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ABSTRACT

This thesis deals with coupled space-time discontinuous Galerkin methods for the
modeling of dynamical phenomena in fluid saturated porous media. The numerical
scheme consists of finite element discretizations in the spatial and in the temporal
domain simultaneously. In particular, two major classes of approaches have been
investigated.
The first one is the so-called time-discontinuous Galerkin (DGT) method, consisting
of discontinuous polynomials in the temporal domain but continuous ones in space.
A natural upwind flux treatment is introduced to enforce the continuity condition
at discrete time levels. The proposed numerical approach is suitable for solving
first-order time-dependend equations. For the second-order equations, an Embed-
ded Velocity Integration (EVI) technique is developed to degenerate a second-order
equation into a first-order one. The resulting first-order differential equation with
the primary variable in rate term (velocity) can in turn be solved by the time-
discontinuous Galerkin method efficiently. Applications concerning both the first-
and second-order differential equations as well as wave propagation problems in
porous materials are investigated.
The other one is the coupled space-time discontinuous Galerkin (DGST) method, in
which neither the spatial nor the temporal approximations pocesses strong continu-
ity. Spatial fluxes combined with flux-weighted constraints are employed to enforce
the interelement consistency in space, while the consistency in the time domain is
enforced by the temporal upwind flux investigated in the DGT method. As there
exists no coupling between the spatial and temporal fluxes, various flux treatments
in space and in time are employed independently. The resulting numerical scheme is
able to capture the steep gradients or even discontinuities. Applications concerning
the single-phase flow within the porous media are presented.

Keywords: space-time finite element method, time-discontinuous Galerkin method,
Embedded Velocity Integration method, fluid saturated porous media, wave propa-
gation.
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ZUSAMMENFASSUNG

Im Rahmen dieser Arbeit werden gekoppelte Raum-Zeit Finite-Elemente-Methoden
für die Simulation dynamischer Effekte in fluid-gesättigten porösen Materialien
entwickelt und numerisch umgesetzt. Dazu wird eine gekoppelte Diskretisierung
des räumlichen und zeitlichen Gebietes vorgenommen. Insbesondere werden zwei
Klassen von Verfahren untersucht.
Die erste Methode ist ein sogenanntes zeitlich-diskontinuierliches Galerkin Verfahren
(DGT-Methode). Hierbei werden diskontinuierliche Ansätze in der Zeit und kon-
tinuierliche Ansätze im Raum verwendet. Die Kontinuitätsnebenbedingung in der
Zeit wird durch einen upwind-Flussterm erzwungen. Der Flussterm unterliegt math-
ematischen Restriktionen und daher ist das resultierende Finite Element Verfahren
nur für Gleichungen mit zeitlichen Ableitungen erster Ordnung geeignet. Um auch
Gleichungen zweiter Ordnungen mit dem entwickelten DGT-Verfahren behandeln zu
können, ist die EVI-Methode (Embedded Velocity Integration method) entwickelt
worden. Im Rahmen der EVI-Technik wird die Geschwindigkeit als Primärvariable
gewählt und im Bezug auf die gewählten zeitlichen Ansätze integriert. Die aud der
Geschwindigkeit basierenden schwachen Formen können wiederum mit der DGT-
Methode gelöst werden. Die entwickelten numerischen Raum-Zeit Finite-Element-
Methoden werden sowohl für elastische Wellenausbreitungsprobleme als auch für
gekoppelte Fragestellungen in porösen Medien angewendet.
Abschließend wird ein räumlich diskontinuierliches Finite-Element-Verfahren en-
twickelt und mit den bereits entwickelten zeitlich-diskontinuierlichen Methoden
gekoppelt. Die räumliche Kontinuitätsbedingung wird durch die Entwicklung eines
speziellen Flusstermes erzwungen. Es wird gezeigt, dass sich das Verfahren mit
den bereits entwickelten Flusstermen für die zeitliche Kontinuität koppeln lässt.
Dies wird durch die Entkopplung der räumlichen und zeitlichen Flussterme möglich.
Das resultierende Raum-Zeit diskontinuierliche Finite-Elemente-Verfahren wird
wiederum auf Strömungsprobleme mischbarer Fluide in porösen Medien angewendet
und mit klassischen Methoden verglichen.

Stichworte: Raum-Zeit Finite Elemente Verfahren, zeitlich-diskontinuierisch Galk-
erin Methode, EVI Methode, fluid-gesättigte poröse Medien, Wellenausbreitung
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REVIEW AND SUMMARY OF THE THESIS

Space-time Galerkin methods are natural extensions of the classical Finite Element
Method. They are a powerful tool in solving partial differential equations. Such
methods are developed, implemented and applied to different physical problems.
A review of the thesis is presented. The numerical methods are discussed and
motivated. In the appended papers, we illustrate the derivation and behavior of the
numerical methods. References are made to Paper A-D in the thesis.

1 Introduction and motivation

1.1 Numerical simulation for engineering computation

With the development of the computer technology, the scientific computing has
become a third paradigm in combination with theory and experiment. Numerical
simulation enables the study of complex systems and natural phenomena that would
be too expensive or dangerous, or even impossible to study directly by experimen-
tation. Moreover, computer simulation provides the capability to enter fields that
are inaccessible to traditional experimentation and method of inquiry. The physical
phenomena can be described by a mathematical model consisting of partial differen-
tial equations (PDE) equipped with associated boundary and initial conditions. Due
to the fact that only in extremely simplified case, analytical solutions of PDEs are
accessible. In practice, instead of seeking an exact solution of the boundary value
problem under study, engineers and scientists perform numerical analysis in order
to find an approximate solution of the PDE within reasonable bounds of error.
To date, the fast development in the hardware and software has significantly in-
creased the importance of large scale computation in the numerical simulations. The
quest for higher levels of details and realism in scientific simulations require always
enormous computational capacity. This has provided the impetus for developing
even faster computers and more efficient numerical algorithms. The most popular
method for performing numerical analysis is the finite element method (FEM), also
called the Galerkin method. Since the birth of FEM in the 1950s [14, 60], the efforts
on developing new algorithms to meet the ever growing demand of the scientific
simulations have never stopped. Despite the diversities of various techniques, ac-
cording to the chosen function spaces, the modern FEM can be primarily divided
into two classes, the Bubnov Galerkin method, employing the same trial and test
function spaces, and the Petrov Galerkin method where different trial and test func-
tion spaces are employed. By employing different trial and test function spaces, the
Petrov Galerkin formulation can be enhanced with stabilization mechanism, which
is favorable in the modeling of phenomena including sharp gradients or discontinu-
ities. According to the domain of the finite element discretization, there are spatial
FEM (classical FEM) in which a finite element mesh covers the spatial domain and
the space-time FEM in which a coupled discretization in the space as well as in the
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time domain is constructed. The classical finite element treatment is based on a
finite element discretization in space, rendering the PDE into an equivalent system
of Ordinary Differential Equations (ODE) in time, which can then be solved by
certain time-stepping method, i. e. finite difference techniques (Method of Lines,
MOL). Since the pioneer work of introducing the finite element technique also to
the temporal domain in 1969 [2, 37], the space-time FEM has gained more and
more attention in the community. Nowadays, using the finite element method in
the temporal domain as well as in the spatial domain (space-time Galerkin method)
to model transient phenomena has become a promising competitor to the classical
finite element approaches. Among the family of space-time FEMs, according to
the art of discretization, we can further identify the decoupled space-time FEM, in
which the spatial and temporal discretizations are constructed subsequently, and
the coupled space-time FEM whereby a finite element mesh covers the space-time
domain simultaneously.
The objective of this thesis is to study a new coupled space-time finite element
method for the application of dynamic analysis in porous media. The resulting
finite element formulation possesses the form of the Bubnov Galerkin method but
with enhanced stability properties, and it is able to capture sharp gradients and even
discontinuities in the numerical solution. Moreover, the method provides a general
approach for solving transient problems for a vast of engineering applications.

1.2 Modeling aspect within the Theory of Porous Media

The primary purpose of this thesis is to study an efficient space-time FEM method
for applications in the Theory of Porous Media (TPM). In this section, we briefly
review the main ideas of the TPM. The TPM is based on the axioms of the con-
tinuum theories of mixtures extended by the concept of volume fractions, cf. the
textbooks [23, 30]. The physical model is based on a mixture consisting of immisci-
ble constituents ϕi. The individual aggregate is considered as a statistically average
value in the sense of a Representative Elementary Volume (REV) dv. As a matter
of course, the REV must be large enough to allow for a statistical statement. An
individual constituent within the REV is identified according to its volume fracture
defined by ni = dvi/dv, with dvi denotes the volume of the constituent ϕi in the
REV. In the case that no empty void exists in the mixture, the mixture is called
saturated, i. e.

∑
in

i = 1. In this thesis, a binary mixture consisting of a solid
phase ϕs and a fluid phase ϕf is studied, so that we have i = {s, f} with ns +nf = 1,
see Figure 1. Furthermore, by the use of the volume fraction, we can identify two
density concepts, namely the partial density ρi = dmi/dv and the effective density
ρiR = dmi/dvi. We denote that the effective density ρiR represents the true density
of the constituent ϕi, while the partial density ρi stands for the density proportion
of constituent ϕi in the REV. These two densities are related via the volume fraction
ni, i. e. ρi = ni ρiR. Regarding the total mass in the REV with respect to the total
volume, the density of the mixture ρ equals the sum of the partial densities of its
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macroscale

microscale
ns
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dvREV

“homogenized model”

concept of volume fractions

Figure 1: Illustration of the statistical distribution of a binary porous medium
consisting of a granular solid phase ϕs and a fluid phase ϕf.

components, i. e. ρ =
∑

i ρ
i. Obviously, even for a mixture with materially incom-

pressible constituents ρiR = const., the partial density ρi varies with the change of
volume fraction ni.
In mixture theory [59], individual constituents of the mixture are completely smeared
out through the considered domain in the sense of superimposed and interacting con-
tinua, see Figure 2. Herein, the spatial point x is occupied by both solid and fluid
constituents simultaneously. Each constituent follows its own function of motion.
The motion functions of these particles are given by

x = χi(Xi, t0). (1)

The motion function χi of the constituent ϕi is independent of the other. Usu-
ally, the motion of the solid is described with respect to the reference configuration
(Lagrangian description), while the fluid motion is described with respect to the
current configuration as relative motion to the solid (modified Eulerian descrip-
tion). The seepage velocity denoting the relative velocity between the solid and
fluid constituents is given by

wf = x′f− x′s. (2)

Herein, the operator (•)′i represents the material time derivative following the mo-

tion of constituent ϕi, i. e. (•)′i = ∂(•)
∂t

+ grad(•) (x)′i.
The model statement of the binary mixture was illustrated in detail in e. g. [23, 30].
A survey on the historical development of the TPM can be found in the monograph
work of de Boer [24]. For a state of art introduction and applications, the interested
readers are referred to [29].
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Figure 2: Illustration of the motion of a solid Ps and a fluid particle Pf in a fluid-
saturated porous solid

