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Abstract 
 

Within the last three decades, myxobacteria have been established as proficient 

producers of secondary metabolites that exhibit various biological activities. The 

recently finished genome sequencing project of Myxococcus xanthus DK1622 

unveilled the – at least hypothetical – potential of this myxobacterial model strain to 

be a multiproducer of secondary metabolites as well. Applying a combined genetic 

and analytical approach, indeed several natural products and the corresponding 

biosynthetic gene clusters were identified and analyzed in our institute. Among them, 

four families of metabolites – myxochelins, myxochromids, myxalamids and 

myxovirescins – were already known from other myxobacterial species. The 

DKxanthene secondary metabolite family, however, resembles a novel class of 

compounds that appears to be unique to myxobacteria, and they were shown to be 

present in all Myxococcus xanthus strains investigated to date as well as in the 

closely related species Stigmatella aurantiaca. Studies aiming at the investigation of 

the biological function of these compounds strongly suggest that they are required for 

a proper progress of the developmental program that culminates in the formation of 

fruiting bodies and mature myxospores. DKxanthenes are synthesized by a hybrid 

polyketide synthase - nonribosomal peptide synthetase machinery, and the detailed 

analysis of the biosynthetic gene cluster proposes the presence of at least one 

iteratively acting polyketide synthase module that is in large part responsible for the 

diversity of metabolites from this family. 
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Zusammenfassung 
 

Myxobakterien wurden in den letzten drei Jahrzehnten als außergewöhnliche Quelle 

sogenannter Sekundärmetabolite mit vielseitigen biologischen Wirkungen etabliert. 

Duch die vollständige Sequenzierung des Genoms von Myxococcus xanthus wurde 

das – zumindest theoretische – Potenzial dieses myxobakteriellen Modellstammes 

als Multiproduzent von Sekundärmetaboliten aufgezeigt. Im Rahmen einer kombiniert 

genetisch-analytischen Vorgehensweise konnten im Rahmen dieser Arbeit 

tatsächlich einige Naturstoffe und die dazugehörigen Biosynthesegene identifiziert 

werden. Darunter sind vier Familien von Sekundärstoffen - die Myxocheline, 

Myxochromide, Myxalamide und die Myxovirescine - die bereits von anderen 

Myxobakterien bekannt waren. Des Weiteren konnte eine neue Familie von 

Naturstoffen - die DKxanthene - charakterisiert werden. Diese scheinen spezifisch für 

Myxobakterien zu sein, da sie in allen bisher analysierten M. xanthus Stämmen und 

auch in der nahe verwandten Spezies Stigmatella aurantiaca identifiziert werden 

konnten. DKxanthene spielen eine wichtige Funktion für den Lebenszyklus des 

Produzenten, da sie für die geregelte Fruchtkörper- und Myxosporenbildung 

notwendig sind. Die DKxanthen-Biosynthese wird durch einen kombinierten 

Polyketidsynthase-nichtribosomale Peptidsynthetase Biosyntheseapparat gesteuert. 

Die detaillierte Analyse des Biosynthese-Genclusters weist hierbei auf die 

Mehrfachnutzung von mindestens einem Polyketidsynthase-Modul hin; eines von 

mehreren Besonderheiten, die zu der chemischen Diversität dieser Naturstoffe führt.   
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1. Myxobacteria 
 

Myxobacteria are obligate aerobic, chemotrophic Gram-negative δ proteobacteria 

that most commonly inhabit the soil. The recent discovery of novel myxobacterial 

species from marine as well as moderate halophilic environments (53,54) proves the 

ability of myxobacteria to adapt towards differing environmental conditions. The 

vegetative cells of myxobacteria are typically rod-shaped, 3-12 µm in length and 0.7-

1.2 µm in width (110). When grown in nutrient-rich liquid media, myxobacteria usually 

grow as independent cells. However, on solid surfaces such as an agar plate, they 

interact with each other and swarm on the agar surface in order to gain access to 

nutrients that are not in immediate proximity to the bacteria. Many myxobacterial 

species secrete lytic enzymes which allow them to prey on other bacteria and yeasts 

(65,107) and to digest the released proteins, lipids and nucleic acids. In absence of 

any nutrient, myxobacteria stop the swarming behaviour and instead start to build up 

aggregates, a process that finally culminates in the formation of fruiting bodies. This 

complex life cycle that includes the formation of myxospores within the mature 

fruiting body is one of the outstanding features of myxobacteria.  

Myxobacteria constitute the order Myxococcales, which can be further differentiated 

into the suborders Cystobacterineae, Nannocystineae and Sorangiineae (109). 

Sorangium cellulosum from the latter suborder exhibits the unique capability among 

myxobacteria to degrade cellulose and to use it even as the sole carbon-source, a 

property that supports the isolation of Sorangium species from environmental 

samples (110).  

Eight genera are known from the suborder Cystobacterineae, which is furthermore 

split into two families: The Myxococcaceae  constituting of the genera Myxococcus, 

Corallococcus and Pyxidicoccus while Archangium, Cystobacter, Hyalangium, 

Mellitangium and Stigmatella belong to the Cystobacteraceae (109). 

Among them, the genus Myxococcus and especially the species Myxococcus 

xanthus represents the best studied organism among the myxobacteria since its life-

cycle can be investigated very reproducible under laboratory conditions.  

Another remarkable feature of myxobacteria - which might at least in part be caused 

by the complex life cycle when compared to other bacteria - is the overall large size 

of myxobacterial genomes. The recently sequenced genome of Sorangium 

cellulosum So ce56 resembles the so far largest known bacterial genome with a size 
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of 13.0338 Mb (118). The genome size of Stigmatella aurantiaca was estimated as 

9.5 Mb (123), and  the Myxococcus xanthus DK1622 genome was shown to be 9.14 

Mb in size (44,66). The extraordinary large size as well as the high number of genes 

in the Myxococcus genome in comparison to all other so far sequenced non-

myxobacterial δ proteobacteria was supposed to be at least in part based on 

extensive gene duplications. These gene duplications do not evolve by coincidence 

but rather include genes which are important for the myxobacterial life cycle, such as 

genes encoding proteins necessary for intercellular  signalling (44). 

 

1.1 Cooperative behaviour and life cycle of Myxococcus xanthus 
 

Myxobacteria are assumed to be one of the earliest models in nature that explored 

the possible advantages of progressing from a single cell state to a social 

multicellular life style (30,122). However, myxobacteria retained their capability to 

grow as single cells rather than to further differentiate into obligate multicellular 

organisms. Multicellular behaviour requires several prerequisites like the ability to 

distinguish between sibling cells and cells from foreign species, spatial 

morphogenesis as well as the capability to exchange information from cell to cell, a 

process which is described as intercellular signalling (66,124). Several classes of 

mutants unable to form fruiting bodies or spores were identified and shown to arrest 

at specific time points during development, inferring the blocking of important signals. 

These mutants were grouped according to the pattern of synergism that lead to 

complementation of the developmental defect of one group when mixed with another 

group (47). Currently, five groups (A-E) of rescuable mutants are recognized, which 

have defects in the asg, bsg, csg, dsg or esg genes, respectively (27,47).  

Multicellular social behaviour is induced when cells are starved on solid surfaces and 

when the bacteria “sense” that the overall cell number is high enough to enter the 

developmental process which will favour the survival of the population.  

M. xanthus moves by gliding in the direction of its long axis by using two motility 

systems. Social (S-) motility is dependent on the presence of type IV pili that attach 

to nearby cells and subsequently are retracted, thus pulling the cells together (63,64). 

Adventurous (A-) motility enables the cells to glide as individuals. The mechanism 

underlying A-motility is unclear until now- the extrusion of slime from the cell poles 

through nozzle-like structures as the force for the propulsion was proposed (158), 
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and recently, a novel model describing focal adhesion complexes was introduced. 

Here, the attachment of intracellular motor complexes to membrane-spanning 

adhesion complexes and to the cytoskeleton were supposed to power motility by 

pushing against the substratum and thus moving the cell forward (93).  

Starvation induces a shift from (adventurous) swarming behaviour towards the 

migration to aggregation centers which can be seen after about 4-6 hours. Within the 

first 24 hours of development, these loose aggregates become hemispherical 

mounds that each contain up to 1.000.000 cells. Approximately 10-20 % of the cells 

within the mounds differentiate into non-motile, heat- and sonication-resistant 

myxospores. The remaining cells undergo autolysis, most presumably in order to 

provide the essential nutrients for the surviving cells to undergo the differentiation 

into myxospores (157). Cells left outside the fruiting body remain rod shaped, but 

have a different protein expression pattern when compared with vegetative cells and 

myxospores. The role of these “peripheral rods” was proposed to be a backup of 

cells that take advantage of low nutrient levels that would not support germination 

and outgrowth of the developmental spores (102-104). Alternatively, peripheral rods 

might play a role in defending the dormant fruiting body from consumption and 

colonization by other microbes (124) (Figure 1 pictures the time series of fruiting 

body formation of a M. xanthus submerged culture).  

Besides the described differentiation into specialized cell types during fruiting body 

formation, M. xanthus cells growing under vegetative conditions undergo a phase 

variation between two alternate phases which are depicted by their pigmentation 

phenotype - the predominant colony type exhibiting the characteristic yellow colour 

that is the name giver of the species M. xanthus (yellow phenotype), meanwhile cells 

from the other phase are almost unpigmented and accordingly, this state is named 

the tan phenotype (18,19). Pure populations of mutants locked into the tan phase 

were shown to be unable to form fruiting bodies. Despite starting the differentiation 

process, cells did not form true spores after developmental induction, but rather 

developed phase-dark, round forms that were unable to complete the maturation to 

heat- and sonication-resistant, refractile  spores (81,82). This defect in development 

could be restored by the addition of phase-variation proficient cells from predominant 

yellow cultures. In such mixtures, the tan-phase locked mutants were preferentially 

represented among the viable spores, and specific roles for each cell type were 

proposed: The tan cells within a population were suggested to be the progenitors of 
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spores, whereas the yellow cells might direct fruiting body formation and spore 

maturation through intercellular signalling (82,124). Similar observations were made 

in further experiments: Extracellular complementation of sporulation deficient group C 

mutants with group B strains showed only slight, if any, synergy in developmental 

complementation when yellow group C populations were used. Inclusion of a few 

percent of tan group C cells strongly stimulated the developmental synergism (62). 

Experiments investigating the glucosamin-induced cell lysis and subsequent 

sporulation of M. xanthus cells revealed that tan cells are more resistant to 

glucosamin-induced lysis, but yet were required for glucosamin-induced sporulation 

(97). Even though these observations strongly suggest an involvement of phase 

variation in the developmental life cycle of M. xanthus, still little is known about the 

mechanism of phase variation.  
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Figure 1. Fruiting body formation of Myxococcus xanthus in submerged culture 
(adopted from Kuner and Kaiser, 1982 (76)) 
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 2. Natural products 
 

2.1 Natural products and their relevance in clinical therapy  

 
Secondary metabolites from plants, fungi as well as bacteria constitute a daily 

growing library of compounds of natural origin that not only exhibit a vast diversity of 

chemical structures. More importantly, natural products and compounds which were 

developed from natural product lead structures, proved to be useful in the treatment 

of various diseases and in agrochemical applications such as crop-fungicides. 

