetics. Animal trials were conducted in accordance with 

institutional and international ethical guidelines for the use of laboratory animals. Male Wistar rats 

weighing 260–280 g (Janvier, France) were housed in a temperature-controlled room (20–24 °C) and 

maintained in a 12 h light/12 h dark cycle. Food and water were available ad libitum. The animals 

were anaesthetised with a ketamine (90 mg/kg)/xylazine (10 mg/kg) mixture, and cannulated with 

silicone tubing via the right jugular vein. Prior to the first blood sampling, animals were connected to a 

counterbalanced system and tubing, to perform blood sampling in the freely moving rat. Separate 

stock solutions (5 mg/mL) were prepared for the tested compounds in labrasol/water (1:1; v/v), 

leading to a clear solution. Immediately before application, the cassette dosing mixture was prepared 

by adding equal volumes of the stock solutions to end up with a final concentration of 1 mg/mL for 

each compound. The mixture was applied perorally to 4 rats with an injection volume of 5 mL/kg 

(Time 0). Blood samples (250 µl) were collected 1 hour before application and 1, 2, 4, 6, 8, and 24 

hours thereafter. They were centrifuged at 650 g for 10 minutes at 4 °C and then the plasma was 

harvested and kept at –20 °C until LC/MS analysis. To 50 µL of rat plasma sample and calibration 

standard 100 µL acetonitrile containing the internal standard was added. Samples and standards were 

vigorously shaken and centrifuged for 10 minutes at 6000 g and 20 °C. For the test items, an additional 
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dilution was performed by mixing 50 µL of the particle free supernatant with 50 µL water. An aliquot 

was transferred to 200 µL sampler vials and subsequently subjected to LC-MS/MS. HPLC-MS/MS 

analysis and quantification of the samples was carried out on a Surveyor-HPLC-system coupled with a 

TSQ Quantum (ThermoFinnigan) triple quadrupole mass spectrometer equipped with an electrospray 

interface (ESI). The mean of absolute plasma concentrations (±SEM) was calculated for the 4 rats and 

the regression was performed on group mean values. The pharmacokinetic analysis was performed 

using a noncompartment model (PK Solutions 2.0, Summit Research Services). 
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4 Summary and conclusion 

 

 
The aim of the present work was the development of novel compounds as potent and highly selective 

inhibitors of aldosterone synthase (CYP11B2) as prospective agents for the treatment of cardio-

vascular diseases. On the basis of a previously established pharmacophore model,90 new molecules 

were designed with the primary goal to reach selectivity versus a range of other cytochrome P450 en-

zymes and CYP1A2 in particular as well as supplying experimental evidence for the in vivo efficacy 

of nonsteroidal CYP11B2 inhibitors and thus providing a proof of concept. 

In Chapter 3.1, the synthesis and biological evaluation of a series of 30 pyridylnaphthalenes and -di-

hydronaphthalenes I/1–I/30† bearing various substituents in the pyridine moiety is described to ex-

amine their influence on potency and selectivity. In preceding studies, the attention was focused on the 

optimization of the naphthalene skeleton. The substitution pattern of the heme complexing 3-pyridine 

moiety, however, was not investigated in detail. In the present study, it was found that derivatization 

of the heterocycle has dramatic effects on the inhibitory action of the pyridylnaphthalenes on the target 

CYP11B2. Acidic residues (e.g., carboxylic acids, amides, hydroxy groups) generally resulted in a 

decrease in inhibitory potency whereas the nonprotic bioisosteric analogues turned out to inhibit 

CYP11B2 strongly. Most of the tested compounds turned out to be even more active than the un-

substituted parent compound MV23 with IC50 values in the low nanomolar range and even subnano-

molar potencies in some cases. On the other hand, the selectivity toward 11β-hydroxylase (CYP11B1) 

was not significantly influenced by most of the residues in the pyridine moiety.  

