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Abbreviations I

Nomenclature of cytochrome P450: 

CYP11A1  cytochrom P450 cholesterol-desmolase or P450scc 

CYP11B1   11 -hydroxylase cytochrome P450 or P450-11

CYP11B2   aldosterone synthase cytochrome P450 or P450-Aldo 

CYP17   17 -hydroxylase/17,20-lyase cytochrome P450 or P450c17 

CYP19   aromatase cytochrome P450 or P450arom 

CYP21   21-hydroxylase cytochrome P450 or P450c21 

Abbreviations:

3 HSD  3 -hydroxysteroid dehydrogenase

18-OH-B   18-hydroxy-corticosterone 

ACTH    adrenocorticotrophin hormone 

AdR    adrenodoxin reductase 

Adx    adrenodoxin 

Aldo   aldosterone 

ANGII   angiotensin II 

ASD   aldosterone synthase deficiency or CMO deficiency

ATP    adenosine triphosphate 

B   corticosterone 

BSA   bovine serum albumin 

CAH   congenital adrenal hyperplasia 

cAMP   cyclic adenosine monophosphate 

CMO   corticosterone methyloxidase 

CO    carbon monoxide 

CYP    cytochrom P450 

d    deoxy- 

dATP   deoxy-adenosine-triphosphate 

dCTP    deoxy-cytidine-triphosphate 

ddH2O   double distilled water  

dGTP   deoxy-guanosine-triphosphate 

DMEM   Dulbecco’s modified Eagle’s medium 



Abbreviations II

DMSO   dimethylsulfoxide 

DNA    deoxyribonucleic acid 

dNTPs   deoxy-NTPs 

DOC    deoxycorticosterone 

DTT   dithiothreitol 

dTTP   deoxy-thymidine-triphosphate 

E. coli   Escherichia coli 

EDTA   ethylenedinitrilotetraacetic acid

F   cortisol 

FAD    flavine adenine dinucleotide 

FBS   fetal bovine serum 

FMN   flavine mononucleotide 

GC-MS  gas chromatography - mass spectrometry 

GRA    glucocorticoid remediable aldosteronism or GSH 

GSH   glucocorticoid-suppressible hyperaldosteronism 

HPTLC   high performance thin layer chromatography 

K   potassium 

IPTG    isopropyl-b-D-thiogalactoside 

MALDI-MS   matrix assisted laser desorption mass spectrometry 

NADPH   nicotinamide adenine dinucleotide phosphate 

PCR   polymerase chain reaction 

Pfu    Pyrococcus furiosus

PKA   protein kinase K 

PMSF    phenylmethylsulfonyl fluoride 

RNA   ribonucleic acid 

S   11-deoxycortisol 

SDS    sodium dodecylsulfate 

StAR   steroidogenic acute regulatory protein 

Taq    Thermus aquaticus

TEMED N,N,N’,N’-tetramethylethylenediamine 

UV/vis   ultraviolet and visible wavelength range 



Abbreviations III

WT    wild type 

Standard abbreviations for amino acids: 

A  Ala  Alanine    L  Leu  Leucine 

R  Arg Arginine    K  Lys  Lysine 

N  Asn  Asparagine    M  Met  Methionine 

D  Asp  Aspartic acid    F  Phe  Phenylalanine 

C  Cys  Cysteine    P  Pro  Proline 

Q  Gln  Glutamine    S  Ser  Serine 

E  Glu  Glutamic acid    T  Thr  Threonine 

G  Gly  Glycine    V  Val  Valine 

H  His  Histidine    W  Trp  Tryptophan 

I  Ile  Isoleucine    Y  Tyr  Tyrosine 

Units:

Length    Meter   m 

    Centimeter  cm 

Mass    Gram   g 

Molecular weight  Dalton   Da 

Current strength  Ampere  A 

Tension   Volt   V 

Electricity   Watt   W 

Temperature   Celsius   C 

Volume   Liter   L 

    Mililiter  mL 

    Microliter  μL 

Wave length   Nanometer  nm 

Time    Second (s)  sec 

    Minute (s)  min 

    Hour(s)  hr 
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Summary

A) Zusammenfassung (German version)

Die Corticosteroide Cortisol und Aldosteron werden in der Nebennierenrinde in einer 

umfangreichen Reaktionskaskade, an der mehrere Cytochrome P450 (CYP) beteiligt sind, 

synthetisiert. CYPs gehören zu den Monooxygenasen, die molekularen Sauerstoff in ihre 

Substrate einbauen. Im Menschen werden die Endschritte der Cortisol und Aldosteron Synthese 

durch CYP11B1 beziehungsweise CYP11B2 katalysiert. CYP11B1, welches die Steroid 11 -

Hydroxylierung katalysiert, wird im großen Maße in der Zona fasciculata/reticularis der 

Nebennierenrinde synthetisiert und durch ACTH reguliert. CYP11B1 ist verantwortlich für die 

Umwandlung von 11-Deoxycortisol (RSS) zu Cortisol. Die Defizienz der 11 -Hydroxylase ist, 

neben der 21-Hydroxylasedefizienz, die zweithäufigste Ursache für die angeborene 

Nebennierenhyperplasie (congenital adrenal hyperplasia, CAH), eine Erbkrankheit, die die 

Synthese von Cortisol aus 11-Deoxycortisol unterbindet. Im Gegensatz dazu wird die 

Aldosteronsynthase CYP11B2 in der Zona glomerulosa gebildet und hauptsächlich durch die 

Mengen an Angiotensin II und Kalium im Serum reguliert. CYP11B2 katalysiert die dreistufige 

Umwandlung von Deoxycorticosteron (DOC) zu Aldosteron: der erste Schritt ist eine 

Hydroxylierung an Position 11 und es entsteht Corticosteron (B). Eine weitere Hydroxylierung 

an Position 18 führt zur Bildung von 18-Hydroxycorticosteron (18OHB) und eine abschließende 

Oxidation an gleicher Stelle zu Aldosteron (Aldo). Die Defizienz der Aldosteronsynthase zeigt 

sich im Säuglingsalter als ein, bedingt durch Mutationen im CYP11B2 Gen, lebensbedrohliches 

Elektrolytungleichgewicht. Allerdings wurden CAH und Aldosteronsynthasedefizienz, bedingt 

durch Mutationen sowohl im CYP11B1 als auch im CYP11B2 Gen, auf molekularer Ebene bis 

jetzt nur oberflächlich untersucht. Folglich würde eine gründliche Untersuchung der Mutationen 

und ihrer enzymatischen Aktivitäten Informationen für die Diagnose und Behandlung von CAH 

und Hypoaldosteronismus, verursacht durch CYP11B1 und CYP11B2 Defizienzen, liefern.

Die Ziel der vorliegende Arbeit waren:

1) Die Entdeckung von Mutationen in den CYP11B2 und CYP11B1 Genen von Patienten, die 

eine Fehlstörung der Nebennierensteroide (Mineralocorticoide und Glucocorticoide) aufweisen. 

2) Die Untersuchung der Effekte dieser Mutationen auf die Steroidbiosynthese durch Expression 

der mutierten cDNAs in der Zellkultur. Damit einher geht der Vergleich zwischen COS-1 

(Nierenzellen der Grünen Meerkatze) und HCT116 (humanes Coloncarzinom) Zellen als 

geeignetes, heterologes Expressionssystem für CYP11B1 und CYP11B2. 
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Um die Mutationen von Patienten, die an Aldosteronsynthasedefizienz litten bzw. Patienten mit 

CAH auf Cortisoldefizienz zu untersuchen, wurden CYP11B1 und CYP11B2 Gene dieser 

Patienten und ihrer Eltern mittels PCR aus der genomischen DNA, amplifiziert. Alle neun Exons 

und die Grenzen zwischen Exon und Intron wurden mittels automatischer Sequenzierung 

analysiert. Sechs neue Mutationen (L451F, S315R, R374W, R490 1, R181Q, und eine stille 

Mutation im letzten Nucleotid des Exons Nr. 5 wurden insgesamt bei den vier Patienten mit 

Aldosteronsynthasedefizienz entdeckt. Eine Mutation (L299P) war von dem Patient mit CAH 

bereits bekannt. Um die Auswirkungen der CYP11B1-Mutante auf die Cortisolsynthese und der 

CYP11B2-Mutanten auf die Aldosteronsynthese zu untersuchen, wurden diese Mutanten mit 

Hilfe des Expressionplasmidconstrukts pSVLhCYP11B1/11B2 mittels Ortsgerichteter 

Mutagenese hergestellt. Die enzymatische Aktivität der Mutanten wurde sowohl in COS-1 Zellen 

als auch in HCT116 p53-/- Zellen durch Co-Expression mit bovinem Adrenodoxin (Plasmid 

pbAdx) bestimmt. Die Expression der mutierten Proteine der Zelllinien wurde mittels Western 

Blots analysiert. 

Zur Optimierung des Analyseverfahrens zur Messung der Aktivität der Genprodukte von 

CYP11B1 und CYP11B2 wurden HCT116 p53-/- Zelllinien auf ihre Aktivitäten von CYP11B1 

und CYP11B2 mit und ohne einer Cotransfektion von bovinem oder humanem Adrenodoxin, 

einem Elektronendonor der P450, verglichen Obwohl sowohl humanes als auch bovines 

Adrenodoxin die Produktbildung von CYP11B1 und CYP11B2 steigerten, war bovines 

Adrenodoxin effektiver als das humane. Im Vergleich der COS-1 zu den HCT116 p53-/- Zellen, 

wandelten beide mit CYP11B und Adrenodoxin transfezierten Zelllinien die Substrates mit einer 

ähnlichen Effizienz um. Dies legt nahe, dass die Effizienz 1) der Transfektion, 2) des Transports 

des Precursorproteins vom Cytoplasma in die Mitochondrien, 3) des Elektronentransports vom 

NADPH zu den mitochondrialen P450 und 4) der Substratdurchlässigkeit, sowohl in den 

Nierenzellen der Grünen Meerkatze als auch in den humanen Coloncarzinomzellen, gleich ist. 

Das Produktprofil ist nicht von der Zelllinie abhängig. Daher schlussfolgern wir, dass beide 

Zelllinien gleich nützlich für Aktivitätsassays von CYP11B1 und CYP11B2 sind. 

Während der Analyse der Patienten konnte gezeigt werden, dass Patient Nr.1, ein 

Homozygot, eine neuartige Missens-Mutation (L451F) im CYP11B2 Gen besaß. Heterologe 

Expression zeigte, dass die L451F Mutante eine gleichen Expressionlevel wie der Wildtyp besaß, 

das gebildete Protein komplett inaktiv war. Darüber hinaus zeigt die Analyse unseres 3-D 

Computermodels einen sterischen Effekt in der unmittelbaren Nachbarschaft des Häms auf, die 

den beobachteten Verlust an Aktivität erklärt. Diese Ergebnisse weisen darauf hin, dass die 
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L451F Mutation die Enzymaktivität des CYP11B2 komplett unterdrückt. Dies stimmt mit dem in 

der GC-Ms gewonnenen Profil der Harnsteroide überein.

Patient Nr.2 war heterozygot. Ein Allel besaß eine Nucleotiddeletion bei R490 

(R490 1nt), die einen Frame-Shift verursachte und 170 Aminosäuren zu dem Protein hinzufügte. 

Auf dem anderen Allel besaß das CYP11B2 Gen im letzten Nucleotid des Exon 5 eine stille 

Mutation. Die Expressionstudien zeigten, dass R490 1nt die Enzymaktivität des CYP11B2 

komplett unterdrückte. Die Substitution des Nucleotids G durch A als letztes Nucleotide des 

Exon 5 beeinflusste das Pre-mRNA Spleißen. Obwohl es sich um einen stille Mutation handelte , 

kam es zu einer Retention im Intron 5 (812 bp). Die genetischen und in vitro enzymatischen 

Analysen der beiden Mutanten legt eine CMO I Defizienz nahe. Allerdings ist das Profil der 

Blutsteroide nicht eindeutig und präsentiert eher eine Zwischenform aus CMO I und CMO II, 

denn das klassische CMO I. 

Patient Nr. 3 war heterozygot und besaß zwei neuartige Mutationen, S315R und R374W, 

in dem CYP11B2 Gen. Die S315R und R374W Mutanten waren enzymatisch inaktiv, d.h. sie 

waren nicht in der Lage, DOC in Aldo umzuwandeln. Zusätzlich zeigte die Analyse des 

Computermodells Wasserstoffbrückenbindungen sowohl von R315 als auch von W374 und somit 

die Bildung eines neuen Wasserstoffbrückennetzwerks der CYP11B2-Mutanten im Vergleich 

zum CYP11B2-WT. Somit ist die Kombination aus in vitro Enzymeassay und 

Computermodellierung des Wasserstoffbrückennetzwerks ein ausgezeichnetes Hilsmittel zum 

besseren Verständnis der klinischen Daten der Aldosteronsynthasedefizienz. 

Patient Nr. 4 war heterozygot. Es gab eine Missens-Mutation, R181Q, auf einem Allel des 

CYP11B2 Gens. Die Proteinexpression der CYP11B2-R181Q in COS-1 Zellen zeigt, dass diese 

Mutation die Bildung von Corticosteron steigerte, die von 18-Hydroxycorticosteron reduzierte 

und die von Aldosteron unterdrückte. Dieses Ergebnis stimmt mit dem mittels GC-MS gewonnen 

Profil der Harnsteroide überein. Allerdings konnte bis jetzt keine Mutation auf dem zweiten Allel 

gefunden werden, so dass im Moment der Phenotyp-Genotyp Beziehung noch nicht eindeutig ist.  

Patient Nr. 5 war einer von zwei Geschwistern mit einem 46,XX Karyotyp und vollständiger 

Virilizierung. Dieser Patient mit einer Defizienz der 11 -Hydroxylase besaß eine homozygote 

L299P Mutation im CYP11B1 Gen. Die Expression der L299P-Mutante in HCT116 p53-/- Zellen 

zeigte, dass L299P die 11-Hydroxylaseaktivität im Vergleich zum Wildtyp auf einen Wert 

zwischen 0,8 und 1,6 % reduzierte.
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B) Version in English 

The corticosteroids cortisol and aldosterone are synthesized in the adrenal cortex by a complex 

reaction cascade, catalyzed by several cytochromes P450 (CYP). CYPs belong to the 

monooxygenases that introduce molecular oxygen into their substrates. In humans the final steps 

of the cortisol and aldosterone synthesis are catalyzed by CYP11B1 and CYP11B2, respectively. 

CYP11B1 catalyzing the steroid 11 -hydroxylation is expressed at a high level in zona 

fasciculata/reticularis of the adrenal cortex and is regulated by ACTH. CYP11B1 is responsible 

for the conversion of 11-deoxycortisol (RSS) to cortisol. The deficiency of 11 -hydroxylase,

besides 21-hydroxylase deficiency, is the second most common cause of congenital adrenal 

hyperplasia (CAH), an inherited disease with the inability to synthesize cortisol from 11-

deoxycortisol. In contrast, CYP11B2, aldosterone synthase, is expressed in the zona glomerulosa 

and is mainly regulated by serum levels of angiotensin II as well as potassium. CYP11B2 

catalyzes the conversion of deoxycorticosterone (DOC) to aldosterone, a process that requires 

three steps: a hydroxylation at position 11 to form corticosterone (B), and another one at 

position 18 to form 18-hydroxycorticosterone (18OHB), and finally an oxidation at position 18 to 

form aldosterone (Aldo). Aldosterone synthase deficiency usually finds its expression in infancy 

as a life-threatening electrolyte imbalance, caused by mutations in the CYP11B2 gene. However, 

CAH and aldosterone synthase deficiency caused by the mutations of CYP11B1 gene and 

CYP11B2, respectively, have been poorly investigated at molecular level. Therefore, in depth 

study of mutations and their enzymatic activities will provide information for the diagnosis and 

management of CAH and hypoaldosteronism caused by CYP11B1 and CYP11B2 deficiencies.

The aim of the present study was:  

1) To detect mutations in the CYP11B2 and CYP11B1 genes of patients exhibiting disordered 

adrenal steroids (mineralocorticoids and glucocorticoids).  

2) To investigate the effects of these mutations on the steroid biosynthesis by expressing the 

mutant cDNAs in cell cultures, which includes the comparison of monkey kidney COS-1 and 

human colonic carcinoma HCT116 cells as heterologous expression systems suitable for the 

study of CYP11B1 and CYP11B2. 

In order to investigate mutations in patients suffering aldosterone synthase deficiency and 

patients with CAH of cortisol deficiency, CYP11B1 and CYP11B2 genes of the patients and their 

parents were amplified by PCR of genomic DNA. All 9 exons and the boundaries of exon/intron 

were analyzed by automated sequencing. Six new mutations (L451F, S315R, R374W, R490 1,

R181Q, and a silent mutation in the last nucleotide of exon 5) were detected from the four 
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patients with aldosterone synthase deficiency. One mutation (L299P) was found before in the 

patient with CAH of cortisol deficiency. To analyze the consequences of the mutant of CYP11B1 

in cortisol synthesis and the mutants of CYP11B2 in aldosterone synthesis, mutations were 

generated using the expression plasmid constructs pSVLhCYP11B1/11B2 by site-directed 

mutagenesis. The enzymatic activity of mutants was determined in COS-1 cells or HCT116 p53-/-

cells by co-expression with bovine adrenodoxin using the plasmid pbAdx. The expression of the 

mutant proteins in the cell lines was analyzed by Western blots. 

To optimize the analytical method for measuring the activities of gene products of CYP11B1 and 

CYP11B2, HCT116 p53-/- cell lines were compared for their activities of CYP11B1 and 

CYP11B2 with and without cotransfection of bovine or human adrenodoxin, an electron donor to 

P450. Although both human and bovine adrenodoxin increased the products from CYP11B1 and 

CYP11B2, bovine adrenodoxin was more effective than the human one. In comparison of COS-1 

and HCT116 p53-/- cells, both cell lines cotransfected with CYP11B and adrenodoxin convert the 

substrates with a similar efficiency, suggesting that the efficiencies of 1) transfection, 2) 

transportation of precursor proteins synthesized in cytoplasm to mitochondria, 3) electron 

transportation from NADPH to P450 in mitochondria, and 4) substrate permeability, are similar 

in both monkey kidney and human colonic cell lines. The product pattern is not dependent on the 

cell line. Therefore, we concluded that both cell lines are similarly useful for the activity assay of 

CYP11B1 and CYP11B2. 

When analyzing the patients, it was demonstrated that patient 1 was homozygous having a 

novel missense mutant (L451F) in the CYP11B2 gene. Upon the heterologous expression 

experiments, the L451F mutant showed an expression level comparable with the wild type but the 

protein was completely inactive. Furthermore, the analysis of our 3-D computer model indicated 

a steric effect in the immediate vicinity of the heme which explains the observed loss in activity. 

These results demonstrated that in the L451F mutant the enzyme activity of CYP11B2 is 

completely abolished, being in perfect agreement with the urinary steroid profile by GC-MS.  

The patient 2 was heterozygous. One allele contained a nucleotide deletion at R490 

(R490 1nt) that causes a frame-shift adding 170 amino acids to the protein. In the other allele, 

the CYP11B2 gene had a silent mutation in the last nucleotide of exon 5. The expression studies 

indicated that R490 1nt mutant completely abolished the enzyme activity of CYP11B2. The 

substitution of nucleotide from G to A at the last nucleotide of exon 5 affected pre-mRNA 

splicing although it was a silent mutation which resulted in the intron 5 retention (812 bp). The

genetic and in vitro enzymatic analyses of the two mutants clearly suggest CMO I deficiency. 
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However, the steroid spectrum in the blood of the patient present an intermediate form between 

CMO I and CMO II rather than the classical CMO I. 

The patient 3 was heterozygous having two novel mutations, S315R and R374W, in the 

CYP11B2 gene. The S315R and R374W mutants were enzymatically inactive, i.e. not capable of 

converting DOC to Aldo. In addition, the analysis using computer modelling of hydrogen bonds 

of R315 and W374 demonstrated the formation of a new hydrogen bond network of CYP11B2 in 

the mutants compared to CYP11B2-WT. Thus, the combination of in vitro enzyme assay and 

computer modeling of the hydrogen network provides a valuable tool for better understanding of 

the clinical data of aldosterone synthase deficiency. 

The patient 4 was heterozygous. There was one missense mutation R181Q in the 

CYP11B2 gene of one allele. The protein expression of CYP11B2-R181Q in COS-1 cells 

indicated that this mutant increased corticosterone, reduced 18-hydroxycorticosterone and 

abolished aldosterone formation. This result is in agreement with the urinary steroid profile 

obtained by GC-MS. However, so far no mutation has been found in the second allele so that the 

phenotype-genotype correlation is not clear at the moment.  

The patient 5 was one of two siblings having the 46,XX karyotype with complete virilization. 

This patient with 11 -hydroxylase deficiency had a homozygous L299P mutation in the 

CYP11B1 gene. The expression of the mutant L299P in HCT116 p53-/- cells showed that L299P 

mutation reduces 11-hydroxylase activity to 1.6 - 0.8% for the conversion of 11-deoxycortisol to 

cortisol.
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Abstract

The overall goal of this work consisted in investigations of the genotype of patients suffering 

from aldosterone synthase deficiency and patients with cortisol synthase disorders on the 

biosynthesis of steroid hormones. The aim of the first part of this work was to detect mutations in 

genomic DNA of patients with aldosterone synthase deficiency, and cortisol synthase disorders. 

Sequence analysis of the CYP11B1/CYP11B2 gene revealed that six new mutations were 

detected from the four patients with aldosterone synthase deficiency; one mutation was found 

before in the patient with CAH of cortisol deficiency.

The second part of this work consisted in analyzing effects of detected mutations of CYP11Bs by 

expressing the mutant proteins in the COS-1 and HCT116 cells. The combination of the 

functional analysis of the enzyme in the cell culture and 3-D computer model study may explain 

phenotypical characteristics of the patient.

Kurze Zusammenfassung

Das Gesamtziel dieser Arbeit bestand in der Erforschung des Genotyps sowohl von Patienten, die 

an Aldosteronsynthasedefizienz erkrankt sind, als auch von Patienten, die unter Störungen der 

Cortisolsynthase während der Biosynthese der Steroidhormone leiden. Im ersten Teil dieser 

Arbeit wurden die Mutationen in der genomische DNA von beiden Patientengruppen bestimmt. 

Die Sequenzanalyse des CYP11B1/CYP11B2 Gens zeigten, dass insgesamt sechs neue 

Mutationen bei den vier Patienten mit Aldosteronsynthase Defizienz auftraten; eine Mutation 

wurde bereits bei dem Patienten mit CAH der Cortisoldefizienz gefunden.  

Der zweite Teil dieser Arbeit umfasst die Analyse der gefundenen Mutationen. Dafür wurden die 

CYP11B-Mutanten in COS-1 und HCT116 Zellen expremiert und auf veränderte funktionelle 

Eigenschaften hin untersucht. Die Kombination aus Zellkulturexperimenten und dem 3-D 

Computermodell könnte zur Klärung der phenotypische Charakteristika der Patienten führen.  
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1. Introduction 

1. 1 Biosynthesis of the steroid hormones

Steroid hormone research began with crystallization of sex steroid hormones in 

about 1929-1935, the glucocorticoids in 1935-1938, and finally of aldosterone in 1953. 

The adrenal cortex produces a complex array of steroid hormones including 

glucocorticoids, mineralocorticoids, androgens, and estrogens. This gland surrounds the 

adrenal medulla and consists of different regions that produce different steroids. Just 

below the capsule of the adrenal lies the 

region of the adrenal cortex named the 

glomerulosa in which the major 

mineralocorticoid, aldosterone is produced. 

Between the glomerulosa and the adrenal 

medulla lie two regions of the cortex called 

the fasiculata and the reticularis that are 

required for the synthasis of 

glucocorticoids and the adrenal androgens 

(see Figure 1.1). Steroid hormones are 

produced in multi-step pathways that 

involve the participation of up to six P450s 

(see Figure 1.2): CYP11A1 (cholesterol 

side chain cleavage cytochrome P450 or 

P450scc), CYP17 (17 -hydroxylase/17,20-

lyase or P450c17), CYP21 (21-hydroxylase 

cytochrome P450 or P450c21), CYP11B1 

(11 -hydroxylase or P45011 ), CYP11B2 

CYP19 (aromatase or P450arom) 

(Bernhardt 1996; Bureik et al. 2002; Hakki 

et al. 2006; Lisurek et al. 2004).

(aldosterone synthase or P450aldo) and 

Figure 1.1 Zones in adrenal gland. The

outmost hard connective tissue (white) is covering 

the zona glomerulosa (light blue), the products are 

mineralocorticoids specially aldosterone. The 

zona fasciculata (gray) is the most prominent area, 

and produces glucocorticoids, importantly 

cortisol. The inner zone of adrenal cortex is the 

zona reticularis (light yellow) that produces sex 

steroids, specially testosterone and estradiol. Just 

beyond the zona reticularis, the medulla starts 

(Asif 2004).
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Figure 1.2 Principal pathways of human adrenal steroidogenesis (Ghulam et al. 

2003).

The precursor of steroid hormones is cholesterol, which is a 27-carbon steroid. 

The cells of the steroidogenic tissues can de novo synthesize cholesterol from acetate, 

mobilize the intracellular cholesterol ester pools, or import lipoprotein cholesterol from 

the plasma. Cholesterol is stored as cholesterol acetate in neutral lipid droplets, which 

serves as a pool of readily available cholesterol for corticosteroid biosynthesis (Vinson et 

al. 1992). About 80% of cholesterol is usually provided by circulating plasma 

lipoproteins as low-density lipoproteins (Gwynne et al. 1982). Cholesterol is converted to 

steroid hormone intermediates and mature hormones by cytochrome P450 enzymes in the 

mitochondria and smooth endoplasmic reticulum. Synthesis begins in the mitochondria, 

continues in the endoplasmic reticulum, and is completed in the mitochondria. Therefore, 

shuttling of steroid hormone precursors between the mitochondria and cytoplasmic 

compartments is important in the multiple steps of hormone synthesis.  

The rate-limiting step in the steroidogenesis is the cholesterol transport across the outer to 

the inner mitochondrial membranes and the CYP11A1 (20, 22 R-hydroxylase cholesterol 



Introduction  3

side-chain cleavage) active site. For acute steroid biosynthesis, cholesterol has to be 

mobilized and delivered from the lipid droplets to the CYP11A1 active site, which is 

associated with the inner mitochondrial membrane. The protein factor responsible for this 

transport, and as such regulating the acute production of steroids, has been identified and 

named steroidogenic acute regulatory protein (StAR) (Zenkert et al. 2000). Pregnenolone 

then passes from mitochondria to the endoplasmic reticulum for further metabolism. On 

the one hand, it can be directly converted to progesterone by 3 -hydroxysteroid

dehydrogenase (3 HSD). Alternatively it can be hydroxylated at the 17 -position by 17 -

hydroxylase (CYP17) to produce 17 -hydroxypregnenolone. 17 -hydroxypregnenolone

can be converted to 17 -hydroxyprogestrone by 3 HSD or to a C19 steroid, 

dehydroepiandrosterone, by the 17,20 lyase activity of CYP17. Dehydroepiandrosterone

(DHEA) can also be converted by 3 HSD to androstenedione, which serves as precursor 

of sex hormones. Progesterone or 17 -OH-pregnenolone can be hydroxylated at the 21-

position by 21-hydroxylase (CYP21A2), producing 11-deoxycorticosterone and 11- 

deoxycortisol, respectively. The products of CYP21A2 must re-enter the mitochondria, 

where the final steps of steroidogenesis in the adrenal cortex occur. The two isoforms of 

CYP11B; 11 -hydroxylase/aldosterone synthase (CYP11B2) and 11 -hydroxylase

(CYP11B1), catalyze the conversion of deoxycorticosterone and 11-deoxycortisol to the 

glucocorticoids; corticosterone and cortisol respectively. On the other hand, the outer 

zone of the adrenal cortex, the zona glomerulosa, produces the potent mineralcorticoid 

aldosterone from deoxycorticosterone by the function of CYP11B2. The enzymatic 

difference between the zona glomerulosa and the zona fasciculata is the absence of 

CYP17 in zona glomerulosa. The glomerulosa cells predominantly express CYP11B2. In 

zona reticularis, androstenedione is converted to testosterone and estrone/estradiol by 17-

ketosteroid reductase (17 HSD) and 19-hydroxylase (CYP19), respectively. Cortisol is 

produced in greater amounts compared to corticosterone in humans and represents 

approximately 80% of the glucocorticoids. The androgens, DHEA and androstenedione, 

produced by the zona reticularis can be metabolized to testosterone or estrogens by the 

cortical cells themselves or by metabolic pathways in other organs, such as the gonads. 

Species that produce predominantly corticosterone (such as rats and mice) have little sex 
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hormone production by the adrenal glands (Harvey 1996; Kroboth et al. 1999; Rainey et 

al. 2002; Wilson et al. 1992).  

1.2 Cytochrome P450s

1.2.1 General aspects

Cytochrome P450 enzymes represent a superfamily of b-type hemoproteins i.e. 

containing a noncovalentely bound heme group which are found in almost all life forms. 

From an evolutionary point of view it seems like all cytochromes P450 have evolved 

from a common ancestor molecule (Nebert et al. 1989). The name of these enzymes is 

derived from their unusual spectral properties displaying a typical absorption maximum 

of the reduced CO-bound complex at 450 nm: cytochrome stands for a hemoprotein, P 

for pigment and 450 reflects the absorption peak of the CO complex at 450 nm. The 

ability of reduced P450 to produce an absorption peak at 450 nm upon CO binding is still 

used for the estimation of the P450 content (Omura et al. 1964). The red shift of about 30 

nm as observed in cytochromes P450 indicates that the distribution of electron density at 

the heme is significantly perturbed as compared to other cytochromes. It has been 

documented that the cause of red shift is the thiolate sulphur that directly binds to the 

heme iron. 

Cytochromes P450 are ubiquitously distributed enzymes that are able to 

metabolize a variety of different substrates. The field of activity of these enzymes 

includes many different reactions such as hydroxylation, N-, O- and S-dealkylation, 

sulfoxidation, epoxidation, deamination and N-oxide reduction (Bernhardt 1996; 

Ruckpaul 1993). For instance, cytochrome P450 plays an important role in the 

metabolism of many distinct drugs, carcinogens, alkaloids, pesticides and other important 

xenobiotics (Bernhardt 1996; Bernhardt 2006). Additionally, these proteins are involved 

in a variety of physiological processes such as the steroid hormone, vitamin D and bile 

acid biosyntheses. Taking this into account, it is not surprising that these enzymes have 

attracted the attention of different research fields such as biochemistry, pharmacology, 

physiology, organic chemistry and biotechnology (Bernhardt 1996). In 1991, efforts to 

establish a uniform classification of these enzymes were undertaken by Nebert (Nebert et 
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al. 1991). This systematic arrangement divides the P450 superfamily according to their 

sequence similarity into families, subfamilies and finally into the individual species. 

More than 6000 different P450 genes have been cloned up to date from animals, plants, 

fungi, other eukaryotes, and bacteria (for details see: 

http://drnelson.utmem.edu/CytochromeP450.html). Species belonging to the same family 

usually possess a sequence similarity of > 40 % whereas members of the same 

subfamilies are > 55 % identical (Nebert & Nelson 1991). P450s from different families 

usually display a sequence identity below 30%, which in part reflects the high number of 

different substrates of these enzymes. This classification resulted in a nomenclature for 

all cytochromes in which CYP stands for cytochrome P450 followed by the number for 

the respective family, a letter referring to the subfamily and finally a number that 

identifies the individual member. 