Besides the use of complex therapeutic mixtures (such as extracts of herbs with 

boiled water) which was applied already thousands of years ago and which is still in 

use even in occidental medicine, the discovery and purification of single compounds 

with biological activities resembles a milestone of modern medical treatment. Among 

these, the discovery of penicillin - which is still in clinical use for the treatment of 

bacterial infections - by Alexander Fleming in 1928 from the fungus Penicillium 

notatum (83) and the discovery of morphine as the pain-relieving principle of the 

poppy Papaver somniferum L. more than two hundred years ago by Friedrich 

Sertürner (101) picture early hallmarks of this new era of natural product research. 

Since then, natural products have been established as useful sources for novel, non-

synthetic drugs and drug-leads. Seventythree percent of the drugs used in clinical 

treatment of cancer are not derived from synthetic chemistry; 47% represent the 

natural products themselves or are directly derived thereof (100). Examples for 

potent antitumor drugs from natural producers are paclitaxel and doxorubicin. Further 

important fields of therapeutics besides cytostatic agents include various antibiotics- 

such as the already mentioned β-lactam antibiotics, but also erythromycin, 

tetracycline, streptomycin or vancomycin-, in addition immunosuppressive drugs like 

cyclosporine and rapamycin as well as the cholesterol-lowering agent lovastatin 

(selected structures are shown in Figure 2). 
Besides the broad application of natural products in medicine, Figure 2 exemplifies a 

further characteristic feature of secondary metabolites: the unique structural diversity 

found in nature. The recruitment of various different building blocks as well as the 

activity of diverse modifying enzymes leads to the construction of very often highly 

complex chemical structures exhibiting various stereocenters. On average, natural 

products differ from most synthetic structures by the incorporation of a higher number 
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of oxygen atoms and a higher steric complexity, whereas synthetic drugs usually 

comprise more nitrogen-, sulphur- and halogen-containing groups. Natural products 

can be regarded as privileged structures since they were selected for by evolutionary 

pressure, thus enabling the specific interaction with diverse biological targets (72).  

 

 
Figure 2. Selected chemical structures of natural products with diverse modes 
of action  
 
In order to produce these diverse structures, microorganisms often employ large 

multifunctional enzyme complexes. Three frequently used systems are polyketide 

synthases (PKSs), nonribosomal peptide synthetases (NRPSs) as well as hydrid-

systems thereof which use activated carboxylic acids or amino acids, respectively, as 

simple building blocks that are incorporated into the growing precursor molecule 

(34,134,145,146). The genes encoding the biosynthetic enzymes are frequently 

found to be clustered on a small segment of the respective bacterial chromosome. 

PKS systems can be further classified based on the chemical structure of the 

released product and on their mode of biosynthesis. For instance, fungal type I PKSs 

are characterized by the repetitive use of a single modular enzymatic system (a 

process described as iterative usage) (35,87). In contrast, the bacterial modular type 

I PKS is the most propagated one among bacteria. Here, the genes encoding the 

modular organized assembly lines are mostly clustered within the microbial genome, 
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and biosynthesis usually follows a colinear principle in which the backbone structure 

of the natural product can be correlated with the organization of the biosynthetic 

modules and catalytic domains (134). Typical products of modular type I PKSs are 

polyenes or macrolides such as erythromycin (149).  

Bacterial type II PKSs consist of one set of discrete polypeptides that form a catalytic 

complex and which are used iteratively, usually leading to phenolic aromatic 

compounds such as actinorhodin (33,49). Finally, type III PKS systems belonging to 

the chalcon synthase and stilben synthase family are typical for the secondary 

metabolism of plants, but were recently also discovered in bacteria and fungi 

(5,7,45,121). Yet, more and more examples of PKSs that drop out of the borders of 

classified PKS systems emerge, and a new classification or the surrender of any 

classification system seems to be necessary (96,98).  

The following description will focus on bacterial type I PKS systems and on 

nonribosomal peptide synthetases (NRPSs), since these are the most abundant in 

myxobacterial biosynthetic machineries and the relevant ones for this work. NRPSs 

have a similar structure as type I PKS systems (which will be called PKS in the 

following section for simplification).  

 

2.2 Polyketide and nonribosomal peptide biochemistry 
 

In both, polyketide and nonribosomal peptide biosynthesis, the growing chemical 

scaffold is build up by a series of condensing elongation steps with short carboxylic 

acid units or proteinogenic as well as nonproteinogenic amino acids, respectively. 

PKSs and NRPSs have a modular structure and follow the so-called “multiple carrier 

thio-template mechanism” (120,135). According to this model, repetitive catalytic 

units termed modules are responsible for the incorporation of one residue into the 

growing polyketide or nonribosomal peptide chain. During the assembly, the 

intermediates of the growing natural product remain tethered to the carrier protein of 

the respective module through a thioester-linkage. The carrier proteins themselves 

have to be activated through the activity of a phosphopantetheinyl transferase (Ppant 

transferase) that transfers a 4’-phosphopantetheine cofactor onto a conserved serine 

residue of the apo-carrier protein (Figure 3). The Ppant moiety serves two main 

functions during the natural product assembly: To activate the growing intermediate 

in a covalent and energy-rich linkage with the enzyme and furthermore to serve as a 
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flexible arm that facilitates the transport of the intermediates to the distinct catalytic 

centers - which are called domains - of the multifunctional enzyme (80,95,148).  

 
Figure 3. Activation of the apo-carrier protein (ACP or PCP) through the activity 
of a phosphopantetheinyl-transferase (PPTase)  
 

Before attachment to the carrier protein (CP), the monomeric elongation unit has to 

be selected for by either acyltransferase (AT) or adenylation (A) domains in PKSs 

and NRPSs, respectively. After transfer to the carrier protein, a third catalytic domain 

accomplishes the chain extension resembling a thio-claisen condensation for PKSs 

and an amide bond formation in the case of NRPSs. The completely processed acyl-

chain is finally released from its covalent thioester linkage through the activity of a 

termination domain such as a thioesterase (TE) or a reductive (R) domain. 

Figure 4 shows the general processing of intermediates in PKS biochemistry. In the 

first step (Figure 4, Step 1) the acyl transferase (AT) domain selects for the 

respective CoA-activated starter or extender unit and transfers it onto the acyl carrier 

protein (ACP) of the corresponding biosynthetic module. Whereas the extender units 

are usually derived from malonyl-CoA and methylmalonyl-CoA, the starter units have 

been shown to be recruited from diverse sources of CoA-esters of short chain 

aliphatic as well as aromatic carboxylic acids. Subsequently, the ACP-bound 

intermediate of the upstream module (which is the loading module in the case of 

Figure 4) is transferred to a conserved cystein residue of the β-ketoacyl synthase 

(KS) domain of the downstream module and nucleophilically attacked by the α-

carbon of the ACP-bound elongation unit (Figure 4, Step 2). After decarboxylative 

condensation of starter and elongation unit, the biosynthetic intermediate that now is 

extended by one additional C2 unit remains attached to the ACP of the elongation 

module (Figure 4, Step 3). From here, the growing chain can be passed on to the 
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KS domain of the downstream module and thereby undergo another condensation 

reaction. Alternatively, in the presence of several additional catalytic domains, the 

intermediate might be channelled through several reductive steps before being 

passed on to the next module. A complete “reductive loop” (134) consists of a β-

ketoacyl reductase (KR), a dehydratase (DH) and an enoyl reductase (ER) domain. 

The catalytic order of these domains is different from their order on the protein. KR 

domains catalyze the stereospecific reduction of a β-keto-function to the alcohol 

which can be further dehydrated and subsequently reduced to the α,β-methylene 

derivative through the activity of a DH and an ER domain, respectively (Figure 4, 
Steps 4-6).  

 

 
Figure 4. Schematic overview of polyketide synthase (PKS) biochemistry. The 
short chain carboxylic acid starter and extender units are selected for by acyl 
transferase (AT) domains and loaded onto the respective acyl carrier protein 
(ACP) (1). The thioester-linked intermediates subsequently undergo a 
decarboxylative condensation catalyzed by a β-ketoacyl synthase (KS) domain 
(2 and 3). Further optional domains might introduce additional structural 
modifications (4-6). Domains involved in catalysis of the respective reaction 
step are indicated by grey shading.  
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NRPS biochemistry follows a very similar procedure when compared to polyketide 

biosynthesis, as shown in Figure 5. Here, an adenylation (A) domain first selects for 

and furthermore activates the respective amino acid in an ATP-dependent reaction 

giving rise to its aminoacyl-adenylate derivative, which is subsequently transferred to 

the peptidyl carrier protein (PCP) (Figure 5, Steps 1 and 2). The condensing 

reaction - which in the NRPS case leads to an amide-bond formation - is catalyzed 

by the condensation (C) domain of the elongation (downstream) module (Figure 5, 

Step 3). Again, several modifying enzymes accomplish a higher diversity in natural 

product biosynthesis, a few examples are epimerization, (N)-methylation as well as 

heterocyclization (Figure 5, Steps 4-6). The latter is performed by specialized C 

domains (HC = heterocyclization domains) that catalyze the peptide bond formation 

and the subsequent cyclization and dehydration reaction, usually using cysteine, 

serine or threonine as the substrates. The resulting oxazoline (derived from serine 

and threonine) or thiazoline (derived from cysteine) ring system might be further 

oxidized to an oxazole or thiazole moiety (Figure 5, Step 7). 

After the last elongation step, the enzyme-bound nonribosomal peptide, polyketide or 

NRPS/PKS-hydrid intermediate is released from its biosynthetic template, usually 

through hydrolytic cleavage catalyzed by a thioesterase (TE) domain that releases 

the free acid or, by intramolecular cyclization, a macrolacton- or macrolactam-

structure.  

Very common in nature are further chemical modifications that occur after the release 

of the natural product from the thio-template, such as glycosylations or additional 

oxygenation steps, many of which have proven to be essential for the bioactivity of 

the natural product (100).  

A very high degree of conservation has been found for the delineated types of 

enzymes and domains, and several critical sequence motifs were identified that are 

necessary for the recognition (159) and activation (22,73,144) of the substrate, the 

attachment of the intermediate (156) as well as the catalytic activities such as 

condensing (73,156) and reductive reactions (112,156). 

With the growing knowledge about polyketide and nonribosomal peptide 

biosynthesis, based on sequence as well as functional analysis of newly 

characterized biosynthetic gene clusters, the way is paved for the emerging field of 

combinatorial biosynthesis (21,28,90). The theoretically unlimited combination of 

PKS and NRPS systems and modifying enzymes opens up the opportunity for the 
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generation of even larger chemical libraries as well as structure-activity guided 

approaches in order to improve e.g. the selectivity of a natural product derived drug. 

