
Exploring Rich Evidence for Maximum Entropy-based

Question Answering

Dissertation

zur Erlangung des Grades

der Doktorin der Ingenieurwissenschaften

der Naturwissenschaftlich-Technischen Fakultaet II

- Physik und Mechatronik -

der Universitaet des Saarlandes

von

Dan Shen

Saarbruecken

2008

Tag des Kolloquiums: 05.12.2008

Dekanin/Dekan: Univ.-Prof. Dr. rer. nat. C. Becher

Mitglieder des
Pruefungsausschusses: Univ.-Prof. Dr.-Ing. C. Xu

Univ.-Prof. Dr. D. Klakow
Univ.-Prof. Dr. M. Crocker
Dr.-Ing. O. Farle

Abstract

Exploring Rich Evidence for Maximum Entropy-based Question Answering

Dan Shen

Open domain automated Question Answering (QA) aims to automatically answer

users’ questions in spoken language. I propose a maximum entropy-based ranking model

which effectively integrates various features, including orthographic, lexical, surface pat-

tern, syntactic and semantic features for the answer extraction.

To effectively capture syntactic evidence, I present two methods: dependency

relation pattern methods and dependency relation path correlation method. Both methods

overcome the problems arising from the divergences of lexical representations between

question and answer sentences. I experimentally demonstrate that both methods greatly

outperform the state-of-the-art syntactic answer extraction methods on TREC datasets.

To capture semantic evidence, I propose an automatic method to incorporate

FrameNet-style semantic role information. The graph-theoretic framework goes some

way towards addressing coverage problems related with FrameNet and formulates the

similarity measure of semantic structures as a graph matching problem. Experimental

results show that the FrameNet-based semantic features may further boost the perfor-

mance on the answer extraction module.

Furthermore, I propose a maximum entropy-based ranking model to incorporate

all captured information. As a result, the model using the optimal feature combination

achieves top-ranked performance among all of the participants world-wide in the most

recent TREC evaluation.

Abstract

Forschung vom reichem Abweis fuer Maximal Entropie-basisbezogene Frage-Antwort

Dan Shen

Domaenen-unabhaengige automatische Frage-Antwort (QA) is zur automatische

Antwort auf die Fragen der Benutzer in muendliche Sprache. Ich stelle eine maximal

Entropie-basisbezogen Ranking Modul auf, das tatsaechlich integriert verschiedene Fea-

tures, inkl. orthographisches, lexikalisches, Oberflaeche Muster, syntaktisches und se-

mantisches Features fuer die Antwort Extraktion.

Um eine tatsaechliche Erfassung der syntaktische Beweise zu erhalten, ich reprae-

sentiere zwei Methoden: Abhaengigkeit Beziehung Muster und Abhaengigheit Beziehung

Pfad Zusammenhang. Ich demonstriere versuchsweise, dass die beide Methoden die

modernste syntaktische Antwort Extraktion Methoden on TREC Datensatz uebertrifft.

Um die semantische Beweise zu erfassen, ich stelle eine automatische Methode

auf, dadurch wird semantische Rolle Information in FrameNet-Art inkorporiert. Das ex-

perimentell Ergebnis dass die FrameNet-basisbezogene semantische Features die Leis-

tung on Antwort Extraktion Modul.

Darueber hinaus stelle ich einen maximal Entropie-basisbezogenen Ranking Modul,

um alle erfasste Information zu inkorporieren. Als Ergebnis, der Modul, der die opti-

male Feature Kombination benutzt, erreicht top-ranked Leistung unter alle Teilnehmer

weltweit in letzte TREC Bewertung.

Contents

List of Figures v

List of Tables vii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Methods . 4

1.3 Contributions . 6

1.4 Guide to The Thesis . 7

Chapter 2 Background 9

2.1 Question Answering at TREC . 9

2.1.1 Text Retrieval . 9

2.1.2 Question Answering Track . 11

2.2 Approaches to Question Answering 24

2.2.1 Inference-based Approaches 24

2.2.2 Statistical-based Approaches 29

2.2.3 Pattern-based Approaches . 32

2.2.4 Machine Translation-based Approaches 35

2.2.5 Web-based Approaches . 37

2.2.6 Paraphrasing-based Approaches 40

i

2.2.7 Knowledge-based Approaches 43

Chapter 3 Architecture of the Question Answer System 45

3.1 Question Processing Module . 47

3.1.1 Question Preprocessing . 47

3.1.2 Expected Answer Type Identification 48

3.1.3 Key Phrase Extraction and Extension 49

3.1.4 Surface Pattern Matching . 51

3.1.5 Syntactic and Semantic Structure Generation 57

3.2 Document Retrieval Module . 57

3.3 Sentence Retrieval Module . 58

3.4 Sentence Annotation Module . 59

3.5 Answer Extraction Module . 62

3.5.1 Question Phrase Mapping . 63

3.5.2 Answer Candidate Ranking 65

3.6 Answer Validation Module . 66

3.6.1 Knowledge-based Validation 66

3.6.2 Web-based Validation . 68

Chapter 4 Syntactic Evidence for Answer Extraction 72

4.1 Motivation . 72

4.2 Related Work . 73

4.3 Dependency Relation Pattern Method 76

4.3.1 Dependency Relation Pattern Extraction 76

4.3.2 Dependency Relation Pattern Scoring 78

4.3.3 Dependency Relation Pattern Matching 80

4.4 Dependency Relation Path Correlation Method 82

4.4.1 Dependency Relation Path Extraction 83

ii

4.4.2 Dependency Relation Path Correlation 84

4.4.3 Individual Relation Correlation Estimation 89

Chapter 5 Semantic Evidence for Answer Extraction 91

5.1 Motivation . 91

5.2 Related Work . 93

5.3 Semantic Role Method . 95

5.3.1 Problem Formulation . 95

5.3.2 Semantic Structure Generation 96

5.3.3 Semantic Structure Matching 105

Chapter 6 Maximum Entropy-based Answer Extraction Model 107

6.1 Maximum Entropy Model . 107

6.1.1 Maximum Entropy Principle 109

6.1.2 Representing Constraints . 110

6.1.3 Parameter Estimation . 112

6.1.4 Gaussian Prior Smoothing . 113

6.2 Answer Extraction Model . 114

6.2.1 Answer Candidate Classification 114

6.2.2 Answer Candidate Ranking 115

6.3 Features . 117

Chapter 7 Evaluation 121

7.1 Experiment Setting . 121

7.2 Performance of Document and Sentence Retrieval 124

7.3 Syntactic Methods . 125

7.3.1 Overall Performance . 125

7.3.2 Coverage and performance of dependency relation patterns . . . 132

7.4 Semantic Role Method . 134

iii

7.4.1 FrameNet . 134

7.4.2 Baseline . 136

7.4.3 FrameNet Coverage . 137

7.4.4 Performance . 139

7.5 Final Performance of Alyssa QA System 142

Chapter 8 Conclusion 144

8.1 Methods . 144

8.2 Results . 145

8.3 Future Work . 147

iv

List of Figures

2.1 Architecture of the COGEX logic prover 25

2.2 Three-Layered Logical Form Transformation 27

2.3 Example of the event constructed from the question ”What Spanish ex-

plorer discovered the Mississippi River?” 41

3.1 Architecture of the Alyssa Question Answering System 46

3.2 Expected Answer Type Taxonomy . 48

3.3 An example of question word expansion 52

3.4 Example of question patterns for ”SYNONYM” class. 54

3.5 Question classes and examples . 55

3.6 Example of answer patterns for ”SYNONYM” class. 56

3.7 Example of named entity recognition, chunking and parsing results of a

raw sentence. 61

4.1 Example of dependency relation sequences. The directed paths in dot

line are the dependency relation sequences from the answer candidate

node ”211,456 miles” to the question key word nodes ”the moon” and

”Earth” . 77

4.2 An example of the string kernel measure for the relation sequences ”pcomp-

n U mod U obj U” and ”pcomp-n U mod U i D” 82

v

4.3 Dependency relation paths for a sample question and sentence. EAP

indicates expected answer position; AC indicates answer candidate. . . . 84

4.4 Paired dependency relation paths for a sample question and sentence.

EAP indicates expected answer position; AC indicates answer candidate. 85

4.5 A visualized alignment path between two relation sequences R1 =<

r11, ..., r1n >, (n = 1, ..., N) and R2 =< r21, ..., r2m >, (m = 1, ...,M)

in the dynamic time warping algorithm 86

4.6 An example of correlation measure between two relation sequences R1

and R2 using the Dynamic Time Warping Algorithm 88

5.1 Architecture of Semantic Role Method 95

5.2 Sample original bipartite graph (a) and its subgraph with edge covers (b).

In each graph, the left partition represents frame elements and the right

partition semantic roles. 99

5.3 Semantic structures induced by our model for an example of question

and answer sentence . 102

5.4 Labeled Dependency Relation Paths for the predicate ”discover” in FrameNet103

5.5 Weights of Individual Dependency Relations for the predicate ”discover”

in FrameNet . 103

5.6 Labeled Dependency Relation Paths for the predicate ”discovery” in

FrameNet . 104

5.7 Weights of Individual Dependency Relations for the predicate ”discov-

ery” in FrameNet . 104

6.1 Examples of question phrase types . 119

7.1 Distribution of numbers of predicates and annotated sentences; each sub-

pie lists the number of predicates (above) with their corresponding num-

ber of annotated sentences (below) . 135

vi

List of Tables

2.1 Task definition of TREC QA Track . 11

4.1 Examples of Dependency Relation Patterns 79

4.2 Examples of high-correlated dependency relations and their correlation

score . 89

6.1 Comparison between classification model and ranking model. Q is the

number of questions; N is the number of answer candidates for a ques-

tion; M is the number of feature functions. 116

6.2 Surface Features . 118

7.1 Statistics of TREC questions . 123

7.2 Perfomance of document retrieval on TREC04-07 questions: Number of

questions of which the N top ranked documents contain proper answers;

numbers in parentheses are accuracy. 125

7.3 Perfomance of sentence retrieval on TREC04-07 questions: Number of

questions of which the M top ranked sentences contain proper answers;

numbers in parentheses are accuracy. 126

7.4 Performance of syntactic methods on GSSet 127

7.5 Performance of syntactic methods on GSSRSet 128

7.6 Performance of syntactic methods on SRSet 129

vii

7.7 Coverage of question and answer pattern matching on SRSet 132

7.8 Performance of dependency relation pattern matching methods on SRSet 133

7.9 Number of questions which cannot be answered using a FrameNet style

semantic analysis; numbers in parentheses are percentages of Total (NoFrame:

frames or predicates are missing; NoAnnot: annotated sentences are

missing, NoMatch: questions and candidate answers evoke different frames.139

7.10 Performance of semantic methods on subset of SRSet (see the Rest col-

umn in Table 7.9). 140

7.11 Performance of the semantic methods on SRSet (see Total column in Ta-

ble 7.9). 141

7.12 Overall Performance of the Alyssa QA system on SRSet 142

viii

Acknowledgments

This thesis could not have been completed without the support, direction and love

of many people. I appreciate all the contributions they have made for the thesis.

First of all, I would like to thank my supervisor, Prof. Dietrich Klakow for his

support and patience during the past four years. He has been the best friend and advisor

a student could hope for. His insight and inspiration for novel and practical research

formed the foundation of this dissertation. He supervised me figure out the big picture

in my research and continuously advise me the detailed formulation of my work. I en-

joyed all the motivating discussions to orientate my research towards automatic question

answering area. Without his guidance, support, care, and patience, I could not have been

where I am today.

I would also like to express my deepest appreciation to my co-supervisor, Dr.

Geert-Jan Kruijff, for his endless support, continuous encouragement and valuable sug-

gestions on this research.

I have been blessed to have Dr. Mirella Lapata as my supervisor during the vis-

iting in Edinburgh University. She is the best female researcher I have ever met. I am

greatly indebted to her for providing me such precious opportunity of working with her.

She provided me lots of great ideas and a stimulating environment during that winter. I

enjoyed every motivating and efficient discussion on semantic role labeling and question

answering problems. What I very much owe to her are not only the academic training she

gave me, but also the way she taught me to deal with various challenges on my career

path, especially for a female researcher. She selflessly shared with me her invaluable

experience in both work and life, which will accompany and motivate me for the whole

life.

I am thankful to my thesis reviewer: Prof. Hans Uszkoreit for his critical reading

of the thesis and constructive comments that enabled me to clarify the problems more

deeply and more extensively.

ix

Throughout my doctoral study, I benefited from numerous discussions with my

friends and colleagues in the Spoken Language Systems (LSV) Lab. They shared their

wisdom and views from the perspective of their fields of expertise. I am grateful to all

of them for their time and assistance: Andreas Merkel, Michael Weigand, Jochen L.

Leidner, Stefan Kazalski, Saeedeh Momtazi, Fang Xu, Irene Cramer and Barbara Rauch.

Andreas Merkel and Michael Weigand are the colleagues I most closely worked with dur-

ing the past years. We put continuous efforts together on building the Alyssa QA system.

It would have been impossible to obtain such achievement without them. I am especially

impressed by those tough days when we struggled for system bugs and caught TREC

deadline. It has been great pleasure working in such a warm team. Furthermore, I also

wish to thank Diana Schreyer for her always kind help in coordinating all administrative

stuffs in LSV, Dietmar Kuhn for his always in-time help in solving all computer-related

problems for me.

The years at Saarland would not have been nearly as much fun without the other

current and former members of the International Post-Graduate College. Special thanks

go to Prof. Matthew Crocker, Prof. Manfred Pinkal, Prof. William Barry and Dr. Frank

Keller for their insightful feedback on my work. They inspired me to think of my re-

search more deeply and extensively. I am also grateful to Dr. Sebastian Pado for running

Shalmaneser system and helping me complete one of my experiments. Moreover, I owe

my most direct thanks to my longtime friends Dr. Yi Zhang and Zhiping Zheng. They

helped me on things too many to mention. I am also grateful to Claudia Verburg for

her always in-time help in making my life easier in Germany. They made these four

years a wonderful experience in my whole life. Last, I gratefully acknowledge the finan-

cial support of The Deutsche Forschungsgemeinschaft (DFG) in the form of a research

scholarship. I would also like to express my gratitude to the Department of Computa-

tional Linguistics which provided me an excellent environment and facilities to study

and research.

x

Special gratitude goes to my husband Feng Ni for his unconditional love, for

putting up with the countless hours I spent on my thesis work, and for being there when

I needed it. Frankly speaking, it is quite tough to be the spouse of a graduate student, but

he went through the last four years without any complaints.

Finally, I owe my foremost thanks to my parents, Peiyu Shen and Lanyun Fang,

for their immeasurable love and support which enabled me to succeed. No words in any

natural language would be sufficient to thank my parents for all they have done for me.

This thesis is dedicated to them. Similarly, I would like to thank my entire family from

my parents-in-law to my sister-in-law and brother-in-law for their love, encouragement

and support in my Ph.D. journey.

xi

To my beloved husband, Feng Ni.

To my parents, Pei-Yu Shen and Lan-Yun Fang.

xii

1

Chapter 1

Introduction

1.1 Motivation

Automated open-domain Question Answering (QA) represents an advanced technology

of Natural Language Processing (NLP), a branch of both artificial intelligence and infor-

mation retrieval. It aims to automatically answer users’ questions in spoken language.

Question answering is primarily deliberated as an improvement from document

retrieval to information retrieval. It is motivated by the belief of users’ demands on a

better tool for document retrieval practice. Firstly, users want to reduce time and effort

in formulating effective queries. Secondly users prefer getting answer snippets to their

questions directly rather than finding answers by reading all relevant documents. QA

technology aims to significantly save users’ time by means of using a series of advanced

text processing followed document retrieval to pinpoint exact information.

Research in QA is catalyzed by a series of competitive evaluations conducted by

the Text REtrieval Conference (TREC) (Voorhees, 2005; Dang, Lin, and Kelly, 2006).

Most of researchers in QA community develop their systems according to the task defi-

nition of TREC. TREC divides fact-oriented questions into three types: factoid, list and

definition. A factoid question, such as ”Who is the mayor of San Francisco?”, requires

2

an exact phrase ”Gavin Newsom” as the answer; A list question, such as ”List the names

of chewing gums.” asks for a set of answer instances; While factoid and list questions

cover specific aspects of a target, a definition question, such as ”Who is Aaron Cop-

land?” expects a summary of all important facts related to the target. I will only focus

on answering factoid questions in the thesis.

A typical factoid QA system usually consists of several basic modules: 1. Ques-

tion Processing (QP) module finds useful information from questions, such as expected

answer type and key words. 2. Information Retrieval (IR) module searches a large docu-

ment collection to retrieve a set of relevant sentences using the key words mined from the

questions. 3. Answer Extraction (AE) module further analyzes the retrieved sentences

using the information provided by the QP module and identifies answer phrases. These

modules are connected as a pipeline in QA architecture. Each of the modules has certain

impacts on overall performance. It is very difficult to thoroughly investigate all aspects

of a QA system. In this thesis, I mainly study the answer extraction and its effect on the

question answering.

In recent researches, answer extraction trends to be more and more complex. To

better understand texts, current QA systems widely apply natural language processing

techniques, such as named entity recognition, parsing, semantic analysis and logic prov-

ing. Sometimes, knowledge from external resources, such as WordNet and the Web are

also used to supplement data sparseness in a corpus. The various techniques and re-

sources provide indicative features to find proper answers. These features are further

integrated by using a pipeline structure, a scoring function or machine learning methods.

While QA systems have shown great success in TREC evaluations, there are still several

weaknesses that should be addressed to enhance performance:

1. Lack of flexibility in matching. There are generally two key factors to pinpoint

answers: 1. check whether the semantic categories of answer candidates accord

with questions. For example, the proper answer should be at least an expres-

3

sion of ”DATE” for the question ”When was ’Cold Mountain’ written?”. Most

QA systems employ a fine-grained named entity to recognize the semantic cat-

egories of answer candidates. 2. More important, proper answers should be

supported by their contexts in sentences. There is an observation that the more

common structures question and the context of answer candidate share, the more

supportive the answer candidate will be. Therefore, appropriate matching be-

tween question and answer sentence is the key issue to the answer extraction. To

our knowledge, the matching has been conducted on various levels: surface text

level (Soubbotin, 2001; Ravichandran and Hovy, 2002; Wu et al., 2005), syntac-

tic level (Harabagiu et al., 2003; Kaisser and Becker, 2004; Cui et al., 2004) and

semantic level (Narayanan and Harabagiu, 2004; Sun et al., 2005; Kaisser, 2006).

Although there is full of success on the surface level, I find a lack of work ad-

dressing flexible matching in syntactic and semantic spaces. Since syntactic and

semantic analysis may supply the deeper understanding of texts, employing syntac-

tic and semantic evidence using appropriate methods reinforces the more accurate

identification of answers.

2. Lack of integration of knowledge. Most AE modules are on the basis of in-

dividual evidence separately, such as surface pattern matching (Soubbotin, 2001;

Ravichandran and Hovy, 2002; Wu et al., 2005), syntactic matching (Harabagiu

et al., 2003; Kaisser and Becker, 2004; Cui et al., 2004) and Web knowledge (Wu

et al., 2005; Kaisser and Becker, 2004). Even if some modules capture multi-

ple evidence, they deal with the evidence simply using a scoring function (Xu,

A.Licuanan, and Weischedel, 2003; Kaisser and Becker, 2004; Bos, 2006). The

scoring function is formalized as a linear interpolation where the weights of fea-

tures are heuristically decided by human. When more and more features are cap-

tured, the scoring function definitely has its limitation. A desirable system should

assign optimal weights to features based on prior knowledge from training data.

4

Therefore, machine learning techniques will greatly contribute to the integration

of rich evidence for the answer extraction.

1.2 Methods

To address above problems, I propose a maximum entropy-based ranking model which

effectively integrates various features including orthographic, lexical, surface pattern,

syntactic and semantic features.

Considering how to effectively capture syntactic evidence for the answer extrac-

tion, I present two methods: dependency relation pattern method and dependency rela-

tion path correlation method. Both methods are motivated by the observation that the

context of a proper answer in an answer sentence often has similar syntactic structure as

a question. However, the two methods apply different measures to calculate similarity

between syntactic structures.

Dependency relation pattern method represents a syntactic structure as a de-

pendency relation pattern and regards similarity measure as pattern matching. It follows

the hypothesis that the more common individual relations two patterns share, the higher

matching score they have. A string kernel method is adapted to partially match patterns,

which solves the low coverage problem arising from exact pattern matching in a certain

extent. However, the hypothesis has certain limitation due to syntactic relation varia-

tions. One meaning is often represented as different syntactic relation combinations,

such as ”subject” relation might turn to ”apposition” relation in two sentences with the

same meaning. In this case, the individual dependency relations of two patterns are to-

tally different and a pattern matching method, regardless of exact matching or partial

matching, will unfortunately fail.

Dependency relation path correlation method is further proposed as a backup

of the dependency relation pattern method. The method assumes that syntactic structures

5

are similar if their individual relations are highly correlated. A dynamic time warp-

ing algorithm is employed to align two syntactic structures based on the correlations

of individual relations. The individual relation correlations are estimated using mutual

information measure on training set.

This kind of syntactic evidence overcomes the problems arising from the diver-

gences of lexical representations between question and answer sentences, such as long

surface distance and word ordering alternation. More important, they may complement

each other since they lean towards different performance aspects (the dependency re-

lation pattern method prefers precision while the dependency relation path correlation

method prefers recall). To our best knowledge, these kinds of syntactic evidence haven’t

been well explored by previous statistical-based answer extraction methods.

In addition to syntactic evidence, I incorporate semantic evidence into the answer

extraction. I propose an automatic method to effectively incorporate FrameNet-style

semantic role information. The way of conducting semantic role assignment mainly

relies on the comparison of dependency relation paths attested in FrameNet annotations

and raw text. I formalize the search for an optimal role assignment as an optimization

problem in a bipartite graph. This formalization allows finding an exact, globally opti-

mal solution. The graph-theoretic framework goes some way towards addressing cover-

age problems related with FrameNet and formulates the similarity measure of semantic

structures as a graph matching problem.

Based on the various similarity measures between question and contexts of answer

candidates, a maximum entropy-based ranking model is proposed to incorporate all

of the captured information. Experiments are conducted on previous TREC data. In

Chapter 7, I evaluate the effectiveness of individual features respectively and further

report the system performance on various feature combinations.

6

1.3 Contributions

In this thesis, I mainly contribute to three aspects:

• Syntactic and Semantic matching methods. I present formal statistical mod-

els and similarity measures to realize syntactic and semantic structure matching

between question and answer sentences. The key to a QA system is to find appro-

priate similarity metrics between a question and answer sentences. I evaluate the

effectiveness of these matching methods. The experiments show that both of the

methods I propose achieve the better performance than state-of-the-art and have

positive effect on the whole QA system. The generic matching methods can be

easily extended to other applications that utilize the meaning comparison of two

sentences, such as textual entailment, opinion mining and information retrieval.

• Maximum Entropy-based Ranking model. I study how to effectively integrate

rich evidence into a statistical model. I present and compare two views (classifica-

tion -based view and ranking-based view) to model the task according to maximum

entropy theory. Experiments on previous TREC datasets demonstrate the effective-

ness of the models. Moreover, the maximum entropy-based ranking model which

integrates all captured features achieves top-ranked performance among all of the

participants worldwide in the most recent TREC evaluation.

• Automated Question Answering System. I contribute to realize a practical ques-

tion answering system. In addition to the exploration of the answer extraction, I

also develop the other key components in the Alyssa QA system ranging from al-

gorithm exploration, architecture design to module implementation. I mainly put

efforts on the modules including question processing module, sentence annotation

module, answer extraction module and answer validation module.

7

1.4 Guide to The Thesis

Chapter 2 In this chapter I review the TREC task definition and main technologies year

by year and discuss related approaches in question answering, ranging from inference-

based approaches to Web-based approaches. Looking at the roadmap of TREC is not

only of historical value, but also reveals general issues and future direction in question

answering. Furthermore, the discussion of related work also supplies readers the basic

knowledge how the task is modeled and which techniques and resources are used.

Chapter 3 In this chapter, I present the architecture of the Alyssa QA system. I discuss

in detail the basic modules that are not covered in later chapters. I leave the Answer

Extraction Module that embeds syntactic and semantic analysis, statistical modeling in

the next three chapters.

Chapter 4 This chapter introduces two methods to effectively capture syntactic ev-

idence into answer extraction, including dependency relation pattern Method and de-

pendency relation path correlation Method. To our knowledge, the syntactic evidence

between proper answers and question key words hasn’t been well explored in previous

statistical Answer Extraction Module.

Chapter 5 This Chapter proposes a graph-theoretic framework to effectively incorpo-

rates FrameNet-style semantic role information into answer extraction. This framework

allows us to find an exact, globally optimal solution of semantic role labeling. Further-

more, it goes some way towards addressing coverage problems related with FrameNet

and allows us to formulate answer extraction as a graph matching problem.

Chapter 6 In this chapter, I discuss how to model answer extraction task on the basis

of Maximum Entropy theory. We view the task in two ways: a classification problem and

8

a ranking problem. I will give theoretic and experimental comparisons of the two mod-

els. And more importantly, I will discuss how to incorporate the syntactic and semantic

evidence explored in the previous two chapters into the Maximum Entropy models.

Chapter 7 This chapter reports systematic evaluation results of our answer extraction

module including the investigation of individual approaches and the overall effectiveness

for their combination. As mentioned above, the conclusions that can be drawn from these

experiments are less general since we use a particular question answering system, but

nevertheless it provides some useful insights in the interaction between answer extraction

module and other components for a concrete system.

Chapter 8 In the last chapter, I draw some overall conclusions for the key issues ad-

dressed in this thesis and present possible future work in the end of the thesis.

9

Chapter 2

Background

Research in open-domain question answering is catalyzed by a series of competitive

evaluations conducted by the Text Retrieval Conference. Most of researchers in QA

community setup and develop their systems according to the task definition of TREC.

From year to year, following a long direction of QA research, TREC revises the definition

and evaluation measure which increase the difficulty of the task step by step. In this

section, I will firstly introduce the history of practical question answering task in TREC,

where some definitions and evaluation measures will be also adopted in this thesis. Next,

the main representative approaches for finding answers will be reviewed.

2.1 Question Answering at TREC

2.1.1 Text Retrieval

Text retrieval technology targets to find relevant information in large stores of electronic

documents. The first research conference, the International Conference on Scientific In-

formation, devoted to the subject was held in 1958. Since then the problem has continued

to grow as more information is created in electronic form and more people gain electronic

access. The advent of the hypertextually-networked document collection, World Wide

10

Web, where anyone can publish anything, is a graphic illustration of the need for effective

retrieval technology.

The Text REtrieval Conference (TREC) is an ongoing series of workshops de-

signed to supply the infrastructure for large-scale evaluation of text retrieval methodolo-

gies, thereby accelerating its transfer into commercial sector. The series is co-sponsored

by the U.S. National Institute of Standards and Technology (NIST) and Advanced Re-

search and Development Activity (ARDA) center of the U.S. Department of Defense.

TREC began in 1992 as a part of the TIPSTER Text program. Up to now, there have

been 16 workshops. Participants in the workshops have been drawn from the academic,

commercial, and government organizations from all over the world. Approximately,

more than ninety groups from twenty different countries are evolved in TREC.

Various research topic related to text retrieval, such as seeking information/behavior

in the blogosphere, searching data of an organization, answering natural language ques-

tions, filtering spam, are considered in TREC. They are divided into different tracks

and the respective evaluations are conducted. For each track, NIST releases data sets

and test problems to participating groups. After several days for running systems, NIST

fairly evaluates the results of the participants using uniform scoring. Furthermore, TREC

workshop provides an opportunity for the participating researchers to collect and discuss

thoughts and ideas and present current and ongoing research work.

TREC claims that their efforts have accomplished a great deal: within the first six

years of the workshops, the effectiveness of retrieval systems approximately doubled. A

variety of large test collections have been built for both traditional and hoc retrieval and

related tasks. The challenges have inspired a large body of research publications. And

moreover, many technologies originally developed in TREC are later incorporated into

many of the world’s commercial products.

11

Table 2.1: Task definition of TREC QA Track
99 00 01 02 03 04 05 06

Answer Type Answer Snippet Exact Answer
Document Collection TREC TREC+TIPSTER AQUAINT
Question Type Factoid Factoid+List Factoid+List+Definition
Nil Question No Yes
Question in Series No Yes
Num of Questions 200 693 500 351 530 567
Evaluation Measure MRR CWS Accuracy

2.1.2 Question Answering Track

Question Answering as a research endeavor has a long history in Text Retrieval commu-

nity. NIST has continued to organize QA Track annually from its inception in 1999. The

focus of the QA track is to extract answers for users’ natural-language questions from

large collections of open-domain, natural-language texts.

Up to 2007, QA tracks have been organized for nine years. From year to year, the

task is defined more and more difficult regarding type of questions, answer type, doc-

ument collection, question type and evaluation measurement, etc. Table refTAB:Task

definition of TREC QA Track summarizes the definitions of the TREC QA Track from

1999 to 2007. The following is a brief view of the task definition and its main technolo-

gies used in TREC each year.

TREC-1999 TREC-8 QA track (Voorhees, 1999) is the first large-scale evaluation of

domain independent question answering systems. The task in 1999 was defined to re-

trieve small snippets of texts that contain actual answer to a question rather than ranked

documents traditionally returned by text retrieval systems. Document collection that QA

systems worked on consisted of newspaper articles including the Financial Times, the

Los Angeles Times and the Foreign Broadcast Information Service. There totally were

528,000 documents containing information on a wide variety of subjects. While the sub-

jects of questions were not restricted, the type of questions (called ”factoid questions”

12

later) was limited to fact-based and short-answer-expected. Participants were given 200

such questions. Each question was guaranteed to have at least one document in the col-

lection that may explicitly answer the question.

All processes of QA systems were required to be strictly automatic and partici-

pants were not permitted to further develop their systems once they received test ques-

tions. After running the systems without any human intervention, the participants re-

turned top-5 ranked answer snippets per question. An answer snippet was limited to

either 50 or 250 bytes and manually evaluated by human assessors. The score computed

for a submission was the Mean Reciprocal Rank (MRR) defined as follows.

MRR =

1
R

, R is the rank of the correct answer in topN responses

0 , no correct answer in topN responses

An individual question received a score equal to the reciprocal of the rank at which

the first correct response was returned, or 0 if none of the five response contained a

correct answer. The score for a submission was then the mean of all individual questions’

reciprocal ranks.

The general retrieval strategy for most QA systems in TREC-8 is as follows. The

systems firstly attempted to classify questions according to their expected answer types.

The only evidence used for question classification was the question word, such as a

question beginning with ”when” implied a time designation would be needed. Next, the

systems retrieved a small set of relevant documents using standard document retrieval

technology. The systems performed shallow named entity recognition of the returned

documents to detect phrases with the same type as the expected answer type of the ques-

tion. If such phrases were found sufficiently close to the question words, the systems

returned the snippets with appropriate length surrounding the phrases as responses. If

no phrase with appropriate answer type was found, the system would fall back to best-

matching-passage techniques.

13

TREC-2000 While TREC-9 QA task (Voorhees, 2000) essentially had the same def-

inition as TREC-8, there were some minor differences. The document collection that

year was the set of news articles on the combined set of TIPSTER/TREC disks. In

particular, it included the AP newwire, the Wall Street Journal, the San Jose Mercury

News, the Financial Times, the Los Angeles Times and the Foreign Broadcast Informa-

tion Service. Both the document collection and test set of questions in TREC-9(979,000

documents and 693 questions) were larger than those in TREC-8(528,000 documents

and 200 questions). A more substantive difference was the source of the test questions.