All cytochromes P450 are monooxygenases that catalyze the incorporation of a 

single atom of molecular oxygen into the substrate. The reduction equivalents needed for 

this reaction are provided by an external substrate that is the reason why these enzymes 

are called external monooxygenases (Hayaishi et al. 1969). In general, cytochromes P450 

catalyze the following reaction as shown below in the simplified reaction scheme: 

RH + O2 + NAD(P)H + H
+

ROH + H2O + NAD(P)
+

Cytochromes P450 are generally divided into two major classes: the microsomal type and 

the bacterial/mitochondrial type cytochromes (see Figure 1.3) (Bernhardt 2006; 

Harikrishna et al. 1993). In the case of microsomal type P450s the reduction equivalents 

are transferred from a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent 

cytochrome P450 reductase to the cytochrome. The P450 reductase contains a flavine

adenine dinucleotide (FAD) as well as a flavine mononucleotide (FMN) group. Both 

enzymes are membrane bound (Bernhardt 1996; Bernhardt 2006). This class of 

cytochromes is mainly responsible for the metabolism of drugs and xenobiotics 

(Ruckpaul 1990). The second class of cytochromes P450, namely the mitochondrial and 

most of the bacterial cytochromes P450, require an additional electron carrier protein. In 

these systems reduction equivalents are provided to the cytochrome via an electron 
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transfer chain that consists of a FAD-containing reductase (AdR) and a soluble iron-

sulfur protein named adrenodoxin (Adx). AdR is associated with the inner mitochondrial 

membrane (Bernhardt 1996; Bernhardt 2006). In addition to the two typical electron 

transfer pathways, Hannemann et al. (Hannemann et al. 2007) have also described other 

electron transfer pathways, for example, pathways mediated by fusion proteins of the 

electron transfer components. 

Figure 1.3: Schematic organisation of different cytochrome P450 systems (Bernhardt

2006).

Poulos and coworker (Poulos et al. 1987) described a crystal structure of P450cam

(CYP101) from Pseudomonas putida. In the early 1990s, the structures of P450s have 

been determined, namely, P450BM3 (CYP102) (Ravichandran et al. 1993), P450terp

(CYP108) (Hasemann et al. 1994), P450eryF (CYP107) (Cupp-Vickery et al. 1995) and 

P450nor (CYP55) (Nakahara et al. 1994). Until now crystallographers have been able to 

solve the structure of many bacterial P450s and recently of solubilized microsomal 

cytochromes P450, CYP2C5 (Wester et al. 2003), CYP2C8 (Schoch et al. 2004), 

CYP2C9 (Williams et al. 2003), CYP2B4, CYP2A6, CYP2D6, CYP1A2, and CYP3A4 

(Williams et al. 2004a) (for more information about the resolved 3-dimensional structures 

of CYP450 visit: http://www.expasy.org/). Analysis of these structures has revealed that 

even if the sequence identities between the different cytochromes P450 tends to be very 

low, all cytochromes display a characteristic overall fold and topology. In general, P450s 

exhibit an interesting folding pattern with respect to how the N-terminal and C-terminal 

sequences are arranged around the heme. The conserved P450 structural core consists of 
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six-helices: D, E, I, L, J and K. There are two sets of structurally conserved  sheets: 

sheet 1 containing five strands and  sheet 2 containing two strands. Heme is located 

between helix I and L (Peterson et al. 1998). Based on the alignment of CYP2C family 

members, Gotoh (Gotoh 1992) proposed 6 regions that are involved in substrate 

recognition, designated SRS (substrate recognition sites). There is spatial hypervariability 

in SRS-1 (B’ helix), SRS-2 (carboxyterminal region of the F helix), and SRS-3 (amino-

terminal region of the G helix). In contrast, SRS-4 (central I helix), SRS-5 ( 6-1/ 6-4),

and SRS-6 ( 4-hairpin) show only limited spatial variability. In addition, consensus 

sequence motifs include the well-recognized EXXR motif at the C-terminal end of helix 

K, the CXGXXLA motif in the Cys-pocket and the AGXXT motif in helix I, comprising 

some of the conserved residues among most CYPs, and the DXXXF motif in helix K’ 

(Mestres 2005).

1.2. 2 CYP11B1 and CYP11B2 

1.2.2.1 Structure and function 

CYP11B1 and CYP11B2 (P450c11B1 and P450c11B2) are located in the inner 

mitochondrial membrane. In humans, the CYP11B family contains two members, 

CYP11B1 and CYP11B2, producing cortisol and aldosterone, respectively. Cortisol is the 

main glucocorticoid in humans. It regulates energy mobilization and thus the stress 

response. Furthermore, cortisol is formed by 11 -hydroxylation of 11-deoxycortisol (S) 

(see Figure 1.4) and is normally secreted 100 to 1000-fold in excess over aldosterone. 

Aldosterone is the most important human mineralocorticoid. It is involved in the 

regulation of the salt and water household of the body and thus in the regulation of blood 

pressure. The terminal 3 steps in aldosterone biogenesis in humans are the 11 -

hydroxylation of 11-deoxycorticosterone (DOC) that leads to corticosterone (B), which is 

then 18-hydroxylated to yield 18-hydroxycorticosterone (18-OH-B) and finally oxidized 

to aldosterone (see Figure 1.4). In the course of cloning and analyzing the CYP11B1

gene, White and coworkers isolated a cross-hybridizing gene, CYP11B2 (Mornet et al. 

1989), whose sequence was about 95% identical to the well-known CYP11B1 gene in



Introduction  8

O

O
OH

OH

O

O
OH

OH

OH

11-Deoxycortisol (S) Cortisol (F)

11-Deoxycorticosterone    Corticosterone           18-Hydroxycorticosterone     Aldosterone
        (DOC)                                    (B)                                 (18-OH-B)                             (Aldo)

O

O

OH

O

O

OH

OH

O

O

OH

OH

OH

O

O

OH

OH

O

CYP11B2

CYP11B1

Figure 1.4: Reactions catalyzed by human CYP11B1 and CYP11B2. CYP11B1

catalyzes the 11 -hydroxylation reaction that produces cortisol from 11-deoxycortisol (S). 

CYP11B2 converts 11-deoxycorticosterone (DOC) via corticosterone (B) and 18-OH- 

corticosterone (18-OH-B) to aldosterone (Aldo). 

coding regions and 90% identical in introns. The proteins are synthesized in cytoplasm 

and transported into the inner mitochondrial membrane and thus are synthesized 

including a leader sequence of 24 amino acids that is cleaved in the mitochondria to yield 

a mature protein of 479 amino acids in humans and 476 amino acids in mice. Although 

CYP11B1 and CYP11B2 consist of the same number of amino acids, the apparent

molecular mass of the human enzymes was reported as 51 and 49 kDa on SDS-PAGE, 

respectively (White et al. 1994a), and the rat enzymes as 51.5 and 49.5 kDa, respectively 

(Ogishima et al. 1991). The 5´ upstream region of the CYP11B2 gene had considerably 

diverged from that of CYP11B1, suggesting that this second gene, if expressed, may be 

regulated differently. Mornet et al (Mornet et al. 1989) determined that the CYP11B1 and 

CYP11B2 genes both contain nine exons. Both genes are located on chromosome 8q21. 

CYP11B enzymes of other species have also been studied. In bovine (Wada et al. 1985), 
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porcine (Yanagibashi et al. 1986), and frog (Nonaka et al. 1995) adrenal cortexes, 

synthesis of gluco- and mineralocorticoids is catalyzed by single enzyme, while humans, 

baboon (Hampf et al. 1996; Swart et al. 2000) rats (Matsukawa et al. 1990), mice 

(Domalik et al. 1991), and guinea pigs (Bulow et al. 2002; Bulow et al. 1996) contain two 

distinct isoforms specialized in the formation of either mineralo- or glucocorticoids. The 

reason for these interspecies differences is unknown. Enzymes with 11 -hydroxylase

activity have also been found in several fungi (Megges et al. 1990). 

Understanding the structure-function relationships of CYP11B enzymes requires 

information about their three-dimensional structure. Protein structure determination by X-

ray diffraction is often problematic in case of membrane-bound proteins such as 

CYP11B1 and CYP11B2, and nuclear magnetic resonance (NMR) structure 

determination is restricted to smaller proteins (see Figure 1.5 A). Models have been 

evaluated and used to explain the significance of a number of residues that were 

identified either by mutagenesis studies or mutations found in patients (Belkina et al. 

2001). These models suggest that the main difference between the two proteins is the 

position of the heme (see Figure 1.5 B). An angle of approximately 20° between the 

hemes of the two models has been proposed, apparently dependent on the interaction of 

side-chains forming the heme environment and the orientation of its binding loop. In case 

of CYP11B1, one heme propionate group forms a hydrogen bond with Arg448 while the 

second one interacts with Arg384, whereas in CYP11B2 both heme propionate groups 

are involved in hydrogen bond interaction with Arg448. Both Arg448 and Arg384 

mutations have been found in CYP11B1 of patients suffering from congenital adrenal

hyperplasia (CAH) (Curnow et al. 1993; Nakagawa et al. 1995; White et al. 1991); all 

known mutations in positions 384 and 448 led to a complete loss of enzyme activity, 

most probably due to destabilization of the holoprotein. As a consequence of the different 

hydrogen bonding network around Arg384, Arg448, and the heme propionates, the active 

site of CYP11B2 is predicted to be smaller than that of CYP11B1. Besides, the models of 

Ulmshneider et al. (Ulmschneider et al. 2005) focus on describing protein-inhibitor 

interactions and structure activity relations of their developed inhibitors. Furthermore, the 

models of the CYP11B family of Roumen et al. (Roumen et al. 2007) provide insights 
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into the regioselectivity of the natural ligands within the enzymes and to protein-ligand 

interactions.

A B

Figure 1.5: A, Superposition of the ribbon structures of the homology models of human 

CYP11B1 (green) and CYP11B2 (orange) (Belkina et al. 2001). B, the main difference between 

the two proteins is the position of the heme. 

1.2.2.2 Regulation of steroid hydroxylase 

The regulation of adrenocorticosteroid synthesis involves the hypothalamus and 

anterior pituitary (see Figure 1.6). The hypothalamus releases corticosteroid releasing

hormone (CRH) into the portal blood, which goes to the anterior pituitary gland. CRH 

stimulates the anterior pituitary to release adrenocorticotropin (ACTH) into the systemic 

circulation. ACTH stimulates the glands of the adrenal cortex to convert cholesterol to 

pregnenolone. Pregnenolone then forms glucocorticoids and sex hormones in the zona 

reticularis and zona fasciculata and aldosterone in the zona glomerulosa. In addition, 

angiotensin II and high K+ stimulate the aldosterone synthase (CYP11B2) in the zona 

glomerulosa to form aldosterone. With negative feedback, glucocorticoids and androgens 

inhibit both the release and action of CRH in the hypothalamus, and the formation and 

release of ACTH in the anterior pituitary. Aldosterone does not inhibit the release of 

ACTH or CRH with the negative feedback. 
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Figure 1.6: Regulation of 11-hydroxylase and aldosterone synthase (Hampf 2001a).

Cortisol synthesis is primarily controlled by ACTH (corticotropin) (Waterman et 

al. 1989). ACTH acts through a specific G protein-coupled receptor on the surface of 

cells of the adrenal cortex (Mountjoy et al. 1992), to increase levels of cAMP (adenosine 

3’, 5’ monophosphate). Cyclic AMP has short-term (minutes to hours) effects on 

transport of cholesterol into mitochondria through increasing the synthesis of a short 

lived protein, steroidogenic acute regulatory (StAR) protein (Stocco et al. 1996). The 

increased level of intracellular cAMP also has longer term (hours to days) effects on 

transcription of genes encoding the enzymes required for cortisol biosynthesis including 

CYP11B1 (Waterman et al. 1997), and preferentially increases CYP11B1 mRNA 

expression over that of CYP11B2 (Curnow et al. 1991; Denner et al. 1996). 

StAR is found to play a key or even essential role in mediating transport of 

cholesterol from outside the outer mitochondrial membrane into the inner mitochondrial 

membrane where cholesterol can enter the active site of CYP11A1 and be converted to 
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pregnenolone (Baker et al. 2005; Miller et al. 1999). A cyclic AMP response-element 

binding protein (CREB) is responsible for the protein kinase A (PKA) mediated response 

between ACTH and elevated StAR levels (Manna et al. 2002). The biophysical basis by 

which StAR stimulates cholesterol transport remains unclear, however, two important 

findings provide insight into this process. Mutagenesis studies of StAR suggest that StAR 

activity requires a pH-dependent protein globule transition on the outer mitochondrial 

membrane (Baker et al. 2005). Further, the peripheral-type benzodiazepine receptor

(PBR) interacts with StAR on the outer mitochondrial membrane to facilitate cholesterol 

transfer across this membrane to the inner mitochondrial membrane, and then to 

CYP11A1 (Hauet et al. 2005).

Aldosterone synthase (CYP11B2) expressed in the zona glomerulosa is regulated 

by angiotensin II and potassium, with ACTH having mostly a short-term effect on 

expression (White et al. 2005). Because the necessary precursors for aldosterone 

biosynthesis (in particular, deoxycorticosterone) are synthesized in the much larger zona 

fasciculata, it is apparent that there must be uniquely regulated steps in aldosterone 

biosynthesis in the zona glomerulosa or this process simply would be regulated by 

ACTH.

Angiotensin is an oligopeptide in the blood that causes vasoconstriction and 

sodium retention (Lavoie et al. 2003), increased blood pressure, and release of 

aldosterone from the adrenal cortex. It is derived from the precursor molecule 

angiotensinogen, which is a member of the serine protease inhibitor gene superfamily. 

The effects of angiotensin II can be inhibited by antagonists against type 1 angiotensin II 

(AT1) receptor (Kakiki et al. 1997). Angiotensin II receptors are predominantly 

expressed in the zona glomerulosa, suggesting a role of angiotensin II in the glomerulosa-

specific expression of CYP11B2 (Breault et al. 1996). 

Renin is a proteolytic enzyme secreted by the juxtaglomerular apparatus of the 

nephron in response to decreased volume as sensed by stretch receptors in the afferent 

arteriole. Renin digests angiotensinogen to angiotensin I, a decapeptide which is 

converted by the angiotensin converting enzyme to an octapeptide, angiotensin II. 
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Angiotensin II occupies a G protein-coupled receptor (Curnow et al. 1992; Murphy et al. 

1991; Sasaki et al. 1991), activating phospholipase C.

Potassium is secreted into the tubule in exchange for the sodium, which is 

reabsorbed. Potassium signaling in glomerulosa cells involes membrane depolarization 

leading to an influx of calcium through T and L-type channels. Consistent with this, 

elevating intracellular calcium with the calcium channels agonist BAYK8644 increases 

expression of CYP11B2 mRNA in H295R adrenal cells. Moreover, calcium channel 

blockers such as nifedipine block K+-dependent induction of CYP11B2 (Clyne et al. 

1997; Denner et al. 1996; Pezzi et al. 1997). 

1.3 Defect in CYP11B isozymes 

1.3.1 Steroid 11 -hydroxylase deficiency

Congenital adrenal hyperplasia (CAH), the inherited inability to synthesize cortisol, 

usually presents with signs of androgen excess such as virilization of female external 

genitalia. More than 90% of cases are caused by 21-hydroxylase deficiency (Pang et al. 

1988). This usually affects both aldosterone and cortisol biosynthesis, leading to signs of 

aldosterone deficiency including hyponatremia, hyperkalemia, and hypovolemia that 

may, if untreated, progress to shock and death within weeks after birth (see Figure 1.2). 

Most of CAH associated with hypertension are due to 11 -hydroxylase deficiency (White 

et al. 1994a). It has been estimated in most populations that about 5 - 8% of CAH cases 

are due to 11 -hydroxylase deficiency (Zachmann et al. 1983), which occurs in 

approximately 1 in 200,000 births (White et al. 1994a). Large numbers of cases of 11 -

hydroxylase deficiency have been reported in Israel among Jewish immigrants from 

Morocco, a relatively inbred population. The incidence in this group is currently 

estimated to be l/5000-l/7000 births (Rosler et al. 1992). 

Clinical and biochemical presentation of 11 -hydroxylase deficiency 

As mentioned above, 11 -hydroxylase deficiency, besides 21-hydroxylase deficiency, is 

the second most common cause of CAH. It is an inherited disease with the inability to 
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synthesize cortisol from 11-deoxycortisol. Characteristically this disease leads to 

androgen excess and hypertension. 

Hypertension is a common disorder that affects a large heterogeneous patient 

population. Subgroups can be identified on the basis of their responses to hormonal and 

biologic stimuli. These subgroups include low-renin hypertensives and nonmodulators. It 

has been estimated that approximately two thirds of patients with classic 11 -hydroxylase

deficiency present with elevated blood pressure (Rosler et al. 1992), often beginning in 

the first few years of life (Mimouni et al. 1985; Zachmann et al. 1983). Mutations in 

CYP11B1 result in impaired activity of 11 -hydroxylase, leading to accumulation of the 

steroid precursors 11-deoxycortisol. In the result of the feed back from the lack of 

cortisol, this deficiency leads to mineralocorticoid hypertension. Although the 

hypertension is usually of mild to moderate severity, left ventricular hypertrophy and/or 

retinopathy have been observed in up to one-third of patients, and deaths from 

cerebrovascular accidents have been reported (Hague et al. 1983; Rosler et al. 1992). 

Other signs of mineralocorticoid excess such as hypokalemia and muscle weakness or 

cramping occur in a minority of patients and are not well correlated with blood pressure. 

Plasma renin activity is usually suppressed in older children and levels of aldosterone are 

consequently low even though the ability to synthesize aldosterone is actually unimpaired 

(White et al. 1994b). 

For the androgen excess, females affected with classic 11 -hydroxylase

deficiency are born with masculinization of their external genitalia. This is caused by 

secretion of adrenal androgens during embryonic and fetal development. In contrast to 

the external genitalia, the gonads and the internal genital structures are normal. Rapid 

somatic growth in childhood, accelerated skeletal maturation leading to premature 

closure of the epiphyses, and short adult stature are signs of postnatal androgen excess in 

both sexes. Additionally, affected children may have premature development of sexual 

and body hair and acne (Peter et al. 1999). Patients with nonclassic 11 -hydroxylase

deficiency are born with normal genitalia and present with signs and symptoms of 

androgen excess as children. Adult women may present with hirsutism and 
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oligomenorrhoea. However, only a small percentage of women with hirsutism and 

hyperandrogenic oligomenorrhoea has nonclassic 11 -hydroxylase deficiency (Azziz et 

al. 1991; Carmina et al. 1988; Joehrer et al. 1997). 

For biochemical presentation, in 11 -hydroxylase deficiency, 11-deoxycortisol 

and 11-deoxycorticosterone are not efficiently converted to cortisol and corticosterone 

respectively. Decreased cortisol production leads via poor feedback control to increased 

ACTH secretion. This stimulates the zona fasciculata to overproduction of steroid 

precursors prior to the blocked 11 -hydroxylase step. These precursor steroids are 

excreted in the urine as tetrahydro-metabolites, but the greater part of the massively 

elevated 11-deoxycortisol and its precursor 17-OH progesterone is shunted into the 

androgen pathway, resulting in marked androgen excess and virilization. Because 11-

deoxycorticosterone and certain metabolites, e.g. 19-Nor-DOC, are mineralocorticoid 

agonists, plasma renin activity is suppressed and levels of aldosterone are low even 

though the ability to synthesize aldosterone is not impaired (Levine et al. 1980). 

Genetic analysis of 11 -hydroxylase

Deficiency of 11 -hydroxylase is caused by mutations in CYP11B1 (see Figure 

1.7). The first mutation described in Moroccan Jews patients with the classical form was 

a single base exchange in codon 448 leading to an amino acid substitution Arg448His. 

Arg448 is adjacent to Cys450, which is the fifth ligand of the heme iron atom (White et 

al. 1991). This probably represents a founder effect, but this mutation has also occurred 

independently in other ethnic groups, and another mutation of the same residue (R448C) 

has also been reported (Geley et al. 1996). Subsequently, more than 35 different 

mutations in the CYP11B1 have been identified (see Figure 1.7).  
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Figure 1.7: Schematic representation of the genomic structure of the human 

CYP11B1 gene and positions of mutations reported to date. Exons are represented by 

boxes; and open boxes represent the non-coding regions.
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Table 1.1. List of published missense mutations in the human CYP11B1 gene leading 

to abolished 11 -hydroxylase activity in cell culture 

Mutation Ethnic group Exon Putative 3D Effect in vitro Reference 

P42S Not described 1 A-helix 15% reduced 11 -hydroxylase activity  Joehrer et al. 1997 

P94L North German 2 B-helix 0.05% reduced 11 -hydroxylase activity  Krone et al. 2006

W116C Turkish 2 B-C loop 2.9 % reduced 11 -hydroxylase activity  Krone et al. 2005 

V129M Caucasian 2 C-helix Complete loss of 11-hydroxylase activity  Geley et al. 1996 

N133H Not described 3 C-helix  17% reduced 11 -hydroxylase activity Joehrer et al. 1997 

L299P Iraq 5 I-helix 1.2% reduced 11 -hydroxylase activity Krone et al. 2005 

T318M Yemenite 5 I-helix, active site  Complete loss of 11 -hydroxylase activity Curnow et al. 1993 

T319M Not described 6 I-helix, active site  37% reduced 11 -hydroxylase activity Joehrer et al. 1997 

A331V Caucasian 6 I-helix Complete loss of 11 -hydroxylase activity  Geley et al. 1996 

A368D North German 6 K-helix 1.17% reduced 11 -hydroxylase activity Krone et al. 2006

E371G Caucasian 6 K-helix  Complete loss of 11 -hydroxylase activity  Geley et al. 1996 

R374Q Lebanese Arab 6 K-helix Complete loss of 11 -hydroxylase activity  Curnow et al. 1993 

R384G Japanese 7 Heme propionate 

neutralisation

Complete loss of 11 -hydroxylase activity  Yang L et al. 1995 

V441G White 8 Meander Complete loss of 11 -hydroxylase activity Curnow et al. 1993 

R448C Iranian 8 Heme propionate 

neutralisation

Complete loss of 11 -hydroxylase activity  Geley et al. 1996 

R448H Moroccan Jew  8 Heme propionate 

neutralisation

Complete loss of 11 -hydroxylase activity  White et al. 1991 

Many missense mutations, which have been found in patients suffering from this 

disease, lead to functionally disturbed enzymes after expression in cell culture (see Table 

1.1). Curnow (Curnow et al. 1993) indicated that mutations T318M, R374Q, R384Q and 

V441G in exons 5, 6, 7 and 8 lead to complete dysfunctional CYP11B1 activity. Later, 

mutations V129M, A331V, E371G and R448C were described by Geley and colleague 

(Geley et al. 1996) to be defective for 11 -hydroxylase activity. Mutations P42S, N133H 

and T319M lead to only partially disturbed 11 -hydroxylase (Joehrer et al. 1997). 

Furthermore, Krone and colleagues (Krone et al. 2006; Krone et al. 2005) described 
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W116C, L299P, DeltaF438, P94L and A368D in patients suffering from classical 

CYP11B1 deficiency. Analysing of these mutants in the cell culture indicated reduced 

enzymatic activities. Moreover, the combination of enzyme function analyzed by site-

directed mutagenesis and molecular modeling provides valuable insights in cytochrome 

P450 structure function relationships. As can be seen in Table 1.1, mutations leading to 

11 -hydroxylase deficiency are distributed over the entire coding region, but with a 

slightly enhanced frequency in exon 6 and 8. This might reflect the presence of 

functionally important amino acid residues in these regions or, alternatively, mutations in 

this region are more likely to have deleterious effects on the enzyme activity. 

Other mutations detected in patients with the classic form of the disease are 

nonsense or frameshift mutations that also abolish enzyme activity (Cerame et al. 1999; 

Helmberg et al. 1992; Joehrer et al. 1997; Merke et al. 1998; Naiki et al. 1993). For 

example, a nonsense W247X has been described in several unrelated kindreds in Austria 

and also probably represents a founder effect (Geley et al. 1996). An African-American 

patient was found to be a compound heterozygous for a codon 318+1G A substitution 

at the 5’-splice donor site of intron 5 and a previously reported nonsense mutation 

(Q356X) in exon 6 (Merke et al. 1998).

1.3.2 Aldosterone synthase deficiency 

By far the most frequent defect of aldosterone biosynthesis is congenital adrenal 

hyperplasia due to steroid 21-hydroxylase deficiency. Two thirds of patients with classic 

21-hydroxylase deficiency are unable to synthesize adequate amounts of aldosterone and 

are said to have the “saltwasting” form of the disorder. Rare patients have aldosterone 

deficiency without hyperandrogenism. In some cases, this is caused by CYP11A1 or 3 -

hydroxysteroid dehydrogenase deficiencies that are unusual causes of congenital adrenal 

hyperplasia (White et al. 1987). Other patients have aldosterone deficiency in the context 

of entirely normal cortisol and sex steroid synthesis. In the early 1960s, the diagnosis of a 

selective mineralocorticoid deficiency was established by urinary steroid metabolite 

determinations utilizing improved laboratory methods such as gas chromatography. In 
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1964, Visser and Cost (Visser et al. 1964) were the first to suggest a biosynthetic defect 

with autosomal recessive inheritance, causing selective hypoaldosteronism due to 

deficient 18-hydroxylation of corticosterone. Subsequently, 2 patients with deficient 18-

oxidase were described by Ulick et al. (Ulick et al. 1964) and Rappaport et al. (Rappaport 

et al. 1968). In the early 1970s, Ulick (Ulick 1976) suggested that the two biochemically 

different forms of selective aldosterone deficiency maybe termed corticosterone methyl 

oxidase (CMO) deficiency type I and type II. In 1996, the nomenclature was changed to 

aldosterone synthase deficiency type I and type II, since it was clear that one single P450 

enzyme, termed aldosterone synthase, catalyses all three steps of the terminal aldosterone 

biosynthesis (Ulick 1996). In both aldosterone synthase deficiency types, aldosterone 

biosynthesis is impaired, while corticosterone of zona glomerulosa origin, under the 

primary control of the renin-angiotensin system, is produced in excess. The two defects 

biochemically differ in that 18-hydroxycorticosterone is deficient in aldosterone synthase 

deficiency type I, but overproduced in aldosterone synthase deficiency type II. 

Clinical and biochemical presentation of aldosterone synthase deficieny 

Mineralocorticoid deficiency leads to excessive sodium excretion and potassium 

retention in the renal distal tubule and cortical collecting duct, causing hyponatremia and 

hyperkalemia. In untreated infants with aldosterone synthase deficiency, serum sodium is 

usually in the range of 136-145 mM/L (normal value), whereas serum potassium ranges 

from 3.5-4.5 mM/L (normal value). Children older than 3-4 yr of age usually have 

normal serum electrolytes even if untreated. Plasma renin activity is markedly elevated 

(up to 100 times normal) in affected infants and young children, but it may be normal in 

adults (White et al. 1994a).  

Two types of aldosterone synthase deficiency can be differentiated. Levels of 

deoxycorticosterone are increased and urinary excretion of corticosterone metabolites is 

elevated in both type I and type II deficiencies relative to excretion of cortisol 

metabolites. Whereas excretion of 18-hydroxycorticosterone is mildly decreased in type I 

deficiency, urinary and serum levels of this steroid are dramatically increased in patients 
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with type II deficiency. Aldosterone and its metabolites may be undetectable in patients 

with type I deficiency, whereas urinary excretion is mildly decreased in type II deficiency 

and serum levels of aldosterone are usually within normal limits. CMO II deficiency may 

thus be readily diagnosed by marked (often 100-fold) elevation of the ratio of 18-

hydroxycorticosterone to aldosterone in either urine or serum; the ratio does not vary 

with age in affected individuals and may be the sole biochemical abnormality in adults. 

Peter et al. (Peter et al. 1995) reported 16 CMO-deficient infants diagnosed by using 

specific steroid determinations from plasma sample. The plasma level of 18-

hydroxycorticosterone distinguishes between aldosterone synthase deficiency type I 

(where it is decreased or low-normal) and aldosterone synthase deficiency type II (where 

it is markedly elevated). The clearest distinguishing parameter between the two 

aldosterone synthase deficiency types reflecting impaired 18-hydroxylation is the ratio of 

plasma corticosterone/18-hydroxycorticosterone, which is elevated (>40) in aldosterone 

synthase deficiency type I and decreased (<10) in aldosterone synthase deficiency type II. 

The ratio of plasma 18-hydroxycorticosterone/aldsterone can also discriminate between 

the two aldosterone synthase deficiency variants (type I <10; type II >100). In some case, 

the ratio of 18-hydroxycorticosterone to aldosterone is not useful for diagnosis of CMO I 

deficiency because the usually undetectable levels of aldosterone render the ratio 

meaningless (Ulick et al. 1992). An ACTH test is not necessary for the diagnosis.  

Recently, Wudy and coworker (Wudy et al. 2004) have measured steroid excretion rates 

in a 24-hr urine sample (quantitative urinary steroid profile), which represent the 

integrated output of adrenocortical and gonadal steroid production. Gas chromatography-

mass spectrometry (GC-MS) urinary steroid profiling from spot urine samples allows to 

diagnose inborn errors of steroid biosynthesis by identifying characteristic steroid 

metabolites and by calculating ratios between precursor metabolites and product 

metabolites. In aldosterone synthase deficiency type I, the urinary steroid profile in 18-

hydroxylase deficiency is charaterized by increased excretion of corticosterone and 

metabolites of corticosterone while 18-hydroxylated corticosterone metabolites are absent 

or very low. The exretion of cortisol metabolites is normal. In aldosterone synthase 

deficiency type II (18-hydroxysteroid dehydrogenase deficiency), the urinary steroid 



Introduction  21

profile shows in addition to high amounts of corticosterone metabolites also 18-

hydroxylated corticosterone metabolites (18-OH-THA, 18-OH-THB). 

The clinical presentation of aldosterone synthase deficiency varies with age 

(Rosler 1984; Ulick et al. 1992). Infants may develop signs and symptoms of 

mineralocorticoid deficiency at a few days to weeks of age. These include vomiting and 

dehydration leading to hypovolemia that may cause cyanosis, tachycardia, hypotension, 

acidosis, and prerenal azotemia. As discussed, hyponatremia and hyperkalemia are also 

characteristic of aldosterone deficiency. These problems may end in circulatory collapse. 

Although fatalities have occasionally occurred, the morbidity of aldosterone synthase 

deficiency is usually not as severe as that engendered by the salt-wasting form of 

congenital adrenal hyperplasia. This presumably reflects normal synthesis of 

deoxycorticosterone, corticosterone, and cortisol in aldosterone synthase deficiency, 

which ameliorate the development of shock. 

Some children are diagnosed in early childhood with failure to thrive, anorexia, 

mild dehydration, and electrolyte abnormalities. Although electrolytes usually normalize 

by 4 yr of age (even with a low sodium diet), growth retardation may persist throughout 

childhood. Adults are usually asymptomatic but occasionally tolerate severe salt loss (for 

example, from gastroenteritis) less well than unaffected individuals. Asymptomatic adults 

with aldoterone synthase deficiency are occasionally ascertained through family studies 

by the persistently elevated ratio of 18-hydroxycorticosterone to aldosterone (Kayes-

Wandover et al. 2001b; Peter et al. 1997; Rosler 1984). 

It is difficult to distinguish variations in clinical severity between individuals from 

the marked improvement that occurs with age in all patients. All affected individuals 

from the Iranian Jewish community have identical mutations (see below), so that any 

existing individual variations in severity cannot reflect allelic variation. They must 

instead represent effects of other genetic loci or nongenetic factors. 

Genetic analysis 

Both types of aldosterone synthase deficiency are caused by mutations in the CYP11B2

gene. So far, 18 mutations were detected in the CYP11B2 gene in patients with 
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aldosterone synthase deficiency (see Figure 1.8). One mutation (V386A) was found in 

CMO I and CMO II. In CMO I deficiency, the completely inactive mutation has been 

found to cause aldosterone synthase deficiency type I (see Table 1.2), although the 

homozygous genotype with double mutations R181W/V386A until now is the only 

variant shown by in vitro activity assay to result in type II deficiency (see Table 1.3). For 

example, patients with CMO I deficiency carried a frameshift mutation (Mitsuuchi et al. 

1993) and one carried a missense mutation, R384P, that eliminates the enzyme activity 

when expressed in cultured cells (Geley et al. 1996). In CMO II deficiency, mutants 

(T185I, T318M, V386A and T498A) reduced the 18-hydroxylase activity in the 

conversion of deoxycorticosterone to aldosterone (see Table 1.3). Iranian Jewish patients 

with CMO II deficiency are homozygous for two mutations, R181W and V386A. These 

mutants were expressed in cultured cells. V386A alone had a minimal effect on activity, 

whereas R181W and the double mutant (R186W/V386A) had intact 11 -hydroxylase

activity, markedly decreased 18-hydroxylase activity and undetectable 18-oxidase 

activity (Pascoe et al. 1992a).