This interesting experimental result was found to be due to a precise relationship between the 

inhibition of CYP11B2 and CYP11B1: an increased or decreased inhibitory activity at the one enzyme 

was accompanied by an increased or decreased inhibitory activity at the other enzyme. This trend 

becomes particularly evident when plotting the CYP11B2 versus the CYP11B1 pIC50 values (Figure 

17) revealing a reasonable linear correlation (r2 = 0.86, n = 29). The finding, that it is to some extent 

possible to change the inhibitory potency by the heteroaryl derivatization without significantly 

changing the selectivity versus either CYP11B2 or CYP11B1 is an indication that the inhibitor binding 

proceeds via similar protein-inhibitor interactions of the heterocyclic moiety with both CYP11B iso-

forms. Contrariwise, it has been shown earlier by us that variation of the carbocyclic skeleton instead 

of the heterocycle can significantly influence the selectivity. Therefore, no correlation is observed for 
                                                 
†  For the sake of clarity, all compounds that are referred to in chapter 4 are characterized by a Roman numeral I–IV to 

identify the paper in which they are published, and an Arabic numeral that is identical with the corresponding compound 
number of the particular publication (e.g., II/6 is compound 6 from paper II) 
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a plot of the CYP11B2 and CYP11B1 pIC50 values of the naphthalenes and dihydronaphthalenes 

described previously by Voets et al. that are functionalized with an unsubstituted 3-pyridine as heme 

complexing heterocycle (r2 = 0.30, n = 20). Consistent with these findings, it can be assumed that both 

enzymes, CYP11B2 and CYP11B1, are structurally more diverse in the naphthalene binding site than 

in the heterocyclic binding site.  

Figure 17.  Correlation of pIC50 values of pyridylnaphthalenes with modifications in the heterocyclic moiety (a) 
or in the naphthalene skeleton (b). 

  

Contrary to the selectivity toward CYP11B1, some pyridine substituents had a significant impact on 

the CYP1A2 potency. It was found that the decrease of unwanted CYP1A2 inhibition correlates 

inversely with the planarity and aromaticity of the molecules. The reduced inhibition of CYP1A2 with 

reduced planarity reflects the affinity of the enzyme to both its typical subtrates (e.g., caffeine97) and 

inhibitors (e.g., furafylline98) which are usually small-volume molecules with a planar shape. For ex-

ample, in compounds I/28–I/30, the isoquinoline constrains the rotation around the carbon–carbon 

bond between the heterocycle and the naphthalene core, especially in presence of the additional ortho-

methyl groups in I/29 and I/30 (Table 2). Thus, a coplanar conformation becomes energetically dis-

favored compared to the pyridine analogues and the sterically demanding heterocycle rotates out of the 

naphthalene plane. The latter molecules display a remarkably low CYP1A2 inhibition (< 60 % at a 

concentration of 2 µM). The dihydronaphthalenes are again more selective, for example compounds 

I/13 and I/30 inhibit CYP1A2 less than 20 % at a concentration of 2 µM. This result correlates with 

recent QSAR studies that have identified the CYP1A2 inhibition to be highly dependent on the 

number of sp2-hybridized carbons.96 

In summary, it has been demonstrated that modifying the lead compound MV23 by introduction of 

substituents in the heterocyclic moiety has a clear effect on the activity and selectivity profile. The 

undesirable high CYP1A2 inhibition that is present in the previously investigated derivatives could be 

overcome by certain residues, giving rise to compounds with an advantageous overall selectivity 

profile. The results obtained are of great relevance for the design of aldosterone synthase inhibitors. A 

variety of substituents in the heterocyclic moiety is tolerated with respect to the inhibitory action on 

the target enzyme and even induces an increase in potency in most cases. What is even more important 

is the fact, that the selectivity toward CYP11B1 is rather constant, independent of the heterocyclic 

N

R

N

R
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substituent. This allows the introduction of residues into the pyridine moiety to improve for example 

pharmacokinetic (PK) parameters or the selectivity toward other competitive targets such as hepatic 

CYP enzymes. Therefore, the concept of varying the heterocyclic substitution pattern was used in the 

following sub-projects (Chapter 3.2 – Chapter 3.4) to investigate PK or selectivity effects. 