The majoyrity of questions in TREC-8 were developed by either participants or NIST

assessors specifically for the track, which made the questions somewhat unnatural and

also the task easier since the questions and the target documents shared the same vocab-

ulary. For the TREC-9 task, NIST obtained two query logs (Encarta log from Microsoft

and log for Excite Search Engine) and used those as a source of questions. The switch to

”real” questions, rather than assessor constructed questions, made TREC-9 much more

difficult than TREC-8. For example, real users asked vague questions such as ”Who is

Colin Powell?” and ”Where do lobsters like to live?”. These kinds of questions were

substantially harder for both QA systems to answer and assessors to judge.

Broadly speaking, participants in TREC-9 didn’t develop entirely new technolo-

gies for the task, but refined the individual steps of their TREC-8 systems. They were

better at classifying questions to expected answer types and used a wider variety of

methods for finding the entailed answer types in retrieved passages. Moreover, word

semantic variations were incorporated into QA systems. Many systems used WordNet

as an external source of related word expansion for queries and as a means of determin-

ing whether the entities recognized from the paragraphs matched the expected answer

types of the questions. In addition, the best performing system, Falcon system from the

Southern Methodist University, attempted to incorporate the more linguistic-motivated

techniques to fully understand the meaning of the questions and the paragraphs. They

14

integrated semantic form unification, logical prover and successive feedback loops as

follows. Firstly, they searched the relevant paragraphs progressively using the various

combinations of query terms and their synonyms / morphological derivations. Next, the

retrieved paragraphs were parsed into semantic forms and a unification procedure was

performed between the question semantic forms and the paragraph semantic forms. If

the unification succeeded, the semantic forms were further translated into logical forms

and logical reasoning in the form of an abductive back-chaining from answers to ques-

tions was conducted. If the proof succeeded, the answer would be returned. Otherwise,

another query with semantic variations would be generated and more paragraphs would

be retrieved.

TREC-2001 For the third year of QA track (Voorhees, 2001), while the overall goal

remained the same as the previous years, new conditions to increase the realism and diffi-

culty of the task were introduced. The track was divided into three sub-tasks (main task,

list task, context task). In the main task, questions were no longer guaranteed to have

an answer in document collection. Recognition of no answer is an important ability for

operational systems to possess since returning an incorrect answer usually harms more

than not returning an answer at all. For a TREC-2001 test question, a correct answer

was known to exist if assessors found it during question development or if participating

systems returned a correct and supported response to the question. Otherwise, the ques-

tion would be regarded as a NIL question. The participating systems were required to

return ”NIL” if they believed no answer was present. In the list task, the systems assem-

bled a set of snippets as the response for a question, requiring the ability to distinguish

among snippets found in multiple documents. Furthermore, the context task required the

systems to track discourse objects through a series of questions.

The final test set consisted of 500 questions which were filtered from MSNSearch

logs and AskJeeves logs. Almost all systems performed the variants of the strategies seen

in the earlier TRECs. They used an external lexicon resource, usually WordNet, to ver-

15

ify the types of candidate responses. While some systems attempted full understanding

of questions and answer sentences, increasingly some systems started to try shallower,

data-driven approaches. The data-driven approaches relied on simple pattern matching

methods on very large corpora (like web) by assuming that in a large enough data source

a correct answer was usually repeated often enough to distinguish it from incorrect ones

that occasionaly matched the patterns. For NIL question detection, only five runs had

the accuracy greater than 0.25 (Accuracy is computed as the number of questions for

which NIL is correctly returned divided by the total number of questions for which NIL

is returned). It showed that evaluating confidences of answer responses and recognizing

”no answers” were very challenging for almost all of the systems.

TREC-2002 TREC 2002 QA (Voorhees, 2002) track made significant changes to the

task definition as compared with the earlier QA tracks. It still contained two tasks, in-

cluding main task and list task, as TREC 2001, but systems were required to return exact

answers in TREC 2002. That is, the answer string returned by a system in response to a

question consisted of a complete answer and nothing else, in contrast to the earlier years

when the text snippet simply containing the answer was allowed. Judging only exact

answers correct forced the systems to demonstrate that they knew precisely where the

answer located in a snippet. Given an answer string, four judgement values were given

by human assessors:

• wrong: the answer string does not contain a correct answer or the answer is not

responsive.

• not supported: the answer string contains a correct answer but the document re-

turned does not support the answer.

• not exact: the answer string contains a correct answer and the document supports

it, but the answer string contains more than just the answer or misses the bits of

the answer.

16

• right: the answer string consists of exactly a correct answer and have correct sup-

porting document.

From this year, the QA track started to use AQUAINT corpus as document collec-

tion. the AQUAINT corpus is a collection of English news texts, which may be obtained

from the Linguistic Data Consortium 1 as catalog number LDC2002T31. The collection

is comprised of documents from three different sources: the AP newswire from 1998-

2000, the New York Times newswire from 1998-2000 and the English portion of the

Xinhua News Agency from 1996-2000. There are approximately 1,033,000 documents

and 2 gigabytes of texts in the collection.

In addition to the requirement for exact answers and the adoption of new doc-

ument collection, the TREC 2002 main task had another significant change from the

earlier QA tasks. Systems were limited to on response per question instead of top 5.

Thus, the scoring metric was also changed. A new evaluation measure in the main task,

the confidence-weighted score (CWS), was used to test a system’s ability to recognize

when it had found a correct answer. Within the submission file returned by a system, the

questions were ordered from the most confident response to the least confident response.

That is, the question for which the system was most confident to return a correct answer

was ranked first and the question for which the system was least confident was ranked

last. Given such ranking, an analog of document retrieval’s uninterpolated average preci-

sion were computed. The measure rewarded the system for a correct answer early in the

ranking more than the one late in the ranking. More formally, if there were Q questions

in the test set, the confidence-weighted score was defined as follows:

CWS =
1

Q

Q∑
i=1

number correct in first i ranks
i

The final test questions(500 questions) for the main task were from MSNSearch

logs and AskJeeves logs. Different from the 2001 test set where one quarter of questions

1Linguistic Data Consortium: www.ldc.upenn.edu

17

were definition questions such as ”Who is Duke Ellington?” and ”What are polymers?”,

this year’s test set didn’t contain such questions any more. Since the requirement of exact

answers resulted QA systems increasingly complex over those in the earlier years, there

was little in common across the systems this year. Most systems classified an incoming

question into semantic types according to a predefined ontology of question types as the

first step. The ontology ranged from small sets of broad categories, such as PERSON,

LOCATION, ORGANIZATION and DATE which corresponded to the predefined named

entity types in the Message Understanding Conference(MUC), to highly detailed hierar-

chical schemes, such the subtypes like CITY, CAPITAL and MOUNTAIN were further

considered in addition to the LOCATION type. Once the question type was determined,

the systems performed a type-specific processing. Many systems in TREC 2002 used

external data sources such as name lists, gazetteers, movie and book databases, to match

exact answers in relevant text snippets. Furthermore, systems started to capture Web

information in various ways. Some systems used the Web as primary source to find

answers. Then they mapped the answers back to the AQUAINT Corpus to get their sup-

porting documents. Other systems did the reverse: used the AQUAINT Corpus as the

primary source of answers and then verified the answers with the Web Data. Still other

systems used the Web as one of the primary sources. At last they fused the answers from

the various sources to select final response.

TREC 2002 showed an increase in the number of systems using shallow, data-

driven approaches to question answering in contrast to systems attempting full and deep

understanding of texts. Both approaches were well-represented in TREC 2002. The top-

scoring system found answers by using logic representations of texts and a formal proof

scheme. The second-scoring system relied on an extensive set of surface patterns where

each pattern was built from the simpler component structure. The detailed technologies

for question answering will be discussed in Section 2.2.

18

As to the creation of question ranking for confidence-weighted measure, almost

all of the systems regarded question type as a factor since some question types were

obviously easier to answer than others. Some systems predicated an answer candidate

for a question with certain probability. Once the probability was comparable across

questions, it can also be used to rank the questions. A few systems used a training set of

question and answer pairs from the previous years to learn optimal weights of features

and predicted confidence on this year’s questions. Many systems ranked NIL responses

last since they couldn’t find an answer rather than they were sure no answer existed.

TREC-2003 Different from the main task of TREC 2002 where only factoid questions

were asked, the main task of TREC 2003 (Voorhees, 2003) involved three types of ques-

tions, including factoids, lists and definitions. Each question was tagged with its type.

For each factoid question (totoally, there were 413 questions), systems were re-

quired to return one exact answer or NIL as a response. This response would be manually

judged to incorrect, not supported, inexact or correct by assessors. The total score for

the factoid questions is accuracy, the fraction of the responses judged as correct.

For each list question (Totally, there were 37 questions), systems were required to

assemble a final response from the information located in multiple documents, such as

”List the names of chewing guns.”. The list question could be simply treated as a short-

hand for asking the same factoid question multiple times; the set of answers from the

factoid question was the appropriate response for the list question. TREC didn’t specify

a target number of answer instances to return for the list questions and didn’t consider

the order of the answer instances. Judgments of incorrect, not supported, inexact, cor-

rect were made individually for each answer instance as for the factoid questions. The

instance precision (IP) and instance recall (IR) for a list question were calculated accord-

ing to the assessor judgments. Let S be the number of correct answers, D be the number

of correct, distinct instances returned by a system, and N be the total number of instances

returned by the system. Then IP = D/N and IR = D/S. F measure combining the

19

precision IP and the recall IR with equal weight were used to score a list question:

F =
2× IP × IR

IP + IR

The score for all of list questions was the average F score.

Definition questions ask for the most interesting information snippets about a

topic, such as ”Who is Colin Powell?”. These questions occur relatively frequently in

logs of web search, which increasingly draw attentions of QA communities. Systems

were required to return an unordered set of information snippets as a response for each

definition question (totally 50 questions are released). Each snippet was presumed to be

a facet in the definition of the target. There were no limits placed on either the length

of a snippet or the number of snippets. Judging the quality of system’s responses was

done in two steps. Firstly, assessors created a list of ”information nuggets” about the

target. An information nugget was a fact on which the assessors could make a binary

decision as to whether a response contained the nugget. The assessor further decided

which nuggets were vital. The vital nuggets must appear in a definition. Secondly,

the assessors made conceptual match between the system responses and the information

nuggets by ignoring word and syntactic differences. If the response matched the vital

nuggets, it would be rewarded. If the response matched the not-vital nuggets, it would

be neither rewarded nor penalized. And if the response didn’t match any nuggets in the

list, it would be penalized. The final score of a definition question was measured using

F-measure defined as follows:

20

Let r be the number of vital nuggets returned in a response;

a be the number of acceptable (non-vital but on the list) nuggets returned

in a response;

R be the total number of vital nuggets in the assessor’s list;

len be of the number of non-white space characters in an answer string

summed over all answer strings in the response;

Then recall = r/R

allowance = 100× (r + a)

precision = allowance
len

F (β = 5) =
β2 × precision× recall

(β2 + 1)precision + recall

The final score for the main task run was computed as a weighted average of the

three component scores:

FinalScore = 1/2× FactoidScore + 1/4× ListScore + 1/4×DefScore

The overall approach for answering factoid questions kept unchanged from the

previous years. Systems generally identified the expected answer types of the questions

as the first processing step, next retrieved relevant documents or sentences using tradi-

tional information retrieval technologies, and then extracted answers by performing a

match between the question words and the retrieved sentences. While the overall ap-

proach remained the same, individual groups continued to refine their modules for each

step to increase coverage and accruacy. The detailed techniques they used will be dis-

cussed in Section 2.2

For list questions, no specific techniques were developed. Most groups used ex-

actly their factoid QA modules for the list questions, changing only the number of re-

sponses returned. Some systems returned the answers whose scores were above an em-

pirically determined threshold. Other systems returned the answers whose score were

within an empirically determined fraction of the top result’s score.

21

Different techniques were developed to answer definition questions. Most sys-

tems first retrieved passages or sentences about a target using a recall-oriented search

engine. Subsequent processing reduced the amount of materials returned. Pattern-based

methods were widely used to locate definition-contents in texts. These patterns were

either hand-constructed or learned from a training corpus, such as the gloss of Word-

Net. Some systems also explored to eliminate redundant information using either word

overlap measures or document summarization techniques.

TREC-2004 TREC 2004 (Voorhees, 2004) still contained factoid, list and definition

questions, but the questions were grouped into different series, where each series was

associated with a target. The questions in a series asked for the information about the

target. In addition, the last question in a series was an explicit ”other” question, which

was to ask for additional interesting snippets about the target that were not covered by the

preceding questions in the series. The ”other” question was roughly equivalent to def-

inition questions. The reorganization of questions into series had an important benefit.

Each series could be regarded as the abstraction of an information dialog in which users

were trying to define a target. The target and earlier questions in a series provided the

context for the current question. Context processing is an important element for ques-

tion answering systems to possess although it hasn’t been successfully incorporated into

existing open domain question answering systems. As the first step to consider context

processing in question answering, TREC simplified the task by adding the constraints

that answers of previous questions were not mentioned in later questions. This appeared

as a stilted conversational style comparing with true dialog. Furthermore, systems were

required to process series independently from one to another and process an individual

series in question order, that is, systems couldn’t look ahead and use later questions to

help answer earlier questions. The targets defined in TREC 2004 included people, orga-

nization and other entities. The same evaluation methodology as TREC 2003 were used

in TREC 2004.

22

The overall approach to answer factoid, list and definition questions remained un-

changed for the past several years. The only new difficulty of TREC this year was context

processing since a question in a series didn’t necessarily explicitly include the target of

the series. For document/passage retrieval phase, most systems simply appended the

target to query. It was an easy but effective strategy since the target indicated the cor-

rect domain of the question and most of retrieval methods treated the query as a set of

keywords. There were a variety of approaches performing detailed processing of the

question to address the difficulty. One common approach was to replace all pronouns in

the question with the target. While for the majority of the questions, pronouns actually

refered to the targets, a few questions use definite noun phrases rather than pronouns to

refer to the targets, such as ”Q: Where is the company located?”, the phrase ”the com-

pany” refers to the target ”Rohm and Haas”. The other approaches tried varying degrees

of anaphora resolution to appropriately resolve references in the questions. However,

it was hard to judge how much benefit these systems received from the more extensive

processing.

TREC-2005 The task definition of TREC 2005 (Voorhees, 2005) was mainly the same

as that of 2004. There were only two minor differences:

1. Targets of TREC 2005 questions could also be events in addition to persons, or-

ganizations and other entities in TREC 2004. It suggested that pronouns or def-

inite noun phrases of the questions couldn’t be simply replaced with the targets

since the approach might result in the ungrammatical questions. For example, the

phrase ”the disaster” of the question ”How many crewmen were lost in the dis-

aster?” couldn’t be replaced with the target ”Russian submarine Kursk sinks”. In

addition, answers couldn’t be readily found by simply looking up the targets in

Wikipedia or other pre-compiled Web resources.

2. TREC 2005 further required systems to consider dependencies between the ques-

23

tions in addition to dependencies between the questions and the targets. Answers

from the preceding questions in a series were probably mentioned in the later ques-

tions. For example, the phrase ”the winner” of the question ”What country did the

winner represent?” refered to the answer of the previous question ”Who won the

crown?”. Therefore, the TREC 2005 task was more difficult than the TREC 2004

task, which resulted in the lower scores for most of participating systems.

The overall approaches to answer factoid, list and definition questions remained

unchanged for the past several years. One observation was that more and more systems

turned to exploit size and redundancy of the Web to help find answers. Some searched on

the Web to find answers and then projected the answers back to the AQUAINT Corpus

to find supporting documents. Others found answer candidates in the AQUAINT Corpus

and then used the Web to rerank them. Furthermore, some groups attempted to develop

special strategies for answering list questions rather than simply reusing their factoid-

answering systems. They adopted bootstrapping strategies to find additional items from

initial seed items.

TREC-2006 TREC 2006 (Dang, Lin, and Kelly, 2006) made only one minor change

from TREC 2005. The implicit time frame for a question phrased in present tense was

the date of the latest document in a document collection rather than any documents re-

turned with answers. Thus, systems were required to give the most up-to-date answers

supported by the document collection. It brought the TREC task closer in line with

question-answering in real world, where users would prefer the best answers to their

questions rather than any answers found in any documents. The evaluation also equally

weighted factoid, list and definition questions. Like TREC 2005, overall approaches

were not changed so much. Most groups were still working on their existing systems by

adding more refining work.

24

2.2 Approaches to Question Answering

Today’s automatic question-answering systems are revolutionizing textual information

processing. By combining complex natural language processing techniques, sophisti-

cated linguistic representations and advanced machine learning methods, QA systems

can find exact answers to a wide variety of natural language questions in a large collection

of unstructured texts. The process of providing a brief and precise answer to a question is

quite different from the task of information retrieval and information extraction, although

it depends on both as important components. With the increase of difficulty in QA tasks,

ranging from extracting answer-contained snippets to extracting exact answers, from an-

swering individual questions in isolation to answering a series of interrelated questions,

more and more linguistic-motivated analysis and external resources are incorporated in

QA systems. Systems have to resolve dependency of questions in a series, bridge word

gaps between questions and answers, pinpoint exact answers, take into consideration of

syntactic and semantic roles of words, rank answers better, justify answers and so forth.

All of these are beyond document retrieval techniques. Especially for factoid question

answering, the use of answer type ontology and natural language processing technique

has demonstrably yielded significant gains over pure IR techniques. In the following, I’ll

review various representative approaches of building practical factoid question answer-

ing systems.

2.2.1 Inference-based Approaches

Language Computer Corporation group (Harabagiu et al., 2001; Moldovan et al., 2002;

Harabagiu et al., 2003; Moldovan et al., 2004; Harabagiu et al., 2005) conduct automated

reasoning by integrating a logic prover, COGEX into QA system. The overall approach

is to transform questions and candidate answer passages into logic representations and

use world knowledge and linguistic axioms to find which answers are acturally correct.

25

Axiom
Builder

Justification Answer
Ranking

Relaxation

QLF
ALF

XWN Axioms
NLP Axioms

success

proof failure

Ranked
Answers

Answer
Explanation

Figure 2.1: Architecture of the COGEX logic prover

The architecture of the LCC inference-based module is shown in Figure 2.1. CO-

GEX captures syntax-based relationships provided by logic representation of questions

(QLF) and candidate answer passages (ALF). In addition, it needs world knowledge ax-

ioms (XWN axioms) to link questions concepts to answer concepts and NLP axioms to

represent semantically equivalent lexical patterns.

The main procedure of COGEX is described as follows: firstly, Axiom Builder

converts logic forms for questions, answer passages and WordNet glosses into axioms.

Based on parse tree patterns in questions and answers, additional NLP axioms are built

to supplement existing general NLP axioms. Once the axioms are complete and loaded,

Answer Justification begins. If a proof fails, Relaxation Module is invoked. The

purpose of the Relaxation module is twofold:

1. to compensate from errors in text parsing and logic form transformation;

2. to detect correct answers when NLP and XWN axioms fail to provide necessary

inferences.

During the Relaxation, the argument-to-predicate assignments in a question are incre-

mentally uncoupled, the proof score is reduced and the justification is re-attempted. The

loop between the answer justification and the relaxation module continues until the proof

succeeds or the proof score is below a predefined threshold. When all of answer candi-

dates are processed, the answer candidates are ranked according to their proof scores and

26

the answer justification results are further ouputted from COGEX. The detailed operation

of COGEX is discussed in (Moldovan et al., 2003).

Naturally, performing automated reasoning in the context of QA is very complex.

One of main challenges is logic representation of open texts. A text logic form is an

intermediate step between syntactic parse and deep semantic parse. It represents syntax-

based relationships:

• syntactic objects

• syntactic subjects

• prepositional attachments

• complex nominals

• adverbial/adjectival adjuncts

The process of transforming a question or an answer passage to logic forms is illustrated

in Figure 2.2. The QLF and ALF are produced in a three-layered first order logic repre-

sentation.

1. The first layer relies on syntactic parse and named entity recognition.

2. The second layer relies on the recognition of semantic relations processed by a

semantic parser.

3. The third layer represents temporal contextual information produced by temporal

ordering of events, anchoring events in time intervals and normalizing temporal

expressions.

More details regarding the three-layer transformation are discussed in (Moldovan and

Rus, 2001; Bixler, Moldovan, and Fowler, 2005; Moldovan, Clark, and Harabagiu,

2005).

27

Syntactic Parser

Named Entity
Recognizer

Semantic
 Parser

Temporal Context
Representation

Question

Answer
Passages

QLF

ALF

Figure 2.2: Three-Layered Logical Form Transformation

Besides the QLF and ALF, world knowledge axioms and NLP axioms also par-

ticipate in the answer proof. The world knowledge axioms are necessary to conceptually

link questions and answers. They are derived from the glosses of WordNet and eXtended

WordNet by transforming the glosses into logic forms. For example, the gloss defini-

tion of the concept ”sport NN#1” is ”an active diversion requiring physical exertion and

competition”, which yields the logic representation:

active JJ(x1) & diversion NN(x1) & require VB(e1,x1,x2) & or CC(x2,x3,x4) &

physical JJ(x3) & exertion NN(x3) & competition NN(x4)

A much improved source of the world knowledge axioms is obtained by mining connec-

tion paths between SynSets of WordNet up to a certain distance (Moldovan and Novischi,

2002). Lexical chains, which are sequences of semantically related words, are estab-

lished between SynSets in different hierarchies. The words along a path are topically

related. For example, the path between ”zygote NN#1” to ”nuclues NN#1” is

zygote NN#1 → HYPERNYM → cell NN#1 → HAS PART → nucleus NN#1

As to the NLP axioms, they are manually constructed to reflect equivalence classes

of linguistic patterns. The considered equivalence phenomena include:

Complex Nominals and Coordinated Conjunctions Noun phrases with full proper names

may be equal to their abbreviated forms, such as ”Internet browser Mosaic” refers

to ”Mosaic”; ”Microsoft” to ”Microsoft Corp.”.

28

Appositions Two noun phrases in an apposition are equal with each other, such as ”Ital-

ian Andrea Pfister” is equal to ”designer” in ”... Italian Andrea Pfister, designer of

the 1979 ’bird cage’ shoe that spawned millions of plastic imitations, ...”.

Possessives Noun phrases may substitute the use of a possessive ”’s” by using an ”of” or

”by” preposition, such as ”Wright brother’s first flight”, ”the first flight of Wright

brothers” and ”a 120-foot flight by Wright brothers” refer to the same.

Prepositions Prepositions may be grouped into equivalence classes depending on ex-

pected answer types of questions. In location seeking questions, the prepositions

”at” and ”in” are often interchangable. Similarly for ”in” and ”into”, such as in

question ”Q: What body of water does the Colorado River flow into?” and candi-

date answer sentence ”... the Colorado River flowed in the Salton trough about 130

miles ...”, the preposition ”into” and ”in” take in the same meaning.

Part-of Relations in Location Questions A location question may get a correct answer

by referring to a part-of relation for the location. For example, for the question

”Where is Devil’s Tower?” and the answer sentence ”... Devil Tower in the north-

east corner of Wyoming ...”, ”Wyoming” is identified as answer only if system

identifies ”Devil Tower” lies in a part of ”Wyoming”.

As one of the deepest linguistic-motivated method in modern QA systems so far,

the inference-based method achieves high accurate but low recall. The high failure rate

is mainly due to insufficient axioms. In addition, the method takes long processing time.

LCC addresses these issues by adding the logic prover to other modules as an augment

but not replacement. The experiment on TREC 2002 questions (415 questions) shows

that 415 questions are correctly answered with the logic prover by comparing the original

system (317 questions are correctly answered without the logic prover).

29

2.2.2 Statistical-based Approaches

(Ittycheriah, Franz, and Roukos, 2001; Ittycheriah and Roukos, 2002) develop a statistical-

based question answering model. They argue that mathematical framework is tractable

and can provide the performance close to state-of-the-art without any specific system

tuning efforts. They derive a formal mechanism which incorporates sentence selection,

question typing and answer selection into one uniform model rather than separates them

into independent components. They model the distribution p(c|a, q), which attempts

to measure the ”correctness” c given the answer a and the question q. The modeling

paradigm uses a classification point of view, as opposed to a generative model where

p(a|q) is directly modeled. They argue that the p(a|q) paradigm may suffer from insuffi-

cient training data. Furthermore, they introduce a hidden variable representing the class

of the answer e (answer tag/named entity type). The model is designed as follows,

p(c|q, a) =
∑

e

p(c, e|q, a)

=
∑

e

p(e|q, a)p(c|e, q, a)

Where, p(e|q, a) is Answer Tag Model which predicts the entity that both question and

answer satisfy. By assuming that the question and the answer are independent and con-

ditionally independent of the entity, the answer tag model turns to be

p(e|q, a) =
p(e|q)p(e|a)

p(e)

Where, p(e|a) is a traditional named entity recognition problem and p(e|q) is a ques-

tion typing problem.

p(c|e, q, a) is Answer Selection Model. Given the question q, the answer can-

didate a and the entity e predicted by the answer tag model, the correctness of the con-

figuration is predicted. Six feature sets including entity features, definition features,

linguistic features, web features, statistical machine translation features and answer pat-

terns, are incorporated into the answer selection model. The details of the features and

the models are discussed in (Ittycheriah et al., 2002).

30

(Ravichandran, Hovy, and Och, 2003) further contrast two answer extraction

models based on a Maximum Entropy paradigm. The first model regards the answer

extraction as a classification problem p(c|q, a) as (Ittycheriah et al., 2002), while the sec-

ond model views the task as a re-ranking problem p(a|q, {a1, a2, ...an}). They obtain

good baseline performance for question answering by only using 4 basic features (fre-

quency, expected answer class, question word absent and word matching). They also

argue that QA system modeled as a re-ranking problem significantly outperforms that

modeled as a classification problem.

(Xu et al., 2002) select answers by estimating p(c|q, a). They use three features

to represent the question q and the answer a.

• The first feature (VS) is a boolean feature judging whether a satisfies the verb

argument of q.

• The second feature is a pair of integers (m,n), where m is the number of content

words in common between q and the context of a, and n is the total number of

content words in q.

• The third feature (T) is the answer type of q. It is based on the assumption that some

types of questions (e.g. ”Person”) are more likely to result in correct answers than

other types (e.g. ”Animal”).

They pre-compute p(c|V S), p(c|(m,n)) and p(c|T) from training data and fit them into

a mixture model as:

p(c|q, a) = 1/3× p(c|V S) + 1/3× p(c|(m,n)) + 1/3× p(c|T)

So far, all of the above methods estimate the correctness of individual answer

candidates separately and don’t take into account the relevance information between the

answer candidates. (Ko, Mitamura, and Nyberg, 2007) propose a probabilistic graphi-

cal model for answer ranking. The model estimates the probability of the correctness

31

of an answer candidate given multiple answer relevance features and answer similarity

features. The task is modeled using logistic regression as follows:

p(c(ai)|q, a1, a2, ...an)

≈ p(c(ai)|rel1(ai), ..., relK1(ai), sim
′
1(ai), ..., sim

′
K2

(ai))

=

exp

(
α0 +

K1∑
k=1

βkrelk(ai) +
K2∑
k=1

λksim
′
k(ai)

)

1 + exp

(
α0 +

K1∑
k=1

βkrelk(ai) +
K2∑
k=1

λksim
′
k(ai)

)

where, sim
′
k(ai) =

N∑

j=1(j 6=i)

simk(ai, aj)

In the above model, relk(ai) is a feature function used to produce an answer relevance

score for an individual answer candidate ai. simk(ai, aj) is a scoring function used to

calculate answer similarity between ai and aj . sim
′
k(ai) represents one similarity feature

for an answer candidate ai and is obtained by summing N−1 answer similarity scores to

represent the similarity of one answer candidate to all other candidates. The parameters

α, βk and λk are estimated from training data by maximizing log likelihood. In particular,

the Quasi-Newton algorithm is used. Multiple resources are used to generate answer

relevance scores and answer similarity scores.

Answer Relevance Feature It consists of knowledge-based features and data-driven fea-

tures. The knowledge-based features are extracted from some publicly available

gazetteers (the Tipster Gazetteer, the CIA World Factbook and 50states.com) pro-

viding geographic information, and semantic ontology (WordNet) containing the

relationship information between words and general meaning types. Data-driven

features are extracted from Wikipedia by calculating tf.idf score and Google by

computing the minimum number of words between question keywords and answer

candidates.

Answer Similarity Feature It is calculated using multiple string distance metrics, such

32

as Levenshtein, Jaro-Winkler and Cosine similarity, and a list of synonyms from

WordNet, Wikipedia and the CIA World FactBook.

2.2.3 Pattern-based Approaches

(Soubbotin, 2001) is the first work to successfully exploit pattern-based approach for

question answering. They predefine patterns of textual expressions for certain types of

questions. The presence of the patterns in answer sentences may provide evidence of

proper answers. The way that they define the indicative patterns is totally heuristic and

inductive. Each pattern is represented as a sequence of strings. For example, the patterns

for the query type ”when born” are as follows:

1. capitalized word; parenthesis; four digits; dash; four digits; parenthesis

2. capitalized word; + ”in” + four digits + ”born”

Since the pattern-based approach of (Soubbotin, 2001) achieves very promising

performance in TREC 2001 evaluation, it starts to draw more attention in QA community.

Following that, a series of related explorations are conducted.

(Zhang and Lee, 2007) propose a Web-based pattern mining and matching ap-

proach to question answering. For each type of question, textual patterns are automat-

ically learned from the Web using the previous TREC data as training examples. The

textual patterns are assessed by the concepts of support and confidence measures, which

are borrowed from data mining community. Given an unseen question, the patterns are

utilized to extract and rank plausible answers on the Web. They define 22 questions

classes. Each class has several templates formulated as regular expressions which indi-

cate the possible appearance of the question class. For instance, some of the templates

in the ”ACRONYM” class are as the following, where, ” Q ” stands for question key

phrases.

33

1. What is Q

2. What is the meaning of Q

3. What the (?:acronym|abbreviation) Q (?:stands for|means)

4. What Q (?:stands for|means)

5. What the initials Q (?:stands for|means)

For each question class, a set of textual patterns are learned from the Web. Some

of the discovered textual patterns of the ”WHO-IS” class are shown in the following,

where ” A ” indicates potential answer position and two special symbols ” < ” and

” > ” indicate the head of snippet and the tail of snippet respectively.

patterns confidence

1. , A became Q 0.09

2. < A was Q 0.11

3. Q was A , 0.05

4. A made history as Q 1.00

5. by A (Q 0.66

6. Q , A > 0.14

(Ravichandran and Hovy, 2002) learn surface patterns automatically from the In-

ternet by using a bootstrapping process. They calculate the precision of each surface

pattern and the average precision of each question type. They further use the precision

scores to select the patterns and obtain an optimal pattern set. The final pattern set is then

applied to find answers to new questions.

To learn the surface patterns from the Web, for each question, they submit the

question terms and the answer as query to a search engine and download top 1000 web

documents provided by the search engine. Next, they pass each sentence through a suffix

tree constructor. They use suffix trees for extracting all substrings of all lengths along

with counts. Suffix trees can be processed in time linear on the size of corpus and more

34

importantly, they don’t restrict the length of substrings. The above procedure is repeated

for all questions of the same question type. As a result, for the question type ”BIRTH-

DATE”, the most common substrings of extracted sentences are:

1. born in <ANSWER> , <NAME>

2. <NAME> was born on <ANSWER>

3. <NAME> (<ANSWER> -

4. <NAME> (<ANSWER> -)

Where, the tag <NAME> and <ANSWER> represent question term and answer term

respectively.

Next, they calculate precision of each pattern by the formula P = Ca/Co, where,

Ca is the number of patterns with answer term present; Co is the total number of patterns.

When extracting answers for a new question with pattern matching, they use the precision

scores to rank answer candidates.