Figure 1.8: Schematic representation of the genomic structure of the human 

CYP11B2 gene and positions of mutations reported to date. Exons are represented by 

boxes; and open boxes represent the non-coding regions. 
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Table 1.2. Aldosterone synthase deficiency type I 

Mutation Ethnic group Exon Putative 3D in vitro activity Reference 

V35 TGCTC

(homozygous) 

North America  1 A-helix No test, frameshift to form a stop codon in 

the same exon 

Mitsuuchi et al. 1993 

R143addArg-Leu 

(homozygous) 

Caucasian 3 C-helix Completely inactivity Kayes-Wandover et al. 

2001

E255X 

(homozygous) 

Turk 4 G-helix No test, premature stop codon Peter et al.1997

E255X/Q272X 

(heterozygous) 

Caucasian 4/5 G-helix No test, premature stop codon Williams et al. 2004b 

L324Q/Y265X 

(heterozygous) 

6/4 I-helix/G-helix No test Lopez-Siguero et al. 

1999

R384P 

(homozygous) 

Caucasian 7 1-4  Completely inactivity Geley et al. 1995 

V386A/R188D

(homozygous)  

Not described 7/3 1-4/between D- 

and E-helix 

No test Lopez-Siguero et al. 

1999

V386A/E198D

(homozygous ) 

French 7/3 1-4/E-helix decreased 11 - and 18-hydroxylase activity, 

no detectable 18-oxidase activity 

(residual activity consistent with type II 

phenotype)

Portrat-Doyen et al. 

1998

L451F 

(homozygous) 

Turk 8 L-helix  Completely inactivity Nguyen et al. 2008 

L461P 

(homozygous) 

Turk  8 L-helix  Completely inactivity Nomoto et al. 1997 

Table 1.3. Aldosterone synthase deficiency type II 

Mutation Ethnic group Exon Putative 3D in vitro activity Reference 

R173del

(homozygous) 

Not described 3 D-helix No test Peter et al. 1998b 

T185I

(homozyogus) 

Not described 3 E-helix  Reduced 18-hydroxylase activity, no 

detectable 18-oxidase activity 

Peter et al.1998a 

R181W/T372 1nt 

T318M/V386A

(heterozygous) (2 

mutation/allele) 

V386A

(heterozygous) 

Iranian Jew  3/6

5/7

K-helix/I-helix/ 1-4 T318M mutant has less activity, 

T372 1nt has no activity 

Zhang et al. 1995 

V386A/R181W

(homozygous) 

Iranian Jew  7/3 1-4/between D- 

and E-helix 

0.2% activity of wild-type CYP11B2 Pascoe et al. 1992a 

T498A/T185I

(heterozygous) 

Macedonian 9/3 -sheet 3, strands 1

and 2 

Reduced C18 activity of aldosterone 

synthase

Dunlop et al 2003
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1.3.3 Glucocorticoid-Suppressible Hyperaldosteronism 

Glucocorticoid-suppressible hyperaldosteronism (GSH), also known as dexamethasone-

suppressible hyperaldosteronism, glucocorticoid-remediable aldosteronism (GRA) or 

familial hyperaldosteronism type I (FH-I) is a form of hypertension inherited in an 

autosomal-dominant manner with high penetrance (New et al. 1980). In 1966, Sutherland 

(Sutherland et al. 1966) described the first familial cases of hypertension due to a 

dexamethasone suppressible form of hyperaldosteronism. GRA is characterized by 

bilateral adrenal hyperplasia, or rarely, adrenal adenoma (Pascoe et al. 1995). However, 

the absence of reliable biochemical or genetic markers has made this disease difficult to 

ascertain. GRA accounts for approximately 1% of cases of primary hyperaldosteronism 

(Torpy et al. 2000). 

Biochemically, hypokalemia is not consistently present and, if present, is usually 

mild. Absolute levels of aldosterone secretion are usually moderately elevated in the 

untreated state but may be within normal limits. Plasma rennin activity is strongly 

suppressed, so that the ratio of aldosterone secretion to renin activity is always 

abnormally high. Moreover, 18-hydroxycortisol and 18-oxocortisol are elevated to 20-30 

times of normal levels (Connell et al. 1986; Gomez-Sanchez et al. 1988; Stockigt et al. 

1987; Stowasser et al. 1995; Ulick et al. 1990). The ratio of urinary excretion of 

tetrahydro-metabolites of 18-oxocortisol to those of aldosterone exceeds 2.0 whereas this 

ratio averages 0.2 in normal individuals. Elevation of 18-oxocortisol is the most 

consistent and reliable biochemical marker of the disease, although it may also be 

elevated in cases of primary aldosteronism (Hall et al. 1986; Hamlet et al. 1988).

18-Hydroxycortisol and 18-oxocortisol are 17 -hydroxylated analogs of 18-

hydroxycorticosterone and aldosterone, respectively. Because 17 -hydroxylase is not 

expressed in the zona glomerulosa, the presence of large amounts of a 17 -hydroxy, 18-

oxo-steroid suggests that an enzyme with 18-oxidase activity (i.e. aldosterone synthase, 

CYP11B2) is being abnormally expressed in the zona fasciculata (White et al. 1991).  

It is important to distinguish glucocorticoid-suppressible hyperaldosteronism from 

aldosterone-producing adenomas, considering that the latter condition is best treated by 

surgical removal of the affected adrenal gland (Melby 1991). Secretion of 18-hydroxy- 
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and 18-oxocortisol may be increased in patients with adenomas, but the ratio of urinary 

excretion of tetrahydro metabolites of 18-oxocortisol and aldosterone is rarely greater 

than 1.0 (Hamlet et al. 1988; Ulick et al. 1990). Suppression of aldosterone secretion with 

glucocorticoids (Hamlet et al. 1988; Kato et al. 1988) and familial aggregation (Gordon 

et al. 1992), although both reported, are unusual findings in adenomas. In addition, 

presentation of an adenoma during childhood is exceedingly rare. 

Genetically, all patients with glucocorticoid-suppressible hyperaldosteronism 

have the same type of mutation, a chromosome that carries three CYP11B genes instead 

of the normal two (Lifton et al. 1992b; Lifton et al. 1992a). The middle gene on this 

chromosome is a chimera with 5’ and 3’ ends corresponding to CYP11B1 and CYP11B2,

respectively. The chimeric gene is flanked by presumably normal CYP11B2 and 

CYP11B1 genes (see Figure 1.8). Published cross-over breakpoints in the GRA patients 

are located between intron 2 and exon 4 (Lifton et al. 1992a; MacConnachie et al. 1998; 

Pascoe et al. 1992b). The presence of CYP11B1 promoter and regulatory elements 

ensures that the gene is expressed in the zona fasciculata/reticularis under the control of 

ACTH and the 3’ CYP11B2 coding sequences lead to encoded the enzyme having the 

three activities required for aldosterone synthesis. Consequently, aldosterone is 

inappropriately synthesized and secreted in excess by the zona fasciculata/reticularis 

under the control of ACTH. The opposite case of a chimeric gene containing CYP11B2

promoter and the CYP11B1 structural gene was detected in the patients with steroid 11 -

hydroxlase deficiency and congenital adrenal hyperplasia (Hampf et al. 2001b; Portrat et 

al. 2001). 
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Figure 1.8: Unequal crossing-over of aldosterone synthases (CYP11B2) and 11 -

hydroxylase (CYP11B1) genes (Hampf et al. 2001b). The genes are depicted as bars. The 

exons are colored light gray for CYP11B2 and black for CYP11B1.

The figure outlines the genetic recombination of the examined patients. The high 

similarity of CYP11B1 and CYP11B2 enabled two chromatids to misalign for the meiotic 

cross-over, from which one chromatid emerged with only one (chimeric) CYP11B gene 

and the other with three (the reciprocal chimera between normal CYP11B2 and 

CYP11B1). In the investigated patient, the CYP11B2/CYP11B1 chimera of the former 

product, a chromosome 8 carrying only this chimeric CYP11B gene, was detected by 

PCR and subsequent sequencing. Furthermore, the chimeric genes causing 

glucocorticoid-suppressible hyperaldosteronism may be readily detected by hybridization 

to Southern blots of genomic DNA, or they may be specifically amplified using the 

polymerase chain reaction. As these techniques are widely used in molecular genetics 

laboratories, direct molecular genetic diagnosis may be more practical in many cases than 

assays of 18-oxocortisol levels, which are not routinely available. Pascoe and coworker 

(Pascoe et al. 1995) demonstrated abnormal expression of chimeric gene in the zona 

fasciculata by in situ hybridization studies of an adrenal gland from a patient this 

disorder.
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1.4 Aim of the work

The overall goal of this work consisted of investigations of the genotype of four patients 

suffering from aldosterone synthase deficiency and two patients with cortisol synthase 

disorders of the biosynthesis of steroid hormones. The combination of the functional 

analysis of the enzyme in the cell culture and the molecular modeling study may explain 

phenotypical characteristics of the patients. The main objectives of the present thesis 

were:

1) to detect mutations in genomic DNA of patients with aldosterone synthase 

deficiency and cortisol synthase disorders.

2) to analyze effects of detected mutations of CYP11Bs by expressing the mutant 

proteins in cell culture and analyze missense mutations using the three-

dimensional model of CYP11B2. 

3) to compare the usefulness of human colonic carcinoma, HCT116 p53-/- cells 

with COS-1 cells for the transfection analysis of CYP11B2. 
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2. Materials and methods 

2.1 Materials 

2.1.1 Bacteria strains 

DH5
TM

-T1
R (invitrogen): This strain was used for general cloning and blue/white 

screening without IPTG. Strain is resistant to T1 bacteriophage with the following 

genotype:

F- 80lacZ M15 (lacZYA-argF)U169 recA1 endA1 hsdR17(rk-, mk+) phoA

supE44 thi-1 gyrA96 tonA1.

One Shot™ TOP10F’ (invitrogen): This strain was used for general cloning and 

blue/white with IPTG. This strain overexpresses the Lac repressor (lacIq gene) with the 

following genotype:

F’ mcrA lacI q Tn10(TetR) mcrA  (mrr-hsdRMS-mcrBC) 80lacZ M15

lacX74 deoR recA1 araD139 (ara-leu)7697 galU galK rpsL (StrR) endA1 nupG

2.1.2 Cell lines 

To investigate steroidogenic activity of CYP11B1 and CYP11B2, COS-1 cells 

and HCT116 p53-/- cells were used for transfection with plasmids containing the required 

cDNA of wild-type or mutated components of the CYP11B2 and CYP11B1. 

COS-1 cells: This is an African green monkey kidney fibroblast-like cell line suitable for 

transfection by vectors requiring expression of SV40 T antigen. This line contains T 

antigen, retains complete permissiveness for lytic growth of SV40, and supports the 

replication of pure populations of SV40 mutants with deletions in the early region. The 

line was derived from the CV-1 cell line by transformation with an origin defective 

mutant of SV40 which codes for wild type T antigen. The cells contain a single integrated 

copy of the complete early region of the SV40 genome (Gluzman, 1981). 

HCT116 p53
-/-: These cells were derived from human colonic carcinoma with wild type 

p53 gene knock-out (p53-/-). The cells are positive for keratin by immunoperoxidase 

staining. HCT116 cells are positive for transforming growth factor beta 1 (TGF beta 1) 

and beta 2 (TGF beta 2) expression. This line has a mutation in codon 13 of the 
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protooncogene, and can be used as a positive control for PCR assays of mutation in this 

codon.

2.1.3 Vectors 

pCR®2.1-TOPO  Cloning vector, Invitrogen. 

pCR4Blunt-TOPO  Cloning vector, Invitrogen. 

pRc/CMV   Expression vector, Invitrogen. 

pSVL Expression vector, Amersham Pharmacia, designed for high-level 

transient expression in eukaryotic cells. 

pSVL/CYP11B2 This construct contains the cDNA encoding human aldosterone 

synthase which was published by Kawamoto et al. (Kawamoto et 

al., 1992) with one variation at position 249, where we found Ser 

instead of Arg, as described by Mornet et al. (Mornet et al., 1989).

pSVL/CYP11B1 This construct contains the cDNA encoding human 11 -

hydroxylase which was published by Mornet et al. (Mornet et al.,

1989).

pGlow-TOPO  Expression vector, Invitrogen. pGlow-TOPO vector was designed 

with promoter sequences upstream of GFP for in vitro or in vivo

analysis of promoter function. 

pBAdx4  Bovine adrenodoxin plasmid. The plasmid includes the cDNA of 

bovine adrenodoxin under the control of CMV (Okamura et al., 

1987). The plasmid was kindly made available from Dr. M. R. 

Waterman (Nashville, the USA). 

phAdx Human adrenodoxin plasmid. The plasmid includes the cDNA of 

human adrenodoxin under the control of the CMV. 

2.1.4 Primers 

All oligonucleotides were synthesized by BioTez (Berlin, Germany). The 

oligonucleotides were cleaned by gel filtration or HPLC. 5’ fluorescence labeled 

oligonucleotides (fluorophore IR800) used for DNA sequencing with a LicorTM-DNA

sequencer 4000 were purchased from MWG Biotech. “F” and “R” are forward and 
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reverse primers, respectively. The red letters are mutation sites. The under line letters are 

restriction sites. The sequences used in this work are given below: 

Table 2.1: Primers

Primers for amplification of CYP11B2 gene 

Description F R Sequence (5´=>3´) 

Position of 5´-

base in CYP11B2

sequences

1 E16F X ACCAGACTTCTCCTTCATCTACCTT 440

2 E39F X TCAGCACCTGTGGGCAGAAGCTACAG 2961

3 E35F X TCAGCACCTGTGGGCAGAAGCTACAG 3264

4 E35F X CGCCCTCAACACTACACAGGCATCG 4072

5 E16R X GAGCGTCATCAGCAACGGAAACGCT 5021

6 E39R X CCCGGATCCAGGCCCTGCCAGCAAGAT 6691

Primers for amplification of CYP11B2 gene for exon 9 and exon 4 

Description F R Sequence (5´=>3´)

7 E9F X AACCCAGCCTCTGTCCTAGG

8 E9R X ACCCTGGGTGCAGATGCAAG

9 E4F X GAGGCAGCCAGGAGGCCTGGGGCTG

10 E4R X GGAGAAATTGGGCCCCCATGGTGTC

Primers for mutations of CYP11B2-cDNA

Description F Sequence (5´=>3´) 

11 E9M R490X AGCTTCATATTGA-GCCTGGCACGTC

12 E3/4M F168F/R173K AGGGACTTTTCCCAGGCCCTGAGGAAGAAGG

13 E3M R181Q GCTGCAGAACGCCCAGGGGAGCCTG

14 E8M L451F CATGCGCCAGTGCTTCGGGCGGCGCCTG

15 E5M S308P CCATCAAGGCCAACCCTATGGAACTC

16 E5M1 S315R CACTGCAGGGAGGGTGGACACGACAGC

17 E6M R374W CAAGGAGACCTTGTGGCTCTACCC

18 E5SF splicing GAGCGTGGACACAGTCAGGCCAGCA

Primer for mutation of CYP11B1-cDNA
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Description Mutation Sequence (5´=>3´) 

19 B1-229F L229P CTGTTGAATGCGGAACCGTCGCCAGATGCC

20 B1-229R L229P GGCATCTGGCGACGGTTCCGCATTCAACAG

Primers for amplification of CYP11B2 from exon 1/exon 4 to exon 6 

Description F R Sequence (5´=>3´) 

21 E1E6sF X
AAGGGAGCGGCCGCATGGCACTCAGGGCAAAGGCAG

AGGTGTGCG Not I 

22 E1E6sR X
AGCCAGCATCTAGATCTAGGTCTCCTTGAGGGCCGCC

 Xba I 

23 E4E6sF X
CATCCTCCCTCGAGCCATGCAACTTAGCTCT

Xho I 

24 E4E6sR1 X
GCACCCACCTCTAGATCTCATTGAGGGCC

Xba I 

25 E5E6sF X
GTGACAACTCTAGACAGAAAATCTACCAGG

Xba I 

26 E19sR X
GGGACCCTGGGTCTAGATGCAAGACTAGTTA

                            Xba I 

Primers for sequence of CYP11B2 gene 

Description F R Sequence (5´=>3´) 

27 E1 115-18 X CAGTTCTCCCATGACGTG

28 E1 3932-20 X GGGAATGGCAGTGCTGAGTG

29 E2 663-18 X AGGGTGGACAGGAGACAC

30 E2 3935-20 X CCTGCTCCCAGCTCTCAGCT

31 E3 3933-20 X TGCAGGCCGATTCCCCTTGG

32 E3 3934-20 X CTCCTGGCTGCCTCCCCACA

33 E4 3936-20 X GTGGGGAGGCAGCCAGGAGG

34 E4 180 X CTTCCCCATAGCACTGC

35 E5 3938-22 X AGGAGGAGGACACTGAAGGATG

36 E5 3939-21 X TGGCATCACCCTCTCTGGGTG

37 E6 3940-20 X GGTGTCCCGGGGGCTGAGTC
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38 E6 664-19 X ATAGCCCAGATTCTGTCTG

39 E7/E8 117-18 X TAGGAAGGGTGCAGAGAG

40 E8 3156-23 X CTCAGACTTGGTGCTTCAGAACT

41 E9 4396-20 X TGTTCCCCCTTCAGCATAAT

42 E9 85(515-18) X TGACTCAGGAAGCTGTGC

43 E5F X GAACTCACTGCAGGGAGCGTGGACA

44 E4R X TCCTGGGCATGAACATGAGCTGGAC

45 E7F X CTCAGACTTGGTGCTTCAGAACTACC

Primers for vector 

Description F R Sequence (5´=>3´) 

46 T7 X TAATACGACTCACTATAGGG

47 M13R X CAGGAAACAGCTATGAC

48 M13F X GTAAAACGACGGCCAG
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2.2 Methods 

All standard DNA techniques were performed according to procedures published 

by Sambrook et al. (Sambrook et al., 1989; 2001) unless indicated.  

2.2.1 Purification of genomic DNA from blood

To analyze the genomic DNA, we purified genomic DNA from blood of patients 

and and healthy donors. Genomic DNA purification from blood was performed using a 

commercially available kit from QIAGEN (QIAamp DNA Blood Midi/Maxi preparation 

kits) according to the manufacturers instructions. Genomic DNA of patients and healthy 

donors was purified from 2 ml of whole blood. After lysis, the lysate is loaded onto the 

QIAamp spin column. DNA binds to the QIAamp membrane while impurities are 

effectively washed away by centrifugation. Finally, genomic DNA can be eluted in 200 

l distilled water. After purification, the genomic DNA concentration was determined 

spectroscopically by measuring the absorption at 260 nm. 

2.2.2 Polymerase chain reaction (PCR) protocol 

PCR, now a common technique, is used in molecular cloning and analysis of 

DNA: PCR is performed to amplify a large number of copies of a specific region of DNA 

using DNA plymerase. A DNA polymerase is an enzyme that assists in DNA replication. 

These enzymes catalyze the polymerization of deoxyribonucleotides alongside a DNA 

strand. PCR, as currently practiced, requires several basic components: DNA template, 

two oligonucleotide primers, DNA polymerase, dNTP and buffer solution. The PCR 

usually consists of a series of 20 to 40 cycles involving the denaturalisation of template, 

the annealing of primer, and the extension of the annealed primers by DNA polymerase. 

The CYP11B2 gene was selectively amplified in two segments (exons 1-6, 4.5 kb, 

using primers E16F and E16R shown in 2.1.4; exons 3-9, 3.7 kb, using primers E39F and 

E39R shown in 2.1.4) or in one segment (exons 1-9, 5.9 kb, using primers E19F and 

E19R in 2.1.4). Amplification of the CYP11B2 gene was performed using BIO-X-ACT

DNA polymerase (Bioline) for long segments of DNA. Mutations in the human 

CYP11B2 cDNA and human CYP11B1 cDNA were generated in the vector pSVL by site-

directed mutagenesis using Pfu DNA Polymerase (Stratagene) according to 
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manufacturer's instruction of the Quik Change kit. The primers used for these purposes 

are listed in section 2.1.4. Furthermore, E.coli colony PCR was performed using Tag

DNA polymerase (Q BIOgene) which is cheaper than other DNA polymerase.  

Standard PCR reaction mix for genomic DNA amplification 

Components     Volume

Genomic DNA (100-400 ng)   x  l

10X OptiBuffer    5 l

MgCl2 Solution (2-2.5 mM)   2 l

dNTPs (100 mM)     2 l

Primer 1 (0.2 μM)    1 l

Primer 2 (0.2 μM)    1 l

BIO-X-ACT DNA polymerase (4u/ l) 0.5 l

 Water (ddH2O)   Up to  50  l

PCR program for the amplification of CYP11B2 gene:

95°C for 5 min 

60°C for 1 min 

68°C for 5 min 

95°C for 30secs  x 30-35 cycles 

60°C for 30secs 

68°C for 10 min 

Program used to perform E. coli colony PCR: 

95°C for 3 min 

95°C for 1 min  

55°C for 1 min  x 30 cycles 

72°C for 2 min 

72°C for 10 min 
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PCR program for the introduction of mutations into the human CYP11B2 cDNA: 

95°C for 3 min 

95°C for 1 min 

60°C for 1 min  x 20 cycles 

72°C for 15 min 

72°C for 15 min 

2.2.3 DNA sequencing 

The PCR product of the CYP11B2 gene was purified after excision the agarose gel 

by using NucleoSpin columns (Extract kit Macherey-Nagel). All exons and exon/intron 

boundaries were sequenced directly from PCR products using the primers E1-E9 shown 

in section 2.1.5. Plasmids were purified from selected clones using the NucleoBond kit 

(Macherey-Nagel) according to the supplied instructions. Mutated plasmids and 

subcloned plasmids were sequenced using a slightly modified protocol of the 

didesoxynucleotide method developed by Sanger et al. (Sanger et al., 1977). Primers used 

for DNA sequencing were 5’ fluorescence labeled (MWG Biotech) enabling a laser-scan 

detection on a LicorTM 4000 DNA sequencer (MWG Biotech, Ebersberg, Germany). PCRs 

were performed with the Thermo-SequenaseTM Cycle Sequencing Kit from Amersham 

according to the manufactures instructions. All DNA sequencing reactions being part of 

this work were thankfully carried out by Mrs. Katharina Bompais. 

2.2.4 Site-directed mutagenesis 

Site-directed mutagenesis was used to make point mutations, and delete or insert 

single or multiple amino acids. In this method, Pfu DNA polymerase replicated both 

plasmid strands with high fidelity. The procedure was performed using a recombinant 

vector with an inserted gene of interest and two oligonucleotide primers containing the 

desired mutation. The primers were extended during temperature cycling by Pfu DNA 

polymerase. This incorporation of primers generated a mutant plasmid containing 

staggered nicks. The treatment of the product with Dpn I resulted in the digestion of the 

parental DNA template.  
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Mutants R181Q, S315R, R374W, L451F and R490 1nt in the human CYP11B2 cDNA 

as well as mutant L299P in the human CYP11B1 cDNA were generated in the vector 

pSVL by site-directed mutagenesis using the Quik-Change Site-Directed Mutagenesis Kit 

(Stratagene Ltd, Cambridge, UK) according to manufacturer's instruction and using 

mutagenic primers listed under point 2.1.4.

PCR reaction mix for plasmid DNA 

Components     Volume

plasmid DNA (50 ng) 

10xPfu reaction buffer   5 l

dNTPs (100 mM)     2 l

Primer 1 (0.2 μM)    1 l

Primer 2 (0.2 μM)    1 l

Pfu DNA polymerase (2.5 u/ l)  0.5 l

 Water (ddH2O)   Up to  50  l

Reactions were carried out in the thermal cycler PT-100, MJ Research Inc. with 

PCR program (see in 2.2.2). The PCR product was digested with DpnI for 4 hours at 

37°C, and then 1 l was used for transformation of competent TOP10F´ Escherichia coli.

After screening of directed colonies on an aga plate with ampicillin, plasmids were 

purified following the procedure described below under point in 2.2.7. All changes were 

confirmed by automatic sequencing (see 2.2.3). 

2.2.5 Preparation of competent cells 

A single colony of E. coli TOP10F’ strain was inoculated in 5 ml nutrient broth I 

(NB) medium and shaked at 180 rpm, 37°C for 12-16 hours (Sambrook et al., 1989). The 

culture was diluted 100 folds in 100 ml fresh NB medium and continuously shaked at 180 

rpm, 37°C until OD600 to be 0.4 - 0.6 (about 3 hours). Subsequently, the cell culture was 

harvested by centrifugation at 4000 rpm for 15 min at 4°C. The pellet was suspended in 

30 ml RF1 buffer and then kept on ice for 1 hour. After a further centrifugation, the cells 

were resuspended in 5 ml RF2 buffer on ice. Aliquots of 100 l volume of the competent 

cells were transferred into a pre-chilled sterile eppendorf tube. The competent cells can 
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be stored at -70°C for 3 months. The quality of competent cells was confirmed by 

transformation with control plasmid DNA (pUC18).  

RF 1

    75 mM KCl 

    50 mM KCH3COOH

    50 mM MnCl2

    10 mM CaCl2

    15 % Glycerol 

RF 2 

    10 mM MOPS 

    10 mM KCl 

    75 mM CaCl2

    15 % Glycerol 

2.2.6 Heat shock transformation 

Heat shock transformation was applied to introduce the plasmid DNA into cells 

(Sambrook et al., 1989; 2001). Approximately 20-100 ng plasmid DNA or the ligation 

mix was added to 100 l freshly thawed competent cells in a reaction tube and incubated 

for 30 min on ice. The heat shock was performed at 42°C for 90 sec followed by 

incubation on ice for 5 min. Then 500 l SOC medium was added to the cells and 

incubated at 37°C for 1 h, 180 rpm shaking. 200 l of the culture were plated on NB agar 

plates containing appropriate antibiotic. The plates were incubated at 37°C overnight. 

SOC medium 

2 % Trypton 

0.5 % Yeast extract 

10 mM NaCl 

2.5 mM KCl 

10 mM MgCl2

pH = 7.0 

autoclave

Add 20mM glucose and sterilize by filtration through a 0.22-micron filter 

2.2.7 Plasmid purification and determination of the nucleic acid 

concentration

Plasmid purification was performed using a commercially available kit from 

Macherey-Nagel (Nucleobond® maxi or midi plasmid preparation kits) according to the 
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manufacturers instructions. After purification, the plasmid concentration was determined 

spectroscopically by measuring the absorption at 260 nm. The principle of this method is 

based on the absorption ability of UV light by the ring structure of purines and 

pyrimidines in the DNA or RNA. According to Hagemann (Hagemann, 1990) 1 AU260 

corresponds to a dsDNA concentration of 50 μg/ml. 

The concentration of nucleic acids was calculated by following formula: 

C mg/ml = OD260*x *f

C = concentration in mg/ml 

f = dilution factor 

x  = 50 (double strand DNA) or 40 (single strand DNA and RNA) 

2.2.8 Minigene structure 

Minigene is one segment of the gene including at least one exon and intron. 

Minigene structures are used in studying splicing. Minigene constructs consisting of exon 

1 to exon 6 were subsequently cloned into the vector pRc/CMV (Invitrogen). They were 

generated from the genomic DNA of a healthy person and a patient. pRc/CMV 

containing both SP6 and T7 promoters for in vitro transcription is designed for high-level 

stable and transient expression in eukaryotic hosts. PCR products from exon 1 to exon 6 

of the CYP11B2 gene using the primers listed in section 2.1.5, excised with NotI and 

XbaI (restriction sites in primers), were cloned into the NotI and XbaI sites of pRc/CMV 

(Invitrogen). The splice sites in the subclone of pRc/CMV were sequenced to verify the 

integrity of the inserts (see section 2.1.4 for primer information). 

2.2.9 Cell culture 

COS-1 cells were grown in petri-dishes at 37°C and 6% CO2 in Dulbecco’s 

modified Eagle’s medium (DMEM) supplemented with 5% fetal bovine serum, 0.1 

mg/ml streptomycin, 100 U/ml penicillin, 1 mM pyruvate and 4 mM L-glutamine 

(DMEM+). Likely, HCT116 p53-/- cells were grown in petri-dishes at 37°C and 6% CO2

in McCoy’s medium supplemented with 5% fetal bovine serum, 0.1 mg/ml streptomycin, 

100 U/ml penicillin (McCoy’s+). Cells were grown to maximal 90 % confluence and 
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subculture. The culture medium was changed every 2-3 days. COS-1 and HCT116 p53-/-

cells were splited and frozen the same way below. 

2.2.9.1 Splitting cell lines 

Prior to splitting the cells were washed twice briefly with 3 ml PBS. Then the 

cells were detached from the petri-dishes (10 cm) by adding pre-warmed 1x trypsin-

EDTA (3 ml) (30 mg/ml streptomycin, 10000 U/ml penicillin) at 37°C for 2-3 min. After 

addition of FBS (3 ml) (GibcoBRL or Sigma), cells were splitted by transferring the cells 

to new plates (10 cm) containing fresh medium (10 ml) (split cells no more than 1:10). 

2.2.9.2 Freezing cell lines for long term storage 

After loosed with pre-warmed 1x trypsin-EDTA and addition of FBS, cells were 

transferred to a falcon. Then the cells were collected by centrifugation at 3500 rpm for 2-

3 min. In order to prevent the formation of ice crystals within the cells, the pellet was 

suspended in media containing 20% DMSO and was slowly cooled down. This can be 

accomplished either by freezing the cells at –20°C for an hour, and then transferring them 

to –70°C overnight or by placing the cell-culture inside a cooler (Nalgene) for an hour, 

afterwards incubating the cells at –70°C overnight. In both cases, on the next -day, the 

cells were stored either in liquid nitrogen cell incubator (Nalgene) or at –80°C. 

2.2.9.3 Transient transfections and enzymatic assays 

Transfection of COS-1 cells and HCT116 cells was achieved using the non-

liposomal lipid “Effectene Transfection Reagent®” from Qiagen according to the 

provided manual. This reagent is used to obtain higher transfection rates compared to 

other methods e.g. calcium-phosphate method. The Effectene method takes advantage of 

the fact that transient transfection in cells is most efficient when supercoiled plasmid 

DNA is used. Therefore, by using the provided Effectene reagents the plasmid DNA is 

first condensed followed by the formation of uniform lipid-based micelle structures 

(Qiagen). Binding of the positively charged Effectene-DNA complexes to the cell surface 

is then mediated through negatively charged groups such as sialylated glycoproteins. The
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number of cells plated and grown overnight prior to transfection as well as the plasmid 

DNA concentrations were set as recommended by the manufacturer, depending only on 

the culture format to be used. 

HCT116 cells or COS-1 cells were plated with a density of 2-6 x 105 cells per 6 cm dish 

and were grown overnight. The dishes should be 40-80% confluent on the day of 

transfection. Cell lines were co-transfected with 1.5 g bovine adrenodoxin plasmids 

(pBAdx) or 1.5 g human adrenodoxin plasmids (phAdx) and 1.5 g pSVL vector 

containing CYP11B2 cDNA (CYP11B2-WT) or CYP11B1 cDNA (CYP11B1-WT). 

Transfection then was performed according to the instruction of the kit (Qiagen). 

Subsequently, the cells with the transfection complexes were incubated under their 

normal growth conditions (37°C and 6% CO2).

2.2.10 Extraction of total RNA

The cells were incubated for 24 hr after transfection and harvested and disrupted 

in Qiagen (RLT) buffer containing guanidine isothiocyanate of the Rneasy Mini kit 

(Qiagen) and homogenized. After removing the medium, 350 l of RLT buffer was 

added in the cell-culture dish (6 cm) to disrupt the cells. The cells then were collected 

with cell scraper (Sarstedt, USA) and pipetted into an eppendorf tube. In the cell lysate 

350 l of 70% ethanol was added and mixed well by pipetting. Then, extraction of total 

RNA was performed according to the instruction of the kit. After purification, the 

concentration of total RNA was determined spectroscopically by measuring the 

absorption at 260 nm. According to Hagemann (Hagemann, 1990) 1 AU260 corresponds 

to a RNA concentration of 40 μg/ml.  

2.2.11 RT-PCR (Reverse Transcription-Polymerase Chain Reaction) 

The First-Strand cDNA synthesis was performed according to the instructions of 

the M-MLV Reverse Transcriptase kit (Invitrogen). The reverse transcription was used to 

synthesize cDNA from RNA templates. The mixture of total RNA, oligo (dT) 12-18 or 

random primer and dNTP was incubated at 65°C for 5 min and then quickly chilled on 

ice. After this, the First-Strand Buffer, DTT, Rnase OUT and M-MLV RT were added in 

the mixture. The reactions were incubated at 37°C for 50 min and heat inactivation was 
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done at 70°C for 15 min. The cDNA can be used as a template for amplification in PCR. 