 

 
Figure 5. Schematic overview of nonribosomal peptide synthetase (NRPS) 
biochemistry. Amino acid starter and elongation units were selected and 
activated by adenylation (A) domains, attached to the peptidyl carrier protein 
(PCP) (1 and 2) and finally condensed by condensation (C) domains (3). Again, 
several optional domains (4-7) might lead to modifications in the chemical 
scaffold. Epimerization domains (4) generate an equilibrium of L- and the 
respective D-amino acids, and the C domain of the downstream module selects 
for one specific enantiomer. Domains involved in catalysis of the respective 
reaction step are indicated by grey shading (X = O, S).  
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3. Myxobacteria as multi-producers of secondary metabolites 
 

Besides the readily established microbial secondary metabolite producers 

actinomycetes and fungi, the research on myxobacteria as novel sources for natural 

products only gained its legitimate attention within the last three decades. In a 

screening program performed at the former GBF (Gesellschaft für Biotechnologische 

Forschung, now Helmholtz Zentrum für Infektionsforschung, HZI), more than 100 

new chemical core structures and additionally approximately 500 derivatives were 

isolated from altogether more than 7,500 different myxobacterial strains (for selected 

examples, see Figure 6) (13,43,108). Moreover, many of these natural products 

could be assigned diverse biological activities with unusual, rarely found mode of 

actions. Myxovirescin (141) and sorangicin (20,56) are examples for potent 

antibiotics from myxobacterial origin. In particular the latter, sorangicin, which targets 

the bacterial RNA polymerase beta subunit in a similar manner as the clinically used 

tuberculosis-antibiotic rifampicin has the potential to be a new drug-lead since 

sorangicin proved to be not as sensitive to mutations in the enzyme`s binding pocket 

which is shared between the two compounds (20). Myxothiazol (41,138,140), 

melithiazol (15,115), stigmatellin (78,137) and soraphen (8,16,39) are bioactive 

against several fungi, with soraphen being a potent inhibitor of the novel antifungal 

target-enzyme acetyl-CoA-carboxylase (8,16,39,106,111). Of special interest are 

compounds that interact with the eukaryotic cytoskeleton. Among these, the 

microtubuli-stabilizer epothilone (2,51,52) has served as a very promising drug-lead, 

with several natural and non-natural derivatives being investigated. Ixabepilone has 

recently finished the phase III clinical trials and was approved for the treatment of 

breast cancer by the FDA (24). Epothilone binds to tubulin and thus stabilizes the 

microtubuli in a similar fashion as the established anticancer-drug paclitaxel, but at 

least in part through a nonoverlapping mode of action (2,24). Avoidance of cross-

resistances might be also achieved by targeting the cytoskeleton through a different 

mode of action exhibited by other bioactive secondary metabolites. This holds true 

for tubulysin (68,70,116) and disorazol (32,57,59), since these compounds do not 

stabilize but rather destabilize the microtubuli.  

Furthermore, myxobacteria as well as other bacteria produce compounds that act as 

iron-chelators, so called siderophores, in order to sequester the essential metal from 

their environment (3). Myxochelin (77) was identified as the most often used iron-
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chelating principle in myxobacteria. Additionally, it shows weak antibacterial activity 

against Gram positive bacteria and recently an inhibitory effect on the invasion of 

murine colon 26-L5 carcinoma cells was described in vitro (94).  

 
Figure 6. Selected myxobacterial natural products. Information about the 
respective biological activity or function is given in section 3 
 
 

4. Outline of the present work 
 

4.1 The potential of Myxococcus xanthus DK1622 as a multi-producer of 

secondary metabolites 
 

Despite detailed investigations as the model strain for myxobacterial development, 

nothing was known about secondary metabolism in M. xanthus DK1622 until recently 

(13). The Myxococcus xanthus genome sequencing project (44) and the subsequent 

in silico-analysis revealed the presence of at least 18 biosynthetic gene clusters from 

the NRPS- or hybrid PKS/NRPS-type (Figure 7, red bars in layer 4), indicating the – 

at least hypothetical - potential of this strain to be a multi-producer of natural 

products. Remarkably, a large part of these 18 identified biosynthetic gene clusters 
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were shown to be located in close proximity to each other on the chromosome, with 

most of the biosynthetic genes being clustered between 1.5 and 3.5 Mb as well as 

between 4.4 and 5.8 Mb on the 9.14 Mb chromosome (44).  

 

 
Figure 7. Genome map of Myxococcus xanthus DK1622. The red bars in layer 4 
indicate the position of genes dedicated to secondary metabolism. Layer 1: 
Genes expressed in clockwise direction, layer 2: genes expressed in 
counterclockwise direction, layer 3: lineage-specific duplications, layer 5: GC 
nucleotide skew (adopted from Goldman et al. 2006 (44))  
 

Altogether 8.6 % of the M. xanthus genome is dedicated to secondary metabolism, a 

percentage higher than in various other established secondary metabolite producers 

(9,105). Comparison of the newly identified biosynthetic gene clusters in M. xanthus 

DK1622 with gene clusters that were already known from other myxobacteria led to 

the identification of the biosynthetic gene clusters of myxalamid (cp. Stigmatella 

aurantiaca Sg a15), myxovirescin (cp. Myxococcus virescens), myxochromide (cp. 

Stigmatella aurantiaca DW4/3-1) and myxochelin (cp. Stimatella aurantiaca Sg a15) 
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(42,60,77,126-128,139,141,152,153) in M. xanthus (for chemical structures, see 

Figure 8). The mentioned metabolites - including in part novel derivatives - could be 

identified in M. xanthus DK1622 in the scope of this work. Structure elucidation was 

performed after applying large-scale fermentation and the subsequent isolation and 

one- and two-dimensional NMR analysis as well as HPLC-MS and MS/MS analyses 

in combination with  feeding experiments (11,128,153) (myxochelin unpublished). 

Each family of metabolites will be described in more detail in the discussion section. 

 

 
Figure 8. Natural products identified in Myxococcus xanthus extracts that were 
already described from other myxobacterial secondary metabolite producers  
 

The structures and biological functions of further (novel) secondary metabolites from 

M. xanthus DK1622 were unknown at the starting point of this study. The isolation 

and structural characterization of natural products from M. xanthus DK1622 and, 

where possible, the determination of their physiological roles were hence a key issue 

of the presented thesis. The identification and optimization of production conditions 

for the respective metabolite represent a decisive point for a successful performance 

(10). Many biosynthetic gene clusters might be “switched off” under laboratory 

conditions (so called silent gene clusters), and it was one goal of this study to induce 

the production of these putatively novel compounds. In order to do so, several 

differing cultivation conditions, including the variation of media, temperature and 
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extraction procedures as well as induction of fruiting body formation and sporulation 

were applied, and the secondary metabolite profile was determinded by HPLC-MS. 

Furthermore, the biosynthetic gene cluster responsible for the production of the 

pigments that give M. xanthus its characteristic yellow appearance was identified 

through transposon mutagenesis in the beginning of this work (performed by Dr. 

Helge B. Bode). Besides the purification and chemical characterization of the yellow 

pigments, the analysis of the biosynthetic machinery that drives their production as 

well as investigations into the biological function of these metabolites was a major 

goal of this work. 
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Identification and structure-elucidation of 3’’-O-methylmyxochelin A 
(unpublished) 
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Summary 
A novel, methylated derivative of myxochelin A was discovered in the course of an 

attempt to investigate the chemical principle underlying a strong cytotoxic activity 

found in Myxococcus xanthus extracts. For fractionation, an activity-guided approach 

was chosen. M. xanthus DK1050 was cultured in rich medium, extracted and 

fractionated applying several subsequent chromatographic separation steps, and 

fractions were tested for bioactivity. Since the main activity was finally observed in a 

fraction containing solely the known myxochelins A and B as well as an unknown 

compound, the separation-strategy was changed in order to purify the novel 

compound. Purification of a methylated myxochelin A and the testing for cytotoxicity 

in comparison to the known myxochelins did not unveil any difference in activity 

among the derivatives. Rather, the discovery of a methylated myxochelin A derivative 

suggests a novel mechanism of iron release.  

 

Introduction 
Siderophores are small molecules synthesized by bacteria, fungi and even some 

plants that exhibit a very high affinity towards Fe(III). In bacteria, they are usually 

build up from nonribosomal peptide synthetases and after their biosynthesis, they are 

secreted into the bacterial environment in order to sequester the essential trace 

element. From the exterior, the Fe(III)-siderophore complex is specifically recognized 

by outer membrane receptors and internalized, in Gram-negative bacteria usually 

mediated by the TonB-ExbB-ExbD protein complex (6). The intracellular iron release 

is a process less well understood. For enterobactin, a hydrolytic mechanism is 

described. In other systems, enzymes with ferric reductase activity are thought to be 

involved in iron release, since Fe(II)-siderophore complexes exhibit weaker affinities 

than the respective Fe(III) complexes (5). However, so far there is no experimental 

evidence for these hypotheses. In an activity-guided approach aiming at the isolation 

of a cytotoxic compound from M. xanthus, an O-methylated myxochelin derivative 

was isolated here. The discovery of the modified siderophore might provide useful 

information about the mechanism of iron release in myxobacteria. 
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Results: 
Isolation and structure elucidation of 3’’-O-methylmyxochelin A. Two liters of a 

M. xanthus culture was grown in CTT medium in presence of 1% of the adsorber 

resin Amberlite XAD-16, harvested and extracted with ethylacetate/methanol (1:4) 

and fractionated by gel permeation and isocratic RP-high performance liquid 

chromatography. The obtained fractions were tested for cytotoxicity applying the MTT 

test (12) on L929 mouse cell lines, and chemically analyzed using thin layer 

chromatography and HPLC-MS (-MS/MS). As the activity narrowed down to a 

fraction containing the known myxochelins A and B ((M+H]+ m/z 404 and m/z 405) 

(2,9) and apparently only one further compound (m/z 419), the strategy was changed 

from the activity-guided to a classical analytical approach in order to purify the 

unknown compound by sequential RP-HPLC chromatography. The final yield of the 

purified compound was 2 mg. By 13C NMR analysis (Table 1) the total number of 

carbons could be determined as 21, with 12 signals found between 114 and 150 ppm 

indicating the presence of several double bonds and two signals assignable to ester 

or amide bonds (δC169 and 170, respectively). Through 1H NMR analysis six protons 

(δH 6.67-7.31) could be determined as part of an aromatic moiety, and heteronuclear 

single quantum correlation (HSQC) spectroscopy allowed their assignment to six 

carbons between 116 and 120 ppm. HSQC and heteronuclear multiple bond 

correlation (HMBC) as well as 1H-1H-correlated spectroscopy (1H-1H-COSY) 

experiments elucidating the chemical neighbourhood of these protons led to the 

identification of two separated dihydroxy-benzoyl moieties (COSY- and HMBC-

correlations are shown in Figure 1). A singlet at 3.85 ppm indicated the presence of a 

methoxy-moiety. Weak 1H-1H-COSY correlation of the methyl protons of this 

methoxy-moiety to H-4’’ as well as HMBC correlation to C-3’’ indicates that OH-3’’ of 

the respective dihydroxy-benzoyl moiety is methylated in the isolated metabolite. 