(Wu et al., 2005) propose a supervised learning method to automatically generate

patterns from the Web and represent them a format of regular expressions which can

handle up to 4 question terms. Question types are defined as the abstracts of ordering

chunk sequences. For example, the questions ”When did the United States enter the

World War II?” and ”When did Amtrak begin operations?” belong to the question type

”when do np vp np”. The format of answer patterns are defined as regular expressions

with various chunk terms, such as ”NP”, ”VP”, ”VPN”, ”ADVP”,”be”, ”in”, ”of”,

etc. If more than one noun phrase occur in a question, they index the noun phrases

according to their occurring order in the question. The following are the examples of

answer patterns for the question type ”when do np vp np”:

1. NP1 VP NP2 in <Date>([∧ <>]+?)</Date>

2. NP2 in <Date>([∧ <>]+?)</Date>.{1,15} NP1

3. <Date>([∧ <>]+?)</Date> NP1 VP.{1,15} NP2

4. NP1’s NP2 in <Date>([∧ <>]+?)</Date>

35

They have more than 50 question types. The number of answer patterns varies

with the question types. Some question types have up to 500 patterns. The patterns with

the scores greater than 0.5 are applied in pattern matching.

To generate answer patterns for certain question type, they use TREC11, TREC12

and TREC13 questions and answers as training question-answer pairs. For each question-

answer pair, they choose top50 documents retrieved by Google. Then, the patterns are

generated from the documents by replacing question noun phrases with a symbol, such

as ”NP1”, ”NP2”. Each extracted pattern is scored by its precision Pri and frequency

Fi as follows:

Pri =
Ci

Ai + ε

(ε = 0 if Ai ≥ 5; ε = 1 if 3 ≤ Ai ≤ 4; ε = 2 if Ai ≤ 2)

Fi =
Ai∑n

k=1 Ak

Si = Pri × (1 + Fi)

where, Ai(i = 1, 2, ..., n) is the frequency of the pattern

Ci(i = 1, 2, ..., n) is the frequency of the pattern which leads to correct answer

Furthermore, they find that supervised iterative optimization is necessary to get

the more accurate pattern distribution. They apply the patterns whose scores are greater

than a threshold to sample questions and manually evaluate returned answers. For some

questions, correct answers which haven’t been included in original training question-

answer pairs will be found and added to the training set. This process is repeated until

no correct answers are found any more.

2.2.4 Machine Translation-based Approaches

(Echihabi and Marcu, 2003) introduce a probabilistic noisy-channel model for question

answering. Given a set of question-answer pairs (Q,SA), they train a probabilistic model

for estimating the conditional probability P (Q|SA). Once the parameters of the model

36

are learned, given a question Q and the set of sentences Σ returned by an IR engine,

one can find the sentence Si ∈ Σ and the answer in its Ai,j by searching for the Si,Ai,j

that maximizes the conditional probability P (Q|Si,Ai,j
). The core idea of the noisy-

channel model is to make explicit mapping from answer sentence parse trees to question

parse trees. It can be formulated as the computation of alignment probabilities for target

strings (questions) given source strings (answer sentences). The model is nothing but a

one-to-one reproduction of sentences which has been widely used in Statistical Machine

Translation (SMT) area. They use a publicly available SMT system - GIZA package

to automatically compute the Viterbi alignment probabilities between flattened answer

parse trees and question trees. In their experiment, they state that the noisy-channel

system outperform state-of-the-art rule-based systems that took many person years to

develop. It is remarkable that a SMT system can do so well in a totally different context -

open domain question answering. Furthermore, building dedicated systems that employs

the more sophisticated, QA-motivated generative stories is likely to yield significant im-

provements.

(Wang, Smith, and Mitamura, 2007) build on the idea that questions and correct

answer sentences relate to each other via loose but predictable semantic and syntactic

transformations. They propose a probabilistic quasi-synchronous grammar, inspired by

the one proposed for machine translation and parameterized by a mixture of a robust non-

lexical syntax alignment model(Base Model) with a lexical-semantics log-linear model.

The Base Model mainly considers three factors, including POS labels, named entity la-

bels and dependency relation labels, when aligning question words to answer sentence

words. The lexical-semantics-driven model further considers thirteen classes of Word-

Net relations between words, including ”identical-word”, ”synonym”, ”antonym”, ”hy-

pernym”, ”hyponym”, ”derived form”, ”morphological variation”, ”verb group”, ”en-

tailment”, ”entailed-by”, ”see-also”, ”causal relation” and ”q-word” relations. They

incorporate such relation features into a log-linear model. Finally, the model learns soft

37

alignments as a hidden variable in discriminative training. Experimental results using

TREC dataset are shown to significantly outperform traditional syntactic tree matching

methods.

2.2.5 Web-based Approaches

The vast amount of information available on the World Wide Web makes it an attractive

external resource for question answering (Clarke, Cormack, and Lynam, 2001; Clarke

et al., 2001; Breck et al., 2001; Dumais et al., 2002; Lin, 2002). Web data is viewed

as an enormous collection of unstructured, flat texts with tremendous amount of data re-

dundancy. Its immense size qualitatively changes the nature of question answering task

as compared to the same task on close corpora, such as news paper texts, encyclope-

dias, etc. Due to the data redundancy on the Web, any piece of information might be

stated in a variety of ways in different documents. Let’s borrow an example from (Lin,

2002): considering the question ”Who killed Lincoln?”, there are two possible answer

sentences:

1. John Wilkes Booth killed Lincoln.

2. John Wilkes Booth is perhaps America’s most infamous assassin. He is best

known for firing the bullet that ended Abraham Lincoln’s life.

Obviously, the answer could be much more easily extracted from the sentence(1) than the

passage(2). QA turns to be easier if answer sentences are stated as the simple reformula-

tions of questions. In this case, simple techniques, such as keyword-based retrieval and

surface pattern-based matching, can perform well although they are not good enough on

small corpora. The larger the text collection is, the greater the possibility of having sim-

ple statement is. Therefore, data redundancy can be used as a surrogate for sophisticated

natural language techniques.

Moreover, with the increase of data size, the quality and credibility of individual

documents are decreased. Some documents are poorly written, or contain incorrect in-

38

formation. As a result, answers extracted from a single document might not be trustable

enough to be globally correct. Data redundancy alleviates this issue since multiple oc-

currences of an answer in different documents lead to the higher credibility level.

Considering the above benefits, more and more QA systems incorporate Web

resource. The Web resource is mainly used in the two modules regarding the whole

system architectures: Answer Extraction Module (Wu et al., 2003; Wu et al., 2004; Wu

et al., 2005; Kaisser and Becker, 2004) and Answer Validation Module (Harabagiu et al.,

2005; Xu et al., 2002).

As the most representative work of using the Web resource in Answer Extraction

Module, the QA system of Fudan University (Wu et al., 2003; Wu et al., 2004; Wu

et al., 2005) is solely built on the Web data. They retrieve relevant snippets from the

Web using Google and find answers from the snippets. To construct queries for Google

search, they parse questions using LinkParser and then extract four constituents from the

parsed questions: subject, predicate, object and adverbial modifier. Next, queries are

formulated according to the constituents of the questions. For example, they splitted the

question ”What book did Rachel Carson write in 1962?” into the following constituents:

1. Rachel Carson - subject

2. wrote - predicate

3. in 1962 - adverbial modifier

The following queries from tight to loose are formulated from the above con-

stituents.

1. ”Rachel Carson wrote” ”in 1962”

2. ”Rachel Carson wrote” ”in 1962”

3. ”Rachel Carson” wrote in 1962

4. Rachel Carson wrote in 1962

From relevant snippets, they extract answers simply using a surface pattern match-

ing method. Different from other methods, they abstract question phrases using different

39

classes:

• Q Quotation: the quotation parts in a question;

• Q Focus: the key words representing the object or event which a question asks

about;

• Q NamedEntity: the name entities in a question;

• Q Verb: the main verb of a question;

• Q BNP: the noun phrases of a question.

The different classes of question phrases are assigned different weights in surface pat-

terns. Surface pattern matching scores are calculated by incorporating the weights.

(Kaisser and Becker, 2004) manually construct 157 surface patterns and make

strict and fussy surface pattern matching on the Web data. They further use a Google

Fallback Mechanism to backup the surface pattern matching methods. The Google Fall-

back Mechanism exploits n-gram information matching on Google snippets. Final scor-

ing function is designed as the linear interpolation of the strict surface pattern matching,

the fussy surface pattern matching and the Google fallback matching. The experiments

on TREC 2004 data show that the fallback mechanism performs better than the surface

pattern matching methods.

Besides directly finding answers from the Web, researches also use the Web data

in Answer Validation Module. It may effectively overcome the locally correct answer

problem. (Harabagiu et al., 2005) explore ”Web-boosting” features based on a web strat-

egy that utilizes general linguistic patterns to construct a series of search engine queries.

Once an answer candidate from TREC collection also occurs in web documents, an ad-

ditional feature capturing web redundancy information will be fired to boost the answer

candidate. As a result, the feature leads to another ranking of the answer candidates pro-

duced by the original Answer Extraction Module. The evaluation results on TREC 2005

data show that ”web-boosting” provide an added value of 69/331 to final factoid score.

40

(Xu et al., 2002) apply the Web data to supplement TREC corpus. For efficiency

consideration, they look for answers in Top 100 Google hits for a Web search and confine

whole web pages to short summaries in order to further reduce processing cost. Two

measures are proposed to incorporate the Web information:

1. The confidence of the answer A found from the Web is a function of the question

type T and the answer frequency F in Top 100 Google summaries. Specifically,

p(correct|Q,A) = p(correct|T, F)

= p(correct|T)× 0.5 + P (correct|F)× 0.5

where, T = question type, F = frequency of A in Google summaries

2. The confidence of the answer A is a function of its frequency F in Top 100 Google

summaries and a Boolean variable INTREC, which is true if and only if A is also

returned from the TREC corpus. Specifically,

p(correct|Q,A) = p(correct|F, INTREC)

As a result, they also confirm the positive findings reported in the earlier stud-

ies (Dumais et al., 2002). The experiments on TREC 2002 data show that answer fre-

quency in Top 100 Google summaries is a strong predictor of answer correctness.

2.2.6 Paraphrasing-based Approaches

Different from previous methods which mainly focus on the analysis of retrieved sen-

tences using linguistic processing, statistical tools or external resources, paraphrasing-

based approaches put more efforts on question analysis. They observe that the more

alternative queries representing surface forms of answer sentences are generated from

questions, the more likely proper answers occur in the retrieved sentences. The varia-

tions of queries are automatically generated by using paraphrasing techniques.

41

Event
Mississippi

Members

First
European

River
1541

Hernando &
Soto &

De
Mississippi

Spanish
French

Find
Discover

Figure 2.3: Example of the event constructed from the question ”What Spanish explorer
discovered the Mississippi River?”

(Yang and Chua, 2002; Yang et al., 2003) propose an event mining-based method

for question processing. The method is summarized as the following steps:

1. To bridge semantic gaps between query space and document space, they integrate

the knowledge of pre-retrieved TREC documents, Web, WordNet and manually

constructed Ontology to extract additional evidence for an original query. There-

fore, the new query contains terms that are related to the local/lexical contexts of

the knowledge resources.

2. They perform event construction to discover different elements of an event and

further mine relationships between elements which are represented as association

rules.

3. They employ the event knowledge to perform boolean query formulation.

4. Given the newly formulated queries, relevant documents are retrieved and answers

are extracted by matching association rules between the elements.

Figure 2.3 shows the example of the event constructed from the question ”What Spanish

explorer discovered the Mississippi River?”.

(Kaisser, 2006; Kaisser, Scheible, and Webber, 2006) propose a natural lan-

guage generation-based question analysis. They generate potential answer templates

42

on the basis of FrameNet paradigm and use the answer templates to induce queries.

The queries are sent to Google search engine and the retrieved snippets are further an-

alyzed. If a snippet matches one of the answer templates, the answer will be extracted

straight. For example, given the question ”Who purchased YouTube?”, the frame ”Com-

merce buy” is evoked by the question predicate ”purchase”. Furthermore, the question

key phrases (”who” and ”YouTube”) are assigned with the frame elements (”FE Buyer”

and ”FE Goods”) respectively.

Who → ”FE Buyer” purchase → ”Lexical Unit” YouTube → ”FE Goods”

Using FrameNet annotated sentences, they generate the following potential an-

swer templates.

1. ANSWER[NP] (has|have|had) purchased YouTube

2. YouTube (was|were) purchased by ANSWER[NP]

3. ANSWER[NP] (has|have|had) bought YouTube

4. YouTube (has|have|had) been bought by ANSWER[NP]

5. ANSWER[NP-Genitive] purchase of YouTube

6. YouTube (has|have|had) been sold to ANSWER[NP]

7. YouTube (has|have|had) been retailed to ANSWER[NP]

They consider not only various lexical units in one frame but also lexical units in inter-

related frames. In the above example, the lexical units ”purchase.v”,”buy.v” and ”pur-

chase.n” (shown in the answer templates {1, 2, 3, 4, 5}) are considered since they are

evoked by the frame ”Commerce buy”. Moreover, the lexical units ”sell.v” and ”re-

tail.v” (shown in the answer template {6, 7}) are also considered since they are evoked

by the frame ”Commerce sell” which has the ”is perspectivized in” relation with the

original frame ”Commerce buy”.

Lastly, answers are extracted by matching the potential answer templates and ex-

pected answer types.

43

2.2.7 Knowledge-based Approaches

Besides exploring a unified model, such as inference model, statistical model, machine

translation model and paraphrasing model, to integrate various evidences around answer

candidates, some researchers only use simple scoring functions to incorporate these ev-

idences and rank answer candidates. We call them Knowledge-based approaches since

they mainly put their efforts on mining informative evidence/knowledge rather than de-

veloping mathematic models.

Amsterdam Textual QA System, Tequesta (Monz and Rijke, 2001), build Answer

Extraction Module based on dependency structure matching. The dependency structures

are formed by three types of basic constituents, such as noun phrase(NP), prepositional

phrase(PP) and verb group(VG). VG is the head of a dependency structure; NP and

PP in its vicinity are the arguments or modifiers of the VG. They generate dependency

structures of questions and answer sentences respectively. Then they make comparison

between the question structures and the answer sentence structures. Given two structures,

the comparison involves two steps

• Checking whether the VGs of the structures match;

• Checking the overlap between the arguments of the structures.

Finally, answer candidates are ranked by a heuristic scoring function which takes into

account the above two comparison steps.

BBN (Xu et al., 2002; Xu, A.Licuanan, and Weischedel, 2003) develop Answer

Extraction Module according to the degree of matching between questions and answer

sentences. The matching is defined on the syntactic and semantic levels. In addition,

several additional heuristic rules are defined to penalize answers for a variety of reasons:

• Expected answer type matching: for the question ”How long did the Manson trial

last?”, the answer candidate ”20 miles” is semantically mismatched.

44

• Vagueness penalty: for the question ”Where is Luxor?”, the answer ”on the other

side” is too vague.

• Negation penalty: for the question ”Who invented the electric guitar?”, there is a

negation in the candidate sentence ”Fender did not invent the electric guitar”.

To perform the above penalization, they incorporate external knowledge including Word-

Net hierarchy, internal quantity, calendar conversion routines and abbreviation routines.

(Bos, 2006) explore linguistically-principled knowledge in Answer Extraction

Module. They use Combinatory Categorical Grammar (CCG) to generate syntactic struc-

tures of questions and potential answer contexts, and formalize the matching of questions

and answer sentences according to Discourse Representation Structure(DRS). The key

idea of the module is to use semantics to prune answer candidates, thereby exploiting

lexical resources such as WordNet and NomLex to facilitate the selection of answers.

The following information is considered in the module:

• Synonyms and hyponyms for nouns and verbs derived from WordNet;

• Hyponyms for nouns harvested from corpora using lexical patterns;

• Nominalization rules generated from NomLex;

• Specialized knowledge, such as attributes (colour, shape), and geographical knowl-

edge (continent, state, country, capital);

• A couple of hand-crafted general inference rules.

45

Chapter 3

Architecture of the Question Answer

System

We, Spoken Language Systems of Saarland University, develop a statistically-inspired

open-domain Question Answering research system (Alyssa). The system serves as an

experimental platform for QA researchers and allows carrying out a wide range of indi-

vidual module experiments easily and flexibly. The focus of the thesis, Answer Extrac-

tion, is setup on the basis of the Alyssa system. Therefore, before discussing the Answer

Extraction methods in Chapter 4 5 and 6, I will give a brief overview how the Alyssa

system works in this chapter.

The Alyssa system consists of six basic modules, including Question Processing

Module, Document Retrieval Module, Sentence Retrieval Module, Sentence Annotation

Module, Answer Extraction Module and Answer Validation Module. The modules are

connected through a pipeline structure, as shown in Figure 3.1. A user question firstly

undergoes the Question Processing Module, a phase in which several steps are involved

independently. The type of the question is determined and a series of linguistic analysis

is carried out, including key phrase extraction, syntactic parsing and semantic analysis.

Moreover, a query is constructed from the question and is run against the Document

46

Aquaint
Corpus

Question

Question Processing

Document Retrieval 1

Sentence Retrieval

Answer Extraction

Answer Validation

Document Retrieval 2Lemur
Indexing

Wikipedia
Corpus

Luene
Indexing

Passage Retrieval

Definition
Answer

Factoid / List
Answer

FrameNet

WordNet

Aquaint
Answer Candidates

Wikipedia
Answer Candidates

Google
DB

Answer Candidates

Structured
Database

Figure 3.1: Architecture of the Alyssa Question Answering System

47

Retrieval Module on the Aquaint and Wikipedia indexes. An optional co-reference step

allows pronouns or NPs to be replaced by their antecedents. The Sentence Retrieval

Module is implemented based on language modeling techniques, and extracted relevant

sentences undergo further linguistic analysis in the Sentence Annotation Module before

being fed into the Answer Extraction Module. The Answer Extraction Module collects

various features from the contexts of answer candidates and integrates them in a super-

vised machine learning model. Finally, the answer candidates are validated in the Answer

Validation Module by further incorporating evidence from Web and structured Database.

As an experimental platform, most of the modules are still under construction.

The main functions and methods of the current version are introduced as follows.

3.1 Question Processing Module

Question Processing Module provides a series of question analysis, including question

preprocessing, expected answer type identification, key phrase extraction and extension,

surface pattern matching, syntactic and semantic structure generation.

3.1.1 Question Preprocessing

After question tokenization, we apply a simple anaphora resolution strategy to relate

the question target to one of the question key words. The strategy is conducted in the

following three steps:

1. The pronouns of the question are replaced with the question target.

2. For each noun phrase in the question, if it has the same head word as the target and

the shorter length than the target, it will be replaced with the target.

3. If the question hasn’t contained the target after the previous steps, a noun phrase

in the question is chosen heuristically and replaced with the target.

48

ABBREVIATION
 abbreivation, expression abbreviated

ENTITY
 animal, body, color, creative, currency, diseases, event, food, instrument,
 language, letter, other, plant, product, religion, sport, substance, symbol,
 technique, term, vehicle, word

DESCRIPTION
 definition , description, manner, reason

HUMAN
 group, individual, title, description

LOCATION
 city, country, mountain, other, state

NUMERIC
 code, count, date, distance, money, order, other, period, percent, speed,
 temperature, size, weight

Figure 3.2: Expected Answer Type Taxonomy

3.1.2 Expected Answer Type Identification

The identification of expected answer’s semantic categories is crucial for narrowing down

answer searching space. For example, for the question ”Which terrorist organization

claimed responsibility for the massacre?”, once we know the answer is an ”ORGANIZA-

TION” name, we may get the answer from the smaller candidate set which only contains

organization names. There is no doubt that the correct identification of expected answer

types will greatly ease the work of further modules. We use the answer type taxonomy

as proposed in (Li and Roth, 2002). It includes 6 coarse and 50 fine grained semantic

classes, as shown in Figure 3.2.

Based on the taxonomy, the expected answer type (EAT) identification is formal-

ized to a classification task by using a Bayes classifier with language models. In terms

49

of classification paradigm, we start with the Bayes classifier:

c∗ = argmaxcP (Q|c)P (c)

The Bayes classifier is known to produce the minimum number of misclassifications if

the correct probabilities are known (Q is the question and c is the question type). The

probability P (Q|c) can easily be calculated using a language model (LM) trained on all

questions of the class c. The major advantage of the language modeling approach is that

we can draw on a vast amount of available techniques to estimate and smooth probabili-

ties even if there is very little training data available. We use the 5500 questions provided

by the Cognitive Computing Group as University of Illinois at Urbana Champaign 1 for

training. On average, there are only about 100 training questions per question type.

Specifically, we evaluate absolute discounting, linear interpolation and Dirichlet prior as

smoothing techniques. It turns out that the absolute discounting in a variant known as

Kneser-Ney smoothing for bigram language models achieves the best results.

The prior P (c) is considered as a unigram language model as well. However, as

all classes are seen sufficiently often (that is at least 4 times), there is no smoothing issue

at all and relative frequencies are used.

The experiments on TREC 10 data set show that the approach achieve the per-

formance of 80.8% accuracy which outperform all of the systems in current literatures,

such as Naive Bayes (67.8%), Neural Network (68.8%), SNoW (75.8%), Decision Tree

(77.0%) and SVM (80.2%). Andreas Merkel (Merkel and Klakow, 2007b; Merkel and

Klakow, 2007c) gives the detailed information about the approach.

3.1.3 Key Phrase Extraction and Extension

Key phrases (verbs and noun phrases) are extracted from questions by searching in chunk

trees. We apply Abney’s Chunker (Abney, 1989) to generate the chunk trees of questions.
1The training questions of Expected Answer Type Identification is available in http://l2r.cs.

uiuc.edu/\˜cogcomp/Data/QA/QC/

50

Individual words in key phrases are further semantically expanded by using external

resources, such as WordNet and Wikipedia. The word expansion somehow fills in lexical

gaps between questions and answer sentences. Moreover, it is the basis of the tolerant

question phrase mapping algorithm which will be discussed in Section 3.5.1. Common

words and proper words are treated differently in view of the expansion. For the common

words, we consider their morphological, format and semantic variations respectively.

Morphological Variation It indicates the inflections of nouns/verbs and expands a word

using the words which share the same lemma. For example, for the question ”How

many Olympic gold medals did Carl Lewis win?”, we expand the verb ”win” with

its nominal ”winner”, which leads to the mapping from the question verb ”win”

to the word ”winner” in the answer sentence ”Carl Lewis, winner of nine Olympic

gold medals, thinks that ”; For the question ”Where do Rhodes scholars study?”,

we expand ”scholar” with ”scholarships”, which leads to the mapping from the

noun phrase ”Rhodes scholars” to the phrase ”Rhodes scholarships” in the answer

sentence ”Rhodes scholarships provide two or three years study at University of

Oxford in England.”. The morphological alternations are found based on a stem-

ming algorithm and ”derivationally related forms” in WordNet (Miller, 1990).

Format Variation It copes with special characters, such as ”-”, ” ”, ”&”. For example,

”Ice-T” is expanded as ”Ice T” and ”IceT”; ”Abercrombie & Fitch” is expanded

as ”Abercrombie and Fitch” and ”Abercrombie Fitch”.

Semantic Variation It considers the synonyms of words. Some types of semantic re-

lations, such as hypernym, hyponym and entailment, enable the retrieval of syn-

onyms. For example, for the question ”Who invented the electric guitar?”, we

expand the verb ”invent” using its direct hypernym ”create”. We search these

semantic relations in WordNet and eXtended WordNet by using the same seman-

tic path finding algorithm as (Moldovan and Novischi, 2002). For efficiency, the

51

search depth is set to 2 in our system.

For the proper words, such as Person and Organization names, we expand them

using their alternative names such as full names or abbreviations. This information is

collected from the link redirection information of Wikipedia articles. For example, the

titles ”United States”, ”US”, ”U.S.” and ”USA” in Wikipedia actually refer to one arti-

cle. We can find the reference information in the ”Redirection:” sessions of Wikipedia

article XML files 2. Finally, we build a dictionary for the entity name expansion by

collecting and processing all of the redirection information in the whole Wikipedia site.

Let show an example of the expansion: for the question ”When did Jack Welch become

chairman of General Electric?”, we expand ”General Electric” with ”GE”, which makes

it possible to extract the proper answer ”April 1981” from the sentence ”Welch became

GE’s chief executive in April 1981, so the date will mark his 20th anniversary.”. Fig-

ure 3.3 shows another example of the question word expansion, where, the common

word ”headquartered” is expanded with its morphological variations ”v. headquarter”

and ”n. headquarters” and the proper name ”IMF” is expanded with its full name ”Inter-

national Monetary Fund”.

3.1.4 Surface Pattern Matching

Considering that there are questions with very high frequency to be asked in TREC, we

build question patterns to map high frequent questions to classes and extract answers for

the questions using answer patterns. In this section, I will briefly discuss question pattern

matching and answer pattern matching respectively.

Different from (Kaisser and Becker, 2004) and (Wu et al., 2005), question classes

are defined in terms of semantic meaning but not syntactic structures. A question pattern

consists of three elements:
2The Wikipedia articles are available to download from http://en.wikipedia.org/wiki/

Wikipedia:Database_download

52

Q: In which city is theIMF headquartered?

IMF International Monetary Fund
headquartered v. headquarter, n. headquarters

Sent: Visiting theInternational Monetary Fund 's Washingtonheadquarters
 for the first time, Arafat said theIMF already had provided advice that

 enabled the Palestinian Authority to overcome many hurdles in establishing
 institutions and laws.

Figure 3.3: An example of question word expansion

• BFORM is the basic chunk sequence form of the question pattern;

• CONS contains a set of constraints which question pattern matching is required to

subject to;

• SLOTS is session which connects question pattern matching to answer pattern

matching. It contains a set of slot assignment. Each slot assignment records which

question key chunks will be used to fill in the corresponding slots of answer pat-

terns.

Figure 3.4 shows a set of question patterns for the question class ”SYNONYM”. Given

a question, it is passed to all question classes one by one. For each class, the question

is compared with each question pattern (QPTN) in the class. Firstly, the question chunk

sequence is matched to the basic form (BFORM) of the pattern. If it matches, we further

check whether the constraints (CONS) of the pattern are satisfied by the key chunks of

the question. Once all constraints are satisfied, the question is matched to the pattern

and classified into the corresponding class. Furthermore, the slot session (SLOTS) of the

pattern records which key chunks of the question will be used to fill in the corresponding

slots of answer patterns. For example, given a question ”What does AARP stand for?”,

53

the question chunk sequence ”what do np0 vb0?” is matched to the basic form ”what do

np0 vb0” of the pattern in Figure 3.4. Moreover, the question satisfies the constraint that

the key chunk ”vb0” belongs to one of the phrases ”mean|(translate to)|(refer to)|(stand

for)” defined in the variable session (VARS). As a result, we match the question to the

question pattern and classify it into the ”SYNONYM” class.

In the current version, 31 question classes, as shown in Figure 3.5 are considered

in the system. We manually build a set fo question patterns for each class. In TREC

2006, 92 among total 403 factoid questions are matched to one of the question classes.

Besides question patterns, we also build answer patterns (APTN) to extract an-

swers for the questions which belong to one of the predefined question classes. An

answer pattern indicates expected answer position in surface sentences. Answer patterns

are represented as regular expressions over tokens, containing three variables:

• slot is bound to the key chunks of questions. A question chunk, expected by certain

slots, is assigned in the slot session of the corresponding question patterns. For

example, in the second question pattern of Figure 3.4, ”slot0” expects the question

key chunk ”np1” while in the third question pattern, ”slot0” expects the question

key chunk ”np0”.

• var is a set of special alternative words, which are usually shared by various pat-

terns and also used in the question patterns. For instance, in Figure 3.4, ”var0” is

set the value as ”name|nickname|alternate|abbreviation|acronym|expansion”.

• ANSWER indicates expected answer.

Figure 3.6 shows a set of answer patterns for the question class ”SYNONYM”. Pat-

terns are manually authored for the system. However, TREC 2006 results show that the

coverage is not satisfactory since only 12 questions can be correctly answered by the

surface pattern matching. The results motivate us to explore deeper linguistic analysis

and incorporate more external resources for Answer Extraction.

54

<CLASS key="SYNONYM">
<QPTN_SET>
 <QPTN>
 <BFORM>(who|what) be np0 \?</BFORM>
 <CONS>
 </CONS>
 <SLOTS>
 <SLOT key="slot0">np0</SLOT>
 </SLOTS>
 </QPTN>
 <QPTN>
 <BFORM>what be np0 (of|for) np1 \?</BFORM>
 <CONS>
 <CON key="np0">var0</CON>
 </CONS>
 <SLOTS>
 <SLOT key="slot0">np1</SLOT>
 </SLOTS>
 </QPTN>
 <QPTN>
 <BFORM>what be np0 's np1 \?</BFORM>
 <CONS>
 <CON key="np1">var0</CON>
 </CONS>
 <SLOTS>
 <SLOT key="slot0">np0</SLOT>
 </SLOTS>
 </QPTN>
 <QPTN>
 <BFORM>what do np0 vb0 \?</BFORM>
 <CONS>
 <CON key="vb0">var1</CON>
 </CONS>
 <SLOTS>
 <SLOT key="slot0">np0</SLOT>
 </SLOTS>
 </QPTN>
 <QPTN>
 <BFORM>what be np0 vb0</BFORM>
 <CONS>
 <CON key="vb0">var2</CON>
 </CONS>
 <SLOTS>
 <SLOT key="slot0">np0</SLOT>
 </SLOTS>
 </QPTN>
<QPTN_SET>
<VARS>
 <VAR key="var0">name|nickname|alternate|abbreviation|acronym|expansion</VAR>
 <VAR key="var1">mean|(translate to)|(refer to)|(stand for)</VAR>
 <VAR key="var2">call|name</VAR>
</VARS>
</CLASS>

Figure 3.4: Example of question patterns for ”SYNONYM” class.

55

Question Class Example

WHO_CREATE Who discovered prions?

WHAT_CREATE What did Edward Binney and Howard Smith invent in 1903?

WHEN_CREATE When was the International Criminal Court established?

WHERE_CREATE When was the Black Panthers organization founded?

WHAT_BE_ORG_OF_PERSON What record company is Fred Durst with?

WHO_BE_PRESIDENT_OF_ORG Who is AARP's top official or CEO?

WHO_BE_MEMBER_OF_ORG Who are the members of Insane Clown Posse?

WHEN_BORN When was James Dean born?

WHERE_BORN Where was James Dean born?

WHEN_DIE When did Franz Kafka die?

WHERE_DIE Where did Franz Kafka die?

HOW_DIE What did James Dean die of?

HOW_OLD_DIE How old was Jean Harlow when Jean Harlow died?

WHERE_BURY Where is Jean Harlow buried?

NATIONALITY What is minstrel Al Jolson's nationality?

OCCUPATION What was Gordon Gekko's profession?

WHO_MARRY Who is Tom Cruise married to?

WHO_FATHER Who was Horus father?

WHO_MOTHER Who was Horus mother?

WHERE_LIVE Where does Jennifer Capriati live?

WHERE_ORG_LOCATE Where is AARP's headquarters?

SYNONYM What does AARP stand for?

PRODUCT What kind of business is Abercrombie & Fitch?

WHO_BE_IN_EVENT Who was the on-board commander of the submarine Kursk?

WHEN_EVENT_HAPPEN When was the first Crip gang started?

WHEN_EVENT What year was Alaska purchased?

WHERE_EVENT_HAPPEN In what country did the game of croquet originate?

WHERE_EVENT Where was the Miss Universe 2000 contest held?

PRIZE What prizes or awards has Frank Gehry won?

HOW_MANY_MEMBER How many seats are in the cabin of a Concorde?

SPECIFICATION What color are UPS trucks?