The PCR was performed with the forward primer and reverse primer shown in Table 2.1. 

PCR reaction mix for RT-PCR 

Components     Volume

cDNA (50 ng)     2-5 l

10x Q BIOgene buffer    5 l

dNTPs (100 mM)     2 l

Primer 1 (0.2 μM)    1 l

Primer 2 (0.2 μM)    1 l

Tag- DNA polymerase (2.5 u/ l)  0.5 l

 Water (ddH2O)   Up to  50  l

Program used to perform RT-PCR: 

95°C for 2 min 

95°C for 1 min 

55°C for 55 sec  x30 cycles 

72°C for 1 min 30 sec 

72°C for 8 min 

The PCR products were purified after excision form the agarose gel by using NucleoSpin 

columns (Extract kit Macherey-Nagel) and sequenced by using T7 promoter primer (see 

Table 2.1).

2.2.12 Extraction of total protein

To analyze the expression of the wild type and mutated forms of aldosterone 

synthase in the transfected cells, after 6 hrs transfection, the cells were incubated with a 

medium containing DOC (2 μM). After incubation for 48 hrs, the COS-1 cells were 

washed three times with ice-cold PBS and lysed in 300 μl lysis buffer. Cell debris was 

removed by centrifugation at 12,000 x g for 20 min at 4°C, and the supernatant was 

retained for protein determination (Bio-Rad Laboratories, Inc., Regent Park, Australia). 

Equivalent amounts of protein were separated onto 10% or 12% SDS-PAGE gel.



Materials and protocols 42

Lysis buffer

10 mM Tris-HCl (pH 7.4) 

50 mM NaCl 

2 mM EDTA 

1% Triton X-100 

1 mM PMSF 

2.2.13 Determination of the protein concentration 

Protein concentration was determined using BC (BicinChoninic acid) Assay 

protein quantitation kit (Uptima Interchim, Montluçon, France). Proteins have 

traditionally been quantified by the spectrometric measurement of a colour produced by a 

reaction between proteins and a reagent. The principle of the BC Assay is a colorimetric 

assay which involves the reduction of Cu2+ to Cu+ by peptidic bonds of proteins. 

Bicinchoninic acid chelates Cu+ ions with very high specificity to form a water soluble 

purple coloured complex (see Figure 2.1). 

Figure 2.1 BC Assay reaction

The reaction was read at defined time and temperature conditions, otherwise it continues 

over time or is increased by high temperature. The reaction is measured by the high 

optical absorbance of the final Cu+ complex at 562 nm. Absorbance is directly 

proportional to the protein concentration with a broad linear range between 20 – 2000 

g/ml. Protein concentration is calculated with a reference curve obtained for a standard 

protein. Bovine serum albumin (BSA) was used as standard protein. Fresh standard 
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proteins were arranged from 2 mg/ml to 20 g/ml in Table 2.2 and were diluted from the 

stock solution in the same buffer according to the kit. 

Table 2.2 Standard protein (20 g/ml-2 mg/ml) 

x l BSA standard 

(2 mg/ml) 
x l Water/Buffer

Protein content 

(mg/ml)
 ( l)

A 100 0 2 100

B 50 50 1 100

C 37.5 62.5 0.75 100

D 25 75 0.5 100

E 20 140 0.25 160

F 40 of (E) 60 0.1 100

G 20 of (E) 80 0.2 100

H 0 100 0 100

BSA: bovine serum albumin  

The protein concentration must fall in the range of the standard curve. Therefore it may 

be useful to prepare several dilutions to meet this requirement. The standard proteins and 

samples were incubated at 370C for 30 min or 2 hours at room temparature and then were 

merasured absorbance at 562 nm. 

2.2.14 SDS (sodium dodecylsulfate) polyacrylamid gelelectrophoresis 

Separation of proteins according to their molecular mass was conducted using the 

Laemmli discontinuous gel electrophoresis (SDS-PAGE) method (Laemmli, 1970). For 

preparing the gel, the separating gel solution (see Table 2.3) was carefully poured 

between glass plates, overlaid with ddH2O and allowed to polymerize at room 

temperature for 30 min. After removing the overlaying H2O, the stacking gel solution 

(see Table 2.4) was poured in and a comb was inserted. The gel was allowed to 

polymerize for further 30 min. The gels were stored in soaked papers with water at 4°C 

until use. 
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A portion of the protein sample was mixed with 2x SDS loading buffer (1:1 v/v) 

and heated at 100°C for 5 min. The samples were applied to the slots of the stacking gel 

for 15 min at 120 V and then separated on a separating gel at 150 V until the 

bromophenol blue front reached the bottom of the gel. 

Table 2.3 Recipes for polyacrylamide separating gel

Final acrylamide concentration Stock

solutions 10% 12% 15%

4X LT   3.75 ml 3.75 ml 3.75 ml 

10% APS 75 μl 75 μl 75 μl 

dest.H2O ad 15 ml ad 15 ml ad 15 ml 

30% AA/Bis 5.0 ml 6.0 ml 7.5 ml 

TEMED 7.5 μl 7.5 μl 10 μl 

Table 2.4 Recipes for polyacrylamide stacking gel 

Stock solutions 5% acrylamide concentration 

4X UT 2.5 ml 

10% APS 50 μl 

Dest.H2O ad 10 ml 

30% AA/Bis 1.6 ml 

TEMED 5 μl

AA/Bis: Acrylamide /Biss  

4x Buffer for separating gel (4X LT) 

1,5M Tris/Cl, pH=8,8 

0,4% SDS 

4x Buffer for stacking gel (4X UT) 

0,5M Tris/Cl, pH=6,8 

0,4% SDS 
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2x SDS loading buffer

125mM Tris/Cl, pH=6.8 

20% Glycerol 

4% SDS 

10% -Mercaptoethanol

0.004% Bromphenolblue 

2.2.15 Staining of proteins in polyacrylamide gels with Coomassie brilliant 

blue (G-250) 

The gel was stained with coomassie staining solution for 1 h at RT and then 

incubated in destaining solution until the bands of the proteins were clearly visible. The 

gels were then slowly dried on a gel dryer (Model 583 gel dryer, BioRad) for storage. 

Staining solution

    0.1% Coomassie Brilliant Blue G-250  

    40% Methanol 

    10% Acetic acid 

Destaining solution

    25% Methanol 

    10% Acetic acid 

2.2.16 Western blot 

Western blot analysis was performed to demonstrate the expression of the wild 

type and mutant of aldosterone synthase in the transfected cells. The antihuman-CYP11B 

rabbit antiserum was kindly provided by Dr. H. Takemori (Department of Molecular 

Physiological Chemistry, Osaka University Medical School, Osaka, Japan). After the 

separation on SDS-PAGE, 200 μg proteins were transferred onto a nitrocellulose 

membrane (pore size 0.2 μm) using a tank-blotting apparatus (Invitrogen). The transfer 

was carried out overnight with 10 mA of current. Blotting buffer consisted of 25 mM 

Tris-HCl, 0.2 M glycine, 20% methanol. The membrane was blocked in 20 ml blocking 

buffer (3 - 5% not-fat dried milk in TBST) for 1 hour at RT. After removed blocking 

buffer, the membrane was incubated in 20 ml TBST buffer containing primary antibody 

(1:2000) for 1 hour at RT on an orbital shaker. Subsequently, the membrane was washed 

3 times for 5 min in 25 ml TBST and was incubated with 20 ml TBST buffer containing 

the secondary antibody (Polyclonal Goat anti-Rabit Imunoglobulins/HRP) for 1 hour. 
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Once the membrane was washed 3 times with 25 ml TBST, the specific protein was 

detected with 4-Chlor-1-naphtol or the ECL kit (Amersham Pharmacia). 

TBST

10 mM Tris/Cl, pH = 7.6 

150 mM NaCl 

0.1% Tween 20 

2.2.17 Extraction of steroids 

To examine for CYP11B2 or CYP11B1 activity, cells were incubated for 6 hrs 

after transfection and media was replaced with 3 ml complete medium (DMEM+ for 

COS-1 cells or McCoy’s+ for HCT116 cells) containing 2 μM DOC and 5 nCi of 14C-

labelled DOC or 5 μM 11-deoxycortisol and 0.6 μCi 3H-labelled 11-deoxycortisol. After 

incubation for 72 hrs, steroids were extracted twice from the 800 l media with 800 l

chloroform/each time and the organic phase was dried in a vacuum centrifuge 

(SpeedVac) for 3 hours. The residuum was dissolved in 10 μL chloroform and spotted 

onto glass-baked silica-coated high performance thin layer chromatography (HPTLC) 

plates (Merck; Darmstadt, Germany) which were incubated at 50°C for 1 hour. The 

HPTLC plates were developed twice in chloroform/methanol/water (300: 20: 1, v/v/v). 

The reaction products were identified by comigration of unlabeled steroid references and 

quantified after a 3-day exposure on a bioimaging analyser (BAS-2500, Fuji Photo Film 

Co., Ltd) and analyzed with the program TINA 20. All data presented were calculated 

from three independent experiments.  

2.2.18 Bioinformatic methods

2.2.18.1 Splice site scores

In order to analyze splice junctions in the CYP11B2 gene, splice site sequence 

motifs were scored using the splice site models introduced by Yeo and Burge (Yeo and 

Burge, 2004) and the available software at: http:// genes.mit.edu/burgelab/maxent/5ss. 

Briefly, splice site models that take into account adjacent and nonadjacent dependencies 

are built under the MaxENT using large datasets of human splice sites (Yeo and Burge, 

2004). These splice site models assign a log-odd ratio (MaxENT score) to a 9bp (3 bp of 
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exon and 6 bp of intron) (5’ splice site). The higher the score, the higher the probability 

that the sequence is a true splice site. Also, it can be argued that given two sequences of 

differing scores, the higher scoring sequence has a higher likelihood of being used. 

2.2.18.2 Sequence analyses 

The alignment of sequences was performed using the program CLUSTALW 1.8. 

(http://www.ebi.ac.uk/clustalw/). Translations of amino acids were carried out by using 

the Translate tool (Gasteiger et al., 2003) and the software available at 

http://au.expasy.org/.

2.2.18.3 Molecular modeling 

We used the three-dimensional model of CYP11B2 from our laboratory (Belkina 

et al., 2001). The changes of residues in CYP11B2 were modelled by using the spdbv 

program (http:www.expasy.org/spdbv/) (Guex and Peitsch, 1997). The obtained model 

structures were energy minimized using the steepest descent algorithm implemented in 

the spdbv program. The structural representations were generated by using the 

ViewerLite program. 
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3. Results 

The overall goals of the work in my thesis were to detect mutations in CYP11B2 and 

CYP11B1 genes of patients exhibiting disordered adrenal steroids (mineralocorticoids 

and glucocorticoids). To investigate the effects of these mutations on the steroid 

biosynthesis, the mutants were expressed in COS-1 and HCT116 cell lines and the 

conversion of steroids was studied. 

In order to address each case separately, the results presented in this section as well as the 

subsequent discussion were divided into independent sections with describing each 

patient separately. 

First, a new expression system for the CYP11B genes, the human cell line HCT116-p53-/-

cells, has been investigated and compared with the well-established COS-1 cell line. 
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3.1 Evaluation of CYP11Bs expression in HCT116 p53
-/-

 cells

To compare the expression of CYP11Bs in HCT116 p53-/- cells with COS-1 cells, first 

we analyzed optimal conditions for expression of CYP11Bs in HCT116 p53-/- cells. The 

pSVL vector containing cDNA of CYP11B1 (CYP11B1-WT) or CYP11B2 (CYP11B2-

WT) was transfected into HCT116 p53-/- cells. The HCT116 p53-/- cells transfected with 

the plasmids were incubated with different concentrations of DOC (ranging from 1 to 20 

M) and different incubation times were used to optimize the incubation conditions to 

analyze the metabolites. The unlabeled steroid standards (DOC, B, 18-OH-B, Aldo) were 

visualized by UV light. Positions of steroid products on HPTLC plates are compared with 

those of the unlabeled steroid standards. The other compounds were unidentified. The 

optimal conditions were found to be a substrate concentration of 2 M DOC and an 

incubation time of 72 h (see Figure 3.1).  

Figure 3.1: Autoradiography of thin layer chromatography of steroids produced by HCT116 

p53-/- cells transfected with cDNA of CYP11B2 constructs and incubated with DOC. The 

transfected cells were incubated with substrate DOC (20 M, 10 M, 5 M, 2 M and 1 M) and 

5 nCi of 11-[14C] deoxycorticosterone. Positions of steroids are marked on the autoradiogram as 

follows: DOC, 11-deoxycorticosterone; B, corticosterone; 18-OH-B, 18-hydroxycorticosterone; 

Aldo, aldosterone. 
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Furthermore, HCT116 p53-/-cells were incubated with different concentrations of 11 -

deoxycortisol (RSS) (ranging from 5 M to 60 M) and various incubation times were 

examined to optimize the incubation conditions. Non-radioactive steroid markers (RSS 

and F) that were visualized by UV light correspond to each of the expected radioactive 

steroid product. The optimal conditions in these concentrations were found to be a 

substrate concentration of 5 M RSS and an incubation time of 72 h (see Figure 3.2). 

Figure 3.2: Autoradiography of thin layer chromatography of steroids produced by HCT116 

p53-/- cells transfected with cDNA of CYP11B1 constructs and incubated with 11 -deoxycortisol 

with concentrations: 60 μM, 40 μM, 20 μM, 10 μM and 5 μM and 0.6 μCi of 3H-RSS to follow 

the coversion of 11 -deoxycortisol to cortisol. Positions of steroids are marked on the 

autoradiogram as follows: RSS, 11 -deoxycortisol; F, cortisol. 

To optimize the level of the electron transport mediator for the steroidogenic activity of 

the cell line, HCT116 p53-/- cells were co-transfected with bovine adrenodoxin plasmids 

(pBAdx) or human adrenodoxin plasmids (phAdx) and the pSVL vector containing 

CYP11B2 cDNA (WT). The percentage of steroid products from HCT116 p53-/- cells co-

transfected with WT and phAdx, as compared with WT alone, showed a 1.2 fold increase 

of corticosterone (B), a 1.3 fold increase of 18-hydroxycorticosterone (18-OH-B) but no 

statistically significant increase of aldosterone (Aldo). In case of co-transfection with WT 



Results  51

and pBAdx, the percentages of steroid products were increased by a factor of 2.9 for B, 

2.8 for 18-OH-B and 3.1 for Aldo, compared with the percentage of steroid products 

from WT alone (see Figure 3.3). Thus, the co-expression of bovine adrenodoxin was 

demonstrated to be a useful approach to increase the activity of human CYP11B2 in the 

HCT116 p53-/- cell system, which is in accordance with data on the co-expression of 

bovine adrenodoxin in COS-1 cells (Bottner et al., 1998; Bottner et al., 1996; Cao and 

Bernhardt, 1999a). 

Comparison of the enzyme activities in HCT116 p53-/- and COS-1 cell lines upon co-

expression with bovine adrenodoxin showed that the percentages of steroid products in 

the HCT116 p53-/- cell line were the same as those in the COS-1 cell line (see Figure 3.3). 

This means that the product pattern is not dependent on the cell line used so that both cell 

lines are applicable for studying the effect of mutations in human steroid hydroxylase 

genes.
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Figure 3.3: A, Autoradiography of thin layer chromatography of steroids produced by HCT116 

p53-/- cells transfected with cDNA of CYP11B2 constructs and incubated with DOC. HCT116 

p53-/- cells were transfected with 1.5 g of hAdx (coding for human adrenodoxin) or pBAdx 

(coding for bovine adrenodoxin) and 1.5 g of pSVL containing the cDNA of CYP11B2-WT or 

the empty vector pSVL as a negative control (Mock). The transfected cells were incubated with 

substrate DOC (2 M DOC and 5 nCi of 11-[14C] deoxycorticosterone). Positions of steroids 

were marked on the autoradiogram as follows: DOC, 11-deoxycorticosterone; B, corticosterone; 

18-OH-B, 18-hydroxycorticosterone; Aldo, aldosterone. B, Enzyme activities of aldosterone 

synthase, co-expression of bovine adrenodoxin in HCT116 p53-/- cells and COS-1 cells. Steroid 

patterns of DOC conversion are given as mean  SEM of four similar independent experiments 

performed in duplicate. The amounts of the substrate, the intermediates B and 18-OH-B and the 

final product Aldo are presented as percentages of total enzymatic activity.
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3.2 Patient 1: Aldosterone synthase deficiency caused by a homozygous 

L451F mutation in the CYP11B2 gene

3.2.1 Case report 

The diagnosis of aldosterone synthase deficiency type I (corticosterone methyl oxidase 

type I - CMO I) was made on the basis of a GC-MS spot urinary steroid profile. An 

apparently normal male infant of Turkish parents started to vomit repeatedly from the age 

of 2 wk onwards. The serum sodium was 122 mM/L (normal range, 136-145 mM/L) and 

the serum potassium 7.1 mM/L (normal range, 3.5-4.5 mM/L). Spot urinary samples can 

be taken instead of 24h urine samples because the steroid profile of young children is not 

subject of the circadian rhythm. The pattern of urinary steroid metabolites showed on the 

one hand normal neonatal cortisol metabolites thus excluding all forms of congenital 

adrenal hyperplasia (cortisol biosynthesis defects) with salt wasting. In particular, spot 

urine concentrations [μg/L] of all major cortisol metabolites were normal, such as THE 

(tetrahydrocortisone, 416 μg/L, healthy controls [n = 47] mean ± SD: 875 ± 525 μg/L), 

6 -OH-THE (6 -hydroxy-tetrahydrocortisone, 714 μg/L, controls: 542 ± 447 μg/L), -

CL ( -cortolone, 247 μg/L, controls: 235 ± 217 μg/L), 6 -OH- -CL (6 -hydroxy- -

cortolone, 356 μg/L, controls: 785 ± 800 μg/L), and 6 -OH- -CL (6 -hydroxy- -

cortolone, 486 μg/L, controls: 1001 ± 1086μg/L). On the other hand, metabolites of 

aldosterone precursors lacking 18-hydroxylation such as THA (tetrahydro-11-

dehydrocorticosterone, 321 μg/L, controls: 68 ± 51 μg/L), and THB 

(tetrahydrocorticosterone, 36 μg/L, controls: 4 ± 10 μg/L) were elevated. Furthermore, 

compounds such as 6 -OH-THA (6 -OH-tetrahydro-11-dehydrocorticosterone), and 

hexahydro-11-dehydrocorticosterone (HHA) which are not present in healthy controls 

were clearly detectable. The urinary steroid profile obtained in the group of Prof. Wudy 

did not contain any 18-oxygenated metabolites (see Figure 3.4). 

 Clinical data were obtained in the group of Prof. Stefan A. Wudy, Steroid Research Unit, Division of 
Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-
University, Giessen, Germany.
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Figure 3.4: GC-MS urinary steroid profile from a sample of a newborn with 

aldosterone synthase deficiency type I. The profile was dominated by the huge peaks 

reflecting highly elevated corticosterone metabolites: THA (tetrahydro-11-

dehydrocorticosterone), 6 -OH-THA (6 -hydroxy-tetrahydro-11-dehydrocorticosterone), HHA 

(hexahydro-11-dehydrocorticosterone), THB (tetrahydrocorticosterone). 18-oxygenated 

corticosterone metabolites were not detectable. Excretion of cortisol metabolites (THE, 

tetrahydrocortisone; 6 -OH-THE, 6 -hydroxy-tetrahydrocortisone; -CL, -cortolone; 6 -OH- -

CL, 6 -hydroxy- -cortolone; 6 -OH- -CL, 6 -hydroxy- -cortolone) was normal. AD (5 -

androstane-3 , 17 -diol), SS (stigmasterol) and CB (5-cholestene-3 -ol-butyrate) indicate 

internal standards.

Table 3.1: Urinary tetrahydrosteroid metabolite levels measured by gas chromatography-

mass spectrometry. 

B THmetab 

( g/24h)

18OHB THmetab 

( g/24h)

Aldo THmetab 

( g/24h)

B/18OHB

metabolite ratio 

18OHB/Aldo

metabolite ratio 

CMO I patients 2870 ± 735 42.9 ± 25.1 0 84 ± 36 

CMO II patients 2930 ± 1250 1590 ± 1090 7.67 ± 4.87 1.76 ± 0.86 207 ± 106 

Normal subjects 13.8 - 117 3.0 - 20.0 0.2 - 20 7.8 ± 3.1 3.34 ± 1.28 

SH-patient 357 0 0 0

THmetab, tetrahydrometabolites; B, corticosterone; 18-OH-B, 18-hydroxy corticosterone; Aldo,

aldosterone.
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In addition, the comparison of urinary metabolite ratios of B/18OHB and 

18OHB/aldosterone of this patient with those of normal subjects, CMO I patients and 

CMO II patients (see Table 3.1) indicated that the patient had aldosterone synthase 

deficiency type I. 

3.2.2 Screening for mutations

To confirm the diagnosis of an aldosterone synthase defect in the CMO I patient, the 

CYP11B2 genes of the patient and his parents were amplified specifically from the 

genomic DNA, and all nine exons and the exon/intron boundaries were sequenced. The

CYP11B2 gene was selectively amplified in two segments (exons 1-6, 4.5 kb, using 

primers E16F and E16R shown in Table 2.1; exons 3-9, 3.7 kb, using primers E39F and 

E39R shown in Table 2.1) because the CYP11B2 gene is too long (7 kb) to obtain by a 

single PCR in figure 3.5. Two fragments contained overlapping regions for all CYP11B2

gene. PCR products were loaded on 1% agarose (see Figure 3.6). 

Figure 3.5: Amplification of CYP11B2 gene. The two fragments contained overlapping 

regions.

Figure 3.6: PCR of CYP11B2 gene. Mk is marker lader, D fragment is 4.5 kb and F fragment 

is 3.7 kb. PCR products using BIO-X-ACT DNA polymerase (Bioline) were loaded onto 1% 

agarose gel. 
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After the CYP11B2 gene of the patient and his parents was amplified specifically from 

the genomic DNA, all nine exons and the exon/intron boundaries were sequenced. One 

missense mutation was identified in exon 8 (see Figure 3.7A). The patient was found to 

be homozygous for the as-yet-unknown T to C point mutation at position bp 5869 

(corresponding to c.1351T>C) in exon 8 of the CYP11B2 gene. This mutation results in a 

substitution of leucine to phenylalanine at amino acid position 451 (L451F) of the 

CYP11B2 protein. Sequencing of the patient’s CYP11B2 gene revealed that the mutation 

in exon 8 was inherited from mother and father. Both parents bore the sequence change 

on one of the alleles and were heterozygous for the mutant allele (see Figure 3.7B and C). 

Furthermore, this patient was analyzed to be homozygous for a previously described 

R173K polymorphism in exon 3 (Portrat-Doyen et al., 1998). The in vitro expression of 

the R173K polymorphism in HCT116 p53-/- cells demonstrated that the polymorphism 

did not affect the CYP11B2 activity (data not shown), which is in agreement with a 

previous study (Portrat-Doyen et al., 1998). 
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Figure 3.7: Mutant analysis by direct DNA sequencing. A, Location of novel mutation in 

the CYP11B2 gene. B, Family pedigree showing inheritance of homozygous chromosomal 

segments. The father and the patient are represented by squares, and the mother is presented by 

circle. Both parents are heterozygous. The patient is homozygous and has two mutant alleles. C,

The base change from T to C at position bp 5869 (corresponding to c.1351T>C) of CYP11B2

cDNA leads to the substitution of leucine by phenylalanine at amino acid position 451.

3.2.3 In vitro expression of mutant L451F and assays of enzyme activity  

To investigate whether the replacement L451F affects enzyme activity, a single mutation, 

L451F, was created by site-directed mutagenesis in the CYP11B2-WT. The successful 

insertion of the intended mutation was confirmed by sequence analysis.  
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The expression level of CYP11B2-WT and L451F mutant in COS-1 cells was confirmed 

by Western blot analysis (see Figure 3.8). All sample lanes on the SDS PAGE contained 

the same amount of proteins (200 μg), which could be confirmed by a single nonspecific 

band at approximately 32.5 kDa present in each lane on Western blot. Upon the 

immunoblot analysis, the expression of both the CYP11B2-WT aldosterone synthase as 

well as the L451F mutant was detected as a band of the correct size of approximately 

48.5 kDa. However, the expression level of the L451F mutant appears to be significantly 

lower as compared with that of the CYP11B2-WT.  

Figure 3.8: Western blot analysis of CYP11B2 expression in COS-1 cell line.

Transfected cells were lysed after 48-h incubation with medium containing substrate (DOC). The 

proteins of wild-type (11B2-WT), mutant (L451F) and Mock (pSVL without 11B2cDNA) were 

separated by SDS/PAGE. After transfer to nitrocellulose membrane, the specific proteins were 

detected with an antihuman-CYP11B rabbit antiserum and visualized by ECL Western blot kit. 

After the expression of the proteins was confirmed by Western blot analysis, the 

transfected HCT116 p53-/- cells as well as COS-1 cells were incubated either with DOC 

or B as substrate to check their ability of the expressed enzymes to convert the steroids. 

Steroids were extracted from medium after 72 h of incubation and separated by thin layer 

chromatography (see Figure 3.9). The profiles of steroid metabolites from cells 

expressing the CYP11B2-WT enzyme contained all expected reaction products 

(corticosterone, 18-hydroxycorticosterone and aldosterone). In contrast to this, the 

profiles of cells expressing the L451F mutant were similar to the profiles of mock 

transfected cells (vector pSVL as a negative control), which indicated that none of the 

steroid products was produced. Thus, the L451F mutant was enzymatically inactive 

concerning the 11-hydroxylation with DOC as well as the 18-hydroxylation with B as 
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substrate (see Figure 3.9). These results demonstrated that in the L451F mutant the 

enzyme activity of CYP11B2 is completely abolished, being in perfect agreement with 

the urinary steroid profile of a CMO I deficiency. 

Taken together, a novel missense mutation (L451F) was detected within the 

CYP11B2 of a patient suffering from CMO I deficiency. The expression of the mutant in 

HCT116 p53-/- and COS-1 cells demonstrated that the L451F mutant abolished the 

CYP11B2 activity. This explained the relationship between genotype and phenotype of 

patient.
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Figure 3.9: Autoradiography of thin layer chromatography of steroids and enzyme activities of 

CYP11B2 and L451F mutant expressed in HCT116 p53-/- cells and COS-1 cells. HCT116 p53-/-

cells (upper TLC) and COS-1 cells (lower TLC) were transfected with 1.5 g of pBAdx (coding 

for bovine adrenodoxin) and 1.5 g of pSVL containing the cDNA of CYP11B2-WT or the 

mutant constructs encoding the substitution L451F or the empty vector pSVL as a negative 

control (Mock). The transfected cells were incubated with substrate DOC (2 M DOC and 5 nCi 

of 11-[14C] deoxycorticosterone) as well as substrate B (0.5 μM B and 0.6 μCi of 11-[3H] 

corticosterone) and resulting metabolites were identified by TLC and autoradiography. Positions 

of steroids are marked on the autoradiogram as follows: DOC, 11-deoxycorticosterone; B, 

corticosterone; 18-OH-B, 18-hydroxycorticosterone; Aldo, aldosterone. Steroid patterns of DOC 

and B conversion are given as mean  SEM of four similar independent experiments performed 

in duplicate. The amounts of the substrate, the intermediates B and 18-OH-B and the final 

product Aldo are presented as percentages of total activity. 
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3.3 Patient 2: The effect of amino acid substitutions R490 1nt and silent 

mutant in the last nuculeotide of exon 5 in CYP11B2 on aldosterone 

synthase

3.3.1 Case report 

HK patient is a few weeks old girl, which the age of a few life weeks was suffering from 

salt loss. The diagnosis showed a lack of 18-hydroxylase activity. At that time, she was 

treated with 0.1 mg Astonin (9-alpha-fluorohydrocortisone) daily. The patient’s weight 

normalized and her further development has been uneventful since then.  

Table 3.2. Plasma steroid levels (After 16 yrs treatment) 

B (ng/dl) 18OHB (ng/dl) Aldo (ng/dl) B/18OHB 18OHB/Aldo

HK-Patient 1420 105 25 13.5 4.2

CMO I pattients 700-5300 2.3-16 <3 >40 N.A.

CMO II patients 700-5300 438-2090 < 3-normal <10 >100

Normal subjects 100-1000 12-55 5-60

Aldo: aldosterone; B: corticosterone; 18OHB: 18-hydroxy-corticosterone; N.A.: Not 

applicable.

After 16 yrs treatment with Astonin, thebiochemical parameters presented sodium, 139 

mM/liter (normal range, 136-145mM/liter); potassium, 4.0 mM/liter (normal range, 3.5-

5.0 mM/liter); chloride, 103 mM/liter; ACTH, 10.9 pg/ml; aldosterone, 7.4 ng/dl 

(standard 5-60 ng/dl). During 4 wks without 0.1 mg Astonin dose per day, she felt in 

good physical condition. After 4 wks, the biochemical parameters showed sodium, 135 

mM/liter, chloride, 105 mM/liter; potassium, 4 mM/liter. The multi-steroid analyses of 

the patient presented aldosterone, 25 ng/dl; corticosterone, 1420 ng/dl (clearly increase); 

 Clinical data were obtained by Prof. Michael B. Ranke in Pediatric Endocrinology Section, University-
Children’s Hospital, Tuebingen, Germany. 
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11-deoxycorticosterone, 22 ng/dl (normal); cortisone, 700 ng/dl (normal); 18-OH-B, 105 

ng/dl (clearly increase); 18-OH-DOC, 34 ng/dl (easily increase); a ratio of B/18-OH-B, 

13.5, a ratio of 18-OH-B/Aldo, 4.2 (normal). The ratios of B/18-OH-B and 18-OH-

B/Aldo were not typical of either CMO I or CMO II (see Table 3.2). Nevertheless, due to 

the original diagnosis of CMO I deficiency, the patient have been investigated in more 

detail.

3.3.2 Screening for mutations 

To confirm the diagnosis of an aldosterone synthase defect in the HK patient, the 

CYP11B2 gene of the patient and her family was amplified specifically from the genomic 

DNA, and all nine exons and the exon/intron boundaries were sequenced. The patient 

was found to be heterozygous for a deleted G point mutation at position bp 6424 

(corresponding to c.1470G 1nt) in exon 9 of the CYP11B2 gene. To confirm the 

c.1470G 1nt in one allele in exon 9, the PCR product of exon 9 was subcloned into a 

TOPO vector. The plasmid was sequenced to verify the deletion. This novel mutation 

(R490 1nt) shifted the translational reading frame of CYP11B2 by adding 170 amino 

acids, which resulted in a change of CYP11B2 protein. Furthermore, one silent mutation 

at position bp 4182 (corresponding to c.954G>A) was detected at the last nucleotide of 

exon 5 (T318T) in the other allele (see Figure 3.10A and C). Sequencing of the CYP11B2

gene of her parents revealed that the c.1470G 1nt (R490 1nt) mutation was inherited 

from the mother and silent mutation c.954G>A at the last nucleotide of exon 5 was 

inherited from the father. Both parents bore the sequence change on only one allele. The 

family pedigree indicated inheritance of the heterozygous chromosomal segments (see 

Figure 3.10B). Thereafter, the R490 1nt mutant and the silent mutation at the last 

nucleotide of exon 5 were analyzed in vitro as shown below. 
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Figure 3.10: Mutation analysis by direct DNA sequencing. A, Location of novel 

mutations in the CYP11B2 gene. B, Family pedigree showing inheritance of heterozygous 

chromosomal segments. The mother and the patient are represented by circles; the father and the 

brother are represented by squares. Both parents are heterozygous and have one mutant allele. 

The patient and brother are heterozygous and have two mutant alleles. C, a G deletion at position 

bp 1470 of CYP11B2 cDNA leading to frameshift for the next residues of CYP11B2 protein of 

patient, brother and mother, was detected in one allele. The A replacement of G at the last 

nucleotide of exon 5 was detected in paternal, brotherly, and patient allele. The parents were 

found to be heterozygous for each mutation.
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3.3.3 In vitro expression and assays of enzyme activity for R490 1nt

mutant

In order to study the effect of the mutant R490 1nt on the aldosterone synthesis of this 

patient, one single R490 1nt mutant was created by site-directed mutagenesis in pSVL 

vector containing CYP11B2cDNA (CYP11B2-WT). The successful insertion of the 

intended mutations was confirmed by sequence analysis.  