Among the community of the TPM, most of the works done so far have been de-
voted to applications with respect to quasi-static investigations, e. g. [25, 32, 34].
Only few investigations based on the TPM have been done to analyze dynamic ef-
fects [10, 26, 27]. To date, the dynamic analysis is often performed by the use of
Biot’s theory [8, 9, 56]. Biot was the first person who systematically studied the
interaction within a two-phase porous mixture. The significant contribution of him
was to predict the existence of two compressional and one shear wave in a two-phase
porous mixture. His innovative studies were later confirmed repeatedly in labora-
tory experiments [7, 50]. However, the essential drawback of Biot’s model lies in the
fact that the corresponding theory is not developed from the fundamental axioms
and principles of mechanics and thermodynamics, but is constructed upon intuitive
assumptions. Deficiencies of the Biot’s theory have been shown in describing more
complex physical situations [62], i. e. tri-phase porous material, nonlinear behavior
of the pore fluid, etc. Moreover, it has been shown that if we exclude the most
controversial “dynamic coupling” in Biot’s model and restrict ourselves to the fully
geometrically linear two-phase model, the TPM and the Biot’s theory are equivalent
and lead to same results [57]. Moreover, the main advantage of TPM is that it can
be extended straight forwardly to describe more complex physical situations like
multiphase flow in unsaturated porous media [31, 33, 58, 61].
In this thesis, we investigate the wave propagation within a simplified binary model
using the TPM. In practice, the analysis of propagating waves in various porous
materials (soil, rock, sediment, etc.) is important for the seismological engineering,
geotechnical engineering, etc. In particular, in the petroleum exploration engineer-
ing, instead of drilling many test wells, the engineers use the technique of analyzing
reflected signals of a sender to predict the location and capacity of the oil reservoir,
see Figure 3. Since the earth ground is usually composed of several layers, a com-
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plicated physical model as well as an accurate numerical algorithm are necessary
for an extensive study of this topic. The technical details of this theme are beyond
the scope of this thesis. However, the numerical method studied here provides a
potential tool for the investigation of such complex physical situation.

soil

soil

gas

water

rock

oil

senderreceiver

Figure 3: Illustration of oil exploration technique: Several receivers are located at
various positions to collect the signals reflected by ground layers. By analyzing these
signals, engineers intend to predict the location and capacity of the oil reservoir.

1.3 Classical approaches

In this section we discuss two popular strategies for solving PDE by the use of FEM,
namely the Method of Lines (MOL) and a penalty type discontinuous Galerkin
(PDG) method. Since in these approaches, the discretizations applied in space and
in time are decoupled, these methods are characterized to semi-discrete methods.

1.3.1 Method of Lines

The Method of Lines (MOL) is a general technique for solving PDEs. The main
strategy of the MOL is by using the finite element or finite difference strategy in
space to produce a system of ODEs in time, which can in turn be solved by finite
difference methods or other techniques which are appropriate for solving ODEs.
According to the classical finite element MOLs, the spatial domain is discretisized
using the FEM, rendering an ODE system that often has the form

MÜ(t) + DU̇(t) + KU(t) = F(t), t ∈ [t0, T ] (3)

in which U is the vector of model variables, i. e. the primary unknowns. Regarding
the definitions in structural dynamics, M represents the mass matrix, D is the
damping matrix of the system, and K is the stiffness matrix. F denotes the external
force. Hereby, U represents the displacement vector. The dot operator ˙(•) represents

the first time derivative, and the double dots operator ¨(•) stands for the second time
derivative. In this context, U̇ is the velocity and Ü corresponds to the acceleration.
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After constructing the ODE system, a time-stepping strategy is applied to advance
the solution in time. Among others, the most popular ones are the Euler method,
the Newmark method, and the Runge-Kutta methods. Moreover, by using the
order-reduction technique, such that a second-order time-dependent equation can
be degenerated into an equation-system of two first-order equations, which can be
solved by the finite difference methods that are designed for first-order problems,
i. e. the Euler method, Runge-Kutta method. According to the order-reduction
technique, eq. (3) can be rewritten into an equation-system consisting of two first-
order equations like[

I 0
0 M

] [
U̇

V̇

]
+

[
0 −I
K D

] [
U
V

]
=

[
0
F

]
. (4)

Here, both the displacement U and its velocity V = U̇ are treated as primary un-
knowns and are solved within the system (4) simultaneously.
Although the mechanisms employed in the different MOLs are not all the same, a
common property of these approaches is: the propagation of the numerical solutions
in time depends on the projection of the velocity and the displacement at the cur-
rent state to a future time. The MOL procedures have been successfully applied to
solve various engineering problems. However, there are also some well known disad-
vantages of these methods, such as suffering from the strong numerical dispersion
and dissipation, unphysical oscillations nearby sharp gradients and discontinuities,
etc. We denote that the numerical dispersion inherent to the MOLs is closely re-
lated to the semi-discrete strategy. As long as the higher modes in the solution can
not be resolved by the given spatial discretization, numerical dispersion occurs in
the solution. Another disadvantage of the MOL procedures lies in the difficulty in
designing algorithms that accurately capture discontinuities and sharp gradients in
the solutions. In the region where high gradients or discontinuities exist, an extreme
fine discretization or a stabilization algorithm has to be applied [11, 22] to prevent
unphysical oscillations. A detailed discussion with respect to the applications and
difficulties of the MOL can be found in [1, 35].

1.3.2 Penalty discontinuous Galerkin method

The idea of using the finite element approximation in the temporal domain as well
as the spatial domain can be traced back to the work of Argyris & Scharpf [2], Fried
[37] and Oden [48]. Employing discontinuous finite element approximations in time
was first proposed by Hulbert & Hughes [39, 40, 41, 42]. A remarkable contribution
of them is to introduce the Least Square approach as an additional penalty term
to enforce the continuities between the time intervals. Due to the employment of
the penalty term, this kind of method and similar ones were later classified to the
penalty type Discontinuous Galerkin method (PDG).
The main procedure of PDG contains two steps. The first step is identical to the
MOL, i. e. using the finite element method to produce an ODE system which is
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similar to eq. (3). In the next step, discontinuous approximations in time for the
primary variables U are employed. The inconsistent quantities, i. e. jumps, at the
discrete time level tn (t0 < · · · < tn < · · · < T ) is denoted by

[[U(tn)]] = U+(tn)−U−(tn), with U±(tn) = lim
ǫ→0+

U(tn ± ǫ) (5)

where ǫ represents a positive infinitely small number. Integrating the strong form
on a piece of time-slab Qn = Ω × In (detailed illustration will be given in Section
2.3), we obtain the finite element variational form like∫

In

{(
MÜ−DU̇ + KU

) · δU̇}
dt+ f([[U(tn)]] · δU) =

∫
In

(
F · δU̇)

dt (6)

where δU represents the test function and f([[U(tn)]] · δU) is a penalty function
depending on the amount of jumps [[U(tn)]]. In structural dynamics, this function
usually depends on the inner product of strain-energy [42]. Furthermore, in order
to reduce or to eliminate the unphysical oscillation nearby the discontinuities, an
additional stabilization operator, which has the Least Square form, was added to
eq. (6). The Least Square operator can be derived by∫

In

([[U]] · δU)2  min→ 2

∫
In

([[U]] · δU) = 0→
∫
In

([[U]] · δU) = 0. (7)

The resulting finite element weak form reads∫
In

{(
MÜ−DU̇+KU

)·δU̇}
dt+f([[U(tn)]]·δU)+

∫
In

([[U]]·δU) =

∫
In

(
F·δU̇)

dt. (8)

More extensive studies of the PDG method with respect to the computational ef-
fort, stability and convergence properties were given in the work of Johnson [43] and
French [36]. Li & Wiberg [45] proposed an adaptive space-time PDG method for the
applications in the structural dynamics analysis. Huang & Costanzo [38] suggested
a space-time discontinuous Galerkin method for elasto-dynamic problems depend-
ing on strain discontinuities. A hybrid discontinuous/interface Galerkin method was
investigated by Mergheim et al. to model damage phenomena [46]. More recently,
Kuhl & Meschke developed a discontinuous time-integration method and applied it
to the non-linear dissolution processes [44].
Despite the great success of the PDG method in the applications of structural engi-
neering, there are some drawbacks that can not be neglected:

• Semi-discrete formulations lead to strong numerical dispersion in case higher
modes exist in the solution.

• The choice of the penalty function f([[U, δU]]) depends on the statement of
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the physical application, e. g. on the inner product of the strain-energy for the
structural dynamics. No universal setting for the penalty function is available.

• The Least Square setting is often necessary to enforce the stability of the nu-
merical solution nearby the discontinuities or sharp gradients. However, in
regions where the solution is smooth, strong numerical dissipation is intro-
duced by this term.

With respect to the above points, the objective of this thesis is to study a more gen-
eral space-time Galerkin scheme, which enables coupled space-time integration and
is independent of the artificial penalty functions. The resulting numerical scheme
is able to capture the physical discontinuities and to resolve sharp gradients in the
solution efficiently.

2 Space-time discontinuous Galerkin method

In this thesis we focus on the discontinuous Galerkin (DG) methods employing flux
treatments to weakly fulfil the continuity condition. The DG method using numer-
ical fluxes rather than penalty functions to enforce the interelement continuity has
gain more and more attention in last decades. Since no more artificial penalty func-
tion is involved, this kind of approaches is applicable to a wide range of engineering
problems. Furthermore, we abandon the semi-discrete formulation, but construct
the finite element problem on a coupled space-time domain. The resulting space-
time DG method has advantages in less numerical damping and dispersion, and it
is able to efficiently capture sharp gradients or even discontinuities in the solution.
In the following, since the techniques of the spatial and temporal flux treatments
are not all the same, we discuss the different treatments separately.

2.1 Discontinuous Galerkin method in time

With a discontinuous Galerkin method in time, we are seeking for the numeri-
cal solution on the temporal domain I = [t0, T ]. To do this, we first discreti-
size the time domain I into a sequence of time intervals In = (tn, tn+1], with
t0 < · · · < tn < tn+1 < · · · < T . Analog to conventional time-stepping approaches,
the numerical solution is achieved subsequently on each time interval In. The equa-
tions to be solved on each time interval In are decoupled from those of the others.
For the initial step n = 0, the input information comes from the given initial con-
dition while for the successive steps, the data obtained at the end of the previous
time interval In−1 is used as initial conditions for the current computation.
Analog to the PDG approaches, due to the employment of discontinuous approxi-
mations, inconsistent values at discrete time levels occur. Similarly, we define the
jump of a variable φ at time tn by

[[φ]](tn) = φ+(tn)− φ−(tn), with φ±(tn) = lim
ǫ→0+

φ(tn ± ǫ), (9)
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in which ǫ denotes a positive infinitely small number. As have mentioned before, the
continuity between the time intervals is enforced weakly by the flux terms. In the
following, we will discuss in detail the flux treatment applied in the time domain.

