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Abstract

Two properties of the living cells distinguish them most profoundly from non-
living entities: the ability to reproduce and the ability to move. To a large
extent, these processes rely on the cytoskeleton - an network of filamentous
polymers, that in cells is constantly kept out of thermodynamic equilibrium.
Three types of biopolymers constitute the cytoskeleton: microtubules, actin
filaments and intermediate filaments. The dynamics of the biopolymers can
be regulated by a number of proteins, including molecular motors, which are
distinguished by their ability to transform chemical energy into mechanical
work. This can be exploited to induce stresses in the meshwork and to
transport cargoes, such as cellular organelles, along the cytoskeletal filaments.

A large body of recent experimental evidence indicates that cytoskeleton
accomplishes its various biological tasks through self-organization, i.e. inter-
nal organization of a system, arising from simple short-range interactions of
many identical system constituents. For example, mixtures of purified miro-
tubules and molecular motors in aqueous solutions have been seen to form
asters, reminiscent of certain cellular organelles. Another example comes
from experiments where certain motile cells were fragmented into pieces that
retained the ability to crawl on a substrate. This indicates that cell loco-
motion arises through local interactions of cytoskeletal constituents and is
unlikely to rely on a single organizing unit.

Mesoscopic mean-field descriptions have been applied to study the cy-
toskeletal pattern formation. This method has a number of strengths: its
wide applicability and generality as well as the ability to straightforwardly
account for experimentally determined details of molecule structures and
interactions. However, when applying mesoscopic mean-field equations to
study the cytoskeleton, one is confronted with the following problems. (a)
Equations, describing particles with many degrees of freedom are hard to ana-
lyze. (b) As cytoskeletal filaments are spatially extended, equations, describ-
ing their dynamics are generically non-local. (c)Dealing with the boundary
conditions is not straightforward.

In this thesis we develop mesoscopic mean-field descriptions of the cy-
toskeleton, introducing novel techniques for dealing with the above-mentioned
problems. Firstly, we develop a general formalism that allows to explicitly ac-
count for dynamic filament length. Within this formalism, we identify a class
of systems that admit exact treatment. Then, we introduce an approxima-
tion, consisting of moment-expansion, combined with coarse-graining, that
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allows to apply our formalism to a broader class of systems. We demonstrate
that the results obtained with this approximation agree with those of the ex-
act treatment, provided that cytoskeletal filaments, constituting the pattern,
are much shorter than the characteristic scale of the pattern. We apply our
methods to describe two biological systems: microtubule organization in fish
skin cells and actin wave-dynamics in granulocytes. Finally, we introduce a
novel phase-field-like approach for treating interactions of filaments with a
boundary. We apply our method to cell locomotion, demonstrating that our
equations, describing actin dynamics in granulocytes, exhibit states, remi-
niscent of those of a motile cells, when combined with moving boundaries.
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Zusammenfassung

Zwei Eigenschaften lebender Zellen unterscheiden sie fundamental von un-
belebter Materie: Die Fähigkeit sich zu reproduzieren und sich zu bewegen.
In einem großen Maße beruhen die beiden Prozesse auf dem Zytoskelett -
einem intrazellulären Netzwerk fingerförmiger Polymere, welches beständig
aus dem thermodynamischen Gleichgewicht getrieben wird. Das Zytoskelett
besteht aus drei Arten von Biopolymeren: Mikrotubuli, Aktin-Filamenten
und intermediären Filamenten. Die Dynamik dieser Biopolymere kann von
einer Vielzahl von Proteinen reguliert werden. Unter diesen befinden sich
insbesondere molekulare Motoren, welche chemische Energie in mechanische
Arbeit umwandeln können. Diese kann genutzt werden, um im Filament-
netzwerk Spannungen zu erzeugen oder Lasten entlang von Filamenten zu
transportieren, zum Beispiel zelluläre Organellen.

Eine Vielzahl experimenteller Ergebnisse der letzten Jahre deuten da-
rauf hin, dass in vielen wichtigen zellulären Prozessen die Selbstorganisation
von Komponenten des Zytoskeletts eine zentrale Rolle spielt. Bei der Selb-
storganisation werden die Strukturen eines Systems durch einfache, kurzre-
ichweitige Wechselwirkungen vieler identischer Konstituenten erzeugt. Zum
Beispiel ordnen sich aufgereinigte Mikrotubuli und molekulare Motoren in
vitro ähnlich zu zellulären Strukturen sternförmig an. Ein weiteres Beispiel
liefern Experimente an Fragmenten motiler Zellen, die die Fähigkeit, sich
auf Oberflächen fortzubewegen, beibehalten. Diese Fragmente haben keinen
Kern, der als zentrale organisierende Einheit dienen könnte, so dass Zellfort-
bewegung allein durch lokale Wechselwirkungen von Zytoskelett-Komponenten
entstehen kann.

Molekularfeldbeschreibungen der Dynamik auf mesoskopischen Skalen
bilden einen vielversprechenden Ansatz, um physikalische Aspekte der Muster-
bildung im Zytoskelett zu untersuchen. Die Stärken dieses Zugangs liegen in
ihrer weitreichenden Anwendbarkeit und der Möglichkeit, experimentell bes-
timmte Details molekularer Strukturen und Wechselwirkungen in die Beschrei-
bung einzubeziehen. Bei der Analyse der entsprechenden dynamischen Gle-
ichungen treten allerdings einige Probleme auf: a) Die Gleichungen beschreiben
Teilchen mit vielen Freiheitsgraden und sind deshalb numerisch praktisch
nicht lösbar. b) Da die Filamente des Zytoskeletts räumlich ausgedehnt
sind, sind die Gleichungen nicht-lokal. c) Die Behandlung nichtperiodischer
Randbedingungen ist nicht offensichtlich.

In der vorliegenden Arbeit entwickeln und analysieren wir mesoskopis-
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che Molekularfeldbeschreibungen des Zytoskeletts. Dabei werden neue Tech-
niken eingeführt, welche die Probleme (a), (b) und (c) lösen. Wir entwickeln
einen Formalismus, der es erlaubt Systeme aus Filamenten mit veränderlichen
Längen zu beschreiben. Wir bestimmen eine Klasse von Systemen, die
eine Analyse der exakten Gleichungen erlaubt. Durch Einführung einer En-
twicklung nach Momenten zusammen mit einer grobkörnigen Beschreibung
machen wir auch Systeme außerhalb dieser Klasse einer Analyse zugängig.
Wir zeigen, dass die Näherung mit der exakten Lösung übereinstimmt, wenn
die mittlere Länge der Filamenten viel kleiner ist, als die charakteristis-
che Größe der Muster, die sie bilden. Wir wenden unsere Methode zur
Beschreibung der Mikrotubuli-Organisation in Melanophoren von Fischen
und der Dynamik von Aktinwellen in Granulozyten. Schließlich stellen wir
eine neue Phasenfeld-Methode vor, um die Wechselwirkung von Filamenten
mit Membranen zu beschreiben. Wir wenden diese Methode zur Beschrei-
bung der Zellfortbewegung an und zeigen, dass die Gleichungen, welche die
Aktin-Dynamik in Granulozyten beschreiben, Lösungen haben, die stark an
kriechende Zellen erinnern.
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1 Self-organization: general aspects

The term self-organization refers to phenomena when a system consisting of
many identical subsystems (”agents”) interacting according to some simple
rules exhibits complex behavior which can not be straightforwardly traced
back to that of constituent subsystems. A common way of paraphrasing this
is stating that the whole is more then a sum of its parts. This concept is
traditionally illustrated by the Belousov-Zhabotinsky (BZ) reaction [4, 92].
Quite amazingly, just like many phenomena to be considered in this thesis,
the BZ reaction was discovered in the process of developing a biomimetic
assay, namely in an attempt of B.P. Belousov to design a simple laboratory
version of the citric acid cycle. When mixing citric acid and sulphuric acid
together with potassium bromate and iron salt in water a spectacular spiral
wave pattern sets in (see Fig. 1).

Figure 1: Spiral wave pattern in Belousov-Zhabotinsky reaction. Taken from
[93].

Interactions of individual particles (”agents”) in a reaction mixture are
governed by simple chemical kinetics and diffusion. However, despite the
wave-pattern being entirely determined by short-range particle interaction,
their detailed knowledge per se does not explain the pattern. In fact, under-
standing spiral waves requires describing ensembles of large number of inter-
acting particles. Other examples of self-organized structures are Rayleigh-
Benard convection rolls (a flow pattern, observed in a fluid layer, subjected
to temperature gradient) [5, 66], two-dimensional localized excitations in vi-
brated sand, called oscillons [83], and phase-transitions in liquid crystalls
[12, 61].

Applicability of the concept of self-organization goes far beyond physics
or chemistry. In fact, the idea of self-organization was recognized by philoso-
phers and writers centuries before it started to make its way into the natural
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sciences. It seems that the first statement of this principle dates back to
the 1790s and is due to Immanuel Kant, who was the first to define life as
”self-organized” and ”self-reproducing” [36]. Interestingly, the idea of self-
organization is central in L. Tolstoy’s ”War and Peace”, where he aimed to
comprehend how a country withstands an invasion, using the example of the
French-Russian war of 1812. In one of the last novel chapters Tolstoy states:
”The movement of nations is caused not by power, nor by intellectual activ-
ity, nor even by a combination of the two as historians have supposed, but
by the activity of all the people who participate in the events”. In other
words, the properties of a social systems are due to interactions of all indi-
viduals, rather than due to particular decisions of some, i.e. social systems
are self-organized.

One of the first applications of self-organization in biology is due to Pe-
ter Kropotkin (most known as one of the major ideologist of Russian an-
archism). In his book ”Mutual Aid: A Factor of Evolution” [41], which
was largely influenced by Darwin’s ideas, he points out that understand-
ing evolutionary benefit of organizing into communities requires considering
self-organized properties of populations. Herewith, it is easily appreciated
how ideas of self-organization inspired the ideology of anarchism: much like
animal communities, human society might best develop when based on free
cooperation among individuals (i.e. self-organization) rather than when ruled
by a centralized government.

In the context of using self-organization to explain biological phenomena
it is interesting to mention the work of Hans Driesch who devoted his research
to explaining development in terms of physical laws. To this end he brought
traditional methods of physics into development: instead of exclusively mak-
ing observations, he started to alter developmental systems (embryos) and
to monitor the system’s response. In classical experiments in 1895, he frag-
mented a four-cell sea urchin embryo into two two-cell portions, expecting
to observe each portion develop into the part of larva, originating from the
respective cell pair in an intact embryo. Strikingly, every cell pair gave rise to
pretty normal sea urchin larva. The interpretation of Driesch’s experiment
requires realizing that the developments of each of the embryo’s cells (blas-
tomers) is determined by its interactions with surrounding blastomers, i.e.,
the development is self-organized (more than the sum of its parts!). However,
in the late 19th century the idea of self-organization had not yet made its way
into biological sciences and Driesch’s experiment was at his time considered
to support vitalism. According to vitalism, biological processes in general
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and development, in particular, can not be explained in terms of physics and
are due to extranatural forces. Indeed, since the development of an embryo
proceeds to completion fairly normally despite dramatic alterations intro-
duced by embryologist, it might in fact seem to be guided by some ”force”,
whose nature lies beyond the scope of physics. This example illustrates the
bewildering dissimilarity of self-organized phenomena with those, more con-
ventionally considered in the area of physics. So dissimilar they are that the
properties of the former have occasionally been attributed to supernatural
forces!

In the 20th century, the physics of self-organization received consider-
able attention, noticeably through the works of I. Prigogine and A. Turing.
In particular, Prigogine’s work resolved a paradox associated with the ex-
istence of oscillating reactions, which in fact long prevented acceptance of
Belousov’s ”supposedly discovered discovery” [64]. Indeed, the second law
of thermodynamics implies that, at given conditions, a chemical reaction
proceeds in only one direction. At first sight, an oscillating reaction would
seem to change its direction with time. This is, however, not so. Whereas
concentrations of some solutes in the BZ reaction oscillate in time, others
undergo net consumption. Hence, stable oscillation can only be sustained
in presence of continuous flux of matter through the system. In 1952, A.
Turing (most known as logician, computer scientist and cryptographer) pub-
lished ”The Chemical Basis of Morphogenesis” [82] introducing the idea that
spatio-temporal structures generated by similar mechanism as those of the
BZ-reaction could be the basis of morphogenesis, as has by now been con-
firmed by, for example, investigations of vertebrate segmentation (see e.g.
Refs. [31, 60]), as well as by investigations of pattern formation in the sea
shells of molluscs [53].

The aim of this thesis is to develop theoretical tools, allowing to study
self-organized phenomena on subcellular scale, in particular involving the
cytoskeleton. The cytoskeleton is an intracellular meshwork of filamentous
proteins allowing cells to divide, to move and to organize intracellular trans-
port and must be maintained out of thermodynamic equilibrium in order to
fulfill its biological tasks. A short summary of self-organization in the cy-
toskeleton will be presented below. However, first, a brief introduction to
the cytoskeleton is given.
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2 The cytoskeleton

Two properties of living cells distinguish them most profoundly from non-
living entities: autopoiesis, i.e. the ability of cells to reproduce, and direc-
tional motion. These two processes rely heavily on the cytoskeleton [1, 8, 30],
see Fig. 2, a meshwork of biopolymers. Three types of biopolymers constitute
the cytoskeleton: microtubules, actin filaments, and intermediate filaments.
During cell division microtubules make up the mitotic spindle - a structure
which segregates chromosomes during mitosis and directs intracellular trans-
port of organels. Swimming of eukaryotes is driven by flagella that are built
around a microtubular structure. Actin is the major constituent of the cell
cortex - a crosslinked meshwork localized beneath the cell membrane that
determines the cell shape. The migration of cells on substrates is largely
determined by the dynamics of the cell cortex. Upon completion of mitosis,
cells are pinched in two by a constricting ring of actin filaments encircling the
cell. The third type of cytoskeletal filaments, intermediate filaments, are not
dynamic, and do not play an active role during cell division and locomotion.

Figure 2: A cell in culture has been
fixed and labeled to show two of the
major cytoskeletal components, micro-
tubules (in green) and actin filaments
(in red). The DNA in the nucleus is
labeled in blue. Taken from [1].

The complex tasks accomplished
by cytoskeletal rearrangements re-
quire thorough regulation of dynam-
ics of cytoskeletal filaments. For this
purpose, cells possess an arsenal of
proteins that are capable of binding
cytoskeletal filaments and altering
their dynamics in a variety of ways.
Amongst these, motor proteins are
distinguished for their remarkable
ability to transform the chemical en-
ergy stored in an energy-reach bond
of adenosine triphosphate (ATP, the
universal ”energy currency” of the
cell) into mechanical work. This can
be exploited for transporting cargos,
e.g., organels, along filaments and to induce stresses in biopolymer network
by displacing filaments relatively to each other. Other proteins cross-link
filaments or effect filament assembly and disassembly. In the following, cy-
toskeletal filaments and associated proteins will be described in more detail.
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Figure 3: The structures of an actin monomer and an actin filament. (a)
Ribbon model of an actin monomer with a nucleotide in its deep cleft. (b)
Arrangement of monomers in a filament. (c) Electron micrograph of nega-
tively stained actin filaments. Taken from [1].

2.1 Cytoskeletal filaments

2.1.1 Actin

Actin is a 42 kDa globular protein with a nucleotide binding site in the
center of the molecule. In fact, it is the most abundant protein of eukaryotic
cells. Actin monomers can polymerize into 7 nm thick filaments which can be
described as two distinct protofilaments interwoven into a helix with a pitch
of 37 nm, see Fig. 3. The stiffness of filaments can be characterized by the
persistence length Lp, which is defined by 〈cos(∆θ)〉 = exp(−s/Lp), where
∆θ is the angle between tangent vectors to the polymer chain at points that
are distance s apart. The distance s is measured along the chain and angle
brackets indicate ensemble average. The persistence length of actin filaments
is 15-17 µm [25, 62, 34].

Filament growth initiates upon formation of a nucleus of three monomers.
Monomers get incorporated into a growing chain in ATP form, undergoing
subsequent hydrolysis upon incorporation into the elongating chain. Actin
molecule possesses no symmetry plane. Hence it can be endowed with ori-
entation. All monomers in a polymer chain have the same orientation (po-
larity), thereby defining polarity of a filament. Hence, an actin filament has
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Figure 4: Schematic illustration of treadmilling dynamics. At the filament
minus-end, subunits disassociate, replenishing the monomer pool, and re-
incorporate at the plus-end. In this way, a filament undergoes effective
translation, without displacement of its subunits.

two structurally distinguishable ends. The net polymerization rate (differ-
ence of rates of subunit incorporation and removal) may be different at the
two filament ends, since polymerization is coupled to ATP hydrolysis. The
faster growing end is conventionally referred to as the plus or barbed end and
the shrinking end as the minus or pointed end. The difference between the
polymerization rates at the two ends may lead to treadmilling. In this case,
the filament grows at the plus-end and shrinks at the minus-end, which leads
to an effective filament movement without displacement of its constituents,
see Fig. 4.

If a polymerizing filament end encounters an obstacle, a force whose mag-
nitude can be derived from thermodynamic considerations will be exerted on
the obstacle [28, 16]. This phenomenon plays key role in cell motility - as
treadmilling filaments encounter cell’s front it exerts a pushing force serving
to generate leading edge protrusion.

2.1.2 Microtubules

The organization of microtubules is in many ways similar to that of actin.
Tubulin is a heterodimer consisting of an α- and a β-subunit of about 55 kDa
each. Microtubules are hollow tubes 25 nm in diameter consisting of thirteen
protofilaments. Protofilaments arrange in a helix with a turn, containing 13
tubulin dimers, see Fig. 5. Microtubules are the stiffest polymers in the cell
with persistence length of approximately 2 mm [25, 85].

Each tubulin subunit carries a nucleotide binding cite. The α-subunit
binds GTP, which is never hydrolyzed. The β-subunit is incorporated into a
growing chain exclusively in the GTP form and undergoes subsequent hydrol-
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Figure 5: The structure of microtubule and its subunit. (a) The subunit of
each protofilament is a tubulin heterodimer, formed from very tightly linked
pair of α− and β-tubulin monomers. The GTP molecules bound to the sub-
units are shown in red. (b) One tubulin subunit and one protofilament are
shown schematically. Each protofilament consists of many adjacent subunits
with the same orientation. (c) The microtubule is a stiff hollow tube formed
from 13 protofilaments, aligned in parallel. (d) A short segment of a micro-
tubule, viewed in an electron microscope. (e) Electron micrograph of a cross
section of a microtubule showing a ring of 13 distinct protofilaments. Taken
from [1].

ysis. In this way, newly incorporated subunits form a zone of GTP-tubulin
at the growing plus-end, followed by a zone of GDP-tubulin. If the filament
elongation rate is slower than that of GTP hydrolysis within the chain, for
example due to limited monomer availability, the GDP zone will eventually
catch up with the plus-end. As this happens, a rapid depolymerization of
microtubule from the plus-end is initiated, an event usually referred to as
catastrophe. If elongation resumes before complete filament depolymeriza-
tion, a rescue event is said to have occurred.

2.2 Motor proteins

Molecular motors are proteins that can bind to either microtubules or actin
filaments and move along the polymer chain, while converting chemical en-
ergy stored in ATP into mechanical work. Their function is twofold: intra-
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Figure 6: Myosin II. (a) A myosin II molecule is composed of two heavy
chains (each about 2000 amino acids (green) and four light chains (blue)).
The light chains are of two distinct types, and one copy of each type is present
on each myosin head. (b) The two globular heads and the tail can be clearly
seen in electron micrographs of myosin molecules. Taken from [1].

cellular transport and cell contractility. Through motor transport the cell for
example distributes organells in the cytoplasm. Force generation by motors
is for example at the origin of cell shape and muscle contraction.

Molecular motors associate with the filaments through a ”head”, or motor
domain, that can bind and hydrolyse ATP. Motors walk along filaments in
discrete steps. A motor is said to be processive if the distance, it advances
before detaching from filament, is large compared to its step size. Motors
can be characterized by a force-velocity relation that specifies the speed at
which they walk along a filament as a function of the load force on the motor.
The motor velocity drops approximately linearly with an increasing opposing
force. Eventually the speed turns negative, meaning that that motor starts
to walk backwards. The value of the opposing force, causing a motor to stall
is referred to as the stall force [10, 32, 79, 80].