Each dihydroxy-benzoyl unit is attached to one amino-group (α- or ε-, respectively) of 

a reduced lysine as could be assigned through HMBC correlation of H-2 and H-6 of 

the lysinol moiety to C-7’ and C-7’’, respectively. The structure of the lysinol could be 

elucidated through 1H-1H-COSY, HSQC and HMBC experiments, leading to the final 

structure determination of 3’’-O-methyl-myxochelin A (Figure 1 and Table 1). 
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Figure 1. Numbering of myxochelins (A: R = OH, B: R = NH2; left structure), and selected 1H-
1H-COSY (bold lines) and HMBC (arrows) correlations of 3’’-O-methylmyxochelin A (right 
structure) 
 
 
Table 1. 13C and 1H spectral data of 3’’-O-methylmyxochelin A in [D6]DMSO at 500 MHz 
(1H) and 125.7 MHz (13C) 

Number 13C 1H J, Hz 

1 64.8 3.61 dd 5.2/7.9 

2 52.5 4.14 m  

3 31.4 1.63 m  

4 31.2 1.75 m  

5 29.9 1.68 m  

6 40.0 3.39 m  

1’ 115.6   

2’ 148.6   

3’ 148.8   

4’ 119.0 6.90 d 7.6 

5’ 119.2 6.67 t 7.9 

6’ 118.0 7.26 d 7.0 

7’ 170.0   

1’’ 114.5   

2’’ 149.1   

3’’ 148.4   

4’’ 116.0 7.05 d 8.2 

5’’ 119.4 6.80 t 8.0 

6’’ 120.5 7.31 d 8.2 

7’’ 169.0   

3’’-OMe 56.7 3.85 s  

s, singlet; d, doublet; m, multiplet; t, triplet; dd, doublet of doublet 
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Discussion: 
Myxochelins are iron-chelating siderophores known from several myxobacteria (9,14) 

as well as non-myxobacterial species (11). As observed for many other siderophores, 

the iron-uptake is facilitated by the chelation of Fe(III) with –in this case two- 2,3-

dihydroxy-benzoyl (catecholate) subunits. Enterobactin resembles a further 

siderophore from this class and its “iron-metabolism” including the mechanism of 

iron-release was investigated in detail (3). It is produced by several Gram-negative 

enteric bacteria and exhibits three such catecholate subunits which are connected 

with each other by a triserine-lactone backbone. Iron taken up from the environment 

as the Fe-enterobactin catecholate complex is primarily released intracellular by the 

esterase Fes (10). Yet, an alternative mechanism for iron release from enterobactin 

was proposed since synthetic analogues of enterobactin that were not susceptible to 

hydrolysis retained the ability to supply the cells with iron sufficiently. Here, iron 

release through reduction of Fe(III) from its salicylate complex enabled by 

protonation of the meta-hydroxy function of the catecholate structure was proposed 

(1).  

At the onset of this work, nothing was known about the mechanism of iron-release 

from the myxochelins. A cleavage of one or both amide bonds would - in conformity 

with the iron-release from enterobactin - destroy the siderophore and would at least 

in part enable the reuse of the myxochelin building blocks. Besides this theoretical 

mechanism, the hereby reported discovery of an O-methylated myxochelin A 

derivative hints at an alternative mechanism. Driven by methylation, the Fe(III)-

myxochelin complex is very likely shifted from the catecholate to the salicylate form, 

from which reduction of Fe(III) to Fe(II) and the subsequent iron release is 

significantly favoured. Through feeding experiments with L-methionine-methyl-d3, it 

was demonstrated that the methylation is catalyzed within the cells (7). Furthermore, 

the presence of a methylated myxochelin B derivative is strongly proposed since a 

metabolite with the expected mass, fragmentation pattern as well as the expected 

mass shift in the described feeding experiment was observed. Yet, structure 

elucidation of this metabolite failed so far, mainly due to productivity reasons (7). 

Since inactivation of seven preselected (O-)methyltransferase/SAM-dependent 

protein encoding genes from M. xanthus did not lead to a loss of the methylated 

derivative (7), the most promising methyltransferase (MXAN_5681; chosen according 

to its location in close proximity of genes encoding proteins with hypothetical 
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functions in iron metabolism) was chosen for heterologous expression in E. coli in 

order to pave the way for subsequent in vitro experiments (T. Klefisch, unpublished). 

Here, purified or chemically synthesized myxochelin will serve as the substrate that is 

supposed to be methylated in meta-position by the active methyltransferase. Apart 

from this necessary proof of principle, information about the regioselectivity of the 

methyltransferase can be gained from these experiments since at least in theory 

three additional phenolic groups might be methylated besides the observed 3’’-OH 

function. In parallel to the expression experiment, myxochelin A as well as its 

methylated derivative is going to be synthesized in order to determine the 

coordination chemistry and reduction potential of both metabolites with respect to 

Fe(III) (in collaboration with M. Bartholomä, K. Hegetschweiler, Arbeitskreis für 

Komplexchemie, Saarland University). It is expected that the methylated myxochelin 

derivative forms a salicylate rather than the catecholate complex (as postulated for 

the unmethylated myxochelins) with ferric iron, and consequently, that the reductive 

release is highly favoured from the methylated form.  

Taken all of these considerations together, an unprecedented mechanism of iron 

release is proposed based on the methylation-dependent distortion of the 

siderophore-iron complex: Ferric iron (Fe(III)) is sequestered from the environment 

by the siderophore myxochelin and taken up into the cell, and the iron-siderophore 

complex prevents the cell from direct toxic effects of Fe(III). The iron release from this 

complex might be triggered through methylation of the siderophore. As the most 

likely candidate protein for methylation, the methyltransferase MXAN_5681 is 

currently under investigation. This methyltransferase is part of an operon together 

with several other genes presumably involved in iron homeostasis. The operon is 

presumably under the transcriptional control of FUR (ferric uptake regulator protein), 

since a typical DNA-FUR binding box is located upstream of the first gene of the 

operon. FUR usually binds ferrous iron and subsequently binds to promoter regions 

as a homodimer, acting as a positive repressor. Without this repression – at low 

ferrous iron level - MXAN_5681 (or an alternative methyltransferase) might be 

expressed, leading to the (meta-OH)-methylation of the myxochelin-Fe(III) complex, 

the described shift in coordination, the reduction of Fe(III) to Fe(II) and thus 

eventually to the release of iron. This refined system for a crucial process of the 

bacterial cell would be another example among many decribing how M. xanthus is 

capable to perform a very complex and adjustable life cycle.  
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Materials and methods: 
Isolation of the compound. M. xanthus DK1050 (13), a stable yellow derivative of 

strain M. xanthus FB (4) was cultivated at 30°C in two liters of CTT medium (8) in 

presence of 1% Amberlite XAD-16. Cells and XAD were harvested after three days of 

growth and extracted repeatedly with overall 500 ml of ethylacetate/methanol (1:4). 

Subsequently, the crude extract was first separated by gel permeation 

chromatography (Sephadex LH20 in methanol) into six fractions. Fractions exhibiting 

strong activity in the MTT-test were pooled and further separated applying several 

sequential isocratic RP-HPLC purification steps, yielding 2 mg of purified 3’’-O-

methylmyxochelin A (Jasco HPLC (PU-2087, UV-2075), Nucleosil 250/21 RP18, 

Macherey-Nagel, MeOH/H2O 70:30, detection at 254 nm). 

 

Structure elucidation. The structure of 3’’-O-methylmyxochelin A was elucidated 

using 1D (1H, 13C) and 2D NMR (1H,1H-Cosy, HSQC, HMBC) analysis on Bruker 

DRX 500 or Bruker Avance 500 spectrometers using [D6]DMSO. HPLC-MS and -

MS/MS-experiments were performed using an acetonitrile:water gradient (5-95 % 

acetonitrile with 0.1% formic acid, HPLC: Agilent 1100 series, MS: Bruker HCT Plus 

ion trap). 
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Statement about the author’s effort in Chapters 
1-6 

 
Chapter 1: The author performed in part the chemical analysis of the described 

feeding experiments. Isolation of [2-13C]-acetate enriched myxalamid B from several 

M. xanthus and S. aurantiaca strains as well as isolation of the two novel 

mutasynthesis derived myxalamid derivatives was performed by the author or in 

close collaboration with the author. The author participated in the subsequent 

structure elucidation by NMR. 

 

Chapter 2: Isolation of myxovirescins was performed in collaboration with the author. 

 

Chapter 3: Myxochromid A3 was isolated and the structure was elucidated by the 

author.The structures of myxochromids A2 and A4 could be clarified by feeding 

experiments and subsequent LC-MS (MS/MS) analysis. The absolute configuration 

of the amino acids from mxyochromid A3 was determined by the author. 

 

Chapter 4: The described work was performed by the author if not indicated differently 

in the text.  

 

Chapter 5.1: The major part of the work was performed by the author (80%). 

Transposon mutagenesis was performed by Helge B. Bode. Structure elucidation was 

performed by Helge B. Bode and the author. 

 

Chapter 5.2: The major part of the work was performed by the author (80%). Detailed 

docking domain analysis was performed by Kira J. Weissman. Inactivation of dkxG in S. 

aurantiaca and synthesis of Pyrrolyl-2-carboxyl-SNAC were performed by Jeroen S. 

Dickschat. 

 

Chapter 6: The work was performed by the author in large part. Anke Göhring 

supported the HPLC-MS analysis and Michael W. Ring performed fatty acid analyses.
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Discussion: 
During the ongoing process and finally with the finishing of the genome sequencing 

project in 2006 (44), it became increasingly apparent that Myxococcus xanthus might 

be not only a suitable model organism for myxobacterial development, but also a 

proficient producer of secondary metabolites (12,13). At least 18 biosynthetic gene 

clusters could be identified, among them six nonribosomal peptide synthetases and 

12 hybrid polyketide synthase/ nonribosomal peptide synthetase systems. Four of 

these biosynthetic gene clusters were readily assigned to secondary metabolites 

already known from other myxobacterial strains, namely the myxalamids, the 

myxovirescins, the myxochelins and the myxochromides. A fifth family of natural 

products was identified in the course of this work (Figure 9). Disruption of this gene 

cluster by transposon mutagenesis as well as targeted plasmid integration led to a 

constant tan phenotype. Purification of the corresponding compounds and 

subsequent structure elucidation clarified the chemical structure of the yellow 

pigments which were named Dkxanthenes in honour of Dale Kaiser (91).   

 
Figure 9. Genomic map of M. xanthus indicating the number and type as well 
as the location of secondary metabolite gene clusters on the chromosome. 
Gene clusters that could be correlated to the produced secondary metabolite 
are indicated. 
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1. Myxalamid 
 

Myxalamids resemble a class of hybrid PKS/NRPS natural products that were first 

isolated from Myxococcus xanthus Mx x12 and which exhibit antibiotic activity 

against yeast, Gram-positive bacteria and eukaryotic cell lines (11,42,61). The 

biosynthetic gene cluster was first characterized from Stigmatella aurantiaca Sg a15 

as one of very few combined PKS/NRPS systems reported at the time (127). 

Furthermore, a novel type of chain release through reduction of the terminal PCP-

bound alanine moiety to 2-amino-propanol was described (127). Sequence 

comparison revealed the presence of a very similar gene cluster in M. xanthus 

DK1622 as well (on average over 80 % sequence identity on the DNA-level), with 

slight differences when compared to the biosynthetic gene cluster of S. aurantiaca. 

For instance, the last polyketide synthase elongation module is split into two 

separated proteins in S. aurantiaca but is encoded on one gene in M. xanthus (11). 

From the biosynthetic point of view, the most apparent difference can be observed in 

the starter unit utilization: S. aurantiaca Sg a15 produces myxalamid B as the major 

metabolite but also myxalamids C and D in easily detectable amounts, while 

myxalamid A is only produced in trace amounts. M. xanthus DK1622 in contrast 

produces myxalamid A by far as the major myxalamid metabolite besides smaller 

amounts of myxalamid B and C (Figure 10, A).  