2.1.1 Upwind flux for the first-order system

Using upwind flux to enforce the interelement continuity was originally a technique
used in the finite volume method. It was introduced to the DG method by Reed &
Hill [51] in 1970s. This technique has been widely used to solve first-order differen-
tial equations in space. Among others, Bassi & Rebay [4] developed a high-order
accurate spatial DG method for solving the compressible Navier-Stokes equation.
Cockburn and co-workers investigated the Local Discontinuous Galerkin (LDG)
method for solving convection-diffusion equations [20]. By employing the Runge-
Kutta scheme as an appropriate time-stepping algorithm, they developed a more
general Runge-Kutta Discontinuous Galerkin (RKDG) method [16, 17, 18, 19, 21].
Further studies concerning error estimates were done by Castillo et al. [12, 13].
So far, applications of the upwind flux are mostly restricted to the spatial domain.
Only few studies concerning the extension of this flux in the temporal domain have
been done. In Paper A, we applied the upwind flux treatment in the time domain to
develop a coupled time-discontinuous Galerkin method (DGT). The DGT method
has been successfully applied to the prototype equations as well as to the application
of the dynamical analysis within the two-phase porous material.
Here we illustrate the main idea of this flux treatment with a simple ODE example
like

u̇ = f(t) u(t), t ∈ I = [t0, T ], u(t0) = u0. (10)

We are seeking for an approximation uh to u with the discontinuous Galerkin
method, i. e. uh ∈ V, where V denotes the function space consisting of discon-
tinuous polynomials in time. According to a Bubnov Galerkin approach, we obtain
the weak form of the above equation by multiplying eq. (10) with a test function
δuh ∈ V and then integrating over a piece of time interval In∫

In

{
u̇h δuh − f(t) uh δuh

}
dt = 0. (11)

Moreover, applying integration by parts in time, the above equation yields∫
In

{− uh δu̇h − f(t) uh δuh

}
dt+

(
ŭh δuh

)|tn+1

tn = 0. (12)

We denote that for a continuous approximation of uh, ŭh represents the quantity of
uh at time tn (or tn+1). However, according to a discontinuous approximation over
adjacent time intervals, inconsistent values of uh occur at the discrete time level tn.
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Figure 4: Distribution of the displacement uh in time, due to the employment of
discontinuous approximations, inconsistent values at each time level tn occur, ŭ(tn)
represents the upwind flux of uh at time tn.

Here, ŭh represents the numerical flux of uh on the border of time interval In. We
employ here the upwind flux for describing ŭh, so that

ŭh(tn) =

{
u0, if n = 0,
u−h (tn) otherwise

(13)

with

u±h (tn) = lim
ǫ→0+

uh(tn ± ǫ). (14)

Obviously, such definition makes sense, since for the ODE, the information travels
“from the past into future”. For the initial time step, ŭh(t0) equals the given initial
condition u0, while for the successive steps tn > t0, ŭh(tn) equals u−h (tn) which is the
numerical solution obtained at the end of previous time interval In−1, see Figure 4.

Inserting the upwind definition of ŭh into eq. (12), the weak form on the time interval
In yields∫

In

{
− uh δu̇h − f(t) uh δuh

}
dt+ u−h (tn+1) δuh = ŭh(tn) δuh. (15)

We remark that in the above expression, the quantity ŭh(tn) is always known and
serves as input information for the computation on the current time interval In. In
eq. (15), u−h (tn+1) δuh stands for the contribution on the upper bound of interval In,
which can be added up into the matrix system resulting from the integration over
In accordingly. Obviously, higher order approaches can be achieved by employing
higher order polynomials for the approximation of the primary unknown uh, see
Paper A.
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Moreover, we denote that using the upwind flux for describing ŭh leads to good
numerical results. However, depending on the practical applications, other choices
for the numerical flux ŭh are possible and may also result in excellent solutions.
More detail can be found in [15].
We denote, however, as for an ODE system, it does not make any difference to
specify the spatial and temporal fluxes. A difference occurs only when we are
dealing with a PDE system, in which we employ this upwind flux treatment in time
to enforce the continuities between the adjacent time-slabs. More details concerning
the space-time FEM will be discussed later in Section 2.3.

2.1.2 Flux treatment for the second-order system

Although the upwind flux discussed above gives rise to a very good method, its ap-
plications are strictly restricted to first-order equations. According to the knowledge
of the author, there is no satisfactory second-order flux treatment available yet. The
second-order equation is usually solved by means of an order-reduction approach,
in which the displacement and its velocity are solved simultaneously within a ma-
trix system, cf. eq. (7). In Paper A, we applied this order-reduction technique to
rewrite the second-order time-dependent equation into an equation-system of two
first-order equations, which was in turn solved by the DGT method. Although this
order-reduction technique leads to good numerical results, it has to be mentioned
that the computational effort for solving an equation-system of two governing equa-
tions is much greater than that of a single equation. In Paper B, we developed a
novel Embedded Velocity Integration (EVI) technique, in that the direct solution of
the displacement is circumvented via an embedded consistent integration of the rate
term, i. e. velocity and solve the resulting first-order equation with the unknown
velocity with the DGT method. The displacement is computed in a post-processing
step via a consistent integration of the velocity. Since there is no further auxiliary
equation involved, the size of the algebraic system remains the same as those of a
single-field one, which makes the method very attractive.
Next, we illustrate the basic idea of the EVI approach with a simple second-order
ODE like

ü(t)− f(t) u(t) = 0, t ∈ I, u(t0) = u0, u̇(t0) = v0, (16)

with ü(t) and u̇(t) denote the acceleration and velocity of the displacement u, re-
spectively. The kinematic relation for the given equation reads

u̇(t) = v(t), (17)

where v(t) represents the velocity. For a conventional order-reduction method, this
kinematic relation serves as an additional governing equation, leading to a first-order
equation-system with the primary unknowns in both displacement u and its velocity
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Figure 5: Distribution of the displacement u and its velocity v: (a) Discontinu-
ous approximations for v results in inconsistent values at each tn; (b) Continuous
distribution of displacement u according to the integral of velocity is achieved.

v, cf. eq. (4). However, according to the EVI technique, instead of introducing
an additional governing equation, we embed this kinematic relation directly into
eq. (16), which yields

v̇(t)− f(t) u(t) = 0, t ∈ I, u(t0) = u0, v(t0) = v0. (18)

Obviously, there are two primary unknowns u and v in the above equation. How-
ever, taken into consideration that for an arbitrary time t, (tn < t < tn+1), the
displacement u(t) can be expressed by integrating eq. (17) to an arbitrary time level
t (tn < t < tn+1), such that

u(t) = ũ(tn) + gu(t), with gu(t) =

t∫
tn

v(t) dt (tn < t < tn+1). (19)

Here ũ(tn) represents the quantity of u at the lower bound of the time interval In,
i. e. tn, which is given by

ũ(tn) =

{
u0, if n = 0,
u(tn) otherwise.

(20)

Note that since the displacement is constructed as an integral of the velocity, in-
dependent of the approximation strategy of the velocity v, its distribution over the
time domain is always continuous. Figure 5 shows exemplary the distributions of
u according to a discontinuous linear approximation of velocity v. Therefore, for
n > 0, the quantity of ũ(tn) is identical to the solution obtained at the end of pre-
vious time interval In−1, while for the initial step, i. e. n = 0, ũn equals the given
initial condition u0.
Inserting eq. (19) into eq. (18), we obtain an expression that contains only the un-
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known velocity v as

v̇ − f(t)
(
ũ(tn) + gu(t)

)
= 0, tn < t < tn+1. (21)

So far we have accomplished an art of “order-reduction” in the sense that the second-
order equation with the unknown displacement u is now transformed into a first-
order equation with the unknown velocity v. In contrast to the conventional order-
reduction technique, here, by embedding the kinematic relation implicitly into the
governing equation, the resulting algebraic system retains the same dimension as a
single field one, which makes the method numerically very efficient.
Next, we seek for a finite element solution vh ∈ V to v on each time interval In.
Multiplying eq. (20) with the test function δvh ∈ V and integrating over the time
interval In, we obtain the finite element weak form like∫

In

{
v̇h δ vh − f(t) (ũ(tn) + gu(t)) δvh

}
dt = 0. (22)

Obviously, as for the current time interval In, the value ũ(tn) represents either the
quantity obtained at the end of the previous time interval In−1 or the given initial
condition, cf. eq. (20), which serves as input information for the computation on the
current time interval In.
Solving eq. (22) with the DGT method mentioned in the previous Section 2.1.1, we
further get∫

In

{
− vh δv̇h − f(t) gu(t) δvh

}
dt+ v−h (tn+1) δvh

= v̆h(tn) δvh + ũh(tn)

∫
In

f(t) δvh dt,

(23)

where v̆h(tn) represents the upwind flux of the velocity vh at time tn, cf. eq. (13).
Bear in mind that gu itself denotes an integral of vh over [tn, t] (tn < t < tn+1), see
eq. (19). Therefore, in eq. (23) there exists a double integration of vh. Obviously, a
consistent integration scheme for the evaluation of gu and the velocity vh is essen-
tial for the accuracy and stability of the proposed method. According to the finite
element strategy, the integrations are evaluated by means of the Gauss quadrature,
in which only discrete quantities of the function at Gaussian points are considered.
Such properties further simplified the integration strategy of gu, where the integra-
tion upper bound t (tn < t < tn+1) can be replaced by the corresponding position
of Gaussian point. A detailed discussion concerning the integration technique of gu

is given in Paper B.
Solving eq. (23) for vh, the displacement uh(tn+1) is achieved in a post processing
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step like

uh(tn+1) = ũh(tn) +

∫
In

vh dt. (24)

Owning to the finite element approximation of the velocity vh over time, such an
operation can be easily performed within a conventional FE program.
Furthermore, it has to be mentioned, in the current work, we have used a DGT
method as the solution strategy for eq. (22). However, the idea of replacing the
displacement uh with an integral of the velocity vh is independent of the chosen
time-stepping strategy, i. e. DGT method. Given a finite element approximation
for the velocity vh in time, it is always possible to evaluate the displacement uh as
a sum of the integral of the velocity vh and the initial value ũh(tn). In other words,
it is also possible to employ a continuous approximation for vh in time. As long as
the velocity vh can be solved properly, so can be done for the displacement uh.
So far we have discussed the main strategies of solving first- and second-order time-
dependent problems with the DGT method. By the use of the EVI technique, the
second-order equation is rewritten into a first-order one, which is in turn solved by
the DGT method. Hereby, we briefly summarize the main properties of the DGT
method:

• With the use of the upwind flux to enforce the continuity condition between
adjacent time intervals, no artificial penalty term is involved.