Table 1. Inhibition of human CYP11B2, CYP11B1 and CYP1A2 in vitro by heteroaryl substituted naphthalenes 

 
  IC50 valuea (nM) selectivity % inhibitione 

compd R CYP11B2b CYP11B1c factord CYP1A2f 

I/13  1.2 100 83 18 

I/28 H 0.6 67 112 57 

I/29 Me 3.1 843 272 45 

I/30  0.5 64 128 6 
a Mean value of at least four experiments, standard deviation usually less than 25 %. b Hamster 
fibroblasts expressing human CYP11B2; substrate deoxycorticosterone, 100 nM. c Hamster fibroblasts 
expressing human CYP11B1; substrate deoxycorticosterone, 100 nM. d IC50 CYP11B1/IC50 CYP11B2. e 
Mean value of two experiments, standard deviation less than 5 %. f Recombinantly expressed enzyme 
from baculovirus-infected insect microsomes (Supersomes); inhibitor concentration, 2.0 µM; furafylline, 
55 % inhibition. 

 

Chapter 3.2 deals with an in silico approach toward CYP11B2 inhibitors with extended carbocyclic 

skeleton. The inhibitor design concept is based on the discovery of imidazolylmethylene-substituted 

flavones as aldosterone synthase inhibitors with moderate to high inhibitory potency by compound 

library screening (Figure 18). These compounds that originally have been described as aromatase 

inhibitors95 display CYP11B2 inhibition in a range of 73–94 % at a concentration of 500 nM with 

methoxy-functionalized II/6 being most active (IC50 = 11 nM), albeit without showing selectivity 

versus the highly homologous CYP11B1. 

Figure 18. Imidazolylmethylene-substituted flavones with inhibitory action on CYP11B2 
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Using the chemical structures of the most potent flavone type inhibitors together with potent inhi-

bitors of the naphthalene as well as methyleneindane type as a training set, an extended pharmaco-

phore model was generated by applying the GALAHAD pharmacophore generation module of the 

SYBYL molecular modeling software.101 In the top ranked pharmacophore model, best in three of the 
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most indicative ranking criteria of this software, the earlier pharmacophoric points90 were confirmed, 

namely the hydrophobic features HY0, HY1, HY2a, HY2b as well as the acceptor atom features AA1, 

AA2a, and AA2b (Figure 19a). A novel and voluminous hydrophobic area HY3 was identified next to 

HY1, along with the acceptor atom features AA3a and AA3b as well as an additional acceptor atom 

feature AA4. Figure 19b shows the unsubstituted naphthalene type inhibitor II/1 mapped into the 

pharmacophore model. It becomes apparent that the hydrophobic feature HY3 and the corresponding 

acceptor atom features AA3a and AA3b are not exploited by inhibitors of the naphthalene type.  

Figure 19.  Pharmacophore model (a) and compound II/1 mapped to the pharmacophore model (b). The newly 
identified hydrophobic feature HY3 as well as the acceptor atom features AA3a and AA3b are not 
exploited by inhibitors with a naphthalene molecular scaffold. Pharmacophoric features are color-
coded: Cyan for hydrophobic regions (HY0–HY3) and green for acceptor atom features (AA1–4). 

 

 
In order to exploit the newly discovered pharmacophoric feature HY3, the two model compounds 

II/11 and II/12 were designed (Figure 20). As suggested by the model and visualized in Figure 19, 

introduction of a hydrophobic substituent in 3-position of the naphthalene skeleton should be 

favorable to exploit the voluminous hydrophobic feature HY3 of the pharmacophore. The phenyl 

residue directly bound to the naphthalene core in compound II/11 creates a conformationally con-

strained structure in which both rotational degrees of freedom of the two aryl–aryl bonds are limited 

since they are located ortho to each other. The benzyl motive in compound II/12 leads to an increased 

flexibility of the spatial property distribution by rotation around the two benzylic carbon–carbon 

bonds. Furthermore, the aromatic ring moves apart from the naphthalene core by one methylene unit. 