 
Figure 10. (A) Structural myxalamid derivatives and HPLC-UV chromatograms 
of S. aurantiaca and M. xanthus; (B) Numbering of the myxalamid B carbon 
atoms of the starter unit. 
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This might be explained by a more promiscuous loading module AT domain of M. 

xanthus for larger starter units such as 2-methyl-butyryl-CoA (which is used in 

myxalamid A biosynthesis), or by an improved precursor supply of the respective 

starter unit to the myxalamid biosynthetic pathway of the respective strains. Analysis 

of the S. aurantiaca and M. xanthus AT loading domains reveal a very high homology 

but also a noteworthy difference in the specificity conferring residues (Figure 11). 

Sequence alignment analyses reveal that residues 198-201 typically exhibit an HAFH 

motif for malonate- and a YASH motif for methylmalonate extender unit selection 

(26,159). According to the selection of starter units that differ from the most widely 

used elongation units methylmalonate- and malonate-CoA, the loading domains of 

both myxalamid biosynthetic pathways differ in these motifs. Hence, they also show a 

different motif when compared to each other, with a very unusual proline residue at 

position 199 of the M. xanthus loading AT domain (Figure 11).  

 

 
Figure 11. Sequence alignment (black shading: identical amino acid residues; 
grey shading: similar residues) of loading module AT domains of Myxococcus 
xanthus (Mx) and Stigmatella aurantiaca Sg a15 (Sga). Substrate specificity 
conferring residues 198-201 are indicated by a black bar and the unusual 
proline residue is displayed by an asterisk. 
 

Remarkably, this uncommon residue is also found in the AT domain of the loading 

module in avermectin biosynthesis (55) that as well selects 2-methyl-butyryl-CoA as 

the starter unit. Thus, residue 199 might be a promising candidate for point 

mutagenesis approaches in order to shift the substrate specificity of the AT loading 

domain of S. aurantiaca towards an increased incorporation of 2-methyl-butyryl-CoA. 

However, P199 is also found in module 4 of both biosynthetic pathways and such 

might solely resemble another unusual feature of myxobacterial biochemistry that 

differs from published model systems (Table 1) (155). 
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Table 1. AT domain specificity motifs of proteins/ modules [B-F/ (L, 1-7)] for 
myxalamid biosynthetic pathways of Stigmatella aurantiaca (MxaS) and 
Myxococcus xanthus (MxaM) 
MxaFS (L) VAVH MxaFM (L) VPVH 
MxaFs (1) VASH MxaFM (1) VASH 
MxaEs (2) VASH MxaEM (2) VASH 
MxaDs (3) VASH MxaDM(3) VASH 
MxaCs (4) VPSH MxaCM (4) VPSH 
MxaCs (5) YAFH MxaCM (5) YAFH 
MxaCs (6) HAFH MxaCM (6) HAFH 
MxaBs (7) VASH MxaBM (7) VASH 

 

Despite differences in substrate specificity and quantities of substrate incorporation, 

the enzymatic machineries of both biosynthetic pathways apparently tolerate a broad 

range of short chain carboxylic acid CoA esters as starter units of the respective 

loading module. For this reason, a mutasynthetic approach (150) was applied in 

order to test for the acceptance of various carboxylic acid starter units that are 

naturally not available and thus not build into the myxalamid scaffold. In order to 

increase the production yield and to simplify the purification of potentially novel 

myxalamid derivatives, these starter units were fed to M. xanthus and S. aurantiaca 

mutants that had a defect in the bkd locus (88,89). Such mutants lack the activity of 

the branched-chain keto acid dehydrogenase that is required for the degradation of 

the branched-chain amino acids (iso-)leucine and valine to the respective branched-

chain carboxylic acids (92). Among them, 2-methylbutyryl-CoA and isobutyryl-CoA 

are used as natural precursors for myxalamid A and B biosynthesis, respectively, and 

a decreased quantitiy of these starter units would consequently lead to the depletion 

of the particular metabolites. This approach was readily performed in the generation 

of novel avermectin derivatives (29,55).  

Unexpectedly, both M. xanthus and S. aurantiaca bkd mutants retained the ability to 

produce myxalamid B (with isobutyryl-CoA as the starter unit), although at a reduced 

production level when compared to the wild type. In M. xanthus bkd mutants, a 

second form of Bkd activity is responsible for the biosynthesis of isobutyryl-CoA 

derived from valine as could be shown by feeding experiments with [D8]-valine. S. 

aurantiaca bkd mutants instead use this pathway to a lesser extend when compared 

to the wild type but rather employ an alternative biosynthetic pathway branching from 

the mevalonic acid isoprenoid biosynthesis (11,88,89). This pathway has already 

been described for the biosynthesis of iso fatty acids in S. aurantiaca bkd mutants 
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(89), and in myxalamid biosynthesis the isobutyryl-CoA starter unit is supplied by α- 

and β-oxidation of iso-odd fatty acids as was shown by feeding experiments.  

The incorporation pattern of [2-13C]-acetate was determined by NMR analysis after 

feeding of the precursor and purification of myxalamid B from the respective strains. 

Only the S. aurantiaca bkd mutant shows a significant labelling of carbons C-15, C-

17 and C-19 (for numbering, see Figure 10, B), as it is expected for HMG-CoA 

derived isobutyryl-starter units (Figure 12, myxalamid B labelling pattern from M. 

xanthus strains correlates with the one obtained for S. aurantiaca wild type).  

 
Figure 12. 13C NMR analysis of myxalamid B from (A) S. aurantiaca wild type 
and (B) S. aurantiaca bkd mutant after feeding of [2-13C]-acetate. Increased 
signals for C-15, C-17 and C-19 in the bkd mutant are indicated. 
 

For mutasynthesis, altogether 19 carboxylic acids that were naturally not used as 

starter units for myxalamid biosynthesis were fed to cultures of M. xanthus and S. 

aurantiaca bkd mutants. Indeed, nine novel myxalamid derivatives (which were 

named MS-1 to MS-9) were produced and accounted for up to 60% of the total 

myxalamids produced from the strain (11). As a proof of principle, two of these novel 

non-natural secondary metabolites (carrying a cyclopropyl- or cyclopentyl-starter unit, 

respectively) were chosen for isolation from the M. xanthus bkd strain and 
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subsequently their structures were confirmed by one- and two-dimensional NMR 

analysis (71). 

Meanwhile M. xanthus produces all novel derivatives MS-1 to MS-9 after feeding of 

the respective precursor, S. aurantiaca produces only compounds MS-6 to MS-8. 

One explanation might be a higher flexibility of the intrinsic acyl-CoA ligase of M. 

xanthus when compared to the CoA ligase of S. aurantiaca. Alternatively, or in 

addition, this finding indicates again that the M. xanthus loading AT domain might be 

more flexible especially towards larger starter units, a hypothesis which is supported 

by the higher yield of myxalamid A relative to all other myxalamids produced in this 

strain. Myxalamids thus seem to be a feasible system for further investigations 

aiming at alterations of starter unit selection, be it by point mutagenesis, domain or 

whole module swap experiments. 
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2. Myxovirescin 
 

Myxovirescins are a family of compounds with antibiotic activity, primarily against 

Gram-negative bacteria. They were first isolated from Myxococcus virescens Mx v48 

and have to date been found exclusively in the genus Myxococcus (40,141,142). 

Simunovic et al. could show that at least two members from this family of compounds 

were produced from M. xanthus DK1622 as well, myxovirescin A and C (Figure 13) 

(131). 

 
Figure 13. Myxovirescin A: R = O, myxovirescin C: R = H, H 
 

Myxovirescin biosynthesis gives another interesting example for myxobacterial 

biosynthetic machineries that differ from textbook logic. Among these is the discovery 

of an AT-less (23) multimodular PKS system that is fed through the trans-acting AT 

domain TaV as well as the incorporation of rarely used β-alkyl moieties into the 

myxovirescin scaffold by an enzyme complex employing an HMG-CoA-like synthase. 

Detailed information about myxovirescin biosynthesis can be found in (128-131). 
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3. Myxochromid 
 

Myxochromids (Figure 14) are a family of compounds that were originally isolated 

from Myxococcus virescens Mx v48 (139), and no biological function could be 

assigned to these metabolites so far. Besides myxochromids from the subfamily A 

which are produced from several Myxococcus species, myxochromids S that exhibit 

small but conspicuous structural differences to the A family were recently isolated 

from S. aurantiaca DW4/3-1 (Figure 14, A) (152). This paved the way for a detailed 

analysis of commonalities and in particular of the differences of both biosynthetic 

pathways (153). 

In the scope of this work, myxochromid A3 was isolated from M. xanthus DK1050 and 

its structure was elucidated by one- and two-dimensional NMR analysis. The original 

published structure (139) of these lipohexapeptides could be revised such that the α-

carboxyl group of a glutamine rather than the γ-carboxyl group of a glutamate residue 

forms the ester linkage with the hydroxy group of the N-methylated threonine moiety 

(Figure 14, B and C). The structures of myxochromids A2 and A4 could be assigned 

by HPLC-MS and MS/MS experiments in combination with feeding experiments 

employing [13C4,15N1]-L-threonine that lead to a specifically labelled threonine-

polyketide side chain MS/MS fragment (153). 

 
Figure 14. (A) Myxochromid S; S1: R = Me, S2: R = Et, S3: R = CH=CH-Me     
(B) Myxochromid A; A2: R = Et, A3: R = CH=CH-Me, A4: R = CH=CH-Et             
(C) Structure of the originally published myxochromid A  
 



Discussion 

55 

The myxochromid A and S megasynthetases are composed of seven biosynthetic 

modules. The first module resembles the only PKS present in both assembly lines, 

and heterologous expression experiments unambiguously demonstrated that this 

PKS acts iteratively with the intrinsic capacity to produce polyketide chains of varying 

lengths (151,152). Surprisingly, the length of the primarily processed polyketide 

chains in M. xanthus and S. aurantiaca differs as myxochromids A carry a 17-19 

carbon atom side chain wherease myxochromids S harbour a 16-18 fatty acid 

extension (Figure 14, A and B), implying a differing intrinsic control of the number of 

iterations applied in both systems and/ or a differing preference of both biosynthetic 

pathways in starter unit selection (acetate-CoA vs. propionate-CoA).  

Determination of the absolute configurations of the amino acids incorporated into 

myxochromid A revealed that all amino acids except alanine exhibit the L 

configuration. For alanine, both L and D configured amino acids were assigned in 

equal amounts which correlates well with the results for myxochromid A from 

Myxococcus virescens Mx v48 (139). Analysis of the biosynthetic gene cluster makes 

the structure shown in Figure 14 (B) the most likely candidate since module 2 

(incorporating alanine in myxochromid A biosynthesis) comprises an epimerization 

domain that catalyzes the conversion from L- to D-configured amino acids (84,153). 

In contrast, all amino acids of myxochromid S were assigned as L-configured. 

Furthermore, the peptide core of myxochromids S consists only of five amino acids 

instead of six as observed for myxochromids A, with the proline moiety missing and 

the order of alanine and leucine switched in myxochromid S relative to myxochromid 

A.  