• High order solutions may be achieved by employing high order polynomials in
time.

• Jumps across adjacent time intervals can be used as a easy error indicator for
the adaptive strategy.

The first two properties have been drawn in the above context. As for the third one,
although using jumps as error indicator for an adaptive strategy is not new in the
DG community, a strict proof of this property has not been properly discussed in
most available literatures. In order to illustrate this point, we integrate eq. (12) by
parts to get∫

In

{
u̇h δuh − f(t) uh δuh

}
dt+ (ŭh − uh)|tn+1

tn = 0. (25)

Or, equivalently,∫
In

R(uh) δuh dt = (uh − ŭh)|tn+1

tn (26)

14



whereby R(uh) = u̇h − f(t)uh represents the residual. Moreover, bearing in mind
the flux definition of ŭh in eq. (13), we further get∫

In

R(uh) δuh dt = [[uh]](tn). (27)

Here we can see that the jump [[uh]](tn) at tn is nothing but the integral of the
residual over the interval In. This is a simple evidence to shown that the jumps can
serve as a reliable error indicator for adaptive strategies, cf. [15].

2.2 Discontinuous Galerkin method in space

In the next, we discuss the flux treatments within a spatial discontinuous Galerkin
(DGS) method. Hereby, the technique involved is slightly different to those used in
the temporal domain. The convection term is handled by a similar upwind flux as
discussed before, while the diffusion term is solved by the average flux treatment
combined with flux-weighted constraints.

2.2.1 Spatial flux treatment

Given the convection-diffusion equation like

u̇− div
(
D · gradu(x, t)− q u(x, t)

)
= 0, x ∈ Ω, t ∈ I, u(t0) = u0 (28)

where D represents the diffusion tensor and q is the convection vector. The bound-
ary of Ω consists of non-overlapping Neumann part ΓN and Dirichlet part ΓD, with
∂Ω = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅. The associated boundary conditions are given as

(D · gradu− q u) · n = f̄ , x ∈ ΓN,

u = uD, x ∈ ΓD,
(29)

where n denotes the unit outward normal vector on the boundary ∂Ω.
Before proceeding to illustrate the different flux treatments applied in space, we first
declare some notations. Let us define Eh = {E1, E2, . . . , ENE

} be regular subdivisions
of the domain Ωh ⊂ Ω. NE is the total number of subdivisions. The edges of each
subdivision Ei are denoted by ∂Ei. Moreover, we introduce the union of all edges
in Eh as Kh = {e1, e2, . . . , eNK

}, in which NK denotes the total number of edges.
Therefore, the interior edges can be specified by

Γint =

Nint⋃
Ei,Ej∈Eh

(∂Ei ∩ ∂Ej), (i 6= j). (30)

Herein, Nint is the total number of the interior edges. The outward normal vector
on the boundary of subdivision ∂Ei that coincides with the edge ek is denoted by
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Figure 6: A finite element patch of four quadrilaterals Eh = {E1 ∼ E4} with the
boundaries Kh = {e1 ∼ e12}, among which the interior edges are {e9 ∼ e12}

nk
i . The union of all outward vectors on ∂Ei is represented by ni. In Figure 6 we

depicted examplarily one such finite element patch with four quadrilaterals.
In addition, according to the direction of the flow q over the element boundary, we
can divide the edges Kh into the inflow part ek ∈ K+

h and the outflow part K−h by

K+
h = {x ∈ (ek ∩ ∂Ej) : q · nk

j > 0, j < NE}, K−h = Kh \ K+
h . (31)

Moreover, assume the normal vector nk
j = nα eα

1, we defined the operator {nk
j} of

the vector nk
j as {nk

j} = (nα eα · eβ), where eα and eβ are the basis vectors. For
each interior edge ek = ∂Ei ∩ ∂Ej , the direction of the positive operator ({nk

i } > 0
or {nk

j} > 0) defined uniquely the jump on this edges. For {nk
j} > 0, jumps of an

arbitrary scalar quantity and a vector quantity on this edge ek yields

[[ψ(x)]]ek
= ψi(x)− ψj(x), (32)

[[Ψ(x)]]ek
= Ψi(x)−Ψj(x), (33)

in which ψl(x)/Ψl(x) = {ψ(x)/Ψ(x),x ∈ (ek ∩ ∂El)}. The average fluxes on this
edge are given by

〈ψ n〉|ek
=

1

2

(
ψi n

k
j + ψj nk

j

)
, {nk

j} > 0, (34)

〈Ψ · n〉|ek
=

1

2

(
Ψi · nk

j + Ψj · nk
j

)
, {nk

j} > 0. (35)

1Here, nα eα is the summation over the basis vector eα with nα eα = n1 e1 + n2 e2 + n3 e3.
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Figure 7: Upwind flux uin in space, q represents the direction of the flow, the flux
on each element interfaces equals its inflow part uin.

Note that the average flux of a scalar quantity ψ is a vector, while the average flux
of a vector Ψ is a scalar.
In analog to the upwind flux definition in time, the spatial upwind flux on edge ek

is defined by

ψin|ek
= ψ

(
x ∈ (ek ∈ K+

h )
)
, (36)

Ψin|ek
= Ψ

(
x ∈ (ek ∈ K+

h )
)
. (37)

The physical interpretation of the spatial upwind flux can be given as follows: the
flux of ψin (Ψin) on the edge ek always equals the flux on its inflow part ek ∈ K+

h , cf.
Figure 7. Such definition makes sense, since the fluxes can not be generated from
nothing in the element interfaces.
After declaring some important notations, we proceed to the numerical treatments
for the diffusion and convection term in detail.
The convection term is treated in a similar way as the first-order time derivative
term in time, whereby the quantity on the element boundaries is substituted by its
upwind flux uin. For the sake of simple notations, we suppose at the moment that
D = 0 in eq. (28). Given the functional space W which is discontinuous over the
element interfaces, the finite element approximation of uh ∈ W to u can be obtained
by solving the following weak form,

NE∑
i=1

{∫
Ei

{
u̇h δuh − uh (q · grad δuh)

}
dv

+

∫
∂Ei\ΓD

(q · ni) u
in
h δuh da

}
=

∑
ek∈ΓD

∫
ek

(q · n) uD δuh da

(38)
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whereby δuh ∈ W represents the corresponding test function. Note that herein the
Dirichlet boundary condition is assigned as the inflow flux on the boundary rather
than a strict assignment, i. e. ΓD ∈ K+

h , cf. [5].
Next, we discuss about the numerical treatment of the diffusion term (D 6= 0).
The techniques of treating the second-order diffusion term can be divided into two
major classes. One is the so-called Local Discontinuous Galerkin (LDG) method,
developed mainly by Cockburn and his co-workers [16, 17, 18, 19, 21]. The essential
strategy of the LDG method is to employ the order-reduction technique in space to
produce an equation-system consisting of first-order differential equations. The re-
sulting first-order equation-system is in turn handled by the upwind flux treatment
in space. The other one, innovated by Nitsche [47], is to solve the second-order
equation directly with the help of flux-weighted constraints. Obviously, the compu-
tational cost of using discontinuous Galerkin methods in space is higher than that
of the continuous Galerkin method, in that a much larger algebraic system is re-
sulted by the discontinuous approximations over the element interfaces. According
to the LDG method, due to the employment of the order-reduction technique in
space, which results in an equation-system of both the primary unknown and its
gradient, an even larger algebraic system is resulted, which increases the compu-
tational effort further. However, a significant advantage of LDG is that by using
the upwind flux treatment to enforce interelement consistency, no artificial penalty
factor has to be involved. This was not the case in the original form of Nitsche’s
approach [47]. Although Nitsche’s formulation intended to solve the diffusion equa-
tion directly without introducing additional governing equations. It was usually
necessary to employ a penalty term to ensure the uniqueness of the solution. In the
late last century, lots of efforts had been paid to identify the penalty term of this
approach, see e. g. [3, 28, 55]. However, due to the complexity in determining the
penalty factor for practical applications, investigations are restricted to academical
examples. This situation has been changed by Baumann & Oden [5, 49] in the
1990s, when they developed Nitsche’s approach to be independent of any kind of
penalty terms. Their evolutionary contribution has invoked new attention on the
flux-weighted DGS method, made it the most popular approach in the community.
Next, we illustrate the technique of Nitsche and Baumann & Oden in detail. For
the sake of a simple illustration, we consider at the moment a domain Ω with only
two adjacent subdivisions ΩE and ΩF , see Figure 8. uE and uF are the primary
unknowns on the subdomains ΩE and ΩF , respectively. In order to make the ex-
pression as simple as possible, we assume now q = 0 in eq. (28) and furthermore, we
omit the time derivative term to consider only the solution procedure for the steady
state problem. With δuE and δuF denoting the corresponding test functions, the
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Figure 8: Two subdomains ΩE and ΩF as division of the domain Ω with an interior
boundary Γ. nE and nF represent the unit outward normal vector on the interior
boundary Γ shared with the subdomain ΩE and ΩF , respectively.

weak form on each subdomain can be written as

ΩE :

∫
ΩE

(D · graduE) · grad δuE dv −
∫
Γ

(
FE · nE

)
δuE da =

∫
ΓE

N

f̄E δuE da (39)

ΩF :

∫
ΩF

(D · grad uF ) · grad δuF dv −
∫
Γ

(
FF · nF

)
δuF da =

∫
ΓF

N

f̄F δuF da (40)

where FE = D ·graduE and FF = D ·graduF are the corresponding diffusion fluxes
on the interior boundary Γ, see Figure 8. f̄E (f̄F ) represents the Neumann condition
acting on the boundary ΓE

N (ΓF
N) of the subdomains ΩE (ΩF ) and nE (nF ) denotes

the unit outward normal vector on Γ, see Figure 8.
Next, we note that in the solution procedure, the following constraints must be
fulfilled on the interior boundary Γ:

• The flux equilibrium requires that the sum of the diffusion fluxes on the bound-
ary Γ must vanish, which yields

FE · nE + FF · nF = 0. (41)

• The continuity constraint implies that the jump of the primary unknown has
to disappear on the interior boundary,

uF − uE = 0. (42)
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Moreover, it is easy to identify that on the interior boundary Γ, there exists nE =
−nF . For {nE} > 0, we introduce the Lagrange multiplier λ on this boundary Γ as

λ = FE · nE = −FF · nF , {nE} > 0. (43)

Inserting now the Lagrange multiplier λ into eq. (39) and eq. (40) and multiplying
the continuity condition eq. (42) with δλ, we obtain a three fields formulation with
the unknowns {uE, uF , λ} like∫