2.2.1 Myosins

Myosins are molecular motors that interact with actin filaments. They were
discovered in striated muscle in the beginning of 1950s, where they serve to
generate contraction [33].
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A molecule of muscle myosin (myosin II, see Fig. 6) consists of two
identical subunits, each comprising a heavy chain, and two distinct light
chains. Heavy chains consist of a head domain (at the N-terminus) which
binds actin, and a tail domain, which can crosslink many motors into a
bundle.

Many myosins are non-processive. However, myosin bundles containing
large number of motors are: while some motors in a bundle detach, others
remain associated with the actin filament. Initially, it was thought that
myosin is only present in muscle, but by now it is known that virtually all
eukaryotic cells have certain myosin.

Eighteen myosin families have been identified (conventionally designated
by roman numerals, e.g. muscle myosin is Myosin II). All myosins except
myosin VI walk towards filament’s barbed end. The human genome com-
prises 40 myosin genes [1].

2.2.2 Kinesins

Kinesins are motors that bind tubulin and were discovered in 1985 in squid
giant axon where they carry membrane-enclosed organelles away from the
neuronal body towards the axon terminal [84]. Most kinesins have their
motor domain at the N-terminus and walk towards a microtubule plus-end.
However, kinesin-14 (Ncd in Drosophila and Kar3 in yeast) is a peculiar
exception: it has its head domain at the C-terminus and walks towards
microtubule plus-ends, see Fig. 7. Most kinesins are processive, and have
speeds up to about 3 µm/s.

Kinesins serve mainly two biological functions: intracellular transport and
reorganization of the microtubule network. Some kinesins, however, serve to
regulate microtubule depolymerization dynamics. For example, kinesin-13
family motors move diffusively on a filament and are preferentially associated
with the filament plus-end, where they induce filament depolymerization [56].
These molecules are implicated in chromosome segregation during mitosis.
Another microtubule depolymerizing motor is Kip3, a member of the kinesin-
8 family. Kip3 mutant cells show abnormally long mitotic spindles. Upon
binding, this motor moves processively towards the filament plus-end, where
it removes precisely one tubulin subunit and falls off [27]. If many Kip3
molecules bind the same filament they will pile up at the tip, forming a
gradient, decaying towards the minus-end. The longer a filament is, the
more Kip3 it will accumulate, resulting in a higher Kip3 concentration at its
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Figure 7: Kinesin and kinesin-related proteins. (a) Structures of five kinesin
superfamily members. Kinesin-1 has the motor domain at the N-terminus
of the heavy chain. The middle domain forms a long coiled-coil, mediating
dimerization. The C-terminal domain forms a tail that attaches to cargo,
such as membrane-enclosed organelle. Kinesin-3 represents an unusual class
of kinesins that seems to function as monomer and move membrane-enclosed
organelles along microtubules. Kinesin-5 forms tetramers which are able to
slide two microtubules past each other. Kinesin-13 has its motor domain,
located in the middle of the heavy chain. It is a member of a family of
kinesins that bind to microtubule ends and increase dynamic instability of
the microtubules. Kinesin-14 is a C-terminal kinesin that walks towards
the minus-end of the microtubule. (b) Freeze-etch electron micrograph of a
kinesin molecule with the head domains on the left. Taken from [1].

tip and, consequently, higher rate of plus-end depolymerization. In this way
the microtubule length can be regulated.

Kinesins and myosins are very different in terms of size and aminoacid
sequence. Yet, their three-dimensional structure reveals a similar core con-
taining the ATP binding site that is responsible for conversion of chemical
energy into mechanical work. Their structural similarity points towards a
common evolutionary origin of the two motors [1].

Kinesins are subdivided into 14 families. The human genome contains 45
kinesin genes [1].
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2.2.3 Dyneins

Figure 8: Freeze-etch electron mi-
crographs of a molecule of cytoplas-
mic dynein and a molecule of ciliary
dynein. The former has two heads, the
latter has three. Taken from [1].

Dyneins are minus-end directed mi-
crotubule associated motors, discov-
ered in the 1960s in cilia [24]. Struc-
turally they are different from ki-
nesins and myosins. Dyneins are
composed of two or three heavy
chains and a large and variable num-
ber of intermediate and light chains,
see Fig. 8. These are the largest and
the fastest molecular motors, capa-
ble of advancing along the filament
at speeds as fast as 14 µm/s.

Dyneins are subdivided into
three families: cytoplasmic dyneins
(involved in vesicle trafficking and
reorganization of the Golgi appara-
tus), axonemal dyneins, which are
responsible for the beating of cilia
and flagella, and a third minor family involved in the beating of cilia.

2.3 Cytoskeleton associated proteins

Myriads of proteins other than molecular motors influence the dynamics of
cytoskeletal filaments in a variety of ways. These include crosslinkers that
simultaneously bind several filaments and crosslink them into stiff bundles,
cappers that attach to the plus-end and prevent filament elongation, agents
that induce filament branching, etc. Some important cytoskeleton-associated
proteins and their function are listed in Table 1. Around 100 protein types
of actin binding proteins have been identified. For up-to-date informa-
tion on these see http://www.bms.ed.ac.uk/research/others/smaciver/

Encyclop/encycloABP.htm. For further information on microtubule associ-
ated proteins we refer to Ref. [40].
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Actin-associated proteins

Name Function
Formin Nucleates filament, remaining associated

with the growing plus-end
ARP complex Induces filament branching
Profilin Binds free subunits and speeds up filament

elongation
Tropomyosin Stabilizes filaments
Capping pro-
teins

Prevent assembly and disassembly at the
plus-end

Gelsolin Severs filaments and attaches to plus-ends
Coffilin Accelerates disassembly upon binding to

polymeric ADP-actin
α-actinins, fim-
brin, filamin

Crosslink filaments

Spectrin, ERM Attach filaments to membranes

Microtubule-associated proteins

Name Function
γ-TuRC Nucleates assembly and remains attached to

the minus-end
Stathmin Binds subunits, preventing assembly
+TIPs Remain associated with growing plus-ends

and can link them to other structures e.g.
membranes

Kinesin-13 Enhances catastrophic disassembly at plus-
end

Katanin Severs microtubules
MAPs Stabilize microtubules
XMAP215 Stabilizes plus-ends and accelerates assembly
Tau, MAP-2 Crosslink filaments
Plectin Link microtubules to intermediate filaments

Table 1: Cytoskeleton-associated proteins. Adopted from [1].
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3 Self-organized structures in the cytoskele-

ton

The complexity of cell morphology and behaviors can have two plausible ori-
gins. One is the complexity of the genome and the associated regulatory gene
expression pathways. In this way, the complexity of individual intracellular
constituents, e.g., the chromosomes, directly determines the complexity on
a cellular level. The other possible source of complexity is self-organization
of intracellular components such as cytoskeletal constituents. Cytoskeletal
self-organization is most directly demonstrated in biomimetic assays, i.e.,
in solutions of purified biomolecules. For example, it has been shown that
asters, reminiscent of mitotic spindle poles form spontaneously in mixtures
of kinesin motors and microtubules. These cannot be assembled by some
complex organizing centers such as centrosomes since these solutions do not
contain any. Hence, their structures must be self-organized. Unfortunately,
many interesting cellular structures, widely thought to be self-organized, e.g.,
the cell motility apparatus, have not yet been reconstituted in vitro. When
studying these, one has to rely on data from experiments with cell fragments
or even whole intact cells. This section describes some experimental obser-
vations of self-organized processes in the cytoskeleton.

3.1 Motor-filament in vitro assays

In order to study the mechanisms, underlying the formation of mitotic spin-
dle, F. Nédélec and co-workers developed an in vitro assay that allows to
examine pattern-forming properties in kinesin-microtubule solutions [58, 74].
Kinesins can be crosslinked into clusters of several motors, such that each
cluster can interact with several microtubules simultaneously. Microtubules
in aqueous solutions have been shown to self-organize into asters and vertices
in presence of kinesin complexes and ATP. Specifically, at low molecular mo-
tor concentrations, the filament distribution remains isotropic. At higher
motor densities, a lattice of microtubule vortices appears, see Fig. 9. As
the motor concentration is raised further, vortices turn into asters, i.e. mi-
crotubule aggregates, in which all filaments emanate radially outwards from
one point. Finally, at very high motor concentrations, filaments bundle. The
structure of microtubule asters is similar to that of mitotic spindle poles. The
structure of motor clusters used in experiments is reminiscent of kinesin-5,
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Figure 9: Different large-scale patterns formed through self-organization of
purified microtubules and motors. The samples differ in the kinesin concen-
tration. (a) A lattice of asters and vortices obtained at 25 mg ml-1 kinesin.
(b) An irregular lattice of asters obtained at 37.5 mg ml-1 kinesin. (c) Mi-
crotubules form bundles at 50 mg ml-1 kinesin (scale bar, 100 µm). Insert,
at higher magnification (scale bar, 10 µm). (d) A lattice of vortices obtained
at 15 mg ml-1 kinesin. Taken from [58].

a motor that forms tetramers, capable of binding several filaments simulta-
neously and sliding them past one another. Kinesin-5 is required for spindle
assembly, for example in the marine brown alga Silvetia compressa [63], sug-
gesting that mechanisms of spindle formation are similar to those, underlying
pattern-forming properties of in vivo motor-filament assays, described in [58].

3.2 Melanophore fragments

Melanophores are skin cells of reptiles and fish that allow them to change
color. In this way, animals can hide from predators or avoid being seen by
their prey. The cytoplasm of melanophores contains color pigment granules,
which can aggregate in the cell center when color needs to be changed and
redisperse when skin coloration has to be restored. Granule aggregation and
redispersion are controlled by neural signals. Even small melanophore frag-
ments are capable of aggregating granules much like whole intact melanophores:
upon pinching off a piece from a larger cell, pigment granules, trapped in-
side the fragment, gather at the excision cite, see Fig. 10. Thereafter, the
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Figure 10: Self-organization of microtubules and motors in fish
melanophores. (a) Schematic explanation of experiments on melanophore
fragments. Upon pinching a fragment off the cell, pigment, trapped in its
cytoplasm, aggregates at the excision site. Thereafter granule aggregate re-
locates to the center of the fragment. Upon completion of pigment centring
microtubules arrange in an aster, centered at the middle of the fragment.
(b) Pigment distribution in melanophore fragments of different shape before
(left) and after centering (right). In the disc-shaped middle fragment pig-
ment aggregates in its center. In an annular fragment there forms a ”ring”
of condensed pigment, concentric with its boundary. Taken from [67]. (c)
Microtubule distribution in melanophore fragments before (left) and after
centring (right). Initially, microtubules are randomly distributed. Subse-
quently, all filaments point radially, away from the center where pigment
aggregate is seen. Taken from [90].

pigment aggregate relocates to the fragment center. Microtubule staining re-
veals that filaments, trapped inside the cell piece, arrange into an aster, with
its center in the middle of the fragment. By treating fragments with taxol
(a drug which prevents microtubule depolymerization, leading to complete
consumption of tubulin monomer) pigment centring is abolished. Hence,
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pigment centering in melanophores is accompanied by and dependent on cy-
toskeletal rearrangement. This reorganization has two possible explanations:
either filaments get displaced by molecular motors, or they move due to
treadmilling. In order to distinguish between the two mechanisms, it is pos-
sible to stain microtubules heterogeneously, for example by photobleaching
a spot in a homogeneously stained filament. It is found that the bleached
spot does not displace as microtubule translates [67]. Consequently, micro-
tubules are subject to treadmilling. Despite the fact that motors do not
transport microtubules, they have proven to be essential for aster formation
in melanophores. When fragments are treated by dynein inhibitors, pigments
do not center and the microtubule aster does not form. Presumably, pigment
granules are actively transported towards the fragment center along the rays
of the filament aster. Importantly, aster assembly requires also the presence
of pigment granules: melanophore fragments containing no pigment granules
do not assemble radial microtubule arrays. Consequently, the dynamics of
microtubules depends on that of the granules. Initially it was supposed that
dynein motors re-organize filaments by actively transporting some agent,
capable of nucleating microtubules. However, it has now been shown that
purified dyneins themselves can serve as microtubule nucleators [67].

3.3 Keratocyte fragments

Keratocytes are cells that constitute a part of the skin of fish and reptiles
and are implicated in wound healing. These cells have two main properties,
making them a valuable model system for cell locomotion: firstly, they are
the fastest crawling cells known today. Moreover, unlike most other cells
that can crawl, keratocytes preserve their characteristic fan-like shape when
crawling on a substrate [48]. The organization of some cytoskeletal proteins
in a crawling keratocyte is shown in Fig. 11. At the cell front actin filaments
generate a protrusion by growing against the cell edge. Myosin staining
reveals that myosin motors localize at the rear, where they serve to organize
filaments into a tightly compressed bundle.

Small fragments of keratocytes can crawl on a surface, assuming a fan-like
shape much like intact keratocytes [20, 86]. Hence, cell motility is likely to
be self-organized, rather than to be dependent on some organizing center.
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Figure 11: Cytoskeletal organization on keratocytes. Left: myosin and actin
staining of a crawling keratocyte. Right: Organization of actin filaments in
keratocyte lamellipodia. EM of detergent-extracted cells. (a) Overview of
a locomoting cell; (b) actin network in lamellipodia from the leading edge
(top) to the transitional zone (bottom); (c) brushlike zone at the leading
edge with numerous filament ends; (d) smooth actin filament network in
the middle part of lamellipodia; (e-h), T junctions (arrowheads) between
filaments at the extreme leading edge (e), within the brushlike zone (f), in
the central lamellipodia (g), and close to the lateral edge of the lamellipodia
(h). The cell’s leading edge is oriented upward in all panels. Boxed region
in (a) is enlarged in (b); upper and lower boxed regions in (b) are enlarged
in (c) and (d), respectively. Bars: (b) 1 µm; (e-h) 50 nm. Taken from [75].

3.4 Actin waves in Dictyostelium discoideum

Dictyostelids are soil-living amoebas. A particular species, Dictyostelium
discoideum, has become a model system for studying chemotaxis and devel-
opment [37, 14]. When subjected to startvation dictyostelids start to aggre-
gate into a single slug of many cells, locating one another by communication
through chemotactic signals of cyclic adenosine monophosphate (cAMP) (a
school-book example of self-organization in a biological system). After for-
mation, the slug migrates away from the site of limited nutrient availability
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Figure 12: Scroll waves of F-actin in Dictyostelium discoideum. (a) Four
sections through a spiral in a pseudopodium of a cell show that the F-actin
pattern may be a segment of a scroll wave extending at least 3 µm. The
first three sections are 0.2 µm apart and the fourth is 2.0 µm below. The
bar indicates 5 µm. Taken from [89]. (b) Space-time plot of cell protrusion
showing traveling waves. Taken from [38].

in search of better living conditions. Eventually, it culminates, forming a
fruit body that releases spores, subsequently developing into new amoebas.

Dynamics of shape of a single Dictyostelium discoideum cell at the first
sight appears quite erratic. Thus, one might think it is purely stochastic and
is driven by random fluctuations. Quantitative analysis of cell boundary dy-
namics reveals that it remains coherent on long temporal and spatial scales.
Most readily this is seen in a space-time plot of the magnitude of the edge
protrusion measured as distance to the cell boundary from the cell’s mass
center versus an angular coordinate, parameterizing the edge, see Fig. 12.
This way a regular pattern of interacting traveling waves is seen [38, 39].
Qualitatively similar membrane waves have been shown to be ubiquitous
in spreading cells [17, 18, 22, 23]. Imaging Dictyostelium discoideum cells,
transformed with GFP-actin reveals that protrusions are generated by ra-
dial waves of polymerizing actin that originate from cell’s interior [88, 89].
Upon nucleation, an actin wave turns into an expanding ring, leading to a
protrusion when encountering the cell edge. Occasionally, actin waves turn
unstable, forming spirals reminiscent of those seen in Belousov-Zhabotinsky
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reaction, see Fig. 12. These data suggests that the dynamics of dictyostelid
cells is driven by self-organized actin patterns.

3.5 Actin waves in neutrophils

Neutrophils are the most abundant white blood cells, forming an integral part
of the immune system. These cells undergo chemotaxis, localizing to sites
of infection by sensing gradients of interleukins and interferons. Neutrophils
are phagocytes: at the site of infection they serve to engulf microbes and
other pathogens [49].

Figure 13: Hem-1 waves in human neutrophils visualized by TIRF mi-
croscopy. Taken form [91].

Much like dictyostelids, neutrophils exhibit actin waves that interact with
the cytoplasmic membrane [91]. In order to examine molecular mechanism
of actin wave dynamics, it proved useful to assess the intracellular localiza-
tion of protein Hem-1 which is a member of the Scar/WAVE complex that
serves to regulate actin polymerization dynamics. Intracellular localization
of Hem-1 fused with a yellow fluorescent protein (YFP) tag was visualized
by total internal reflection microscopy (TIRF). Hem-1 appeared to aggre-
gate on the membrane forming foci, which subsequently burst in outwardly
propagating waves with a speed of propagation of approximately 4 µm/min.
Two possible mechanisms of wave-propagation could be envisaged: either
Hem-waves advance due to translocation of Hem-1 particles along the mem-
brane (i.e. the same protein particles constitute the wave-front at any time
instance), or Hem-1 protein at the rear of the wave-front are continuously dis-
carded into the cytoplasm and progressively recruited to the membrane at the
leading edge of the wave. Weiner and co-workers distinguished between the
two possible modes of wave-propagation by employing photo-bleaching [91]:
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bleaching a spot of Hem-1-YFP wave-front, it was observed that the spot
was not carried along with the wave, indicating that the front propagates by
successive recruitment of Hem rather than by protein translocation. Plausi-
bly, the release of Hem-1 into the cytoplasm must be accomplished by some
downstream effector of Hem-1, shown to be F-actin: poisoning neutrophil
with latrunculin (a drug promoting actin depolymerization) the life-time of
the wave increased approximately 20-fold. This suggests that F-actin could
accumulate at the rear of the propagating wave, forming an ”inhibition zone”
behind the leading edge of the front, serving to expel Hem-1 into the cyto-
plasm. In accordance with this assumption, one could occasionally observe
several fronts, traveling in the same direction behind one another some rather
precisely defined distance apart, supposedly corresponding to the typical size
of inhibition zone. Upon treating neutrophils with jasplakinolide, a drug in-
hibiting actin depolymerization, the distance between subsequent Hem-peaks
enlarged, in accordance with existence of actin-reach inhibition zone between
subsequent Hem-fronts. Finally, it has been shown that Hem-waves allowed
neutrophils to sense their environment: the wave extinguished when reach-
ing the leading edge of the cell if the leading edge encountered a mechanical
barrier.
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4 Physical approaches to cytoskeletal pattern

formation

In the previous section we have listed a number of examples of self-organized
cytoskeletal phenomena. When developing physical descriptions of cytoskele-
tal systems, one is naturally confronted with the problem of describing en-
sembles of particles that each have many degrees of freedom. A number of
recently developed theoretical approaches offer ways for dealing with this
problem. Roughly, these can be subdivided into three classes: microscopic,
mesoscopic and phenomenological macroscopic descriptions. Microscopic for-
mulations (molecular dynamics, MD) describe the dynamics of individual
particles. Mesoscopic mean field descriptions treat the system’s dynamics
in terms of densities, i.e., distributions specifying the probability of finding
particles in a certain state at a given time. To every microscopic description
corresponds a unique mesoscopic one and vice versa. When dealing with
systems of particles that each have many degrees of freedom, numerical so-
lution of the corresponding mean-field equations is unfeasable due to current
limitation on processor speed, even when exploiting parallell algorithms. Cir-
cumventing this problem is sometimes possible by rewriting the mesoscopic
equations in terms of averaged quantities, depending on a smaller number
of variables. For example, nematic order in liquid crystals is described by
nematic order parameter rather than by specifying full distribution of orienta-
tions of the liquid crystal molecules. Finally, phenomenological descriptions
are formulated in terms of order parameters, like those encountered when
simplifying mesoscopic formulations. Within a phenomenological approach,
equations are derived on the basis of general considerations such as symmetry
arguments rather than from an underlying microscopic picture. This section
illustrates the three approaches and discusses their strengths and weaknesses.