Western blot analysis of the CYP11B2-WT and mutant protein expressed in COS-1 cells 

demonstrated that R490 1nt mutant did not affect the translation efficiency (see Figure 

3.11).

Figure 3.11: Western blot analysis of CYP11B2 expression in COS-1 cell line.

Transfected cells were lysed after 48-h incubation with medium containing substrate (DOC). The 

proteins of CYP11B2-WT and mutant R490 1nt were separated by SDS/PAGE. After transfer to 

nitrocellulose membrane, the specific proteins were detected with an antihuman-CYP11B rabbit 

antiserum and visualized by ECL Western blot kit.

To check the enzymatic activity of mutation (R490 1nt), the transfected COS-1 cells 

were incubated with DOC as substrate. Medium of transfected cells was extracted after 

72 h incubation, and steroids were separated by thin layer chromatography. The profiles 

of steroid metabolites from mutant R490 1nt were identical to the pattern of the Mock 

sample (vector pSVL as a negative control). There was no production of corticosterone, 

18-hydroxycorticosterone and aldosterone, as compared to the WT production. The 
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expression studies showed that R490 1nt mutant displayed no activity with DOC as 

substrate (see Figure 3.12). These results demonstrated that the R490 1nt mutant 

completely abolished the enzyme activity of CYP11B2.  
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Figure 3.12: Enzyme activities of aldosterone synthase in COS-1 cells. COS-1 cells 

were transfected with 1.5 g of pBAdx (bovine adrenodoxin) and 1.5 g of pSVL containing the 

cDNA of CYP11B2-WT or the mutant constructs encoding the substitution R490 1nt or the 

empty vector pSVL as a negative control (Mock). 30 M DOC and 5 nCi of [14C]-DOC were 

used. Steroid patterns of DOC conversion are given as mean  SEM of four similar independent 

experiments performed in duplicate. The amounts of the substrate, the intermediates 

corticosterone (B) and 18-hydroxycorticosterone (18-OH-B) and the final product aldosterone 

(Aldo) are presented as percentages of total activity. 

3.3.4 Analysis of the splice site scores 

In order to predict that the silent mutation at the last nucleotide of exon 5 in the other 

allele affects splicing, the replacement of adenine (A) to guanine (G) was analyzed with 

the splice site scores. The splice site scores were generated with 

(http://genes.mit.edu/burgelab/maxent/Xmaxent.html) a web-based resource. 

MaxEntScan is based on the approach for modeling the sequences of short sequence 

motifs such as those involved in RNA splicing, which simultaneously accounts for non-

adjacent as well as adjacent dependencies between positions. A larger score generally 

indicates a larger 'strength' of the corresponding splice site. In this case, splice site score 

of the gene without mutation by using the maximum entropy model (MaxEnt) is 4.63 and 

the splice site score of silent mutation (g.4182G>A or c.954G>A) by using MaxEnt is -
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5.75. Furthermore, splice site score of the gene without mutation by using the position 

weight matrix (PWM) is 4.91 and the splice site score of the mutation (g.4182G>A or 

c.954G>A) is 1.74. These results predicted that the substitution of A to G at the postion 

c.954 of the CYP11B2 gene alternates the splice site. 

3.3.5 Minigene construction 

Mutants occurring in the boundary of exon and intron could affect the splicing of the 

gene. To analyze effects of the A to G mutation on pre-mRNA splicing, two minigene 

constructs designated pWT (normal) and pNH (mutation), consisting of exon 1 to exon 6 

cloned into pRc/CMV vector, were generated from genomic DNA of a healthy subject 

and the patient. The fragment from exon 1 to exon 6 was amplified by using the primers 

shown in Table 2.1. PCR products (4.5 kb) of the healthy subject and the patient were 

excised with NotI/XbaI (restriction sites in primers) and cloned into NotI and XbaI sites of

pRc/CMV vector (Invitrogen). The splice sites in the pWT and pNH were sequenced to 

verify the integrity of the inserts. The two minigenes possess the same sequence, except 

for the A to G mutation, as comfirmed by sequence analysis (see Figure 3.13). 

Figure 3.13: Minigene construction. The minigene (pNH) and (pWT) contained of exon 1 to 

exon 6 of CYP11B2 gene cloned into pRc/CMV vector. The minigenes contained a 

cytomegalovirus (CMV) enhancer-promoter and a bovine growth hormone gene (BGH) 

polyadenylation signal for complete synthesis of mRNA. The pNH vector possessed A and pWT 

vector possessed G at the last nucleotide of exon 5.
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3.3.6 Transcription analysis of the silent mutation in COS-1 cells 

To confirm the effects of the silent mutation (T318T - c.954G>A) on the transcription of 

CYP11B2 gene, COS-1 cells were transiently transfected with the minigene constructs 

consisting of CYP11B2 genomic DNA from exon 1 to exon 6 with the mutation (pNH) or 

without the mutation (pWT). After incubation for 24hrs, the cells were harvested and 

then extraction of total RNA was performed according to the instruction of RNAesy kit 

(Qiagen). Total RNA was loaded into 1% agarose gel (see Figure 3.14). The 

concentration of total RNA was 1 g/ l.

Figure 3.14: Total RNAs were loaded into 1% agrose gel. Total RNAs (28S and 18S of 

rRNA) were extracted from COS-1 cells that were transfected with plasmid containg exon 1 to 

exon 6 mutation (pNH) and normal (pWT).

The cDNAs were synthesized from total RNA of mutant and normal fragment. Two 

micrograms of total RNA and oligo (dT) primer were used for reverse transcription, 

which was performed according to the instructions of the kit (Invitrogen). To detect the 

fragment of the CYP11B2 gene in the cDNA products, the PCR was performed with 

E4E6sF, E4E6sR1 primers shown in Table 2.1 using cDNA products as template. PCR 

products were separated using 0.8% agarose (see Figure 3.15). The PCR product from 

normal cDNA is 0.5 kb, but the PCR product from mutant cDNA is 1.3 kb. This result 

indicates that there is an alteration in the transcription of pNH. 
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Figure 3.15: RT-PCR products of minigene transcriptions. RNA was extracted from the 

transfected COS-1 cells. Then, RT-PCR was performed to detect the alternative splicing by using 

the forward primer in exon 4 and reverse primer in exon 6. The RT-PCR product (0.5 kb) of the 

gene fragment without mutations consists of exon 4, exon 5 and exon 6, whereas the RT-PCR 

product (1.3 kb) of the mutant fragment keeps intron 5 (0.8 kb), leading to intronic retention in 

transcription of the CYP11B2 gene.

To investigate the two fragments in more detail, we performed the direct sequencing of 

the PCR products (1.3 kb and 0.8 kb). Sequencing the RT-PCR product from the normal 

fragment showed correct splicing 526 bp (from exon 4 to exon 6) while the sequencing of 

the RT-PCR product from the mutant presented intron 5 retention (812 bp) in the RT-

PCR product (1.3 kb) (see Figure 3.16). Thus, the in vitro data confirmed that the pWT 

could be spliced correctly, while the A replacement of G at the last nucleotide of exon 5 

was responsible for the abnormal pre-mRNA splicing (intronic retention).  
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Figure 3.16: Sequencing of RT-PCR products from minigene transcriptions. The

sequence (526 bp) of the normal fragment consists of exon 4, exon 5 and exon 6, whereas the 

sequence (1338 bp) of the mutant fragment keeps intron 5 (812 bp) that leads to intronic retention 

in transcription of the CYP11B2 gene. 

Taken together, a A replacement of G at the last nucleotide of exon 5 and deletion mutant 

R490 1nt were detected in CYP11B2 gene from the patient with aldosterone synthase 

deficiency. The in vitro expression studies indicated that R490 1nt mutant completely 

abolished the enzyme activity of CYP11B2. Furthermore, the A replacement of G at the 

last nucleotide of exon 5 affected pre-mRNA splicing by intronic retention. These results 

suggest that the two mutants completely abolished the enzyme activity of CYP11B2. 
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3.4 Patient 3: Aldosterone synthase deficiency type I caused by a 

compound heterozygous S315R and R374W mutations in the CYP11B2 

gene

3.4.1 Case report 

Urinary tetrahydrosteroids of the WA patient were measured by GC/MS. Metabolites of 

aldosterone precursors lacking 18-hydroxylation such as THA (tetrahydro-11-

dehydrocorticosterone, 203 μg/L, controls: 68 ± 51 μg/L), and THB 

(tetrahydrocorticosterone, 49 μg/L, controls: 4 ± 10 μg/L) were elevated. Furthermore, 

compounds such as 6 -OH-THA (6 -OH-tetrahydro-11-dehydrocorticosterone), and 

hexahydro-11-dehydrocorticosterone (HHA) which are not present in healthy controls 

were clearly detectable. The urinary steroid profile did not contain any 18-oxygenated 

metabolites but low tetrahydroaldosterone (THAldo), 3 μg/L. In addition, we compared 

urinary metabolite ratios of B/18OHB and 18OHB/Aldo of this patient with those of 

normal subjects, CMO I patients and CMO II patients (see Table 3.3). Urinary metabolite 

ratios of B/18OHB and 18OHB/Aldo indicate that the patient has aldosterone synthase 

deficiency type I. 

Table 3.3: Urinary tetrahydrosteroid metabolite levels measured by gas chromatography-

mass spectrometry 

B THmetab 

( g/24h)

18OHB THmetab 

( g/24h)

Aldo THmetab 

( g/24h)

B/18OHB

metabolite ratio 

18OHB/Aldo

metabolite ratio 

CMO I patients 2870 ± 735 42.9 ± 25.1 0 84 ± 36 

CMO II patients 2930 ± 1250 1590 ± 1090 7.67 ± 4.87 1.76 ± 0.86 207 ± 106 

Normal subjects 13.8 - 117 3.0 - 20.0 0.2 - 20 7.8 ± 3.1 3.34 ± 1.28 

WA-patient 252 0 3 0

THmetab, tetrahydrometabolites; B, corticosterone; 18-OH-B, 18-hydroxy 

corticosterone; Aldo, aldosterone. 

 Clinical data were obtained in the group of Prof. Stefan A. Wudy, Steroid Research Unit, Division of 
Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-
University, Giessen, Germany.
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3.4.2 Screening for mutations

In order to confirm the diagnosis of aldosterone synthase deficiency I of this patient, we 

amplified CYP11B2 gene as shown for patient 1. All nine exons and boundaries of 

exon/intron were sequenced. Two missense mutants were identified in exon 5 and exon 6 

(see Figure 3.17). 

Figure 3.17. Mutant analysis by direct DNA sequencing. A, Location of point mutations 

in the CYP11B2 gene. B, the family pedigree showing inheritance of heterozygous chromosomal 

segments. The father and brother are represented by squares, and the mother and the patient are 
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presented by circle. Both parents are heterozygous and have one mutant allele. The patient is 

heterozygous and has two mutant alleles. Mutations occur in one allele. The brother is 

homozygous and has two normal alleles. C, The base changes from G to C at position bp 4173 

(corresponding to c.945G>C) and T to C at position bp 5160 (corresponding to c.1120T>C) lead 

to the substitution of serine by arginine at amino acid position 315 and arginine by tryptophan at 

amino acid position 374, respectively.  

The patient was found to be heterozygous for the as-yet-unknown G to C point mutation 

at position bp 4173 (corresponding to c.945G>C) in exon 5 and the as-yet-unknown T to 

C point mutation at position bp 5160 (corresponding to c.1120T>C) in exon 6 in 

CYP11B2 gene. The base change from G to C at position bp 4173 (corresponding to 

c.945G>C) of CYP11B2 cDNA leads to the substitution of serine by arginine at amino 

acid position 315. The base change from T to C at position bp 5160 (corresponding to 

c.1120T>C) of CYP11B2 cDNA leads to the substitution of arginine by tryptophan at 

amino acid position 374. Sequencing of the parent’s CYP11B2 gene revealed that the 

mutation in exon 5 was inherited from father and the mutation in exon 6 inherited from 

mother. The brother did not possess mutations in two alleles (see Figure 3.17B and C). 

3.4.3 Functional analysis of enzyme activity  

To analyze the two amino acid replacements (S315R, R374W) on the enzyme activity, 

two mutants were created by site-directed mutagenesis in the CYP11B2-WT using the 

oligonucleotides listed in Table 2.1. The successful insertion of the intended mutations 

was confirmed by sequence analysis.  

The expression level of CYP11B2-WT and the two single mutants in COS-1 cells was 

examined by Western blot analysis (see Figure 3.18). All sample lanes of the SDS PAGE 

contained a similar amount of proteins (200 μg), which might be checked by a single 

nonspecific band at approximately 32.5 kDa present in each lane. The expression of 

aldosterone synthase of the CYP11B2-WT and the two single mutants was detected as a 

band of the correct size of approximately 48.5 kDa. The expression level of the two 

single mutants was similar to that of the CYP11B2-WT. Thus, Western blot analysis of 

the CYP11B2-WT and the two mutants (S315R, R374W) proteins expressed in the cells 
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demonstrated that none of the mutations apparently affected the translation efficiency 

(see Figure 3.18). 

Figure 3.18: Western blot analysis of CYP11B2 WT and mutants (S315R and 

R374W) expression in COS-1 cell line. Transfected cells were lysed after 48-h incubation 

with medium containing substrate (DOC). The proteins of CYP11B2-WT, S315R, R374W and 

Mock (pSVL without 11B2cDNA) were separated by SDS/PAGE. After transfer to nitrocellulose 

membrane, the specific proteins were detected with an antihuman-CYP11B rabbit antiserum and 

visualized by ECL Western blot kit.

After the expression of the proteins was confirmed by Western blot analysis, the 

transfected COS-1 cells were incubated with DOC as substrate to check the ability of the 

expressed enzymes to convert the steroids. Steroids were extracted from medium after 72 

h of incubation and separated by thin layer chromatography. The profiles of steroid 

metabolites from cells expressing the CYP11B2-WT enzyme contained all expected 

reaction products (corticosterone, 18-hydroxycorticosterone and aldosterone). In contrast 

to this, the profiles of cells expressing the single CYP11B2 mutant R374W were similar 

to the profiles of Mock transfected cells (vector pSVL as a negative control), which 

indicated that none of the steroid products was produced. In the steroid product from cells 

expressing the single mutant S315R, 9% of B was converted from DOC but no further 

products were produced, suggesting that mutant S315R dramatically decreased 11 -

hydroxylation and abolished 18-hydroxylation and 18-oxidation. Thus, the expression 

studies showed that the two single mutants were enzymatically inactive i.e. not capable of 

converting DOC to Aldo (see Figure 3.19).
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Figure 3.19: Enzyme activities of aldosterone synthase in COS-1 cells. COS-1 cells 

were transfected with 1.5 g of pBAdx (bovine adrenodoxin) and 1.5 g of pSVL containing the 

cDNA of CYP11B2-WT or the mutant constructs encoding the substitution S315R and R374W or 

the empty vector pSVL as a negative control (Mock). The transfected cells were incubated with 

substrate DOC (30 M DOC and 5 nCi of 11-[14C] deoxycorticosterone). Steroid patterns of 

DOC conversion are given as mean  SEM of four similar independent experiments performed in 

duplicate. The amounts of the substrate, the intermediates corticosterone (B) and 18-

hydroxycorticosterone (18-OH-B) and the final product aldosterone (Aldo) are presented as 

percentages of total activity.

In summary, two new missense mutants (S315R, R374W) were detected in the CYP11B2

gene of this patient suffering from CMO I deficiency. The expression of the two single 

mutants in the COS-1 cells indicated that S315R and R374W mutants abolished enzyme 

activity.



Results  75

3.5 Patient 4: Mutant R181Q in CYP11B2 gene was detected in the patient 

with CMO II

3.5.1 Case report 

Urinary tetrahydrosteroids were measured by GC/MS (Table 3.4). It is observed that the

ratios of B/18OHB and 18OHB/Aldo of the patient match the symptoms of aldosterone 

synthase deficiency type II as compared with data from CMO II patients.  

Table 3.4. Urinary tetrahydrosteroid metabolite levels measured by gas chromatography-

mass spectrometry 

B THmetab 

( g/24h)

18OHB THmetab 

( g/24h)

Aldo THmetab 

( g/24h)

B/18OHB

metabolite ratio 

18OHB/Aldo

metabolite ratio 

CMO I patients 2870 ± 735 42.9 ± 25.1 0 84 ± 36 

CMO II patients 2930 ± 1250 1590 ± 1090 7.67 ± 4.87 1.76 ± 0.86 207 ± 106 

Normal subjects 13.8 - 117 3.0 - 20.0 0.2 - 20 7.8 ± 3.1 3.34 ± 1.28 

WA-patient 705 592 3 1.19 197.3

THmetab, tetrahydrometabolites; B, corticosterone; 18-OH-B, 18-hydroxy-

corticosterone; Aldo, aldosterone. 

3.5.2 Screening for mutations 

To identify mutations in the CYP11B2 gene that cause aldosterone synthase deficiency II 

of the patient, we amplified the CYP11B2 gene as described for patient 1. All nine exons 

and boundaries of exon/intron were sequenced. One missense mutation was identified in 

exon 3 (see Figure 3.22A and C). A heterozygous G to A point mutation at bp 3348 in 

exon 3, corresponding to c.543G>A, that leads to a change from arginine to glutamine at 

amino acid position 181 of CYP11B2 was found in the patient and in the father. Mother 

and brother are normal. The pedigree of the family with the mutation R181Q in the 

 Clinical data were obtained in the group of Prof. Stefan A. Wudy, Steroid Research Unit, Division of 
Pediatric Endocrinology and Diabetology, Center of Child and Adolescent Medicine, Justus-Liebig-
University, Giessen, Germany.
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CYP11B2 gene is shown in Figure 3.22B. Furthermore, this patient was found to be the 

same as a previously described R173K polymorphism in exon 3 (Portrat-Doyen et al., 

1998), as described the patient 1.

Figure 3.22: Mutant analysis by direct DNA sequencing. A, Location of point mutations 

and a polymorphism in the CYP11B2 gene. B, the family pedigree showing inheritance of 

heterozygous chromosomal segments. The father and brother are represented by a square, the 

patient and the mother are represented by a circle. The father and the patient are heterozygous 

having one mutant allele. C, the base change from from G to A at position bp 3348 in exon 3 

leads to the substitution from arginine to glutamine at codon 181. One mutant at amino acid 173, 

R173K, is considered to be a polymorphism in exon 3, which is in agreement with a previous 

study (Portrat-Doyen et al., 1998).
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3.5.3 Expression of mutant R181Q and assays of enzyme activity 

To analyze whether mutant R181Q affects enzyme activity, a single mutation, R181Q, 

was created by site-directed mutagenesis in the CYP11B2-WT using the primers shown 

in Table 2.1. The successful insertion of the intended mutation was confirmed by 

sequence analysis.

The expression level of CYP11B2-WT and the R181Q mutant in COS-1 cells was 

confirmed by Western blot analysis (see Figure 3.23). All sample lanes of the SDS PAGE 

contained the same amount of proteins (200 μg), which was confirmed by a single 

nonspecific band at approximately 32.5 kDa present in each lane. The expression of both 

the CYP11B2-WT aldosterone synthase as well as the R181Q mutant was detected as a 

band of the correct size of approximately 48.5 kDa. However, the expression level of the 

R181Q mutant appears to be significantly lower as compared with the CYP11B2-WT. 

Figure 3.23: Western blot analysis of CYP11B2 expression in COS-1 cell line.

Transfected cells were lysed after 48-h incubation with medium containing substrate (DOC). The 

proteins of CYP11B2-WT, mutant R181Q and Mock (pSVL without 11B2cDNA) were separated 

by SDS/PAGE. After transfer to nitrocellulose membrane, the specific proteins were detected 

with an antihuman-CYP11B rabbit antiserum and visualized using ECL kit from Amersham 

Pharmacia Biotech. 

After the expression of the proteins was confirmed by Western blot analysis, the 

transfected COS-1 cells were incubated with DOC as substrate to check the ability of the 

expressed enzymes to convert the steroids. The profiles of steroid metabolites from cells 

expressing the CYP11B2-WT enzyme contained all expected reaction products 

(corticosterone, 18-hydroxycorticosterone and aldosterone). In the steroid profile from 
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the mutant R181Q, corticosterone (B) was increased, 18-hydroxycorticosterone (18-OH-

B) was reduced, and no aldosterone (Aldo) was produced, as compared with the 

CYP11B2-WT and Mock sample (see Figure 3.24). Thus, these results indicated that the 

mutant R181Q abolished 18-oxidation.  
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Figure 3.24: Enzyme activities of aldosterone synthase in COS-1 cells. COS-1 cells 

were transfected with 1.5 g of pBAdx (bovine adrenodoxin) and 1.5 g of pSVL vector 

containing the cDNA of CYP11B2-WT or the mutant constructs encoding the substitution R181Q 

or the empty vector pSVL as a negative control (Mock). 30 M DOC and 5 nCi of [14C]-DOC 

were used. Steroid patterns of DOC conversion are given as mean  SEM of four similar 

independent experiments performed in duplicate. The amounts of the substrate, the intermediates 

corticosterone (B) and 18-hydroxycorticosterone (18-OH-B) and the final product aldosterone 

(Aldo) are presented as percentages of total activity.

Taken together, one missense mutant (R181Q) was found in CYP11B2 gene of this 

patient with aldosterone synthase deficiency type II. The expression of mutant R181Q in 

COS-1 cells using the DOC substrate showed that mutant R181Q affected the 11 -

hydroxylation, 18-hydroxylation and abolished 18-oxidation. No mutation has been 

detected in the second allele of 9 exons and boundaries of exon/intron. 
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3.6 Patient 5: Complete virilisation in two 46,XX siblings with 11- -

hydroxylase deficiency due to homozygous L299P mutation in the 

CYP11B1 gene 

3.6.1 Case report 

TThere were two siblings from consanguineous Turkish parents with complete external 

virilisation. The karyotype of the two siblings was 46,XX. The MY patient had been 

raised as a boy and was diagnosed incidentally at the age of 19 months during a hospital 

admission for severe combined bacterial (urosepsis) and viral (CMV and EBV) infection. 

11-deoxycortisol levels were increased and urine ketosteroid analysis showed increased 

excretion of tetrahydrometabolites of 11-deoxycortisol and DOC. Complete virilisation 

with slight glandular hypospadia and a hypoplastic empty scrotum was found. The JY 

patient (the younger sibling) was diagnosed at the age of 5 months. This child was born 

soon after diagnosis in the elder sibling. Biochemical test results (see Table 3.5) of 

adrenal androgens and urinary metabolites investigated by Dr. Riedl and coworker were 

in line with the diagnosis of congenital adrenal hyperplasia (CAH) due to 11 -

hydroxylase deficiency (11 -OH-D).

Table 3.5: Biochemical parameters  

MY patient 

(at 19 months) 

JY patient

(at 5 months) 

Normal 

subject

ACTH (pmol/L) 257 72 2-11

Cortisol (nmol/L) 472 599 138-690

11-Deoxycortisol (nmol/L) 1208 - 0.3-23

Androstendione (nmol/L) 106 - 0.35-1.75

DHEAS (µmol/L) 23.8 1.9 0.26-1.28

17-OHP (nmolL) 123.6 23.1 0.3-4.5

Testosterone (nmol/L) 8.4 2.0 0.07-0.35

Aldosterone (nmol/L) 0.55 2.25 0.11-0.86

PRA (ng/mL/h) suppressed 2.6 2-10

ACTH, adrenocorticotrophin hormone; DHEAS, dehydroepiandrosterone; 17-OH-P, 17 -

hydroxyprogesterone; PRA, plasma renin activity. 

 Clinical data were obtained by Dr. Stefan Riedl in Paediatric Department, Medical University of Vienna, 
Austria.
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3.6.2 Mutation analysis 

To confirm the diagnosis of the cortisol synthase defect in the patient, the CYP11B1

genes of the patient and his family were sequence by Riedl and co-workers from the 

genomic DNA. All nine exons and the exon/intron boundaries were sequenced. A 

homozygous T to C point mutation at bp 3522 in exon 5, corresponding to c.T896T>C 

and leading to a change from leucine to proline at amino acid position 299 of CYP11B1 

was found in both patients. The parents as well as 2 of 3 older daughters were 

heterozygous carriers of the mutation. The pedigree of the family with the mutation 

L299P in the CYP11B1 studied by Riedl and co-workers is shown in Figure 3.25. 

Figure 3.25: Pedigree of the family with the mutation L299P in the CYP11B1.

Squares are presented as male; the cycles are presented as female. The MY patient and the JY 

patient (younger sibling) are homozygous carriers of the mutation. The parents as well as 2 of 3 

three older daughters are heterozygous. Two brothers of then father, died at age 14 and 16 years, 

repectively, from heart disease.

3.6.3 Functional analysis of enzyme activity 

To analyze mutant L299P affect enzyme activity, a single mutation, L299P, was created 

by site-directed mutagenesis in the CYP11B1-WT using the B1-229F and B1-299R 

 Mutaion analyses were obtained by Dr. Stefan Riedl in Paediatric Department, Medical University of 
Vienna, Austria.
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primers shown in the Table 2.1. The successful insertion of the intended mutation was 

confirmed by sequence analysis. Mutant L299P and CYP11B1-WT were expressed with 

bAdx in the HCT116 p53-/- cells. The transfected HCT116 p53-/- cells were incubated 

with 11-deoxycortisol as substrate to check the ability of the expressed enzymes to 

convert 11-deoxycortisol to cortisol. The unlabeled steroid standards (RSS and F) were 

visualized by UV light. Positions of steroid products on HPTLC plates are compared with 

those of the unlabeled steroid standards. Transfection experiments demonstrated a 

reduction of 11 -OH activity to 1.6 ± 0.8% for the conversion of 11-deoxycortisol to 

cortisol (see Figure 3.26). 

In conclusion, one homozygous mutant (L299P) was detected in two homozygous 46, 

XX siblings with 11 -hydroxylase deficiency. The expression of cDNA constructs 

containing mutation L299P in HCT116 p53-/- cells showed that the L299P replacement 

reduced 11-hydroxylase activity to1.6  0.8% for the conversion of 11-deoxycortisol to 

cortisol.
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Figure 3.26: A, autoradiography of thin layer chromatography of steroids produced by HCT116 

p53-/- cells transfected with cDNA of CYP11B1 constructs, L299P mutant and pbAdx and 

incubated with 11 -deoxycortisol (RSS) with 5 μM concentration and 0.6 μCi of 3H-RSS to 

conversion of RSS to cortisol (F). Positions of steroids are marked on the autoradiogram as 

follows: RSS, 11 -deoxycortisol; F, cortisol. B, measurement of 11 -hydroxylase activity of 

CYP11B1 mutant L299P in transiently transfected HCT116 p53-/- cells. Steroid patterns of RSS 

conversion are given as mean  SEM of three similar independent experiments performed in 

duplicate. The amount of cortisol is presented as percentages of total activity.
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4. Discussion 

4.1 Evaluation of CYP11Bs expression in HCT116-p53
-/-

 cells 

In previous studies, enzymatic characterization of CYP11B2 has been frequently 

investigated using the heterologous expression of this protein in COS-1 cells or COS-7 

cells (Dunlop et al. 2003; Nomoto et al. 1997; Portrat-Doyen et al. 1998). Although COS 

cells are very popular as a mammalian cell system for the heterologous expression of 

proteins, COS cells may not be optimal for the enzymatic characterization of CYP11B 

proteins. Since CYP11B proteins are a mitochondrial P450s, human CYP11B1 and 

CYP11B2 may be more efficiently transported and/or folded in mitochondria of human 

cells compared to COS cell lines derived from monkey kidney. Because HCT116 p53-/-

cells (human colon carcinoma cell line) are well established in our group, fast-growing, 

and easy to handle we decided to analyze human CYP11B2 in those alls and compare the 

usefulness of this cell line with COS-1 cells. Therefore, HCT116 p53-/- and COS-1 cells 

were transfected with an empty vector as control, with the human CYP11B2 expression 

vector and the bovine Adx (adrenodoxin, an electron transporter to mitochondrial P450s) 

vector, as well as with the human CYP11B2 expression vector and the human Adx 

expression vector.

To optimize the level of the electron transport mediator for the steroidogenic activity of 

the HCT116 p53-/- cells, we compared the CYP11B2 activities upon coexpression with 

human and bovine Adx. CYP11B2 with bovine Adx converted the substrates more 

efficiently to the products although both, human and bovine Adx, enhance the CYP11B2 

activities in HCT116 p53-/- cells (see Figure 3.3A). The difference in the conversion 

efficiency of substrate can be explained by a different expression level of the ferredoxins, 

by a less efficient electron transfer from the human Adx to CYP11B2 than from bovine 

Adx, or by differences in the efficiency of electron transport from endogenous Adx-

reductase to the two Adx forms. Thus, in the HCT116 p53-/- cell system, the activity of 

human CYP11B2 is most efficiently analyzed with the co-expression of bAdx but not 

with human Adx. Our conclusion is consistent with the results of co-expressing bAdx in 

COS-1 cells (Bottner et al. 1998; Bottner et al. 1996; Cao et al. 1999b). 
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As shown in Figure 3.3B, CYP11B2 activities in HCT116 p53-/- were indistinguishable 

from those in COS-1 cells upon co-expression of bAdx, suggesting that both cell lines 

have similar transfection efficiency under our experimental conditions, and that human 

CYP11B2 is transported and folded in the HCT116 p53-/- cells as efficiently as in the 

COS-1 cells. Further, the results also suggest that the availability of electrons for the 

heterologously expressed CYP11B2 is at a similar level in both cell lines. 

Taken together, the human cell line HCT116 p53-/- is applicable for studying the effect of 

mutations in steroid hydroxylase genes from patients being diagnosed with a steroid 

biosynthesis defect. We concluded that HCT116 p53-/- cell line does not respond an 

advantage compared with the COS-1 cell line. 

4.2 Aldosterone synthase deficiency (CMO I and CMO II) 

The human aldosterone synthase CYP11B2 is expressed in the zona glomerulosa of the 

adrenal glands. The enzyme catalyzes three consecutive mono-oxygenation reactions to 

convert 11-deoxycorticosterone to aldosterone, the most important mineralocorticoid in 

humans (see Figure 1.2). Aldosterone biosynthesis disorder is an autosomal recessively 

inherited disorder caused by mutations in the CYP11B2 gene. Due to the reduced adrenal 

aldosterone synthase activity, 11-deoxycorticosterone is not efficiently converted to 

aldosterone and insufficient aldosterone secretion leads to decreased sodium resorption 

and potassium secretion into the urine of patients (Peter et al. 1999) causing the 

symptoms of hypoaldosteronism. 

The urinary tetrahydroderivatives of mineralocorticoids may be used as an indirect index 

of plasma mineralocorticoids (see Figure 4.1). The major urinary metabolites of 

mineralocorticoids are tetrahydroaldosterone (Thaldo) for aldosterone, 

tetrahydrocorticosterone (THB) and tetrahydro-11-dehydrocorticosterone (THA) for 

corticosterone. Likewise, tetrahydrodeoxycorticosterone (THDOC) and 18-

hydroxytetrahydrocompound (18-hydroxy- tetrahydro-11-dehydrocorticosterone (18-OH-

THA) and 18-hydroxy- tetrahydro-corticosterone (18-OH-THB)) correspond to 11-

deoxycorticosterone (DOC) and 18-hydroxycorticosterone (18-OH-B), respectively 

(Ghulam et al., 2003). To delineat disorders of steroid metabolism, the application of GC-
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MS urinary steroid profiling (Wudy et al. 2004) has proved to be a decisive step in 

determining further rational strategies regarding treatment and molecular genetic studies. 

Normally, measurements of plasma steroids and urinary steroid metabolites are used in 

patients to hormonally distinguish between aldosterone synthase deficiency type I 

(corticosterone methyl oxidase type I – CMO I) and type II (corticosterone methyl 

oxidase type I – CMO II) (Dunlop et al. 2003; Kayes-Wandover et al. 2001b; Ulick et al. 

1992).

Figure 4.1: Unrinary metabolites of mineralocorticoid synthesis. THDOC:

tetrahydrodeoxycorticosterone; THA: tetrahydro-11-dehydrocorticosterone, THB:

tetrahydrocorticosterone; 18-OH-THA: 18-hydroxy- tetrahydro-11-dehydrocorticosterone; 18-

OH-THB: 18-hydroxy- tetrahydro-corticosterone; THAldo: tetrahydroaldosterone.