Figure 20. Proposed new lead structures II/11 and II/12 

 
 

In order to elucidate the role of conformational flexibility and the exact position of the aryl moiety 

for optimal inhibitor binding, docking studies were performed prior to synthesis. The analysis of the 

docking mode of compound II/3 led to the identification of a new sub-pocket which interacts with the 
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aryl moiety (Figure 21a). This sub-pocket was not considered as potential binding site during our 

previous design efforts due to the fact that the formerly investigated compounds such as II/2 (MV23) 

did not occupy this binding site (Figure 21b). However, the proposed new lead structure II/11 proved 

to be too rigid to fit into the binding site and could thus not be docked successfully into the binding 

pocket under the given pharmacophore constraint, that is a directed heme-Fe–N interaction perpen-

dicular to the heme-plane. This pharmacophore constraint was applied to ensure the right binding 

mode of the inhibitors with the heme-cofactor. The constraint requires the existence of an inhibitor-

nitrogen-atom on the surface of an interaction cone with a 20 degree radius, which has its origin at the 

Fe-atom and points perpendicular to the heme-plane with a length of 2.2 Å. Obviously, the confor-

mationally restricted phenyl moiety of compound II/11 undergoes repulsive interaction with amino 

acids of the binding pocket or with the heme-cofactor under the above mentioned constraint, thus 

preventing that the molecule successfully docks into the CYP11B2 protein model. Contrariwise, the 3-

benzyl substituted analog II/12 is more flexible due to an additional methylene spacer between the two 

ring systems and thus fitted adequately into the binding site (Figure 21c). From these docking results it 

can be concluded that the methylene group of the potential inhibitor should provide the flexibility 

necessary to adapt to the binding site geometry. 

Figure 21.  Structure of the CYP11B2–inhibitor complexes of II/3 (a), II/2 (b) and II/12 (c). Surface of the 
binding pocket (grey) surrounding the inhibitor and the heme co-factor (light blue). The inhibitors 
are presented in yellow; nitrogen atoms are colored in blue and oxygen atoms are in red. Unlike II/2, 
the inhibitors II/3 and II/12 exploit an additional sub-pocket of the inhibitor binding site. 

 
 

The latter in silico experiments were confirmed by experimental results showing that 3-phenyl-

substituted pyridylnaphthalene II/11 exhibits no significant CYP11B2 inhibition in vitro. In accor-

dance with the docking results, benzyl analog II/12, however, is a moderately potent aldosterone 

synthase inhibitor (IC50 = 154 nM), albeit showing poor selectivity toward CYP11B1 (Table 2). Upon 

identification of II/12 as promising hit, 25 new compounds were synthesized, most of which are 

highly potent CYP11B2 inhibitors with pronounced selectivity toward important steroidogenic and 

hepatic CYP enzymes. The inhibitory effects showed sharp structure-activity relationships for the 

investigated molecules, particularly for the substitution pattern of the benzyl moiety. A selection of 
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pharmacological data is presented in Table 2 for some representative compounds. It was found, that 

both high inhibitory potency and selectivity are due to substituents in para-position of the benzyl 

moiety (e.g., II/16–II/18) whereas derivatization of other positions is tolerated only to minor degree 

(e.g., II/14, II/15). Within this set of compounds, the outstanding selectivity toward CYP11B1 of 

II/17 (factor 724) and II/18 (factor 913) is particularly noteworthy with respect to the high homology 

of the two CYP11B isoforms. In the naphthalene molecular scaffold, introduction of a methoxy 

substituent in 7-position results in a decrease in inhibitory potency (e.g., II/20). On the other hand, the 

same substituent is readily tolerated in 6-position and even slightly increases the CYP11B1 selectivity 

in most cases (e.g., II/19). 

Table 2. Inhibition of human CYP11B2 and CYP11B1 in vitro by 3-benzylnaphthalene derivatives 

 
  % inhibitiona IC50 valueb (nM) selectivity 

compd R CYP11B2c CYP11B2c CYP11B1d factore 

II/12 H 76 154 953 6 

II/14 o-OMe 24 n.d. n.d. n.d. 

II/15 m-OMe 62 n.d. n.d. n.d. 

II/16 p-OMe 89 7.8 2804 359 

II/17 p-CN 93 2.7 1956 724 

II/18 p-OCF3 95 3.9 3559 913 

II/19 6-OMe 95 11 4329 394 

II/20 7-OMe 35 n.d. n.d. n.d. 
a Mean value of at least two experiments, standard deviation usually less than 10 %; inhibitor 
concentration, 500 nM. b Mean value of at least four experiments, standard deviation usually less than 25 
%, n.d. = not determined. c Hamster fibroblasts expressing human CYP11B2; substrate deoxycortico-
sterone, 100 nM. d Hamster fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 
nM. e IC50 CYP11B1/IC50 CYP11B2, n.d. = not determined.  