4.1 Molecular dynamics

The work of F. Nédélec on theoretical descriptions of motor-filament systems
illustrates the microscopic approach [58, 74, 57, 59]. Individual filaments
were simulated as rods of finite stiffness, that can grow. Filaments will reach
their final length due to limited monomer availability. Motor complexes
are described as two motor heads that can bind one filament each and exert
forces, resulting in filament displacement. Having advanced all the way to the
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filament plus-end, motors were assumed to detach at some prescribed rate.
The system was shown to self-organize into asters and vertices much like
those, seen in experiments with microtubule-kinesin mixtures. Interestingly,
asters turned into vertices upon increasing the rate of motor unbinding from
the filament plus-end.

In an MD simulation, the number of simulated molecules rather then the
number of degrees of freedom of a single molecule limit the simulation time.
Since MD describes individual molecules, experimentally determined details
of the molecule structure and of inter-molecule interactions are readily in-
troduced into the description and simulation results are easily interpreted.
However, exploration of parameter space that can be done by means of, for
example, a linear stability analysis in the case of mesoscopic and phenomeno-
logical descriptions is not applicable to microscopic descriptions. Hence, ex-
haustive characterization of dynamical states, exhibited by the system is
seldom feasible. Arguably, the main disadvantage of MD is its insufficient
generality. The precise form of equations, determining dynamics of particles
in an MD simulation is often too system-specific to reveal similarities and
unobvious interconnections between different physical systems.

4.2 Mean field mesoscopic descriptions

Microscopic descriptions can generically be formulated in terms of Langevin
equations. The corresponding mesoscopic formulation is given by the cor-
responding Fokker-Planck equations. Simulating Langevin equations yields
a random sequence of transitions between different states of the particles,
whereas by simulating the Fokker-Planck equations one obtains the proba-
bility of finding the particle in a particular state at a particular time.

Two approaches to mesoscopic descriptions of the cytoskeleton have been
established. One is deriving dynamic equations starting from force balance in
much the same way as when deriving Navier-Stokes equations by considering
forces on a material element of the fluid. The second approach derives dy-
namics from transition probabilities associated with various state changes of
a particle, in much the same way as when deriving hydrodynamic equations
starting from the Boltzmann equation [9].
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Figure 14: Illustration of possible interactions between parallell filaments.
Filaments that do not overlap in space can not interact (left-most filament
pair). Green arrows indicate forces on filaments from motors. One motor
head is permanently bound to the plus-end of one filament, the other motor
head is walking along the other filament. In this way, the two plus-ends
eventually converge.

4.2.1 Force balance

As an illustration of the approach through force balance, consider a system
of filaments, that are aligned along the same line and compressed into a
bundle. Suppose that all filaments in the bundle have the same orientation
(determined by their polarity). Suppose further that two-headed molecular
motors are present in the bundle, forming active crosslinks between filament.
Filaments of the same orientation may interact due to end effects that could
for example result in convergence of their plus-ends (see Fig. 14).

Assuming a homogeneous motor density and constant filament length,
the force experienced by a filament due to the presence of another one is a
function of inter-filament distance ξ alone. Denoting this force by f(ξ), total
the force on filament at spatial position x along the bundle is
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f(x) = −ηv(x) +

∫
dξ c(x+ ξ)f(ξ)− ηD∂x ln(c) (4.1)

where c(x) is filament density, v is the filament speed, η is the friction coef-
ficient with the surrounding stationary solvent. The last term is an entropic
force, capturing the effects of random fluctuations, see [7, 19]. The integral
term sums the force contributions from surrounding filaments. Importantly,
f(ξ) is odd in ξ since the force exerted by one filament on another is equal
in magnitude and opposite in direction to the force exerted by the latter
on the former (Newton’s third law). For simplicity, f may be taken to be
piecewise constant if the absolute value of ξ is smaller than filament length
and zero otherwise. The latter is motivated by the fact that filaments that
do not overlap in space can not form a crosslink and hence do not interact,
if motors are point objects. Equation (4.1) relies crucially on a mean-field
assumption: every filament feels the averaged field of the surrounding fila-
ments. Having specified the forces on a filament, the equation of motion is
obtained by equating the force in (4.1) with acceleration times filament mass.
After an appropriate dedimensionalization, neglecting inertia and solving for
the filament speed v one obtains

v =
1

η

[∫
dξc(x+ ξ)f(ξ)− ηD∂x ln(c)

]
. (4.2)

If filaments are neither created not destroyed, the filament density obeys the
continuity equation

∂tc = −∂xvc . (4.3)

Combining Eq. (4.3) with Eq. (4.2) gives

∂tc(x) = −∂x
[

1

η
c(x)

∫
dξc(x+ ξ)f(ξ)

]
+D∂2

xc(x) . (4.4)

This is an elementary description of the density dynamics in a filament bun-
dle. Importantly, this simple equation exhibits an interesting instability: at
high enough magnitude of inter-filament interactions f , filaments pile up at
one point [45, 46].

The derivation of equation (4.4) outlines the general procedure for con-
structing a mean-field description from momentum and mass conservation.
The starting point is writing down forces between the different particles, as
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functions of particle coordinates. Importantly, since inertia can be neglected,
these must appear in pairs of equal magnitude and opposite sign to ensure
momentum conservation. Particle speeds follow from equating the total force
on a particle to zero. Substituting these into the continuity equation and ex-
ploiting the mean-field assumption, gives the required description.

A number of works have been based on this method for describing cy-
toskeletal systems. In [45, 46] equations described myosin-driven contraction
of actin filament bundles observed in reconstituted biomimetic assays [76, 77].
Interestingly, it was found that interactions between filaments of opposite ori-
entation can result in traveling wave of propagating density maxima. Gener-
alizations of the approach of [45, 46] to two-dimensions have been presented
in [51, 52, 47]. Calculation of the stress distribution in the gel is presented in
[47]. Nonlinear analysis and numerical solutions of the equations in [51, 52]
can be found in [94], where it was shown that in two dimesions the system
can self-organize into periodic patterns of asters or stripes.

4.2.2 Boltzmann equations

This method is inspired by approaches to the dynamics of granular gases
[9]. When describing a dilute gas it is admissible to consider only two-
particle collisions. Further, it is safe to assume that the statistics of the
particle configurations changes on a time-scale which is very much slower
than that of inter-particle interactions. Hence, on long time scales, two-
particle collisions appear as instantaneous transitions from one state of a
particle pair to another, uniquely defined by the initial configuration.

As an illustration consider a system of polar rods that interact by pair-
wise collisions. Each rod is characterized by its orientation, i.e., the angle θ
with a particular coordinate axis. Assuming the system to be spatially ho-
mogeneous, it is described by a probability distribution P (θ) for the filament
orientations. Interacting rods align: when two rods with orientation θ1 and
θ2 collide, they end up both having orientation (θ1 + θ2)/2. Importantly, the
mapping, relating filament orientations before and after ”collision”, must be
invariant with respect to interchanging indices 1 and 2 due to the symmetries
of the problem. The dynamics of P (θ) is given by:
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Figure 15: (a) Schematic illustration of rod alignment. (b) Integration
domains in equation (4.5). Adopted from [2].

∂tP (θ) = Dr∂
2
θP (θ) + g

∫
C1

dθ1dθ2P (θ1)P (θ2)

× [δ(θ − θ1/2− θ2/2)− δ(θ − θ2)]

+g

∫
C2

dθ1dθ2P (θ1)P (θ2)× [δ(θ − θ1/2− θ2/2− π)− δ(θ − θ2)]

(4.5)

Here δ is Dirac delta function, g specifies the inter-filament interaction
strength, and Dr is rotational diffusion constant, capturing effects of noise.
The integration domains C1 and C2 are sketched in Fig. 15, chosen in such
a way as to ensure that filaments preferentially interact when they are ap-
proximately parallel. Rods of orientation θ are generated by collisions of
two rods whose orientations sum up to 2θ (first term in both integrands)
and disappear due to collisions with rods of any orientations other than θ
(second integrand term). Equation (4.5) exhibits an interesting instability:
polar order sets in at high enough values of g.

Equation (4.5) can be extended to account for spatial variations in the fil-
ament density, see [2]. The resulting equations exhibit patterns of coarsening
asters and vortices, much like microtubule-kinesin solutions in experiments
of F. Nédélec [58]. A further extension of the approach accounting for the
dynamics of the motor distribution is given in [3].

The derivation of equation (4.5) is very similar to the derivation of the
dynamic equations describing reaction-diffusion systems: two rods with ori-
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entations θ1 and θ2 ”react”, generating two rods both having orientation
θ1/2+θ2/2. In contrast to what was done in the previous section, the descrip-
tion is formulated without directly exploiting Newton’s equations of motion.

In this section we described two methods for deriving mesoscopic equa-
tions of motion. The mesoscopic approach has a number of strengths. Since
the description is formulated as a set of partial integro-differential equations,
conventional methods from the theory of dynamical systems are applicable
for examining solutions. For instance, it is possible to explore parameter
space by means of a linear stability analysis. Nonlinear expansions can be
used to derive analytic expression for solutions in the vicinity of bifurcation.
Much like in the case of MD, parameters have a clear microscopic interpre-
tation.

The main weakness of mesoscopic formulations is associated with describ-
ing molecules with many degrees of freedom. For example, when describing
(bio)molecules that are free to move in three dimensions, to rotate and to
change their orientation, the descriptions will contain fields, depending on
five variables. Current limitations on processor speed make the method in-
applicable for describing molecules with more than three degrees of freedom.
This problem may be circumvented by introducing order parameters that are
obtained by appropriately averaging the quantities, appearing in the original
mesoscopic equations. For example, when studying equation (4.5) one can de-
compose the angle-dependent rod density P in Fourier modes (these depend
on time but not on filament orientation) and solve for dynamics of modes
instead of working directly with orientation distribution. A problem with
this approach is that generically, for non-linear descriptions, dynamic equa-
tion for time-evolution of any one order parameter requires the knowledge
of time-evolution of infinitely many other order parameters. For instance,
the dynamics of Fourier mode n of filament orientation distribution in (4.5)
requires the knowledge of Fourier modes of order higher than n. Hence, ex-
pansions in Fourier harmonics need be truncated at some finite n to obtain
a closed equation set. Unfortunately, however, up to date, no method guar-
antees that truncated equations converge to full description in the limit of
large n.

The second problem associated with mesoscopic equations is the appear-
ance of integral terms, whose calculation requires long computation time.
The integrals can be simplified by using coarse-graining. The idea behind
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the technique is the same as that behind the multiplole expansion in elec-
tordynamics and fluid mechanics. As an example, consider equation (4.4).
Taylor-expanding ρ(x+ξ) in ξ and integrating, the integral terms is re-written
as A1∂xρ(x) + A2∂

3
xρ(x) where A1 =

∫
dξf(ξ)ξ, A2 =

∫
dξf(ξ)ξ3/3 and so

on, yielding

∂tc(x) = −∂x
[
c(x)(A1∂xc(x) + A2∂

3
xc(x))

]
+D∂2

xc(x) .

This approximation is valid only provided that the filament density ρ
varies on a scale, much larger than that of integral kernel f which is not
always possible to ensure.

4.3 Phenomenological descriptions

As was described in the previous section, mesoscopic equations, involving
fields that depend on many variables do not generically yield a closed set of
equations when re-written in some appropriate averaged quantities, depend-
ing on a smaller number of variables. Phenomenological descriptions derive
equations for some suitable averaged quantities from some general principle,
such as symmetry considerations. However, it is understood that any phe-
nomenological description can be derived from some mesoscopic formulation,
although it is not always clear how. Two major approaches to phenomenolog-
ical descriptions of the cytoskeleton have been established. One exploits sym-
metry arguments alone, the other one in addition relies on non-equilibrium
thermodynamics.

4.3.1 Symmetry-based phenomenological descriptions

Consider a system of interacting filaments. Describing filaments as rigid po-
lar rods of the same length, the state of the system is fully determined by
the filament distribution c(r, û, t) giving concentration of filaments at spa-
tial position r, pointing along unit vector û at time t. Integrating c over
all filament orientations û defines the scalar filament density ρ. The aver-
aged filament orientation

∫
dûûc gives the polarization vector p. Avarag-

ing the outer product of û with itself gives a symmetric second rank ten-
sor. Multiplying its anisotropic part by 2 defines symmetric traceless tensor,
called nematic order parameter. Importantly, only a finite number of ten-
sors of a given rank may be contracted from these three order parameters
and their derivatives if restricting to products and derivatives of some finite
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orders. It can be shown that the nth moment of the filament orientation
can be written as a function of nth Fourier harmonic of filament concentra-
tion which is 2π-periodic in polar coordinates θ and φ of filament director û =
[sin(φ) cos(θ), sin(φ)sin(θ), cos(φ)],
see Fig. 16. Assuming that the three lowest Fourier modes suffice to describe
the system, the time evolution of the density, the polarization and the ne-
matic tensor is determined by these three order parameters alone. The most
general expression for the dynamics of any one of these tensorial quantities is
obtained by equating its time derivative with linear combination of all pos-
sible tensors constructed from them. The expansion coefficients serve as phe-
nomenological parameters.

Figure 16: Schematic illustration
of degrees of freedom of a fila-
ment: three-dimensional mass center-
coordinate r and orientation given ei-
ther by director û or by azimuthal and
polar angles θ and φ, respectively, pa-
rameterizing the director.

The main advantage of the method
is that it is applicable to pretty
much any system since it avoids the
problem of truncating moment ex-
pansions encountered when system-
atically deriving dynamics from an
underlying mesoscopic formulation.
This approach is very general, based
on symmetry arguments alone. One
major disadvantage is the difficulty
of relating results to the underly-
ing microscopic details of the sys-
tem since phenomenological param-
eters in general do not have obvious
physical interpretation.

This method has been widely
applied to descriptions of nematic
liquid crystals and animal swarms
[12, 61, 81]. In the former case, the dynamic equations are derived by vary-
ing the free energy, assuming it can be expressed in terms of nematic order
parameter alone. In the latter case, the dynamics is described by a single
order parameter, namely the particle speed. In both cases the number of
phenomenological parameters is significantly restricted due to these special
features. On the contrary, descriptions of cytoskeletal dynamics in general
require rather large number of phenomenological parameters and do not fol-
low from free energy variation since the cytoskeleton is an out-of-equilibrium
system. Hence, the phenomenological descriptions of cytoskeleton derived
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by systematic expansion, may contain many tens of parameters, prohibiting
exhaustive exploration of parameter space.

Phenomenological description of motor-filament system exhibiting pat-
terns of asters and vertices was proposed in [50]. An application of the
method to describing formation of mitotic ring is given in [97]. Nematic
transitions in systems of cytoskeletal polymers were studied phenomenologi-
cally in [95].

4.3.2 Hydrodynamics

Much like many equations of continuum mechanics this method derives the
dynamics by combining conservation laws with linear constitutive equations.
As an illustration consider the derivation of the equations presented in [26],
describing the dynamics of the muscle fiber. Equations of motion follow from
conservation of mass and momentum:

∂tρ = −∇ · vρ
∂tρv = ∇ · σ + fext

(4.6)

The inertial term in the momentum balance may be dropped, since inertia
effects are negligible in the overdamped limit. Distribution of filament orien-
tations needs not be taken into account since all actin filaments in a muscle
fiber are oriented along the same line and there are, on average, equally many
filaments pointing in either direction along the line. In order to proceed, con-
stitutive equations are required to relate the stress σ and the external force
density experienced by the fiber fext to the fiber density ρ and velocity v. To
this end, it must be noted that entropy production in the system is given by

d

dt
F = −

∫
[σ : ∇v + r∆µ] (4.7)

where r is the rate of ATP hydrolysis and µ is the difference in chemical
potential of ATP with its hydrolysis products. The integrand of (4.7) is a
quadratic form, each term being a product of a generalized thermodynamic
flux with its corresponding generalized thermodynamic force. Provided that
the system is close to thermodynamic equilibrium, the relation between the
thermodynamic fluxes and thermodynamic forces is linear to a good approx-
imation. Hence

σ = ζI∆µ+ ξ∇v . (4.8)
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Here I denotes unity tensor, ζ and ξ are phenomenological parameters. Plau-
sibly, ζ, coupling stress generation to ATP hydrolysis, increases with density
ρ, since higher density results in higher motor-filament overlap. Hence, to
linear order ζ = ζ0 + ζ1ρ. External forces may be related to density by
∂tfext = −ηe∂tρ/ρ0, describing fiber friction with surrounding stationary fluid.
Substituting the constitutive equation (4.8) into the momentum balance in
(4.6), linearizing ρ around equilibrium density ρ0 and using mass conservation
one obtains:

ρ0∆µζ1∂
2
xρ− ξ∂t∂2

xρ = ηe∂tρ . (4.9)

This is a simple hydrodynamic description of muscle dynamics, capable of
accounting for active contraction. Equations have been restricted to one
dimension since muscle fibres can only contract along their length.

This example illustrates the major ingredients of the approach. Dynam-
ics is derived by combining conservation laws with constitutive relations,
that are obtained by assuming linear force-flux relation in the vicinity of
equilibrium. The approach is general, allowing to describe a large variety
of systems, ranging from muscles to actin-myosin gels [13, 21]. The major
weaknesses are those shared by all phenomenological approaches: large num-
ber of phenomenological parameters and the difficulty of relating them to
microscopic parameters of the system. Furher, in many cases assumption of
local equilibrium is arguable.

The approach has been applied to descriptions of motor-filament systems
in [44, 42], where it was shown that the basic hydrodynamic formulation
exhibits patterns of asters, vortices and spirals. This theory was adopted to
study contractility and retrograde flow in a lamellipodium, i.e., flat protru-
sion of a crawling cell, [43], and to shape oscillations in fibroblast cells [71].
The method is extended to a three-fluid systems in [35].

Herewith, all currently available theoretical approaches to the cytoskele-
ton are covered. Some aspects of cytoskeletal dynamics such as contractility
and force generation have received considerable attention on the theoretical
side. However, they most certainly do not suffice to describe a great num-
ber of fascinating biological processes. A variety of cellular phenomena such
as the above-described pigment condensation in melanophore fragments or
generation of cellular protrusions such as cilia and microvilli rely on tread-
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milling. Generically, treadmilling results in dynamic change of length of
a filament. None of the above-mentioned mesoscopic approaches accounts
for dynamic filament length though. Applying any continuum cytoskeleton
description to cell locomotion requires considering boundary conditions at
the gel-membrane interface. However, boundary conditions for mesoscopic
coarse grained equations of cytoskeletal dynamics have never been consid-
ered. These two problems are the subject of present thesis.
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5 Dynamics of treadmilling filaments, regu-

lated by actively transported nucleator pro-

teins

In the previous section we have seen that treadmilling is an important in-
gredient of many biologically vital processes. In particular it is essential
for virtually all forms of cell locomotion. Furthermore, it is implicated in
generation of various cellular appendages, e.g. stereocilia [70] and microvilli
[29, 65]). In experiments of Rodionov et. al. on fish melanophores tread-
milling was cleanly separated from other cellular processes that typically
influence filament dynamics, making melanophore system particularly suit-
able for theoretical analysis [67, 90, 54]. Motivated by the experiments of
Rodionov et. al., this section treats a system of treadmilling filaments that
are nucleated by proteins, actively transported along the filaments. We shall
start with considering the filament length dynamics, neglecting spatial vari-
ations of filament density. Next we shall introduce length dependence in the
filament concentration and consider a system that can be treated exactly.
Than we shall develop an approximation, allowing to consider a broader
class of systems and campare the results of this approximation to the exact
solutions.

5.1 Simplified description: constant filament length

We start our investigations of the effects of filament treadmilling in the pres-
ence of nucleating proteins by considering the case of a mono-disperse solu-
tion of filaments with length `. Although certain aspects of this model lack
physical justification, it is formally much simpler to treat than the full case.

5.1.1 Dynamic equations

With the dynamics of microtubules in mind, which have a persistence length
of about a millimeter, we treat the filaments as rigid rods. The position in
space of a filament is thus completely specified by the position of one point
along the filament, say the plus-end, and its orientation û, where |û|2 = 1
points into the direction of the plus-end.
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Figure 17: Illustration of coordinates, de-
scribing the state of a filament, condined to
a plane: coordinate of the plus-end r, orienta-
tion û and length `.