Figure 3.5: Question classes and examples

56

<CLASS key="SYNONYM">
<APTN_SET>
 <APTN>slot0(,)?(who| which)? be born ANSWER , </APTN>
 <APTN>slot0(,)?(who| which)? be(\\w+)? (call|know as) ANSWER , </APTN>
 <APTN>slot0 (, whose|'s)(\\w+| ,| \(| \)){0,5} (var0) be ANSWER</APTN>
 <APTN>slot0 (be|,) (var0) (of|for) ANSWER</APTN>
 <APTN>slot0 \((born)? ANSWER \)</APTN>
 <APTN>slot0 \[(born)? ANSWER \]</APTN>
 <APTN>slot0 ,(\\w+| ,| \(| \)){0,5} know as ANSWER</APTN>
 <APTN>change name from ANSWER to(\\w+| ,| \(| \)){0,5} slot0</APTN>
 <APTN>ANSWER(,)?(who| which)? be born slot0 , </APTN>
 <APTN>ANSWER(,)?(who| which)? be(\\w+)? (call|know as) slot0 , </APTN>
 <APTN>ANSWER (, whose|'s)(\\w+| ,| \(| \)){0,5} (var0) be slot0</APTN>
 <APTN>ANSWER (be|,) (var0) (of|for) slot0</APTN>
 <APTN>ANSWER \((born)? slot0 \)</APTN>
 <APTN>ANSWER \[(born)? slot0 \]</APTN>
 <APTN>ANSWER ,(\\w+| ,| \(| \)){0,5} know as slot0</APTN>
 <APTN>change name from slot0 to(\\w+| ,| \(| \)){0,5} ANSWER</APTN>
</APTN_SET>
</CLASS>

Figure 3.6: Example of answer patterns for ”SYNONYM” class.

57

3.1.5 Syntactic and Semantic Structure Generation

We generate syntactic structures with MiniPar (Lin, 1994) and represent a syntactic struc-

ture as a set of dependency relation paths. We further generate FrameNet-style semantic

structures with the model proposed in Chapter 5 and represent a semantic structure as a

bipartite graph. Question syntactic and semantic structures will be further used in An-

swer Extraction model by matching the corresponding structures of answer candidates.

They are the focus of the thesis, therefore, I will discuss in detailed in the Chapter 4 and 5

respectively.

3.2 Document Retrieval Module

The Lemur Toolkit for Language Modeling and Information Retrieval 3 is used for doc-

ument retrieval. Queries as well as the AQUAINT Corpus are stemmed with Porter

stemmer and no stop-word removal is done. As mentioned above, we choose a language

modeling-based approach for the retrieval step using unigram distributions. The smooth-

ing method we use is Bayesian smoothing with Dirichlet priors. As shown in (Hussain,

Merkel, and Klakow, 2006), the smoothing with Dirichlet prior performs best in context

of document retrieval experiments and even outperforms traditional information retrieval

techniques like Okapi and TFIDF. (Hussain, Merkel, and Klakow, 2006) also suggests

an optimal smoothing parameter for TREC question sets which we used in the Alyssa

system as well. After the retrieval step, we fetch the best N relevant documents and send

them to Sentence Retrieval Module. Currently, we set N = 60 because the number is

most sufficient in previous TREC runs to get about 90% of answers within the relevant

documents.
3The Lemur Toolkit is available to download in http://www.lemurproject.org/

58

3.3 Sentence Retrieval Module

Before starting sentence retrieval, we firstly run a sentence boundary detection to iden-

tify possible ends of sentences. Next, the sentences as well as the queries are stemmed

using Porter stemmer. Parallel to the stemming process, we expand the queries and the

sentences. If the expected answer type of a query is DATE then the token ”DATE” is

added at the end of the query. The sentences are prepared in almost the same manner.

Here, patterns are used to identify possible occurrences of time and date information.

Due to the expansion, possible answer candidates for the expected answer type ”DATE”

are ranked higher. To get an optimal score for these kinds of queries we introduce a

weighting scheme and experimentally determine the specific weight.

Again an unigram language modeling based technique is used to rank the sen-

tences. In detail we use Bayesian smoothing with Dirichlet prior which is given by the

following formula:

pµ(w|d) =
c(w; d) + µp(w|C)∑

w c(w; d) + µ

Where c(w; d) means the count of the word w in the sentence d, C is the collection of

sentences and µ is the smoothing parameter.

We choose this kind of smoothing because it has already performed promising

for document retrieval. As the smoothing parameter, we choose the interpolation weight

µ = 100 by searching in complete parameter space. Experiments show that this method

actually performs better than Jelinek-Mercer linear interpolation and absolute discount-

ing.

In addition to the unigram language modeling, we try other language modeling

methods for the sentence ranking task. We use the LSVLM toolkit, which is the Lan-

guage Modeling toolkit from LSV 4 and implements standard language modeling tech-

niques. We decide to use this particular toolkit in the Sentence Retrieval Module rather

4Lehrstuhl fuer Sprachsignalverarbeitung

59

than the Lemur Toolkit due to the flexibility. It is easy to switch between various lan-

guage models for interpolation or to manipulate vocabulary. In our case, we close the

vocabulary over the queries to get the better performance as described in (Merkel and

Klakow, 2007a).

Another preparation step is to include a dynamical list of stop-words. The list

consists of four most commonly used terms of the complete sentence collection. How-

ever, these words are not removed but just get a smaller score. Again a weighting scheme

is used to optimally score the stop-words.

Finally, query words, such as ”what”, ”when”, ”who”, are removed. In most

cases the query words have no meaning in terms of searching for relevant sentences so

removing them gives the higher score for the rest of possible relevant query words.

3.4 Sentence Annotation Module

Sentence Annotation Module conducts a series of linguistic analysis on the retrieved sen-

tences, such as named entity recognition, noun phrase chunking and dependency parsing.

As discussed in Section 3.1.2, the Question Processing Module identifies the expected

answer types of questions. The answer type taxonomy includes 6 coarse and 50 fine

grained semantic classes. Therefore, the Sentence Annotation Module is required to rec-

ognize the 50 types of named entities in sentences. We apply different strategies to cope

with different named entity types.

For HUMAN and LOCATION classes, we use Lingpipe 5, a public available

named entity recognizer, to identify PERSON, ORGANIZATION and LOCATION names.

Since Lingpipe doesn’t intend to distinguish the sub-types of LOCATION, we use a

trigger-word-based method to judge the sub-types. For example,

• The sub-type ”MOUNTAIN” is triggered by the words ”peak”, ”mountain” and

5The Lingpipe software is available to download in http://www.alias-i.com/lingpipe

60

”mount”;

• The sub-type ”OCEAN” is triggered by the words ”gulf”, ”sea”, ”bay” and ”ocean”;

• The sub-type ”LAKE” is triggered by the words ”reservoir”, ”lough”, ”lake” and

”dam”;

For NUMERIC names, a rule-based method is firstly used to identify numeric

expressions in texts. Next, the numeric expressions are classified into the sub-types of

the NUMERIC according to their units. For example,

• The units ”meter”, ”mile” and ”lightyear” represent the sub-type ”DISTANCE”;

• The units ”kelvin” and ”celsius” represent the sub-type ”TEMPERATURE”;

• The units ”ounce” and ”kg” and ”ton” represent the sub-type ”WEIGHT”;

Analogously, the rule-based method is also used to recognize DATE and ABBREVIA-

TION names.

For ENTITY names, two strategies are employed:

• Since some types, such as ”COLOR”, ”LANGUAGE”, ”CURRENCY” and ”RE-

LIGION”, have relatively limited size of entities, we create the complete entity

lists of the types from Wikipedia.

• Some types, such as ”DISEASES”, ”CREATIVE”, ”FOOD”, ”TECHNIQUE”

and ”EVENT” are more difficult to recognize since they neither have limited size

of entities nor have obvious rules to capture. They might be recognized by the

support of trigger word lists or comprehensive knowledge databases. We haven’t

handled them in the current version and put them in our ongoing work schedule.

Moreover, our system is disable to recognize DESCRIPTION names as well.

61

S: Black quarterbacks who succeeded in a pro-style passing offense, like the University of
 Washington's Warren Moon, were asked to switch positions .

Chunking Results:

[BNP Black quarterbacks] who [VB succeeded] in [BNP a pro-style passing offense] , like
[NP [BNP_ORG the University of Washington] 's [BNP_PER Warren Moon]] , were asked
to [VB switch] [BNP positions] .

Parsing Results:

asked

quarterbacks

Black E

who succeeded

in

a

offense

style passing

pro -

like

Moon

Warren Washington

the University of 's

were switch

to positions

obj

mod

mod mod

lex-mod lex-mod

det

pcomp-n

mod

iwhn

rel

mod-before

compl

lex-mod gen

det
lex-mod lex-mod

poss

be i

aux obj

Figure 3.7: Example of named entity recognition, chunking and parsing results of a raw
sentence.

62

After recognizing named entities in sentences, we further chunk the noun phrases

of the sentences with Abney’s chunker (Abney, 1989) and parse the sentences with Mini-

Par (Lin, 1994), a fast and robust parser for grammatical dependency relations.

Figure 3.7 shows an example of named entity recognition, chunking and parsing

results of a raw sentence. In the named entity recognition result, ”the University of Wash-

ington” is recognized as ”ORGANIZATION” name and ”Warren Moon” is recognized

as ”PERSON” name. In the chunking result, the noun phrases and verbs are annotated

with square brackets. The tags in the square brackets are explained as follows:

• NP is noun phrase;

• BNP is base noun phrase. It is defined as the smallest noun phrase in which no

other noun phrases are embedded.

• VB is verb or verb phrase.

In addition, the parsing result is represented as a tree structure. Each node represents

a word and the edge between two nodes indicates the dependency relation between the

nodes, such as ”example” is surface subject (”example”) of the word ”example”. Totally,

there are 42 dependency relations predefined in the Minipar.

3.5 Answer Extraction Module

Answer Extraction Module works on annotated sentences to pinpoint answers by using

more linguistic-motivated analysis. Since QA turns to find exact answers rather than text

snippets in recent years, answer extraction becomes more and more crucial.

Considering the goal of the Alyssa system is to handle TREC-style factoid ques-

tions, we don’t spend much efforts to deal with the following question types:

• Complicated questions which consist of multiple sentences;

63

• Unfactoid questions. The questions expect answers to be verb phrases, such as

the answer of the question ”What is the mission of International Finance Corpo-

ration?” is ”promote private sector investment in developing countries” , or sen-

tences, such as the answer of the question ”How did Cincinnati get its name?” is

”The society was named for Cincinnatus, a Roman patriot who returned to his farm

after saving his city in battle, and this city, in turn, was named for the society.”, or

paragraphs, such as the question ”What are the opening words of the Declaration

of Independence?”.

On the summary, the question is required to be only one sentence and the corre-

sponding answer is supposed to be a noun phrase rather than the other granularities of

texts. Considering noun phrases (NP) as well as verbs (VB) are the most informative

elements of sentences, we define these phrases as the basic units to analyze.

• When mapping question words to relevant sentences, we conduct phrase-based

mapping rather than word-based mapping;

• Dependency relations between two phrases are analyzed, such as < NP1, NP2 >

and < NP, V B >. However, dependency relations within a noun phrase are not

considered, such as the mod relation between an adjective word and its head noun.

• All of the noun phrases in sentences are regarded as answer candidates.

3.5.1 Question Phrase Mapping

Most of Sentence Retrieval and Answer Extraction Modules follow the assumption that a

question has word-level or phrase-level overlapping as large as possible with its relevant

sentences. The hypothesis supervises the Alyssa system to judge how relevant of sen-

tences to answer a question (Sentence Retrieval Module) and which part of the relevant

sentences may exactly answer the question (Answer Extraction Module). Therefore, be-

fore we conduct answer extraction, we detect which is the word or phrase overlapping

64

between a question and its relevant sentences. We call this process as Question Phrase

Mapping which is to map the noun phrases and verbs in a question to relevant sentences.

During the mapping, we consider morphological, format, semantic and proper name

variations between individual words. These variations are detailedly discussed in Sec-

tion 3.1.3. On the basis of individual word mapping, we propose two methods for phrase

mapping: Weighted Edit Distance Method and Approximate Phrase Mapping Method.

Weighted Edit Distance Method Weighted Edit Distance Method is to find the simi-

larity between two phrases by computing the minimal cost of operations needed to trans-

form one phrase into the other, where, an operation is an insertion, deletion, or sub-

stitution action. Different from commonly-used edit distance algorithm (Levenshtein,

1965), the weighted edit distance method defines the more flexible cost function which

incorporates the variations of individual words.

According to the observation of the task, we set the substitution costs of the vari-

ations as follows:

1. Identical words have cost 0;

2. Words with the same morphological root have cost 0.2;

3. Words with the hypernym or hyponym relations have cost 0.4;

4. Words in the same SynSet have cost 0.6;

5. Words with subsequence relations have cost 0.8;

6. otherwise, words have cost 1.

Approximate Phrase Mapping Method Approximate Phrase Mapping Method sep-

arates a noun phrase into a set of heads H = {h1, ..., hi} and a set of modifiers M =

{m1, ...mj}. The following heuristic rules are applied to judge heads and modifiers:

65

• If a noun phrase is a named entity, all words are heads.

• The last word of a noun phrase is head.

• The Rest words are modifiers.

The similarity between two noun phrases Sim(NPq, NPs) is defined as the linear inter-

polation of head similarity and modifier similarity.

Sim(NPq, NPs) = λSim(Hq, Hs) + (1− λ)Sim(Mq,Ms)

Sim(Hq, Hs) =

∑
hi∈Hq

∑
hj∈Hs

Sim(hi,hj)

|Hq
⋃

Hs|

Sim(Mq,Ms) =

∑
mi∈Mq

∑
mj∈Ms

Sim(mi,mj)

|Mq
⋃

Ms|

Furthermore, the similarity between two heads Sim(hi, hj) are defined as:

• Sim = 1, if hi = hj on morphological variations;

• Sim = 1, if hi = hj on format variations;

• Sim = SemSim(hi, hj)

Particularly, the similarity between two modifiers Sim(mi,mj) only incorporates mor-

phological and format variations; the similarity between two heads of named entities

Sim(hne
i , hne

j) incorporates morphological, format and proper name variations, such as

the name ”Sacajawea” has the proper name variation ”Sacagawea”. Moreover, verb sim-

ilarity measure Sim(v1, v2) is the same as the head similarity measure Sim(hi, hj).

3.5.2 Answer Candidate Ranking

After mapping question key phrases to answer sentences, we conduct answer extraction

on the mapped relevant sentences. We regard answer extraction as an answer candidate

66

ranking task. Rich evidence, including orthographics, syntactics and semantics are cap-

tured around answer candidates and further incorporated into a Maximum Entropy-based

ranking model. Finally, a list of top-ranked answer candidates is returned. This part is

the focus of the thesis and will be detailedly discussed in Chapter 4 5 and 6

3.6 Answer Validation Module

Answer Validation Module validates extracted answers using additional resources, such

as knowledge databases and Web data. The Alyssa system conducts two kinds of valida-

tion: Knowledge-based Validation and Web-based Validation.

3.6.1 Knowledge-based Validation

The motivation to add a knowledge-based validation to the existent system is two-fold:

• We observe that there are certain types of recurring questions which cannot be

answered by the existent Answer Extraction Module. Many errors can be ascribed

to the inability of the named-entity tagging to recognize some prominent name

types, such as ”MOVIE”, ”BOOK” and ”SONG” names. It results in the absence

of correct answer candidate from the Answer Extraction Module. The knowledge-

based validation is expected to supply additional answer candidates beyond the

Answer Extraction Module.

• Answers extracted from structured knowledge bases might enable to pick correct

answers from a ranked list of answer candidates generated by the Answer Extrac-

tion Module which - due to its statistic nature - might not be optimal ranking.

Hopefully, the knowledge-based validation may amend the ranking of the existent

Answer Extraction Module.

The design of the knowledge-based validation is described below.

67

Firing Question Patterns Each question is matched against a set of manually defined

firing patterns. Each firing pattern is associated with some simple binary/ternary rela-

tion, such as ”x-isMovieStarringActor-y”, where all arguments except one are already

instantiated - the missing argument is to be retrieved from knowledge bases, e.g. ”x-

isMovieStarringActor-y {x=?,y=Christopher Reeves}”. For establishing these relations

we only use lexical information and named-entity tagging which have already been pro-

cessed for each question during question processing. Only those questions for which

a pattern is fired are processed further. The remaining questions are exempt from the

validation.

Searching in Knowledge Bases The incomplete relation is translated to a query to

knowledge bases. Currently we use the following resources:

• International Movie Database (IMDB): The knowledge base is used not only for

the questions asking for movie and television appearances of actors/actresses but

also as a source of general biographic data of virtually any famous person, such as

”place/date of birth”, ”cause of death”, ”real/full name”, ”marital status”, etc.

• Discogs.com: We use this database for retrieving discographies of musical artists.

• CIA World Fact Book: This popular resource contains various factoid informa-

tion of the states in the world.

Re-Ranking Answers We conduct the follow three re-ranking strategies according to

various search results.

• If an answer fails to be retrieved from any knowledge bases, we keep using the

original ranked-answer candidate list.

• If an answer is returned by the knowledge base searching but also is found in the

original answer candidate list, the answer will be moved up to the first position of

68

the list.

• If an answer is returned by the knowledge base searching but is not found in the

original list, the extra answer will be inserted into the list at the first position.

Furthermore, a back-projection schema is carried out to find a document support

the answer in document collection.

We evaluate the knowledge-based validation on TREC 2004, 2005 and 2006 fac-

toid and list questions. Fortunately, we manage to achieve improved performance on all

of the TREC years.

3.6.2 Web-based Validation

(Breck et al., 2001; Clarke, Cormack, and Lynam, 2001) state that answer redundancy

in an enormous collection of unstructured, flat texts has a strong correlation with an-

swer correctness. However, the redundancy evidence can’t be successfully obtained from

Aquaint Corpus due to its limited size. Answers are only returned from one document

in the Corpus. The web-based validation is mainly motivated to complement the Answer

Extraction Module by further incorporating the redundancy evidence of ranked answer

candidates. In addition, another motivation is that the single instance of an answer can-

didate may not provide sufficient justification since it might be only locally correct in

a document. But the multiple occurrence of an answer candidate in various documents

indicates the credibility of the answer to be correct.

The vast amount of information available on the Web makes it an attractive re-

source for Answer Validation. The core idea is that the volume of available web data is

large enough to supply proper answers multiple times and in multiple contexts varying

from complicated and implicit contexts where sophisticated natural language process-

ing techniques are required to simple and explicit contexts where only surface pattern

matching methods may work well.

69

We develop a web-based validation component to further validate top-ranked an-

swer candidates returned by the Answer Extraction Module. It uses the frequency of the

candidates within the Web data to boost most likely answers. We access the Web data by

using Google Search Engine. Various queries ranging from loose to tight are generated.

For example, for the question, ”Where is Merrill Lynch headquartered?”, the following

queries including Bag-of-Word query, Noun-Phrase-Chunk query and Declarative-Form

query are constructed:

• Bag-of-Word: Merrill Lynch headquartered

• Noun-Phrase-Chunk: ”Merrill Lynch” headquartered

• Declarative-Form: ”Merrill Lynch is headquartered”

The declarative forms of questions are heuristically constructed. We manually develop

about 20 patterns for the transformation.

For the first two queries, the top 3 snippets Google returned are the following:

• Merrill Lynch rose to prominence on the strength of its brokerage network ...

Florida U.S., Global Private Client, Regional Headquarters for Latin American

...

• With their help, he also arranged to host 150 teachers and administrators at Merrill

Lynch headquarters for an allday staff meeting.

• Access Merrill Lynch headquarter’s address and subsidiary locations, along with

insight related to Merrill Lynch executives, competitors, and operations.

For the third query, Google returns the snippets below:

• Today’s Merrill Lynch is headquartered in lower Manhattan, not far from its

original location on Wall Street.

70

• Merrill Lynch is headquartered in New York.

• Merrill Lynch is headquartered in the World Financial Center.

It is obvious that the Declarative-Form query (tightest) leads to the most explicit answers

than the Bag-of-Word and Noun-Phrase-Chunk queries. On the other hand, it is also

more probable to fail to get snippets from Google. Considering answer candidates from

tighter queries are more reliable, we assign different weights to the answer candidates

evoked by different queries. The weights for the Bag-of-Word, Noun-Phrase-Chunk and

Declarative-Form queries are set to 1:2:5. For each query, top 50 snippets are used for

validation.

As to the counting of answer candidate’s frequency, specially for quantity-seeking

questions, such as ”How many bombers were killed in the London terror bombing at-

tacks?”, the frequency of the answer candidate ”4”, is calculated by matching the head

noun-jointed phrase ”4 bombers” in Google snippets. For each question, top 10 answer

candidates from Answer Extraction Module are validated.

We evaluate the contribution of the web-based validation on TREC 2006 factoid

questions (403 questions). The Answer Extraction module returns ranked answer candi-

dates, where 175 questions are correctly answered considering top 10 answer candidates

of each question while only 83 questions are correctly answered considering top 1 answer

candidates. We further validate and re-rank the top 10 answer candidates (175 questions

should be the upper bound of the web-based validation). Finally, 122 questions are cor-

rectly answered by the web-based validation considering top 1 answer candidates. It

shows that the web-based validation significantly improves performance by 46.9% based

on the Answer Extraction Module.

In the Alyssa System, I mainly contribute to the Question Processing Module, the

Sentence Annotation Module, the Answer Extraction Module and the Answer Validation

Module (especially to the web-based validation). In this Chapter, I gave a brief intro-

duction about my efforts on these modules respectively. In the following chapters, I will

71

detailedly present the Answer Extraction Module which is the focus of the thesis. My

exploration on the Answer Extraction Module mainly consists of two-fold:

1. How to capture syntactic and semantic features?

2. How to make prediction according to these features?

72

Chapter 4

Syntactic Evidence for Answer

Extraction

4.1 Motivation

In order to find proper answers, evidence like expected answer type and surface textual

pattern is extracted from answer sentences and incorporated in Answer Extraction Mod-

ule with a pipeline structure, a scoring function or statistical-based methods. However,

the evidence extracted only from plain texts might not be sufficient to identify proper

answers. For example:

1. For the question ”What are pennies made of?”, expected answer type is unknown;

2. For the question ”Who was the first American in space?”, surface patterns may not

detect long distance relations between the question key phrase ”the first American

in space” and the proper answer ”Alan Shepard” in the sentence ”... that carried

Alan Shepard on a 15-minute suborbital flight in 1961, making him the first Amer-

ican in space.”;

3. For the question ”When did the Port Arthur Massacre occur?”, if surface patterns

73

strongly depend on word ordering, it might fail to find the proper answer ”1996”

in the sentence ”... Australian Prime Minister John Howard moves to enforce the

national uniform gun laws forged after the 1996 Port Arthur massacre.”.

To overcome the problems arising from the divergences of lexical representations,

such as long surface distance and word ordering alternation, deep linguistic analysis like

syntactic analysis, trends to be explored and evidence on complicated data represen-

tations is extracted. Syntactic-based method is motivated by the observation that the

context of proper answer in answer sentence often has similar syntactic structure with

question. For example, in both the question ”What did Alfred Nobel invent?” and the

answer sentence ”... in the will of Swedish industrialist Alfred Nobel, who invented dy-

namite.”, the phrase ”Alfred Nobel” is the ”subject” of the verb ”invent” and the proper

answer ”dynamite” (”What” in the question) is the ”object” of the verb ”invent”.

Considering how to effectively capture syntactic evidence for the Answer Extrac-

tion, we propose two methods: Dependency Relation Pattern Method and Dependency

Relation Path Correlation Method. To our best knowledge, the syntactic evidence be-

tween proper answers and question key words hasn’t been well explored by previous

statistical-based Answer Extraction Module. The following Section will introduce some

representative work of syntactic-based answer extraction.

4.2 Related Work

In recent TREC evaluation, most of top ranked QA systems explored syntactic evidence

in Answer Extraction. We briefly summarize the main usages below.

LCC (Harabagiu et al., 2003) explored syntactic relations, such as subject, object,

prepositional attachment and adjectival/adverbial adjuncts, based on logic form trans-

formation which converted plain texts to logic representations. A logic prover further

worked on the logic representations to justify answer candidates. The prover achieved

74

accurate results but suffered from a coverage problem due to insufficient world knowl-

edge/NLP axioms and inference rules. In addition, it took long processing time. There-

fore, this method was only used as compensation (like Answer Validation) rather than a

replacement of Answer Extraction.

ISI (Echihabi et al., 2003) extracted verb-argument relations, such as ”subject-

verb” and ”verb-object”, in answer sentences and compared them with those in ques-

tions. IBM’s Maximum Entropy-based model (Ittycheriah and Roukos, 2002) integrated

a rich feature set, including word co-occurrence scores, named entities and dependency

relations. For the dependency relations, they considered a set of predefined relations by

partial matching. BBN (Xu et al., 2002) also incorporated verb-argument relations.

However, the above QA systems only focused on certain relation types, such as

verb-argument relations, and extracted them using heuristic rules. Therefore, the extrac-

tion of such relations was limited in very local contexts of answer nodes, such as parent or

sibling nodes, and didn’t involve long range dependencies. Furthermore, they concerned

the relations only to certain types of question words, such as verbs. Actually, variable

types of question words may have different indicative relations with proper answers.

(Kaisser and Becker, 2004) matched questions into predefined patterns, such as

the question ”When did Jack Welch retire from GE?” was matched to the pattern

”When+did+NP+Verb+NP|PP”. For each question pattern, there was a set of syntactic

structures (called answer patterns) for potential answers. Candidate answers were ranked

by matching the syntactic structures. This method worked well on TREC questions.

However, it is costing to manually construct the question and answer patterns.

(Tanev, Kouylekov, and Magnini, 2004; Wu et al., 2005) compared syntactic rela-

tions between questions and answer sentences. (Tanev, Kouylekov, and Magnini, 2004)

reconstructed a basic syntactic template tree for a question, in which one of the nodes de-

noted expected answer position. Then, answer candidates were ranked by matching their

syntactic trees to the question template tree. Furthermore, the matching was weighted

75

by lexical variations. (Wu et al., 2005) combined n-gram proximity search and syntactic

relation matching. Firstly, candidate answers were filtered by n-gram proximity and only

top N candidate answers were kept for syntactic relation matching. Next, question tree

and answer candidate tree were matched from node to node.

Although the above systems considered various types of syntactic relations and

applied various methods to compare the relations between questions and answer sen-

tences, they shared the common hypothesis that proper answers are more likely to have

the same syntactic relations as questions. For example, in the question ”Who founded

the Black Panthers organization?”, where, the question word ”who” has the dependency

relation ”subj” with the verb ”found” and ”subj obj nn” with the phrase ”Black Pan-

thers organization”, in the sentence ”Hilliard introduced Bobby Seale, who co-founded

the Black Panther Party here ...”, the proper answer ”Bobby Seale” has the same rela-

tions with most of question phrases. These methods achieved high precision, but poor

recall due to syntactic relation variations. One meaning is often represented as differ-

ent syntactic relation combinations. In the above example, appositive relation frequently

appears in answer sentences, such as ”Black Panther Party co-founder Bobby Seale is

ordered bound and gagged ...” and indicates the proper answer ”Bobby Seale” although

it is asked in different way in the question.

(Cui et al., 2004) proposed an approximate dependency relation matching method

for both passage retrieval and answer extraction. The similarity between two relations

was measured by their co-occurrence rather than exact matching. They stated that their

method effectively overcomed the limitation of previous exact matchs exact matching

methods. Lastly, they used the sum of similarities of all path pairs to rank candidate

answers, wing methods. Lastly, they used the sum of similarities of all path pairs to rank

candidate answers, which was on the basis of the assumption that all paths had equal

weights. However, it might not be true. For example, in the question ”What book did

Rachel Carson write in 1962?”, the phrase ”Rachel Carson” looked like more important

76

than ”1962” since the former was the question topic and the latter was a constraint for

the expected answer. In addition, lexical variations were not well considered and a weak

relation path alignment algorithm was used in their work.

In this Chapter, we explore more comprehensive syntactic relation-based meth-

ods: Dependency Relation Pattern Method and Dependency Relation Path Correlation

Method and respectively evaluate the contributions of the mothods in Chapter 7.3 of the

thesis.

4.3 Dependency Relation Pattern Method

In this section, we propose a dependency relation pattern method for answer extraction.

The method is motivated by the observation that there are predictable/limited-size an-

swer syntactic structures associated with certain question structures. The method aims

to detect which syntactic structures frequently occur in questions; for certain question

syntactic structure, what kinds of answer syntactic structures are expected. More impor-

tantly, how to pinpoint the answer by matching the extracted answer syntactic structures

when a unseen question is given.

Syntactic structures are represented as dependency relation pattern (Ptn) in our

task. Different from textual patterns, dependency relation patterns capture word relations

based on syntactic representations rather than surface texts. Therefore, they may get

the deeper understanding of word relations and capture long range dependency between

words regardless of their ordering and distance in surface texts.

4.3.1 Dependency Relation Pattern Extraction

A dependency relation pattern Ptn(w1, w2) is the smallest dependency subtree which

covers the key words w1 and w2 in a dependency tree. We represent the pattern as a

dependency relation sequence by traversing from the w1 node to the w2 node in the tree.

77

Each relation in the sequence is linked by the symbols indicating upward or downward

movements through the tree. For example, in Figure 4.1, the relation sequence from

the answer candidate node ”211,456 miles” to the question word node ”the moon” is

”pred U s D”, to the node ”Earth” is ”pred U i U mod D pcomp-n D appo D mod D

pcomp-n D” where ” U” and ” D” indicate upward and downward movements through

the tree respectively.

Q1980: How far is [the moon] from [Earth] ?
S: At its perigee , the closest approach to [Earth] , [the moon] is [221,456 miles] away .

E

At

its perigee

the closest approach

to

Earth

,

is

the moon 211,456 miles away

,

mod

pcomp-n

appo

mod

pcomp-n

punc

i

s pred mod

punc

Figure 4.1: Example of dependency relation sequences. The directed paths in dot line
are the dependency relation sequences from the answer candidate node ”211,456 miles”
to the question key word nodes ”the moon” and ”Earth”

We automatically construct dependency relation patterns from training questions

and their corresponding answer sentences respectively. For each question, we extract de-

pendency relation patterns Ptnq between question word, such as ”who”, ”what”, ”when”

and question key phrases. The question word is replaced with ”EAP”, which indicates

expected answer position. Analogously, for each candidate sentence, we extract relation

patterns Ptna between proper answer and mapped question phrases. As the result of the

pattern extraction, we get a set of question patterns QSet(Ptnq
i), (i = 1, ..., N), where

each Ptnq
i is associated with a set of answer patterns ASeti(Ptna

j), (j = 1, ..., Mi). N

is the total number of question patterns and Mi is the number of answer patterns for

78

the question pattern DepPtnq
i . Some pattern examples are shown in Table 4.1. The

following briefly describes our pattern extraction algorithm in training data.

For each question q in training data,

1. Question Processing Module extracts a set of key phrases {wq
1, w

q
2, ..., w

q
i } of

q, as described in Section 3.1.3;

2. Regard question word, such as ”who”, ”when”, ”where”, as expected answer

position EAP of q;

3. Extract dependency relation pattern Ptnq(EAP,wq
i) for each wq

i . The

Ptnq(EAP, wq
i) is represented as the relation sequence from the EAP node

to the wq
i node in the dependency tree of q;

4. Add the Ptnq(EAP, wq
i) into question pattern set QSet;

5. Extract answer patterns for the Ptnq(EAP, wq
i) in the following steps:

For each sentence s in the answer sentence set of q,

a. Map wq
i into ws

i of s (wq
i = ws

i), as described in Section 3.5.1;

b. Extract dependency relation pattern Ptna(A,ws
i) covering the proper

answer node A and ws
i node in the dependency tree of s;

c. Add Ptna(A,ws
i) into the answer pattern set ASet of the

Ptnq(EAP, wq
i).

4.3.2 Dependency Relation Pattern Scoring

The answer patterns extracted in section 4.3.1 are scored by support and confidence mea-

sures. Support and confidence measures are most commonly used to evaluate association

rules in data mining area. The support of a rule is the proportion of times the rule applies.

The confidence of a rule is the proportion of times the rule is correct. In our task, we

score an answer pattern by measuring the strength of the association rule from the answer

79

Table 4.1: Examples of Dependency Relation Patterns
Ptnq subj U

Sup. Conf.