 

The pharmacological data can be explained by the docking results of compounds II/16 and II/19, 

both bearing a para-methoxy group (Figure 22). The introduction of this substituent into the benzyl 

moiety as accomplished in II/16 leads to interactions of the compound with the residues of Pro452, 

Val339, and Thr279, thus stabilizing the complex formed by coordination of the heme iron by the 

heterocyclic nitrogen considerably (Figure 22a). In compound II/19, a second methoxy group was 

introduced at the 6-position of the naphthalene scaffold (Figure 22b). This leads to no additional 

stabilization of the complex, but to a slightly increased selectivity versus CYP11B1. The same trend 

was observed previously for the binding properties of a series of substituted pyridylnaphthalenes.88,89  
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In summary, it has been shown in this sub-project that our novel CYP11B2 pharmacophore model 

has predictive power to identify prospective lead structures. Based on the results of the pharmacophore 

modeling, a new class of pyridylnaphthalene derivatives with extended carbocyclic skeleton was 

designed. In addition, docking studies using our CYP11B2 protein model proved to be a useful tool to 

estimate the inhibitory properties of proposed new molecules and to explain structure-activity rela-

tionships. The results obtained are of significant relevance for the future design of CYP11B2 inhibi-

tors because specific pharmacophoric features as well as interactions with certain amino acids have 

been identified to correlate with high potency at the target enzyme and, at the other hand, high 

selectivity toward CYP11B1. 

Figure 22.  Structure of the CYP11B2 binding pocket with the docked inhibitors II/16 (a) and II/19 (b). Details 
of the active site, showing inhibitor, heme co-factor and the interacting residues of Pro452, Val339, 
and Thr279. 

 
 

Chapter 3.3 describes the effort of reducing unwanted CYP1A2 activity of aldosterone synthase 

inhibitors by systematically reducing the aromaticity and planarity of the MV23 scaffold. As already 

mentioned, these molecular descriptors have been hypothesized to be the most important variables 

influencing CYP1A2 inhibition. Among the molecules with partly saturated carbocyclic core structure, 

tetralone III/9 (Figure 23), a potent aldosterone synthase inhibitor (IC50 = 7.8 nM), was found to be 

highly selective toward both CYP11B1 (IC50 = 3.95 µM) and CYP1A2 (IC50 = 1.55 µM) as well as a 

range of other hepatic CYP enzymes and even showed a good PK profile. However, tetralone III/9 

turned out to be cytotoxic to the human cell line U-937 at a concentration of 100 µM (Figure 23). 

Subsequent bioisosteric exchange of the cyclic ketone in III/9 by a lactam culminated in the discovery 

of dihydro-1H-quinolin-2-one III/12 which exhibits no distinct cytotoxic effect on U-937 cells up to 

the highest concentration tested (Figure 23). In addition, compound III/12 is an even slightly less 

potent inhibitor of CYP1A2 (IC50 = 1.95 µM) than the analogous tetralone. Furthermore, it is more 

selective toward other CYP enzymes and significantly exceeds the bioavailability of III/9. 
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Figure 23.  Mean profile (±) SEM of fractional survival (%) of human U-937 cells in presence of compound 
III/9 or III/12. 

 
 
Based on the molecular scaffold of III/12, several structurally modified derivatives were synthesized 

and tested for biological activity. The inhibitory data of some representative compounds out of this 

series are shown in Table 3. It becomes apparent that the dihydro-1H-quinolin-2-ones are highly 

potent CYP11B2 inhibitors with IC50 values in the low nanomolar range. Indeed, isoquinoline deriva-

tive III/22 is the most active CYP11B2 inhibitor known so far with an IC50 value in the picomolar 

range (IC50 = 90 pM). Furthermore, the investigated compounds are selective toward CYP11B1, 

CYP1A2 as well as other competing enzymes, for example isoquinoline derivative III/21 shows no 

CYP1A2 inhibition at all (IC50 > 150 µM). 