The dynamics of the sys-
tem will be given in terms of
mean-field equations. Cor-
respondingly, the state of
the system is given by fila-
ment densities. The density
c(r, û, t) denotes the concen-
tration of filament plus-ends
at position r and time t be-
longing to filaments of orien-
tation û with û2 = 1. Of
course, we might also have
chosen to localize the fila-
ments by their minus-ends.
The evolution in time of the

density c is governed by

∂tc = −∇ · jf + S , (5.1)

where jf is the filament current and S combines source and sink terms re-
sulting from filament nucleation and catastrophes.

The filament current jf is for one due to treadmilling with velocity v in
the direction of the filament axis. Furthermore, there is a diffusion term with
effective diffusion constants which account for the fluctuations in the system
and are not only due to thermal noise. The expression for the translational
current thus reads

jf = −D∇c+ vûc , (5.2)

where, for simplicity, we consider the case of an isotropic diffusion constant
D. Again for simplicity, we will neglect in the following rotational diffusion.
We have checked, that our results stay qualitatively the same in the presence
of rotational diffusion.

The polymerization-depolymerization dynamics of the filaments also con-
tributes to the source term S in Eq. (6.1). The disassembly of a filament
following a catastrophe is captured by degradation of filaments with rate νd.
This is equivalent to assuming that it occurs on much faster time-scales than
the other relevant processes. Nucleation of new filaments is proportional to
the local density n of nucleating proteins. This form is justified if filaments
reach their final length ` in a time that is fast compared to other processes.
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We thus have
S = −νdc+ νn , (5.3)

where ν is the nucleation rate by a single nucleating protein.
The dynamics of the nucleators is governed by the continuity equation

∂tn = Dn∇2n−∇ · jact . (5.4)

The diffusion term with the effective diffusion constant Dn accounts for fluc-
tuations in the system, while the current jact describes active transport of
nucleators along filaments with velocity vn. Within the mean-field approach,
the direction of nucleator transport at a given point is determined by the
averaged orientation of filaments at this point. For a system in d spatial
dimensions, we therefore write

jact(r) = vnn(r)

`∫
0

dξ

∫
ξd−1dû ûc(r + ξû, û) . (5.5)

Together, Eqs. (6.1)-(5.5) define a minimal model of filament treadmilling in
the presence of nucleators that are transported along filaments.

While it is in principle possible to analyze these equations directly, it is
convenient to focus attention on the macroscopic density and polarization
fields and to study the large scale behavior by coarse graining. Technically
this is achieved by first performing a moment expansion of the density c in
û. The first two moments are

ρ(r, t) =

∫
dû c(r, û, t) (5.6)

p(r, t) =

∫
dû û c(r, û, t) . (5.7)

where ρ is the density of filament ends and p the average orientation (or polar-
ization) of filaments. These quantities are determined by the two lowest-order
Fourier harmonics of filament density c, which is, by definition, a 2π-periodic
function of the filament orientation. Higher moments can be considered but
we restrict attention to the first two. This is admissible, provided that fil-
ament orientation distribution does not exhibit abrupt variation and is well
approximated by two first Fourier harmonics. Knowing all moments, the full
distribution can be obtained. In the following we will restrict attention to
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systems in two dimensions. In this case, the filament distribution is approx-
imately given by c(r,p) ' {ρ(r) + 2û · p(r)} /2π. After coarse graining, the
dynamic equations for the density and the polarization then read

∂tρ = ∇2ρ− v̄∇ · p + ν̄n− ρ (5.8)

∂tp = ∇2p− v̄

2
∇ρ− p . (5.9)

Here, we have expressed the equations in dimensionless form with densi-
ties ρ̄ = `−2ρ, p̄ = `−2p, and n̄ = `−2n, where in the above equations
we have omitted the bars for simplicity. The dimensionless parameters are
v̄ = v/(Dνd)

1/2 and ν̄ = 2πν/νd. Time has been scaled by νd and space by
(D/νd)

1/2.
Next, the moment expansion is applied to the evolution equation (5.4) of

the nucleator density. After coarse graining, it reads in dimensionless form

∂tn = D̄n∇2n−∇ · ̄act (5.10)

with the active nucleator current given by

̄act =
1

2
v̄nn

{
p +

¯̀

3
∇ρ+

¯̀2

16
∇ · γ

}
. (5.11)

The dimensionless parameters are D̄n = Dn/D, v̄n = vn/(4Dνd)
1/2, and

¯̀= `(νd/D)1/2. The tensor γ has components

γij =
∂pi
∂xj

+
∂pj
∂xi

+ δij∇ · p , (5.12)

where i, j = 1, 2, and (∇ ·γ)j = ∂γ1j/∂x1 +∂γ2j/∂x2. Equations (5.8)-(5.12)
describe the evolution of the filament density and polarization and of the
nucleator density on large length scales.

5.1.2 Results

We start our analysis of Eqs. (5.8)-(5.12) by noting that the homogeneous
isotropic state with n ≡ n0 = const, ρ ≡ ρ0 = ν̄n0, and p = 0 is a stationary
solution. The stability of this state against small perturbations is assessed by
a linear stability analysis. To this end we form the vector E = (n, ρ, px, py).
Assuming periodic boundary conditions and substituting a solution of the
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Figure 18: Stability diagram of treadmilling filaments of constant length in
the presence of nucleators. The homogeneous isotropic state is stable in
the white region. Along the dashed line the system encounters a stationary
instability, oscillatory instabilities are encountered along the full line. In both
cases, the instability is sub-critical and long wave-length. In the dark-gray
shaded region asters are generated, oscillatory states are found in the region
shaded in light gray. Parameters are ν̄ = 1.41 ·103, D̄n = 0.2, ¯̀= 1.64 ·10−2,
n0 = 0.908.

form E = E0+A exp{i (k1x+ k2y + ωt)}, where E = (n0, ρ0, 0, 0), the ampli-
tude A is determined up to linear order by the eigenvalue equation λA = ΛA.
The matrix Λ has components

Λ11 = Λ22 = Λ33 = 1− k2
1 − k2

2 Λ44 = −D̄n(k2
1 + k2

2)

Λ12 = 2Λ21 = −iv̄k1 Λ13 = 2Λ31 = −iv̄k2 Λ14 = ν̄

Λ23 = Λ24 = Λ32 = Λ34 = 0

Λ41 = 1
3
v̄nn0

¯̀(k2
1 + k2

2)

Λ42/k1 = Λ43/k2 = iv̄nn0

[
3
16

¯̀2(k2
1 + k2

2)− 1
]

If for all modes Reλ < 0, then a small perturbation will decay and the
homogeneous isotropic state is stable. If Reλ > 0 for some mode, then the
corresponding mode will grow and a heterogeneous and/or anisotropic state
will appear.

In Figure 18 we present the stability diagram as a function of the pa-
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rameters v̄ and v̄n. For sufficiently large negative motor velocities v̄n, i.e.,
if nucleators are transported sufficiently fast towards the shrinking filament
end, a real eigenvalue λ becomes positive.

At the dashed line indicated in the diagram, the system exhibits a long-
wave instability: the wave-vector of the critical eigenmode has a modulus of
2π/L, where L is the system size. The four independent modes corresponding
to wave-vectors k = (kx, ky) = (±2π/L, 0) and (0,±2π/L) simultaneously
become unstable. The four-fold degeneracy is a consequence of the mirror
symmetry x → −x and p → −p exhibited by the dynamic equations (5.8)-
(5.12). The critical eigenmode is such that the polarization vector p points
into the same direction as the wave-vector k. The filament density ρ is
in phase with the nucleator density n, but shifted a quarter period with
respect to the non-vanishing component of the polarization. There is a second
critical value v̄n,c of the velocity v̄n for which the homogeneous isotropic state
becomes unstable, but with v̄n > 0, see the full line in Fig. 18. In this case,
an oscillatory solution emerges as indicated by the non-vanishing imaginary
part of the critical eigenvalue λ. The linear analysis indicates a standing
wave solution.

Numerical integration of the dynamic equations (5.8)-(5.12) confirms the
linear analysis. In the light gray region presented in Fig. 18 the system
evolves into a stationary state with the nucleators accumulated at one point.
The filaments accumulate at the same point pointing radially outwards from
the point of maximum density, see Fig. 19.

These solutions we call asters. Similar structures have been found in sys-
tems of filaments and motors, where motors induce active cross-links between
filaments that move filaments with respect to each other [58, 74, 15, 87]. Ini-
tially, several asters may be formed but with time the pattern coarsens and
eventually one aster remains. In the dark gray region shown in Fig. 18, os-
cillatory solutions are present, see Fig. 20. At some point in time they look
like asters, but with the polarization vectors pointing towards the maximum
nucleator and filament density. Then, the distribution broadens and the den-
sities simultaneously decrease in the middle of the aster, such that the whole
structure gradually deforms into a ring. The ring expands and, due to the pe-
riodic boundary conditions, a new peak is formed, now with the polarization
vector pointing outwards of the aster. Then, the process repeats.
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Figure 19: Stationary solution to the dynamic equations (5.8)-(5.12). (a) fil-
ament density ρ and polarization p. (b) Density of nucleators n. Parameters
are as in Fig. 18, v̄ = 6.7, v̄n = 13.4, the system is quadratic with periodic
boundary conditions and length L̄ = 0.89.

Figure 20: Oscillatory solution to the dynamic equations (5.8)-(5.12). Den-
sity of nucleators n (lower panel), filament density ρ and polarization p
(upper panel) for three successive time points. The right state is the same
as the left, but half a system size shifted in x- and y-direction. Parameters
are ν̄ = 1.41 · 103, D̄n = 0.5, ¯̀= 2.59 · 10−2, n0 = 0.908, v̄ = 10.6, v̄n = 21.2
and the system is quadratic with periodic boundary conditions and length
L̄ = 1.41.
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5.2 Varying length distributions: exact treatment

We will now turn to the case, where the two ends of a filament may vary
independently of each other. This requires to keep track of the distribution of
filament lengths at each point in space and for each filament orientation. The
corresponding density of filament plus-ends will be denoted by c(r, û, `, t).
We will first discuss the dynamics of filament lengths independently of the
spatial dynamics of the filaments. We will then introduce equations, de-
scribing the dynamics of the full filament distribution, which depends on the
location in space, the filament orientation, and the filament length. We fi-
nally analyze the dynamics of such a system in the presence of nucleating
proteins.

5.2.1 Dynamics of filament length

The filament length changes by addition and removal of subunits, which we
assume to lengthen or shorten the filament by an amount δ. For simplicity,
we will focus on the case that at the plus-end, subunits can only be added,
while at the minus-end, they are only removed. In absence of any other
effects on polymerization and depolymerization, filaments would thus grow
indefinitely if the rate of subunit addition exceeds that of subunit removal,
while they would shrink to zero length in the opposite case. Motivated by
microtubule catastrophes, which cause a rapid depolymerization at the plus-
end, we will consider that filaments instantaneously dissolve at rate νd as
introduced in the previous section.

The filament length distribution is naturally described by a discrete dis-
tribution ci, i = 0, 1, 2, . . .. Here, c0 is the number of filament nuclei and
ci the number of nuclei with i subunits attached. If monomers attach to
the plus-end at rate ka and detach at rate kd, then the length of a filament
changes as

d

dt
ci = −kaci + kaci−1 − kdci + kdci+1 − νdci (5.13)

for i > 0. In general, the rates ka and kd depend on the concentration of free
subunits, the concentrations of other cytoskeletal proteins affecting subunit
attachment and detachment, as well as physical parameters like temperature
or pH. In the following, we will assume that the dynamics occurs in presence
of a subunit reservoir as well as under constant physical conditions and take
these rates to be constant.
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It remains to fix the number of polymerization nuclei c0. The formation
of a nucleus depends on a number of parameters as the number of subunits
forming a nucleus, possible substeps necessary for its formation, the presence
of nucleating proteins and so on. In this section, we consider a situation
in which there are processes that keep the density of nuclei at a fixed ratio
of the density n of nucleating proteins, i.e., c0 = αn, where without loss of
generality we choose α = 1.

On length scales much larger than the elongation δ upon addition of a
subunit, the set of equations (5.13) can be approximated by the following
partial differential equation

∂tc = −∂`(va − vd)c− νdc , (5.14)

where va = kaδ and vd = kdδ are the growth and shrinkage velocities of the
plus- and the minus-end, respectively. The boundary condition at ` = 0 is
c(0) = n. The stationary solution of Eq. (5.14) is given by

c(`) = n exp

(
− νd
va − vd

`

)
. (5.15)

The average length 〈`〉 = (va−vd)/νd is inversely proportional to the catastro-
phe rate νd and proportional to the difference of the growth and the shrinkage
velocity va − vd. If vd > va then filaments do not grow and are all of length
zero.

5.2.2 Including space dependence

We are now in a place to give the equations governing the time evolution of
the density c of plus-ends depending on the space coordinate r, the filament
orientation û, and the filament length `. We write

∂tc(r, û, `, t) = D(`)∇2c(r, û, `, t)−∇ · vaûc(r, û, `, t)
−∂`(va − vd)c(r, û, `, t)− νdc(r, û, `, t) .

(5.16)

In this expression ∇ is the gradient operator in space. The diffusion constant
D depends on the filament length `, but as in the previous section we have
assumed for simplicity that it is isotropic. The boundary condition in `-space
is chosen to be c(r, û, ` = 0) = n(r), where n is the density of nucleating
proteins.
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We now specify the dynamics of the nucleating proteins. As in the pre-
vious section, we assume that the nucleating proteins are linked to motor
molecules that transport them along filaments. Therefore, the evolution in
time of n is again governed by Eq. (5.4), but the expression of the active
current jact now has to account for the distribution of filament lengths:

jact(r) = vnn(r)

∞∫
0

d`

`∫
0

dξ

∫
ξd−1dû ûc(r + ξû, û, `) . (5.17)

As before vn denotes the velocity of nucleating proteins bound to filaments.

5.2.3 Exact treatment

Analyzing Eqs. (5.4), (5.16), (5.17) directly by means of finite differences is
unfeasible, since this would require discretizing equations on a four-dimensional
grid and computing the triple integral in Eq. (5.17). However, as we shall
show, Eqs. (5.4), (5.16), (5.17) can be substantially simplified without ap-
proximations, allowing for straight-forward treatment. To this end we define
a new order parameter J(r, û) according to

J(r, û) =

∞∫
0

d`

`∫
0

dξ ξ c(r + ξû, û, `, t) =

∞∫
0

dξ

∞∫
ξ

d` ξ c(r + ξû, û, `, t)

Substituting expression for J into (5.16) one arrives at

∂tJ(r, û, t) = ∇2J −∇ · ûv̄aJ + (v̄a − v̄d)ω − J (5.18)

where

ω(r, û, t) =

∞∫
0

dξ ξ c(r + ξû, û, ξ)

Henceforth, we shall render equations dimensionless with J̄ = J , n̄ = λ−2.
The dimensionless parameters are v̄a,d = va,d/(Dνd)

1/2. Time has been scaled
by νd and space by λ = (D/νd)

1/2. For clarity we omit writing out the bars
over dynamic quantities. Substituting the expression for J into (5.16) and
using
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∞∫
0

dξ ξ ∂`c(r + ξû, û, ξ) =

∞∫
0

ξ

[
d

dξ
c−∇ · ûc

]
=

−
∞∫

0

c(r + ûξ, ξ)−∇ · ûω

we arrive at

∂tω = ∇ω + (v̄a − v̄d)s− v̄d∇ · ûω − ω , (5.19)

where s is

s(r, û, t) =

∞∫
0

dξc(r + ûξ, û, ξ, t) .

The time-evolution for s is derived analogously, yielding

∂ts(r, û, t) = ∇2s+ (v̄a − v̄d)c0 − v̄d∇ · ûs− s . (5.20)

Here, as before, c0 ≡ c(r, û, ` = 0, t) is determined by the boundary condition
c0 = ν̄n, implying that the rate of nucleation of filaments is proportional to
the concentration of nucleators. The dimensionless nucleation rate is ν̄d =
2πν/νd. Noting that motor flux can be written in terms of J as

j(r, û, t) = −D̄n∇n+ v̄nn

∫
dûJ(r, û, t)

we arrive at a closed set of equations (5.4), (5.18)-(5.20), specifying the exact
time-evolution of the order parameters J , ω, s as well as of the motor density
n. The dimensionless diffusion constant is D̄n = Dn/D and the nucleator ve-
locity is v̄n = vn/(Dνd)

1/2. Note, that these equations contain neither fields,
depending on filament length ` nor integrals in ` or r, greatly simplifying the
treatment.

5.2.4 Results

Equations (5.4), (5.18)-(5.20) admit a unique homogeneous isotropic station-
ary solution n = n0, s = c0(v̄a − v̄d), ω = s(v̄a − v̄d), J = ω(v̄a − v̄d), where
the homogeneous motor density n0 is determined by the total amount of
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Figure 21: Stability diagram of isotropic homogeneous distribution of Eqs.
(5.4), (5.18)-(5.20) for varying values of motor speed vn and elongation speed
of filament plus-end v̄a. Parameters are: v̄d = 3.0, D̄n = 4.0, ν̄ = 2π,
n̄0 = 0.01.

nucleators in the system. Linearizing dynamic equations around this state,
stability diagram may be constructed, see Fig. 21. Since we wish to analyze
equations (5.4), (5.18)-(5.20) exactly, we shall not coarse-grain them with
respect to filament orientation θ. Hence, linearization yields one linear PDE
for every θ-dependent Fourier harmonic of filament density distribution. This
is easily solved by discretizing orientation θ.

Figure 21 can be compared to Fig. 18, which reports stability of the
isotropic homogeneous state in the system of treadmilling filaments of con-
stant length. Qualitatively, the results are very similar. In both cases, the ho-
mogeneous state is stable for small motor and treadmilling velocities. When
the direction of motor transport coincides with that of treadmilling, the in-
stability is oscillatory, whereas it is stationary if motors move towards the
shrinking filament end.

Next, we turn to results of numerical simulations. Figure 22 shows the
asymptotic state for the case of minus-end directed motor transport. It is an
aster solution very similar to that, obtained in the case of constant filament
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Figure 22: Aster solution of Eqs. (5.4), (5.18)-(5.20). Left: nucleator density.
Right: Color plot of nucleator density superimposed with vector field

∫
dûûJ ,

determining the nucleator flux. Parameters are v̄d = 0, v̄a = 2, D̄n = 0.480,
v̄n = −4.0, ν̄ = 6.5, n̄0 = 1.0, domain is square with side length 5.0.

Figure 23: Solitary wave solution of Eqs. (5.4), (5.18)-(5.20). Parameters
are: va = 6, vd = 3, Dn = 4, vn = 1, ν = 4.5, n0 = 0.01.

length. Nucleators aggregate in a peak, filaments assemble in an aster, whose
center coincides with the maximum of the pigment density.

If pigment transport is directed towards filament plus-end, oscillatory
states result. An example is shown in Fig. 23 (see supplementary movie
M5.2.1, available at http://www.uni-saarland.de/fak7/kruse/Konstantin/
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thesis_movies.html). In this simulation, the initial nucleator distribution
was taken to be homogeneous with a small rotationally invariant gaussian
perturbation in the center of the domain. The filament concentration at time
t = 0 was set to zero. Initially, a very long-lived standing wave transient sets
in. This state is qualitatively very similar to oscillatory solutions in the case
of constant filament length shown in Fig. 20. After a sufficiently long time,
however, the symmetry of the standing wave breaks spontaneously, turning
the wave into a solitary moving crescent-shaped blob.

5.3 Moment expansion

Equation (5.16) could be treated exactly since it is linear: the dynamics of
nucleators determined that of filaments through a boundary condition on
c. This, however, might not hold in many applications. For example, in a
system where the filament depolymerization speed vd depends on the nucle-
ator density n, non-linearities appear on the right-hand-side of Eq. (5.16).
Thus, an exact treatment, according to the previous section is impossible.
However, the equations can still be treated approximately by expanding the
filament length-distribution in moments. Explicitly, we define a hierarchy of
order parameters

ρi(r, t) =

∞∫
0

d` `i
∫
dû c(r, û, `, t) (5.21)

pi(r, t) =

∞∫
0

d` `i
∫
dû û c(r, û, `, t) , (5.22)

with i = 0, 1, 2, . . .. Higher moments in the filament orientation could also
be considered.