ΩE

(D · grad uE) · grad δuE dv −
∫
Γ

λ δuE da =

∫
ΓE

N

f̄E δuE da, (44)

∫
ΩF

(D · graduF ) · grad δuF dv +

∫
Γ

λ δuF da =

∫
ΓF

N

f̄F δuF da, (45)

∫
Γ

(uF − uE) δλ da = 0. (46)

Furthermore, we denote that the equation-system (44)-(46) is solvable, if certain
criteria are fulfilled. Among others there is the counter condition, which says that
the sum of the free parameters nE (nF ) in uE (uF ) must not be smaller than those
of the λ

nE + nF ≥ nλ, (47)

where nλ denotes the number of free parameters in the approximation of λ. How-
ever, this is a necessary but not sufficient condition. Further details on additional
conditions are given in [63].
Obviously, introducing the Lagrange multiplier λ as an auxiliary unknown leads to
a larger algebraic system, which increases the computational effort. Moreover, the
information of λ serves barely as an assistant variable to enforce the continuity con-
straints eq. (42). In face, only the solution of the primary unknown uE (uF ) is of
interest. Thus, it is desired to substitute the Lagrange parameter λ with an expres-
sion of the primary unknown uE (and uF ) to diminish the computational effort. We
observe that the Lagrange multiplier λ measures the diffusion flux on the interior
boundary Γ, which can be replaced by the average flux as

λ =
1

2
(FE + FF ) · nE = 〈D · gradu · n〉. (48)

However, the equation-system constructed by inserting eq. (48) into eq. (44) and
eq. (45) is often unsolvable. Hence, eq. (46) is included as an extra flux-weighted
continuity constraint into the equation-system. Note that the continuity constraint
eq. (46) works as a penalty term to enforce the continuity on the interface. Without
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violating its function, we multiply eq. (46) with a non-zero parameter α (α = ±1)
and add it to eq. (44) and eq. (45), which yields∫

ΩE

(D · graduE) · grad δuE dv −
∫
Γ

〈D · gradu · n〉 δuE da

+ α

∫
Γ

(uF − uE) 〈D grad δu · n〉 da =

∫
ΓE

N

f̄E δuE da,

∫
ΩF

(D graduF ) · grad δuF dv +

∫
Γ

〈D grad u · n〉 δuF da

+ α

∫
Γ

(uF − uE) 〈D grad δu · n〉 da =

∫
ΓF

N

f̄F δuF da.

(49)

The above weak form is constructed on a system of two subdomains with the primary
unknown u (uE, uF ). To make the above statement more general, for a system of
NE subdomains, the weak form can be written as

NE∑
i=1

∫
Ei

{
(D · grad uh) · grad δuh

}
dv

+

Nint∑
k=1

∫
ek

{
〈D · graduh · n〉[[δuh]] + α [[uh]]〈D · grad δuh · n〉

}
da

+
∑

ek∈ΓD

∫
ek

{
(D · graduh · n) δuh + αuh (D · grad δuh · n)

}
da

=
∑

ek∈ΓD

∫
ek

αuD (D grad δuh · n) da+
∑

ek∈ΓN

∫
ek

f̄ δuh da,

(50)

Note that different values of α represents different discontinuous methods. α = 1
corresponds to the standard replacement of the flux-weighted constraint, which was
first proposed by Nitsche [47]. However the formulation with α = 1 is found to be
less accurate and mostly instable, such that eq. (49) must be incorporated by an
additional penalty term like∫

Γ

τ [[uh n]] · [[δuh n]] da, (51)

where τ is a penalty factor. Since, the resulting algebraic system with α = 1 is
symmetric, this kind of approaches are called Symmetric Interior Penalty Galerkin
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method (SIPG). The contribution of Baumann & Oden was to set α = −1. Ob-
viously, inverting the sign of the flux-weighted continuity conditions renders a
non-symmetric algebraic system. The method was later given the name of Non-
Symmetric Interior Penalty Galerkin method (NIPG). One of the significant benefit
of setting α with inverse sign is the fact that no more auxiliary variables (i. e.
penalty term like (51)) for the stabilization of the method are needed, which leads
the method to be very practical. An extensive study concerning the mathematical
foundation and the convergence study of the NIPG method is presented in the dis-
sertation of Baumann [5].
Next, respecting both techniques for the diffusion and convection terms, the finite
element weak form of eq. (28) reads

NE∑
i=1

{∫
Ei

{
u̇h δuh + (D · gradu) · grad δuh − uh (q · grad δuh)

}
dv

+

∫
∂Ei\ΓD

(q · n) uin
h δuh da

}

+

N(Γint)∑
k=1

∫
ek

{〈D · grad δuh · n〉 [[uh]]− 〈D · grad uh · n〉 [[δuh]]
}

da

+
∑

ek∈ΓD

∫
ek

{
(D · grad δuh · n) uh − (D · graduh · n) δuh

}
da

=
∑

ek∈ΓD

∫
ek

{
(D · grad δuh · n) uD + (q · n) uD δuh

}
da

+
∑

ek∈ΓN

∫
ek

f̄ δuh da.

(52)

It is also necessary to mention, a very desirable feather of this Spatial Discontinuous
Galerkin (DGS) method is that there exists no coupling between the rate term and
the spatial fluxes. Hence, the transient problem can be solved in a similar way as
those in the MOL, such that the DGS formulation is applied in space to produce the
corresponding ODE system which can in turn be solved by finite difference meth-
ods, cf. [5, 49]. However, we denote that it is more attractive to solve the PDE with
a coupled space-time Galerkin approach, in that finite element approximations in
space and in time are employed simultaneously. We will discuss this kind of ap-
proaches in the Section 2.3.
The main properties of the DGS method based on the flux treatment can be sum-
marized as below:

• By employing the fluxes on the element interface to enforce interelement con-
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sistency, the physical discontinuity can be well resolved given that the interface
of the elements coincides with this discontinuity.

• The flux treatment on the boundary provides a natural setting by imposing
the inflow and outflow flux rather than a strict Dirichlet boundary condition.

• By setting α = −1, no auxiliary penalty operator is necessary for the diffusion
term.

Obviously by using discontinuous approximations on the element interfaces, the
computational cost of DGS is higher than that the conventional Continuous Galerkin
method. However, the simplicity of using parallel computation of the DGS method
renders the method to be very attractive in realistic computations, see [55, 64]. The
DGS method using flux-weighted constraints has been successfully applied to solving
the Navier-Stokes equation [6] and to the modeling of single- and multi-phase flow
problems in porous media [52, 53, 54], etc. However, its applications are mostly
restricted to the semi-discrete formulations. In the next section, we will discuss
a coupled space-time finite element formulation, which enables the finite element
discretization in space and in time simultaneously.

2.3 Coupled space-time discontinuous Galerkin method

After declaring the flux treatments in space and in time separately, we focus on
the construction of a coupled space-time discontinuous Galerkin method. Unlike
the semi-discrete method, whereby the finite element mesh covers only the spatial
domain, the proposed space-time Galerkin method is based on a coupled space-time
discretization, in which finite element approximations are employed in the spatial
and in the temporal domain simultaneously. The space-time domain is constructed
by adding the time axis I orthogonal to the spatial domain Ω, which renders the
space-time domain Q = Ω× I. Figure 9 shows illustrative examples for the space-
time domains constructed on the one-dimensional and two-dimensional spatial do-
mains. Let In be a piece of time interval In = (tn, tn+1]. The time-slab is constructed
as Qn = Ω × In. According to a space-time finite element formulation, instead of
solving the governing equation on the whole space-time domain Q at one time, we
seek for numerical solutions on each time-slab Qn subsequently. In this sense, the
resulting numerical scheme is analogical to the MOL, i. e. Euler method, Newmark
method, etc. For each time-slab Qn (n ≥ 1) the numerical solution obtained at
the end of the previous time-slab Qn−1 serves as input information for the current
computation. For the first slab Q0, the input information comes from the given
initial condition. The advantage of seeking for the numerical solution on each time-
slab subsequently instead of solving equations on the whole space-time domain at
one time lies in the fact that smaller system of equations of a single time-slab can
be handled much more efficiently than a very large system of the whole space-time
domain. The computational effort and hardware requirement increase with the in-
crease of the size of the algebraic system, which makes it inefficient to solve huge
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Figure 9: Space-time domain of a one-dimensional and two-dimensional spatial prob-
lem, respectively.

equation-systems. Nevertheless, it is possible to increase the size of the time steps
without degrading the accuracy by employing higher order polynomials in time. In
extreme case, the whole computational domain can be covered by a single time step
if wanted.
With respect to the time-stepping strategy, in contrast to the MOL approach, in
which time difference algorithm is applied to advance the solution in the time do-
main, in the space-time method, finite element approximations are employed in the
time domain, leading to solutions that fulfils the weak integration form in time. To
do this, on each time-slab, the conventional spatial finite element is enhanced with
an extra dimension with respect to the approximations in time, leading to the so-
called space-time finite element. Figure 10 shows examplarily the space-time finite
elements constructed on a one-dimensional and a two-dimensional spatial element.
The shape function of the proposed space-time element consists of the tensor product
of polynomials in space and in time. One advantage of employing such space-time
element is that we are now able to evaluate the spatial and temporal integration at
one time∫

Ω

∫
In

(•) dt dv =

∫
Qn

(•) dQ, (53)

which leads to a so-called coupled formulation. This is an essential difference to
semi-discrete formulations, i. e. MOL, whereby the evaluation of spatial and tem-
poral integrations are decoupled and are evaluated subsequently. Such a coupled
formulation provides the possibility to handle the numerical dispersion resulting
from the semi-discrete approaches.
In the next, we illustrate the space-time Galerkin method in a synchronization exam-
ple which involves all the possible components of a second-order equation (convection
diffusion equation)

u̇− div(D · gradu− q u) = 0, u ∈ Q = Ω× I. (54)
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Figure 10: Linear space-time finite elements

The associated initial condition is given by

u(x, t0) = u0(x), x ∈ Ω. (55)

The boundary condition is given for the non-overlapping Dirichlet part ΓD and the
Neumann part ΓN (ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅)

(D · gradu(t)− q u(t)) · n = f̄(t), x ∈ ΓN, t ∈ I,
u(t) = uD(t), x ∈ ΓD, t ∈ I. (56)

In the following, we give the finite element variational form for a time-discontinuous
Galerkin (DGT) method, in which discontinuous polynomials are applied in time
while the spatial approximations are kept continuous, and the coupled space-time
discontinuous Galerkin method (DGST), in which neither the spatial nor the tem-
poral distribution process strong continuity.