Table 3.  Inhibition of human CYP11B2, CYP11B1 and CYP1A2 in vitro by dihydro-1H-quinolin-2-one 
derivatives 

 
    IC50 valuea (nM) selectivity IC50 valuee (nM) 

compd R1 R2 R3 CYP11B2b CYP11B1c factord CYP1A2f 

III/12 H H H 28 6746 241 1.95 

III/14 Me H H 2.6 742 289 1.79 

III/15 Et H H 22 5177 235 3.48 

III/17 H Cl H 3.8 1671 440 30.6  

III/19 H H OMe 2.7 339 126 5.24 

III/20 Me H OMe 0.18 87 483 16.5 

III/21 H   0.18 33 183 > 150 

III/22 Me   0.09 6.9 77 n.d. 
a Mean value of at least four experiments, standard deviation usually less than 25 %. b Hamster fibroblasts expressing human 
CYP11B2; substrate deoxycorticosterone, 100 nM. c Hamster fibroblasts expressing human CYP11B1; substrate deoxy-
corticosterone, 100 nM. d IC50 CYP11B1/IC50 CYP11B2. e Mean value of two experiments, standard deviation less than 5 %. f 
Recombinantly expressed enzymes from baculovirus-infected insect microsomes (Supersomes); furafylline, IC50 = 2.42 µM. 
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In order to determine a suitable candidate to investigate aldosterone-lowering effects in rats, the 

synthesized inhibitors of the dihydro-1H-quinolin-2-one series were investigated for their ability to 

block aldosterone biosynthesis in V79 MZh cells expressing rat CYP11B2 prior to in vivo experi-

ments. The results revealed that only compound III/21 (and to a minor degree also the N-methyl 

analog III/22) shows a moderate inhibitory action on rat CYP11B2 in vitro (unpublished results). This 

compound is a highly potent inhibitor of human CYP11B2 in vitro (IC50 = 0.18 nM) and also exhibits 

a pronounced selectivity toward other CYP enzymes. Examination of availability in plasma following 

peroral administration of this compound to rats revealed a good half-life (2.9 h) and reasonable plasma 

levels (AUC0-∞ = 1658 ng·h/mL following a 25 mg/kg dose). To investigate aldosterone-lowering 

effects in vivo (unpublished results), adult male rats received a subcutaneous injection of ACTH 

(1 mg/kg) 16 hours before test item application to stimulate the gluco- and mineralocorticoid biosyn-

thesis (Figure 24). It becomes apparent, that ACTH treatment induces a significant increase of the 

aldosterone levels. Within the vehicle-treated group (Figure 24b), the concentrations found in the 

plasma are rather constant over the duration of the experiment (6 h). After intravenous application of a 

20 mg/kg dose of III/21 to ACTH stimulated rats, however, a significant lowering of the plasma 

aldosterone levels is already observed after 15 min (Figure 24a). The inhibitory effect persists up to 

three hours upon injection before returning to the ACTH levels again. The aldosterone levels are 

maximally reduced to 36–63 % in a timeframe of 0.5–3 hours (n = 6). 

Figure 24.  Lowering of aldosterone plasma levels in vivo. (a) III/21-treated group (animals 1–6), (b) vehicle-
treated group (animals 7–10) 

 

 

In conclusion, nonsteroidal aldosterone synthase inhibitors with dihydro-1H-quinolin-2-one mole-

cular scaffold proved to be significantly superior to the previously investigated pyridylnaphthalenes 

such as MV23. These molecules are highly selective toward a range of cytochrome P450 enzymes and 

CYP1A2 in particular. Furthermore, most of the investigated compounds show a good PK profile. 

Moreover, isoquinoline derivative III/21 proved to be capable of reducing the aldosterone plasma 

levels in ACTH stimulated rats after intravenous application. The structural motives obtained in this 

sub-project were pursued and refined in Chapter 3.4. 