Wenzel et al. demonstrated that point mutations of the respective A domains led to 

the shift towards selection of differing amino acids rather than by genetic exchange of 

the particular A domain or the complete modules. Intriguingly, the C domains of the 

respective modules appear to be flexible to a certain degree and fail to perform their 

gatekeeper role in accepting only one specific incoming intermediate. On the other 

hand, further (point) mutations might have led to changes in C domain discrimination 

abilities of the respective module allowing the assembly using an alternativel amino 

acid residue.  

More strikingly, myxochromid S biosynthesis constitutes the first example for the 

skipping of a complete NRPS module as could be shown by in vitro experiments. 

Expression of the carrier protein domains from modules 4 of the myxochromid A and 
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S biosynthetic pathways, respectively, and coexpression of the 4’-

phosphopantetheinyl transferase MtaA activated the myxochromid A carrier protein 

but not the myxochromid S carrier protein. The flexibility in substrate activation and 

recognition as well as the obvious tolerance towards point mutations that alter 

domain specificities or even abolish their function makes the myxochromid 

biosynthetic pathway a promising system for further investigations aiming at site-

directed mutagenesis and domain or module swaps of both biosynthetic pathways 

(119). 
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4. Myxochelin 
 

Myxochelins (Figure 15) are siderophores of the catecholate-type that were first 

characterized from the myxobacterium Angiococcus disciformis An d30 (77). It did 

not take a long time until they became apparent to be generally used small molecules 

for iron-uptake among the myxobacteria (besides the hydroxamate-type siderophore 

nannochelin from Nannocystis exedens Na e483 (79)). Recently, myxochelin A was 

isolated from the actinomycete Nonomuraea pusilla TP-A0861 (94) indicating that 

myxochelins might be widely used as siderophores in the bacterial world. The gene 

cluster for myxochelin biosynthesis was described from Stigmatella aurantiaca Sg 

a15 (126). Mutants defective in myxochelin biosynthesis had to be supplemented 

with Fe(III) in order to grow, emphasizing the essential role of the myxochelins in 

iron-homeostasis. Furthermore, inactivation of the myxochelin biosynthetic gene 

cluster in M. xanthus was not possible when standard inactivation conditions were 

applied (Socorro D.J.Cortina, N., not published). Here, supplementation with Fe(III) 

will most likely support a more successful approach. Myxochelin biosynthesis 

employs an unusual two-fold usage of a condensation domain that attaches two 2,3-

dihydroxy benzoic acid moieties to the α- and the ε-amino group of L-lysine, 

respectively (37). The readily processed natural product is finally released from the 

thio-template by the rarely found reductive release mechanism as was subsequently 

described for myxalamid biosynthesis as well. Myxochelin B is produced from 

myxochelin A most presumably via an aldehyde intermediate (126). Strikingly, 

myxochelin biosynthesis could be reconstituted in vitro by expression of the 

respective biosynthetic enzymes in presence of the necessary precursors and co-

factors (37). Besides a weak antibacterial activity against several Gram-positive 

bacteria described in the original report of Kunze et. al (77), Miyanaga et al. 

discovered a weak cytotoxic activity and, more promising, a potent in vitro inhibition 

of tumor cell invasion at concentrations that did not show any cytotoxic acitivity (94).  

The hereby described discovery of a novel 3’’-O-methylated myxochelin A derivative 

from M. xanthus within an acitivity-guided approach aiming at the isolation of the 

cytotoxic principle of M. xanthus cell/ XAD-extracts might possibly have been guided 

by this novel reported cytotoxicity of the myxochelins. Yet, it remains to be 

questioned whether myxochelins resemble the actual cytotoxic principle of the 

extracts, considering the stronger cytotoxic activity of myxalamides (11) as well as 
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further putative compounds that might be active at concentrations in which they are 

not even detectable with standard analytical chemistry methods. 

The drastic effects of the inactivation of the myxochelin biosynthetic pathway in S. 

aurantiaca and M. xanthus (which was not possible, see above) rather suggest that 

these metabolites truly are the iron-chelating natural products of these strains. 

Proteins known to be responsible for the uptake of Fe(III)-siderophore complexes 

such as TonB-dependent receptors (50) are encoded in the genome of M. xanthus 

(data not shown) and make it likely that siderophore secretion and reuptake takes 

place in a similar manner as reported for well-investigated siderophore systems like 

enterobactin in E. coli. Concerning iron-release from the Fe(III)-siderophore complex, 

nothing is known for myxobacteria so far. The actively driven methylation (71) of one 

meta-hydroxy group of the myxochelins most presumably destroys the catecholate 

Fe(III)-siderophore complex, and, if at all, only the weaker salicylate complex can be 

formed. For the enterobactin system, such an (artificially) induced shift through 

protonation towards the salicylate coordination (1) was shown to make the reductive 

release of Fe(II) from the complex much more favourable. Methylation in comparison 

to protonation of the meta-hydroxy group leads to a non-pH dependent shift that is 

not reversible and which appears to be better to control by induction of a 

methyltransferase than by the reversible transfer of a proton. Thus, the discovery of 

3’’-O-methylmyxochelin A might have opened the door for further insights into 

siderophore-mediated iron homeostasis in (myxo-)bacteria. Enzymes involved in 

iron-uptake and –release that are only found in bacteria certainly are interesting 

targets for future antibiotic research. 

 
Figure 15. (A) Structure of myxochelin A and B (A: R = OH, B: R = NH2) and (B) 
the newly identified 3’’-O-methylated myxochelin A derivative 
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5. DKxanthene 
 

The DKxanthenes (Figure 16) constitute the first and so far sole family of 

compounds that was primarily reported from M. xanthus DK1622 (91). They appear 

to be characteristic for M. xanthus, since strains from various differing locations 

worldwide invariably produce these metabolites (74). Yet, as could be demonstrated 

during this work, they are produced from other myxobacterial species (at least S. 

aurantiaca) as well and thus are not suitable as chemotaxonomic marker for M. 

xanthus. DKxanthenes are prominently represented within the cells and are not 

secreted to the medium, as was observed during the course of isolation of these 

metabolites (91). Isolation was severely hampered due to unfavourable 

chromatographic properties, the presence of several derivatives that had to be 

separated from each other and the tendency of these metabolites to appear as 

double-peaks, which even occurred during the ongoing separation process. The 

latter is most likely caused by cis-trans isomerization of one (or multiple) double 

bond(s) of the polyketide chain. Consequently, the purification required several 

sequential separation steps and was performed in the dark whenever possible to limit 

isomerization (and even degradation) during the workup (91). Finally, sufficient 

amounts of DKxanthene-534 and DKxanthene-560 were obtained for detailed one- 

and two-dimensional NMR analysis. Further metabolites were identified in M. xanthus 

extracts and their structures were determined by mass spectrometric analysis (MS 

and MSn) in combination with feeding experiments employing [13C4, 15N1]-threonine 

and [D6]-propionate (91) (Figure 16).  
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Figure 16. DKxanthene structures determined from M. xanthus and S. 
aurantiaca. Presence of the respective derivative in each strain is indicated by 
checkmarks. Numbering of atoms is shown at the structure. 
 

As observed for other polyenes, NMR structure elucidation of the conjugated double 

bond system was complicated due to signal overlap, and no clear assignment of 

coupling partners and coupling constants was possible. Here, changing the 

deuterated NMR-solvent system from DMSO to methanol and methanol/ benzene 

mixtures of differing composition allowed a more clear assignment, and in 

combination with the obtained UV-data and calculation of theoretical chemical shifts 

an all-trans configuration was proposed for the polyene chain (91) (Figure 17).   



Discussion 

61 

 
Figure 17. Selected 1H-NMR spectra of DKxanthene-534 applying different 
deuterated solvent systems (given in the upper right corners). Numbers above 
the signals indicate the corresponding proton. Signals were shifted under 
different solvent conditions and hidden coupling constants were released as 
indicated. 
 
The DKxanthene biosynthetic gene cluster was first discovered in M. xanthus 

DK1622, and shortly after that in S. aurantiaca DW4/3-1 as well, enabling the 

informative comparison of both biosynthetic pathways. As can be readily proposed 

from the structure of the DKxanthenes, the biosynthetic gene cluster encodes a 

hybrid PKS/NRPS megasynthetase. The production of a broad natural diversity 

which is restricted to specific parts of the molecule seems to be a characteristic 

feature for DKxanthene biosynthesis. Meanwhile the structures of the starter unit, the 

oxazoline ring and the presence of a terminal asparagine moiety are unvaried in all 

derivatives known so far, the architecture of the polyene chain is more flexible with 

respect to its length and methylation pattern. Furthermore, the asparagine moiety is 
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hydroxylated in the main but not all derivatives in M. xanthus, and none hydroxylated 

metabolites were identified in S. aurantiaca (Figure 16).  

The latter is most likely due to the absence of dkxD in the biosynthetic gene cluster of 

S. aurantiaca (dkxDW), which encodes a FAD-dependent monooxygenase in the M. 

xanthus cluster (dkxDK) (Figure 18, A).  

 
Figure 18. (A) DKxanthene biosynthetic gene clusters of M. xanthus and S. 
aurantiaca. Genes encoding enzymes involved in starter unit biosynthesis 
(dark grey), hydroxylation (black), PKS formation (hatched) and NRPS 
(chequered) biochemistry are indicated. (B) Model for DKxanthene 
biosynthesis. The pyrrole carboxylic acid starter unit is derived from proline 
and processed as described recently (147). Four PKS modules perform 
altogether at least six rounds of chain extensions (and seven in the case of 
DKxanthene-534 as shown). DkxN appears to be the best candidate for 
programmed iteration, and DkxG might iterate in a randomly occurring 
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process. Notice the different order of enzymes when compared to the order of 
genes in the DKxanthene gene cluster. 
 
One common characteristic of type I polyketide biochemistry is the colinearity of 

biosynthetic enzymes with the chemical structures generated from the multimodular 

machinery. This colinearity rule is not absolute, however, and examples exist in 

which single modules within type I PKS systems were used more than once. So far, 

one single module was always shown or postulated to be responsible for this 

programmed or aberrant iteration (4,38,48). Iteration is proposed for DKxanthene 

biosynthesis, since altogether four PKS modules assemble the polyketide chain that 

requires at least one and up to four repetitive uses of at least one module. 

Alternatively, extra PKS modules might be located elsewhere in the genome, an 

option that can not be ruled out by the chosen approach (here, successful 

heterologous expression of the DKxanthene cluster is required for unambiguous 

proof). Yet this option appears to be unlikely as there is no precedent for such a 

case, and second, docking domain analysis (113) hints to the well assorted 

arrangement of DKxanthene modules DkxG, DkxN, DkxH, DkxI and DkxJ (Figure 18, 

B). This order might as well reason the observed pattern of DKxanthene derivatives 

since the docking domain interaction of DkxG and DkxN appears to be not as 

optimized as the others, possibly providing a basis for the postulated programmed 

iterative usage of DkxN and the possible aberrant iterative use of DkxG.  

The DKxanthenes were tested for their therapeutic potential in antibacterial (Gram-

positive and –negative), antifungal and cytotoxicity assays. However, in none of the 

tests applied a mentionable activity was observed (data not shown). Rather, as these 

metabolites remain within the cells and since earlier reports (18,82,124) indicated the 

involvement of the yellow pigments in developmental processes of M. xanthus, we 

set out to determine a potential role of the DKxanthenes for the producing organism 

itself. First, mutants defective in DKxanthene biosynthesis were tested for fruiting 

body formation in comparison to their parent wild type strain M. xanthus DK1050. 