2.3.1 Time-discontinuous Galerkin method

First, we solve eq. (54) with the DGT method. Let P = {Ph(Q
n)} be a family of

regular partitions of the time-slab Qn composing of non-overlapping subdomains

Qn =

NE⋃
i=1

P i
h, P i

h = Ei × In, (57)

where Ei denotes the spatial subdomains that is identical to a standard finite element
in space. NE denotes the total number of subdomains. The functional space V(uh)
on the time-slab Qn is given by

V(uh) =

{
uh(x, •) ∈ L2(Ω)

uh(•, t) ∈ L2(In)

}
. (58)

Proceeding from the method discussed in Section 2.1, the variational form of a space-
time method can be written as
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Find uh ∈ V(uh), such that ∀δuh ∈ V(δuh), there exists

BDGT(uh, δuh) = LDGT(δuh). (59)

The bilinear form BDGT(uh, δuh) and the linear form LDGT(δuh) are given by

BDGT(uh, δuh) =

NE∑
i=1

{∫
P i

h

{− uh δu̇h + (D · graduh) · grad δuh

− uh (q · grad δuh)
}

dQ+

∫
Ei

u−h (tn+1) δuh dv
}
,

LDGT(δuh) =
∑

∂ek∈ΓN

{ ∫
∂ek×In

f̄(t) δuh dadt
}

+

NE∑
i=1

{∫
Ei

ŭh(tn) δuh dv
}
.

(60)

Note that in the above expression
∫

Ei
(•) dv denotes a purely spatial integration

performed on the border of the time-slab Qn, i. e. tn and tn+1.
Moreover, we denote that although the chosen example eq. (54) processes only first-
order derivatives in time, the second-order time-dependent equations can either be
degenerated into first-order ones either by using order-reduction technique which
produce a system of equations of two first-order ones, or by using the EVI technique
to produce a first-order equation with the unknown velocities. Thus, we do not
repeat the solution strategy of the second-order equation here. In Paper B and Paper
C, a detailed discussion for the solution of second-order equations are presented with
applications in elastic wave propagation problems and dynamic analysis in porous
media. In particular, in Paper C, a generalized EVI method with enhanced stability
properties is proposed.

2.3.2 Coupled space-time discontinuous Galerkin method

Next, we proceed to the coupled space-time discontinuous Galerkin (DGST)
formulation. Hereby, we abandon both the strong continuities in space and in time,
and enforce the consistency of the solution with various flux treatments. Since there
exists no coupling between the spatial and temporal flux treatments, a coupled
space-time discontinuous Galerkin formulation is developed straight forwardly by
applying various flux treatments independently in the spatial and temporal domain.
For a coupled discontinuous Galerkin formulation, the function space is enriched to
allow discontinuities in space as well as in time

V(uh) =

{
uh(x, •) ∈ L2(Ej), (j < NE)

uh(•, t) ∈ L2(In)

}
. (61)

Figure 11 shows examplarily one possible function space with both linear approxi-
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mations in space and in time.
Taken into consideration that spatial and temporal fluxes are decoupled, additional
spatial flux operators are added to the DGT formulation in eq. (59). Adopting the
notations introduced in Section 2.2.1, the resultant formulation reads
Find uh ∈ V(uh), such that ∀δuh ∈ V(δuh), there exists

BDGST(uh, δuh) = LDGST(δuh). (62)

The bilinear form BDGST(uh, δuh) and the linear form LDGST(δuh) are

BDGST(uh, δuh) = BDGT(uh, δuh)

+

NE∑
i=1

{ ∫
(∂Ei\ΓD)×In

(q · n) uin
h δuh dadt

}

+

Nint∑
k=1

{ ∫
ek×In

{〈(D · grad δuh) · n〉 [[uh]]− 〈(D · graduh) · n〉[[δuh]]
}

dadt
}

+
∑

ek∈ΓD

{ ∫
ek×In

{
(D · grad δuh · n) uh − (D · grad uh · n) δuh

}
dadt

}
,

LDGST(uh, δuh) = LDGT(uh, δuh)

+
∑

ek∈ΓD

{ ∫
ek×In

{
(D · grad δuh · n) uD + (q · n) uD δuh

}
dadt

}
(63)
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Figure 11: Coupled discontinuous space-time approximation of a one-dimensional
spatial problem with four elements in space and three time-slabs in time, constructed
by linear polynomials both in space and in time.
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Due to the fact that discontinuous approximations are employed both in space and
in time, this method results in large algebraic systems even for a mediate number
of elements. It was often the case in the literature, that the DGS method is used
in combination with an implicit time-stepping method, e. g. the backward Euler
method [5, 54]. However, in the opinion of the author, although the DGS formulation
turns out to be an appropriate tool to model discontinuous phenomena or sharp
gradients in the quasi-static investigations [5, 64], in case of dynamic modeling, the
error induced by the time-stepping method can be very dominant, so that after some
steps, no significant improvement in the DGS results can be observed in comparison
with those obtained by the classical continuous FE approach. In Paper D we employ
the DGST method to model the single-phase transport problem in porous media,
in which we show that the DGST method is superior to the semi-discrete DGS
method, in that the steep concentration front can be captured more efficiently. We
also observe that despite a great difference in the number of Degree Of Freedoms,
the results computed by the DGS combined with the backward Euler scheme in time
lead to smeared wave fronts which are similar to those achieved by the conforming
FE method.
Another advantage of employing coupled discontinuous approximations lies in the
fact that this formulation can be easily decomposed into several subdomains which
simplify a parallel strategy. To date, the development of the computation power of
single core processors has shown its limitation. The parallel computation enables the
utilization of a large number of computers and has gain more and more attention
for realistic computations. Furthermore, adaptive strategies, i. e. h- and/or p-
refinement can be applied locally to the subdomain where refinement is necessary
without reconstructing the whole computational domain.

3 Summaries of appended papers

In Paper A, A time-discontinuous Galerkin method for the dynamical analysis
of porous media, we studied a new coupled time-discontinuous Galerkin method
(DGT) for the dynamical analysis in porous media. The numerical scheme consists
a finite element mesh that covers the spatial and temporal domain simultaneously.
The finite element approximations are continuous in space but discontinuous in
time. Inconsistent quantities of the primary unknowns occur at discrete time levels.
Instead of using penalty term, which was widely applied in the DG community,
we applied a natural upwind flux treatment to enforce the continuities between
the adjacent time intervals. The advantage of using such coupled space-time
formulation lies in the fact that no artificial penalty term is involved and the
high gradients in time can be resolved efficiently. The proposed DGT method has
been applied to both first- and second-order time-dependent problems, in that the
second-order ones are solved by means of order-reduction technique. Applications
of this method to the simple model equation and to the consolidation problem in
porous media demonstrate the improved behavior in less numerical damping and
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dispersion compared to the conventional FE approach.

In Paper B, A new Hybrid Velocity Integration method applied to elastic wave
propagation, the current work is an extension of the previous investigated DGT
method for second-order time-dependent problems. Due to the inherent restriction
of the upwind flux treatment, the DGT method can only be applied to the first-order
equations. In order to solve the second-order problems with the DGT method,
we investigated an Hybrid Velocity Integration (HVI) technique to degenerate the
second-order equation into a single first-order one. To do this, we rewrite the
original second-order differential equation with the unknown displacement to a first-
order one with the unknown in its rate term, i. e. velocity. The displacement field
is substituted by a consistent integration of its velocity. The resultant first-order
equation can be solved by the DGT method (proposed in A). The displacement
field is achieved in a post-processing step according to a consistent integration
of the velocities. Due to the employment of discontinuous approximation for the
velocities, inconsistent quantities occur at discrete time levels. However, since the
displacement quantities depends on the integral of the velocities, its quantities
is always continuous and smooth. Convergence studies with respect to the
velocity and displacement are presented. Numerical experiments concerning elas-
tic wave propagations demonstrate the high order accuracy of the proposed method.

In Paper C, A EVI-space-time Galerkin method for dynamics at finite deformation
in porous media2, we studied a generalized EVI (see Paper B) integration scheme
with enhanced stability property. The physical model is based on a materially
incompressible solid skeleton saturated by a barotropic fluid. The deformation
of the solid matrix is described by a compressible Neo-Hookean material law.
The model equations are formulated in the Lagrangian description of the solid
skeleton. Since the numerical scheme consists of a spatial continuous but temporal
discontinuous Galerkin formulation, in the region where high gradient in space
occurs, an extreme fine discretization in space must be employed to avoid unphysical
oscillation. In the current work, however, by introducing more numerical dissipation
in the time integration scheme of the displacement field, we are able to stabilize
the numerical solution on the coarse spatial discretization accordingly. Herein, a
stability factor α is introduced into the consistent integration scheme of the velocity.
α = 0 corresponds to the exact integration scheme presented in Paper B, in which
the least numerical dissipation is inherent to the numerical approach. With an
implicit integration scheme, i. e. α = 1, we enforce the numerical stability of the
overall solutions by introducing numerical dissipation in the temporal integration.
However, too strong numerical dissipation affects the numerical accuracy. Thus,
other value of α is allowed, leading to an approach that lies between the implicit

2Originally the method was named “Hybrid Velocity Integration (HVI)”, but in the present
work the term “Embedded Velocity Integration (EVI)” was used for convenience.
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and exact one. Applications in the wave propagation problem within porous media
shows the practical meaning of this parameter. Comparison with the conventional
approaches demonstrated the improved behavior of the EVI(α) method in the
accuracy and efficiency.

In Paper D, A space-time discontinuous Galerkin method for single-phase flow in
porous media, we studied a coupled space-time discontinuous Galerkin formulation
to model the flow problem in porous media. The numerical scheme consists of discon-
tinuous finite element approximations in space and in time. Various flux treatments
are applied to impose the continuity weakly. In the temporal domain, a similar
upwind flux used in DGT method is applied to enforce the consistency between the
adjacent time intervals. In the spatial domain, interelement consistency with respect
to the convective term is enforced by a spatial upwind treatment, while the diffusion
term is solved by the average flux combined with a flux-weighted constraint. The
resulting space-time discontinuous Galerkin scheme has the advantage in less numer-
ical dissipation and is able to capture the steep concentration front very efficiently.
No extra stability term is necessary even for the convection dominant problems. Fur-
thermore, the proposed the space-time discontinuous Galerkin method is superior
to a spatial discontinuous Galerkin (DGS) method combined with backward Euler
scheme in time, in that the less numerical dissipation in the temporal integration
is involved. Computations have also shown that employing the DGS method alone
does not ensure a more accurate solution in that the error deduced by the time-
stepping method can be dominant. Numerical examples concerning the single-phase
flow in a homogeneous and inhomogeneous domains demonstrates the behavior of
the proposed method.