Rigidification of the latter substances by incorporation of the lactam N-alkyl group into a 5- or 6-

membered ring afforded compounds with a pyrroloquinolinone or pyridoquinolinone molecular 
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scaffold (Chapter 3.4). Analysis of the biological data of these molecules, whereof some are presented 

in Table 4, reveals interesting structure-activity relationships with regard to 11β-hydroxylase 

(CYP11B1) potency and thus selectivity while, on the contrary, the CYP11B2 activity is influenced 

only to a minor degree and is in a very narrow activity range with IC50 values of typically less than 5 

nM. As a general rule, a majority of the fused heterocycles is more selective toward CYP11B1 than 

their corresponding open-chain analogues due to a decreased CYP11B1 inhibition with pyrido- being 

more selective than the pyrrolo-fused derivatives (e.g., IV/2). The influence of certain structural 

modifications on the 11β-hydroxylase activity is particularly noteworthy. On the one hand, CYP11B1 

inhibition is an important selectivity criterion for aldosterone synthase inhibitors. On the other hand, 

selective CYP11B1 inhibitors could be used for the treatment of Cushing’s syndrome and metabolic 

syndrome. Although several potent CYP11B1 inhibitors have been described previously, in-depth 

SAR studies were usually focused on the concurrent CYP11B2 activity. Herein, we clearly identified 

structural features important for high inhibitory CYP11B1 potency. 

Table 4.  Inhibition of human CYP11B2 and CYP11B1 in vitro by pyrrolo- and pyridoquinolinone derivatives 

 
   IC50 valueb (nM) selectivity 

compd n R CYP11B2c CYP11B1d factore 

IV/1 1 H 1.1 715 650 

IV/2 2 H 2.4 2296 957 

IV/3  OMe 0.6 247 412 

IV/5  OEt 1.0 158 158 

IV/6  OiPr 2.2 103 47 

IV/15  H 1.3 58 45 

IV/16  2-F 0.7 43 61 

IV/17  3-F 1.4 490 350 

IV/18  4-F 0.9 40 44 

IV/22  2-OMe 2.4 128 53 

IV/23  3-OMe 4.6 1374 299 

IV/24  4-OMe 1.4 21 15 
a Mean value of at least four experiments, standard deviation usually less than 25 %. b Hamster 
fibroblasts expressing human CYP11B2; substrate deoxycorticosterone, 100 nM. c Hamster 
fibroblasts expressing human CYP11B1; substrate deoxycorticosterone, 100 nM. d IC50 
CYP11B1/IC50 CYP11B2. 

 
The main impact on CYP11B1 inhibition is exerted by substituents in the 3-pyridine moiety. 

Obviously, the size of substituents plays a crucial role for the CYP11B1 potency. For instance, this 

trend becomes evident in the series of pyrroloquinolinone compounds with alkoxy derivatized hetero-

cycle (IV/3, IV/5, IV/6) where the CYP11B1 inhibition increases with the substituent size in the order 
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IV/1 (R = H, IC50 = 715 nM) < IV/3 (R = OMe, IC50 = 247 nM) < IV/5 (R = OEt, IC50 = 158 nM) < 

IV/6 (R = OiPr, IC50 = 103 nM). The same shift of CYP11B1 activity can be observed for several 

compounds with additional aryl substituent in 5-position of the pyridine moiety (e.g., IV/15, IV/16, 

IV/18, IV/22, IV/24). The CYP11B1 inhibition exerted by these molecules increases up to 36-fold 

compared to the unsubstituted parent compound IV/1 to IC50 values in the range of 21–128 nM 

corresponding with a rather low selectivity (factor 15–61). Moreover, it is striking that meta 

substituents in the aryl moiety as accomplished in compounds IV/17 and IV/23 can trigger CYP11B1 

selectivity again, thus constituting an intriguing on/off-switch of CYP11B1 potency. This tendency 

implicates that a variety of sterically demanding substituents at the pyridine moiety is readily tolerated 

in the CYP11B2 binding pocket, however, lead to no further stabilization of the complexes formed by 

coordination of the heme iron by the heterocyclic nitrogen. Contrariwise, 3-pyridine substituted 

pyrroloquinolinone derivatives such as IV/1 are per se rather poor CYP11B1 inhibitors and require an 

additional benzene moiety, and thus a further stabilization of the formed complexes mainly through 

hydrophobic or π-π stacking interactions, for basal inhibitory potency. Amongst these compounds are 

highly potent CYP11B1 inhibitors (e.g., IV/24). On the other hand, meta-substituted analogues 

obviously do not adequately fit into the CYP11B1 binding pocket or loose contact to the heme iron 

while minimizing unfavorable contacts with the enzyme leading to a decrease in potency. 