The build-up of fruiting bodies was observed for all mutants tested, but an apparent 

delay in aggregation and completion of fruiting body formation indicated that the 

developmental process is hampered in absence of DKxanthenes. The formation of 

refractile spores was confirmed after 72 hours of development (Figure 19). 
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Figure 19. (A) M. xanthus DK1050 wild type and (B) DKxanthene-negative 
mutant derived thereof after 72h of development, after resuspension. 
Remaining vegetative cells/peripheral rods are rod-shaped, and spores are 
round and refractile. 
 

Unexpectedly, when spores of wild type versus mutant were tested for viability after 3 

days of development (after ultrasound and heat treatment), no viable spores could be 

recovered from the mutants. Testing of ongoing time-points during development 

revealed that this defect persisted until day seven, and altogether a maximum 

recovery rate of 25% of viable spores was observed when compared to the wild type. 

However, this defect could be complemented at least in part by codevelopment of the 

mutant strains with wild type, and, moreover, by the addition of purified DKxanthene-

534 to the developing cells (91). Similar results were obtained in preliminary studies 

that dealt with the phenomenon of phase variation: M. xanthus cells are able to 

alternate between two colony types. The first and usually predominant phase is 

characterized by the yellow pigmentation and rough, swarming colonies (yellow 

phase). In the alternate phase, the cells are tan and mucoid with smooth edges (tan 

phase). Both phases are interconvertible. Mutants that are locked in the tan phase 

were very inefficient in fruiting body formation and unable to produce heat- and 

sonication-resistant spores. However, when mixed with predominantly yellow 

cultures, the spores produced from these mixtures were derived predominantly from 

the phase-locked tan mutants (82). 

DKxanthenes resemble in large part polyenes, a class of metabolites that very often 

exhibit protective properties against various damaging agents including free radicals, 

and since an UV-protective effect of the yellow pigments as well as the UV-induced 

conversion of tan cells to yellow cells was described before (18), the antioxidative 
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potential of DKxanthene-534 was determined in two test systems. The strung-out 

structure and a large lipophilic part with a hydrophilic “C-terminal” hydroxy-

asparagine moiety make it likely that the DKxanthenes are located within the 

membrane, where they could play a similar role in protecting fatty acids from 

oxidation and furthermore in rigidifying the membrane to maintain the required 

membrane fluidity as was described before for carotenoids, members of a family with 

similar polyene structure (46). Indeed, an antioxidative activity could be assigned to 

the DKxanthenes, supporting this hypothesis. Yet, it remains questionable whether 

this activity is a sufficient explanation for all of the effects observed during 

development, and it appears rather likely that pleiotropic effects lead to the overall 

phenotype.   

Thus, the phenotype of DKxanthene-negative mutants was further investigated by 

electron microscopy (performed by Dr. Jan Hegermann) and proteomic studies 

(performed by Dr. Yasser Elnakady). In short, wild type and mutant cells were 

developed in submerged culture or on nutrient-deficient agar, harvested at selected 

time points and prepared for the subsequent analysis. 

Electron micrographs allowed insights into the defect of DKxanthene-deficient 

myxospores. Meanwhile, no apparent difference was observed for vegetative cells, 

developmental spores of the mutants differ in size and morphology from the wild 

type. Spores from DKxanthene-negative mutants are slightly but unambiguously 

larger than wild type spores, a difference that is more significant after 72 hours of 

development but that is still existent after 5 days. Furthermore, lipid droplets within 

the spores are smaller in size but larger in number in the mutant, and retain longer 

within the myxospores during development. Finally, apparent differences exist with 

respect to spore cortex and coat that both consist of several layers (136). 

DKxanthene-negative mutants produce spores with less condensed and less defined 

spore cortex and coat (Figure 20). 
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Figure 20. Electron micrographs of (A) wild type and (B) DKxanthene-negative 
mutant spores after 72 hours of development. The presence of lipid droplets is 
indicated by asterisks. 
 
A very similar effect was observed in spores that were induced by the addition of 

glycerol. Glycerol-induced sporulation is independent from fruiting body formation 

and appears already after 2 hours time of induction (31) (Figure 21). 

 

 
Figure 21. Electron micrographs of (A) wild type and (B) DKxanthene- negative 
mutant spores derived from glycerol-induction. 
 
This indicates that maturation of the mutant spores is at least delayed, and 

furthermore a direct or indirect involvement of the DKxanthenes in lipid metabolism 

seems likely, e.g. by emulsifying lipids from the lipid droplets that are further 

processed during the reorganization that takes place during spore’s maturation (114). 

For proteomic analysis, a two-dimensional fluorescence difference gel 

electrophoresis (2D DIGE) approach with subsequent MALDI-TOF peptide 

identification was chosen. Here, two samples can be compared to each other within 

one gel, and different labelling of the respective proteins allows the differential in gel 

detection as well as comparison of both samples without further treatment of the gel. 
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Four parallel samples of wild type versus mutant were analyzed that way under 

vegetative as well as developmental conditions (Meiser and Elnakady, unpublished).   

For vegetative cells (= time-point 0h of development), altogether nine proteins were 

detected that appeared to be differentially expressed (taken a ratio of a more than 

1.5-fold increase resp. decrease in protein expression in all four samples as cutoff) 

(Table 2). Eight of them were up- and one was down-regulated in the DKxanthene-

negative mutant. Unfortunately, identification succeeded only for five of the up-

regulated proteins. These include a dehydrogenase (glucose/ sorbosone family), the 

glycine cleavage system T protein, a FG-GAP repeat protein, FibA and ProV. Among 

the proteins identified, especially the three latter appear to be interesting findings. 

FibA represents the most abundant (known) extracellular matrix-bound protein that 

shows homologies to M4 zinc metalloproteases, was proven to be important for 

stimulation of cells by the chemoattractant phosphatidylethanolamine (PE) and for 

formation of discrete aggregation foci (17,69). Yet, although FibA resembles a protein 

known to be involved in developmental processes and is thus a promising candidate 

for the interpretation of the effects caused by the absence of DKxanthenes, its 

quantification by proteome analysis was observed to be not perfectly reliable (in 

former experiments employing M. xanthus wild type and different mutant strains) and 

thus makes the interpretation of this finding difficult (Y. Elnakady, M.O. Altmeyer, 

personal communication). However, another protein that typically interacts with 

extracellular matrix proteins is up-regulated in the mutant as well: FG-GAP repeat 

proteins constitute a family of proteins that are predicted to fold into a ß-propeller 

domain. Such domains were reported to be part of phosphatidylinositol 

phospholipase D as well as integrins and contain FG (phenylalanyl-glycyl) and GAP 

(glycyl-alanyl-prolyl) consensus sequence repeats (132). Integrins are cell adhesion 

molecules found in eukaryotes, and cell adhesive events are mediated by 

transmembrane receptors that regulate adhesion, embryonic development by 

controlling cell migration, growth and differentiation (85). Integrins bind to diverse 

ligands from the extracellular matrix and cell surface receptors.  One might therefore 

speculate that one such ligand might be FibA. The binding of invasins from 

enteropathogenic bacteria to integrins allows the internalization into the eukaryotic 

host cell (58). Binding to ligands is dependent of divalent cations and acidic residues 

were identified as key components of integrin-binding ligands (85). Only one protein 

in the databases shows high homologies to MXAN_1005, a FG-GAP repeat protein 
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from S. aurantiaca DW4/3-1 (58% identity/ 72% similarity). Much less significant 

homologies are found for the described eukaryotic integrin family of proteins.  

ProV represents a homologue of OpuAA, the ATP-binding/hydrolyzing subunit of an 

osmoregulated ABC transporter system (OpuA) (143). It was shown for Lactococcus 

lactis that OpuA can act both as osmosensor and osmoregulator. Experiments 

employing artificial phospholipid bilayers suggested that OpuA is activated by 

sensing changes in the physical status of the lipid bilayer via lipid/protein interactions 

(143). The upregulation of ProV might therefore be another indicator for the affected 

integrity of the cell membrane of DKxanthene-negative mutants as well as for the 

membrane-associated localization of the DKxanthenes.  

MXAN_2249 (ProV) and MXAN_1005 (FG-GAP repeat protein) were inactivated by 

plasmid insertion mutagenesis and tested for fruiting body formation. Both mutants 

retained the ability to produce fruiting bodies (data not shown). Closer inspection of 

both strains is currently under investigation in our laboratory.  

 

Table 2. Differentially expressed proteins identified in vegetative cells of wild type and 

DKxanthene-negative mutants (Up- or down-regulation of proteins refers to the mutant in 

comparison to the wild type) 

Gene name/ MXAN Gene product Regulation 

MXAN_6745 Dehydrogenase, glucose/ sorbosone 

family 

2.60 up 

gcvT/ MXAN_3040 

 

Glycine cleavage system T protein 1.74 up 

MXAN_1005 FG-GAP repeat protein 2,63 up 

fibA/ MXAN_6106 Matrix-associated zinc 

metalloprotease FibA 

1.76 up 

proV/ MXAN_2249 Glycine betaine/ L-proline ABC 

transporter, ATP-binding protein 

1.96 up 

 

Differences in proteome pattern strongly increased after 24 hours of development. 

Altogether at least 28 proteins were differentially regulated, and 19 proteins were 

down- and nine proteins up-regulated. Among them, 12 could be identified (Table 3). 
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Table 3. Differentially expressed proteins of wild type and DKxanthene-negative mutants 

identified after 24 hours of development (Up- or down-regulation of proteins refers to the 

mutant in comparison to the wild type) 

Gene name/ MXAN Gene product Regulation 

MXAN_7110 Peptidyl-prolyl cis-trans 

isomerase, FKBP-type 

1.58 up 

MXAN_5430 Development-specific protein S 

(Spore coat protein S) 

1.66 up 

MXAN_6451 Hypothetical protein 1.73 up 

MXAN_6035 2-oxoglutarate dehydrogenase, 

E1 component 

1.77 down 

MXAN_6911 TonB-dependent receptor 1.93 down 

MXAN_2408 Translation elongation factor G  1.50 down 

pckG/ MXAN_1264 Phosphoenolpyruvate 

carboxykinase   

1.50 down 

MXAN_5856 Acetate-CoA ligase  1.63 down 

MXAN_5266 Hypothetical protein 1.50 up 

MXAN_3068 Translation elongation factor Tu 1.53 up 

MXAN_3434 Hypothetical protein 2.12 up 

MXAN_4863 Adventurous gliding motility 

protein AgmK 

2.33 down 

 

One peptidyl-prolyl cis-trans isomerase is among the identified proteins, which is 

upregulated in the mutant strain (MXAN_7110) (a second peptidyl-prolyl cis-trans 

isomerase (MXAN_6153) that is down-regulated (1.86 down) in the mutant was 

identified as well but needs to be reconfirmed). Besides the role of these enzymes in 

prolyl cis-trans isomerization during protein folding, recent studies have uncovered 

that prolyl-isomerization can also function as a molecular timer in a number of 

biological and pathological processes, including cell signalling, gene expression and 

infection (86). Consequently, it appears within the realms of possibility that the 

identified enzymes could play a role in triggering cell differentiation at specific time 

points during development. The differential regulation of two enzymes of this class at 

contrastive levels might be due to the delayed developmental progession of the 

DKxanthene-negative mutants. Mutants defective in these enzymes might possibly 

be unable to develop or might arrest at specific time points during development. 