ASet(Ptna)

subj U 0.02 0.55
s U 0.01 0.60
appo D 0.007 0.67
person U 0.006 0.66
nn D 0.005 0.74

Ptnq pcomp-n U mod U
Sup. Conf.

ASet(Ptna)

pcomp-n U mod U 0.06 0.50
pcomp-n U mod U pcomp-n U mod U 0.02 0.30
pcomp-n U mod U obj U 0.008 0.36
pcomp-n U mod U i D 0.006 0.33

Ptnq obj U
Sup. Conf.

ASet(Ptna)

obj U 0.04 0.46
pcomp-n U mod U 0.02 0.33
mod D pcomp-n D 0.01 0.43
nn U obj U 0.007 0.33

Ptnq lex-mod U
Sup. Conf.

ASet(Ptna)

pcomp-n U mod U 0.02 0.25
subj D 0.008 0.25
num U 0.008 0.73
appo D 0.006 0.71
nn D 0.006 0.50

80

pattern to proper answer (the pattern is matched ⇒ the answer is correct). Let Ptna be

one of answer patterns in an answer pattern set ASet(Ptna).

support(Ptna) =
the number of times Ptna is matched and ac is correct
the total number of times patterns in ASet are matched

confidence(Ptna) =
the number of times Ptna is matched and ac is correct

the total number of times Ptna is matched

We score all of the answer patterns. A pattern is removed from the set if its support

value is less than the threshold tsup or its confidence value is less than the threshold

tconf . In the experiment, we set tsup 0.005 and tconf 0.2. Table 4.1 lists the support and

confidence values of the pattern examples.

4.3.3 Dependency Relation Pattern Matching

After extracting and scoring patterns from training data, we further discuss how to pin-

point answers by matching the patterns. Actually, the pattern sets may not be sufficient

enough to cover all of unseen cases since we construct them from a limited training data

set. Therefore, exact pattern matching might suffer from data sparseness. In this section,

we will propose a string kernel-based method to partially match answer patterns. Sec-

tion 7.3.2 will further report experimental comparison of the extact pattern matching and

the partial pattern matching.

Since dependency relation patterns are represented as relation sequences, such as

”pred U i U mod D pcomp-n D appo D mod D pcomp-n D”, and each character of the

sequence is an individual dependency relation between two nodes, string kernel is easily

adapted to matching patterns by calculating the similarity between two sequences.

(Haussler, 1999) proposed the first piece of work to describe a convolution kernel

over strings. (Lodhi et al., 2000) applied string kernel to text classification. (Leslie,

81

Eskin, and Noble, 2002) further proposed a spectrum kernel, which was simpler and

more efficient than previous string kernels, for protein classification problem. In their

tasks, string kernels achieved the better performance than human-defined features.

String kernel is based on the observation that the more common subsequences two

strings share, the more similar they are. The string kernel we used is similar to (Lodhi

et al., 2000). It is an inner product in the feature space generated by all subsequences

of length k. A k-length subsequence is any ordered sequence of k characters occurring

in the string though not necessarily contiguously. The degree of contiguity of one sub-

sequence determines how much weight it will have in the comparison. For example, the

subsequence ”bad” (k = 3) is present in the string ”badge”, ”band” and ”bland”, but

with different weights. An exponentially decaying factor λ (set 0.5 in the experiment) of

their full length l is used to weight subsequences. It emphasizes those occurrences that

are close to contiguous. For the above example, the weight of ”bad” in ”badge” is λ3

(l = 3); the weight of ”bad” in ”band” is λ4 (l = 4); the weight in ”bland” is λ5 (l = 5).

Given two strings s and s′, the string kernel function is formalized as follows:

SK(s, s′) =
∑

u⊆s∧u⊆s′
(λls(u) × λls′ (u))

where, ls(u) and ls′(u) are the full length of u in the strings s and s′ respectively. Finally,

the similarity between s and s′ are defined as the normalized string kernel value.

Sim(s, s′) =
SK(s, s′)√

SK(s, s)×
√

SK(s′, s′)

A direct computation of this feature vector would involve a prohibitive amount

of computation even for the modest value of k, since the dimension of feature space

grows exponentially with k. (Lodhi et al., 2000) further described a strategy to efficiently

calculate the inner product based on a dynamic programming technique. Different from

(Lodhi et al., 2000), the characters (individual relations) of the string in our task are

linked with each other. Therefore, the matching between two subsequences need consider

the linking information. Two identical substrings will not only have the same individual

82

relations but also have the same linking symbols. For efficiency, we only consider the

subsequence of length 2 (k = 2). Figure 4.2 shows an example of the string kernel

measure for the relation sequences ”pcomp-n U mod U obj U” and ”pcomp-n U mod U

i D”.

S1: pcomp-n_U mod_U obj_U S2: pcomp-n_U mod_U i_D

pcomp-n_U~mod_U pcomp-n_U~obj_U mod_U~obj_U pcomp-n_U~i_D mod_U~i_D

l2 l3

l3

l2

l2 l2

S1

S2

Sim(S1, S2) = = = 0.44

SK(S1, S2) = l4
SK(S1, S1) = SK(S2, S2) = l4

2 + l6

l4

l4
2 + l6

1

2 + l2

Figure 4.2: An example of the string kernel measure for the relation sequences ”pcomp-
n U mod U obj U” and ”pcomp-n U mod U i D”

4.4 Dependency Relation Path Correlation Method

In Section 4.3, we propose a dependency relation pattern method. It achieves high ac-

curacy, but poor coverage due to limited size of patterns. Although it applies partial

matching method, such as string kernel, to somehow prevent pattern sparseness problem,

they still follow the hypothesis that the more common individual relations two depen-

dency relation patterns have, the more matching score they are. The hypothesis has

limitation due to syntactic relation variation. One meaning is often represented as dif-

ferent syntactic relation combinations. For example, in the question ”Who founded the

Black Panthers organization?”, where, the question word ”who” has the dependency re-

lations ”subj U” with the verb ”found” and ”subj U obj D nn D” with the phrase ”Black

Panthers organization”. In the corresponding answer sentence ”Black Panther Party co-

83

founder Bobby Seale is ordered bound and gagged ...”, the appositive relation ”appo U”

appear in stead of ”subj U” to indicate the proper answer ”Bobby Seale”. In this case,

the individual dependency relations of two relation paths are totally different and pattern

matching method, whatever exact matching or partial matching, will unfortunately fail

on it. In this section, we propose a dependency relation path correlation method as a

back-off of the dependency relation pattern method.

For each question, dependency relation paths are defined and extracted from the

question and its answer sentences. The paths from the question and the answer sen-

tences are paired according to question phrase mapping (Section 3.5.1). Next, correla-

tion between two paths of each pair is calculated by employing a dynamic time warping

algorithm. The calculation of the path correlation relies on individual relation correla-

tions, which are estimated from a set of training path pairs. We discuss how the method

performs in detailed below.

4.4.1 Dependency Relation Path Extraction

Dependency relation path is defined as a structure P =< N1, R, N2 > where, N1, N2

are two phrases and R is a relation sequence R =< r1, ..., ri > in which ri is one of the

predefined dependency relations. Totally, there are 42 relations defined in MiniPar. The

relation sequence R between N1 and N2 is extracted by traversing from the N1 node to

the N2 node in a dependency tree. Individual relations in a sequence are linked by the

symbols indicating upward or downward movements through the tree.

For each question, we extract relation paths between question word, such as

”who”, ”what”, ”when” and question key phrases. The question word is further re-

placed with ”EAP”, which indicates expected answer position. Analogously, for each

candidate sentence, we extract relation paths between answer candidates and mapped

question phrases. Figure 4.3 shows the relation paths extracted for a sample question and

its answer sentence.

84

S: [Rachel Carson] 's [1962] [book] " [Silent Spring] " said
 dieldrin causes mania .

N1(AC) R N2

Q: [What] [book] did [Rachel Carson] [write] in [1962] ?

N1(EAP) R N2

What det_U book
What det_U obj_U subj_D Rachel Carson
What det_U obj_U write
What det_U obj_U mod_D pcomp-n_D 1962

Silent Spring title_U book
Silent Spring title_U gen_D Rachel Carson
Silent Spring title_U num_D 1962

Figure 4.3: Dependency relation paths for a sample question and sentence. EAP indicates
expected answer position; AC indicates answer candidate.

Next, the relation paths extracted in a question and its answer sentences are paired

according to phrase similarity measure. For two relation paths Pi and Pj which are

extracted from a question and its answer sentence respectively, if Sim(Ni1, Nj1) > 0

and Sim(Ni2, Nj2) > 0, the Pi and Pj are paired as < Pi, Pj >. The question phrase

”EAP” is mapped to the answer candidates in the sentence. The similarity between two

phrases were discussed in Section 3.5.1. Figure 4.4 further shows the paired relation

paths which are presented in Figure 4.3.

4.4.2 Dependency Relation Path Correlation

Comparing a proper answer and other wrong candidate answers, we assume that relation

paths for the proper answer are more correlated to the corresponding paths in question.

So, for each path pair < P1, P2 >, we measure the correlation between the paths P1 and

85

 N1 (EAP/AC) Rq Rs N2

Silent Spring det_U title_U book
Silent Spring det_U obj_U subj_D title_U gen_D Rachel Carson
Silent Spring det_U obj_U mod_D pcomp-n_D title_U num_D 1962

Figure 4.4: Paired dependency relation paths for a sample question and sentence. EAP
indicates expected answer position; AC indicates answer candidate.

P2.

We derive the correlations between paths by adapting a dynamic time warping

(DTW) algorithm (Sakoe and Chiba, 1971; Itakura, 1975). The algorithm has been

widely applied in the area of speech recognition (Rabiner, Rosenberg, and Levinson,

1978). Given point-by-point distance measurement between individual characters, DTW

is to find an optimal alignment between two sequences which minimizes the accumulated

distance. A sketch of the adapted algorithm is as follows.

Let R1 =< r11, ..., r1n >, (n = 1, ..., N) and R2 =< r21, ..., r2m >, (m =

1, ..., M) denote two relation sequences to be matched. R1 and R2 consist of N and

M relations respectively. R1(n) = r1n and R2(m) = r2m. Cor(r1n, r2m) denotes the

correlation between two individual relations r1n and r2m, which is estimated by a statis-

tical model during training (Section 4.4.3). Firstly, we convert the correlation measure

Cor(r1n, r2m) to the distance measure Dist(r1n, r2m) using the following formula:

Dist(r1n, r2m) = 1− Cor(r1n, r2m) where, Cor(r1n, r2m) ∈ [0, 1]

Given the distance Dist(r1n, r2m) for each pair of relations (r1n, r2m) within R1

and R2, the goal of DTW is to find a path, m = map(n), which map n onto the corre-

sponding m such that the accumulated distance Dist∗ along the path is minimized.

Dist∗ = min
map(n)

{
N∑

n=1

Dist(R1(n), R2(map(n))

}

Figure 4.5 shows a visualized alignment path between two relation sequences

86

r11 r1Nr1n

r21

r2m

r2M

(,)r14 r23

(,)r2mr1n

Figure 4.5: A visualized alignment path between two relation sequences R1 =<
r11, ..., r1n >, (n = 1, ..., N) and R2 =< r21, ..., r2m >, (m = 1, ..., M) in the dynamic
time warping algorithm

R1 and R2 in the DTW algorithm. An especially powerful technique for determining

the optimum path m = map(n) is the method of dynamic programming. Using the

technique, the accumulated distance DistA to any grid point (n,m) can be recursively

calculated as

DistA(n,m)

= Dist(r1n, r2m) + min {DistA(n− 1,m), DistA(n− 1,m− 1), DistA(n,m− 1)}

where, DistA(n,m) is the minimum accumulated distance to the grid point (n,m). We

find the solution Dist∗ = DistA(N,M).

The overall distance measure has to be normalized as longer sequences normally

give higher scores. So, the distance between two sequences R1 and R2 is calculated as

Dist(R1, R2) =
Dist∗

min(N,M)

87

Finally, we convert the distance measurement to the correlation measurement using

Cor(R1, R2) = 1−Dist(R1, R2)

Figure 4.6 shows an example of correlation measure between two relation se-

quences R1 and R2 using the DTW algorithm. Figure 4.6(a) lists the distance between

the individual relations r1n and r2m. Figure 4.6(b) lists the accumulated distance to any

grid point (n,m). We find the optimal path shown in Figure 4.6(c) with the following

steps:

1. The accumulated distance from the starting position to any position in the first

column is computed.

2. The minimum accumulated distance from the starting position to any position in

second column is computed.

3. Repeat the step 2 and obtain the minimum accumulated distance from the starting

position to every position in every column.

4. The overall distance Dist∗ between the relation sequences R1 and R2 is the value

in the right-top grid.

5. Normalize the overall distance Dist∗.

6. Convert the distance measure Dist(R1, R2) to the correlation measure Cor(R1, R2).

Finally, the correlation between the relation sequences R1 and R2 is measured in Fig-

ure 4.6 (d).

According to the correlations between two relation sequences, we define the cor-

relation between two relation paths P1 and P2 as

Cor(P1, P2) = Cor(R1, R2)× Sim(N11, N21)× Sim(N12, N22)

88

0.2 0.3 0.6 0.3 0.2

0.7 0.2 0.1 0.2 0.3

0.8 0.3 0.0 0.3 0.4

0.7 0.2 0.1 0.2 0.3

0.5 0.0 0.3 0.0 0.1

0.1 0.4 0.7 0.4 0.3

r11 r12 r13 r14 r15

r22

r21

r23

r24

r25

r26 3.0 1.1 0.9 0.6 0.6

2.8 0.8 0.3 0.4 0.7

2.1 0.6 0.2 0.5 0.8

1.3 0.3 0.2 0.4 0.7

0.6 0.1 0.4 0.4 0.5

0.1 0.5 1.2 1.6 1.9

r11 r12 r13 r14 r15

r22

r21

r23

r24

r25

r26

(a) Distance between individual relations (b) Accumulated Distance

n m = map(n)

1 1

2 2

3 3, 4

4 5

5 6

(c) Alignment mapping

Dist = Dist (N, M) = 0.6* A

*Dist

Min (N, M)
Dist (R , R) =21

= 0.12

Cor (R , R) = 1 - Dist(R , R)21 21

= 0.88

Figure 4.6: An example of correlation measure between two relation sequences R1 and
R2 using the Dynamic Time Warping Algorithm

where, Sim(N11, N21) and Sim(N12, N22) are the phrase mapping score when pair-

ing two paths, as described in Section 3.5.1. If two phrases are absolutely different

Cor(N11, N21) = 0 or Cor(N12, N22) = 0, the paths may not be paired since Cor(P1, P2) =

0.

89

Table 4.2: Examples of high-correlated dependency relations and their correlation score

Relation 1 Relation 2 Correlation Score
subj U sc D 6.72E-4
vrel D pred D 2.08E-2
obj U appo U 2.99E-4
pcomp-n D appo D 1.87E-3
pred U obj U 1.62E-3
mod D appo U 2.10E-3
i D appo D 3.49E-3
head D post D 7.28E-3

4.4.3 Individual Relation Correlation Estimation

In the above section, we have described how to measure path correlations. The measure

requires individual relation correlations Cor(r1, r2) as inputs. We apply a statistical

method to estimate the relation correlations from a set of training path pairs. The training

data collecting will be described in Section 7.1.

For each question and its answer sentences in training data, we extract the relation

paths between ”EAP” and key phrases in the question and the paths between proper

answer and mapped question phrases in the sentences. After pairing the paths, correlation

of two individual relations is measured by their bipartite co-occurrence in all training path

pairs. Mutual information measure (Cui et al., 2004) is employed to calculate the relation

correlations.

Cor(rQ
i , rS

j) = log

∑
α× δ(rQ

i , rS
j)

fQ(rQ
i)× fS(rS

j)

where, rQ
i and rS

j are two relations in question paths and answer sentence paths respec-

tively. fQ(rQ
i) and fS(rS

j) are the numbers of occurrences of rQ
i in question paths and

rS
j in sentence paths respectively. δ(rQ

i , rS
j) is 1 when rQ

i and rS
j co-occur in a path pair,

and 0 otherwise. α is a factor to discount the co-occurrence value for long paths. It is

set to the inverse proportion of the sum of path lengths of the path pair. Table 4.2 shows

90

examples of high-correlated dependency relations and their correlation score.

91

Chapter 5

Semantic Evidence for Answer

Extraction

5.1 Motivation

Recent years have witnessed significant progress in developing methods for automatic

identification and labeling of semantic roles conveyed by sentential constituents.1 The

success of these methods, often referred to collectively as shallow semantic parsing (Gildea

and Jurafsky, 2002), is largely due to the availability of resources like FrameNet (Fill-

more, Johnson, and Petruck, 2003) and PropBank (Palmer, Gildea, and Kingsbury, 2005),

which document the surface realization of semantic roles in real world corpora.

More concretely, in the FrameNet paradigm, the meaning of predicates (usually

verbs, nouns, or adjectives) is conveyed by frames, schematic representations of situ-

ations. Semantic roles (or frame elements) are defined for each frame and correspond

to salient entities present in the evoked situation. Predicates with similar semantics in-

stantiate the same frame and are attested with the same roles. The FrameNet database

lists the surface syntactic realizations of semantic roles, and provides annotated example
1The approaches are too numerous to list; we refer the interested reader to Carreras and Màrquez (Car-

reras and Màrquez, 2005) for an overview.

92

sentences from the British National Corpus. For example, the frame Commerce Sell has

three core semantic roles, namely Buyer, Goods, and Seller — each expressed by an

indirect object, a direct object, and a subject (see sentences (5.1a)–(5.1c)). It can also

be attested with non-core (peripheral) roles (e.g., Means, Manner, see (5.1d) and (5.1e))

that are more generic and can be instantiated in several frames, besides Commerce Sell.

The verbs ”sell”, ”vend”, and ”retail” can evoke this frame, but also the nouns ”sale”

and ”vendor”.

(5.1) a. [Lee]Seller sold a textbook [to Abby]Buyer.

b. [Kim]Seller sold [the sweater]Goods.

c. [My company]Seller has sold [more than three million copies]Goods.

d. [Abby]Seller sold [the car]Goods [for cash]Means.

e. [He]Seller [reluctantly]Manner sold [his rock]Goods.

By abstracting over surface syntactic configurations, semantic roles offer an im-

portant first step towards deeper text understanding and hold promise for a range of

applications requiring broad coverage semantic processing. Question answering (QA)

is often cited as an obvious beneficiary of semantic role labeling (Gildea and Jurafsky,

2002; Palmer, Gildea, and Kingsbury, 2005; Narayanan and Harabagiu, 2004). Faced

with the question ”Q: What year did the U.S. buy Alaska?” and the retrieved sentence

”S: . . . before Russia sold Alaska to the United States in 1867”, a hypothetical QA sys-

tem must identify that ”United States” is the Buyer despite the fact that it is attested in

one instance as a subject and in another as an object. Once this information is known,

isolating the correct answer (i.e., ”1867”) can be relatively straightforward.

Although conventional wisdom has it that semantic role labeling ought to improve

answer extraction, surprising little work has been done to this effect (see Section 5.2 for

details) and initial results have been mostly inconclusive or negative (Sun et al., 2005;

Kaisser, 2006). There are at least two good reasons for these findings. First, shallow

93

semantic parsers trained on declarative sentences will typically have poor performance on

questions and generally on out-of-domain data. Second, existing resources do not have

exhaustive coverage and recall will be compromised, especially if the question answering

system is expected to retrieve answers from unrestricted text. Since FrameNet is still

under development, its coverage tends to be more of a problem in comparison to other

semantic role resources such as PropBank.

This chapter proposes an automatic method to effectively incorporates FrameNet-

style semantic role information. The way we conduct semantic role assignment is con-

ceptually simple and does not require extensive feature engineering. A key feature of

our approach is the comparison of dependency relation paths attested in FrameNet an-

notations and raw text. We formalize the search for an optimal role assignment as an

optimization problem in a bipartite graph. This formalization allows us to find an ex-

act, globally optimal solution. The graph-theoretic framework goes some way towards

addressing coverage problems related with FrameNet and allows us to formulate answer

extraction as a graph matching problem.

In the following section I will provide an overview of existing work on question

answering systems exploiting semantic role-based lexical resources. Then I will present

our semantic role-based method.

5.2 Related Work

Question answering systems have traditionally depended on a variety of lexical resources

to bridge surface differences between questions and potential answers. WordNet (Miller,

1990) is perhaps the most popular resource and has been employed in a variety of QA-

related tasks ranging from query expansion, to axiom-based reasoning (Moldovan et al.,

2003), passage scoring (Paranjpe, Ramakrishnan, and Srinivasa, 2003), and answer fil-

tering (Leidner et al., 2003). Besides WordNet, recent QA systems increasingly rely on

94

syntactic information as a means of abstracting over word order differences and struc-

tural alternations (e.g., passive vs. active voice). Most syntax-based QA systems (Wu

et al., 2005) incorporated some means of comparison between the tree representing a

question with the subtree surrounding an answer candidate. The assumption here is that

appropriate answers are more likely to have syntactic relations in common with their

corresponding questions. Syntactic structure matching has been applied to passage re-

trieval (Cui et al., 2005) and answer extraction (Shen and Klakow, 2006).

Narayanan and Harabagiu (Narayanan and Harabagiu, 2004) were the first to

stress the importance of semantic roles in answering complex questions. Their sys-

tem identified predicate argument structures by merging semantic role information from

PropBank and FrameNet. Expected answers were extracted by performing probabilis-

tic inference over the predicate argument structures in conjunction with a domain spe-

cific topic model. Sun et al. (Sun et al., 2005) incorporated semantic analysis in their

TREC05 QA system. They used ASSERT (Pradhan et al., 2004), a publicly available

shallow semantic parser trained on PropBank, to generate predicate-argument structures

which subsequently formed the basis of comparison between question and answer sen-

tences. They found that semantic analysis didn’t boost performance due to the low recall

of the semantic parser. Kaisser (Kaisser, 2006) proposed a question paraphrasing method

based on FrameNet. Questions were assigned semantic roles by matching their depen-

dency relations with those attested in FrameNet annotations. The assignments were used

to create question reformulations which were submitted to Google for answer extraction.

Their semantic role assignment module was not probabilistic, it relied on strict matching,

and run into severe coverage problems.

In line with previous work, our method exploits syntactic information in the form

of dependency relation paths together with FrameNet-like semantic roles to smooth lex-

ical and syntactic divergences between questions and answer sentences. Our approach is

less domain dependent and resource intensive than Narayanan and Harabagiu (Narayanan

95

Q SemStruc
q

SemStruc
ac1

SemStruc
aci

......

ac
SemStruc 2

S

Model I

Model I

Model II
Answer

Figure 5.1: Architecture of Semantic Role Method

and Harabagiu, 2004), it solely employs a dependency parser and the FrameNet database.

In contrast to Kaisser (Kaisser, 2006), we model the semantic role assignment and an-

swer extraction tasks numerically, thereby alleviating the coverage problems encountered

previously.

5.3 Semantic Role Method

5.3.1 Problem Formulation

We have briefly summarized the architecture of the Alyssa QA system in Chapter 3 be-

fore formalizing the mechanics of FrameNet-based Semantic evidence. The goal of the

semantic evidence is to tackle lexical and syntactic divergences between question and

answer sentences. It allows the tolerant matching of lexical terms referring to common

concepts and unifies various syntactic representations into identical semantic structures.

The core idea of this method is that question and answer sentences are normalized to

FrameNet-style semantic representations and answer is retrieved by selecting the can-

didate whose semantic structure is most similar to the question. Figure 5.1 shows the

architecture of the Semantic Role Method.

96

Semantic structures for questions and sentences are automatically derived using

the model described in Section 5.3.2 (Model I). A semantic structure SemStruc =

〈p, Set(SRA)〉 consists of a predicate p and a set of semantic role assignments Set(SRA).

p is a word or phrase evoking a frame F of FrameNet. A semantic role assignment SRA

is a ternary structure 〈w, SR, s〉, consisting of frame element w, its semantic role SR,

and score s indicating to what degree SR qualifies as a label for w.

For a question q, we generate a semantic structure SemStrucq. Question words,

such as ”what”, ”who”, ”when”, etc., are considered expected answer phrases (EAP s).

We require that EAP s are frame elements of SemStrucq. Words involved in semantic

role assignments of SemStrucq are the key words/phrases of the question.

Likely for each answer candidate ac in answer sentences, we derive its semantic

structure SemStrucac and assume that ac is a frame element of SemStrucac. Words

in semantic role assignments of SemStrucac are the key words/phrases of the sentence

which are mapped from key words/phrases of the question as discussed in Section 3.5.1.

A special mapping is defined from EAP to ac.

Question and answer semantic structures are compared using a model based on

graph matching detailed in Section 5.3.3 (Model II). We calculate the similarity of all

derived pairs 〈SemStrucq, SemStrucac〉 and select the candidate with the highest value

as the answer for the question.

5.3.2 Semantic Structure Generation

Our method crucially exploits the annotated sentences in the FrameNet database together

with the output of a dependency parser. Our guiding assumption is that sentences that

share dependency relations will also share semantic roles as long as they evoke the same

or related frames. This is motivated by much research in lexical semantics (e.g., (Levin,

1993)) hypothesizing that the behavior of words, particularly with respect to the ex-

pression and interpretation of their arguments, is to a large extent determined by their

97

meaning. We first describe how predicates are identified and then introduce our model

for semantic role labeling.

Predicate Identification Predicate candidates are identified using a simple look-up

procedure which compares POS-tagged tokens against FrameNet entries. For efficiency

reasons, we make the simplifying assumption that questions have only one predicate

which we select heuristically:

1. Verbs are preferred to other parts of speech;

2. If there is more than one verb in the question, preference is given to the verb with

the highest level of embedding in the dependency tree;

3. If no verbs are present, a noun is chosen.

For example, in the question ”Who beat Floyd Patterson to take the title away?”, the

words ”beat”, ”take away” and ”title” are identified as predicate candidates and ”beat”

is selected the main predicate of the question. For answer sentences, we require that

the predicate is either identical or semantically related to the question predicate (see

Section 5.3.3). In the example given above, the predicate ”beat” evoques a single frame

(i.e.,Cause harm). However, predicates often have multiple meanings thus evoquing

more than one frame. Knowing which is the appropriate frame for a given predicate

impacts the semantic role assignment task; selecting the wrong frame will unavoidably

result in erroneous semantic roles. Rather than disambiguating polysemous predicates

prior to semantic role assignment, we perform the assignment for each frame evoqued

by the predicate and default to the frame whose semantic roles yield the highest score.

Semantic Role Assignment Before describing our approach to semantic role label-

ing we define dependency relation paths. A relation path R is a relation sequence

〈r1, r2, ..., rL〉, in which rl (l = 1, 2, ..., L) is one of predefined dependency relations

98

with suffix of traverse direction. An example of a relation path is R = 〈subj U, obj D〉,
where the subscripts U and D indicate upward and downward movement in trees, re-

spectively. Given an unannotated sentence whose roles we wish to label, we assume

that words or phrases w with a dependency path connecting them to p are frame ele-

ments. Each frame element is represented by an unlabeled dependency path Rw which

we extract by traversing the dependency tree from w to p. Analogously, we extract from

the FrameNet annotations all dependency paths RSR that are labeled with semantic role

information and correspond to p. We next measure the compatibility of labeled and un-

labeled paths as follows:

s(w, SR) = max
RSR∈M

[sim∗ (Rw, RSR) · P (RSR)]

where M is the set of dependency relation paths for SR in FrameNet, sim (Rw, RSR)

is the similarity between paths Rw and RSR weighted by the relative frequency of RSR

in FrameNet (P (RSR)). We consider both core and non-core semantic roles instanti-

ated by frames with at least one annotation in FrameNet. Core roles tend to have more

annotations in FrameNet and consequently are considered more probable.

We measure sim (Rw, RSR), by adapting a string kernel SK(s, s′) to our task.

sim∗(Rw, RSR) =
SK(Rw, RSR)√

SK(Rw, Rw)×
√

SK(RSR, RSR)

Our hypothesis is that the more common substrings two dependency paths have, the more

similar they are. The string kernel we used is similar to Leslie (Lodhi et al., 2000) and

are discussed in Section 4.3.3 in detailed. It is defined as the inner product of weighted

common dependency relation subsequences between Rw and RSR. For efficiency, we

only consider 2-length subsequences (k = 2). Weight of a subsequence is defined as the

sum of the weights of its individual relations. Individual Relations are weighted by a

metric akin to tf · idf which measures the degree of association between a candidate SR

and the dependency relation r present in the subsequence.

weightSR(r) = fr · log

(
1 +

N

nr

)

99

w SR w SR

(a) (b)

Figure 5.2: Sample original bipartite graph (a) and its subgraph with edge covers (b). In
each graph, the left partition represents frame elements and the right partition semantic
roles.

where fr is the frequency of r occurring in SR; N is the total number of SRs evoked by

a given frame; and nr is the number of SRs containing r.

For each frame element we generate a set of semantic role assignments Set(SRA).

This initial assignment can be usefully represented as a complete bipartite graph in

which each frame element (word or phrase) is connected to the semantic roles licensed

by the predicate and vice versa. (see Figure 5.2a). Edges are weighted and represent how

compatible the frame elements and semantic roles are. Now, for each frame element w

we could simply select the semantic role with the highest score. However, this decision

procedure is local, i.e., it yields a semantic role assignment for each frame element in-

dependently of all other elements. We therefore may end up with the same role being

assigned to two frame elements or with frame elements having no role at all. We rem-

edy this shortcoming by treating the semantic role assignment as a global optimization

problem.

We formalize search for the best SR assignment set as an optimization problem in

a bipartite graph. The bipartite graph optimization is a flexible and intuitive framework

to tackle divergences of SR assignments arising from inexact dependency relation path

matching. Moreover, the optimization algorithm, introduced in (Pado and Lapata, 2006),

is well-understood and computationally moderate. It is usually phrased as a maximiza-

100

tion problem over sum of edge weights of a graph. The most important factor to consider

in the optimization is the choice of admissible alignments, which impose constraints on

SR assignments, such as don’t leave target node unassigned, or allow one-to-many as-

signments. (Pado and Lapata, 2006) lists three admissible alignments (total alignments,

edge covers and perfect matching).

Based on observation of the task, we choose edge covers, which is more restric-

tive than total alignments and less than perfect matching. In a subgraph with edge cov-

ers, each node is adjacent to at least one edge. All source and target nodes are forced

to participate in assignments. It certainly indicates that edge covers cannot account for

unassigned nodes on either side and one-to-many assignments are modeled in both di-

rections. A sample original bipartite graph and its subgraph with edge covers are shown

in Figure 5.2. In the figure of the subgraph with edge cover, all source and target nodes

are adjacent to an edge and one source node is connected to several target nodes.

According to the choice of the optimization algorithm, we model the interac-

tion between all pairwise labeling decisions as a minimum weight bipartite edge cover

problem. The best assignments with edge covers are obtained using global optimization,

since choices of edges are not independent with each other. This calculation of optimal

edge covers has been investigated by (Eiter and Mannila, 1997; Cormen, Leiserson, and

Rivest, 1990) in context of distance metrics for point sets. They show that edge cover

optimization problem can be reduced to perfect matching by adding an auxiliary bipartite

graph and constructing a new graph which has the identical number of source and target

nodes. As a result, an edge cover is a subgraph of a bipartite graph so that each node is

linked to at least one node of the other partition. This yields semantic role assignment for

all frame elements and one frame element bearing multiple semantic roles. By inducing

such soft labeling we hope to render the matching of questions and answers more robust,

thereby addressing to some extent the coverage problems associated with FrameNet. In

addition, Edge covers have been successfully applied in several natural language pro-

101

cessing tasks, including machine translation (Taskar, Lacoste-Julien, and Klein, 2005)

and annotation projection (Pado and Lapata, 2006).