The majority of patients suffering from aldosterone synthase deficiency type I generally 

reflect mutations in the CYP11B2 gene causing a complete loss of aldosterone synthase 

activity because of a blockade of 18-hydroxylation of corticosterone and, at least in some 

cases, also 11 -hydroxylation of 11-deoxycorticosterone. In our patients 1 and 3, the 

results of GC-MS urinary steroid profiling did not show any 18-oxygenated metabolites. 

This indicates that the patients had symptoms of CMO I deficiency. As was predicted, 3 

mutations (L451F, S315R and R374W) were detected in CYP11B2 of patient 1 and 3. 
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The results from transfection analysis in cell lines showed that L451F, S315R and 

R374W mutants were completely inactive. These mutations can be compared with 

previous studies. For example, a single point mutation (R384P) has been found in a male 

Caucasian patient suffering from CMO-I deficiency (Geley et al. 1995). The expression 

of this mutant in COS-1 cells showed complete loss of 11 - and 18-hydroxylase activities 

of CYP11B2. The other single point mutation CTG to CCG at codon 461 in exon 8 of 

CYP11B2 was reported by Nomoto et al (Nomoto et al. 1997) leading to an amino acid 

replacement L461P. This residue was shown to be involved in the putative heme binding 

site of CYP11B2 resulting in a complete loss of aldosterone synthase activity. 

Furthermore, mutants leading to deletion or insertion of nucleotides were detected in 

CYP11B2 gene from patients suffering from aldosterone synthase deficiency type I. A 

patient was analyzed showing a truncated enzyme which was derived from five 

nucleotide deletions in exon 1 resulting in a frameshift to form a stop codon in the same 

exon (Mitsuuchi et al. 1993). The five nucleotide deletion occurred in two alleles. 

Another patient was also identified homozygous for a premature stop codon in exon 4 

(E255X) (Peter et al. 1997). These mutations resulted in a completely inactive CYP11B2. 

Another patient had a homozygous duplication of six nucleotides at codon 143 in exon 3 

of CYP11B2, leading to the insertion of two amino acid residues (Arg-Leu) (Kayes-

Wandover et al. 2001b). The in vitro assay of this mutant in human embryonic kidney 

293 cells showed a complete inactivity of CYP11B2. One nucleotide deletion 

(R490del1nt) also was found in one allele from our patient 2. The transfection assay of 

R490del1nt in COS-1 cells showed a complete inactivation of CYP11B2. Further, one 

silent mutation (c.954G>A at the last nucleotide of exon 5) was detected in the other 

allele of patient 2. This mutation obviously affects splicing of CYP11B2 pre-mRNA. 

Silent mutations in the boundaries of exon/intron, which alter the splicing, were not 

previously detected in patients with aldosterone synthase deficiency. Therefore, CMO I is 

biochemically defined as deficiency with no available CYP11B2 activity in the patients 

caused by mutations in the CYP11B2 gene. When a patient with CMO I is homozygous, 

the mutant CYP11B2 protein expressed in cell cultures will be inactive in a transfection 

experiment. When a patient with a CMO I phenotype is heterozygous and each allele has 

a mutation in the CYP11B2 gene, both of the mutant CYP11B2 proteins should be 
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inactive in the transfection assay. In those cases, the other member of the CYP11B 

subfamily, CYP11B1, is normal and present in zona faciculata/reticularis. Although the 

major role of CYP11B1 is to convert 11-deoxycortisol to cortisol, CYP11B1 is also able 

to catalyze the 11 -hydroxylation of 11-deoxycorticosterone for the production of 

corticosterone and 18-hydroxycorticosterone (very small amounts) when the substrate is 

available, but no conversion of 18-hydroxycorticosterone to further derivatives can be 

observed. Therefore, in the plasma and urine of patients with CMO I, 11 -hydroxylated

steroids, corticosterone and cortisol, are observed, but 18-hydroxylated derivatives, 18-

hydroxycorticosterone and aldosterone, are not present since CYP11B2 is the only 

enzyme catalyzing 18-hydroxylation reactions. 

On the contrary to CMO I deficiency, CMO II deficiency is related with high levels of 

18-OH-corticosterone and low levels of plasma aldosterone or subnormal to occasionally 

normal levels of urinary tetrahydroaldosterone (Ulick et al. 1992). For example, a patient 

with CMO II was found to have two mutations T185I, T498A in the CYP11B2 gene. The 

transfection analysis in COS cells for the determination of enzyme activities of the 

mutants showed significantly reduced 18-oxidation of aldosterone synthase (Dunlop et al. 

2003). In Iranian-Jewish patients sufferring from CMO II, two missense mutations 

(R181W and V386A) were identified in the CYP11B2 gene (Pascoe et al. 1992a). 

Furthermore, the compound heterozygous (R181W/del C372 and T318M/V386A) 

reported by Zhang et al. (Zhang et al. 1995) showed a clinical phenotype of CMO II

deficiency, with both detectable serum aldosterone and elevated 18-

hydroxycorticosterone, but the in vitro activity is completely abolished. In our case, 

patient 4 suffering from CMO II deficiency had a heterozyogous mutation (R181Q). The 

activity assay of the R181Q mutant in COS-1 cells showed that corticosterone (B) was 

increased, 18-hydroxycorticosterone (18-OH-B) was reduced, and no aldosterone (Aldo) 

was found. In biochemical aspects, therefore, the CMO II deficiency is defined as a 

partial loss of CYP11B2 activities by mutations that may slightly or severely reduce the 

second 18-hydroxylation activity of CYP11B2. 
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4.2.1 Patient 1: Homozygous mutant L451F  

At the age of 3 wk a steroid profile from a random spot urinary sample of the patient was 

recorded. The patient in this case showed a steroid profile typical for a CMO I deficiency 

because the GC-MS result exhibits no 18-oxy-derivatives and, in addition, elevated levels 

of the corticosterone metabolites THA (tetrahydro-11-dehydrocorticosterone) and THB 

as compared with control (see clinical data of patient 1 in the result). This is a typical 

picture because functionally impaired CYP11B2 does not convert corticosterone (B) 

efficiently to the 18-oxygenated metabolites and, as a consequence, the B-derived 

metabolites THA and THB increase in the urine. B can, however, still be produced from 

11-deoxycorticosterone by CYP11B1, a 93% identical mitochondrial cytochrome P450 

isozyme (Mornet et al. 1989). However, CYP11B1 can only catalyze the 18-

hydroxylation of B to form 18-OH-B to very small extent (Pascoe et al. 1992a; Portrat-

Doyen et al. 1998) but can not support the following 18-oxidation to form aldosterone. 

Thus, it leads to an accumulation of derivatives of corticosterone.  

In our case, we detected a novel missense mutation (L451F) in the CYP11B2 of the 

patient. The in vitro protein expression of CYP11B2-L451F analyzed by the Western blot 

(see Figure 3.8) showed that the mutant can be expressed in COS-1 cells but the 

expression level of the mutant was lower than that of the wild type. The replacement is 

next to the invariant heme coordinating ligand C450. This means that the mutation might 

influence the assembly of the heme into the apo-CYP11B2 and lead to an unstable mutant 

protein. When testing the CYP11B2 activity using the substrates DOC and B in COS-1 

and HCT116 cells, the mutant L451F showed neither B nor 18-oxygenated metabolites, 

suggesting the complete loss of CYP11B2 activity. This fits with the clinical data, which 

indicated also no 18-oxygenated metabolites, whereas the detected B metabolites in urine 

samples were most probably formed due to the activity of the isoenzyme CYP11B1. 

When considering the alignment of amino acid sequences (see Figure 4.2) it can be seen 

that the L451 residue is highly conserved in CYP11B1 and CYP11B2 enzymes of 

humans, mice, cow and pig, as well as in the microbial enzymes CYP108 and CYP101. 

This indicates a functionally or structurally important role of L451 in cytochromes P450. 

Another replacement (L461P) in this region has been described previously to completely 

block the enzymatic activity (Nomoto et al. 1997). It can be assumed that L451 plays an 
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important role in the interaction of the apo-P450 with its prosthetic group and/or in 

stabilizing the protein structure. To get deeper insight into this role, a computer model of 

the mutated CYP11B2 using the three-dimensional model of CYP11B2 (see Figure 4.2A) 

derived previously in our group as a template had been constructed (Belkina et al. 2001). 

It can be seen that L451 is located at the beginning of the L-helix, which is part of the 

P450 core region and of the heme-binding region. The heme of P450s is coordinated to 

the invariant cysteine found in a -bulge region called the Cys-pocket. The sequence 

conservation extends from the Cys-pocket through most of the L helix (Hasemann et al. 

1995). The L-helix belongs to a conserved structural core, which is associated with 

substrate recognition, substrate binding, and redox partner binding. This conserved P450 

structural core consists of six-helices: D, E, I, L, J and K. In addition, there are two 

structurally conserved -sheets (  sheet 1 containing five strands and  sheet 2 containing 

two strands), which are part of the hydrophobic substrate access channel. There is a 

structurally conserved consensus sequence on the proximal face of the heme containing 

the absolutely conserved cysteine residue (see Figure 4.2), which comprises the 5th iron

ligand, as well as L451 (Peterson et al. 1998). Residue L451 is invariant in a 10-residue 

signature motif which includes the thiolate (cysteine) ligand, and this region (which 

precedes the L helix) is highly conserved across the entire P450 superfamily of over 1200 

genes (Nelson 1995). The heme is located between helices I and L where certain 

hydrophobic and -  stacking interactions bind the iron protoporphyrin IX complex 

(Cupp-Vickery et al. 1995; Modi et al. 1995). When considering our model it becomes 

obvious that the side chain of F451 compared with that of L451 besides probably 

influencing the dynamics around the heme-coordinating C450 also may cause steric 

hindrance of nearby residues (Q449, G452, R453, R454, L455, D147, R143, L106) (see 

Figure 4.2 B-E). The larger phenylalanine side chain gets closer to residue D147 on the 

CYP11B2 surface (see Figure 4.2 D-E), which is involved in the regulation of CYP11B 

isoform specific substrate conversion (Bechtel et al. 2002). Thus, the computer model 

gives a conclusive explanation of the molecular effects which have been observed when 

analyzing the mutant protein in the cell cultures. And this, on the other hand, correlates 

excellently with the results of the Western blot experiments and the clinical picture. 
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                        A-Helix         A1-Helix 

hC11B2   ----------MALRAKAEVCVAAPWLSLQRARALGTRAARAPRTVLPFEAMPQHPGNRWL 50 
hC11B1   ----------MALRAKAEVCMAVPWLSLQRAQALGTRAARVPRTVLPFEAMPQRPGNRWL 50 
pC11B1   ----------MAIWAKAEAWLAGPWLALNRARTLGTRAVLAPKGVLPFEAIPQFPGKKWM 50 
bC11B1   ----------MALWAKARVRMAGPWLSLHEARLLGTRGAAAPKAVLPFEAMPRCPGNKWM 50 
rC11B1   ----------MALRVTADVWLARPWQCLHRTRALGTTAKVAPKTLKPFEAIPQYSRNKWL 50 
hmC11B1  --------MTMALRVTTDVWLARPWQCLHRTRALGTTATLAPKTLQPFEAIPQYSRNKWL 52 
rC11B2   MGACDNDFIELHSRVTADVWLARPWQCLHRTRALGTTATLAPKTLKPFEAIPQYSRNKWL 60 
mC11B2   ----------MALRVTADVWLARPWQCLHRTRALGTTATLAPKTLQPFEAIPQYSRNKWL 50 
CYP108   ----------MDARATIPEHIAR--------------TVILPQGYADDEVI--YPAFKWL 34 
CYP101   ----------MTTETIQSN-----------------ANLAPLPPHVPEHLVFDFDMY--- 30 
                   :   .      : .  .   :   .:            . :
      B-Helix   B’-Helix  
hC11B2   RLLQIWREQGYEHLHLEMHQTFQELGPIFRYNLGGPRMVCVMLPEDVEKLQQVDSLHPCR 110 
hC11B1   RLLQIWREQGYEDLHLEVHQTFQELGPIFRYDLGGAGMVCVMLPEDVEKLQQVDSLHPHR 110 
pC11B1   RVLQLWREQGFENNHLEMHQTFQELGPIFRFDVGGRNMVLVMLPEDVERCQKVEGLHPQR 110 
bC11B1   RMLQIWKEQSSENMHLDMHQTFQELGPIFRYDVGGRHMVFVMLPEDVERLQQADSHHPQR 110 
rC11B1   KMIQILREQGQENLHLEMHQAFQELGPIFRHSAGGAQIVSVMLPEDAEKLHQVESILPHR 110 
hmC11B1  KMIQILREQGQENLHLEMHQVFRELGPIFRHSVGKTQIVFVTLPEDVEKLYQVESTHPCR 112 
rC11B2   KMIQILREQGQENLHLEMHQAFQELGPIFRHSAGGAQIVSVMLPEDAEKLHQVESILPRR 120 
mC11B2   KMIQILREQGQENLHLEMHQVFRELGPIFRHSVGKTQIVSVMLPEDAEKLHQVESMLPRR 110 
CYP108   R---------------------DEQPLAMAHIEGYDPMWIATKHADVMQIGKQPGLFSNA 73 
CYP101   ----------------------NPSNLSAGVQEAWAVLQESNVPDLVWTRCNGGHWIATR 68 
            .   ... .    .  .             .   :        .    :     .
      C’-Helix  C-Helix D-Helix
hC11B2   --MILEPWVAYRQHRGHKCGVFLLNGPEWRFNRLRLNPDVLSPKAVQRFLPMVDAVARDF 168 
hC11B1   --MSLEPWVAYRQHRGHKCGVFLLNGPEWRFNRLRLNPEVLSPNAVQRFLPMVDAVARDF 168 
pC11B1   --DVPGPWLAYRHLRGHKCGVFLLNGPTWRLDRLQLNPGVLSLQAMQKFTPLVDGVARDF 168 
bC11B1   --MILEPWLAYRQARGHKCGVFLLNGPQWRLDRLRLNPDVLSLPALQKYTPLVDGVARDF 168 
rC11B1   --MPLEPWVAHRELRGLRRGVFLLNGADWRFNRLQLNPNMLSPKAIQSFVPFVDVVARDF 168 
hmC11B1  --MPLESWIVHRELRGLGRGVFLLNGPEWYFNRLQLNPNVLSPKAVQKFVPLVDGIARDF 170 
rC11B2   --MHLEPWVAHRELRGLRRGVFLLNGAEWRFNRLKLNPNVLSPKAVQNFVPMVDEVARDF 178 
mC11B2   --MHLEPWVAHRELRGLRRGVFLLNGPEWRLNRLRLNRNVLSPKAVQKFVPMVDMVARDF 168 
CYP108   --EGSE--ILYDQNNEAFMRSISGGCPHVIDSLTSMDPPTHTAYRGLTLNWFQPASIRKL 129 
CYP101   GQLIREAYEDYRHFSSECPFIPREAGEAYDFIPTSMDPPEQRQFRALANQVVGMPVVDKL 128 
               .   : .                      ::              .      .: 
          E’-Helix  E-Helxi  SRS-1         F-Helix 
hC11B2 SQALKKKVLQNARGSLTLDVQPSIFHYTIEASNLALFGERLGLVGHSPSSASLNFLHALE 228 
hC11B1   SQALKKKVLQNARGSLTLDVQPSIFHYTIEASNLALFGERLGLVGHSPSSASLNFLHALE 228 
pC11B1   SQALRARVMQNARGSLTLDIKPSIFRYTIEASNLVLFGERLGLLAHQPNPESLDFIHALE 228 
bC11B1   SQTLKARVLQNARGSLTLDIAPSVFRYTIEASTLVLYGERLGLLTQQPNPDSLNFIHALE 228 
rC11B1   VENLKKRMLENVHGSMSINIQSNMFNYTMEASHFVISGERLGLTGHDLKPESVTFTHALH 228 
hmC11B1  VDNLKKKMLESVHGSFSMDFQSSVFNYTIEASHFVLFGERLGLIGRDLSPDSLKFLHTLH 230 
rC11B2   LEALKKKVRQNARGSLTMDVQQSLFNYTIEASNFALFGERLGLLGHDLNPGSLKFIHALH 238 
mC11B2   LETLKEKVLQNARGSLTMDVQQSLFNYTIEASNFALFGERLGLLGHDLSPGSLKFIHALH 228 
CYP108   EENIRRIAQASVQRLLDFDGECDFMTDCALYYPLHVVMTALGVPEDD-EPLMLKLTQDFF 188 
CYP101   ENRIQELACS-LIESLRPQGQCNFTEDYAEPFPIRIFMLLAGLPEED----IPHLKYLTD 183 
          : ::     .    :  :   ..         : :     *:   . ..    :
        G-Helix              SRS-2
hC11B2 VMFKSTVQLMFMPRSLSRWISPKVWKEHFEAWDCIFQYGDNCIQKIYQELAFNRPQHYTG 288 
hC11B1   VMFKSTVQLMFMPRSLSRWTSPKVWKEHFEAWDCIFQYGDNCIQKIYQELAFSRPQQYTS 288 
pC11B1   VMFKSTVQLMFMPRSLSRWTSTGTWKEHFEAWDCIFQYANKAIQRLYQELTLGHPWHYSG 288 
bC11B1   AMLKSTVQLMFVPRRLSRWMSTNMWREHFEAWDYIFQYANRAIQRIYQELALGHPWHYSG 288 
rC11B1   SMFKSTTQLMFLPKSLTRWTSTRVWKEHFDSWDIISEYVTKCIKNVYRELAEGRQQSWS- 287 
hmC11B1  SMFKTTTQLLYLPRSLTRWTSTRVWKENLESWDFISEYVTKCIKNVYRELAEGRPQSWS- 289 
rC11B2   SMFKSTTQLLFLPRSLTRWTSTQVWKEHFDAWDVISEYANRCIWKVHQELRLGSSQTYSG 298 
mC11B2   SMFKSTSQLLFLPKSLTRWTSTRVWKEHFDAWDVISEYANRCIWKVHQELRLGSSQTYSG 288 
CYP108   GVHEPDEQAVAAPRQSADEAARRFHETIATFYDYFNGFT-------VDRRSCPKDDVMSL 241 
CYP101   QMTRPD-------------GSMTFAEAKEALYDYLIPIIE-------QRRQKPGTDAISI 223 
          : ..  .    .   :   :    .     :* :      .      .         :
    SRS-3



Discussion  91

               H-Helix I-Helix J-Helix
hC11B2   IVAELLLKAELSLEAIKANSMELTAGSVDTTAFPLLMTLFELARNPDVQQILRQESLAAA 348 
hC11B1   IVAELLLNAELSPDAIKANSMELTAGSVDTTVFPLLMTLFELARNPNVQQALRQESLAAA 348 
pC11B1   VVAELLTHANMTVDAIKANSIDLTAGSVDTTAYPLLMTLFELARNPEVQQALRQESLAAA 348 
bC11B1   IVAELLMRADMTLDTIKANTIDLTAGSVDTTAFPLLMTLFELARNPEVQQAVRQESLVAE 348 
rC11B1   VISEMVAQSTLSMDAIHANSMELIAGSVDTTAISLVMTLFELARNPDVQQALRQESLAAE 347 
hmC11B1  VTAELVAERTLSMDAIQANSMELIAGSTDTTSTPLVMTFFELARNPDVQQALRQESLAAE 349 
rC11B2   IVAALITQGALPLDAIKANSMELTAGSVDTTAIPLVMTLFELARNPDVQQALRQETLAAE 358 
mC11B2   IVAELISQGSLPLDAIKANSMELTAGSVDTTAIPLVMTLFELARNPDVQKALRQESLAAE 348 
CYP108   LANSKLDGNYIDDKYINAYYVAIATAGHDTTSSSSGGAIIGLSRNP-------------- 287 
CYP101   VANGQVNGRPITSDEAKRMCGLLLVGGLDTVVNFLSFSMEFLAKSP-------------- 269 
         :    :    :  .  :     : ... **.      ::  *::.*. ..   ..:  :
   SRS-4      K-helix
hC11B2 ASISEHPQKATTELPLLRAALKETLRLYPVGLFLERVVSSDLVLQNYHIPAGTLVQVFLY 408 
hC11B1   ASISEHPQKATTELPLLRAALKETLRLYPVGLFLERVVSSDLVLQNYHIPAGTLVRVFLY 408 
pC11B1   ARISENPQKAITELPLLRAALKETLRLYPVGIFLDRCVTSDLVLQNYHIPAGTLVKVLLY 408 
bC11B1   ARISENPQRAITELPLLRAALKETLRLYPVGITLEREVSSDLVLQNYHIPAGTLVKVLLY 408 
rC11B1   ASIVANPQKAMSDLPLLRAALKETLRLYPVGSFVERIVHSDLVLQNYHVPAGTFVIIYLY 407 
hmC11B1  ASIAANPQRAMSDLPLLRAALKETLRLYPVGTFLERILSSDLVLQNYHVPAGTVLNVNLY 409 
rC11B2   ASIAANPQKAMSDLPLLRAALKETLRLYPVGGFLERILNSDLVLQNYHVPAGTLVLLYLY 418 
mC11B2   ASIAANPQKAMSDLPLLKAALKETLRLYPVGGFLGRILSSDLVLQNYHVPAGTLVLLYLY 408 
CYP108   ----EQLALAKSDPALIPRLVDEAVRWTAPVKSFMRTALADTEVRGQNIKRGDRIMLSYP 343 
CYP101   ----EHRQELIERPERIPAACEELLRRFSLVADG-RILTSDYEFHGVQLKKGDQILLPQM 324 
         :    :          :    .* :*  .      *   :*  .:. ::  *  : :
  K’helix      SRS-5          L-heix
hC11B2 SLGRNAALFPRPERYNPQRWLDIRGSGRNFHHVPFGFGMRQCLGRRLAEAEMLLLLHHVL 468 
hC11B1   SLGRNPALFPRPERYNPQRWLDIRGSGRNFYHVPFGFGMRQCLGRRLAEAEMLLLLHHVL 468 
pC11B1   SLGRNPAVFARPERYHPQRWLDNQGSGTRFPHLAFGFGMRQCLGRRLAQVEMLLLLHHVL 468 
bC11B1   SLGRNPAVFARPESYHPQRWLDRQGSGSRFPHLAFGFGVRQCLGRRVAEVEMLLLLHHVL 468 
rC11B1   SMGRNPAVFPRPERYMPQRWLERKRS---FQHLAFGFGVRQCLGRRLAEVEMLLLLHHML 464 
hmC11B1  SMGRNPAVFPRPERYMPQRWLERKRS---FKHLAFGFGVRQCLGRRLAEAEMMLLLHHVL 466 
rC11B2   SMGRNPAVFPRPERYMPQRWLERKRS---FQHLAFGFGVRQCLGRRLAEVEMLLLLHHML 475 
mC11B2   SMGRNPAVFPRPERYMPQRWLERKRS---FQHLAFGFGVRQCLGRRLAEVEMMLLLHHIL 465 
CYP108   SANRDEEVFSNPDEFDITRFPN--------RHLGFGWGAHMCLGQHLAKLEMKIFFEELL 395 
CYP101   LSGLDERENACPMHVDFSRQKVS--------HTTFGHGSHLCLGQHLARREIIVTLKEWL 376 
           . :    . *      *      :.    *  ** * : ***:::*. *: : :.. * 
       Heme-binding 
hC11B2   KHFLVETLT-QEDIKMVYSFILRPGTSPLLTFRAIN--- 503 
hC11B1   KHLQVETLT-QEDIKMVYSFILRPSMCPLLTFRAIN--- 503 
pC11B1   KNFLVETLV-QEDIKMIYRFIMTPSTLPLLTFRAIS--- 503 
bC11B1   KNFLVETLE-QEDIKMVYRFILMPSTLPLFTFRAIQ--- 503 
rC11B1   KTFQVETLR-QEDMQMVFRFLLMPSSSPFLTFRPVS--- 499 
hmC11B1  KSFHVETQE-KEDVRMAYRFVLMPSSSPLLTFRPVN--- 501 
rC11B2   KTFQVETLR-QEDVQMAYRFVLMPSSSPVLTFRPIS--- 510 
mC11B2   KTFQVETLR-QEDVQMAYRFVLMPSSEPVLTFRPVS--- 500 
CYP108   PKLKSVELS-GPPRLVATNFVGGPKNVPIRFTKA----- 428 
CYP101   TRIPDFSIAPGAQIQHKSGIVSGVQALPLVWDPATTKAV 415 
           :                ::      *.    .
     SRS-6  

Figure 4.2: Multiple sequence alignment of CYP11B1 and CYP11B2 of human, 

bovine, mouse, rat and pig with CYP108 and CYP101. The alignment was done using the 

program CLUSTALW 1.8 (Berman et al. 2000). The underlined part in the CYP11B2 sequence 

corresponds to the helix. The red residues indicate mutations which were detected in patiens. 

Yellow areas indicate SRS (substrate recognition site) in CYP2 family members indentified by 

Gotoh (Gotoh 1992).
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Figure 4.3: Three-dimensional molecular model of CYP11B2. A, Amino terminus and 

carboxyl terminus are marked by N and C, respectively. The helix I is colored in brown, the helix 

L is colored in red. B and C, model of wild type CYP11B2 and mutant L451F in the immediate 

heme environment. The larger size of F451 compared with L451 can be clearly seen. D and E,

model of wild type CYP11B2 and mutant L451F in the heme environment showing the surfaces 

of neighboring residues (Q449, C450, G452, R453, R454, L455, D147, R143, L106). The larger 

size of the phenylalanine side chain after the L451F replacement causes steric effects with the 

heme and residue D147 (black arrows) which is involved in the regulation of CYP11B isoform 

specific substrate conversion (Nguyen et al. 2008). 

In conclusion, we detected a novel missense mutation (L451F) within the CYP11B2 gene 

of a patient suffering from CMO I deficiency. The in vitro expression of cDNA 

constructs containing the sequence change in HCT116 p53-/- and COS-1 cells 

demonstrated that the L451F mutant abolished the CYP11B2 activity. Furthermore, our 

molecular model indicated a steric effect in the immediate vicinity of the heme which 

could provide new insights for the understanding of cytochrome P450 structure-function 

relationships.

4.2.2 Patient 2: Compound heterozygous mutant (R490 1nt and silent 

mutation in the last nuculeotide of exon 5) 

The genotype/phenotype correlation in aldosterone synthase deficiency is not always 

straightforward. Kayes-Wandover et al 2001 (Kayes-Wandover et al. 2001b) reported a 

47-year-old man who first presented with CMO type I deficiency after developing 

hyperkalemia in preparation for a barium enema but past medical history was notable for 

failure to thrive in infancy. This patient was homozygous for a duplicaton of six 

nucleotides at codon 143 in exon 3. Later, a CYP11B2 gene of a girl has discovered being 

a compound heterozygous for nonsense mutations that encode a truncated protein, but 

displays biochemical features intermediate between those of CMO I and CMO II 

(Williams et al. 2004b). Besides, five patients in four unrelated kindreds with 

hyperreninemic hypoaldosteronism presenting in early infancy have been described in 
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whom no mutations in the CYP11B2 could be detected (Kayes-Wandover et al. 2001a). 

In addition, one girl has been studied displaying aldosterone synthase deficiency type I, 

but only one heterozygous mutation was detected in the CYP11B2 gene (Wasniewska et 

al. 2001).

In our case, the patient had symptoms of aldosterone synthase deficiency with low 

aldosterone and a small increase of costicosterone and 18-hydroxycosticosterone. The 

ratios of B/18-OH-B and 18-OH-B/Aldo (after 16 yrs treatment) were not typical of 

either CMO I or CMO II. The genotype described clearly a new compound heterozygous 

showing a silent mutation at the last nucleotide of exon 5 and R490 1nt which both 

abolished in vitro enzyme activity. The phenotype of her brother was not reported 

although the genotype is the same as the patient.  

Silent mutations at the last nucleotide of exons (substitution of G to A; or C to A; or G to 

C) have been also identified in some other genetic diseases as seen in Table 4.1. These 

silent mutations influenced transcription by skipping or retaining an intron. The splice 

site consensus sequences are located at exon-intron junctions and are conserved 

phylogenetically (Cartegni et al. 2002; Shapiro et al. 1987). Each nucleotide in the splice 

site motif has a differing rate of variance, with the 5’ GT and the 3’ AG motifs being the 

most highly conserved. Recognition of such motif is important for understanding splicing 

mechanisms and helps to predict the consequences of changes identified in genomic 

DNA. In our study, the results of maximum entropy (MaxEnt) showed that the splice site 

score of the normal gene is 4.63 and the splice site score of silent mutation (c.954G>A) is 

-5.75. This predicted that mutation c.954G>A alters the splice site. 

The present c.954G>A mutation at the last nucleotide of exon 5 resulted in aberrant 

splicing. In vitro splicing analysis clearly showed that the RT-PCR product from 

c.954G>A mutant (T318T) resulted in an intron 5 retention (812 bp) (see Figure 3.17). 

This indicated that c.954G>A mutant was responsible for a missing splicing at this 

position of CYP11B2 mRNA. However, a c.954G>C mutation at the last nucleotide of 

exon 5 of the CYP11B1 gene in a patient with severe steroid 11 -hydroxylase deficiency 
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did not affect the correct splicing of CYP11B1 mRNA (Chabre et al. 2000). We suggested 

that most of the G>A mutations at the last nucleotide of exon were responsible for the 

abnormal splicing of mRNA in comparison to G>C mutation. Furthermore, we identified 

a novel deletion mutant (R490 1nt) which leads to a shift in the translational reading 

frame of CYP11B2 (no stop codon at position 504 and addition of 170 amino acids in the 

CYP11B2). The expression of CYP11B2 cDNA containing this mutation in COS-1 cells 

clearly showed that the R490 1nt mutation led to an impaired activity of CYP11B2. 

Taken together, the in vitro analysis of c.954G>A mutation at the last nucleotide of exon 

5 and transfection analysis of deletion mutant (R490 1nt), leading to frame-shift and 

addition amino acids, indicate that the patient got CMO I phenotype rather than CMO II 

phenotype.

The elevated corticosterone (B) and 18-OH-11-deoxycorticosterone (18-OH-DOC) 

plasma levels in this patient might be explained by the fact that CYP11B1 catalyzes 11 -

and 18- hydroxylation to form B and 18-OH-DOC, respectively in the zona glomerulosa. 

However, CYP11B1 can not catalyze the 18-hydroxylation at position 18 of B to form 

18-OHB as well as oxidation of the 18-hydroxy group to form aldosterone. Rosler 

(Rosler 1984) presented that in each affected individual with aldosterone synthase 

deficiency the clinical severity of the disease decreases with age. Continued 

mineralocorticoid replacement therapy after childhood is not always necessary, as on 

clinical observation compensatory extra-adrenal salt-conserving mechanisms mature with 

age. Plasma renin activity is markedly elevated (up to 100 times normal) in affected 

infants and young children, but it may be normal in adults (White et al. 1994a).  

In conclusion, we have described here the first example that c.954G>A mutation at the 

last nucleotide in exon 5 of the CYP11B2 gene leads to an abnormal splice site by a 

retention of intron 5 upon transcription of the mRNA of this gene. In addition, in vitro

analysis of the R490 1nt mutation in COS-1 cells indicated that this mutation effected 

activity of CYP11B2. The in vitro analysis of the two mutants coincides with a clinical 

picture of a patient exhibiting CMO I deficiency. However, the biochemical features of 

the patient present an intermediate form between CMO I and CMO II rather than the 
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classical CMO I. Further studies are required to identify all of the factors involved in 

aldosterone synthase deficiency and the regulatory sequences that influence the complex 

genotype-phenotype of this disease. In addition, the biochemical features of the patient’s 

brother should be reported and compared with the data of this patient. 

Table 4.1 Silent mutations in the last nucleotide of the exon 

Gene Nucleotide Mutation Exon Consequence Ref.