Unfortunately, disruption of both genes by plasmid insertion did not succeed, 

indicating that they are essential for cell viability.  
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The most significantly down-regulated protein AgmK represents another remarkable 

finding. It is part of the adventurous gliding motility apparatus, one of two known 

motility systems (A and S) in M. xanthus (64,93) that are separated from each other 

but that are used as coordinated motility engines. Even though no significant 

differences for A- and S-motility were observed for DKxanthene-negative mutants in 

comparison to the wild type (91), the decreased production of A-motility proteins 

might be one reason for the reported differing colony morphology of tan phase 

variants. 

Three enzymes involved in primary metabolism (MXAN_6035, MXAN_1264 and 

MXAN_5856) are identified as down-regulated in the mutants at comparable level. 

The formation of myxospores involves the remodelling of the peptidoglycan layer, 

with the amount of peptidoglycan increasing relative to the surface area during the 

metamorphosis from rod-shaped vegetative cells towards the spherically shaped 

spores. Furthermore, novel spore envelope polysaccharides are synthesized, and 

trehalose production strongly increases during sporulation (122). Thus, 

gluconeogenesis is extended during the sporulation process, giving further evidence 

for a delayed or hampered mature spore formation in the DKxanthene-negative 

mutants. It is worth mentioning that a functionally similar protein to MXAN_1264 (a 

phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis), PykA from 

S. aurantiaca (a pyruvate kinase, involved in glycolysis) was identified as “indole-

binding protein” essential for fruiting body formation (133). 

Protein S, the most abundant and development-specific protein of M. xanthus, 

however, is upregulated in the mutant strain. This appears to contrast with the 

phenomena described so far, but two possible explanations might be adduced. First, 

the overproduction of protein S might be a counter-reaction of the defective spores to 

compensate for the unusual architecture of the spore coat. The function of protein S 

during sporulation is not yet known, but some data suggest that protein S might 

function as a cement that holds the spores together within the fruiting body (67). 

Second, the higher quantities of protein S in the mutant protein extract are due to an 

intrinsic property of protein S as well as the analytic method used. Protein S 

synthesis starts early in development and the protein first accumulates in the soluble 

fraction of the cytoplasm. Later in development (15 to18 h), it can be found in the 

periplasm as well, from where it is assembled into the spore coat starting at 24 to 30 

hours of development. It was speculated that the production of protein S and its 
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retention in the cytoplasm before transport across the cytoplasmic membrane must 

occur since cells were unable to produce the massive amount of protein S 

immediately before spore formation (transport might be accomplished by a 

developmentally regulated transport protein, or alternatively, by major changes in the 

cell membrane that allow protein S to transverse the membrane) (99). As the applied 

2D DIGE approach is very suitable for soluble proteins but in contrast less applicable 

for the reliable detection of membrane proteins, the observed results might again 

mirror the retarded maturation of the DKxanthene-negative spores. Meanwhile a 

certain proportion of protein S is assembled into the spore coat of M. xanthus wild 

type after 24 hours – and thus is detracted from detection - the major part of this 

protein is still accumulated in the cytoplasm in the case of the mutants, giving rise to 

a seemingly higher yield of protein S in the DKxanthene-negative mutants. 

In summary, our data suggest that DKxanthene-negative mutants form fruiting bodies 

and spores, but the progession of this process is at least delayed, if not impaired in 

general. The underlying mechanism appears to be complicated, which is not 

surprising considering the complex biochemical changes that must occur within the 

developing cells. Moreover, the scenario should be even more complicated for tan 

phase variants as the tan phenotype should be induced by a regulatory network that 

controls the behaviour of a single cell within millions of congeners that pass through 

the developmental program.  
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6. Other (putative) natural products from M. xanthus and activation 
of carrier proteins from secondary metabolite biosynthetic 
pathways 
 

As described, the genome sequence of M. xanthus DK1622 indicates the potential of 

this strain to produce at least 18 different secondary metabolites. Five of these could 

be characterized at least in part within this work. It appears unlikely that the 

remaining biosynthetic gene clusters do not serve any function for the organism since 

maintaining the genetic information requires energy and the loss of non-functional 

gene clusters would be the expected consequence. However, no additional 

secondary metabolite was discovered in M. xanthus extracts so far except for one 

compound with a molecular mass of 582 that was identified in M. xanthus extracts 

and which is only generated and recovered reproducibly if cultivation is performed in 

presence of XAD-2 adsorber resin (unpublished observation). Several explanations 

might be adduced: First, most simple but as well very likely, the metabolites might not 

be produced under laboratory conditions which are quite remote from the conditions 

of the natural habitat of the bacteria. The induction of specific biosynthetic pathways 

might require environmental “signals” such as various nutrients, shifts in temperature, 

oxygen supply, pH or moistness, and even the competition with other microbes in the 

soil. In contrast, laboratory conditions are set up in order to be highly reproducible, 

including constant temperatures, pH and, of course, sterile conditions that only allow 

the strain of interest to grow. Assuming that all natural products have a biological 

function for the producing organism by acting as signalling or regulatory molecules 

within cells or cell communities to maintain homeostatic conditions (25), it might be 

possible that they are superfluous in standard laboratory environment. Alternatively, 

at least some of the secondary metabolites are produced even under laboratory 

conditions, but at concentrations which do not allow any analytical detection or which 

make it difficult to differentiate between background noise and the signal of the small 

molecule. This hypothesis is supported by recent investigations into the proteome of 

M. xanthus applying a two-dimensional chromatographic separation of tryptic 

peptides from M. xanthus protein lysate with subsequent mass spectrometric 

analysis (117). This approach readily allows identification of high-molecular weight 

PKS and NRPS proteins, and among them, not only proteins from biosynthetic 

pathways associated with the production of known natural products were detected 
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but also proteins from six biosynthetic gene clusters with so far unknown products. 

The presence of all biosynthetic proteins of the respecitve gene cluster is of course 

the prerequisite for biosynthesis, but appears to be likely with respect to the above 

mentioned criterion of modest energy house keeping. Statistical approaches such as 

principle component analysis (PCA) (75) help to unveil the production of secondary 

metabolites that are produced only in trace amounts, e.g. by comparing the wild type 

strain with mutants defective in one particular biosynthetic pathway (74). 

A further problem to overcome besides low production yields is featured by the 

complex media in which the bacteria are cultivated. They provide a strong 

background of signals that have to be discriminated against the “true” natural 

products, and even matching of the pure media extracts (background) against the 

bacterial culture grown in media from the same batch might be misleading since the 

non-natural product background changes during fermentation due to degradation of 

media components as well as cell lysis (Figure 22, A and B). The best comparison 

for background subtraction would thus be a bacterial culture grown in production 

medium that does not produce any secondary metabolites. Encouraged from results 

of inactivation experiments of mtaA in S. aurantiaca DW4/3-1 (36,125) leading to the 

complete abolishment of known secondary metabolite production in this strain, a 

similar approach was chosen for M. xanthus. MtaA from S. aurantiaca DW4/3-1 

represents a 4’-phosphopantetheine transferase (PPTase) with broad substrate 

specificity from the Sfp-type (95) essential for activation of carrier proteins of 

secondary metabolite biosynthetic pathways. A PPTase (MXAN_3485, renamed to 

MxPpt1) with very high sequence homology to MtaA was identified in M. xanthus and 

inactivated. Unexpectedly, the inactivation did not lead to a complete loss of natural 

product formation but rather to significant changes in the metabolite pattern (Figure 
22, C).  
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Figure 22. Base peak chromatograms (BPC) of (A) CTT medium (B) M. xanthus 
DK1050 grown in CTT and (C) the mutant in which MxPpt1 is inactive in CTT.  
Metabolites are indicated by numbers: 1 Myxochelin, 2 DKxanthene, 3 Lyso-PE 
(a species of lipids (6)), 4 Myxovirescin, 5 Myxalamid, 6 Myxochromid 
 

Subsequent analysis of the M. xanthus genome revealed the presence of another 

Sfp-type PPTase (MXAN_4192, renamed to MxPpt2) and (as expected) one AcpS-

like PPTase (MXAN_4350, renamed to MxAcpS). AcpS-like PPTases are thought to 

activate fatty acid synthases and type II polyketide synthases. Disruption of MxAcpS 

as well as the creation of a MxPpt1/ MxPpt2 double mutant did not succeed, but the 

inactivation of MxPpt2 and overexpression of MxPpt1 and MxPpt2 led to further 

insights into the roles of both enzymes in secondary metabolite production. In short, 

apparently both enzymes are necessary for the proper activation of all (known and 

analyzed) natural product biosynthetic pathways and are able to complement at least 

in part the loss of function of each other. Furthermore, both enzymes appear to be 

specific for certain biosynthetic pathways. This interpretation is exemplified in the 
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case of the mxPpt1 inactivation mutant by the resulting strong decrease in 

DKxanthene and myxovirescin production and the increase in myxalamid production 

(the latter most presumably due to increased precursor supply caused by the 

decreased competition from other biosynthetic pathways). Remarkably, a change in 

fatty acid profile was observed in all PPTase mutants as well when compared to the 

wild type. 

As a conclusion, the creation of a clean “natural product free background strain” 

failed, but the attempt to do so allowed further insights into the complex metabolic 

network used by M. xanthus. The suggested use of Sfp-type PPTases in addition to 

MxAcpS for the activation of fatty acid biosynthesis carrier proteins gives another 

example for the connection of primary and secondary metabolism in this strain, a 

feature that was described before, e.g. for the supply with branched chain carboxylic 

acid precursors for primary and secondary metabolite production (11,14,88). 

One promising alternative towards the attempt to discriminate between secondary 

metabolites and the occurring background noise in the natural producer is given by 

heterologous expression of the respective biosynthetic pathways in phylogenetically 

distant host organisms. This approach, even though laborious, comprises several 

advantages: First, the identification of the metabolite should be easier since the 

mutant strain containing the gene cluster can be compared directly to its progenitor 

strain (wild type). Second, the biosynthetic pathway can be uncoupled from 

(unknown) required signals for biosynthesis by employing strong constitutive or 

inducible promoters that drive transcription of the gene cluster. Thus, gene clusters 

that are for some reason “silent” in the natural producer can be activated and the 

natural product can subsequently be identified and isolated (45). A similar effect 

would be expected from the introduction of strong promoters into the biosynthetic 

gene cluster in the natural producer itself. Third, gene clusters expressed in 

heterologous hosts are often easier to manipulate genetically when compared to the 

original host, as is the case for E. coli and pseudomonads when compared to 

myxobacteria. This opens the door for better manipulation of the biosynthetic 

pathway, e.g. mutations aiming at alteration of binding pocket substrate specificity or 

the repairing of aberrations identified in the sequence of conserved residues that 

might be responsible for non-production. Finally, as the tools and the knowledge for 

heterologous production become more and more sophisticated, the number of 

examples for secondary metabolites that are produced in higher quantities in the 



Discussion 

76 

heterologous host when compared to the natural producer will steadily increase 

(151,154). Beyond this, further insights into the chemical diversity of the M. xanthus 

secondary metabolome should pave the way for a better understanding of the role 

natural products play for this extraordinary organism. 
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