The different hierarchy levels i correspond to the density, the average
filament length, the corresponding variance and so on. If all filaments had
the same length `0, then c(r, û, `, t) = c(r, û, t)δ(`− `0), where δ denotes the
Dirac distribution. In this case, ρi = `i0ρ0 and pi = `i0p0, such that ρ0, p0

and the higher moments in û completely describe the filament distribution.
From Eq. (5.16) we obtain the equations governing the time evolution of
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density and polarization fields. They read

∂tρi = ∇2ρi − v̄a∇ · pi + i(v̄a − v̄d)ρi−1 − ν̄(v̄a − v̄d)δi0n− ρi (5.23)

∂tpi = ∇2pi −
v̄a
2

∇ρi + i(v̄a − v̄d)pi−1 − pi , (5.24)

as is derived in App. A. In this expression, δij is the Kronecker delta and
we have rendered the densities dimensionless: ρ̄i = λ2−iρ, p̄i = λ2−ip, and
n̄ = λ−2n (for simplicity, the bars have been omitted in the above equations).
The dimensionless parameters are v̄a,d = va,d/(Dνd)

1/2 and ν̄ = 2πν/νd.
Time has been scaled by νd and space by λ = (D/νd)

1/2. The dynamics of
the nucleators is again given by Eq. (5.10), but now with the current

̄act =
1

2
v̄nn

{
p2 +

1

3
∇ρ3 +

1

16
∇ · γ4

}
, (5.25)

where the tensor γ4 has components

γ4,ij =
∂p4,i

∂xj
+
∂p4,j

∂xi
+ δij∇ · p4 (5.26)

with i, j = 1, 2 and dimensionless parameter v̄n = vn/(Dνd)
1/2. As can

be seen, the hierarchy of order parameters can be truncated at any order
yielding a closed system of dynamic equations. For a consistent truncation
of the moment expansion and the coarse graining, order parameters up to
degree n + 2 have to be considered for a coarsening of degree n. Note, that
if the filament distribution is approximately exponential, its nth moment is
∼ 〈`〉nn! where 〈`〉 is mean filament length. In the moment expansion (5.25),
the nth moment enters with a prefactor, resulting from Taylor-expansion
of c, that falls of as 1/n! with increasing n. Hence, the nth term scales
as ∼ 〈`〉n , implying that expansion converges for sufficiently small mean
filament length.

5.3.1 Results

We start the analysis of Eqs. (5.10) and (5.23)-(5.26) by investigating the lin-
ear stability of the homogeneous isotropic state n = n0, ρ0 = n0ν̄ (v̄a − v̄d),
ρi = i (v̄a − v̄d) ρi−1, for i ≥ 1, and pi = 0 for i ≥ 0. Applying the same
procedure as in Sec. 5.1.2, the stability diagram is obtained, see Fig. 24. For
plus-end directed nucleator velocities, v̄n > 0, there is a critical value v̄a,c of
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the growth velocity v̄a, at which the system encounters an oscillatory insta-
bility of the homogeneous isotropic state. For minus-end directed nucleator
velocities, v̄n < 0 one can distinguish between two cases. For v̄n > v̄n,c the
system again encounters an oscillatory instability for some v̄a,c. For v̄n < v̄n,c,
however, the instability is no longer oscillatory, but stationary heterogeneous
non-isotropic states emerge.

Comparing the stability diagram of the coarse grained equations, Fig.
24, to that of the full description, Fig 21, one assesses the validity of the
coarse-grained approximation. One difference is apparent: the exact descrip-
tion does not admit oscillatory solutions in the case of minus-end directed
nucleator transport. However, in the parameter range where coarse-grained
equation exhibit a fake transition, mean filament length turns comparable
to characteristic scale of the pattern. Thus, in the corresponding parameter
range, coarse-graining breaks down. The validity of the coarse-grained ap-
proximation can be assessed with the following ”rule of thumb”. One can
express total number of filaments at a point in terms of the moments and
their derivatives in much the same way as the pigment flux. This quantity
can be calculated from solutions of coarse grained equations and is positive
by definition. In the parameter range, where the coarse grained total fila-
ment density is negative, coarse grained equations are inapplicable. This is
the case for values of plus-end elongation slightly above va,c. In parameter
range, where va ≈ vd mean filament length is very much smaller than the
scale of the pattern. In this limit, the stability boundaries converge to the line
va = vd asymptotically in the coarse-grained as well as in exact descriptions.
As we shall see below, the simulations of the coarse grained equations agree
very well with those of the full description in the fully nonlinear regime. In
conclusion, coarse graining does converge to the full description in the case
of significant scale separation, when mean filament length is well below the
characteristic length of the patterns formed.

For v̄n,c < v̄n < 0, the instability occurs for a mode of a critical wavelength
|kc| 6= 0, that is, the dynamics defines an intrinsic length scale. For nucleator
velocities outside this range, we find a long-wave instability. Consequently,
the wave-length of the bifurcating stationary solution is determined by the
system size rather than being intrinsic to the system. Therefore, the system
is likely to exhibit coarsening as will be discussed below. As in the system
where filaments had constant length, the eigenmodes are fourfold degenerate
due to the isotropy and space inversion symmetry of the dynamic equations.
The eigenmodes are plane waves with the polarization being parallel to the
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Figure 24: Stability diagram of the stationary homogeneous isotropic state of
Eqs. (5.23)-(5.26) as a function of the nucleator and the polymerization veloc-
ities, v̄n and v̄a. The full lines indicate oscillatory, the dashed line stationary
instabilities. Dots indicate back transitions. Insets illustrate emergent states
in the non-linear regime by their filament densities and polarization fields.
Parameter values are v̄d = 3, D̄n = 4, ν̄ = 2π, and n0 = 0.01.

mode’s wave-vector, the nucleator density and the density fields ρi are in
phase but shifted by a quarter period with respect to the polarization fields
pi. The polarization fields are directed away from points of maximal den-
sity. Note, that the linear stability analysis does not hint towards isotropic
heterogeneous or homogeneous anisotropic solutions.

As we have already mentioned, for v̄n < v̄n,c the homogeneous isotropic
state loses stability through a long-wave instability. Beyond the instability
coarsening is expected. This is indeed the case, see Fig. 25.

Initially many small asters may be present. Eventually, however, the
system will always form a single aster. In the course of time, these asters will
fuse and the pattern coarsens, see Fig. 25. We investigated the coarsening in
more detail by studying two interacting asters in the limiting case of vanishing
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nucleator diffusion, D̄n = 0. In that case, the equations for the stationary
state can be solved analytically by means of the Fourier-Bessel transform
if one assumes rotational symmetry of the fields and that the polarization
vector always points radially, see App. B for details. Furthermore, the
nucleator density is assumed to be given by a δ-distribution at the center of
each aster. We find solutions for all values of v̄n < 0.

Since Eqs. (5.23)-(5.26) are linear in this case, the fusion of two asters can
be studied by calculating the velocity of the δ-peaked nucleator distribution
of one aster in the filament density and polarization fields of the other aster.
The result of such a calculation is presented in Fig. 25 and shows very good
agreement with the numerical solution to the full equations.

For sufficiently fast plus-end directed nucleator transport and sufficiently
fast plus-end elongation speeds, an oscillatory instability results. The unsta-
ble eigenfunctions are plane sine-waves with wave-numbers given by k =
{(±2π/L, 0) , (0,±2π/L)}. The result of the corresponding simulation is
shown in Fig. 26. The dynamics lead to formation of a localized solitary
wave. Here the nucleators form a peak moving along the domain at some
constant speed. The distribution of filaments is similar to that of filament
concentration, see Fig. 26.
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Figure 25: Coarsening in a system of treadmilling filaments. Insets: Initial
state with many asters (left) and state at a later time (right). All asters have
fused into one. Parameter values are v̄a = 7 and v̄n = −3. Other values
are as in Fig. 24. The domain size is 30 × 30. Main panel: Distance ∆ of
two asters as a function of time. Solid curve: analytical result for D̄n = 0,
dots: numerical result for D̄n = 0.03. In both cases v̄a = 1, v̄d = 0, v̄n = −1,
n0 = 1.6.
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Figure 26: Snapshot of a crescent-shaped solitary wave solution to
Eqs. (5.23)-(5.26). Left: nucleator density, right: grey scale coded filament
density ρ0 and polarization field p0. The wave moves to the left. The po-
larization field has a singularity at the rear end, the nucleators are predom-
inantly localized at the leading edge of the filament spot. Parameter values
are v̄a = 7 and v̄n = 1. Other values are as in Fig. 24. Periodic boundaries
have been employed. The domain size is 20× 20.
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5.4 Capping proteins

Moment-expansion method that we have introduced above to treat systems
with varying distributions of filament length can be used also to describe
situations in which proteins affecting filament growth other than nucleators
are present. In the following we will give the example of proteins that stabi-
lize the minus-end by reducing the rate of subunit removal at the minus-end.
In particular, we shall assume that actively transported molecules can bind
(capp) the filament minus-end. As long as the minus-end is capped, polymer-
ization does not proceed. Depolymerization resumes upon disassociation of
the capping molecule from the minus-end. Dynein-dependent stabilization of
microtubule minus-end by this capping mechanism has been experimentally
demonstrated in [54].

The density of these proteins will be denoted s in the following. Let us
first determine the fraction of time a filament end is occupied by a stabi-
lizing protein. Let p denote the probability that this site is occupied, then
ṗ = ωas(1 − p) − ωdp, where ωa and ωd characterize the rates at which an
empty site gets occupied and at which an occupied site gets free, respec-
tively. Assuming that these rates are fast as compared to the other relevant
processes, we can assume that locally, the probability p is in steady state.
This implies p = ωas/(ωd + ωas). Now, if subunits are removed only when
the last site of the filament is not occupied by a stabilizing protein, then the
depolymerization velocity vd = δkd, where kd is the rate of subunit removal
and δ the corresponding change in filament length, is given by

vd(s) =
v0
d

1 + κs
. (5.27)

Here v0
d is the shrinkage velocity in the absence of stabilizing proteins and

κ = ωa/ωd.
For convenience, the filament distribution will in the following be charac-

terized by the density c(r, û, `, t) of minus-ends of filaments of length ` with
orientation û.

The time evolution of c is governed by

∂tc(r, û, `, t) = ∇2Dc(r, û, `, t)−∇ · vdûc(r, û, `, t)
−∂`(va − vd)c(r, û, `, t)− νdc(r, û, `, t) ,

(5.28)

which is essentially the same as Eq. (5.16). Importantly, however, the depoly-
merization velocity vd is now given by expression (5.27) and the nucleation

60



rate is constant, reflecting a constant rate of spontaneous nucleation, i.e.
c(r, û, ` = 0) = c0. The evolution in time of the density s is given by the
continuity equation ∂ts+∇ · jmot = 0, where

jmot = vns(r)

∞∫
0

d`

`∫
0

dξ

∫
ξd−1dû ûc(r− ξû, û, `) . (5.29)

describes the transport of capping molecules by motors.
Performing a moment expansion with respect to the filament length ` and

the orientation û, we arrive at a hierarchy of order parameters as in Sect. 5.3.
In dimensionless form the corresponding coarse grained dynamic equations
read

∂tρi = ∇2ρi −∇ · v̄0
d

1 + s
pi + i(v̄a −

v̄0
d

1 + s
)ρi−1−

c0(v̄a −
v̄0
d

1 + s
)δi0 − ρi

∂tpi = ∇2pi −
1

2
∇ v̄0

d

1 + s
ρi + i(v̄a −

v̄0
d

1 + s
)pi−1 − pi ,

(5.30)

see App. A. In this expression, δij is the Kronecker delta and we have ren-
dered the densities dimensionless: ρ̄i = λi−2ρ, p̄ = λi−2p, and n̄ = κn (for
simplicity, the bars have been omitted in the above equations). The dimen-
sionless parameters are v̄a = va/(Dνd)

1/2, v̄0
d = v0

d/(Dνd)
1/2 and ν̄ = 2πν/νd.

Time has been scaled by νd and space by λ = (D/νd)
1/2. The dynamics of

the nucleators is again given by Eq. (5.10), but now with the current

j̄act =
1

2
v̄ns

{
p2 −

1

3
∇ρ3 +

1

16
∇ · γ4

}
, (5.31)

where the tensor γ4 has components

γ4,ij =
∂p4,i

∂xj
+
∂p4,j

∂xi
+ δij∇ · p4 (5.32)

with i, j = 1, 2 and dimensionless parameters v̄n = vn/(Dνd)
1/2. As before

the hierarchy of order parameters can be truncated at any order yielding a
closed system of dynamic equations. For consistent truncation of the moment
expansion and the coarse graining, order parameters up to degree n+ 2 have
to be considered for a coarsening of degree n.
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Figure 27: Stability of the homogeneous isotropic state in a system of tread-
milling filaments with minus-end capping. Right: oscillatory instabilities
(solid lines), in the case of plus-end directed transport of capping proteins.
Note that homogeneous isotropic state is stable for sufficiently large value
growth at the plus-end v̄a. Parameters are: v̄0

d = 0.88, D̄n = 1.5, c̄0 = 1. The
gray cross corresponds to parameter values for simulation in Fig. 29. Left:
stationary instabilities (dashed line), for minus-end directed motor transport.
Parameters are: v̄0

d = 0.5, D̄n = 1, c̄0 = 1, n̄0 = 3. Gray cross corresponds
to parameter values for simulation in Fig. 28.

The results of linear stability analysis of Eqs. 5.30, 5.31 are shown in
Figure 27. As with regulatory protein promoted nucleation, we see long wave
stationary instabilities in the case of minus-end directed regulatory protein
current and oscillatory instabilities when assuming that the active current
is plus-end directed. The corresponding numerical simulations are shown in
Figs. 28 and 29. In the case of minus-end directed flux of regulatory proteins
coarsening asters appear. Regulatory proteins condense into a single peak,
the maximum of which is co-localized with the center of the filament aster.
Interestingly, asters are different from those seen when assuming regulatory
protein dependent filament nucleation: in the latter case filament polarization
pointed outwards, away from the middle of the aster, whereas in the former
case filament polarization is directed inwards.

Reversing the direction of active current of regulatory proteins spatially
extended traveling waves much like those seen when assuming constant fila-
ment length appear (see Fig. 29).
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Figure 28: Aster solution in a system of treadmilling filaments, regulated by
minus-end capping. Left: distribution of capping proteins. Right: profiles of
filament density ρ0 and x-component of polarization p0 versus r. Inset shows
colorplot of filament density superimposed with polarization distribution.
Parameters are: v̄0

d = 0.5, D̄n = 1, c̄0 = 1, n̄0 = 0.3, v̄n = −1, v̄a = 0.75.
Domain is square with side length 30.

Figure 29: Plane waves in a system of treadmilling filaments and capping
proteins. Left: pigment distribution. Right: colorplot of filament density,
superimposed with polarization field. Parameters are: v̄0

d = 0.88, D̄n = 1.5,
c̄0 = 1, n̄0 = 3, v̄n = 2, v̄a = 2.2. Domain is square with side length 30.
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5.5 Varying domain shape

In experiments with melanophores, it proved possible to examine the effects
of fragment geometry on the pigment centering by manufacturing fragments
of different shape [67, 68]. Motivated by this work, we shall consider descrip-
tions of filament treadmilling regulated by actively transported proteins in
varying domain geometries. We start with Eqs. (5.23), (6.7), (5.25) where
actively transported molecules served filament nucleators. For convenience,
we shall characterize the filament distribution by the density of filament
minus-ends, rather than by the density of plus-ends as was done in section
5.3. Thus, Eqs. (5.23), (6.7), (5.25) have to be modified according to

∂tρi = ∇2ρi − v̄d∇ · pi + i(v̄a − v̄d)ρi−1

−ν̄(v̄a − v̄d)δi0n− ρi

∂tpi = ∇2pi −
v̄d
2

∇ρi + i(v̄a − v̄d)pi−1 − pi .

(5.33)

The pigment flux is given by Eq. (5.31).
Introducing boundaries requires considering nucleator and filament fluxes

through the domain walls. For nucleator density, we use reflecting bound-
ary conditions, which amounts to requiring nucleator particle conservation.
Supposing that filaments, facing the domain wall with their plus-ends do not
polymerize, domain boundary serves an effective sink of the filament density,
whose strength is determined by the treadmilling velocity. For the details on
boundary conditions, used when describing dynamics in fragments of various
shape, see App. C.

Figure 30 shows asymptotic density profiles obtained by integrating the
equations on a disc-shaped domain. Much like in the case of periodic bound-
aries, filaments assemble an aster in the center of the domain whereas nucle-
ators form a peak whose maximum coincides with polarization field singular-
ity. As is seen from Fig. 30, the characteristic size of the nucleator as well as
the filament distribution are very much smaller than the domain, implying
that boundary effects are negligible in the corresponding parameter range.
Hence, the state in Fig. 30 is very similar to that in the system with periodic
boundaries, Fig. 22.

Figure 31 shows simulations on a dumbbell-shaped domain. The lower
panel of the same figure shows corresponding experimental results, where the
pigment dynamics was studied in a fragment, consisting of two larger sub-
portions, joined by a thin ”neck”. Interestingly, in the experiments as well as
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Figure 30: Aster solution on disc-shaped domain. (a) Nucleator density. (b)
Colorplot of filament density superimposed with polarization distribution.
Parameters are: v̄d = 1, v̄a = 2, D̄n = 1, v̄n = −1, ν̄ = 2π, n0 = 1.

Figure 31: Colorplots of nucleator density together with polarization distri-
butions showing dynamics in a system with actively transported nucleators
in a dumbbell-shaped domain (upper panel). The three snapshots correspond
to times t = 3, t = 9 and t = 39 (left to right). Parameters are as in Fig. 30.
Lower panel illustrates the corresponding experimental results, taken from
[11].

in the simulation one initially sees transient formation of two separate nucle-
ator aggregates. Thereafter, the two blobs merge at the ”neck”, joining the
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two larger fragment subportions. Thus, the simulation of dumbbell-shaped
fragment shows good qualitative agreement with experiment. Interestingly,
for sufficiently low values of nucleator diffusion and sufficiently small width
of the ”neck”, the two asters, initially formed in the two larger subdomains,
do not merge. Hence, one-aster state exhibits a bifurcation upon varying
either of the two control parameters.

Figure 32: Nucleator density and polarization in a system with actively trans-
ported nucleators in an annular domain. Snapshots correspond to times t = 3
(left) and t = 93 (right). Initially, pigments aggregate in a ring, concentric
with domain boundaries, in agreement with experimental data, shown in Fig.
10. Parameters are as in Fig. 30.

Figure 32 shows the dynamics in the case of an annular fragment geom-
etry. Initially, nucleators are homogeneously distributed over the domain.
Subsequently, they move away from the domain edges, accumulating in a
ring, concentric with the boundaries. Eventually nucleator ring breaks sym-
metry contracting into a single blob. Corresponding experiments are shown
in Fig. 10. Initially, a pigment ring forms, in accordance with experimental
findings. Subsequent coarsening observed in the simulation has not been ex-
perimentally confirmed. However, time-scale of coarsening is about ten times
slower than that of ring-formation. Hence, simulation results suggest that
experimental observation time would need to be increased to hour in order
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Figure 33: Density of capping molecules and polarization distribution in a
system with actively transported minus-end capping proteins in a dumbbell-
shaped domain. Snapshots correspond to times t = 3, t = 9 and t = 54 (left
to right). Parameters are: v̄0

d = 0.5, D̄n = 1, c̄0 = 1, v̄n = −1, v̄a = 0.75,
n̄0 = 1.

to observe symmetry breaking causing ring contraction.

Figure 34: Density of capping proteins and polarization in a system with
actively transported capping proteins in an annular domain. Parameters are
as in Fig. 33.

In order to compare the description where actively transported molecules
served filament nucleators to the one where they stabilized filaments by
minus-end capping, we simulated Eqs. (5.30), (5.31), (5.4) in various do-
main geometries. Figure 33 shows simulation results for the dumbbell-shaped
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domain. Initially, much like in the description with actively transported nu-
cleators, see Fig. 31, dynamics starts with formation of two separate peaks
of regulatory proteins in the two larger subportions, subsequently coarsening
into a single blob at the ”neck”. The polarization field defects are, however,
different from those shown in Fig. 31: in the vicinity of the point defect
polarization points towards the maximum of regulatory protein density.