ATM G A S709S 16 Skipping (Teraoka et al. 1999) 

ATM G A S1135S 26 Skipping (Teraoka et al. 1999) 

HEXA G A L187L 5 Skipping (Akli et al. 1990) 

LIPA G A Q277Q 8 exon 8 deletion (Tadiboyina et al. 2005) 

PTS G A E81E 4 Skipping  (Imamura et al. 1999) 

LMNA C A K171K 2 Skipping (Todorova et al. 2003) 

ALDOB G A K320K 3 12 nucleotide 

deletion 

(Sanchez-Gutierrez et 

al. 2002) 

KCNQ1 G C A344A 6 Skipping (Murray et al. 1999) 

PK G A A423A 9 Skipping (Kanno et al. 1997) 

HS G C L100L 3 intron 3 retention (Garbarz et al. 1998) 

Aldo G A T318T 5 Intron 5 retention This study 

ATM, ataxia telangiectasia mutated; HEXA, hexosaminidase; LIPA, lipase A; PTS, 6-

pyruvoyltetrahydropterin synthase; LMNA, laminopathies; ALDOB, aldolase B; KCNQ1 

previously named KVLQT1, potassium channel of long-QT syndrome; PK, pyruvate 

kinase; HS, hereditary spherocytosis; Aldo, aldosterone. 

4.2.3 Patient 3: Compound heterozygous mutant (S315R and R374W) 

Clinically, the patient exhibited a growth failure as a child. Biologically, no 18-hydroxy- 

tetrahydro-corticosterone and high tetrahydrocorticosterone in urinary samples were 

observed by GC/MS measurement, a pattern typical of CMO I deficiency. This is the 

typical picture for CMO I deficiency because functionally impaired CYP11B2 does not 
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convert corticosterone (B) efficiently to the 18-oxygenated metabolites and, as a 

consequence, the B-derived metabolites THA and THB increase in the urine. B can, 

however, still be produced from 11-deoxycorticosterone by CYP11B1, a 93% identical 

mitochondrial cytochrome P450 isozyme (Mornet et al. 1989). However, CYP11B1 only 

catalyzes the 18-hydroxylation of B to form 18-OH-B with very small extent (Pascoe et 

al. 1992a; Portrat-Doyen et al. 1998), but poorly supports the following 18-oxidation to 

form aldosterone. Thus, it leads to an accumulation of derivatives of corticosterone. 

Sequencing of the CYP11B2 gene confirmed the presence of mutations in this gene. Two 

novel missense mutations (S315R and R374W) were detected in the CYP11B2 of the 

patient. The protein expression of S315R and R374W mutants analyzed by Western blot 

(see Figure 3.19) showed that the two mutants could be expressed in COS-1 cells as the 

wild type. When testing the CYP11B2 activity using the substrates DOC in COS-1 cells 

it was shown that the replacement R374W led to impaired activity of CYP11B2; and the 

replacement S315R reduced the production of B and abolished the formation of 18-OH-B 

and Aldo. This means that the pattern of activity of the mutant enzyme coincides with the 

aldosterone synthase deficiency type I. Therefore, molecular genetic results may explain 

clinical data, which also indicated no 18-oxygenated metabolites, whereas the detected B 

metabolites in urine samples were formed more probably due to the activity of the 

isoenzyme CYP11B1.

Besides, we analyzed the functional and structural consequences of the two point 

mutations (S315R, R374W) in CYP11B2 on the basic of a computer model of this 

protein. When considering the alignment of amino acid sequences (see Figure 4.2) it can 

be seen that the arginine 374 residue is highly conserved in CYP11B1 and CYP11B2 

enzymes of humans, mice, bovine and pig, as well as in the microbial enzymes CYP108 

and CYP101. This indicates a functionally or structurally important role of R374 in 

cytochromes P450. In addition, residue R374 is invariant in a Glu-X-X-Arg motif which 

may be involved in stabilizing the core structure. It is on the proximal side of the heme 

(the putative redox partner binding site) (Peterson & Graham 1998) and also involved in 

the substrate recognition site 5 (SRS 5) (see Figure 4.2). Hasemann (Hasemann et al. 

1995) indicated that a variable-length 6-1 segment is anchored at one end by the K-helix 
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Glu-X-X-Arg motif and at the other end by the conserved arginine/ histidine propionate 

ligand in 1-4. Natural mutants occurring in the Glu-X-X-Arg motif have been shown to 

have abolished CYP11B1 activity (Mestres 2005).

Residue S315 in CYP11B2 has a non-polar character and plays a role in stabilizing the 

interaction of helix I with adjacent helices which are in close relation to the heme 

cofactor (see Figure 4.2) (Belkina et al. 2001; Gotoh 1992; Mestres 2005). The helix I of 

CYP11B1 and CYP11B2 also contains many hydrophobic amino acids and is the putative 

active site of CYP11B1 and CYP11B2 (Belkina et al. 2001). In addition, it has been 

demonstrated by changing CYP11B2 to CYP11B1 corresponding residues and vice versa 

(Bottner et al. 1998; Bottner et al. 1996) that the helix I of CYP11B1 and CYP11B2 is 

responsible for substrate specificity. The residue S315 is located within the central I-helix 

which is involved in heme binding and substrate recognition site (SRS4) (Belkina et al. 

2001; Gotoh 1992; Mestres 2005). The residue S315 is highly conserved in human, 

mouse, bovine and rat CYP11B1 and CYP11B2. Furthermore, residue S315 in CYP11B2 

is equivalent to residue G268 of CYP108 and residue G250 of CYP101 which are located 

in the AGXXT motif in the I-helix (Mestres 2005).  

Hydrogen bonds are important landmarks in protein conformation. They contribute to the 

stability of secondary structures and of interactions between specific side chain and main 

chain polar atoms. Thus, the change of the hydrogen bond network of CYP11B2 can 

influence substrate recognition and stability. To investigate whether the two mutants 

(S315R, R374W) affect the structure of CYP11B2, the changes of those residues in 

CYP11B2 were modelled by using the spdbv program (http:www.expasy.org/spdbv/) 

(Guex et al. 1997). The hydrogen bonds of K370, E371, T372, L373, R374, L375, F406, 

L407, Y408, S409, L410, R412, A414, L416, F417, P420, E421, and R422 residues were 

depicted in Figure 4.3A. The side chain of Y372 interacts with the side chain of L375 by 

one hydrogen bond. Seven hydrogen bonds are generated by interactions of R374 side 

chains with K370, E371, P420 and R422 residues. One backbone of F417 interacts with 

the side chain of R422 by two hydrogen bonds. Two hydrogen bonds are generated by 

interaction the backbone of A414 residue with backbone of F417 residue and R412 

residue. The backbone of L407 interacts with backbone of LS409 and L410 residue by 
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two hydrogen bones. One backbone of Y408 residue interacts with side chain of R412 by 

two hydrogen bonds. When the residue arginine at position 374 was substituted by 

tryptophan, six hydrogen bonds were removed between E371, P420 and R422 residues 

and W374 residue (see Figure 4.3B). One hydrogen bond was removed between A414 

residue and F417 residue but one hydrogen bond was generated between A414 residue 

and backbone of R412 residue. Furthermore, two hydrogen bonds between residues 307 

and S309, and between Y409 and R412 residue were lost but one hydrogen bond was 

created between the backbone of S409 residue and side chain of R412 residue. Thus, the 

replacement R374W (see Figure 4.3B) will result in a new hydrogen bond network of 

CYP11B2.

When considering the hydrogen bond network around amino acid S315 of CYP11B2, 

there were two hydrogen bonds between the backbone of S308 with either the backbone 

of T312 or the side chain of L311. Two hydrogen bonds were generated in the interaction 

of M309 with A313, and between E310 and G314. In addition, the backbone of S315 

interacts with the backbone of L311 (see Figure 4.4A). In this situation, the replacement 

of serine by arginine at amino acid position 315 again changes the hydrogen bond 

network of the protein close to the active site. One hydrogen bond was added between the 

backbone of L311 and the side chain of G314, but one hydrogen bond between the 

backbone of S308 and the side chain of S311 was lost, as compared with hydrogen bond 

around S315 (see Figure 4.4B).

Thus, a point mutation (S315R) within the I-helix and the other point mutation (R374W) 

of the Glu-X-X-Arg motif, might generate deleterious conformational changes of the 

enzyme and of the the substrate recognition site due to the formation of an alternative 

hydrogen bond network.

In conclusion, we detected two novel missense mutants (S315R; R374W) within the 

CYP11B2 of a patient suffering from CMO I deficiency. The expression of the two single 

mutants in the COS-1 cells indicated that both, S315R and R374W, mutants abolished 

enzyme activity. Moreover, our computer model indicated a formation of a new hydrogen 

bond network that could provide valuable insights into cytochrome P450 structural-

functional relationships. 
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Figure 4.3: Hydrogen bond network around residue 374 of different CYP11B2 

species. The criteria for the hydrogen bonds were a minimum distance between 1.2 Å and a 

maximum distance of 2.8 Å between acceptor and donor as well as a minimum angle of 120° 

between acceptor and donor. Models were generated as described under materials and methods. 

Blue dashed lines: hydrogen bonds of CYP11B2. Twelve white arrows show that hydrogen bonds 

were changed when arginine 374 was substituted by trytophan. A, Hydrogen bonds of WT 

(hydrogen bond around R372). B, Hydrogen bonds of mutant (hydrogen bond around W374).
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Figure 4.4: Hydrogen bond network around residue 315 of different CYP11B2 

species. The criteria for the hydrogen bonds were a minimum distance between 1.2 Å and a 

maximum distance of 2.8 Å between acceptor and donor as well as a minimum angle of 120°C 

between acceptor and donor. Models were generated as described under materials and methods. 

Blue dashed lines: hydrogen bonds of CYP11B2. The white arrows show that hydrogen bonds 

were changed when serine 315 was substituted by arginine. A, Hydrogen bonds of WT (hydrogen 

bond around S315). B, Hydrogen bonds of mutant (hydrogen bond around R315).
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4.2.4 Patient 4: Heterozygous mutant R181Q leading to CMO II 

deficiency

CMO II deficiency is characterized by high serum concentrations of corticosterone and 

18-hydroxycorticosterone and low concentrations of aldosterone, i.e. is a specific 

disorder only in the 18-methyloxidase activity of CYP11B2. As mentioned above, CMO 

II deficiency has been studied in seven Iranian Jewish kindreds in which all 12 patients 

were homozygous for 2 different point mutations, R181W and V386V (Pascoe et al. 

1992a). These mutants only cause disease when the individual is homozygous for both 

mutants or compound heterozygous of R181W and T318M (Zhang et al. 1995). When 

these mutations were individually introduced into the CYP11B2 cDNA and expressed in 

cultured cells, R181W reduced 18-hydroxylase and abolished 18-oxidase activities but 

left 11 -hydroxylase activity intact, whereas V386A caused a small but consistent 

reduction in the production of 18-hydroxycorticosterone.

In our case, analysis of the results of urinary steroid profile indicated that the patient has 

symptoms of CMO II deficiency: high levels of the B-TH-metab (tetrahydro-11-

corticosterone metabolites) derived from B, 18-OH-B-metab (tetrahydro-18-hydroxy-

corticosterone metabolites) derived from 18-OH-B, and a low level of Aldo. In addition 

to this, the ratios of the steroid profile are indicative for CMO-II deficiency. 

Genetically, we detected a heterozygous missense mutation (R181Q) in the CYP11B2 of 

this patient. The protein expression of CYP11B2-R181Q analyzed by the Western blot 

(see Figure 3.22) showed that the mutant could be expressed in COS-1 cells. When 

testing the CYP11B2 activity using the substrates DOC in COS-1 cells it was shown that 

the mutant R181Q led to an increased corticosterone (B), reduced 18-

hydroxylcorticosterone and abolished aldosterone (Aldo) level as compared with the 

CYP11B2-WT and the mock sample. This result can explain part of the urinary steroid 

profile which exhibited high levels of the B-TH-metab. As discussed above, B and 18-

OH-B can be produced from 11-deoxycorticosterone by CYP11B1, but CYP11B1 can 

not convert 18-OH-B to form Aldo. In addition, it is possible that the enzyme carrying 
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R181Q has more 18-oxidase activity in zona glomerulosa cells than is displayed in COS-

1 cells. So far, we did not find other mutations in the second allele (9 exons and 

boundaries of exon/intron). Therefore, it is not possible at the moment to fully explain the 

genotype-phenotype correlation of this patient. The disease could be due to other 

undetected mutations in the CYP11B2 gene, such as a mutation in the promoter or in an 

intron which disrupts splicing.

Summarizing, a heterozygous missense mutant R181Q was detected in the patient 

suffering from CMO II deficiency. The protein expression of CYP11B2-R181Q in COS-

1 cells indicated that this mutant increased corticosterone, reduced 18-

hydroxycorticosterone and abolished aldosterone.

4.3 11 -hydroxylase deficiency - Patient 5: replacement L299P in the 

CYP11B1 gene 

Congenital adrenal hyperplasia(CAH) ranks among the most frequent inborn errors of 

metabolism following an autosomal recessive trait. It is caused by the loss or severe 

decrease in activity in one of the five steroidogenic enzymes involved in cortisol 

biosynthesis. Approximately 90–95% of all cases are due to steroid 21-hydroxylase 

deficiency (White et al. 2000), and about 5–8% are caused by 11 -hydroxylase

deficiency of CYP11B1 (Speiser et al. 2003). CYP11B1 gene mutations were found 

within the entire encoding region (see Figure 1.7).

In our case, the index patient was presented with severe illness consisting of urosepsis, 

CMV, and EBV infection. Besides from haemodynamical stabilization, glucocorticoids 

seem to exert anti-inflammatory rather than immunosuppressive effects in severe septic 

infections and their administration have proven beneficial in septic shock patients without 

adrenal insufficiency (Keh et al. 2003). Additionally, decreased mortality has been 

observed in acutely ill patients who demonstrated functional adrenal insufficiency with 

lower random cortisol levels or attenuated cortisol response to corticotropin-releasing 

hormone when glucocorticoids were supplemented (Cooper et al. 2003). Therefore, the 

patient’s clinically severe state might have been provoked by hypocortisolism. Both our 
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siblings showed a consistent genital phenotype and borderline hypertension (95th Pc). 

However, pronounced differences of serum androgen levels (17-OHP, testosterone, 

DHEAS) could be detected. The diverse biochemical phenotype might be explained by 

the different age at the time of diagnosis and cross-reactivity of antibodies or interference 

of matrix using immunoassays (Makela et al. 1988; Wudy et al. 1995). 

Figure 4.5: Three-dimensional molecular model of CYP11B1. Amino terminus and 

carboxyl terminus are marked by N and C, respectively. The helix I is colored in brown. The 

L299 residue is located N terminal from the I helix of the CYP11B1 protein. 

Furthermore, genotype of our cases demonstrate for the first time the genital phenotype in 

46,XX patients with 11 -hydroxylase deficiency due to a homozygous L299P mutation 

in the CYP11B1 gene. Complete virilisation occurred in both siblings leading to male 

gender assignment after birth. The identical mutation has been found only recently in a 

compound heterozygous male patient from Iraq (L299P/c.1180delA, resulting in a 

premature termination at codon 429) who was first seen for symptoms of genital 

hyperplasia at the age of 2.5 years (Krone et al. 2005). Our expression studies using the 

HCT116 cells showed that the L299P mutant reduced the 11 -hydroxylase activity to 1.6 

 0.8% for the conversion of 11-deoxycortisol to cortisol. This result corresponds very 

well to the result of (Krone et al. 2005), describing a residual activity of this mutant of 

1.2 + 0.9% after expression in COS-7 cells. Functional analysis of L299P mutation 
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revealed markedly reduced enzymatic activity, assumedly caused by a change of the I 

helix position (see Figure 4.5) which results in a steric disarrangement of the polar and 

apolar parts of the heme group relative to the enzyme and hence altered three-

dimensional molecular structure (Krone et al. 2005). 

In conclusion, a homozygous mutation (L299P) was detected in two 46,XX siblings with 

11 -hydroxylase deficiency, leading to a near total loss of enzymatic activity and 

complete virilisation. The expression of cDNA constructs containing mutation L299P in 

HCT116 cells demonstrated that the L299P mutant reduces 11-hydroxylase activity to 1.6 

 0.8% for the conversion of 11-deoxycortisol to cortisol. 



Discussion  106

4.4 Outlook 

Mutations in CYP11B1 and CYP11B2 have been identified in patients sufferring from 

congenital adrenal hyperplasia and aldosterone synthase defficiency. The results from the 

present study will help to understand the relationship between phenotype and genotype. 

Moreover, the combination of heterologous expression analysis in cell culture and 

molecular modeling provides insight into structural-functional relationship of cytochrome 

P450s.

In the patients having no mutations or only one mutation in one allele, the CYP11B2 gene 

may have mutaions in the promoter regions or in introns, a mutation in which disrupts 

splicing. The effects on splice site by silent mutations should also be investigated. 

Identification of mutations in all the patients will provide information for diagnosis and 

for timely treatment of the patients. 
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A. Publications resulting from this work 

1) Aldosterone Synthase Deficiency Caused by a Homozygous L451F Mutation in the 

CYP11B2 Gene 

Huy-Hoang Nguyen1, Frank Hannemann1, Michaela F. Hartmann2, Stefan A. Wudy2,

Rita Bernhardt1. Mol Genet Metab. Vol 93/4 pp 458-467.

2) Complete virilisation in two 46,XX siblings with 11-beta-hydroxylase deficiency due to 

homozygous L299P mutation in the CYP11B1 gene 

Stefan Riedl, Huy-Hoang Nguyen, Franz Waldhauser, Susanne Clausmeyer *, Egbert 

Schulze *, Rita Bernhardt. Hormone research (in preparation). 

B. Chemicals and enzymes 

All commercially obtained materials used in this work were of the finest quality available 

purchased from the companies listed below: 

Chemicals:

Amersham Pharmacia Biotech 

Bio-Rad Laboratories 

BioTez GmbH 

Biozym GmbH 

Clontech Laboratories GmbH 

Difco Laboratories 

Dulbeco

Fluka AG 

Gibco/BRL GmbH 

Invitrogen BV 

Kodak

Merck

MWG Biotech GmbH 
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New England Biolabs 

Promega

Qiagen

Roche Molecular Biochemicals 

Serva GmbH & Co KG 

Sigma-Aldrich

Stratagene

Enzymes:

Bioline

Stratagene Ltd, Cambridge, UK 

New England Biolabs 

Boehringer

CLONTECH Laboratories

MBI Fermentas

Promega Corporation 

Radioactive-labeled chemicals:

Amersham Pharmacia Biotech 

NEN DuPont 

Consumables:

Amersham Pharmacia Biotech 

Fisher Scientific 

Falcon

Machery-Nagel GmbH & Co KG 

Millipore

Carl Roth GmbH 

Qiagen GmbH 
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C. Scientific apparatus 

Autoclave      Zirbus IMM 20 

CD-spectrometer     Jasco 715 spectropolarimeter 

DNA-Sequencer     Licor-DNA sequencer 4000 

Electrophoresis and blotting apparatus  Sigma-Aldrich system and 

EPR Bruker ESP300E spectrometer 

Iamging plates     Fuji 

Incubator      NewBrunswick Scientific 

Phosphoimager     Fuji Bas-2500 

SpeedVac      UniEquip Univapo 

Thermomixer      Eppendorf thermomixer 

Thermocycler      MJ Research 

UV/Vis spectrophotometer    Shimadzu UV-2101 PC 

Gene-QuantII-Photometer

Centrifuges      Sigma 3K30 (rotors 19776, 12153) 

Sigma 2K15 (rotor 12148) 

Hitachi Himac CP75 (rotors P45, P30) 

D. Genomic DNA of CYP11B2 and CYP11B1 

CYP11B2 gene was received from Kawamoto et al. (1992) publishes under the Accession 

number D13752. The exons are red. The start codon is bold. Primers are shown in under lines.

GGATCCTGCAAGGAGGGATACAAATTACATACATTTGTCAAAACCCACAGCATGTTGACCACCAG 65 

GAGGAGACCCCATGTGACTCCAGGACCCTGGTTGATAACAACGTATCGAGATTCCTCACATGGAA 130 

CCAGTGCGCTCCTGTGGTGGAGGGTGTACCTGTGTCAGGGCAGGGGGTACGTGGACATTTTCTGC 195 

AGTTTTTGATCAATTTTGCAATGAACTAAATCTGTGGTATAAAAATAAAGTCTATTAAAAGAATC 260 

CAAGGCTCCCTCTCATCTCACGATAAGATAAAGTCCCCATCCATTTTACTCCTCTCAGCCCTGGA 325 

GAAAGGAGAGGCCAGGTCCCACCACCTTCCACCAGCATGGACCCCCAGTCCAGACCCCACGCCTT 390 
       E16F
TTCTCAGCATCCTCAGACCAGCAGGACTTGCAGCAATGGGGAATTAGGCACCTGACTTCTCCTTC 455

ATCTACCTTTGGCTGGGGGCCTCCAGCCTTGACCTTCGCTCTGAGAGTCTCAGGCAGGTCCAGAG 520 

CCAGTTCTCCCATGACGTGATATGTTTCCAGAGCAGGTTCCTGGGTGAGATAAAAGGATTTGGGC 585 
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EXON 1 E1E6sF
TGAACAGGGTGGAGGGAGCATTGGAATGGCACTCAGGGCAAAGGCAGAGGTGTGCGTGGCAGCGC 650

CCTGGCTGTCCCTGCAAAGGGCACGGGCACTGGGCACTAGAGCCGCTCGGGCCCCTAGGACGGTG 715

CTGCCGTTTGAAGCCATGCCCCAGCATCCAGGCAACAGGTGGCTGAGGCTGCTGCAGATCTGGAG 780

GGAGCAGGGTTATGAGCACCTGCACCTGGAGATGCACCAGACCTTCCAGGAGCTGGGGCCCATTT 845

TCAGGTAAAGCCCTCCCTGGCCCTCGCTGGGAACACCCAGATCCCTGCCCCTGCTGCCCAGGACC 910 
E1R

CTGCCAGGCACTCAGCACTGCCATTCCCAGCAGGTCCCGGCACTCTGCATCCTTTGGAGGATGGG 975 

GAAGGAGTGCAGCACATGCTGGTCTGTGGTGCTGCCAGGGCAGGGGATAGTGCAGAGAAAACCCC 1040 

AGCTCACTGCAGAGAGGGCAGGACTCAGAAGCACTAAAGTTGAAAGGTTCCAGGGAGCCAGCAGG 1105 

AGGGCTTTAGCTGTGAAGCCGCTAATCCAGGAGCAGGGAGGGTGGACAGGAGACACTTTGGATTG 1170 

GGACTGCAGGGTGGGGCCACGAGGGACATGACCCCGTCCAGCAGGGCCTCCTGCTTGGCCCCACA 1235 
 EXON 2 
GGTACAACTTGGGAGGACCACGCATGGTGTGTGTGATGCTGCCGGAGGATGTGGAGAAGCTGCAA 1300

CAGGTGGACAGCCTGCATCCCTGCAGGATGATCCTGGAGCCCTGGGTGGCCTACAGACAACATCG 1365
E2R

TGGGCACAAATGTGGCGTGTTCTTGTTGTAAGCGGCGAGTTGGGAGCTGAGAGCTGGGAGCAGGG 1430 

TGGGCAGCCTGGGTGTAGGGGGGAGGCGAGAGAGGTAGGACCCAAAAGCACATCTGCCCTGGGCC 1495 

CCTGTGGTGGGCAGTGAGGGTGAGCACCCGGCCCAGAGGACGGCCATCCTGTGGGGTCGCGTCTG 1560 

CACTGTGGGTTGGGGAAGCAGGGCGGTGGTGGAGAAATGGGCACGGGCACCTCTGCAGAGAAGAC 1625 

GCAGAGCAATGAGCCCTTCTGTGTAGTGAGAACCCGCTCTGCACCAACCTCGGCGGCTGCTTTCT 1690 

CTTGCGGTCTGGGGACTGTCCTTCCCATAGGTCAGAAAACTGAGGCCCTGAGAAGGGGACTTCCA 1755 

CTGGCCCAGGTCACAGGCTGAGTGCTGAGCCTGGTGTTCGCCGGGGCCGCAGCCTCCCTCAGGGC 1820 

GCTCAGGGTCCCTGCAGTCCTGGCAAACCTTCCTGATGGGGACAGTCCGGGGCAGGAGGCAGGTG 1885 

GGGACGCAGGTGGCTGGTGGTTCCGTTGTTCTCAGAAGCAAGGCACAAGGTGGGGCGGTTGATGG 1950 

CACTGGGGAGGATGTTTCCTGGCCCGTGGAGAGGGTGGCGCCTGGTCAGGTGGGCAGGGAGAGGC 2015 

TGATGCTTGGAGTCGGTCACCTGCAGGGATGTTGTCATTAGGACGGGGGAAGGACTGGATGAGGA 2080 

TGTCACAGTGGTGACAGCCCCCACTCCATGGTAGGAAGGGAACGCTATTGGGAATAGTGGGGTTT 2145 

AGGTAAAAGGGCACCCGTGGGTCGGGGCCTTCACTGAGGCTGGCCTATAGATGACATCTGGGAGA 2210 

GAGTCAGGACCCAGGAAGGCAGGTCCAGGAGGCTGGGTGCGCATAATGGAAGGAAGGGGAGCGCT 2275 

CCTGTCTGTGTGTGTGTCTTGCATCTGTGCACATGCTGTGTGTTTCTCTGTACCTGCATTGCACA 2340 

TGTGTAGTGTGTGCACGTGTCGTGTGTGAATGTATGTGTGGTGTGTGTGCACAAGTGTCTGTGTG 2405 
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TGTGCATGTGCAGGTGCCGGCATGGGTGTAGTGTTTGTGCACACATGCACATGCGTCTCTTCACA 2470 

CATGGTGTTGAGGTCTTGCATGGGCGCACGTGTGCATGTGCATCTTCTGCCTGTCATCACTGTCA 2535 

ACAGCTCACAGCAGCCAGCTGGACATAAATAAAGGAGTTTTGCAGGAATGTGGCTGACAGGGGAA 2600 

ATTCCTCCCCACCATTCCCTGGGGGCATCCATGGAGCCCCCACGCACTCTGGCTGTGGGTAGGAT 2665 

GGCATGAAGCACAAAGCTTGGTTTCTGTCCTGCAGAAGATATAGATGCTTCACAGAGACAGCAGA 2730 

GCAGATGCCCCAGAGGCACTGTGCCCAGGGCGGGGAAGGGTGGGGAGGAGAGGGCAGCCAGGGGC 2795 

TCTCCCCTCAGGACACTGTGTGGGTGAGGTGGGCAAAGCTTGACAACAGGGGTCACCTCCTTTCT 2860 

TGGAGAAAAGCCCTACCCTGTTACTACAGGGAGGGCCCGCATGGGTGAGGTGGTGCCAGACTTGG 2925 
      E46F
GTCGCCAGGTCCCGGGAATGACCTCAGTTACCCTGTCAGCACCTGTGGGCAGAAGCTACCATCTC 2990 

ATCCCTGCTTAGACCTGAGTGGCCTTTGCCCAGCACCTGGAGGCCGCTCTGAGAAAAGGCTGCAG 3055 
       E3F
CTCGAACACAAACAGGCAGCTTCTACCAGGGCCCCCAGTCAGCTCCCTGCAGGCCGATTCCCCTT 3120

GGGGACAAGGAGGATGGGATACGGGTCAGGGCCTGTGTCTTGCTGGGGCGGCCTCACAAGCTCTG 3185 
EXON 3 E45R

CCCTGGCCTCTGTAGGAATGGGCCTGAATGGCGCTTCAACCGATTGCGGCTGAACCCAGATGTGC 3250

TGTCGCCCAAGGCCGTGCAGAGGTTCCTCCCGATGGTGGATGCAGTGGCCAGGGACTTCTCCCAG 3315

GCCCTGAAGAAGAAGGTGCTGCAGAACGCCCGGGGGAGCCTGACCCTGGACGTCCAGCCCAGCAT 3380

CTTCCACTACACCATAGAAGGTGTGGGCCATGCGGGAAGGTCCAGCCCCAGAGACCCTGGAGTGG 3445 
     E4F
CCAGGGATGGGGATGGAGGACTGAAGGGAGTGTGGGGAGGCAGCCAGGAGGCCTGGGGCTGCCTT 3510 

E4E6sF EXON 4 
GTGCTCAGCAGTGCATCCTCCCCGCAGCCAGCAACTTAGCTCTTTTTGGAGAGCGGCTGGGCCTG 3575

GTTGGCCACAGCCCCAGTTCTGCCAGCCTGAACTTCCTCCATGCCCTGGAGGTCATGTTCAAATC 3640
E4R

CACCGTCCAGCTCATGTTCATGCCCAGGAGCCTGTCTCGCTGGATCAGCCCCAAGGTGTGGAAGG 3705

AGCACTTTGAGGCCTGGGACTGCATCTTCCAGTACGGTGAGGCCAGGGACCCGGGCAGTGCTATG 3770 

GGGAAGGGACACCATGGGGGCCCAATTTCTCCTTCTCCACCACCCAGTGGGGAATGGAGGCCACA 3835 

GGGAGGGGTCGGGGATTCCTCACCTTCCTGCCGGGGAGATTGGTGCGAGGCTGGGGCTGGGCTGG 3900 

GCTGATCCGGAGAATTTGGGATGAGAGCAGGGAGATTTGGGTGTCGGGGCAGTCTGGGCAGGAGG 3965
E5F
AGGACACTGAAGGATGCTTCCCAGCACCAAGATCTGAGGGCTGTCCCCTGCTCCCTGGACAGGTG 4030
EXON 5  E5E6sF    E48F
ACAACTGTATCCAGAAAATCTACCAGGAACTGGCCTTCAACCGCCCTCAACACTACACAGGCATC 4095

GTGGCGGAGCTCCTGTTGAAGGCGGAACTGTCACTAGAAGCCATCAAGGCCAACTCTATGGAACT 4160
 E5F
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CACTGCAGGGAGCGTGGACACGGTCAGGCCAGCAACCAGCCCCACCCAGAGAGGGTGATGCCAAG 4225 

CCTGCCTCCCAGGCACTGCCTGCCAATGCCACACGGCACCCACGTTCCCCATCCCCAGGCTACAG 4290 

GCCCCACATTTCTGTTGCCCTCAGCCTTCCCCCTCCTTTGTTAAGGGATGAGATTTGCAGGGGAG 4355 

GGGAAATGTGAGCTCCCCCTCACATGAGACTGAGTTTGCAGTTACCTGTGTGGGGATCCATGCTC 4420 

CAGGCTGGAAGAAAGTTGGATGAGGCCCTGGACACACAGCAGCTCTGTCCCCACTGGAAAGCTCT 4485 

GGGTGTACAAGGAGAAGGAGGGTTGAGAGGCAGCTGGAGGACTCCACTGGGCACCCTTCCCAGTG 4550 

TGCCCGGTCACCTTGGGCCAGAAATGTAGATGCATGGGAGGGCAGGGTTGTGGGGAAGACAGCAG 4615 

CACAGGCTCCAGCCAGTGCAGAGGGGCCTGTGGGTGCACAGTGGGGAGAACTCAATGGAAGCAGA 4680 

GGGAGCTGGGGCTCCAGAACTCCCTGGATGATGCTGAGGTGTGGCCCCCTGCCCTAATGGTGGCT 4745 

GTGAGAACCCGCCCTGAAGAGGCTGCAGGGGACCTGGGCCTTGGTGGAGATGGGGGTCACCTTTC 4810 

CCTGAAGAAGTCAGGGAATCTGGCCCAAGTGGTCATCAAGGTTTCAGATCCGGGGTCCCAGGGCT 4875 

CTGTTTTTGCTCAGGGCATGGATGTCTCCACCCCTCAGAGGGAGGTTGTCCTGGGAGGGGTGTCC 4940
E6F         EXON 6
CGGGGGCTGAGTCCTCCTGTGCAAGGTCTGACCCTGCAGACATGGCTTCTGTAGACAGCGTTTCC 5005
E47R