4 Concluding remarks and future work

In this thesis we have studied coupled space-time Galerkin methods. Instead of
using penalty terms, the consistency of the solution is enforced weakly by various
flux treatments. According to the art of discretization in space, the proposed ap-
proaches can be further subdivided into the time-discontinuous Galerkin method
(DGT), where the finite approximations are continuous in space but discontinuous
in time, and the coupled space-time discontinuous Galerkin (DGST) method, in
which neither the spatial nor the temporal domain processes strong continuity. The
mechanism of the DGT method is to employ the first-order upwind flux to enforce
the continuity in time. Due to the restriction of the flux treatment, this approach
is only applicable to first-order time-dependent problems. The second-order time-
dependent problem can either be solved by means of order-reduction technique,
leading to an equation system of two coupled first-order equations which can be in
turn solved by the DGT method for both displacement and velocity simultaneously,
or by using the Embedded Velocity Integration (EVI) technique to produce a sin-
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gle first-order equation in the velocity field which can then be solved by the DGT
method. In addition, the EVI technique provides a general approach for solving
second-order time-dependent problems by means of finite element approximations
in time. For the DGST method, discontinuous approximations in space and in time
are applied. Herein, we employ the upwind flux for the treatment of the convection
term, and the average flux treatment for the diffusion term. No penalty parameter is
involved in the proposed methods. Moreover, since there exists no coupling between
the spatial and temporal fluxes, various flux treatments in space and in time are
employed independently.
The key issue of this thesis is to study the various flux treatments for the discon-
tinuous Galerkin approaches. It has been shown that employing the fluxes on the
element interface provides a natural treatment to enforce the interelement consis-
tency, and is applicable to a vast of problem classes. In particular, the proposed
DGT method has been applied to the dynamic analysis in the porous media. The
dynamic consolidation procedure and the elastic wave propagation phenomena are
investigated throughout the practices of the numerical schemes. In addition, trans-
port of single-phase flow in porous media was studied with the DGST formulation.
As for the future work, since the computational cost for DGST formulation is much
higher than the conforming FE method, an adaptive strategy involving both the p−
and h− refinement in space and in time have to be developed. Furthermore, discon-
tinuities (jumps) occurring on the element interfaces provides a good choice for the
error indicator. It has been shown that employing fluxes on the element interfaces to
enforce the interelement consistency provides a good ride to construct the discontin-
uous Galerkin methods. Moreover, since the subdivisions are connected through the
flux treatments on the element interfaces, it is possible to develop a local adaptive
strategy, in which refinement applied in the subdomains where refinement are nec-
essary without reconstructing the whole computational domain. Another challenge
for the future is the parallelization of the proposed method. With the appearance
of the multi-processor computers, the parallel computation will gain more and more
attention in the near future. The spatial discontinuous discretization provides a
good ride for the parallel strategy.
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SUMMARY

We present a time-discontinuous Galerkin method (DGT) for the dynamic analysis of fully-saturated
porous media. The numerical method consists of a finite element discretization in space and time. The
discrete basis functions are continuous in space and discontinuous in time. The continuity across
the time interval is weakly enforced by a flux function. Two applications and several numerical
investigations confirm the quality of the proposed space-time finite element scheme. Copyright c©
2000 John Wiley & Sons, Ltd.

key words: Discontinuous Galerkin, space-time finite elements, porous media

1. INTRODUCTION

In recent years the Discontinuous Galerkin (DG) method has established itself as a viable
method for solving partial differential equations and a wide variety of applications has been
found. The name “Discontinuous Galerkin” method was first introduced by Reed & Hill [58] in
1973 while investigating hyperbolic partial differential equations. Mathematically, this method
was extensively analyzed by LeSaint & Raviart [49], and successively by Johnson et al. [46]
and Johnson & Pitkäranta [47]. In the 1970s several simultaneous but independent studies
about DG methods for elliptic and parabolic problems were investigated, c. f. [4, 5, 10, 43, 66].
These methods were later briefly concluded as Interior Penalty methods (IP methods). In the
last 10 years, due to the strong interaction of numerical flux, a technique traditionally used
in upwind finite volume schemes, the DG methods have experienced a rigorous development.
Cockburn and co-authers introduced the Runge-Kutta DG (RKDG) methods for the solution
of first-order non-linear hyperbolic conservation laws [21, 22]. An hp-adaptive DG method
was studied by Bey & Oden [15] and a more detailed analysis was presented by Houston [35].
Bassi & Rebay [11] expanded the method to a mixed formulation for solving the compressible
Navier-Stokes equations. A strong influence on the DG methods was made by Baumann &
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66 041 Saarbrücken, Germany. email: s.diebels@mx.uni-saarland.de
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2 Z. CHEN, H. STEEB AND S. DIEBELS

Oden [12, 13, 14, 42] in solving the classical diffusion equation. Riviére et al. did further
studies of these methods as well as error estimates, c. f. [8, 59, 60, 7]. Unlike the IP methods,
the DG methods based on the numerical flux have been proved to show higher convergency
rates.
A Galerkin formulation in space and time based on Hamilton’s principle was first proposed
by Argyris & Scharpf [3]. Hulbert & Hughes [39] studied the Discontinuous Galerkin time
integration scheme in which they first introduced the Galerkin Least Square term to impose
the inter-element consistency. In their following works they did further studies to such methods
as well as appropriate error estimation techniques, c. f. [40, 41, 37]. Johnson [44] investigated
reduced systems to solve second order hyperbolic problems with DG methods, for an overview
we refer to [45]. Li & Wiberg (1998) [51] proposed an adaptive space-time DG method for
applications in structural dynamics. In their work, they use an energetic argument (i. e. the
internal and kinetic energy) to enforce the continuity between the elements. Steeb et al. (2002)
[61, 62] studied adaptive DG method based on goal-oriented error estimation techniques. They
applied these techniques to applications in structural dynamics and to consolidation problems.
More recently, Palaniappan et al. (2004) [55] have introduced the flux treatment into the space-
time finite element methods for scalar conservation laws.
In the following work, we studied a time-discontinuous Galerkin method (DGT) which is
composed of a standard continuous Galerkin method in space coupled with a discontinuous
Galerkin scheme in time. Hereby, we introduced a numerical technique based on the treatment
of the flux term to enforce the temporal continuity conditions. Comparable techniques are
quite common in spatial DG methods for convection-dominated problems, c. f. [20, 69].
In the present contribution, we apply this numerical method to a transient problem of a binary
mixture consisting of a material incompressible pore fluid and an elastic incompressible solid
skeleton in the framework of small deformations. The analyzed two-phase model is based on
the thermodynamically consistent Theory of Porous Media (TPM), c. f. Bowen [17, 18], de
Boer & Ehlers [24], Ehlers [28, 29] or the recently published book by Ehlers & Bluhm [30]. A
historical overview of the TPM can be found in the textbook of de Boer [23].
The structure of this paper is as follows: In section 2 we introduce the basic terminology used
in the contribution with respect to the space-time discretization. Afterwards, the continuous
and discrete weak form of a 1-dim model problem is given. Section 3 devotes to the space-time
finite element formulation of the transient problem of a binary mixture. The result is again
a continuous and discrete set of coupled equations. In Section 4 we discuss some 1-dim and
2-dim numerical examples to demonstrate the improved behavior of the presented method.
The contribution is closed by a final evaluation of the numerical method followed by a short
discussion giving some final remarks and an outlook on possible future extensions.

2. PRELIMINARY

The space-time domain Q is constructed by intuitively adding an extra time domain I = [t0, T )
orthogonal to the spatial domain Ω in a way that a spatial one-dimension problem results in
a two-dimensional finite element, and a spatial two-dimensional problem results in a three-
dimensional one, i. e. Q = Ω × I. Let t0 < t1 < · · · < tn < · · · < tm = T be a sequence of
discrete time level tn, so that we are able to define the time interval In = [tn, tn+1). The time-
slab is defined as Qn := Ω × In, see Fig. 1 for one- and two-dimensional examples depicted

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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with a linear geometrical projection in space and time. The discrete solutions of the governing
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Figure 1. Space-time slab of a problem with one(left) or two(right) spatial dimensions

finite element problem are sequentially solved on every time-slab, so that the total degree of
freedoms (DOFs) of the concerned algebraic problem is restricted to the DOFs on every single
slab. Hence the overall numerical effort of the DGT is comparable to the classical method
of lines (MOL). Each time-slab Qn has private nodes on the time level tn. The continuity
condition on the discrete time level is weakly enforced by the flux term on the slab interface.
In addition, the space-time finite elements are embedded on the time-slab as shown in Fig. 2.
In the mentioned figure, we show examplarily a bilinear and trilinear space-time finite element
for convenience. In contrast to standard semi-discrete methods, in which a spatial integration
based on the finite element method is in turn solved by a certain finite difference method
(e. g. a Euler method, a Runge-Kutta or Newmark method etc.) in time, a simultaneous,
element-wise integration in space and time is evaluated by surface (1-dim) or volume (2-
dim) integration within the present space-time finite element formulation, see Fig. 2. As we
now restrict ourselves to discontinuous polynomials for the weighting- and test-functions, we
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4 Z. CHEN, H. STEEB AND S. DIEBELS

introduce the following integration scheme as∫
I

∫
Ω

(•) dv dt =:

∫
Q

(•) dQ =
m−1∑
n=0

∫
Qn

(•) dQn. (1)

3. MODEL EQUATION

For the sake of a first brief numerical illustration, we restrict ourselves to a simple parabolic
equation † like

∂t(φ) − div q = f, in Ω× I, (2)

where Ω is an open-bounded Lipschitz domain in Rd, and I is the temporal domain I = [t0, T )
again. Furthermore, we have introduced the corresponding flux q := A · gradφ. A is
a positive definite second-order tensor representing the diffusive character of the model.
∂t( • ) is the partial time derivative, grad( • ) := ∂x( • ) denotes the gradient operator and
div( • ) := ∂x( • ) : I is the corrsponding divergence operator, as I is the second-order tensor
of unity. Sinks and sources are taken into account by the right hand side of (2), i. e. by f .
The boundary ∂Ω of the domain Ω consists of disjoint parts, namely the Dirichlet boundary
ΓD and the Neumann boundary ΓN with ΓN

⋃
ΓD = ∂Ω and ΓN

⋂
ΓD = ∅. The associated

boundary conditions are
φ = φ̄ on ΓD,

q · n = q̄ on ΓN ,
(3)

where n is the outward normal at the boundary. The initial boundary value problem (IBVP),
c. f. Eqs. (2) and (3), is closed by an appropriate initial condition

φ (x, t0) = φ0 (x) at Ω× t0. (4)

The underlying weak form of the IBVP is obtained by multiplying Eq. (2) with a test function
δφ and by integrating over the time-slab Qn. Hereby, we integrate by parts in space as well as
in time. Applying first integration by parts in time leads to∫

Qn

(∂t(φ) δφ) dQn = −
∫

Qn

(φ ∂t(δφ)) dQn +

∫
Ω

[
φ̆ δφ

]tn+1

tn

dv, (5)

in which we use φ̆ for the quantity at the discrete time level tn or tn+1. A detailed definition
concerning its concrete value will be soon introduced in the following text. Taking Eqs. (1)

†In general, this model problem is known as the instationary heat equation; thus φ is identified as the
temperature field. With respect to erosive fluid-flow through porous media, this instationary porosity diffusion
equation models the sand erosion process in a rigid and material incompressible sandstone matrix (ρsR = const).
Such phenomena occur for instance during the first phase of petroleum production in the north-sea sandstone
reservoir. Within such a suffosion process so-called fines, i. e. small particles are eroded away from the sandstone
skeleton and transported away in direction of the borehole. Thus, the field quantity φ(x, t) is identified as the
porosity, i. e. φ := 1−ns while ns = dvs/dv is the volume fraction of the matrix material, see e. g. Papamichos
& Vardoulakis (2005) [56] or Steeb & Vardoulakis (2005) [63] for further theoretical details concerning the
modeling of erosion phenomena. Furthermore, the flux q(x, t) is nothing else but the total discharge of the
eroded particles. A consequence of the porosity-diffusion model is the fact that the particles are enforced to
exit from regions with increasing porosity.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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and (5) into account, we obtain the governing continuous weak form in space and time of the
corresponding IBVP in a natural way as

m∑
n=1

∫
Ω

[
φ̆ δφ

]tn+1

tn

dv −
∫

Qn

(φ ∂t(δφ) − q · grad δφ) dQn

 =

m∑
n=1

 ∫
Qn

f δφ dQn +

∫
ΓN×In

q̄ δφ da dt

.