Finally, we consider simulations on an annular domain. Initially, a ring
of capping proteins forms. Thereafter, the ring breaks up into several den-
sity maxima, co-localized with point defects. Again, the dynamics is rather
similar in both descriptions, whereas the structure of point defects appears
rather different, see Fig. 34.

5.6 Conclusions and outlook

In this section, we considered pattern formation in a system of treadmilling
filaments, regulated by actively transported proteins that either nucleate fil-
aments or that stabilize the depolymerizing minus-end. The fromer case
admitted exact treatment due to linearity of equations governing filament
dynamics. The latter case could be treated approximately by exploiting
moment expansion, provided that characteristic scale of the pattern is suf-
ficiently larger than mean filament length. Both mechanisms considered in
this section are thought to be involved in pigment centring, observed in ex-
periments with fish melanophores. Dyneins, implicated in pigment transport
in melanophores, have been shown to catalyze microtubule nucleation as well
as to inhibit deplymerization at the minus-end in assays in-vitro. Since our
descriptions account for all the processes implicated in pigment dynamics in
fish melanophores, it is of interest to compare simulations results to struc-
tures in vivo. Both mechanisms reproduce the pigment-centring effect as long
as active transport is minus-end directed. If active transport is plus-end di-
rected, simulations predict traveling waves in the case of pigment-dependent
nucleation as well as in the case of pigment-dependent minus-end capping.
In fact, as described in Ref. [69], it is possible to control the direction of
pigment transport experimentally: if melanophore fragments are stimulated
with adrenalin, pigments are transported towards the minus-end, whereas
they are transported towards the plus-end upon stimulation with caffeine.
It is thought that granules carry minus-end-directed dyneins as well as plus-
end-directed kinesins. Reversal of transport direction upon treatment with
either drug is assumed to result either from stimulation of one motor type
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or inhibition of activity of the other. Caffein stimulation triggering plus-end
motor transport does not result in emergence of traveling waves. This ob-
servation, however, does not contradict our findings - waves are only seen in
simulations with periodic boundary conditions. When integrating the equa-
tions in confined domain, waves do not survive boundary collisions. Instead,
actively transported proteins pile up along the domain rim showing no os-
cillatory dynamics. It would be of great interest to check experimentally
for existence of traveling waves in systems of treadmilling filaments for ex-
ample by reconstituting the melanophore system in a chamber whose size
is much larger than that of self-organized structures, making it possible to
disregard the boundary effects. Also, it would be interesting to test our pre-
dictions quantitatively, for example by comparing the simulated filament end
distribution to that seen in experiments, obtained by selectively decorating
microtubule plus-ends.
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6 Filament treadmilling in presence of coop-

eratively binding nucleators

In the previous section, we considered a system where proteins that nucleate
new filaments underwent directional active transport along the filaments.
However, many vital biological systems exhibiting pattern-formation due to
filament treadmilling are not thought to involve active transport of regulatory
proteins. For example, in the experiments with human neutrophils presented
in Sec. 3.5, it was shown that Hem-1, a protein that is involved in actin
nucleation was not transported by a motor. Supposedly, mechanisms similar
to those responsible for wave generation in neutrophils are implicated in wave
generation in many other motile cell types, e.g. dictyostelids. Motivated
by experimental findings of Weiner and co-workers, we turn to developing
a description of treadmilling filaments, regulated by proteins that undergo
cooperative binding to the membrane.

6.1 Exact treatment

The dynamics of actin and Hem-1 is schematically presented in Fig. 35. We
assume that Hem-1 is inactive unless bound to the membrane adjacent to the
substrate. We further suppose that binding to the membrane occurs coopera-
tively: the binding rate increases with the amount of Hem-1 already bound to
the membrane. Active Hem-1 molecules nucleate new actin filaments, which
treadmill. Finally, the presence of actin filaments on the membrane induces
detachment of Hem-1 proteins. While the general form of these processes are
based on the findings in Ref. [91], the actual processes in neutrophils might be
different. We have checked that the basic results are independent of many of
the details of the molecular interactions. For example, if the actin filaments
detach together with the Hem-1 molecules from the membrane, we find qual-
itatively the same behavior as in the case when actin filaments stay attached
to the membrane after release of Hem-1. As we will see, though, coopera-
tive binding of Hem-1 to the membrane is indispensable for wave generation.
Furthermore, we should note at this point that the process we ascribe here
to Hem-1 does in fact involve a number of other proteins, as Hem-1 leads
to actin filament nucleation only by activating the WAVE complex which
contains, in particular, the Arp2/3 complex.

As mentioned above, in our description, we focus on the dynamics on the
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Figure 35: Illustration of Hem-1/actin dynamics. (a) Binding of Hem-1
to the membrane is cooperative: membrane-bound Hem-1 promotes further
binding of Hem-1 proteins. (b) Membrane-bound Hem-1 catalyzes the nucle-
ation of actin-filaments. (c) Membrane-bound Hem-1 detaches in presence
of actin filaments. (d) Filaments on the membrane treadmill.

membrane, leading to an essentially two-dimensional system. The cytosol
above the membrane is assumed to provide a reservoir of actin monomers.
We describe the dynamics of treadmilling actin filaments on the membrane
using the framework developed in Sec. 5. The distribution of actin filaments
is given by the density c of filament plus-ends, which depends on the position
r, on the orientation û, where |û|2 = 1, and on the filament length ` as well
as on the time t. The dynamic equation for c reads

∂tc = D∆c− va∇ · ûc− ∂`(va − vd)c− νdc , (6.1)

where va is the polymerization velocity at the plus-end, vd the depolymeriza-
tion velocity at the minus-end, D an effective diffusion constant that accounts
for fluctuations in the system, and νd the filament detachment rate. We do
not consider rotational diffusion, which is negligible if the filament concen-
tration is large enough. The nucleation of new filaments is accounted for
by the boundary condition at ` = 0. We assume that the density of nuclei
is fixed by the amount of nucleators and write c(r, û, ` = 0, t) = νnb(r, t),
where nb is the density of nucleating proteins bound to the membrane. That
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is, only nucleators bound to the membrane are active. The parameter ν is a
constant.

The densities nb and nf of proteins nucleating new filaments (Hem-1)
bound and not bound to the membrane, respectively, evolve according to the
equations

∂tnf = Df∆nf − ωa(1 + ω1n
2
b)nf + ωdTtotnb (6.2)

∂tnb = Db∆nb + ωa(1 + ω1n
2
b)nf − ωdTtotnb . (6.3)

Here, ωa and ωd, respectively, denote the rates of attachment to and detach-
ment from the membrane. The term ω1n

2
b accounts for cooperativity during

binding of nucleators to the membrane. As we will show below, this term is
the lowest order term that is able to generate an instability of the homoge-
neous isotropic state. The parameters Df and Db are again effective diffusion
constants that account for fluctuations in the system. Finally, Ttot(r) denotes
the amount of actin filaments overlapping with a point r in space

Ttot =

∞∫
0

d`

`∫
0

dξ

∫
dû c(r + ξû, û, `) . (6.4)

This completes the specification of the dynamic equations.
Eq. (6.1) does not involve products of functions of ` or r. Thus, an exact

treatment as presented in Sec. 5.2 is possible, yielding equations, determing
time evolution of Ttot that read

∂tT (r, û) = D∇2T −∇ · vaûT + ωva − νdT
∂ts(r, û) = D∇2s+ νvanb − νds .

(6.5)

where T =
∫∞

0
d`
∫ `

0
dξc(r + ûξ, `), s =

∫∞
0
dξc(r + ûξ, ξ). Note that the

total number of filaments Ttot in Eq. (6.4) is obtained from T by Ttot(r) =∫
dûT (r, û).

From now on, we will use a rescaled version of the dynamic equations
containing only dimensionless quantities. To this end space is scaled by
(Df/νd)

1/2, time by ν−1
d , the density of filament centers by ν2

d/ωdDf , and the
nucleator concentrations by ν3

d(Df/νd)
1/2/vaνωdDf .

We start our investigations of the dynamic Eqs. (6.2), (6.3) and (6.5)
by assessing the linear stability of the isotropic homogeneous stationary
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Figure 36: Stability diagram of the homogeneous isotropic stationary state in
the full description. Regions of stability are indicated in light gray, regions of
instability in dark gray. Dashed lines mark oscillatory instabilities, full lines
stationary instabilities. The right panel is a magnification of the lower left
corner of the left panel. Parameters are Db = 0.01, ωa = 0.170, va = 1.4·10−3,
the mean nucleator concentration is 8.2 · 103.

state. This state is given by s0 = νva/νd, T
0 = s0va/νd , and n

(0)
f =

ωdρ
(0)
1 n

(0)
b /(ωa(1 + ω1n

(0)
b

2
)), where the constant value of n

(0)
b is a free pa-

rameter that fixes the amount of nucleators in the system. In the following,
we will assume periodic boundary conditions.

In Figure 36, we present the stability of the homogeneous isotropic sta-
tionary state as a function of the dimensionless diffusion constant D̄ =
D/Df of actin filaments and the dimensionless cooperativity parameter ω̄1 =
ω1ν

5
d/(v

2
aν

2ω2
dDf ), where for convenience the bars are omitted in the follow-

ing. For sufficiently small values of ω1, the homogeneous isotropic state is
stable, but it turns unstable when the cooperativity exceeds a critical value.
Remarkably, there is reentrant behavior: for sufficiently large values of ω1

it is again stable. Note, that we did not find instabilities when assuming a
linear dependence of the nucleator binding rate on bound nucleators instead
of a quadratic dependence as in Eqs. (6.2) and (6.3). For both marginal lines
there is a critical value of D below which the bifurcation is oscillatory, while
it is stationary for larger values.

Figure 37 presents an example of an oscillatory solution (see supplemen-
tary movie M6.1.1). At time t = 0, the free nucleator concentration was
chosen homogeneous and the profile of the bound nucleator concentration
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Figure 37: Traveling wave in a system of treadmilling filaments in presence
of nucleators that undergo cooperative binding to substrate. Parameters are
Db = 0.045, D = 0, ω1 = 3.5 · 10−6, ωa = 0.017, ωd = 0.021, va = 0.22.
The domain is square with side length 13.4. Snapshots correspond to times
t = 120 (a), t = 240 (b), t = 360 (c) and t = 480 (d). The wave fronts in
(d) propagate in the direction of the left lower corner.

was taken to be a small rotationally-invariant gaussian peak. Initially, no
filaments are present in the system. The dynamics starts with a long-lived
standing wave transient that break symmetry and turns into an array of trav-
eling fronts. Transition from standing to traveling wave is associated with
transient emergence of a spiral wave pattern.
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6.2 Coarse-grained description

Since Equation (6.1) did not involve products of functions of ` or r, it could
be treated exactly. However, in general this is not the case. For example,
if polymerization rate va in Eq. 6.1 would itself depend on the nucleator
concentration, exact treatment would not have been possible and one would
have to resort to considering the corresponding coarse-grained equations.
Also, coarse-grained equations are much easier to integrate numerically. In
this section we will analyze the corresponding coarse-grained description in
order to check the validity of the coarse-graining approximation. As in Sec.
5.3, we introduce a hierarchy of order parameters. For convenience, we will
describe filament distribution by coarse-grained density of filament mass cen-
ters rather than of plus-ends. After coarse-graining one arrives at:

∂tρi = D∆ρi −
1

2
(va + vd)∇ · pi

+(va − vd)(δi0nb + iρi−1)− νdρi (6.6)

∂tpi = D∆pi −
1

4
(va + vd)∇ρi

+i(va − vd)pi−1 − νdpi (6.7)

with

ρi (r, t) =

∞∫
0

d` `i
∫
dû c (r, û, `, t) (6.8)

pi (r, t) =

∞∫
0

d` `i
∫
dû ûc (r, û, `, t) , (6.9)

for i = 0, 1, 2 . . .. After coarse-graining, the overlap integral Ttot, Eq. (6.4),
turns into

Ttot = ρ1 +
1

48
∆ρ3 + . . . (6.10)

The stability diagram for the coarse-grained equation is presented in Fig.
38. The stability boundaries, obtained from the coarse-grained equations, are
almost identical to those of the full description. Thus, the coarse graining
approximation works well in the present parameter range.

75



10-6 10-50
1
2
3
4
5

D 
(x103)

0

0.05

0.1

2 4 6 8 10

D

ω1(x10-7)0

oscillatory

oscillatory

oscillatory

stationary
stationary

homogenous

ho
m

og
en

ou
s

ω1

Figure 38: Stability diagram of the homogeneous isotropic stationary state.
Regions of stability are indicated in light gray, regions of instability in dark
gray. Dashed lines mark oscillatory instabilities, full lines stationary insta-
bilities. The right panel is a magnification of the lower left corner of the left
panel. The cyan cross indicates parameter values used for calculating the
state in Fig. 39a, the green cross for Fig. 39b and the yellow for Fig. 39d.
States corresponding to the red and orange crosses are discussed in the text.
Parameters are as in Fig. 36.

Integrating the coarse-grained equations numerically, we find that the
stationary states consist of a regular lattice of ”asters” with minima in the
filament density that are associated with a singularity in the polarization
field, see Fig. 39a. The different asters are linked by regions of high filament
density with the polarization vector pointing along the connection between
two maxima in the filament density.

Let us now turn to the oscillatory solutions, which, in a system with
periodic boundary conditions, are traveling waves. For large mean nucleator
densities, these waves are essentially planar, see Fig. 39d. There is a zone
of nucleators at the leading edge of a front, and a zone of filaments at the
trailing edge. With decreasing amounts of nucleators in the system, the
wave fronts become unstable and they break up into a number of isolated
moving spots (see supplementary movie M6.2.1). In Figure 39b, we present
a state for low values of the total nucleator amount. The system then evolves
into an irregular arrangement of spots moving with different velocities. The
polarization field associated with a spot has a singularity that lags behind
the maxima of the filament and the nucleator densities in the direction of
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Figure 39: Examples of asymptotic solutions to the dynamic equations for
periodic boundary conditions. Red indicates high, blue low values of ρ0. The
black arrows indicate the polarization p0. (a) Stationary state for D = 0.007
and ω1 = 6 · 10−5. The structure has a square symmetry. (b) Traveling
spots for D = 0.004 and ω1 = 7 · 10−7. All spots move to the right with
different velocities. They fuse if getting too close as can be seen in the center
structure. (c), (d) Broken up planar waves for increasing amounts of Hem-1
for D = 10−4, ω1 = 3.5 · 10−6, and n(0) = 3.5 · 103 (c) and n(0) = 7.3 · 103 (d).
The direction of motion is from the upper-right to the lower-left corner. In
all cases L = 1.63.

movement. The nucleator density of such a spot has a similar form as the
filament density but is shifted into the direction of motion with respect to
the latter.

The overall structure is thus similar to the moving spot solutions for
treadmilling filaments in the presence of nucleators that are transported by
molecular motors even though there is no active directional transport of
nucleators. For higher amounts of nucleators, the spots start to arrange into
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a more regular pattern, see Fig. 39c and d, and finally turn into plane waves.
When two wave fronts move towards each other, they annihilate each other
upon collision. This is a consequence of the zone of filaments forming at
the trailing edge of a wave front. Due to the terms proportional to ωd in
Eqs. (6.2) and (6.3), this zone is essentially void of nucleators such that the
colliding fronts mutually inhibit further advancement, see Fig. 40.

Figure 40: Traveling wave in a system of treadmilling filaments in presence of
cooperatively binding nucleators. All fields are constrained to vary in the x-
direction alone, yielding a one-dimensional description. The wave propagates
in the positive x-direction. Peaks of actin (green) lag behind the peaks of
nucleators (black). At the wave rear, actin expels nucleators into the cytosol,
at the front nucleators re-bind to the membrane. Thus, the wave advances by
recycling nucleators from the rear to the front. Parameters are: D = 1 ·10−3,
Db = 1·10−2, ωa = 0.17, ω1 = 0.36·10−5, domain length is 1.64, total amount
of nucleators is 1.2 · 104.

We have investigated the asymptotic solutions also for other parameter
values. In addition to the states discussed so far, the system can self-organize
into a standing wave for parameters corresponding to the orange cross in
Fig. 38. For the red cross we find an aster where the nucleator and the
filament densities are radially symmetric and decrease from a common center.
The polarization field has a singularity at the center and points radially
outwards.

78



Careful inspection of the system’s dynamics in the oscillatory part of the
phase diagram reveals that prior to the formation of planar waves, transient
spiral waves can be observed. These are similar to transient Hem-1 spiral
waves observed in human neutrophils, see Ref. [91], movie S12.

Eventually, however, in our calculations, spirals do not persist. They
seize, because due to the periodic boundary conditions, the rotating spiral
starts to interact with itself. To further investigate the possible existence
of persistent spiral waves, we considered the dynamics of the system in a
confined domain.

6.3 Filaments in a confined domain

Consider a region in space that is limited by a boundary S. In order to confine
the filament density c and the nucleator densities nf and nb to this region, one
could supplement the dynamic equations (6.1)-(6.4) by reflecting boundary
conditions along S. In that case, the component of any currents normal
to S vanishes. These boundary conditions, however, do not translate into
boundary conditions for the fields ρi and pi in the coarse grained description,
see Eqs. (6.8) and (6.9). The reason for this is that close to a reflecting
boundary, the filament and nucleator densities will necessarily vary on small
length scales. Consequently, they are not well described by the lowest orders
in the hierarchy of order parameters ρi and pi. In Sec. 5.5 we dealt with
this problem by restricting the expansion of the nucleator flux to the first
order derivatives. More generally, however, this approach is inapplicable. In
particular, in systems with interacting particles, omitting the higher order
corrections to the coarse-grained flux results in equations whose fields do not
remain bounded at all times for bounded initial conditions, and can therefore
not serve an approximation of the full non-local description [96].

Thus, we shall account for the presence of the boundary in terms of a
potential V , which is essentially a phase field approach similar to the one
used previously in a description of the growth of stereocilia [65]. Through
the potential, the dynamics of the filaments is influenced in two ways: first
of all, the polymerization velocity va is reduced by a factor exp{−û∇V/f0},
where f0 is a characteristic force [16]. Secondly, the filaments experience a
force −∇V . At a distance d from the boundary, the potential V has the
value

V (d) = α

[
1

2
+

1

2
tanh (βd)

]
. (6.11)
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In this expression, α determines the maximum value of the potential, while β
determines the steepness in the potential rise. The value of β−1 should be of
the order of the mean filament length to allow for meaningful coarse graining.
Other functional forms of the potential, in particular, unbounded functions,
can be chosen. The potential (6.11), though, turns out to be convenient for
numerical analysis.

As, eventually, we will coarse grain the fields, the exact part at which the
force is applied to a filament does not matter. Thus we evaluate the force
on a filament by calculating the derivative of V at the position of filament
center r. The force field resulting from the potential at a point r is given by
−∇V (d), where d is given by d = minrb∈S |r− rb|. From this force field, we
obtain additional terms on the right hand sides of the coarse grained dynamic
equations (6.6) and (6.7), that read ∇(ηρi∇V ) and ∇(ηpi∇V ), respectively.
Here, η is the mobility of the filaments, which we assume to be independent
of the filament length. For simplicity, we will neglect in the following the
dependence of va on the potential. This is appropriate as long as the forces
resulting from interactions with the domain boundary, i.e., ∇V , are small
compared to the characteristic force f0.

We now present the dynamics of the actin-nucleator system in a circular
domain. For the same parameter values as in Fig. 39b, the solution is pre-
sented in Fig. 41 (see supplementary movie M6.3.1). In the asymptotic state
the circular symmetry of the system is spontaneously broken. It consists of
a pair of counter rotating spirals in the vicinity of the boundary. From this
spiral pair, wave fronts emanate that move towards the opposite boundary,
where they vanish. The traveling waves are similar to the wave fronts of
Fig. 39d.
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Figure 41: Subsequent snapshots of Hem-dynamics in a circular domain. The
domain boundary is indicated by the green line. A pair of counter-rotating
spirals forms that send out traveling waves which vanish at the opposing
end. Red indicates high, blue low values of ρ0. The black arrows indicate the
polarization p0. The four snapshots correspond to times t = 0 (a), t = T/4
(b), t = T/2 (c), and t = 3T/4 (d), where T = 4.2 is the period of the state
that is periodic in time. Parameters are as in Fig. 39d, the radius of the
domain is r = 0.6.
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6.4 Membranous boundary

The previous section introduced a description of treadmilling filaments, nu-
cleated by molecules that underwent cooperative binding to the substrate.
We have shown that such a system could self-organize into traveling waves,
reproducing the phenomena, observed in experiments on human neutrophils.
Importantly, experiments in Ref. [91] suggest that actin wave dynamics in
neutrophils serve a vital biological purpose, determing the cell shape and gen-
erating leading edge protrusion, thereby enabling cell locomotion. In general,
cell crawling as well as generation of many vital cellular organells such as e.g.
filopodia and stereocilia relies on interactions of the cytoskeleton with the cell
membrane. Devising a physical description of such phenomena requires in-
troducing a moving boundary, representing the cell membrane. This is the
subject of the present section.