Formally, optimal edge cover assignments are the solutions of the following opti-

mization problem:

max
E is edge cover

∏

(ndw,ndSR)∈E

s(ndw, ndSR)

where, s(ndw, ndSR) is the compatibility score between the frame element node ndw and

semantic role node ndSR. Edge covers can be computed efficiently in cubic time using

the algorithms for the equivalent linear assignment problem. Our experiments use Jonker

and Volgenant’s (Jonker and Volgenant, 1987) solver.2

Figure 5.3 shows the original and optimized semantic role assignments gener-

ated by our model for a sample question and answer sentence. Given a question and a

sentence:

”Q: Who discovered prions?”

”S: 1997: Stanley B. Prusiner, United States, discovery of prions . . . ”

On the question side, we firstly identify ”discover” as question predicate. Con-

sidering ”EAP” and ”prions” as frame elements, we extract the unlabeled relation paths

for them by traversing the dependency tree from the frame element node to the predicate

node. The following is the relation paths for ”EAP” and ”prions”:

REAP = 〈subj U〉
Rprions = 〈obj U〉

Figure 5.4 shows the labeled dependency relation paths RSR for all semantic roles

of the predicate ”discover” in FrameNet. Figure 5.5 shows the weights of individual re-

lations for the predicate ”discover” in FrameNet. Then we compare the above unlabeled

relation paths with the FrameNet labeled paths and assign the edge weights between
2The software is available from http://www.magiclogic.com/assignment.html.

102

Q: Who discovered prions?

p: discovery

Original SR assignments Optimized SR assignments

(c) (d)

0.25

0.07
0

0

0.1
2

0.15

0.2

0.16

Cognizer

Phenomenon

Evidence

Topic

ac

prions

0.25

0.15

0.2

0.16

Cognizer

Phenomenon

Evidence

Topic

ac

prions

SemStrucac (ac: Stanley B. Prusiner)

S: 1997: Stanley B. Prusiner, United States, discovery of prions, ...

SemStrucq

p: discover

Original SR assignments Optimized SR assignments

Cognizer

Phenomenon

Evidence

State

Ground

EAP

prions

0.06

0.1

0.05

0.05
0.02

Cognizer

Phenomenon

Evidence

State

Ground

EAP

prions

0.06
0
0

00

0.0
1

0.1

0.05

0.05
0.02

(a) (b)

Figure 5.3: Semantic structures induced by our model for an example of question and
answer sentence

103

<PRED id="173" name="discover.v" frameid="20" framename="Becoming_aware" sentnumber="376">
<SR id="87" name="Cognizer" type="Core">

<SYN score="265">subj_U</SYN>
<SYN score="236">s_U</SYN>
<SYN score="15">subj_U conj_U</SYN>
<SYN score="13">s_U mod_D i_D</SYN>
...

</SR>
<SR id="88" name="Phenomenon" type="Core">

<SYN score="282">obj_U</SYN>
<SYN score="21">s_U i_U rel_U obj_U</SYN>
...

</SR>
<SR id="89" name="Ground" type="Peripheral">

<SYN score="50">mod_U obj_U</SYN>
<SYN score="25">mod_U</SYN>
<SYN score="5">mod_U pcomp-n_U mod_U obj_U</SYN>
...

</SR>
<SR id="90" name="State" type="Peripheral">

<SYN score="8">i_U rel_U obj_U</SYN>
<SYN score="3">i_U mod_U</SYN>
...

</SR>
<SR id="91" name="Evidence" type="Peripheral">

<SYN score="13">mod_U</SYN>
<SYN score="6">mod_U obj_U</SYN>
...

</SR>
...

</PRED>

Figure 5.4: Labeled Dependency Relation Paths for the predicate ”discover” in FrameNet

<PRED id="173" name="discover.v" frameid="20" framename="Becoming_aware" sentnumber="376">
<SR id="87" name="Cognizer" type="Core">

<R name="sc_D" weight="6.496414920651304" />
<R name="vrel_U" weight="5.058004558392399" />
<R name="gen_U" weight="2.3978952727983707" />
<R name="mod_D" weight="30.91292598208609" />
<R name="pred_U" weight="7.795697904781566" />
<R name="obj_D" weight="15.342732830145827" />
<R name="fc_U" weight="2.365372081092811" />
<R name="comp1_D" weight="10.394263873042087" />
<R name="pred_D" weight="1.0116009116784799" />
...

</SR>
<SR id="88" name="Phenomenon" type="Core">

<R name="mod_D" weight="11.516580267835995" />
<R name="head_D" weight="10.228488553430552" />
<R name="pred_U" weight="14.29211282543287" />
<R name="s_D" weight="3.897848952390783" />
<R name="appo_U" weight="1.7047480922384253" />
<R name="sc_U" weight="3.4094961844768505" />
<R name="nn_U" weight="7.193685818395112" />
<R name="obj1_U" weight="3.897848952390783" />
...

</SR>
...

</PRED>

Figure 5.5: Weights of Individual Dependency Relations for the predicate ”discover” in
FrameNet

104

<PRED id="174" name="discovery.n" frameid="20" framename="Becoming_aware" sentnumber="37">
<SR id="87" name="Cognizer" type="Core">

<SYN score="6">gen_U</SYN>
<SYN score="4">mod_U</SYN>
<SYN score="2">mod_U s_U subj_D</SYN>
<SYN score="2">subj_U obj_D</SYN>
...

</SR>
<SR id="88" name="Phenomenon" type="Core">

<SYN score="9">mod_U</SYN>
<SYN score="6">nn_U</SYN>
<SYN score="3">i_U comp1_U</SYN>
<SYN score="2">nn_U s_U subj_D</SYN>
...

</SR>
<SR id="91" name="Evidence" type="Peripheral">

<SYN score="1">mod_U</SYN>
</SR>
<SR id="963" name="Topic" type="Core">

<SYN score="6">mod_U</SYN>
<SYN score="1">mod_U s_U obj_D</SYN>
...

</SR>
...

</PRED>

Figure 5.6: Labeled Dependency Relation Paths for the predicate ”discovery” in
FrameNet

<PRED id="174" name="discovery.n" frameid="20" framename="Becoming_aware" sentnumber="37">
<SR id="87" name="Cognizer" type="Core">

<R name="pred_D" weight="1.8325814637483102" />
<R name="mod_U" weight="1.7851484105136781" />
<R name="mod_D" weight="4.828313737302301" />
<R name="subj_U" weight="5.497744391244931" />
<R name="subj_D" weight="2.7488721956224653" />
<R name="obj_U" weight="3.2188758248682006" />
...

</SR>
<SR id="88" name="Phenomenon" type="Core">

<R name="mod_U" weight="2.6777226157705174" />
<R name="pred_D" weight="2.7488721956224653" />
<R name="subj_U" weight="0.9162907318741551" />
<R name="subj_D" weight="5.497744391244931" />
<R name="s_D" weight="1.8325814637483102" />
...

</SR>
<SR id="91" name="Evidence" type="Peripheral">

<R name="mod_U" weight="0.22314355131420976" />
</SR>
...

</PRED>

Figure 5.7: Weights of Individual Dependency Relations for the predicate ”discovery”
in FrameNet

105

w and SR, as shown in (a) of Figure 5.3. Finally, we reduce SR assignments ((a) of

Figure 5.3) to an optimal subgraph with edge covers ((b) of Figure 5.3)

Analogously on the sentence side, we first identify ”discovery” as sentence predi-

cate corresponding to the question predicate ”discover”. Considering ”Stanley B. Prusiner”

as an answer candidate, we extract its unlabeled relation path. Moreover, we extract the

relation paths for the key phrases which are mapped from the question key phrases, such

as ”prions”, as follows:

RAC = 〈subj U, s D, appo D〉
Rprions = 〈pcomp− n U,mod U〉

Figure 5.6 shows the labeled dependency relation paths of the predicate ”discov-

ery” in FrameNet. Figure 5.7 shows the weights of individual relations. (c) and (d) of

Figure 5.3 shows the original and optimized semantic structures of the answer candidate

”Stanley B. Prusiner”.

5.3.3 Semantic Structure Matching

We measure the similarity between a question and its candidate answer by matching their

predicates and semantic role assignments. Since SRs are frame-specific, we prioritize

frame matching to SR matching. Two predicates match if they evoke the same frame or

one of its hypernyms (or hyponyms). The latter are expressed by the ”Inherits From” and

”Is Inherited By” relations in the frame definitions. If the predicates match, we examine

whether the assigned semantic roles match. Since we represent SR assignments as graphs

with edge covers, we can also formalize SR matching as a graph matching problem.

The similarity between two graphs is measured as the sum of similarities between

their subgraphs. We first decompose a graph into subgraphs consisting of one frame

element node w and a set of SR nodes connected to it. The similarity between two

106

subgraphs SubG1, and SubG2 is then formalized as:

Sim(SubG1, SubG2) =
∑

ndSR
1 ∈ SubG1

ndSR
2 ∈ SubG2

ndSR
1 = ndSR

2

1

|s(ndw, ndSR
1)− s(ndw, ndSR

2)|+ 1

Where, ndSR
1 and ndSR

2 are semantic role nodes connected to a frame element node ndw

in SubG1 and SubG2, respectively. s(ndw, ndsr
1) and s(ndw, ndSR

2) are edge weights

between two nodes in corresponding subgraphs. Our intuition here is that the more

semantic roles two subgraphs share for a given frame element, the more similar they are

and the closer their corresponding edge weights should be. Edge weights are normalized

by dividing by the sum of all edges in a subgraph.

107

Chapter 6

Maximum Entropy-based Answer

Extraction Model

6.1 Maximum Entropy Model

Maximum entropy ideas are the simplest way of modeling all that is known and assume

nothing about that which is unknown. Given a collection of events, to avoid making any

bold assumption without empirical justification, the best way we can do is to assume that

each event is equal probable subject to a set of certain constraints, that is, the probability

distribution for the events is uniformed. With the increase of the contraint complexity,

we encounter two difficulties at once. Firstly, what exactly is meant by ”uniform” and

how can we measure the uniformity of a model? Secondly, having determined a suitable

answer to the first question, how do we go about finding the most uniform model? By

using the term ”maximum entropy”, we may answer both of the questions. The max-

imum entropy based formulism is to seek a model satisfying all of known constraints

and meanwhile, predicating probability distribution as uniform as possible. This idea is

pioneered and extended by (Jaynes, 1983; Berger, Pietra, and Pietra, 1996; Pietra, Pietra,

and Lafferty, 1997) in the areas of statistical modeling and natural language processing.

108

As in (Jaynes, 1983), Jaynes’ writes:

... the fact that a certain probability distribution maximizes en-

tropy subject to certain constraints representing our incomplete

information, is the fundamental property which justifies use of

that distribution for inference; it agrees with everything that is

known, but carefully avoids assuming anything that is not known.

It is a transcription into mathematics of an ancient principle of

wisdom.

So far, Maximum entropy principles have been applied to a variety of problems

including:

• Sentence Boundary Detection (Reynar and Ratnaparkhi, 1997)

• Named Entity Detection (Borthwick et al., 1998)

• Phrase Chunking (Koeling, 2000)

• Parsing (Ratnaparkhi, 1999)

• Natural Language Ambiguity Resolution (Ratnaparkhi, 1998)

• Machine Translation (Berger, Pietra, and Pietra, 1996)

• Language Modeling (Rosenfeld, 1994)

• Answer Type Classification (Ittycheriah, Franz, and Roukos, 2001; Ittycheriah et

al., 2002)

A thorough description of maximum entropy was presented in (Berger, Pietra, and Pietra,

1996). In this chapter, a brief presentation of the maximum entropy formulation is pre-

sented and proofs are left to the references.

109

6.1.1 Maximum Entropy Principle

Maximum Entropy model is a method of estimating the conditional probability that,

given a context x, the process will output y. We denote by p(y|x) the conditional proba-

bility that the model assigns to y in the context of x. As described in (Berger, Pietra, and

Pietra, 1996), we also use p(y|x) to denote an entire conditional probability distribution

provided by the model, where, y and x are regarded as placeholders rather than specific

instantiations. P is defined as the set of all conditional probability distributions. Thus a

model p(y|x) is just an element of P .

To get the optimal distribution p(y|x), we collect a large number of training sam-

ples (x1, y1), (x2, y2),...,(xN , yN). Moreover, according to empirical knowledge of cer-

tain task, we define a set of constraints C = {c1, ...cn}, where n is the number of the

constraints. Firstly, the model p(y|x) is required to satisfy all of the constraints. Subject

to this requirement, there still are more than one possible probability distribution. Among

all of the possible models p, the most uniform distribution is selected. A mathematical

measure of the uniformity of a conditional probability distribution p(y|x) is provided by

conditional entropy:

H(p) ≡ −
∑
x,y

p̃(x)p(y|x) log p(y|x)

Maximum entropy-based model chooses a model p∗ that maximizes the entropy H(p)

subject to the constraints C.

p∗ = arg max
p∈C

H(p)

This is a constrained optimization problem. The method of Lagrange multipliers

from the theory of constrained optimization is applied. It transforms the primary prob-

lem (constrained optimization problem) to the dual problem (unconstrained optimization

problem) by incorporating Lagrange multipliers λi for each constraint ci. By the trans-

formation, the searching of the model p∗ which maximizes the entropy H(p) turns to be

110

the searching of the real-valued vector {λ1, λ2, ..., λn} which maximizes the likelihood

Ψ(λ). In the following two sections, we will discuss how to represent constraints in the

model and how to estimate the values of each λi (λi ∈ {λ1, λ2, ..., λn}.

6.1.2 Representing Constraints

For certain task, people always empirically or statistically collect evidence about events

to make correct prediction. One way to represent the evidence is to encode useful facts as

features. Effective features may successfully abstract and differentiate events and make

system conduct proper prediction as easy as possible. A feature f is a binary/real valued

function on events. For example, in automatic PERSON recognition task, to express the

fact that one word belongs to a PERSON name when it follows the word ”Mr.”, we can

introduce the feature function:

f(x, y) =

1 if y is PERSON name and x follows Mr.

0 otherwise

The expected value of f with respect to the empirical distribution p̃(x, y) is denoted as

p̃(f) ≡
∑
x,y

p̃(x, y)f(x, y)

Where, the empirical probability distribution p̃(x, y) can be simply counted from training

events as follows:

p̃(x, y) ≡ 1

N
× number of times that (x, y) occurs in the training events

Since we regard the expected value of f on training data p̃(f) as the most useful

statistics we get so far, we acknowledge its importance by requiring our model to accord

with it. The expected value of f that the model p(y|x) assigns to is calculated as:

p(f) ≡
∑
x,y

p̃(x)p(y|x)f(x, y)

111

where, p̃(x) is the empirical distribution of x on training events.

We impose a constraint for f that the feature expectation p(f) is equal to the

empirical feature expectation p̃(f).

p(f) = p̃(f)

Suppose that we are given n feature functions, each constraint is defined as an equation

p(fi) = p̃(fi) between fi expected value in the model p(fi) and its expected value in

the training data p̃(fi). Finally, constraint set in Maximum Entropy model is defined as

follows:

C ≡ {p ∈ P|p(fi) = p̃(fi) for i ∈ {1, 2, ..., n}}

After defining the constraints C and constructing the dual problem Ψ(λ) of the

primary maximum entropy problem p∗ = arg max
p∈C

H(p), we transform the constrainted

optimization problem to the searching of the real-valued vector {λ1, λ2, ..., λn} which

maximizes the likelihood Ψ(λ).

Ψ(λ) =
∑
x,y

p̃(x, y) log p(y|x)

= −
∑

x

p̃(x) log Zλ(x) +
∑

i

λip̃(fi)

where, Zλ(x) is a normalizing constant determined by the requirement that
∑
y

pλ(y|x) = 1

for all x:

Zλ(x) =
∑

y

exp

(∑
i

λifi(x, y)

)

Once we find the optimal λ∗ = arg max
λ

Ψ(λ), the object function can be explicitly

calculated as follows:

pλ(y|x) =
1

Zλ(x)
exp

(∑
i

λifi(x, y)

)

Next section, we will discuss how to search the optimal λ∗.

112

6.1.3 Parameter Estimation

Generalized iterative Scaling (GIS) is an optimization method specifically tailored to the

maximum entropy problem by (Darroch and Ratcliff, 1972). This algorithm is applicable

whenever the feature functions fi(x, y) are nonnegative. Furthermore, the GIS procedure

requires the constraints that the sum of all feature values remains a constant C for each

event:

∑
i

fi(x, y) = C

If it is not the case, choose C to be

C = max
x,y

n∑
i=1

fi(x, y)

and add a correction feature fl, where l = n + 1, such that

fl(x) = C −
n∑

i=1

fi(x)

The GIS algorithm is briefly described in the following:

1. Start with λi = 0 for all i ∈ {1, 2, ..., n}

2. Do for each i ∈ {1, 2, ..., n}

(a) Let ∆λi be the solution to

∆λi =
1

C
log

p̃(fi)

pλ(fi)

(b) Update the value of λi according to: λi ← λi + ∆λi

3. Go to step 2 until all the λi have converged

113

6.1.4 Gaussian Prior Smoothing

Since we regard Maximum Entropy modeling as maximum likelihood training for expo-

nential model, like other maximum likelihood methods, it is prone to overfitting of train-

ing data. Therefore, we have to consider how to smooth our model. Many smoothing

algorithms were developed in past years. (Chen and Rosenfeld, 1999) gave a compre-

hensive survey of maximum entropy smoothing methods, such as interpolated smoothing

models (Jelinek-mercer smoothing and Witten-Bell smoothing) and backed-off smooth-

ing models(Katz smoothing, absolute discounting and Kneser-Ney smoothing) and stated

that the ME smoothing algorithm proposed by (Lafferty, 1997) performed better than all

other algorithms. It uses a Gaussian prior on model parameters and selects maximum

posteriori instead of maximum likelihood parameter values. In this section, we briefly

discuss how the Gaussian prior smoothing works for Maximum Entropy model and leave

proofs to the references.

Recall that maximum entropy model is to search the optimal λ∗ that maximize the

log-likelihood Ψ(λ) of the training data.

Ψ(λ) =
∑
x,y

p̃(x, y) log p(y|x)

With the Gaussian prior, which we take to have diagonal covariance, the function

Ψ(λ) turns to be:

Ψ
′
(λ) = Ψ(λ) +

n∑
i=1

log

(
1√
2πσ2

i

exp

(
− λ2

i

2σ2
i

))

= Ψ(λ)−
n∑

i=1

λ2
i

2σ2
i

+ const

In the above formular, there are two terms. The former one Ψ(λ) prefers the models

similar to the training data and more uniform. The latter one
n∑

i=1

λ2
i

2σ2
i

penalizes the models

that have many large λi values.

The Gaussian prior algorithm adds little computation to existing maximum en-

tropy training. The original update of each λi is to take λ
(t+1)
i ← λ

(t)
i + ∆λ

(t)
i , where

114

∆λ
(t)
i satisfies the equation.

p̃(fi) = pλ(fi) exp(∆λiC)

With the Gaussian prior, the equation is replaced with

p̃(fi) = pλ(fi) exp(∆λiC) +
λi + ∆λi

σ2
i

A simple and effective way to search ∆λi is Newton’s method. It computes the solution

α∗ of an equation g(α∗) = 0 iteratively by the recurrence

αn+1 = αn − g(αn)

g′(αn)

This method is also used in Improve Iterative Scaling (Pietra, Pietra, and Lafferty,

1997) for parameter estimation in Maximum Entropy model.

6.2 Answer Extraction Model

Considering the advantage of Maximum Entropy model, we apply it to question answer-

ing. Given a question q and a set of answer candidates {ac1, ac2, ...acN}, the task is

to select the best answer ac∗ from the answer candidate set ac∗ ∈ {ac1, ac2, ...acN}.

It can be viewed as a classification problem and a ranking problem respectively under

Maximum Entropy mechanism.

6.2.1 Answer Candidate Classification

In the classification view, we present each 〈q, ac〉 pair to the model which classifies it

as either correct (true) or incorrect (false) based on evidence (features). In this case,

we model p(c|q, ac), where, c = {true, false} signifies the correctness of the answer

candidate ac with respect to the question q.

Give N answer candidates {ac1, ac2, ...acN} for a question q, the probability

p(c|q, ac),(ac ∈ {ac1, ac2, ...acN}) for each 〈q, ac〉 pair is modeled independently of

115

other such pairs. Thus, the N pairs are presented to the classifier as independent events.

Once each probability p(c|q, ac) is computed, the system will select the best answer ac∗

based on the following decision rule:

ac∗ = arg max
ac∈{ac1,ac2,...acN}

p(true|q, ac)

The above decision rule requires the comparison of the probabilities p(true|q, ac). How-

ever, the probabilities are modeled as independent events in the classifier and hence the

training criterion doesn’t make them directly comparable.

When using Maximum Entropy to model the classification problem, we firstly

define M feature functions fm(q, ac), (m = 1, 2, ...M) to effectively characterize the

task. The feature functions will be detailed described in Section 6.3. After estimating

the parameters λm,c for each feature function fm(q, ac) on training data, the probability

p(c|q, ac) will be calculated as follows:

p(c|q, ac) =

exp

[
M∑

m=1

λm,cfm(q, ac)

]

∑
c′∈{true,false}

exp

[
M∑

m=1

λm,c′fm(q, ac)

]

where, λm,c, (m = 1, ..., M ; c = {true, false}) are the model parameters which are

trained with Generalized iterative Scaling(GIS) algorithm (Section 6.1.3) and smoothed

with Gaussian Prior Smoothing algorithm (Section 6.1.4).

6.2.2 Answer Candidate Ranking

In the ranking view, we directly model the probability of an answer candidate ac for

a question q in answer candidate set {ac1, ac2, ..., acN}. The model aims to predicate

p(ac|q, {ac1, ac2, ..., acN}). This view requires the following decision rule to select the

most promising answer:

ac∗ = arg max
ac∈{ac1,ac2,...acN}

p(ac|q, {ac1, ac2, ..., acN})

116

Table 6.1: Comparison between classification model and ranking model. Q is the number
of questions; N is the number of answer candidates for a question; M is the number of
feature functions.

Events # Classes # Parameters
Classification Q×N 2 2M

Ranking Q N M

Comparing with the classification model, the ranking model makes the probability

p(ac|q, {ac1, ac2, ..., acN}) directly comparable against each other, by incorporating it

into the training criterion.

Using the same feature functions fm(q, ac), (m = 1, 2, ...M) as the classification

task, the probability p(ac|q, {ac1, ac2, ..., acN}) will be calculated as follows:

p(ac|q, {ac1, ac2, ..., acN}) =

exp

[
M∑

m=1

λmfm(q, ac)

]

∑
ac′∈{ac1,ac2,...,acN}

exp

[
M∑

m=1

λmfm(q, ac′)
]

Where, λm, (m = 1, ...,M) are the model parameters. Note that the parameters are de-

fined as λm in the ranking model, whereas as λm,c in the classification model. This is

because in the classification model, each feature function fm(q, ac) has different weights

associated with different classes (λm,true and λm,false respectively). Therefore, the clas-

sification model has as twice parameters as the ranking model.

Another difference between the models occurs in event construction. Suppose

there are Q questions in training data and each question has N answer candidates, the

classification model will handle Q×A events and two classes (true and false) per event

while the ranking model will have Q event and N classes (ac1, ..., acN) per event. So

the event space of the classification model is much larger than that of the ranking model.

Table 6.1 summarizes the difference between the classification model and the ranking

model.

117

6.3 Features

Surface Features We incorporate four types of surface features into Maximum En-

tropy model.

• Expected Answer Type Matching Features: If the semantic category of answer

candidate accords with the expected answer type (EAT) of question, EAT feature

fires. The identification of question expected answer type was discussed in Sec-

tion 3.1.2 and the recognition of answer candidate semantic category was discussed

in Section 3.4.

• Orthographic Features: They capture the surface format of answer candidate,

such as capitalizations, digits and lengths, etc. We expect to judge what a proper

answer looks like from word format point of view since the semantic category of

answer candidate naturally might not be correctly recognized all the time.

• POS Features: For certain question type, if the words in answer candidate belong

to certain POS type, one POS feature fires. It is also expected to backup the fail of

semantic category recognition.

• Surface Pattern Matching: Considering that there are questions with very high

frequency to be asked in TREC, we build question patterns to map high frequent

questions to classes and extract answers for the question classes using answer pat-

terns. Surface pattern matching is discussed in Section 3.1.4. Once question and

answer pattern matching succeeds, one feature of suface pattern matching fires.

Table 6.2 lists some examples of surface features. All of them are binary features.

In addition, many other features, such as the answer candidate frequency, can be ex-

tracted based on the Sentence Retrieval output and are thought as an indicative evidence

for the Answer Extraction (Ittycheriah and Roukos, 2002). However, in this thesis, we

118

Table 6.2: Surface Features

Features Examples Explanation

EAT matching
EAT DAT ac type matchs the EAT (DATE) of question
EAT PERSON ac type matchs the EAT (PERSON) of question
EAT DISTANCE ac type matchs the EAT (DISTANCE) of ques-

tion

Orthographic
SSEQ Q ac is a subsequence of question
CAP EAT LOC ac is capitalized and the EAT is LOCATION
LNGlt3 EAT PER ac length is less than 3 and the EAT is PERSON

POS
CD EAT NUM syn. tag of ac is CD and the EAT is NUMBER
NNP EAT PER syn. tag of ac is NNP and the EAT is PERSON

Surface Pattern SUR PTN question and answer pattern matching succeeds
Matching

are to focus on the Answer Extraction Module independently, so we do not incorporate

such features in the current model.

Dependency Relation Features The extraction of dependency relation information is

discussed in Chapter 4, which consists of dependency relation pattern matching and de-

pendency relation correlation. Both of them are on the basis of the comparison between

dependency relations of question and answer sentence.

Dependency relation pattern matching was discussed in Section 4.3. We respec-

tively extract question and answer patterns from training data. These patterns will be

used to exact answer for an unseen question. We firstly match the unseen question to

the question patterns. Once we get the matched question pattern, the answer patterns

evoked by the question pattern will be further matched to pinpoint proper answers. A

string kernel, calculating the similarity between two sequences, is used to tolerant an-

swer pattern matching in stead of exact matching. The feature value is set as the answer

pattern matching score. The experiments (Section 7.3.2) will evaluate the coverage of

the pattern sets and the performance of the two pattern matching methods.

119

Q: What party led Australia from 1983 to 1996?

Target: party
Topic: Australia
Constraint: 1983; 1996
Verb: lead

Figure 6.1: Examples of question phrase types

Dependency relation correlation was discussed in Section 4.4. Dependency rela-

tion paths in question are firstly paired with paths in answer sentence according to ques-

tion key word mapping. Then a dynamic time warping algorithm is applied to align the

paired relation paths and calculate their correlation. The correlation of two paths relied

on the correlation of individual relations which are statistically estimated from training

data. Finally, the correlation score is used as feature value. Two facts are considered

to affect relation path comparison: question phrase type and path length. For each

question, we divide question phrases into four types: target, topic, constraint and verb.

Figure 6.1 shows an example of each question phrase type.

• Target is a kind of word which indicates the expected answer type of a question,

such as ”party” in ”What party led Australia from 1983 to 1996?”.

• Topic is the event/person that a question is talking about, such as the word ”Aus-

tralia” in the above example question. Intuitively, it is the most important phrase

of a question.

• Constraint is the other question phrase except topic, such as ”1983” and ”1996”.

• Verb is the main verb of a question, such as ”lead”.

Furthermore, since shorter path indicates closer relation between two phrases, we dis-

count path matching score by dividing the score by the question path length. Lastly, we

120

sum the discounted path matching score for each type of question phrases and fire it as a

feature, such as

• Target Ptn=p, where ”p” is the pattern matching score for question target words.

• Topic Cor=c, where ”c” is the path correlation value for question topic words.

Totally, there are 8 dependency relation features to fire for each answer candidate, in-

cluding Target Ptn, Topic Ptn, Constraint Ptn, Verb Ptn, Target Cor, Topic Cor, Con-

straint Cor and Verb Cor.

Semantic Structure Matching Features FrameNet-style semantic role information

was discussed in Chapter 5. We present an automatic method for semantic role as-

signment which is based on the comparison of dependency relation paths attested in

FrameNet annotations and raw texts. We formalize the search for an optimal role assign-

ment as an optimization problem in a bipartite graph. This formalization allows us to

find an exact globally optimal solution. In addition, the soft labeling is enabled in the

optimization which goes some way towards addressing coverage problem related with

FrameNet. Finally, semantic structure matching is formulated as a graph matching prob-

lem. The matching score is used as the value of semantic structure matching feature.

Finally, the ME-based ranking model incorporate the surface features, depen-

dency relation features and semantic structure matching features to rank answer can-

didates.

121

Chapter 7

Evaluation

7.1 Experiment Setting

We apply the Answer Extraction (AE) module to the TREC QA task. The goal of the AE

module is to identify exact answers for questions from candidate sentence collections.

The AE module accepts questions and their relevant sentences as input and returns a set

of ranked answers as output. The performance of the AE module is evaluated using the

mean reciprocal rank (MRR). Furthermore, we also list the percentages of the correct

answers in terms of the top 1, top5 and top10 answers returned.

Here we summarize the processing steps of the Alyssa system preceding the AE

module. A user question firstly undergoes the Question Processing Module (Section 3.1),

a phase in which several steps are involved independently. The expected answer type of

the question is identified and a series of linguistic analysis is carried out, including key

phrase extraction and extension, surface pattern matching, syntactic and semantic struc-

ture generation. Moreover, a query is constructed from the question and is run against

the Document Retrieval Module (Section 3.2) on the Aquaint indexes. The Sentence Re-

trieval Module (Section 3.3) is implemented based on language modeling techniques, and

the extracted relevant sentences undergo further linguistic analysis in the Sentence Anno-

122

tation Module (Section 3.4) including named entity recognition, noun phrase chunking

and dependency parsing. Before the sentences are fed into the AE Module, the Ques-

tion Phrase Mapping Module (Section 3.5.1) is applied to detect which is the word or

phrase overlapping between the question and the relevant sentences by considering mor-

phological, format, semantic and proper name variations of individual words. Finally, all

the information supplying the evidence of proper answer is integrated into the AE Mod-

ule. We assume that all the noun phrases attested in the relevant sentences are answer

candidates. A Maximum Entropy-based model is applied to rank the answer candidates

according to their semantic category, surface, syntactic and semantic evidence, proposed

in Chapter 4 and 5. The top-ranked answer candidates are finally passed to the Answer

Validation Module (Section 3.6) which is based on the evidence from the Web and struc-

tured databases.

All of our experiments are performed on the TREC99–07 factoid questions. We

exclude NIL questions since TREC doesn’t supply proper answers for them. We train the

AE module on the questions of TREC99-03 and test it on the questions of TREC04-07.

The test is separately conducted on the TREC years in order to make our results compara-

ble with other related work. The documents and sentences for TREC99-01 questions are

from the TREC Corpus1 and for TREC02-07 questions are from the AQUAINT Corpus2

The following steps are used to generate the gold standard data set:

1. Retrieve relevant documents for each question according to TREC judgments;

2. Select the sentences containing proper answers and at least one question key word

from the relevant documents;

3. Manually check the sentences, remove the unsupported ones and tag proper an-

swers in the rest sentences according to TREC answer patterns.

1TREC Corpus includes the AP newswire, the Wall Street Journal, the San Jose Mercury News, the
Financial Times, the Los Angeles Times and the Foreign Broadcast Information Service

2Aquaint Corpus consists of English newswire texts and is used as the main document collection in
official TREC evaluations.