CTTGCTGATGACGCTCTTTGAGCTGGCTCGGAACCCCGACGTGCAGCAGATCCTGCGCCAGGAGA 5070

GCCTGGCCGCCGCAGCCAGCATCAGTGAACATCCCCAGAAGGCAACCACCGAGCTGCCCTTGCTG 5135
E1E6sR

CGGGCGGCCCTCAAGGAGACCTTGAGGTGGGTGCTGGCTGAGGCCTCCCTGTGGCCCTGGCCCCC 5200 

TGCTGGAGAGCAGCCCCCACTGGGTGGTGGCAGACAGAATCTGGGGCTGATAAACAGCGTCACCC 5265 

AGCAGCCCATTCCCCTGCACCTGCTCTTCCTCCCCCTCAAGGACAGGGAGCTCTTCTTCCTCTGG 5330 

AATCCCTCTTCAACGCCCTGGGGATTAACGTGGGGCATGTCCTTCTGCGCTCGGGGCTGCTTAAG 5395 

TTAGGGGAGGTTTGGCTGGGCTCAGCAGGTGCAAGGAAGCACTTCCTACGACCTGGGCTTCCCAT 5460 
    E7/8F
GGATCTGGGACCTCTGCGGGGTCTTCGGTAGGAAGGGTGCAGAGAGCACAGGGAGCCCCATCCAG 5525 
         EXON 7 
CTGAGGACCCTTTCTGTGGATGCCCCCACCTCCAGGCTCTACCCTGTGGGTCTGTTTTTGGAGCG 5590

E7F
AGTGGTGAGCTCAGACTTGGTGCTTCAGAACTACCACATCCCAGCTGGGGTGAGTGAGCCCCACA 5655 

CCCCTCGAGCTGAGAACCTCCCTCCCCAGTCATTCCCTGATCCCTGCTCTGCACCGTCCGCAGAC 5720
EXON 8 
ATTGGTACAGGTTTTCCTCTACTCGCTGGGTCGCAATGCCGCCTTGTTCCCGAGGCCTGAGCGGT 5785

ATAATCCCCAGCGCTGGCTAGACATCAGGGGCTCCGGCAGGAACTTCCACCACGTGCCCTTTGGC 5850

TTTGGCATGCGCCAGTGCCTCGGGCGGCGCCTGGCAGAGGCAGAGATGCTGCTGCTGCTGCACCA 5915

CGTAAGCAGGCCTGGGGGCGGGGGCGGGACCTGGGCAGCAGAGGCGGGACCTGCACACTGGGGGC 5980 
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GGGGCTTGCATGGTGTGATTGACACCTGGGAACAGTGGATGGGGCCTTGGTTGGTTGAGGTCGGC 6045 

GTGACCAGGGAGGATCTGTGCTGAGCAAGACAGGGTAGGATCTGGGTGAGGTTGCTTCTAAACAT 6110 

TGAAATGGGGACTAGGGGAGTGGGGTGGAGCCTGTACAGAATAATGGGGCTTGGGCAAGACCTGG 6175 

GCAGGATTCAGTCTGGGCCTGGTCCGCAAGGTGGGGCTGGTCAGAAATGGGATAGGTTGGGGCCC 6240 

AGGCTGCTGCTCCCCCTTCAGCATAATTGTTGCACCTGGGACGATGGGAGGAAGCTGCCCCAGGT 6305 
EXON 9 

CCATGGGCTACTGACCAGGCCAGATGGAAACCCAGCCTCTGTCCTAGGTGCTGAAGCACTTCCTG 6370

GTGGAGACACTAACTCAAGAGGACATAAAGATGGTCTACAGCTTCATATTGAGGCCTGGCACGTC 6435
E19sR

CCCCCTCCTCACTTTCAGAGCGATTAACTAGTCTTGCATCTGCACCCAGGGTCCCAGCCTGGCCA 6500 
         E9R
CCAGCTTCCCTCTGCCTGACCCCAGGCCACCTGTCTTCTCTCCCACGTGCACAGCTTCCTGAGTC 6565

ACCCCTCTGTCCAGCCAGCTCCTGCACAAATGGAACTCCCCAGGGCCTCCAGGACTGGGGCTTGC 6630 
E49R

CAGGCTTGTCAAATAGCAAGGCCAGGGCACAGCTGGAGACGATCTTGCTGGCAGGGCCTGGCCTT 6695 

GTCCCCAGCCCCACCTGGCCCCTTCTCCAGCAAGCAGTGCCCTCTGGACAGCTTGACTCTACTCC 6760 

TCCCAGCGCTGGCTCCAGGCTCCTCATGAGGCCATGCAAGGGTGCTGTGATTTTGTCCCTTGCCT 6825 

TCCTGCCTAGTCTCACATGTCCCTGTCCCTCTCGCCCTGGCCAGGGCCTCTGTGCAGACAGTGTC 6890 

AGAGTCATTAAGCGGGATCC       6910 

Sequence of human CYP11B2 cDNA 

Nucleotide sequence translated an amino acid sequence. The sequence begins with the start 

codon (M-methionine) and ends with the stop codon (-). Numbers refer on the right to the 

nucleotides and the amino acids. 
atggcactcagggcaaaggcagaggtgtgcgtggcagcgccctggctgtccctgcaaagg 60 

 M  A  L  R  A  K  A  E  V  C V  A  A  P  W  L  S  L  Q  R  20 
gcacgggcactgggcactagagccgctcgggcccctaggacggtgctgccgtttgaagcc 120 
 A  R  A  L  G  T  R  A  A  R A  P  R  T  V  L  P  F  E  A  40 
atgccccagcatccaggcaacaggtggctgaggctgctgcagatctggagggagcagggt 180 
 M  P  Q  H  P  G  N  R  W  L R  L  L  Q  I  W  R  E  Q  G  60 
tatgagcacctgcacctggagatgcaccagaccttccaggagctggggcccattttcagg 240 
 Y  E  H  L  H  L  E  M  H  Q T  F  Q  E  L  G  P  I  F  R  80 
tacaacttgggaggaccacgcatggtgtgtgtgatgctgccggaggatgtggagaagctg 300 
 Y  N  L  G  G  P  R  M  V  C V  M  L  P  E  D  V  E  K  L  100 
caacaggtggacagcctgcatccctgcaggatgatcctggagccctgggtggcctacaga 360 
 Q  Q  V  D  S  L  H  P  C  R M  I  L  E  P  W  V  A  Y  R  120 
caacatcgtgggcacaaatgtggcgtgttcttgttgaatgggcctgaatggcgcttcaac 420 
 Q  H  R  G  H  K  C  G  V  F L  L  N  G  P  E  W  R  F  N  140 
cgattgcggctgaacccagatgtgctgtcgcccaaggccgtgcagaggttcctcccgatg 480 
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 R  L  R  L  N  P  D  V  L  S P  K  A  V  Q  R  F  L  P  M  160 
gtggatgcagtggccagggacttctcccaggccctgaagaagaaggtgctgcagaacgcc 540 
 V  D  A  V  A  R  D  F  S  Q A  L  K  K  K  V  L  Q  N  A  180 
cgggggagcctgaccctggacgtccagcccagcatcttccactacaccatagaagccagc 600 
 R  G  S  L  T  L  D  V  Q  P S  I  F  H  Y  T  I  E  A  S  200 
aacttagctctttttggagagcggctgggcctggttggccacagccccagttctgccagc 660 
 N  L  A  L  F  G  E  R  L  G L  V  G  H  S  P  S  S  A  S  220 
ctgaacttcctccatgccctggaggtcatgttcaaatccaccgtccagctcatgttcatg 720 
 L  N  F  L  H  A  L  E  V  M F  K  S  T  V  Q  L  M  F  M  240 
cccaggagcctgtctcgctggatcagccccaaggtgtggaaggagcactttgaggcctgg 780 
 P  R  S  L  S  R  W  I  S  P K  V  W  K  E  H  F  E  A  W  260 
gactgcatcttccagtacggtgacaactgtatccagaaaatctaccaggaactggccttc 840 
 D  C  I  F  Q  Y  G  D  N  C I  Q  K  I  Y  Q  E  L  A  F  280 
aaccgccctcaacactacacaggcatcgtggcggagctcctgttgaaggcggaactgtca 900 
 N  R  P  Q  H  Y  T  G  I  V A  E  L  L  L  K  A  E  L  S  300 
ctagaagccatcaaggccaactctatggaactcactgcagggagcgtggacacgacagcg 960 
 L  E  A  I  K  A  N  S  M  E L  T  A  G  S  V  D  T  T  A  320 
tttcccttgctgatgacgctctttgagctggctcggaaccccgacgtgcagcagatcctg 1020 
 F  P  L  L  M  T  L  F  E  L A  R  N  P  D  V  Q  Q  I  L  340 
cgccaggagagcctggccgccgcagccagcatcagtgaacatccccagaaggcaaccacc 1080 
 R  Q  E  S  L  A  A  A  A  S I  S  E  H  P  Q  K  A  T  T  360 
gagctgcccttgctgcgggcggccctcaaggagaccttgcggctctaccctgtgggtctg 1140 
 E  L  P  L  L  R  A  A  L  K E  T  L  R  L  Y  P  V  G  L  380 
tttttggagcgagtggtgagctcagacttggtgcttcagaactaccacatcccagctggg 1200 
 F  L  E  R  V  V  S  S  D  L V  L  Q  N  Y  H  I  P  A  G  400 
acattggtacaggttttcctctactcgctgggtcgcaatgccgccttgttcccgaggcct 1260 
 T  L  V  Q  V  F  L  Y  S  L G  R  N  A  A  L  F  P  R  P  420 
gagcggtataatccccagcgctggctagacatcaggggctccggcaggaacttccaccac 1320 
 E  R  Y  N  P  Q  R  W  L  D I  R  G  S  G  R  N  F  H  H  440 
gtgccctttggctttggcatgcgccagtgcctcgggcggcgcctggcagaggcagagatg 1380 
 V  P  F  G  F  G  M  R  Q  C L  G  R  R  L  A  E  A  E  M  460 
ctgctgctgctgcaccacgtgctgaagcacttcctggtggagacactaactcaagaggac 1440 
 L  L  L  L  H  H  V  L  K  H F  L  V  E  T  L  T  Q  E  D  480 
ataaagatggtctacagcttcatattgaggcctggcacgtcccccctcctcactttcaga 1500 
 I  K  M  V  Y  S  F  I  L  R P  G  T  S  P  L  L  T  F  R  500 
gcgattaactag        1512 
 A  I  N  -          503 

genomic DNA of CYP11B1 

AGTTTTGGATCTTTCCTGCTTTCTCTTGTGGGCATTTAGTGCTATAAATTTCCCTCTACACACTG  65 

CTTTGAATGTGTTCCAGAGATTCTGGTATGCTGTGTCTTTGTTCTCGTTGGTTTCAAGAACATCT 130 

TTATTTCTGCCTTCATTTTGTTACGTACCCAGTAGTCATTCAGGAGCAGGTTGCTCAGTTTCCAT 195 

GTAATTGAGCGGTTTTGAGTGAGTTTCTTAATCCTGAGTTCTAGTTTGATTGCACTAAAATTTTT 260 

AAAAAGTAAAAAAAATACATGTGGTTTAATACAATTCATGCCAACTCATTCCCTCGTTTTTTGCT 325 

ATAAACCTTGCAAGGAGATGAATAATCCAAGGCTCTTGGATAAGATAAGGGCCCCATCCATCTTG 390 
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      H1F

CTCCTCTCAGCCCTGGAGGAGGAGGGAGAGTCCTTTTCCCCTGTCTACGCTCATGCACCCCCAAT 455 

GAGTCCCTGCCTCCAGCCCTGACCTCTGCCCTCGGTCTCTCAGGCAGATCCAGGGCCAGTTCTCC 520
H2F

CATGACGTGATCCCTCTCGAAGGCAAGGCACCAGGCAAGATAAAAGGATTGCAGCTGAACAGGGT 585 
EXON 1 

GGAGGGAGCATTGGAATGGCACTCAGGGCAAAGGCAGAGGTGTGCATGGCAGTGCCCTGGCTGTC 650

CCTGCAAAGGGCACAGGCACTGGGCACGAGAGCCGCCCGGGTCCCCAGGACAGTGCTGCCCTTTG 715

AAGCCATGCCCCGGCGTCCAGGCAACAGGTGGCTGAGGCTGCTGCAGATCTGGAGGGAGCAGGGT 780

TATGAGGACCTGCACCTGGAAGTACACCAGACCTTCCAGGAACTAGGGCCCATTTTCAGGTAAAG 845 

CCCTCCCTGGCCCTCGCTGGGAACACCCAGAGCCCTGCCCTTGCTGCCCAGGACCCTGCCGGGCA 910 

CTCAGCACTGCCATTCCCAGCAGGTCCCGGCACTCTGCATCCTTTGGAAGATGGGGAAGGAGTGC 975 

AGCACGTGCTGGTCTGTGGCGCTGCCAGGGCAGGGGATGGTGCAGAGCAAATCCCAGCTCGCTGC 1040 

AGAGAGGGCAGGACTCAGAGGCACTGAAGTTAAGAGGTTCCGGGCAGTCAGCAAGAGGGCTTTAG 1105 

CTGTGAAGCCGCTAATCCAGGAGAGGGGAGGGTGGACAGGAGACACTTTGGATTGGGACTGCAGG 1170 
          EXON 2 
GTGGGGCTAGCGGGGACATGGTCCCATCCAGCACGGCCTCGTGCTTGGCCCCACAGGTACGACTT 1235

GGGAGGAGCAGGCATGGTGTGTGTGATGCTGCCGGAGGACGTGGAGAAGCTGCAACAGGTGGACA 1300

GCCTGCATCCCCACAGGATGAGCCTGGAGCCCTGGGTGGCCTACAGACAACATCGTGGGCACAAA 1365

TGTGGCGTGTTCTTGCTGTAAGCGGCGAGCTGAGAGCTGGGAGCAGGGTGGGCAGCCTGGGTGTA 1430 

GGGGGGAGGCGAGAGAGGCAGGACCCAAAAGCACATCTGCCCTGGGCCCCTGTGGTGGGCAGTGA 1495 

GGGTGAGCACCCGACCCAGAGGACGGCCATTCCGTGGGGTCGTGTCTGCCCTGTGGGTTGGGGAA 1560 

GCAGGGCGGTGGTGGAGAAATGGGCACGGGCACCTCTGCAGAGAAGATGCAGAGCAATGAGCCCT 1625 

TCTGTGTAGTGAGAACCCGCTCTGCACCAACCTTGGCCGATGCTTTCTCTTGCGGTCTGGGGACT 1690 

GTCCTTCCCATAGGTCAGAAAACTGAGGCCCTGAGAAGGGTACTCCCACTGGCCCAGGTCACAGG 1755 

CTGAGTACTGAGCCTGGTGTTCGCCGGGGCCGCAGCCTCCCTCAGGGCGCTCAGGGTCCCTGCAG 1820 

TCCTGGCAAACCTTCCTGATGGGGACAGTCCGGGGCAGGAGGCAGGTGGGGATGCAGGTGGCTGG 1885 

TGGCTCCATTGTTCTCAGAAGCAAGGCACGAGGTGGGGCGGTTGATGGCACTGGGGAGGATGTTT 1950 

CCTGGCCCGTGCAGAGGGTGGCGCCTGGTCAGGTGGGCAGGGAGAGGCTGATGCTTGGAGTCAGT 2015 

CACCTGCAGGAATGTTGTCATTAGGACGGGGGAAGGACTGGACGAGGATGTCACAGTGGCGACAG 2080 

CCCCCACTCCATGGCAGGAGGAGAACGCTTTTGGGAATAGTGGGGTTTAGGTAAAAGGGCACTCA 2145 

AGGGTGGGGGCCTTCACTGAGGCTGGCCTACAGACGACATCTGGGAGGGAGTCAGGACCCAGGAA 2210 
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GGCAAGTCCAGAAGGCTGGGTGCACATAACGGAAGGAAGGGGAGCGCACCTGTATGTGTGTGCGT 2275 

CTTGCATCTGTGCACATGCTGTGTGTTTCTCTGTACCTGCATTTGCACGTGTTGTGTGTGCATGC 2340 

GTGTGTGCACATGTGTCTGTGTGCATGTATGTGTGGTGTGTGTGCACGAGTGTCTCTGTGTGTGC 2405 

ATGTGCAGGTGCCGGCATGGGTGTAGTGTCTGTGCACATGTGTACATGTGTCTCTTCACACATGG 2470 

TGTTGAGGTCTTGCATGGGCGCATGTGAGCATGTGCATCTTCTGCCTGCCATCACTGTCAACAGC 2535 

TCACAACAGCCAGCTGGACATAAATAAAGCTTTGAGTTTTGCAGAAATGTGGCTGACAGGGGAAA 2600 

TTCCTCCCCACCATTCCCTGGGGGCATCCATGGAGCCCCCACGCACTCTGGCTGTAGGTGAGGAT 2665 

GGCATGAAGCACAAAGCTTGGTTTCTGTCCTGCAGAAGATGCAGACACTTCACTGGGGCTGCTGC 2730 

CCCAGAGGCACTGTGCCCAGGGCAGGGAAGGGCGGGGAGGAGAGGGCAGCCAGGGGCTCTCCCCT 2795 

CAGGACACTGTGTGGGTGAGGTGGGCAAAGCTTGACAACAGGGGTCAGTTCCTTTCTTGCAGAAA 2860 

ATCCCTCCCCCCTACTACAGGGAGGGCCTGCATGGGTGAGGTGGTGCCAGACTTGGGGTGCCAGG 2925 
H4F

TCCCGGGAATGACCTCAGTTACCCTGTCAGCACCTGTGGGCAGAAGCTACCATCTCATCCCTGCT 2990 

TAGACCTGAGTGGCCTTTGTCCAGCACCTGGAGGCCGCTCTGAGAAAAGGCTGCAGCTCGAACAC 3055 

AAACAGGCAGCTTCTACCAGGGCCCCCAGTCAGCTCCCTGCAGGCCGATTCCCCTTGGGGACAAG 3120 
 H3R 

GAGGATGGGATACGGGTCAGGGCCTGTGTCTTGCTGGGGCGGCCTCACAAGCTCTGCCCTGGCCT 3185 
EXON 3 

CTGTAGGAATGGGCCTGAATGGCGCTTCAACCGATTGCGGCTGAATCCAGAAGTGCTGTCGCCCA 3250

ACGCTGTGCAGAGGTTCCTCCCGATGGTGGATGCAGTGGCCAGGGACTTCTCCCAGGCCCTGAAG 3315

AAGAAGGTGCTGCAGAACGCCCGGGGGAGCCTGACCCTGGACGTCCAGCCCAGCATCTTCCACTA 3380

CACCATAGAAGGTGTGGGCCACGTGGGAAGATCCAGCCTCAGAGACCCTGGAGTGGCCAGGGACG 3445 

GGGATGGGGGACTGAAGGGAGTGTGGGGAGGCAGCCAGGAGGCCCGGGGCTGCCTTGTGCTCAGC 3510 
EXON 4 

AGTGCATCCTCCCCGCAGCCAGCAACTTGGCTCTTTTTGGAGAGCGGCTGGGCCTGGTTGGCCAC 3575

AGCCCCAGTTCTGCCAGCCTGAACTTCCTCCATGCCCTGGAGGTCATGTTCAAATCCACCGTCCA 3640

GCTCATGTTCATGCCCAGGAGCCTGTCTCGCTGGACCAGCCCCAAGGTGTGGAAGGAGCACTTTG 3705

AGGCCTGGGACTGCATCTTCCAGTACGGTGAGGCCAGGGACCCGGGCAGTGCTATGGGGAAGGGA 3770 

CACCATGGGGGCCCAATTTCTCCCTCTCCACCACCCAGTGGGGAATGGAGGCCACAGGGAGGGGT 3835 

CGGGGATTCCTCACCTTCCTGCCAGGGAGATTGGTGCGAGGCTGGGGCTGGGCTGGGCTGATCCG 3900 

GAGAATTTGGGATGAGAGCAGGGAGACTTGGGTGTCGGGGCAGTCTGGGCAGGAGGAGGACACTG 3965 
EXON 5 

AAGGATGTCTCCCAGCACCAAAGTCTGAGGGCTGCCTCCCGCTCCCCGGATAGGCGACAACTGTA 4030
H6F
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TCCAGAAAATCTATCAGGAACTGGCCTTCAGCCGCCCTCAACAGTACACCAGCATCGTGGCGGAG 4095

CTCCTGTTGAATGCGGAACTGTCGCCAGATGCCATCAAGGCCAACTCTATGGAACTCACTGCAGG 4160

GAGCGTGGACACGGTCAGGCCGGCAACCAGCCCCACCCAGAGAGGGTGATGCCAAGCCTGCCTCC 4225 

CAGGCACTGCCTGCCAATGTCACACGGCGCCCACGTGTCCCATCCCCAGGCTATGGGCCCCACAT 4290 

TTCTTACTTGGGATTGTGATGTGATAAACACGTTTGCAGGTTGCCATGGTTGGAATGGGGGGTTC 4355 

CTTTCTGTGGAGGACTCAGGGAAAGGGGTTTGGATGGGCATTAGGATTTGAAGTCTTGGGCTCTG 4420 

TCGTTCTCAGGGTATGCATGTCTGCACCCCTCACAGGGAGGTTGTCCTGGGAGGGGTGTCCCGGG 4485 
 H5R 

GGCTGAGTCCTCCTGTGCAAGGTCTGACCCTGCAGCTGTGTCTCCTGCAGACGGTGTTTCCCTTG 4550
EXON 6 

CTGATGACGCTCTTTGAGCTGGCTCGGAACCCCAACGTGCAGCAGGCCCTGCGCCAGGAGAGCCT 4615

GGCCGCCGCAGCCAGCATCAGTGAACATCCCCAGAAGGCAACCACCGAGCTGCCCTTGCTGCGTG 4680

CGGCCCTCAAGGAGACCTTGCGGTGGGTGCTGGCTGAGGCCTCCCTGTGGCCCTGGCCCCCTGCT 4745 

GGAGAGCAGCCCCCACTGGGTGGTGGCAGACAGAATCTGGGGCTGATAAACAGCGTCACCCAGCA 4810 

GCCCATTCCCCTGCACCTGCTCTTCCTCCCCCTCAAGGACAGGGAGCTCTTCTTTCTCTGGAATC 4875 

CCTCTTCAACGCCCTGGGGATTAACGTGGAGCATGTCCTTCTGCGCTCGGGGCTGCTTAAGTTAG 4940 

GGGAGGTTTGGCCGGGCTCAGCAGGTGCAAGGAAGCACTTCCTACGACCTGGGCTTCCCATGGAT 5005 

CTGGGACCTCTGCGGGTTCTTCGGTAGGAAGGGTGCAGAGAGCACAGGAAGCCCCATCCAGCTGA 5070 
EXON 7 

GGACCCTTTCTATGGATGCCCCCACCTCCAGGCTCTACCCTGTGGGTCTGTTTCTGGAGCGAGTG 5135

GCGAGCTCAGACTTGGTGCTTCAGAACTACCACATCCCAGCTGGGGTGAGTGAGCCCCACACCCC 5200 
             EXON 8 
TCGAGCTGAGAACCTCCCTCCCCAGTCATTCCCTGATCCCCGCTCTGCACCGTCCGCAGACATTG 5265

GTGCGCGTGTTCCTCTACTCTCTGGGTCGCAACCCCGCCTTGTTCCCGAGGCCTGAGCGCTATAA 5330

CCCCCAGCGCTGGCTAGACATCAGGGGCTCCGGCAGGAACTTCTACCACGTGCCCTTTGGCTTTG 5395

GCATGCGCCAGTGCCTTGGGCGGCGCCTGGCAGAGGCAGAGATGCTGCTGCTGCTGCACCATGTG 5460 

AGCAGGCCCGGGCTGGGGAGGGGCCTGGGCGGGGTCTGGGCAGCATGGGCGGGGCTTGAGCAATG 5525 

TGGGACTGGCCTCGGCAGAGTGGGAGTGGCCTGCATGTTTCCTGGACTGGGCAGAGCCGGTACTG 5590 

GGAGAACCTGGGCCAGGTTGAGGCTGTGTAGGTCCTGGGCAGGAGTTGGTATGGTGAGGAGCGTA 5655 

CCATCTGGGTGAGGTTGCTGCTAAACCGGGTCAGGTGGGAACTGGGGAAGTCGGGTGGAGCCTGT 5720 

ACAGGATAGTGGGGCTTGGGCAATACCTGGGCTGGATGAATTCTGGGCCTGGGCTGTAAGGTGGG 5785 

GCTGGTCAGGAATGAAACAGGTTGGAGGCCAGGCTGCTGTTCCCCCTTCAGCATAATCTCTGCAA 5850 

CTTTGAGGGTCTGAGAAGGCTGCACCACGTGCATGGGCTGCGGACCAAGCCAGATGGAAACCCGG 5915 
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EXON 9 
CTTCTGTCCTAGGTGCTGAAACACCTCCAGGTGGAGACACTAACCCAAGAGGACATAAAGATGGT 5980

CTACAGCTTCATATTGAGGCCCAGCATGTTCCCCCTCCTCACCTTCAGAGCCATCAACTAATCAC 6045 

GTCTCTGCACCCAGGGTCCCAGCCTGGCCACCAGCCTCCCTTTCTGCCTGACCCCAGGCCACCCC 6110 

TCTTCTCTCCCACATGCACAGCTTCCTGAGTCACCCCTCTGTCTAACCAGCCCCAGCACAAATGG 6175 

AACTCCCGAGGGCCTCTAGGACCAGGGTTTGCCAGGCTAAGCAGCAATGCCAGGGCACAGCTGGG 6240 

GAAGATCTTGCTGACCTTGTCCCCAGCCCCACCTGGCCCTTTCTCCAGCAAGCACTGTCCTCTGG 6305 
H7R

GCAGTTTGCCCCCATCCCTCCCAGTGCTGGCTCCAGGCTCCTCGTGTGGCCATACAAGGGTGCTG 6370

TGGTTTTGTCCCTTGCCTTCCTGCCTAGTCTCACATGTCCCTGTTCCTCTTCCCCTGGCCAGGGC 6435 

CCCTGCGCAGACTGTCAGAGTCATTAAGCGGGATCCCAGCATCTCAGAGTCCAGTCAAGTTCCCT 6500 

CCTGCAGCCTGACCCCTAGGCAGCTCGAGCATGCCCTGAGCTCTCTGAAAGTTGTCACCCTGGAA 6565 

TAGGGTCCTGCAGGGTAGAATAAAAAGGCCCCTGTGGTCACTTGTCCTGACATCCCCATTTTCAA 6630 

GTGATACAACTGAGTCTCGAGGGACGTGTGTTCCCCAGCTGATCGTGTCAGCCTCATGCCCCAGG 6695 

CCTCATCTTTCATGGACCAGGCCTTGTTCCAGGAGTGGGTGTTGGGTCCTCTGCTTCCTGTGCTG 6760 

TCCCCTGGGGAAGGTCCCGAGGATGCTGTCAGGAGATGGAAGAGTCATGTGGGGTGGGAACCTGG 6825 

GGTGTGGTTCCAGAAATGTTTTTGGCAACAGGAGAGACAGGATTGGGCCAACAAGGACTCAGACG 6890 

Sequence of human CYP11B1 cDNA 

Nucleotide sequence translated an amino acid sequence. The sequence begins with the start 

codon (M-methionine) and ends with the stop codon (-). Numbers refer on the right to the 

nucleotides and the amino acids.

Atggcactcagggcaaaggcagaggtgtgcatggcagtgccctggctgtccctgcaaagg 60 
 M  A  L  R  A  K  A  E  V  C M  A  V  P  W  L  S  L  Q  R  20 
Gcacaggcactgggcacgagagccgcccgggtccccaggacagtgctgccctttgaagcc 120 
 A  Q  A  L  G  T  R  A  A  R  V  P  R  T  V  L  P  F  E  A  40 
Atgccccggcgtccaggcaacaggtggctgaggctgctgcagatctggagggagcagggt 180 
 M  P  R  R  P  G  N  R  W  L R  L  L  Q  I  W  R  E  Q  G  60 
Tatgaggacctgcacctggaagtacaccagaccttccaggaactagggcccattttcagg 240 
 Y  E  D  L  H  L  E  V  H  Q  T  F  Q  E  L  G  P  I  F  R  80 
Tacgacttgggaggagcaggcatggtgtgtgtgatgctgccggaggacgtggagaagctg 300 
 Y  D  L  G  G  A  G  M  V  C V  M  L  P  E  D  V  E  K  L  100 
Caacaggtggacagcctgcatccccacaggatgagcctggagccctgggtggcctacaga 360 
 Q  Q  V  D  S  L  H  P  H  R M  S  L  E  P  W  V  A  Y  R  120 
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Caacatcgtgggcacaaatgtggcgtgttcttgctgaatgggcctgaatggcgcttcaac 420 
 Q  H  R  G  H  K  C  G  V  F L  L  N  G  P  E  W  R  F  N  140 
Cgattgcggctgaatccagaagtgctgtcgcccaacgctgtgcagaggttcctcccgatg 480 
 R  L  R  L  N  P  E  V  L  S P  N  A  V  Q  R  F  L  P  M  160 
Gtggatgcagtggccagggacttctcccaggccctgaagaagaaggtgctgcagaacgcc 540 
 V  D  A  V  A  R  D  F  S  Q A  L  K  K  K  V  L  Q  N  A  180 
Cgggggagcctgaccctggacgtccagcccagcatcttccactacaccatagaagccagc 600 
 R  G  S  L  T  L  D  V  Q  P S  I  F  H  Y  T  I  E  A  S  200 
Aacttggctctttttggagagcggctgggcctggttggccacagccccagttctgccagc 660 
 N  L  A  L  F  G  E  R  L  G L  V  G  H  S  P  S  S  A  S  220 
Ctgaacttcctccatgccctggaggtcatgttcaaatccaccgtccagctcatgttcatg 720 
 L  N  F  L  H  A  L  E  V  M F  K  S  T  V  Q  L  M  F  M  240 
Cccaggagcctgtctcgctggaccagccccaaggtgtggaaggagcactttgaggcctgg 780 
 P  R  S  L  S  R  W  T  S  P K  V  W  K  E  H  F  E  A  W  260 
Gactgcatcttccagtacggcgacaactgtatccagaaaatctatcaggaactggccttc 840 
 D  C  I  F  Q  Y  G  D  N  C I  Q  K  I  Y  Q  E  L  A  F  280 
Agccgccctcaacagtacaccagcatcgtggcggagctcctgttgaatgcggaactgtcg 900 
 S  R  P  Q  Q  Y  T  S  I  V A  E  L  L  L  N  A  E  L  S  300 
Ccagatgccatcaaggccaactctatggaactcactgcagggagcgtggacacgacggtg 960 
 P  D  A  I  K  A  N  S  M  E L  T  A  G  S  V  D  T  T  V  320 
Tttcccttgctgatgacgctctttgagctggctcggaaccccaacgtgcagcaggccctg 1020 
 F  P  L  L  M  T  L  F  E  L A  R  N  P  N  V  Q  Q  A  L  340 
Cgccaggagagcctggccgccgcagccagcatcagtgaacatccccagaaggcaaccacc 1080 
 R  Q  E  S  L  A  A  A  A  S I  S  E  H  P  Q  K  A  T  T  360 
Gagctgcccttgctgcgtgcggccctcaaggagaccttgcggctctaccctgtgggtctg 1140 
 E  L  P  L  L  R  A  A  L  K E  T  L  R  L  Y  P  V  G  L  380 
Tttctggagcgagtggcgagctcagacttggtgcttcagaactaccacatcccagctggg 1200 
 F  L  E  R  V  A  S  S  D  L V  L  Q  N  Y  H  I  P  A  G  400 
Acattggtgcgcgtgttcctctactctctgggtcgcaaccccgccttgttcccgaggcct 1260 
 T  L  V  R  V  F  L  Y  S  L G  R  N  P  A  L  F  P  R  P  420 
Gagcgctataacccccagcgctggctagacatcaggggctccggcaggaacttctaccac 1320 
 E  R  Y  N  P  Q  R  W  L  D I  R  G  S  G  R  N  F  Y  H  440 
Gtgccctttggctttggcatgcgccagtgccttgggcggcgcctggcagaggcagagatg 1380 
 V  P  F  G  F  G  M  R  Q  C L  G  R  R  L  A  E  A  E  M  460 
Ctgctgctgctgcaccatgtgctgaaacacctccaggtggagacactaacccaagaggac 1440 
 L  L  L  L  H  H  V  L  K  H L  Q  V  E  T  L  T  Q  E  D  480 
Ataaagatggtctacagcttcatattgaggcccagcatgttccccctcctcaccttcaga 1500 
 I  K  M  V  Y  S  F  I  L  R P  S  M  F  P  L  L  T  F  R  500 
Gccatcaactaa 1512 
 A  I  N  -   503 
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E. Plasmid map of 11B-pSVL and E16-pRc/CMV 
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