We shall develop a description of membrane vesicle, propelled by tread-
milling filaments, by combining equations, introduced in the previous sec-
tion, with moving boundary conditions. Clearly, treadmilling filaments can
not propell the vesicle unless they make contact with the substrate as mo-
mentum conservation would be violated otherwise. Thus, we suppose that
filaments in the interior of the vesicle are anchored to the substrate via ad-
hesion complexes, see Fig. 42. Assuming that bonds between the adhesion
molecules and the filaments have finite life time, on sufficiently large time-
scale, interactions of filaments with adhesion complexes can be described as
effective friction with the substrate beneath the membrane, see [78].

We assume that the domain boundary is a fluid membrane. Deriving
equations of motion for vesicle surface requires specifying the forces on the
membrane. These will have the following contributions. Deformation forces
due to finite bending rigidity of the membrane can be derived from the Hel-
frich free energy

∫
κ/2H2dS, where H is the mean curvature and κ an ef-

fective bending modulus[72, 73]. The forces associated with finite surface
tension and finite external pressure follow from the corresponding membrane
energy contribution, reading τS + PV , where τ is surface tension, S is the
surface area of the vesicle, V is vesicle volume and P is external pressure.
Finally, the filaments exert forces on the membrane. These forces are equal
any opposite to the force exerted by the membrane on the filaments. Hence
total energy, associated with the membrane, is
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Figure 42: Schematic illustration of forces acting on a filaments that is in-
teracting with the boundary. The red arrow indicates the force from the
boundary due to polymerization at the barbed end facing the boundary sur-
face. The blue arrow indicates adhesion forces with the substrate, described
as effective friction, see text.

F =

∫
∂Ω

κH2/2 + τS + PV +

∫
drρ0(r)V (r) . (6.12)

Henceforth we shall be assuming that fictitious force −∇V on a filament
from the boundary is applied at the plus-end rather than at the center of
mass. Hence ρ0(r) in Eq. (6.12) is the density of filament tips rather than
that of mass centers.

Finally, we assume that the vesicle is very flat meaning that its shape is
fully determined by a one-dimensional curve Γ that traces out the vesicle rim.
Thus, in (6.12) S will denote the length of the vesicle rim, V shall be vesi-
cle surface (contact area with the substrate), H2 denotes square curvature
of the rim. The force density at the boundary is determined by functional
derivative of the total free energy with respect to the boundary δF/δΓ. Im-
portantly, this will automatically satisfy the force balance, i.e. total force on
the filaments from the boundary is equal to the total force on the bound-
ary from the filament tips (see Appendix D). We shall suppose that a point
at the vesicle edge moves with the speed v = (1/ζ)δF/δΓ where 1/ζ is ef-
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fective edge mobility. This expression amounts to neglecting hydrodynamic
interactions between different surface elements of the boundary.
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Figure 43: Phase diagram for equations, describing treadmilling filaments,
in presence of nucleators that bind the substrate cooperatively. Red circles
indicate spiral solutions. Green diamonds correspond to double spirals. Blue
squares are solitary moving vesicles. Gray diamonds are ”breathers”, i.e. so-
lutions that exhibit periodic vesicle expansion-contraction with mass center
remaining approximately stationary. Blue crosses correspond to ”vesicle col-
lapse”, when inner pressure due to filament treadmilling is small so that the
vesicle contracts into a small spot that remains stationary. Lower-case letters
next to three labels indicate parameter values that correspond to simulation
in Fig. 44. Parameters are: ωa = 8.5 · 10−3, ω1 = 64.5, D = 0, filament
mobility η = 0, P/ζ = 0.1, σ/ζ = 3.35 · 10−3, κ/ζ = 1.34 · 10−5.

The different dynamical states, exhibited by the system with moving
boundaries are summarized in phase diagram, presented in Fig. 43 and il-
lustrated in detail in Fig. 43. Note that in these simulations the volume of
the vesicle is unconstrained and is determined by e.g. the total amount of
nucleators. If vesicle size is small, nucleators concentrate, resulting in dy-
namical instability, generating traveling waves that expand the vesicle upon
encountering the membrane. Vesicle expansion causes effective dilution of nu-
cleators, abolishing wave dynamics. Stationary vesicle size is selected when
inhibition of wave-dynamics due to effective dilution precisely counterbal-
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ances the expansion.

Figure 44: The different dynamic states in the system of treadmilling fila-
ments nucleated by proteins that undergo cooperative binding to the sub-
strate with moving boundary. (a)-(c) Spiral. (d)-(f) Double spiral. (g)-(i)
”Breather”: the vesicle undergoes periodic contractions and expansions. (j)
Maximal value of bound nucleator density in the ”breather” state (g)-(i),
showing persistent periodic oscillations. (k) Density of bound nucleators in
a solitary moving vesicle. (m) Total filament density corresponding to (k).
Parameters are as in Fig. 43.
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If the total amount of nucleators as well as the filament treadmilling speed
are very low, the interior pressure due to filaments, treadmilling against the
surface of the vesicle, cannot withstand constant outer pressure P causing
the vesicle to collapse. As this would usually result in numerical instability
in our simulations, we do not discuss the asymptotic state in the correspond-
ing parameter range. Increasing either nucleator amount or treadmilling
speed spirals are obtained (see supplementary movie M6.4.1). In this case
inner pressure due to filament treadmilling suffices to prevent vesicle col-
lapse, but does not suffice to sustain persistent unidirectional motion. For
larger nucleator amounts and not too high treadmilling speeds spirals turn
into double spirals (see Fig. 44 and supplementary movie M6.4.2). Increas-
ing treadmilling speed, solitary moving states bifurcate out of double spirals,
see supplementary movie M6.4.3. Finally, low nucleator amounts and large
treadmilling speed leads to states that we called ”breathers”. These are
characterized by persistent oscillations of vesicle size with rather uniform
expansion followed by contraction (see Fig. 44 and supplementary movie
M6.4.4).

Figure 45: Fragmentation of a vesicle. Parameters are: ωa = 0.017, ω1 =
64.5, va = 0.335, D = 0, filament mobility η = 0, P = 0.1, σ = 3.35 · 10−3,
κ = 1.34 · 10−5, total nucleator amount ntot = 48.5, domain is square with
side length 13.4.

We examined behavior of the system for total nucleator amounts that
are much larger than those, used in simulations, presented in Fig. 44. Two
possible regimes could be identified. Either the vesicle fragmented into small
pieces, each setting out in solitary motion in a random direction, or the vesicle
remained intact, exhibiting oscillatory dynamics with a spiral defect at its
center. Thus, our simulation suggest that the vesicle size does not simply
increase with increasing total nucleator amount: at some point too large a
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vesicle fragments into smaller pieces, see Fig. 45 and supplementary movie
M6.4.5.
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7 Conclusions and outlook

In this thesis, we introduced a general framework for describing the dynamics
of treadmilling filaments where the rates of filament nucleation, polymeriza-
tion, and depolymerization can be regulated by other molecules. Tread-
milling is a central feature of the cytoskeletal dynamics and plays a key role
in various cell processes including generation of various cellular appendages
(e.g. stereocilia and filopodia), microtubule structures in melanophores as
well as virtually all forms of cell crawling. The results of our work indi-
cate that self-organization of treadmilling filaments is an important aspect
of cytoskeletal dynamics.

The framework is formulated in terms of mesoscopic equations, speci-
fying the dynamics of filaments and regulatory proteins. Our description
circumvents the weaknesses of the previously developed phenomenological
approaches: parameters are few and they all have straight-forward interpre-
tations in terms of molecular properties. In contrast to MD simulations,
our descriptions generically admit exhaustive exploration of the phase space
and are general. In particular, our equations can be compared to the phe-
nomenological hydrodynamic descriptions of the cytoskeleton. An interesting
subject of future research will be to explore in detail the connection between
our mesoscopic and the previously developed hydrodynamic and microscopic
descriptions.

Our mesoscopic equations, even numerically, can not be solved. In order
to be able study dynamic equations, describing the time evolution of the fila-
ment density, we introduced a number of novel methods. In order to discuss
their applicability, it is appropriate to distinguish between the following three
equation types. (I) Equations, describing filament density dynamics, that are
linear in the densities and with constant coefficients. (II) Equations, that are
linear in the filament densities and with space- or/and length-dependent pa-
rameters. (III) Equations that are nonlinear in the filament densities. Note
that the equations, describing the dynamics of the regulatory proteins that
might influence the rates of filament nucleation, polymerization and depoly-
merization, may be arbitrary.

We have shown that in equations of type (I) we can integrate out the
length dependence. Furthermore, they can be reformulated in quantities
such that the equations become pure PDEs without any integrals.

Type (II) equations do not admit exact treatment, like type (I) equa-
tions do. In order to treat type (II) equations we rewrote them in terms of
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moments of the filament length distribution and performed coarse-graining.
This technique can be applied when the system exhibits scale separation, i.e.,
when the size of the pattern is much larger than mean filament length.

The two methods cannot be applied to treat type (III) equations. Gener-
ically, type (III) equations may be re-written in terms of moments of the
filament length distribution, but equations for any one moment involves in-
finitely many other moments. Hence, a closed set of equation can, in general,
not be obtained.

Motivated mainly by experiments on fish melanophores, we applied our
framework to treadmilling filaments that are nucleated by molecules and are
actively transported along filaments. We found that filaments self-organized
into asters when active transport is directed towards the shrinking filament
minus-end (as in melanophore), whereas they formed traveling waves when
the nucleator transport is plus-end directed. The latter situation captures
the essential part of the dynamics of nucleating proteins in keratocyte, where
WASP protein that promotes actin filament nucleation, localizes to the cell’s
leading edge, where filament plus ends concentrate.

In the light of these results, it appears plausible that cytoskeletal re-
arrangements involved in e.g. cell motility are essentially rooted in self-
organization of a few cytoskeletal constituents. For example, it is likely that
cell locomotion arises due to intrinsic instability of the actin cortex, resulting
in motion in a randomly chosen direction. In the course of any symmetry
breaking, the system turns infinitely sensitive to perturbations that deter-
mine the symmetry of the bifurcating state. Thus, a chemotactic signaling
pathway might serve to select the direction of the cell motion by influencing
the course of an intrinsic spontaneous instability rather than being its cause
per se.

Returning to the case of melanophores, our treatment reproduced the
formation of stationary asters in the case of minus-end directed motor trans-
port. Moreover, since aster solutions bifurcated from a long-wave instability,
they exhibited coarsening, in agreement with experimental findings. We
further examined the effects of the domain shape on the aster formation.
It appeared that our simulations satisfactorily reproduced experimental ob-
servations. For instance, in simulations of a dumbbell-shaped domain one
could observe formation of two separate asters that eventually merged at the
”neck”, joining the two larger fragment subportions much like was seen in
experiments. Finally, we analyzed the merging of two asters, deriving an an-
alytic approximation of the dependence of the inter-aster separation on time.
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It would be interesting to check this prediction by quantitative experiments,
measuring the distance between two interacting asters as a function of time.

Motivated by findings on the locomotion of human neutrophils, we then
analyzed treadmilling filaments nucleated by molecules that undergo cooper-
ative binding with the membrane. We demonstrated that a minimal degree
of cooperativity is required in order to generate an instability of the homo-
geneous isotropic state. The corresponding equations are of type (I) and
admit exact treatment. It thus served as a test case for the applicability
of our approximations, employed for treating the type (II) equations. We
showed that stability boundaries in the coarse-grained description coincided
with exact ones. We further analyzed equations in the fully nonlinear regime,
identifying a variety of patterns, including aster arrays, traveling and stand-
ing waves, as well as transient spirals.

Our work on mesoscopic mean-field descriptions of the cytoskeleton leaves
two major open problems. Firstly, it is essential develop methods to treat
type (III) equations. Secondly, it would be desirable to extend the treatment
of type (II) equations to situations without scale-separation. Indeed, the
lengths of the cytoskeletal filaments are in many cases comparable to the
sizes of the cellular structures they constitute. Hence, their interactions are
intrinsically non-local and should therefore not be described by local theories.

An important aspect of cytoskletal dynamics is the interaction of tread-
milling filaments with a membrane. In particular, a great variety of vital cel-
lular processes, e.g. previously mentioned examples with the various cellular
appendages as well as cell locomotion, rely on interactions of the cytoskeletal
filaments with the boundary. In this case, the boundary effects may definitely
not be disregarded. Incorporation of boundary conditions into a mesoscopic
description is, however, not straightforward. We developed a method, allow-
ing to account for the boundary conditions in a coarse-grained description.
When performing coarse-graining one assumes that filament concentration
varies on spatial scales that are much larger than the mean filament length.
This assumption is not valid in the vicinity of the boundary, where concen-
tration generically has a discontinuity. Hence, we argued that accounting for
a reflecting boundary in a coarse-grained description is possible exclusively
by replacing the boundary by a fictitious force that confines the filaments
to the interior of the domain. As long as this force varies on a length-scale
that is sufficiently larger than mean filament length but is well below the
scale of the pattern, qualitative aspects of the dynamics cannot depend on
the particular choice of the fictitious force and must therefore provide a good
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approximation to the exact dynamics with a reflecting boundary.
We exploited this approach to combine our equations, describing actin

wave-dynamics in neutrophils with a membraneous moving boundary, ob-
taining a description of a vesicle, deformed and propelled by treadmilling
filaments in its interior. We found that the system self-organized into a
variety of states, including spirals and persistently oscillating ”breathers”,
whose center of mass remained approximately stationary, as well as into soli-
tary moving states. Being mesoscopic, our description involves no parame-
ters without a clear physical meaning. Furthermore, our approach suggests
solutions to some long-standing problems, associated with cell locomotion.

It turned out that all of the motion modes in our vesicle description are
seen in motile cells: spirals and ”breathers” have been seen in Dictyostelium
discoideum [6], whereas persistent unidirectional motion is typical of, e.g.,
keratocytes. Importantly, these states, all relying on the same processes,
correspond to different choices of the parameters in the same description,
rather than to different model variants.

Secondly, it is not known what determines the size of a cell. Experi-
ments indicate that the exchange of water through the membrane by means
of actvive pumps contributes to cell size regulation. However, cytoskeletal
components cannot be pumped in or out of the cell. Microtubular structures
are known to be implicated in the regulation of the cell size. Nevertheless,
these can not determine the cell size per se, presumably regulating the cell
volume by influencing the state of the actin cortex. In other words, the cell
size is actually that of the cell cortex rather than that of the water volume
in cell interior. Thus, understanding why cells are as large as they are, one
needs to understand the mechanisms, regulating the cortex size. In all ear-
lier descriptions of cell locomotion cell size was either constrained to remain
constant (an unphysical assumption of incompressible cell), or relied on some
heuristic rules that could not be interpreted in terms of some physical pro-
cesses. Our description involves no assumptions of this kind. Instead, we
hypothesize that the vesicle size might be determined by the competition of
the expansion that tends to increase the volume with the resulting nucleator
dilution, that inhibits edge protrusion

Our description suggests a possible unified approach to cell locomotion.
Up to date, the different states, exhibited by motile cells, have conventionally
been interpreted to correspond to the different variants of the cell’s trans-
duction pathways or to modifications of transduction pathway constituents.
We propose to consider cell motility apparatus as a self-organized entity, and

91



to interpret the different locomotion modes as the different dynamical states
of the corresponding dynamical system.
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A Dynamic equations for the hierarchy of or-

der parameters

In the following, we derive Eqs. (5.23)-(5.26) starting from Eqs. (5.4), (5.16),
and (5.5) describing a system of filaments with varying lengths in the presence
of nucleators. We start by introducing a hierarchy of densities defined as

Λi (r, û, t) =

∞∫
0

d` `ic(r, û, `, t) (A.1)

For filaments of orientation û, Λ0(r, û) is the density of filaments,
Λ1(r, û)/Λ0(r, û) the average filament length, and
Λ2(r, û)/Λ0(r, û) − (Λ1(r, û)/Λ0(r, û))2 the variance of the filament length
distribution at r. Analogous interpretations can be given to Λi for i > 2.
Multiplying Eq. (5.16) by `i and integrating with respect to ` from 0 to ∞
the dynamic equations for the densities Λi are obtained:

∂tΛi(r, û) =

∞∫
0

d` `iD(`)∇2c(r, û, `)− va∇ · ûΛi(r, û)

+i (va − vd) Λi−1(r, û)− (va − vd)δi0n(r)− νdΛi(r, û) .

(A.2)

Here, we have used that c(r, û, `) → 0 for ` → ∞. The integral in the first
term can in general not be expressed in terms of the densities Λi. To this
end a Taylor expansion of D(`) can be used. In this case, the time evolution
of all Λi couple to each other. However, D(`) denotes an effective diffusion
constant. Its value is dominated by active processes rather than thermal
diffusion, as active contributions – at least for sufficiently long filaments –
dominate. Therefore, we assume D(`) = const. in the following. Then,
the term can be written as D∇2Λi(r, û). The equations now close in the
moments, that is, the time evolution of Λi only depends on Λj with j ≤ i.

In the next step, we perform a moment expansion with respect to the ori-
entation and express Λi through the quantities ρi and pi defined in Eqs. (6.8)
and (6.9). Explicitly, we write

Λi =
1

2π
{ρi + 2û · pi} . (A.3)
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If needed, higher moments can be included. Multiplying Eq. (A.2) by ûk

and integrating with respect to û, the dynamic equations (6.6) and (6.7) are
obtained.

Finally, the current jact, Eq. (5.5), has to be expressed in terms of the
fields ρi and pi. To this end, we first coarse grain by Taylor expanding c with
respect to ξ in the integral. Then the integrals in Eq. (5.5) can be performed
eventually resulting in expressions (5.25) and (5.26).

B Aster solution in the limit of zero nucle-

ator diffusion

Assuming that the polarization is always radially oriented, pi = piêr, where
êr is the radial normal vector, the stationary equations for the densities ρi
and the polarization fields pi read in polar coordinates

(
1

r
∂r + ∂2

r

)
ρi − v̄a

(
1

r
+ ∂r

)
pi + i(v̄a − v̄d)ρi−1 − ν̄δi0(v̄a − v̄d)n− ρi = 0(

1

r
∂r + ∂2

r −
1

r2

)
pi −

v̄a
2
∂rρi + i(v̄a − v̄d)pi−1 − pi = 0

(B.1)
In the limit of small nucleator diffusion Dn, pigments aggregate in a two-

dimensional delta-source at the origin, i.e. n = n0δ
2. Applying the Fourier-

Bessel transform ρi(r) =
∫
ρ̃i(ω)J0(ωr)ωdω, ρi(r) =

∫
p̃i(ω)J1(ωr)ωdω and

using δ̃2 = 1/2π we obtain

−ω2ρ̃i − v̄aωp̃i + i(v̄a − v̄d)ρ̃i−1 − ρ̃i = ν̄(v̄a − v̄d)n0δi0/2π

−ω2p̃i +
v̄a
2
ωρ̃i + i(v̄a − v̄d)p̃i − p̃i = 0

(B.2)

Solving for ρ̃i and p̃i and taking inverse transform one arrives at explicit
expressions for moments of aster-solution
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ρ0 =

∞∫
0

dω
J0(ωr)ω(ω2 + 1)(v̄a − v̄d)n0

(2ω4 + 4ω2 + v̄2
aω

2 + 2)π

p0 =

∞∫
0

dω
1

2

J1(ωr)v̄aω
2(v̄a − v̄d)n0

(2ω4 + 4ω2 + v̄2
aω

2 + 2)π

(B.3)

The integrands in the expressions for higher moments contain rather lengthy
rational functions of ω and are, therefore, omitted. Any number of asters
can be superimposed due to the linearity of equations in the present limit.
Any one aster moves with the speed jact/n where j is active nucleator current
given by Eq. 5.25, and is determined by the filament density distribution
due to surrounding asters.