123

Table 7.1: Statistics of TREC questions

TREC # Questions # Not-Nil Questions # Answer Sentences

Training Data

1999 200 193 402
2000 693 667 2659
2001 500 433 2628
2002 500 444 1380
2003 413 362 1063
total 2306 2099 8132

Test Data

2004 230 203 698
2005 362 327 1662
2006 403 386 1235
2007 360 344 1001
total 1355 1260 4596

Table 7.1 shows the statistics of the gold standard data sets. Totally, there are

2099 training questions and 1260 test questions. On average, given a question, there are

about 4 relevant sentences containing proper answers in the Corpora. In the other word,

there are not many chances to find the proper answers in the Corpora. It indicates that

the answer extraction on the Corpora will be much harder than that on the Web where the

proper answers might occur in lots of documents and are supported by various contexts.

Obviously the quality of relevant sentence set has strong impact on the perfor-

mance of the answer extraction. It is meaningless to evaluate the AE module on the

questions whose relevant sentences don’t contain any proper answers. To our knowl-

edge, most of the existing QA systems lose about half of the questions in the Sentence

Retrieval stage. In this thesis, we evaluate the AE module on the following sentence sets

corresponding to different quality levels.

• Gold Standard Sentence Set (GSSet): It assumes that the Sentence Retrieval Mod-

ule gets 100% precision and 100% recall. This set has the best quality. Each

sentence in the GSSet contains a proper answer. Although this setup is somewhat

idealized, it allows us to evaluate the AE Module in more detailed.

124

• Sentence Retrieval Output (SRSet): It uses the top N ranked sentences returned

by a real Sentence Retrieval Module. This set has the worst quality. A portion

of questions can’t be answered using the sentence set. Section 7.2 will show how

many questions are lost in the Document Retrieval and Sentence Retrieval Modules

respectively in the Alyssa system. The value will be regarded as the up-bound of

the AE Module.

• GSSRSet: We add the sentence retrieval output to the gold standard sentence set

(GSSRSet = GSSet ∪ SRSet). The GSSRSet thus includes at least one correct sen-

tence (100% recall) per question as well as wrong/unsupported sentences. Using

this setting, we can make sure it is the fault of the AE module when an answer is

not found. And meanwhile, we may also test the capability of the AE module on

handling noisy data.

7.2 Performance of Document and Sentence Retrieval

In the pipeline structure of a QA system, performance of one module will be confined

by performances of previous modules. Before evaluating the AE Module, we firstly

investigate the performances of its previous modules: the Document Retrieval Module

and the Sentence Retrieval Module. The questions failed in the two modules will totally

lose the chance to be correctly answered at last. The more documents or sentences are

returned, the larger possibility proper answers are contained. On the other hand, this will

also increase the difficulty of the AE module.

Table 7.2 shows the performance of the document retrieval according to various

N values. The parameter N indicates the number of documents the module returns for

a question. Since the performance doesn’t increase much more when N > 60, we pass

the 60 top ranked documents to the Sentence Retrieval Module. Table 7.3 shows the

performance of the sentence retrieval according to various M values. The parameter M

125

Table 7.2: Perfomance of document retrieval on TREC04-07 questions: Number of ques-
tions of which the N top ranked documents contain proper answers; numbers in paren-
theses are accuracy.

TREC04 TREC05 TREC06 TREC07 overall
Total 203 327 386 344 1260
Top 100 190 (93.6) 305 (93.3) 356 (92.2) 292 (84.9) 1143 (90.7)
Top 80 188 (92.6) 299 (91.4) 352 (91.2) 287 (83.4) 1126 (89.4)
Top 60 185 (91.1) 294 (89.9) 332 (86.0) 276 (80.2) 1087 (86.3)
Top 40 181 (89.2) 281 (85.9) 322 (83.4) 271 (78.8) 1055 (83.7)
Top 20 167 (82.3) 260 (79.5) 295 (76.4) 231 (67.2) 953 (75.6)

indicates the number of sentences the module returns for a question. We set the parameter

M = 100. These top ranked sentences will be further fed into the AE Module.

7.3 Syntactic Methods

7.3.1 Overall Performance

In order to evaluate the effectiveness of the two syntactic methods: Dependency Rela-

tion Pattern Method (Section 4.3) and Dependency Relation Path Correlation Method

(Section 4.4) in the answer extraction, we compare them with the state of the art. The

evidence captured by a syntactic method is incorporated into a Maximum Entropy-based

ranking model along with the other common surface features, as described in Section 6.3.

The Maximum Entropy model is then trained on TREC99-03 questions and ranks answer

candidates in test stage. We evaluate the MRR, Top1, Top5 and Top10 performances of

the ranked answers. Totally, six answer extraction methods are evaluated for comparison:

• Density: Density-based method is used as baseline. It prefers answer candidates

which have shorter surface distance to question phrases.

126

Table 7.3: Perfomance of sentence retrieval on TREC04-07 questions: Number of ques-
tions of which the M top ranked sentences contain proper answers; numbers in paren-
theses are accuracy.

TREC04 TREC05 TREC06 TREC07 overall
Total 203 327 386 344 1260
Top 200 171 (84.2) 282 (86.2) 316 (81.9) 231 (67.2) 1000 (79.4)
Top 180 171 (84.2) 281 (85.9) 314 (81.3) 230 (66.9) 996 (79.0)
Top 160 170 (83.7) 277 (84.7) 313 (81.1) 230 (66.9) 990 (78.6)
Top 140 170 (83.7) 275 (84.1) 308 (79.8) 230 (66.9) 983 (78.0)
Top 120 168 (82.8) 271 (82.9) 303 (78.5) 226 (65.7) 968 (76.8)
Top 100 166 (81.8) 266 (81.3) 295 (76.4) 225 (65.4) 952 (75.6)
Top 80 166 (81.8) 258 (78.9) 290 (75.1) 220 (64.0) 934 (74.1)
Top 60 160 (78.8) 252 (77.1) 274 (71.0) 208 (60.5) 894 (71.0)
Top 40 154 (75.9) 241 (73.7) 255 (66.1) 201 (58.4) 851 (67.5)
Top 20 140 (69.0) 213 (65.1) 217 (56.2) 180 (52.3) 750 (59.5)

• Syntactic Distance (SynDist): SynDist considers the length of dependency relation

path from answer candidate to question key phrase. The shorter a relation path is,

the closer relationship the words of the path have.

• Strict Syntactic Structure Matching (StrictMatch): Strict relation matching pro-

posed by (Tanev, Kouylekov, and Magnini, 2004; Wu et al., 2005) is on the basis of

the assumption that the more common individual relations two syntactic structures

share, the more similar they are. We implement it by adapting the relation corre-

lation measure in Section 4.4.3. In stead of learning invidual relation correlations

during training, we predefine them as: Cor(r1, r2) = 1 if r1 = r2; 0, otherwise.

• Approximate Syntactic Structure Matching (ApprMatch): Approximate relation

matching (Cui et al., 2004) aligns two relation paths using fuzzy matching and

ranks answer candidates according to the sum of all path similarities. This method

was briefly described in Section 4.2.

127

Table 7.4: Performance of syntactic methods on GSSet

TREC Density SynDist StricMatch ApprMatch DepPtn DepCor

04

MRR 82 (40.4) 88 (43.3) 110 (54.2) 117 (57.6) 135 (66.5) 136 (67.0)
Top1 73 (36.0) 76 (37.4) 98 (48.3) 106 (52.2) 128 (63.1) 126 (62.1)
Top5 112 (55.2) 114 (56.2) 134 (66.0) 140 (69.0) 145 (71.4) 150 (73.9)
Top10 117 (57.6) 118 (58.1) 139 (68.5) 147 (72.4) 156 (76.8) 160 (78.8)

05

MRR 111 (33.9) 130 (39.8) 172 (52.6) 176 (53.8) 222 (67.9) 197 (60.2)
Top1 101 (30.9) 114 (34.9) 156 (47.7) 157 (48.0) 205 (62.7) 174 (53.2)
Top5 131 (40.1) 164 (50.2) 198 (60.6) 206 (63.0) 235 (71.9) 245 (74.9)
Top10 147 (44.3) 170 (52.0) 201 (61.5) 219 (67.0) 245 (74.9) 249 (76.1)

06

MRR 133 (34.5) 142 (36.8) 177 (45.9) 186 (48.2) 234 (60.6) 221 (57.3)
Top1 118 (30.6) 122 (31.6) 162 (42.0) 166 (43.0) 224 (58.0) 201 (52.1)
Top5 164 (42.5) 182 (47.2) 208 (53.9) 216 (56.0) 258 (66.8) 258 (66.8)
Top10 185 (47.9) 198 (51.3) 228 (59.1) 228 (59.1) 263 (68.1) 272 (70.5)

07

MRR 129 (37.5) 133 (38.7) 166 (48.3) 169 (49.1) 200 (58.1) 188 (54.7)
Top1 106 (30.8) 108 (31.4) 141 (41.0) 139 (40.4) 190 (55.2) 168 (48.8)
Top5 167 (48.5) 171 (49.7) 207 (60.2) 207 (60.2) 216 (62.8) 215 (62.5)
Top10 172 (50.0) 187 (54.4) 213 (61.9) 213 (61.9) 231 (67.2) 235 (68.3)

all

MRR 455 (36.1) 493 (39.1) 625 (49.6) 648 (51.4) 791 (62.8) 742 (58.9)
Top1 398 (31.6) 420 (33.3) 557 (44.2) 568 (45.1) 747 (59.3) 669 (53.1)
Top5 574 (45.6) 631 (50.1) 747 (59.3) 769 (61.0) 854 (67.8) 868 (68.9)
Top10 621 (49.3) 673 (53.4) 781 (62.0) 807 (64.0) 895 (71.0) 916 (72.7)

• Dependency Relation Pattern (DepPtn): It is the method proposed in Section 4.3.

Dependency relation patterns are firstly extracted from training questions and an-

swer sentences. Given a unseen question for testing, the patterns are partially

matched using string kernel.

• Dependency Relation Path Correlation Method (DepCor): It is the method pro-

posed in Section 4.4. Different from ApprMatch, ME-based ranking model is

implemented to incorporate path correlations which assign different weights for

different paths respectively. Furthermore, phrase mapping score is incorporated

into the path correlation measure.

128

Table 7.5: Performance of syntactic methods on GSSRSet

TREC Density SynDist StricMatch ApprMatch DepPtn DepCor

04

MRR 52 (25.6) 64 (31.5) 90 (44.3) 96 (47.3) 132 (65.0) 138 (68.0)
Top1 40 (19.7) 47 (23.2) 81 (39.9) 88 (43.3) 125 (61.6) 128 (63.1)
Top5 73 (36.0) 90 (44.3) 105 (51.7) 132 (65.0) 146 (71.9) 151 (74.4)
Top10 86 (42.4) 95 (46.8) 108 (53.2) 139 (68.5) 156 (76.8) 160 (78.8)

05

MRR 74 (22.6) 95 (29.1) 135 (41.3) 149 (45.6) 218 (66.7) 195 (59.6)
Top1 54 (16.5) 72 (22.0) 114 (34.9) 128 (39.1) 202 (61.8) 171 (52.3)
Top5 102 (31.2) 126 (38.5) 167 (51.1) 181 (55.4) 231 (70.6) 248 (75.8)
Top10 112 (34.3) 132 (40.4) 177 (54.1) 198 (60.6) 245 (74.9) 249 (76.1)

06

MRR 96 (24.9) 106 (27.5) 143 (37.0) 152 (39.4) 233 (60.4) 219 (56.7)
Top1 69 (17.9) 76 (19.7) 125 (32.4) 131 (33.9) 222 (57.5) 199 (51.6)
Top5 131 (33.9) 143 (37.0) 170 (44.0) 181 (46.9) 260 (67.4) 255 (66.1)
Top10 139 (36.0) 158 (40.9) 195 (50.5) 197 (51.0) 264 (68.4) 271 (70.2)

07

MRR 79 (23.0) 92 (26.7) 134 (39.0) 142 (41.3) 203 (59.0) 188 (54.7)
Top1 60 (17.4) 73 (21.2) 105 (30.5) 110 (32.0) 192 (55.8) 169 (49.1)
Top5 106 (30.8) 120 (34.9) 175 (50.9) 183 (53.2) 218 (63.4) 214 (62.2)
Top10 130 (37.8) 132 (38.4) 178 (51.7) 189 (54.9) 231 (67.2) 234 (68.0)

all

MRR 301 (23.9) 357 (28.3) 502 (39.8) 539 (42.8) 786 (62.4) 740 (58.7)
Top1 223 (17.7) 268 (21.3) 425 (33.7) 457 (36.3) 741 (58.8) 667 (52.9)
Top5 412 (32.7) 479 (38.0) 617 (49.0) 677 (53.7) 855 (67.9) 868 (68.9)
Top10 467 (37.1) 517 (41.0) 658 (52.2) 723 (57.4) 896 (71.1) 914 (72.5)

129

Table 7.6: Performance of syntactic methods on SRSet

TREC Density SynDist StricMatch ApprMatch DepPtn DepCor

04

MRR 31 (15.3) 47 (23.2) 58 (28.6) 61 (30.0) 71 (35.0) 72 (35.4)
Top1 18 (8.9) 26 (12.8) 38 (18.7) 41 (20.2) 53 (26.1) 54 (26.6)
Top5 47 (23.2) 69 (34.0) 79 (38.9) 79 (38.9) 97 (47.8) 99 (48.8)
Top10 62 (30.5) 78 (38.4) 82 (40.4) 84 (41.4) 106 (52.1) 108 (53.2)

05

MRR 56 (17.1) 74 (22.6) 89 (27.2) 94 (28.7) 115 (35.1) 110 (33.7)
Top1 36 (11.0) 43 (13.1) 60 (18.3) 69 (21.1) 80 (24.5) 78 (23.9)
Top5 93 (21.4) 108 (33.0) 120 (36.7) 123 (37.6) 165 (50.5) 172 (52.6)
Top10 108 (33.1) 136 (41.6) 141 (43.1) 143 (43.7) 183 (56.0) 190 (58.1)

06

MRR 70 (18.1) 84 (21.8) 100 (25.9) 102 (26.4) 117 (30.2) 113 (29.3)
Top1 42 (10.9) 56 (14.5) 72 (18.7) 73 (18.9) 89 (23.1) 85 (22.0)
Top5 102 (26.4) 117 (30.3) 129 (33.4) 130 (33.7) 157 (40.7) 160 (41.5)
Top10 138 (35.8) 157 (40.7) 167 (43.3) 167 (43.3) 185 (47.9) 189 (49.0)

07

MRR 49 (14.2) 62 (18.0) 74 (21.5) 79 (23.0) 93 (27.1) 92 (26.6)
Top1 28 (8.1) 40 (11.6) 56 (16.3) 61 (17.7) 67 (19.5) 64 (18.6)
Top5 71 (20.6) 87 (25.3) 96 (27.9) 97 (28.2) 123 (35.8) 130 (37.8)
Top10 100 (29.1) 110 (32.0) 113 (32.8) 116 (33.7) 152 (44.2) 153 (44.5)

all

MRR 206 (16.3) 267 (21.2) 321 (25.5) 336 (26.7) 396 (31.4) 387 (30.7)
Top1 124 (9.8) 165 (13.1) 226 (17.9) 244 (19.4) 289 (22.9) 281 (22.3)
Top5 313 (24.8) 381 (30.2) 424 (33.7) 429 (34.0) 542 (43.0) 561 (44.5)
Top10 408 (32.4) 481 (38.2) 503 (39.9) 510 (40.5) 626 (49.7) 640 (50.8)

130

Table 7.4, 7.5 and 7.6 show the performances of the six methods on different

sentence sets. The main observations from the tables are as follows:

1. The performance comparison of the methods are consistent on the different data

sets (GSSet, GSSRSet and SRSet) and the different years (04, 05, 06 and 07). We

analyze the results on the GSSet (Table 7.4) as an example. Actually, the same

finding may also be obtained from the GSSRSet (Table 7.5) and the SRSet (Ta-

ble 7.6). From Table 7.4, we find that the syntactic methods SynDist, StrictMatch,

ApprMatch, DepPtn and DepCor significantly improve MRR by 3.0%, 13.5%,

15.3%, 26.7% and 22.8% over the baseline method Density. The improvements

may benefit from the various exploration of syntactic information. It shows that

syntactic evidence indeed helps a lot in the answer extraction. DepPtn outperforms

all the other syntactic-based methods (SynDist, StrictMatch and ApprMatch) by

about 23.7%, 13.2% and 11.4% MRR improvement. DepCor outperforms Syn-

Dist, StrictMatch and ApprMatch) by about 19.8%, 9.3% and 7.5% MRR im-

provement. The strict matching (StrictMatch) often fails due to the variation of

syntactic representations. To some extent, such variation may be captured by the

approximate matching (ApprMatch) using more relaxed matching. However, the

ApprMatch still follows the assumption that two sequences are more similar if only

they share more common individual relations. The dependency relation pattern

method (DepPtn) further solves this problem with pattern matching. Answer pat-

terns represent a set of elementary syntactic formats of expected answers. A partial

matching with string kernel is performed to find more potential syntactic expres-

sions of proper answers. In stead of requiring common individual relations in the

matching, the dependency relation correlation method (DepCor) further estimates

correlations of individual relations between questions and answer sentences using

a MI-based statistical method. Then a DTW algorithm is applied to align two rela-

tion paths according to the correlation scores. Since the DepCor doesn’t follow the

131

strict assumption any more, we expect it will achieve better coverage without large

reduction of precision. The experiment on the GSSet shows that the DepPtn(62.8%

MRR and 59.3% Top1) performs better than the DepCor (58.9% MRR and 53.1%

Top1) in MRR and Top1 evaluation. However, when Top5 or Top10 answer can-

didates are returned, the DepCor (68.9% Top5 and 72.7% Top10) outperforms the

DepPtn (67.8% Top5 and 71.0% Top10). It indicates that the DepPtn contributes

more to the precision while the DepCor to the recall. It gives us an illumination

that incorporating both of them might achieve better performance. This result will

be shown in Table 7.11 of Section 7.4.4.

2. A surprising finding is that our methods (DepPtn and DepCor) achieve quite sim-

ilar performance on the GSSet and the GSSRSet although the GSSRSet contains

much more noisy sentences. It proves the great capability of our methods on the

identification of supportive sentences. Unfortunately, the Density and the Syn-

Dist methods can’t perform on the GSSRSet as well as the GSSet. Table 7.6 fur-

ther shows the performance of the answer extraction on the real data set (SRSet).

It is much worse than those on the GSSet and the GSSRSet. One obvious rea-

son is that the sentence retrieval fails to get the sentences containing proper an-

swers. As show in Table 7.3, we evaluate the sentence retrieval module by judg-

ing whether a sentence contains a proper answer phrase or not. It indicates that

81.8% on TREC2004, 81.3% on TREC2005, 76.4% on TREC2006 and 65.4%

on TREC2007 are the up-bound performance of the answer extraction. However,

even if a returned sentence contains proper answer, we can’t automatically judge

whether it is supportive. For those unsupportive sentences which might not have

any similarity with questions, our methods still won’t get any chance to pinpoint

proper answers. For this reason, we think the real up-bound will be even below the

above numbers.

3. The tables also show that there exists a large gap (about 10%) between Top1 and

132

Table 7.7: Coverage of question and answer pattern matching on SRSet

Data Total Exact QPtn Match Exact APtn Match Partial APtn Match
TREC04 203 185 (91.2) 105 (51.9) 150 (73.8)
TREC05 327 286 (87.5) 159 (48.6) 249 (76.3)
TREC06 386 345 (89.3) 206 (53.3) 292 (75.7)
TREC07 344 312 (90.8) 161 (46.7) 248 (72.1)
overall 1260 1128 (89.5) 631 (50.1) 939 (74.5)

Top5 performance. It indicates that although our methods can accurately identify

a small set of potential answer candidates, it is weak to decide which the best one

is. The reason might be that our methods only focus on local evidence, such as the

evidence extracted from a single sentence, without using any additional resources.

This finding motivates us to construct a web validation module as a complement of

the answer extraction by further incorporating answer redundancy evidence from

Web data. We re-rank the Top 5 or 10 answer candidates using the web validation.

The final results will be shown in Section 7.5.

7.3.2 Coverage and performance of dependency relation patterns

Since the DepPtn achieves the best MRR among all of the methods as shown in Ta-

ble 7.4, 7.5 and 7.6, we try to find how many questions can actually benefit from the

DepPtn. We firstly investigate the coverage of the question and answer patterns respec-

tively. Next, we attempt to judge whether partial answer pattern matching is more effec-

tive than exact matching.

Question patterns represent the most frequent syntactic structures in questions.

Each question pattern corresponds to a set of answer patterns which indicates basic syn-

tactic structures of proper answers for the question pattern. The question and answer

patterns are constructed from training data with the procedure of Section 4.3.1. Given a

unseen question, firstly, we match it to the question patterns. Once it matches, we fur-

133

Table 7.8: Performance of dependency relation pattern matching methods on SRSet

TREC Exact APtn Match Partial APtn Match

04

MRR 62 (30.5) 71 (35.0)
Top1 46 (22.7) 53 (26.1)
Top5 82 (40.4) 97 (47.8)
Top10 84 (41.4) 106 (52.2)

05

MRR 96 (29.4) 115 (35.1)
Top1 72 (22.0) 80 (24.5)
Top5 126 (38.5) 165 (50.5)
Top10 145 (44.3) 183 (56.0)

06

MRR 104 (26.9) 117 (30.2)
Top1 78 (20.2) 89 (23.1)
Top5 135 (35.0) 157 (40.7)
Top10 170 (44.0) 185 (47.9)

07

MRR 82 (23.8) 93 (27.1)
Top1 61 (17.7) 67 (19.5)
Top5 113 (32.8) 123 (35.8)
Top10 122 (35.5) 152 (44.2)

all

MRR 344 (27.3) 396 (31.4)
Top1 257 (20.4) 289 (22.9)
Top5 456 (36.2) 542 (43.0)
Top10 521 (41.3) 626 (49.7)

134

ther pinpoint answers by matching the corresponding answer patterns. Since syntactic

structures of TREC factoid questions are relatively simple, we decide to conduct exact

question pattern matching (Exact QPtn Match). As shown in Table 7.7, the exact ques-

tion pattern matching may cover 89.5% unseen questions. Comparing with the questions,

syntactic structures of answer sentences are diversiform. Moreover, the answer patterns

may not be sufficient enough to cover all of unseen cases since we construct them from a

limited training data set. Therefore, exact answer pattern matching (Exact APtn Match)

might suffer from data sparseness. In Section 4.3.3, we propose a string kernel-based

method to partially match the answer patterns (Partial APtn Match). As shown in Ta-

ble 7.7, the Exact APtn Match only has 50.1% coverage while the Partial APtn Match

may increase the coverage to 74.5%.

Furthermore, we evaluate the effectiveness of the two answer pattern matching

methods: Exact APtn Match and Partial APtn Match on the real data set SRSet. As

shown in Table 7.8, the Partial APtn Match outperforms the Exact APtn Match by 4.1%

MRR. It might be due to the higher coverage of the Partial APtn Match.

7.4 Semantic Role Method

7.4.1 FrameNet

FrameNet is a lexicon resource for English (Baker, Fillmore, and Lowe, 1998) based on

Frame Semantics. In FrameNet, a scenario is abstractly represented as a frame, such as

the frame Becoming aware describes the situation that ”COGNIZER adds some PHE-

NOMENON to their model of the world”. A predicate, which usually is a verb, noun

or adjective, is referred to a frame if it describes the situation of the frame. For ex-

ample, the predicates detect.v, discover.v, discovery, find.v, notice are associated with

the frame Becoming aware in FrameNet. It may cope with lexical variations between

questions and answer sentences. Frame elements (FEs) are further defined in a frame

135

439
[51, 100]

40
[101, INF]

3380
0

1175
[1, 5]

1287
[6, 10]

1757
[11, 20]

2117
[21, 50]

Figure 7.1: Distribution of numbers of predicates and annotated sentences; each sub-
pie lists the number of predicates (above) with their corresponding number of annotated
sentences (below)

136

as semantic roles of predicates of the frame. Therefore, they are frame specific. Each

predicate is supported by a set of sentences with FE annotations. We find that the same

FE of a frame may have various syntactic realizations. For example, FE COGNIZER

frequently has subj dependency relation with predicate discover.v and gen relation with

discovery.n. Therefore, constructing semantic structure on syntactic level may unify the

syntactic variation between questions and answer sentences.

We use the FrameNet V1.3 lexical database. It contains 10,195 predicates grouped

into 795 semantic frames and 141,238 annotated sentences. Figure 7.1 shows the number

of annotated sentences available for different predicates. As can be seen, there are 3,380

predicates with no annotated sentences and 1,175 predicates with less than 5 annotated

sentences. It might bring low coverage problem when generating semantic structures.

Since FrameNet is still in construction, frames / predicates / annotated sentences are not

complete. All FrameNet sentences, questions, and answer sentences were parsed using

MiniPar (Lin, 1994), a robust dependency parser.

7.4.2 Baseline

We compare the semantic role method proposed in Chapter 5 to the answer extraction

method that exploits solely syntactic information without making use of FrameNet or

any other type of role semantic annotations. Section 7.3 evaluates the syntactic methods

(DepPtn and DepCor) separately. The experiments show that the DepPtn contributes

more to the precision while the DepCor to the recall. So we hope their combination

will further enhance the performance. Here, we will evaluate the performance of the

combination and regard it as the first baseline for the semantic role method.

Our second baseline employs Shalmaneser (Erk and Padó, 2006), a publicly avail-

able shallow semantic parser3, for the role labeling task instead of the graph-based model

3The software is available from http://www.coli.uni-saarland.de/projects/salsa/
shal/.

137

presented in Section 5.3.2. The software is trained on the FrameNet annotated sentences

using a standard feature set (see Carreras and Màrquez (2005) for details). It may au-

tomatically identify semantic frames and assign semantic roles for free texts. We use

Shalmaneser to parse questions and answer sentences. The parser makes hard decisions

about the presence or absence of a semantic role. Unfortunately, this prevents us from

using our method for semantic structure matching (see Section 5.3.3) which assumes a

soft labeling. We therefore come up with a simple matching strategy suitable for the

parser’s output. For question and answer sentences matching in their frame assignment,

phrases bearing the same semantic role as the EAP are considered answer candidates.

The latter are ranked according to word overlap (i.e., identical phrases are ranked higher

than phrases with no overlap at all).

7.4.3 FrameNet Coverage

As mentioned in Section 5.3.2 we extract dependency relation paths by traversing a de-

pendency tree from frame element nodes to predicate nodes. We used all dependency

relations provided by MiniPar (42 in total). In order to increase coverage, we com-

bine all relation paths for predicates that evoke the same frame and are labeled with the

same POS tag. For example, ”found” and ”establish” are both instances of the frame In-

tentionally create but the database does not have any annotated sentences for ”found.v”.

In default of not assigning any role labels for ”found.v”, our model employs the relation

paths for the semantically related ”establish.v”.

Before reporting the performance, we firstly try to answer the following ques-

tions: (1) How does the incompleteness of FrameNet impact QA performance on the

TREC data sets? In particular, we want to examine whether there are questions for

which in principle no answer can be found due to missing frame entries or missing an-

notated sentences. (2) Are all questions and their corresponding answers amenable to a

FrameNet-style analysis? In other words, we want to assess whether questions and an-

138

swers often evoke the same or related frames (with similar roles). This is a prerequisite

for semantic structure matching and ultimate answer extraction.

Our results are summarized in Table 7.9 which records the number of questions

to be answered for the TREC04–07 datasets (Total). We also give information regarding

the number of questions which are in principle unanswerable with a FrameNet-style

semantic role analysis.

The column NoFrame shows the number of questions which don’t have an ap-

propriate frame or predicate in the database. For example, there is currently no predicate

entry for ”sponsor” or ”sink” (e.g., ”Q: Who is the sponsor of the International Criminal

Court?” and ”Q: What date did the Lusitania sink?”).

The column NoAnnot refers to questions for which no semantic role labeling is

possible because annotated sentences for relevant predicates are missing. For instance,

there are no annotations for ”win” (e.g., ”Q: What division did Floyd Patterson win?”),

for ”hit” (e.g., ”Q: What was the Beatles’ first number one hit?”) or for ”visit” (e.g., ”S:

The Hale-Bopp comet’s visit to the earth - just once every 4,200 years, will give. . . ”).

This problem is not specific to our method which admittedly relies on FrameNet

annotations for performing the semantic role assignment (see Section 5.3.2). Shallow se-

mantic parsers trained on FrameNet would also have trouble assigning roles to predicates

for which no data is available.

Finally, the column NoMatch reports the number of questions which cannot be

answered due to frame mismatches. Consider ”Q: What does AARP stand for?” whose

answer is found in ”S: The American Association of Retired Persons (AARP) qualify

for discounts. . . ”. The answer and the question evoke different frames; in fact here a

semantic role analysis is not relevant for locating the right answer.

As can be seen NoMatch cases are by far the most frequent. The number of

questions remaining after excluding NoFrame, NoAnnot, and NoMatch are shown under

the Rest heading in Table 7.9.

139

Table 7.9: Number of questions which cannot be answered using a FrameNet style se-
mantic analysis; numbers in parentheses are percentages of Total (NoFrame: frames or
predicates are missing; NoAnnot: annotated sentences are missing, NoMatch: questions
and candidate answers evoke different frames.

Data Total NoFrame NoAnnot NoMatch Rest
TREC04 203 47 (23.2) 14 (6.9) 67 (33.0) 75 (36.9)
TREC05 327 70 (21.4) 23 (7.0) 145 (44.3) 89 (27.2)
TREC06 386 85 (21.9) 26 (6.7) 151 (39.2) 124 (32.1)
TREC07 344 76 (22.1) 25 (7.3) 151 (43.9) 92 (26.7)
overall 1260 278 (22.1) 88 (7.0) 514 (40.8) 380 (30.2)

These results indicate that FrameNet-based semantic role analysis applies to ap-

proximately 30.2% of the TREC data. This means that an answer extraction module

relying solely on FrameNet will have poor performance, since it will be unable to find

answers for more than half of the questions being asked. Frame mismatches could be

detected relatively easily as well as cases where frames or predicates are absent from the

database or lack annotated sentences. Actually, the affected question-answer pairs could

be analyzed using more traditional answer extraction methods or a different style of se-

mantic role analysis (e.g., PropBank). However, we leave this to future work. Next, we

subsequently report results on questions which meet with none of the above problems

(see Rest in Table 7.9) and examine whether our semantic method brings any perfor-

mance improvements on this limited dataset which is admittedly favorable towards a

FrameNet style analysis.

7.4.4 Performance

This section is trying to answer the third question: Do the semantic role method intro-

duced in this thesis bring any performance gains over state-of-the-art shallow semantic

parsers or more conventional syntactic QA systems? Recall that our graph-based model

is designed especially for the answer extraction task.

140

Table 7.10: Performance of semantic methods on subset of SRSet (see the Rest column
in Table 7.9).

TREC DepPtn+DepCor SemParse SemMatch

04

MRR 30 (40.0) 16 (21.3) 37 (49.3)
Top1 23 (30.7) 11 (14.7) 32 (42.7)
Top5 39 (52.0) 22 (29.3) 44 (58.7)
Top10 42 (56.0) 22 (29.3) 44 (58.7)

05

MRR 40 (44.9) 13 (14.6) 46 (51.7)
Top1 34 (38.2) 10 (11.2) 41 (46.1)
Top5 49 (55.1) 19 (21.3) 52 (58.4)
Top10 56 (62.9) 21 (23.6) 56 (62.9)

06

MRR 43 (34.7) 19 (15.3) 51 (41.1)
Top1 37 (29.8) 15 (12.1) 50 (40.3)
Top5 53 (42.7) 22 (17.7) 56 (45.2)
Top10 63 (50.8) 22 (17.7) 63 (50.8)

07

MRR 32 (34.8) 11 (11.9) 35 (38.0)
Top1 24 (26.1) 9 (9.8) 31 (33.7)
Top5 41 (44.6) 16 (17.4) 43 (46.7)
Top10 43 (46.7) 16 (17.4) 45 (48.9)

all

MRR 145 (38.2) 59 (15.5) 169 (44.5)
Top1 118 (31.1) 45 (11.8) 154 (40.5)
Top5 182 (47.9) 79 (20.8) 195 (51.3)
Top10 204 (53.7) 81 (21.3) 208 (54.7)

Table 7.10 shows the results of our semantic role method (SemMatch) together

with two baseline systems. The first baseline (DepPtn+DepCor) uses only syntactic

information, whereas the second baseline (SemParse) uses Shalmaneser, a state-of-the-

art shallow semantic parser for the role labeling task. As can be seen, the SemMatch is

significantly better than both the DepPtn+DepCor and the SemParse, whereas the latter

is significantly worse than the DepPtn+DepCor.