The latter observations contravene the results obtained in case of the substituted pyridylnaphthalenes 

(Chapter 3.1), in which substituents at the heterocyclic moiety led to a change of inhibition of both the 

CYP11B isoforms in a comparable order of magnitude resulting in a reasonable linear correlation of 

the corresponding pIC50 values (r2 = 0.86) and thus a rather constant selectivity factor. This is an 

indication for a binding mode of the pyrroloquinolinone derivatives different from that of the naphtha-

lene analogues. Recently performed docking studies of 3-pyridylnaphthalenes with extended carbo-

cyclic skeleton suggest a previously unexplored sub-pocket of the inhibitor binding site that can 

interact with additional aryl moieties next to the heterocycle.94 It can be assumed that this sub-pocket 

is similarly exploited by the aryl-substituted pyrroloquinolinones of the present study.  

In addition to the high CYP11B1 selectivity of most of the investigated compounds, the pyrrolo-

quinolinone type inhibitors also exhibit a good selectivity toward hepatic CYP enzymes. For instance, 

the unsubstituted parent compound IV/1 shows no significant inhibition of the six most important 

hepatic CYP enzymes (IC50 > 10 µM). In addition, this highly potent and selective aldosterone 

synthase inhibitor reaches higher plasma concentrations (AUC0-∞ = 3464 ng·h/mL) after peroral 

application to rats (following a 5 mg/kg dose) than for example III/9 or III/12, both compounds with 

good pharmacological profile (Figure 25), and even slightly exceeds the bioavailability of the 

marketed drug fadrozole (AUC0-∞ = 3207 ng·h/mL). Currently, further studies with inhibitor IV/1 and 

structurally related compounds are underway to evaluate aldosterone-lowering effects in vivo. 
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Figure 25.  Mean profile (±) SEM of plasma levels (ng/ml) in rat versus time after oral application (5 mg/kg) of 
compounds IV/1, III/12, and III/9 determined in a cassette dosing experiment. 

 

 
 

In summary, the present work describes the pharmacophore-based design of nonsteroidal aldosterone 

synthase inhibitors, that combine the advantages of the previously described pyridylnaphthalenes (i.e., 

high inhibitory CYP11B2 potency and selectivity toward CYP11B1) with a simultaneously improved 

pharmacological overall profile. Beside a strong CYP11B2 inhibition with IC50 values in the low to 

sub-nanomolar range and outstanding CYP11B1 selectivity with up to 1000-fold lower activity in 

comparison to the CYP11B2 isoform, the most promising compounds of the actual study show vir-

tually no inhibition of the six most important hepatic CYP enzymes as well as CYP17 and CYP19, 

both crucial enzymes for the metabolism of steroid hormones. Amongst the last-mentioned, the selec-

tivity toward CYP1A2 is particularly noteworthy because this drug-metabolizing enzyme was strongly 

inhibited by all compounds with pyridylnaphthalene scaffold. In view of the pharmacokinetic proper-

ties, a subset of the investigated inhibitors reaches excellent plasma-levels in the range of the marketed 

drug fadrozole after peroral application to rats. Furthermore, it has been shown that a nonsteroidal 

CYP11B2 inhibitor of the dihydro-1H-quinolin-2-one series exerts aldosterone-lowering effects in 

vivo using a modified rat model as described by Häusler et al.92 Current in vivo investigations in 

disease oriented models toward evidence to prevent or reverse myocardial fibrosis and reduce CHF 

induced mortality are under scrutiny to determine a potential development candidate out of the most 

promising CYP11B2 inhibitors. In addition, the investigations of the present work provide precise 

structure-activity studies for both CYP11B2 and CYP11B1 inhibition which can be used in the future 

development of new molecules interacting either with CYP11B2 or CYP11B1. The latter might be of 

particular interest for the treatment of cortisol-dependent disorders such as Cushing’s syndrome or 

metabolic syndrome since in-depth SAR studies dealing with 11β-hydroxylase potency are essentially 

absent so far. The utility of the pharmacophore model generated in the course of the present study has 

already been shown by the success in the development of pyridylnaphthalenes with extended carbo-

cyclic skeleton. However, its scope has not yet been exploited in full and might thereto serve as a sign 

post for continual pharmacophore-based drug design. Currently, several drug design projects based on 

the concepts elucidated herein are in progress. 
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