C Boundary conditions for describing melanophore

fragments

In the following we discuss the boundary conditions in a system of tread-
milling filaments with actively transported nucleators. One boundary condi-
tion is obtained by requiring that the nucleator flux at the boundary is zero.
Since the active part of the nucleator flux (5.25) contains the γ-term which
involves derivatives of order higher than one, one boundary condition does
not suffice to determine nucleator dynamics. However, as we have checked
in simulations with periodic boundaries, the γ-term is negligible, provided
that the mean filament length is significantly smaller than the characteris-
tic size of the simulated pattern. Restricting the current to the two lead-
ing terms in (5.25), the boundary condition for nucleator density field is
−D∇n− vn

(
1
2
p2 + 1

6
∇ρ3

)
= 0. Finally, we assume that filaments facing the

boundary with their plus-end can not polymerize. A filament that points
with its plus-end out of the boundary and has its minus-end at the boundary
is of length zero and must depolymerize in the next time instance. Hence,
the boundary acts a sink of the filament and polarization density of strengths
vd
∫
û·n̂>0

dûc ≈ vd(ρ/2 + 2n̂ · p/π) and vd
∫
û·n̂>0

dûûc ≈ vd(ρn̂/π + p/2), re-
spectively, where n̂ is the normal to the boundary, with |n̂|2 = 1. Multiplying
these expressions by `i and integrating over ` yields fluxes of moments ρi’s
and pi’s.
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D Force balance at a (moving) coarse grained

boundary

As we shall see in this section, the procedure of coarse-graining the bound-
ary, outlined in Sec. 6.3, suggests a natural way of deriving force density at
the boundary due to filaments, treadmilling against its surface. According to
assumptions of the previous section total energy of the system due to inter-
actions of filaments with external fictitious force −∇V is F =

∫
drV (r)ρ0(r).

Let us parameterize the boundary of domain Ω by a hypersurface Γ(s) where
s = [s1, s2] in the case of three-dimensional domain Ω and s = s if Ω is two-
dimensional. Taking variation of the potential with respect to the surface,

f(s) = −δF
δΓ

(D.1)

gives the force at the boundary. Importantly, this is guarantied to respect
force balance, i.e.: ∫

drρ0(r)∇V (r) = −
∫
∂Ω

dS
δF
δΓ

(D.2)

In order to see this it is most convenient to consider the case when the
curve parameterizing domain boundary is discretized (as is most relevant for
numerical implementation). Thus, we assume that the boundary of domain
Ω, confining the filaments, is piecewise linear, i.e. it is a polygon with vertices
{si} (henceforth the braces shall indicate sets).

With every vertex si we associate a portion of domain boundary consisting
of two line segments joining si with mid-points of its two adjacent edges (see
figure 46). The length of boundary portion, corresponding to vetrex si
given by ||si/2− si+1/2||+ ||si/2− si−1/2|| will be denoted si. Total energy
associated with potential V is:

F =

∫
Ω

drV (r; {si})ρ0(r) (D.3)

Note that now potential V = H[d(r; {si})] depends implicitly on {si} (the
distance from point r to domain boundary ∂Ω is determined by parameteri-
zation of the boundary). Discrete variant of (D.1) reads
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Figure 46: Schematic sketch of a two-dimensional domain parameterization
by a piecewise linear curve. {si} are vertices of domain interior (polygon Ω).
Shaded regions illustrate sets, referred to in the text.

fi = − 1

si
∂si
F({si}) (D.4)

We shall show that (D.4) implies force balance, i.e. total force on the bound-
ary from filament tips equals total force on the filaments from the boundary,
formally ∑

i

sifi = −
∫
dr∇V (r)ρ0(r) (D.5)

Let Ui[{sj}] denote the set of points r whose closest point of boundary man-
ifold ∂Ω (parameterized by positions of vertexes {sj}) is either si or some
point on one of the boundary edges adjacent to si. According to (D.4),
x-component of sifi is

lim
ds→0

∫
drρ0(r)H[d(r; {s′j})]−

∫
drρ0(r)H[d(r; {sj})]

ds
(D.6)

where s′j = sj + [ds, 0] if j = i and s′j = sj otherwise. Denote Ui[{s′i}] by U ′i ,
ρ0(r)H[d(r; {si})] by Φ and ρ0(r)H[d(r; {s′i})] by Φ′. We write
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∫
Ω

drΦ′ =

∫
⋃

j U
′
j

drΦ′ =
∑
j

∫
U ′j

drΦ′ =
∑
j

∫
U ′j∩Uj

drΦ′ +
∑
j 6=k

∫
U ′j∩Uk

drΦ′
(D.7)

Upon interchanging the roles of primed and unprimed variables in (D.7) and
subtracting the result from (D.7)

∑
j

∫
Uj∩U ′j

dr [Φ′ − Φ] +
∑
j 6=k

∫
U ′j∩Uk

dr [Φ′ − Φ] =

∑
j

∫
Uj

dr [Φ′ − Φ]−
∑
j

∫
Uj\(Uj∩U ′j)

dr [Φ′ − Φ] +
∑
j 6=k

∫
U ′j∩Uk

dr [Φ′ − Φ]
(D.8)

Apparently, the areas of integration domains of second and third integral
terms of (D.8) scale as ds, and, due to continuity of Φ, so does Φ′ − Φ.
Consequently, re-inserting the definition of Φ into (D.8) we find∑

j

sjfj =
∑
j

∫
Uj

dr∂si
V (r, {sk})ρ0(r) (D.9)

We shall decompose Uj as a (disjoint) union of two sets Tj and Uj \ Tj that
contain points whose closest point on domain boundary ∂Ω is sj and those
whose closest point in ∂Ω lies on one of the edges, adjacent to sj respectively.
(D.9) reads:

∑
j

sjfj =
∑
j

∫
Tj

dr∂si
V (r, {sk})ρ0(r) +

∑
j

∫
Uj\Tj

dr∂si
V (r, {sk})ρ0(r)

(D.10)
But in Tj (according to its definition) V (r, {sk}) = V (||r − sj||), and hence
the first term in the right hand side of (D.10) reduces to

∑
i

∫
Ti
dr∂si

V (||r−
si||)ρ0(r) = −

∑
i

∫
Ti
dr∇rV (||r − si||)ρ0(r). The second term on the right

hand side of (D.10) simplifies to∑
i

∫
Ui\Ti

drρ0 (r)
[
∂si

+ ∂si′

]
V (r, {sk}) (D.11)
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where si and si′ are the vertices spanning to edge, containing the closest
point to r in ∂Ω. Somewhat lengthy but straightforward explicit calculation
shows that

[
∂si

+ ∂si′

]
V (r) = −∇rV (r) which together with (D.9), (D.10)

and (D.11) gives

∑
i

sifi = −
∑
i

∫
Ti

drρ0 (r)∇V (r)−
∑
i

∫
Ui\Ti

drρ0 (r)∇V (r) =

−
∑
i

∫
Ui

drρ0 (r)∇V (r) = −
∫
drρ0 (r)∇V (r)

(D.12)

i.e. force balance (D.5) holds.
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E Integrating the membrane dynamics

In this section we describe the algorithm that we used to numerically inte-
grate the dynamics of the moving boundary, Sec. 6.4. To this end we shall
need explicit expressions for force density at the boundary due to (i) bending
and stretching of the membrane, (ii) external pressure, and (iii) boundary-
filament interactions as well as a couple of useful subroutines.

E.1 Force density at the boundary

We start by noting note that total force density at the boundary comprises
two contributions: one associated with the fictitious potential that captures
membrane-filament interactions Ff and the one due to membrane deforma-
tions Fh. The latter comprises bending energy, surface tension, and external
pressure:

Fh = pV + τS + κ

∫
(H2/2)dS (E.1)

Figure 47: Schematic explanation of
the notation in the text.

Here, p is pressure, V is vesicle
volume, τ is membrane surface ten-
sion, κ is bending modulus andH2/2
is mean square curvature of the
membrane. The boundary Γ is as-
sumed to enclose a simply-connected
domain, whose boundary is approxi-
mated by a polygon with vertices si.
The index i increases in the counter-
clockwise direction. Than, the dis-
cretized force density at vertex i is
determined by

fi =
δF
δΓ

1

si

∂ (Ff + Fh)
∂si

(E.2)

For later convenience, we shall introduce the following quantities:

vi+1 = ‖si+1 − si‖ =

√(
sxi+1 − sxi

)2
+
(
syi+1 − s

y
i

)2

vi−1 = ‖si − si−1‖ =

√(
sxi − sxi−1

)2
+
(
syi − s

y
i−1

)2

si =
vi+1 + vi−1

2

(E.3)
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Here, vi±1 are the lengths of the edges adjacent to vertex i, whereas si is
the length of the boundary element, corresponding to the respective vertex,
which defined as half of the sum of lengths of the adjacent edges, see Fig.
47. Discretized expressions for the three contributions to the membrane free
energy Fh in (E.1) are

V ' 1

2

(
sxi+1 + sxi

2

)(
syi+1 − s

y
i

)
+

1

2

(
syi+1 + syi

2

)(
sxi − sxi−1

)
(E.4)

S '
∑
i

si (E.5)

H2 '

1

si−1

[{
sxi − sxi−1

vi−1

−
sxi−1 − sxi−2

vi−2

}2

+

{
syi − s

y
i−1

vi−1

−
syi−1 − s

y
i−2

vi−2

}2
]

+

1

si

[{
sxi+1 − sxi
vi+1

−
sxi − sxi−1

vi−1

}2

+

{
syi+1 − s

y
i

vi+1

−
syi − s

y
i−1

vi−1

}2
]

+

1

si+1

[{
sxi+2 − sxi+1

vi+2

−
sxi+1 − sxi
vi+1

}2

+

{
syi+2 − s

y
i+1

vi+2

−
syi+1 − s

y
i

vi+1

}2
]
≡

1

si−1

gi−1 +
1

si
gi +

1

si+1

gi+1

(E.6)

Expression (E.5) is obvious. Eq. (E.6) is the discrete approximation of the
polygon curvature that follows immediately from curvature definition

H2 =

∥∥∥∥∥dT̂ds
∥∥∥∥∥

2

, (E.7)

where T̂(s) is unit vector, tangential to the curve, parameterized by the
length along the curve s.

Equation (E.4) gives polygon area as a function of coordinates of its
vertices. To derive Eq. (E.4) note that∫

dn̂ (xx̂ + yŷ) =

∫
dS∇ · (xx̂+ yŷ) = 2V (E.8)
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according to Gauss theorem. The line integral on the left-hand side of (E.8)
may be approximated as∑

i

(si+1 − si)
⊥ ·
(

si+1 + si
2

)
(E.9)

where the second factor approximates the vector in the integrand in the
left hand side of (E.8) by its value at the middle of the edge between the
vertices si and si+1. In the first factor s⊥ denotes the vector, orthogonal to
s. Equation (E.4) is (E.9), explicitly re-written in terms of the Cartesian
coordinates of the polygon vertices.
Total discretized force density (not involving filament-boundary interactions)
fi at vertex i is determined by

sifi = p
∂V

∂si
+ τ

∂S

∂si
+
κ

2

∂
∫
H2dS

∂si
(E.10)

Left is to specify the expression for the gradients in (E.10) in terms of coor-
dinates of the vertices si. To this end we will use the following derivatives:

∂vi±2

∂sx,yi
= 0

∂vi+1

∂sx,yi
= −

sx,yi+1 − s
x,y
i

vi+1

∂vi−1

∂sx,yi
=
sx,yi − s

x,y
i−1

vi−1

∂si
∂sx,yi

=
1

2

{
sx,yi − s

x,y
i+1

vi+1

+
sy,xi − s

y,x
i−1

vi−1

} (E.11)

Force density contribution due to bending is determined from ∂
∫
H2dS/∂si:

∂sx,y
i

∫
H2dS =

i+1∑
j=i−1

−s−2
j

∂sj
∂sx,yj

gx,yj +
1

sj
∂gj/∂s

x,y
i . (E.12)
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Explicitly

∂gi/∂s
x,y
i = 2

{
sx,yi+1 − s

x,y
i

vi+1

−
sx,yi − s

x,y
i−1

vi−1

}
×(

−vi+1 − (sx,yi+1 − s
x,y
i )∂vi+1

∂sx,y
i

v2
i+1

−
vi−1 − (sx,yi − s

x,y
i−1)∂vi−1

∂sx,y
i

v2
i−1

)

∂gi+1/∂s
x,y
i = 2

{
sx,yi+2 − s
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The force density contribution due to stretching is determined from ∂S/∂si:

∂sx,y
i
S =

{
sx,yi+1 − s

x,y
i

vi+1

+
sx,yi − s

x,y
i−1

vi−1

}
(E.14)

Finally, the contribution due to expansion against the external pressure is
determined from ∂V/∂si:

∂sx
i
V =

1

2

(
syi+1 − s

y
i−1

)
∂sy

i
V =

1

2

(
sxi−1 − sxi+1

)
(E.15)

In summary, the ”passive contribution” to force density at a vertex as a
function of vertex coordinates is explicitly given by (E.10)-(E.15).

Now consider the force contribution due to filaments treadmilling against
the boundary surface. We assume that the density of the filament tips ρ
(as well as all other relevant concentrations) is specified on a 2-dimensional
grid with vertices, indexed by (j, k), having cartesian coordinates rj,k =
(j∆x, k∆y). In the simulations, we used the same lattice spacing for both,
x and y, coordinates, i.e. ∆x = ∆y = ∆. The discrete approximation of
the total energy that corresponds to the fictitious potential, confining the
filaments is

Ff =
∑
j,k

ρjkH (d(rj,k)) , (E.16)

where d(ri,j) is the signed distance from rj,k to the boundary (henceforth
denoted by Γ), H is a sigmoidal function, parameterizing the potential step
at the boundary (see App. D), ρj,k is the discretized density of the filament
tips at d(ri,j).
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Figure 48: Illustration of the two pos-
sible expressions for the distance to the
boundary, see text.

We shall now derive the con-
tribution to force density due to
treadmilling filaments, given by
s−1
i ∂δFf/∂si. As has already been

mentioned in Appendix D, the set U
of grid points rj,k may be subdivided
into two sets, see Fig. 48. One set,
T , contains the points whose closest
point at the boundary is one of the
vertices. Its complement, U \T , con-
tains the points, whose closest point
on the boundary is on one of the
edges. Let us introduce the following notation. Ui shall denote the set
of points {rj,k} whose closest point on the boundary Γ is on one of the two
edges, adjacent to vertex i (possibly, the vertex itself). Ti are points whose
closest point is vertex i. For ri,j ∈ Ti the distance to Γ is d(ri,j) = ‖rj,k − si‖.
In this case

∇si
d(rj,k) = (si − rj,k) /d(rj,k) (E.17)

For rj,k ∈ Ui \ Ti the distance to Γ is the length of the line, perpendicular to
one of the edges, adjacent to vertex i, through rj,k. This equals the scalar
product of rj,k − si with a unit vector, perpendicular to one of the edges,
adjacent to si. Explicitly, the signed distance from Γ to si is

d(rj,k) =
{(
rxj,k − sxi

) (
syi+1 − s

y
i

)
+
(
ryj,k − s

y
i

) (
sxi − sxi+1

)} 1

vi+1

≡ hi+1/vi+1

(E.18)
if the closest point is on the edge, spanned by the vertices i and i + 1, see
Fig. 48. In this case
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(E.19)

If the closest edge is spanned by the vertices i and i− 1, than

d(rj,k) =
{(
rxj,k − sxi

) (
syi − s

y
i−1

)
+
(
ryj,k − s

y
i

) (
sxi−1 − sxi

)} 1

vi+1

≡ hi−1/vi−1 ,

(E.20)
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see Fig. 48. In this case
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(E.21)

The components of force density fi at vertex i, due to treadmilling filaments
is determined by ∇si

Ff :

sif
x,y
i = ∂sx,y

i
Ff =

∑
rj,k∈Ui

ρj,k∂sx,y
i
d(rj,k) =

∑
rj,k∈Ti

ρj,k∂sx,y
i
d(rj,k)+∑

rj,k∈Ui\Ti

ρj,k∂sx
i
d(rj,k)

(E.22)

Equation (E.22), together with Eqs. (E.17),(E.19), and (E.21) gives the force
density due to treadmilling filaments at each vertex in terms of filament plus
end density and the coordinates of the boundary vertices.

E.2 Three subroutines

Before giving the algorithm for integrating time-evolution of the moving
boundaries, we shall describe three important subroutines it comprises.

E.2.1 Subroutine closest distance

Thus far we have seen that in order to evaluate the force density at the
boundary one needs to know the signed distances d(rj,k) from every point of
the grid rj,k to the boundary Γ. The subroutine closest distance evaluates
the closest distance transform, i.e. the distance from grid points rj,k to the
polygon, parameterized by the vertices si. A ”brute force” approach would
involve looping through all boundary points for every grid point. A much
more efficient algorithm (used in all simulations) is described in Ref. [55].

E.2.2 Subroutine remesh

In the course of the time-evolution of the coordinates of the boundary ver-
tices {si}, the distances between two subsequent vertices may change. In-
deed, there is no energy penalty, associated with the merging of vertices,
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since the energy of the membrane can not possibly depend on the choice of
its parameterization. However, numerical integration of boundary dynamics
turns unstable if adjacent vertices come too close. This problem may be
overcome by remeshing the boundary in every time step. That is, one can
determine the total length of the boundary L (sum of the edge lengths) and
move edge i to the point on the boundary, whose distance from vertex 1,
measured along the boundary, is iL/N (N being the number of boundary
points). This remeshing procedure, however, systematically decreases the
area of convex polygons. To avoid this artificial decrease in the area one can
scale the polygon slightly upon remeshing so as to keep its area unchanged.
Subroutine remesh redistributes the vertices along the length of the bound-
ary so as to make any two subsequent vetrices equidistant and scales the
polygon slightly, to keep the volume.

E.2.3 Subroutine shift

If the center of mass of the polygon (”boundary interior”) drifts, the polygon
might eventually start to cross the boundary of the grid, on which the density
of filaments (and those of other molecule types) is defined. In principle, this
is not a problem since boundary conditions in our simulation are invariably
periodic. However, implementing such a situation might be rather tedious.
A simple way around this difficulty is to resort to the coordinate frame,
co-moving with the center of mass of the polygon. In practice, one simply
shifts the vesicle to the center of the integration domain every now and then.
However, as doing so, the length of these shifts can not be made a multiple
of grid spacing ∆, the shifts will lead to numerical diffusion, contributing to
numerical error.

Here is a way to shift the grid, avoiding numerical diffusion. Suppose the
length of the domain is L = N∆. Suppose the mass center of the vesicle has
just advanced more than m grid points in the positive x-direction. Instead
of shifting the vesicle, one can shift the grid, see Fig. 49. This is done by
increasing the x-coordinates of grid points (j, k) by m∆, at the same time
changing the value of density ρj,k at the corresponding grid point to ρj+m,k.
If j + m > N for some j, the density value at the corresponding point is
set to ρj+m−N+1 (since the domain is periodic). In this way, the length of
domain shift (= m∆) is necessarily a multiple of ∆, and does not contribute
to numerical diffusion. Shifting the grid by m lattice spacings in this way is
implemented in the subroutine shift.
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Figure 49: Illustration of the shift subroutine. If the vesicle (gray polygon)
shifts too far to the right, the leftmost grid points are concatenated at the
right domain edge. Black circles are the grid points. Smooth full lines are
the level curves of the filament density distribution.

E.3 The algorithm

We are now in position give the algorithm for for integrating the dynamics
of the moving boundary.

for i from 0 to ∞ // loop time steps

Call closest distance to compute d(ri,j) at every grid point ri,j

Use the result to compute the potential as H[d(ri,j)]

Compute the force density at the boundary due to filaments from
ρi,j, vertex coordinates {si} from the previous iteration as well as
d(ri,j) from closest distance

Compute the force dencity contributions, not involving filament density
from vertex coordinates {si} from the previous iteration

Add the two force dencity contribution, to obtain the total force
density fi

Update coordinates of the vertices si to si + dt fi/ζ, ζ is edge mobility
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Call remesh

If mass-center shifted more than m grid points away from the center
of the current grid, update the grid by calling shift

Update all densities, according to the finite difference scheme

endfor
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