Although promising, the results in Table 7.10 are not very informative, since they

show the performance gains on partial data. Instead of using the semantic role method on

its own, we next combine it with the syntactic method DepPtn+DepCor. If FrameNet is

141

Table 7.11: Performance of the semantic methods on SRSet (see Total column in Ta-
ble 7.9).

TREC DepPtn+DepCor +SemParse +SemMatch

04

MRR 72 (35.6) 63 (31.0) 80 (39.1)
Top1 56 (27.6) 41 (20.2) 65 (32.0)
Top5 100 (49.3) 91 (44.8) 102 (50.2)
Top10 112 (55.2) 103 (50.7) 114 (56.2)

05

MRR 140 (42.8) 124 (37.9) 148 (45.1)
Top1 110 (33.6) 91 (27.8) 123 (37.6)
Top5 172 (52.6) 158 (48.3) 179 (54.7)
Top10 200 (61.2) 192 (58.7) 205 (62.7)

06

MRR 121 (31.3) 101 (26.2) 130 (33.5)
Top1 96 (24.9) 71 (18.4) 102 (26.4)
Top5 160 (41.5) 143 (37.0) 165 (42.7)
Top10 191 (49.5) 178 (46.1) 194 (50.3)

07

MRR 101 (29.4) 85 (24.7) 109 (31.8)
Top1 78 (22.7) 57 (16.6) 83 (24.1)
Top5 142 (41.3) 129 (37.5) 147 (42.7)
Top10 159 (46.2) 150 (43.6) 163 (47.4)

all

MRR 434 (34.4) 373 (29.6) 467 (37.1)
Top1 340 (27.0) 260 (20.6) 373 (29.6)
Top5 574 (45.6) 521 (41.3) 593 (47.1)
Top10 662 (52.5) 623 (49.4) 676 (53.7)

indeed helpful for QA, we would expect a combined method to yield better performance

over a purely syntactic answer extraction module. The two methods are combined as

follows. Given a question, we first pass it to the semantic role method; if an answer

is found, our job is done; if no answer is returned, the question is passed on to the

DepPtn+DepCor. Our results are given in Table 7.11. The +SemMatch and +SemParse

are ensemble systems using the DepPtn+DepCor together with the semantic method

proposed in this paper and Shalmaneser respectively. We also compare these methods

against the DepPtn+DepCor on its own.

We can now attempt to answer our third question concerning our model’s perfor-

142

Table 7.12: Overall Performance of the Alyssa QA system on SRSet

Module TREC04 TREC05 TREC06 TREC07 all

AE

MRR 80 (39.1) 148 (45.1) 130 (33.5) 109 (31.8) 467 (37.1)
Top1 65 (32.0) 123 (37.6) 102 (26.4) 83 (24.1) 373 (29.6)
Top5 102 (50.2) 179 (54.7) 165 (42.7) 147 (42.7) 593 (47.1)
Top10 114 (56.2) 205 (62.7) 194 (50.3) 163 (47.4) 676 (53.7)

WV (Top5) 89 (43.8) 130 (39.8) 117 (30.3) 99 (28.8) 435 (34.5)
WV (Top10) 82 (40.4) 123 (37.6) 117 (30.3) 97 (28.2) 419 (33.3)

mance on the real TREC data SRSet. Our experiments show that a FrameNet-enhanced

answer extraction module significantly outperforms a similar module that uses only syn-

tactic information (compare the +SemMatch and the DepPtn+DepCor in Table 7.11).

Another interesting finding is that the shallow semantic parser +SemParse performs con-

siderably worse in comparison to our graph-based model +SemMatch and the syntactic

method DepPtn+DepCor. Inspection of the parser’s output highlights two explanations

for this. First, the shallow semantic parser has difficulty assigning accurate semantic

roles to questions (even when they are reformulated as declarative sentences). And sec-

ondly, it tends to favor precision over recall, thus reducing the number of questions for

which answers can be found. A similar finding is reported in (Sun et al., 2005) for a

PropBank trained parser. In addition, we find that the syntactic method combination

DepPtn+DepCor (34.4% MRR) indeed outperforms the separate use of them (31.4%

MRR of the DepPtn and 30.7% MRR of the DepCor).

7.5 Final Performance of Alyssa QA System

As describe in Section 3.6.2, we develop a Web Validation(WV) Module to further val-

idate top ranked answer candidates from the Answer Extraction(AE) Module. It uses

frequency of candidates within the Web data to boost most likely answers. We access

143

the Web data by using the Google Search Engine. Various queries ranging from loose to

tight are generated and different weights are assigned to different queries. The weights

for the Bag-of-Word, Noun-Phrase-Chunk and Declarative-Form queries are set to 1:2:5.

For each query, top 50 snippets returned by Google are used for validation.

We evaluate the final performance of the Alyssa QA system. As shown in Ta-

ble 7.12, validating Top 5 answer candidate leads to the best performance. Finally, the

Alyssa QA system achieves 43.8%, 39.8%, 30.3% and 28.8% accuracy on TREC04, 05,

06 and 07 respectively.

144

Chapter 8

Conclusion

8.1 Methods

In this thesis, I address two problems (flexible matching problem and knowledge inte-

gration problem) in current factoid question answering systems and propose methods to

solve the problems theoretically and practically. The module applies maximum entropy

ranking theory to effectively integrate various evidence, including orthographic, lexical,

surface pattern, syntactic and semantic features. The features are captured by conducting

appropriate matching between question and answer sentences on various levels including

surface text level, syntactic level and semantic level.

I propose two methods: dependency relation pattern method (DepPtn) and de-

pendency relation path correlation method (DepCor) to capture syntactic evidence. Both

methods are motivated to reduce divergences of lexical representations between two sen-

tences and measure similarity based on their syntactic representations. The DepPtn rep-

resents a syntactic structure as a dependency relation pattern and regards similarity mea-

sure as pattern matching. It assumes that syntactic structures are similar if they share

a large portion of common individual relations. A string kernel method is adapted to

match patterns partially. Due to the coverage problem of the DepPtn, the DepCor is

145

further proposed as its backup. The method assumes that syntactic structures are similar

if their individual relations are highly correlated. A dynamic time warping algorithm is

applied to align two syntactic structures based on the correlations of their individual rela-

tions. The correlation values are estimated using mutual information measure on training

set.

In order to capture semantic evidence, I present a graph-based model to incor-

porate FrameNet style role semantic information effectively. The way of conducting

semantic role assignment mainly relies on the comparison of dependency relation paths

attested in FrameNet annotations and raw text. The search for an optimal role assign-

ment is formalized as an optimization problem in a bipartite graph. This formalization

allows finding an exact, globally optimized solution. The graph theory framework goes

some way towards addressing coverage and recall problems related to FrameNet and

formulates the similarity measure of semantic structures as a graph matching problem.

Based on the various similarity measures between question and contexts of an-

swer candidates, I present a maximum entropy-based model to incorporate all of the

captured information. The answer extraction task is considered as an answer candidate

ranking problem under the maximum entropy mechanism. The ranking model aims to

predicate the conditional probability p(ac|q, {ac1, ac2, ..., acN}), where, the probability

of an answer candidate ac for a question q in answer candidate set {ac1, ac2, ..., acN} is

directly modeled.

8.2 Results

I apply the answer extraction module to the TREC QA task and perform experiments on

the TREC99-07 factoid questions (TREC99-03 for training and TREC04-07 for test).

As to the syntactic evidence, I obtain the following findings:

1. The experiments show that the DepPtn and the DepCor significantly outperform

146

four state-of-the-art syntactic-based methods by up to 15.1% in MRR. The per-

formance comparison of the methods are consistent on the different sentence sets

(GSSet, GSSRSet and SRSet) and the different years (04, 05, 06 and 07).

2. It is observed that the DepPtn performs better than the DepCor in MRR and Top1

evaluations while the DepCor outperforms the DepPtn in Top5 and Top10 eval-

uations. It indicates that the DepPtn contributes more to the precision while the

DepCor to the recall. Finally, the method DepPtn + DepCor which combines both

of them further boosts the performance by up to 3.7% MRR.

3. The DepPtn and the DepCor achieve quite similar performance on different sen-

tence sets (GSSet and GSSRSet) although the GSSRSet contains much more noise.

It proves the great capability of the methods on identifying supportive sentences.

4. The large gap (about 10%) between Top1 and Top5 performance indicates the

weakness of our system on recognizing top1 answers. On the other hand, it also

illuminates the use of a web validation module to re-rank the answer candidates

returned by the answer extraction.

5. The DepPtn achieves the best MRR performance among all syntactic methods,

which benefits from the partial answer pattern matching method. This method

outperforms the exact matching by 4.1% MRR due to the higher coverage.

As to the semantic evidence, the experiments demonstrate that the proposed se-

mantic matching method can be effectively combined with the syntactic methods to ob-

tain performance superior (+2.7% MRR) to the latter when used on their own. The

method also significantly outperforms a shallow semantic parser trained on the FrameNet

annotated corpus. The consistent performance gains on coverage and recall might be due

to the adopted graph theory framework. As a by-product, I provide a detailed analysis

of the appropriateness of FrameNet for QA. The results indicate that FrameNet-based

147

analysis only works for approximately 30.2% of the TREC questions. It motivates the

use of semantically informed methods in conjunction with syntactic-based methods.

Finally, integrating of all evidence using a maximum-entropy ranking model achieves

37.1% MRR and 29.6% Top1 performances on the 04-07 TREC questions. The system

is further enhanced to 34.5% Top1 performance by using a web validation module to

re-rank the top 5 answer candidates returned by the answer extraction module.

8.3 Future Work

I will discuss the roadmap for future research.

1. Exploring more features in the answer extraction. In this thesis, I employ sur-

face, syntactic and semantic features to make appropriate matching between ques-

tion and answer sentence. It aims to predict whether answer candidates are sup-

ported by their contexts in sentences. Many more semantic features can be used

in experiments by appropriately matching between expected answer types of ques-

tions and semantic categories of answer candidates. In the current Alyssa system, I

develop a fine-grained named entity recognizer to recognize 50 types of named en-

tities in sentences, as discussed in Section 3.4 by using rule-based and dictionary-

based methods. However, it is not trivial to build a comprehensive named entity

dictionary manually. It is interesting to explore how to identify more named enti-

ties from a huge un-annotated dataset by applying a bootstrapping method, such as

active learning. In addition, the problem of name normalization should be solved

for better use of redundancy information from answer candidates. For example,

normalizing DATE entities written in different forms.

2. Applying syntactic matching methods to other NLP applications. I proposed

two similarity measurements to match sentences on syntactic representations. While

the experiments are designed for factoid QA task in this thesis, they are generic and

148

can be easily extended to other applications that utilize meaning comparison of two

sentences.

• Information extraction (IE) Matching problem in IE tasks is quite similar to

the one in the factoid answer extraction. In IE tasks, two slots of named enti-

ties, such as a PERSON name and an ORGANIZATION name, are regarded

as terminal nodes in a syntactic relation sequence and dependency relations

between the slots are internal nodes in the sequence. Then, the relation be-

tween the entities is predicted by matching the syntactic sequence with those

in training data. Since IE systems also suffer from various unseen instances

not being strictly matched to training sequences, the soft sequence matching

method will be expected to improve recall in IE systems.

• Opinion Mining (OM) Most of opinion mining systems use polarity word

aggregation methods to predict sentiment orientation of sentences. They

measure the impact of a polarity word on a topic by using surface distance.

The closer a polarity word is to a topic word, the more important the polar-

ity word is for the topic. Syntactic-based matching may help to enhance the

measurement since it considers not only distance of two words but also their

syntactic relations. A polarity word and a topic word are regarded as two

terminal nodes respectively in a syntactic relation sequence and dependency

relations between them as internal nodes. A set of representative relation se-

quences is built from training data. The impact of a polarity word on a topic

will be calculated by matching its relation sequence to the training sequences.

3. Improving list and definition question answering. The Alyssa QA system mainly

deals with factoid questions. It does not put much effort on other question types,

such as list and definition questions. Enhancing the other modules is a reasonable

step to take. The Alyssa system processes list questions using the same way as

149

factoid questions. Answer candidates are considered separately. Actually, incor-

porating relevance measurement between answer candidates will definitely help. I

plan to explore more following this direction. On the other hand, more empirical

and formalize models will be proposed to answer definition questions. In addition,

it is also interesting to design and build an interactive user interface for the Alyssa

system.

4. Extending the Alyssa system to a new opinion QA system. An opinion QA

system focuses on answering opinion questions, such as ”Which countries would

like to build nuclear power plants?”. Different from factoid QA, opinion QA sys-

tem extracts answers from blog data. Opinion QA system can be extended from

existing factoid QA system by enhancing the abilities in the following aspects: 1.

The ability of processing low-quality texts since blog articles are much noisier than

newswires. 2. The ability of identifying subjective sentences in sentence retrieval

module. The sentence retrieval module for factoid QA system is to retrieve the

sentences containing most of important question terms. However, in opinion QA

system, the sentences are further required to contain users’ opinions. It is a binary

classification task (subjective or objective sentence classification). 3. The abil-

ity of recognizing sentiment orientation of answer candidates in answer extraction

module. While factoid answer extraction analyzes whether an answer candidate

is supported by its context in a sentence, opinion answer extraction will further

judge whether the answer candidate has the same sentiment orientation as ques-

tion. For example, the questions ”Which rock bands do college students like?”

and ”Which rock bands do college students dislike?” will get totally different an-

swers in opinion answer extraction. The recognition of sentiment orientation is to

solve sentiment (positive, negative or neutral) classification problems.

150

References

Abney, S. 1989. Parsing by chunks. The MIT Parsing Volume.

Baker, C. F., C. J. Fillmore, and J. B. Lowe. 1998. The berkeley framenet project.

In Proceedings of the International Conference on Computational Linguis-

tics(COLING1998).

Berger, A. L., S. A. D. Pietra, and V. J. D. Pietra. 1996. A maximum entropy approach

to natural language processing. Computational Linguisitics, 22:39–71.

Bixler, D., D. Moldovan, and A. Fowler. 2005. Using knowledge extraction and mainte-

nance techniques to enhance analytical performance. In Proceedings of the 2005

International Conference on Intelligence Analysis, Washington D. C.

Borthwick, A., J. Sterling, E. Agichtein, and R. Grishman. 1998. Exploring diverse

knowledge sources via maximum entropy in named entity recognition. In Pro-

ceedings of the Annual Meeting of the Association for Computational Linguistics

Workshop on Very Large Corpora, pages 152–160.

Bos, J. 2006. The ”la sapienza” question answering system at trec-2006. In Proceedings

of the Text Retrieval Conference(TREC2006), NIST.

Breck, E., M. Light, G. S. Mann, E. Riloff, B. Brown, P. Anand, M. Rooth, and M. The-

len. 2001. Looking under the hood: Tools for diagnosing your question answer-

ing engine. In Proceedings of the Annual Meeting of the Association for Compu-

tational Linguistics (ACL2001) Workshop on Open-Domain Question Answering.

Carreras, Xavier and Llu’is Màrquez, editors. 2005. Proceedings of the CoNLL shared

task: Semantic role labelling.

Chen, S. and R. Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy

models. Technical Report CMUCS -99-108, Carnegie Mellon University.

Clarke, C., G. Cormack, and T. Lynam. 2001. Exploiting redundancy in question an-

151

swering. In Proceedings of the 24th Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (SIGIR2001).

Clarke, C., G. Cormack, T. Lynam, C. M. Li, and G. McLearn. 2001. Web reinforced

question answering (multitext experiments for trec 2001). In Proceedings of the

Text Retrieval Conference(TREC2001), NIST.

Cormen, Thomas, Charles Leiserson, and Ronald Rivest. 1990. Introduction to Algo-

rithms. MIT Press.

Cui, H., K. Y. Li, R. X. Sun, T. S. Chua, and M. Y. Kan. 2004. National university of

singapore at the trec-13 question answering. In Proceedings of the Text Retrieval

Conference(TREC2004), NIST.

Cui, H., R. X. Sun, K. Y. Li, M. Y. Kan, and T. S. Chua. 2005. Question answer-

ing passage retrieval using dependency relations. In Proceedings of the Annual

International ACM SIGIR 2005 Conference on Research and Development in In-

formation Retrieval, pages 400–407. ACM Press.

Dang, H. T., J. Lin, and D. Kelly. 2006. Overview of the trec 2006 question answering

track. In Proceedings of the Text Retrieval Conference(TREC2006), NIST.

Darroch, J. and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models.

The annuals of Mathematical Statistics (1972), 43:1470–1480.

Dumais, S., M. Banko, E. Brill, J. Lin, and A. Ng. 2002. Web question answering: Is

more always better? In Proceedings of the 25th Annual International ACM SIGIR

Conference on Research and Development in Information Retrieval (SIGIR2002).

Echihabi, A., U. Hermjakob, E. Hovy, D. Marcu, E. Melz, and D. Ravichandran. 2003.

Multiple-engine question answering in textmap. In Proceedings of the Text Re-

trieval Conference(TREC2003), NIST.

Echihabi, A. and D. Marcu. 2003. A noisy-channel approach to question answering.

In Proceedings of the Annual Meeting of the Association for Computational Lin-

guistics(ACL2003).

152

Eiter, Thomas and Heikki Mannila. 1997. Distance measures for point sets and their

computation. Acta Informatica, 34(2):109–133.

Erk, Katrin and Sebastian Padó. 2006. Shalmaneser - a flexible toolbox for semantic

role assignment. In Proceedings of the International Conference on Language

Resources and Evaluation(LREC 2006).

Fillmore, Charles J., Christopher R. Johnson, and Miriam R.L. Petruck. 2003. Back-

ground to FrameNet. International Journal of Lexicography, 16:235–250.

Gildea, Daniel and Daniel Jurafsky. 2002. Automatic labeling of semantic roles. Com-

putational Linguistics, 28(3):245–288.

Harabagiu, S., D. Moldovan, C. Clark, M. Bowden, A. Hickl, and P. Wang. 2005. Em-

ploying two question answering systems in trec-2005. In Proceedings of the Text

Retrieval Conference(TREC2005), NIST.

Harabagiu, S., D. Moldovan, C. Clark, M. Bowden, J. Williams, and J. Bensley. 2003.

Answer mining by combining extraction techiniques with abductive reasoning. In

Proceedings of the Text Retrieval Conference(TREC2003), NIST.

Harabagiu, S., D. Moldovan, M. Pasca, M. Surdeanu, R. Mihalcea, R. Girju, V. Rus,

F. Lacatusu, P. Morarescu, and R. Bunescu. 2001. Answering complex, list and

context questions with lcc’s question answering server. In Proceedings of the Text

Retrieval Conference(TREC2001), NIST.

Haussler, D. 1999. Convolution kernels on discrete structures. Technical report, Tech-

nical Report UCS-CRL-99-10, University of California, Santa Cruz.

Hussain, M., A. Merkel, and D. Klakow. 2006. Dedicated backing-off distributions

for language model based passage retrieval. In Proceedings of Hildesheimer

Informatik-Berichte, LWA.

Itakura, F. I. 1975. Minimum prediction residual principle applied to speech recognition.

In Proceedings of IEEE Transactions on Acoustics Speech and Signal Processing,

pages 67–72.

153

Ittycheriah, A., M. Franz, and S. Roukos. 2001. Ibm’s statistical question answering

system – trec-10. In Proceedings of the Text Retrieval Conference(TREC2001),

NIST.

Ittycheriah, A., M. Franz, W. J. Zhu, A. Ratnaparkhi, and R. Mammone. 2002. Question

answering using maximum entropy components. In Proceedings of the Second

Conference of the North America Chapter of the Association of Computational

Linguistics, Pittsburgh, PA, pages 33–39.

Ittycheriah, A. and S. Roukos. 2002. Ibm’s statistical question answering system –

trec-11. In Proceedings of the Text Retrieval Conference(TREC2002), NIST.

Jaynes, E. 1983. Papers on Probability, Statistics, and Statistical Physics. D. Reidel

Publishing Co., Dordrecht-Holland.

Jonker, R. and A. Volgenant. 1987. A shortest augmenting path algorithm for dense and

sparse linear assignment problems. Computing, 38:325–340.

Kaisser, M. 2006. Web question answering by exploiting wide-coverage lexical re-

sources. In Proceedings of the Eleventh ESSLLI Student Session.

Kaisser, M. and T. Becker. 2004. Question answering by searching large corpora with

linguistic methods. In Proceedings of the Text Retrieval Conference(TREC2004),

NIST.

Kaisser, M., S. Scheible, and B. Webber. 2006. Experiments at the university of ed-

inburgh for the trec 2006 qa track. In Proceedings of the Text Retrieval Confer-

ence(TREC2006), NIST.

Ko, J. W., T. Mitamura, and E. Nyberg. 2007. Language-independent probabilistic

answer ranking for question answering. In Proceedings of the Annual Meeting of

the Association for Computational Linguistics(ACL2007).

Koeling, R. 2000. Chunking with maximum entropy models. In Proceedings of the

Conference on Natural Language Learning (CONLL2000), pages 139–141.

Lafferty, J. 1997. Personal Communication.

154

Leidner, Jochen, Johan Bos, Tiphaine Dalmas, James Curran, Stephen Clark, Collin Ban-

nard, Bonnie Webber, and Mark Steedman. 2003. The qed open-domain answer

retrieval system for TREC 2003. In Proceedings of the Text Retrieval Confer-

ence(TREC2003), NIST;, pages 595–599.

Leslie, C., E. Eskin, and W. S. Noble. 2002. The spectrum kernel: A string kernel for

svm protein classification. In Proceedings of the Pacific Biocomputing Sympo-

sium.

Levenshtein, V. 1965. Binary codes capable of correcting deletions, insertions and

reversals. Doklady Akademii Nauk SSSR, 163(4):845–848.

Levin, Beth. 1993. English Verb Classes and Alternations: A Preliminary Investigation.

University of Chicago Press, Chicago.

Li, Xin and Dan Roth. 2002. Learning question classifiers. In Proceedings of the 19th

International Conference on Computational Linguistics (COLING2002), pages

556–562, Taipei, Taiwan.

Lin, D. K. 1994. Principar—an efficient, broad-coverage, principle-based parser.

In Proceedings of The International Conference on Computational Linguis-

tics(COLING1994), pages 42–488.

Lin, J. 2002. The web as a resource for question answering: Perspectives and challenges.

In Proceedings of the third International Conference on Language Resources and

Evaluation(LREC 2002).

Lodhi, H., J. S. Taylor, N. Cristianini, and C. J. C. H. Watkins. 2000. Text classifica-

tion using string kernels. In Proceedings of the Annual Conference on Neural

Information Processing Systems(NIPS2000), pages 563–369.

Merkel, A. and D. Klakow. 2007a. Comparing improved language models for sentence

retrieval in question answering. In Proceedings of Computational Linguistics in

the Netherlands CLIN.

155

Merkel, A. and D. Klakow. 2007b. Improved methods for language model based ques-

tion classification. In Proceedings of 8th Interspeech Conference.

Merkel, A. and D. Klakow. 2007c. Language model based query classification. In

Proceedings of 29th European Conference on Information Retrieval (ECIR).

Miller, G. A. 1990. Wordnet: an on-line lexical database. International Journal of

Lexicography, Special issue, 2(4).

Moldovan, D., C. Clark, and S. Harabagiu. 2005. Temporal context representation and

reasoning. In Proceedings of the Nineteenth International Joint Conference on

Artificial Intelligence(IJCAI2005).

Moldovan, D., C. Clark, S. Harabagiu, and S. Maiorano. 2003. Cogex: A logic prover

for question answering. In Proceedings of the Conference of the North Amer-

ica Chapter of the Association of Computational Linguistics(HLT-NAACL2003),

pages 87–93.

Moldovan, D., S. Harabagiu, C. Clark, and M. Bowden. 2004. Poweranswer-2: Exper-

iments and analysis over trec 2004. In Proceedings of the Text Retrieval Confer-

ence(TREC2004), NIST.

Moldovan, D., S. Harabagiu, R. Girju, P. Morarescu, F. Lacatusu, A. Movischi, A. Bad-

ulescu, and O. Bolohan. 2002. Lcc tools for question answering. In Proceedings

of the Text Retrieval Conference(TREC2002), NIST.

Moldovan, D. and A. Novischi. 2002. Lexical chains for question answering.

In Proceedings of the International Conference on Computational Linguis-

tics(COLING2002).

Moldovan, D. and V. Rus. 2001. Logic form transformation of wordnet and its ap-

plicability to question answering. In Proceedings of the Annual Meeting of the

Association for Computational Linguistics(ACL2001).

Monz, C. and M. D. Rijke. 2001. Tequesta: The university of amsterdam’s tex-

156

tual question answering system. In Proceedings of the Text Retrieval Confer-

ence(TREC2001), NIST.

Narayanan, S. and S. Harabagiu. 2004. Question answering based on semantic struc-

tures. In Proceedings of International Conference on Computational Linguis-

tics(COLING2004).

Pado, S. and M. Lapata. 2006. Optimal constituent alignment with edge covers for

semantic projection. In Proceedings of the International Conference on Compu-

tational Linguistics / the Annual Meeting of the Association for Computational

Linguistics(COLING/ACL2006).

Palmer, Martha, Dan Gildea, and Paul Kingsbury. 2005. The Proposition Bank: An

annotated corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Paranjpe, Deepa, Ganesh Ramakrishnan, and Sumana Srinivasa. 2003. Passage scoring

for question answering via bayesian inference on lexical relations. In Proceedings

of the TREC, pages 305–210.

Pietra, S. D., V. D. Pietra, and J. Lafferty. 1997. Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):380–393.

Pradhan, Sameer, Wayne Ward, Kadri Hacioglu, James Martin, and Daniel Jurafsky.

2004. Shallow semantic parsing using support vector machines. In Proceedings

of the HLT/NAACL, pages 141–144, Boston, MA.

Rabiner, L. R., A. E. Rosenberg, and S. E. Levinson. 1978. Considerations in dynamic

time warping algorithms for discrete word recognition. In Proceedings of IEEE

Transactions on Acoustics, Speech and Signal Processing.

Ratnaparkhi, A. 1998. Maximum Entropy Models for Natural Language Ambiguity Res-

olution. Ph.D. thesis, Department of Computer and Information Science, Univer-

sity of Pennsylvania.

Ratnaparkhi, A. 1999. Learning to parse natural language with maximum entropy mod-

els. Machine Learning Journal, 34(1-3):151–175.

157

Ravichandran, D. and E. Hovy. 2002. Learning surface text patterns for a question

answering system. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics(ACL2002).

Ravichandran, D., E. Hovy, and F. J. Och. 2003. Statistical qa - classifier vs. re-ranker:

What’s the difference? In Proceedings of the Annual Meeting of the Associa-

tion for Computational Linguistics workshop on Multilingual Summarization and

Question Answering.

Reynar, J. C. and A. Ratnaparkhi. 1997. A maximum entropy approach to identifying

sentences boundaries. In Proceedings of the fifth on Applied Natural Language

Processing, pages 16–19.

Rosenfeld, R. 1994. Adaptive Statistical Language Modeling: A Maximum Entropy

Approach. Ph.D. thesis, Pittsburgh, PA.

Sakoe, H. and S. Chiba. 1971. A dynamic programming approach to continuous speech

recognition. In Proceedings of Int. Cong. Acoustics, Budapest,Hungary.

Shen, D. and D. Klakow. 2006. Exploring correlation of dependency relation paths for

answer extraction. In Proceedings of the Annual Meeting of the Association for

Computational Linguistics(ACL2006).

Soubbotin, M. M. 2001. Patterns of potential answer expressions as clues to the right

answer. In Proceedings of the Text Retrieval Conference(TREC2001), NIST.

Sun, R. X., J. J. Jiang, Y. F. Tan, H. Cui, T. S. Chua, and M. Y. Kan. 2005. Using

syntactic and semantic relation analysis in question answering. In Proceedings of

the Text Retrieval Conference(TREC2005), NIST.

Tanev, H., M. Kouylekov, and B. Magnini. 2004. Combining linguisitic processing and

web mining for question answering: Itc-irst at trec-2004. In Proceedings of the

Text Retrieval Conference(TREC2004), NIST.

Taskar, Ben, Simon Lacoste-Julien, and Dan Klein. 2005. A discriminative matching

158

approach to word alignment. In Proceedings of the HLT/EMNLP, pages 73–80,

Vancouver, BC.

Voorhees, E. M. 1999. The trec-8 question answering track report. In Proceedings of

the Text Retrieval Conference(TREC1999), NIST.

Voorhees, E. M. 2000. Overview of the trec-9 question answering track. In Proceedings

of the Text Retrieval Conference(TREC2000), NIST.

Voorhees, E. M. 2001. Overview of the trec 2001 question answering track. In Proceed-

ings of the Text Retrieval Conference(TREC2001), NIST.

Voorhees, E. M. 2002. Overview of the trec 2002 question answering track. In Proceed-

ings of the Text Retrieval Conference(TREC2002), NIST.

Voorhees, E. M. 2003. Overview of the trec 2003 question answering track. In Proceed-

ings of the Text Retrieval Conference(TREC2003), NIST.

Voorhees, E. M. 2004. Overview of the trec 2004 question answering track. In Proceed-

ings of the Text Retrieval Conference(TREC2004), NIST.

Voorhees, E. M. 2005. Overview of the trec 2005 question answering track. In Proceed-

ings of the Text Retrieval Conference(TREC2005), NIST.

Wang, M. Q., N. A. Smith, and T. Mitamura. 2007. What is the jeopardy model? a

quasi-synchronous grammar for qa. In Proceedings of Conference on Empirical

Methods in Natural Language Processing (EMNLP2007).

Wu, L. D., S. J. Huang, L. You, Z. S. Zhang, X. Li, and Y. Q. Zhou. 2004. Fduqa on

trec2004 qa track. In Proceedings of the Text Retrieval Conference(TREC2004),

NIST.

Wu, L. D., X. J. Huang, Y. Q. Zhou, Y. P. Du, and L. You. 2003. Fduqa on trec2003 qa

task. In Proceedings of the Text Retrieval Conference(TREC2003), NIST.

Wu, M., M. Y. Duan, S. Shaikh, S. Small, and T. Strzalkowski. 2005. University

at albany’s ilqua in trec 2005. In Proceedings of the Text Retrieval Confer-

ence(TREC2005), NIST.

159

Xu, J. X., A.Licuanan, and R. Weischedel. 2003. Trec2003 qa at bbn: Answering defi-

nitional questions. In Proceedings of the Text Retrieval Conference(TREC2003),

NIST.

Xu, J. X., A. Licuanan, J. May, S. Miller, and R. Weischedel. 2002. Trec2002 qa at bbn:

Answer selection and confidence estimation. In Proceedings of the Text Retrieval

Conference(TREC2002), NIST.

Yang, H. and T. S. Chua. 2002. The integration of lexical knowledge and external

resources for question answering. In Proceedings of the Text Retrieval Confer-

ence(TREC2002), NIST.

Yang, H., H. Cui, M. Maslennikov, L. Qiu, M. Y. Kan, and T. S. Chua. 2003. Qual-

ifier in trec-12 qa main task. In Proceedings of the Text Retrieval Confer-

ence(TREC2003), NIST.

Zhang, D. and W. Lee. 2007. Web based pattern mining and matching approach to ques-

tion answering. In Proceedings of the Text Retrieval Conference(TREC2002),

NIST.