(6)
The analogy to the solution procedure of the MOL is obvious. Thus, for notational convenience,
we disregard the overall space-time domain and restrict ourselves to the introduced time-slab.
The resulting continuous space-time weak formulation is given as∫

Ω

[
φ̆ δφ

]tn+1

tn

dv −
∫

Qn

(φ ∂t(δφ)− q · grad δφ) dQn =

∫
Qn

f δφ dQn +

∫
ΓN×In

q̄ δφ da dt. (7)

As we have integrated the temporal derivative by parts, we obtain one term which has to be
integrated only in the spatial domain (first term of Eq. (7)). Within the time-discontinuous
Galerkin scheme, inconsistent values at the time level tn or tn+1 appear, see Fig. 3. With the
definition

φ±n = lim
ε→0+

φ(tn ± ε) (8)

where ε is an infinite small time range, the temporal jump quantity at t = tn yields

[[φn]] = |φ+
n − φ−n |, (9)

where the subscript ( • )n and ( • )n+1 indicates the considered quantity in time tn and tn+1,

respectively. Tracing back to Eqs. (6) and (7), we have introduced φ̆ at every discrete point in
time tn. The introduction of this quantity is motivated by the definition of the flux in spatially
discontinuous Galerkin schemes [11, 20] concerning an upwind treatment

φ̆n :=

{
φ0(x, t0), if n = 0,

φ−n (x, tn), otherwise,
(10)

where φ0 is the prescribed initial value and ε is introduced as a infinite small time range.
Inserting the flux definition (10) into the weak form (7) we obtain∫

Ω

[
φ̆ δφ

]t1

t0
dv =

∫
Ω

φ−1 δφ dv −
∫
Ω

φ0 δφ dv, if n = 0,∫
Ω

[
φ̆ δφ

]tn+1

tn

dv =

∫
Ω

φ−n+1δφ dv −
∫
Ω

φ−n δφ dv, otherwise.
(11)

It is worth noticing that in the above equation φ−n+1 is the unknown quantity which has to
be calculated within the space-time finite element approach on the current time-slab Qn at
time t = t−n+1, while φ−n represents the already known numerical quantity obtained from the
previous calculation of the time-slab Qn−1 at time t = t−n , c. f. Fig. 3. At this point, we are able
to see again the similarities to the standard numerical solution technique of the MOL. Within
the MOL, we also use the results of previous time-steps as known initial data for the current
time-slab under consideration. The case n = 0, which corresponds to the beginning of the

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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Figure 3. Discontinuous discretization with linear/quadratic approximation in the time

process according to the definition in Eq. (10), is naturally included in the presented scheme.
Such concepts of numerical flux treatment stems from finite volume methods and has become
an important member in the (space)-discontinuous Galerkin family in the recent 10 years, see
[11, 20] and the literature therein. One simple reason for accepting such an assumption in a
time-dependent problem is that the value at the time level tn must be equal to the value of its
immediate past tn − ε. Therefore, it is natural to start the numerical procedure at t = t0 with
the prescribed initial condition φ̆ = φ0, which is the initial value at t0. It is obvious, that this
idea can be transported to every following time-slab.
Applying integration by parts and transferring the space-time integration to a pure spatial
integration at the time-slab borders, the continuity is weakly enforced by an upwind flux in
the temporal direction. In addition to this, this numerical procedure differs from various other
contributions [36, 39, 52, 53, 54] in applications of time-space finite elements as we do not
introduce any penalty term (least-square term, etc. ) weakly enforcing the continuity in the
temporal direction. Thus, the investigated method does not contain any penalty parameters
and, additionally, is more flexible and reliable than conventional numerical methods based on
the MOL.
As the obtained weak forms are still of infinite dimensions, we introduce the associated finite
element subspaces. Let the spatially-continuous time-slab Qn = Ω×In be subject to a spatial

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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discretization, i. e. the finite element mesh

Ph =
⋃
N

P j
h , with 1 ≤ j ≤ N. (12)

The mesh consists of N space-time finite elements P j
h = Ωj

h × In. The spatial domain of the

finite element P j
h was introduced as Ωj

h, while the temporal domain is again In. We assume
that the finite dimensional function space Uh ⊂ U consists of the tensor products of spatial
and temporal weighting- and test-functions. With the flux definition of (10) at the border of
the time-slab, we formally define the underlying finite element problem:

Find φh ∈ Uh, such that B(φh, δφh) = L(δφh), ∀ δφh ∈ Uh. (13)

The bilinear form B( • , • ) and the linear form L( • ) read

B(φh, δφh) := −
N∑

j=1

∫
P j

h

φh ∂t(δφh) dQn +

N∑
j=1

∫
Ωj

h

φ−h,n+1 δφh dv −
N∑

j=1

∫
Ωj

h

φ̆h,n δφh dv

+

N∑
j=1

∫
Pj

h

(q · grad δφh) dQn,

L(δφh) :=

N∑
j=1

∫
Pj

h

f δφh dQn +

M∑
k=1

∫
ΓN,e×In

q̄ δφh da dt.

(14)

In addition to the previous definitions, we have introduced the number of edges (2-dim) M on
the Neumann boundary ΓN . Thus, the edge of a finite element lying on the discrete Neumann
boundary of the partition is called Γk

N,h. Since the continuity condition along the time axis
is weakly enforced in form of the upwind flux, inconsistent numerical values (jumps) at time
level tn can be obtained. It is well-known in the DG community, that the jumps between
the finite element lead to stable and reliable numerical solutions. Furthermore it simplifies
the approximations of physical discontinuities which are inherent in many applications.
Additionally, the jump terms can be used to construct simple heuristical error indicators in
the temporal domain leading to sophisticated space-time adaptive methods. According to the
polynomial order (p) of the weighting- and test-functions in time, we denote in the following
context this numerical method as a DGT(p) approach. In respect of the numerical effort, due
to the extra DOFs at the discontinuous space-time slab borders in the DGT formulation, the
size of the resulting system of algebraic equations which has to be solved at each time slab is
p + 1 times the number of DOFs of the ordinary methods (MOL). Thus, the lowest order of
the present DGT method (p = 1) results in an algebraic equation at the time slab which has
twice as much DOFs as the equivalent MOL. It’s obvious, that by increasing the polynomial
order of the weighting functions in time (p-refinement) the resulting system of equation is
getting larger. However, a higher polynomial order of the weighting functions allows a much
larger time step length! Therefore the number of total time steps can be reduced. This is not
the case for the h-refinement technique, where the resulting system of algebraic equations is
larger than that of an equivalent MOL, but smaller than that of the p-refinement technique.
In practical applications a clever combination of h- and p-refinement is preferred leading to a
method which has the lowest overall numerical effort. A simple expample concerning both h-
and p-refinement is presented in Section 5.1.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Anal. Meth. Geomech. 2000; 00:1–6
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8 Z. CHEN, H. STEEB AND S. DIEBELS

4. APPLICATION TO POROUS MEDIA

In the present chapter we applied the DGT scheme to a more sophisticated, i. e. coupled
problem. Thus, we investigate the dynamical behavior of fluid-flow through an elastic porous
medium. The physical model is based on the well-studied thermodynamically consistent Theory
of Porous Media (TPM), c. f. [17, 18, 24, 28, 29, 30] and the literature cited therein. For the
sake of simplicity and goal-oriented illustration of the governing numerical method, we restrict
ourselves to the geometrical linear case. However, the extension to nonlinear materials is
possible. The mixture consists of two constituents ϕα with α ∈ {s, f}, where the constituent ϕs

refers to the elastic solid matrix material and ϕf identifies the viscous pore-fluid. Furthermore,
as standard within the TPM, we introduce the volume fractions nα := dvα/dv as additional
field quantities. The porosity φ is related to the volume fraction as φ = 1 − ns = nf. Here,
dvα corresponds to the volume which is occupied by the constituent ϕα in a Representative
Volume Element (RVE), while dv is the volume element of the mixture. We are interested
in a fully-saturated mixture (i. e. a solid material totally filled with oil or water) thus the
volume fractions sum up to one, i. e. ns + nf ≡ 1, which is also known as the saturation
condition. Next, we have to distinguish between the partial densities ρα = dmα/dv and the
effective or realistic densities ραR = dmα/dvα. Here, dmα is the mass of the constituent ϕα

in the investigated RVE. A result of the introduced definition of the volume fractions and
the densities is a relation between the partial and the effective densities, i. e. ρα = nα ραR.
Within this contribution, we restrict ourselves to the material incompressible case, which
means that the effective densities ραR are constant during the whole process. However, such
a restriction does not lead to constant partial densities ρα since the field variable nα varies
during the process, see Diebels & Ehlers [25]. Another remark has to be given with respect to
the appearing model-inherent wave forms. As the model is material incompressible we are just
able to model the second compressional wave, the so-called Biot’s slow wave [16]. The resulting
IBVP of the four-field formulation of the concerned problem was proposed and numerically
analyzed by Diebels & Ehlers [25] as follows

u′s − vs = 0 in Ω× I, (15)

(ns ρsR + nf ρfR)v′s + nf ρfR w′
f − div (Ts

E − p I) =
(
ns ρsR + nf ρfR

)
b in Ω× I, (16)

ρfR v′s + ρfR w′
f +

nf µfR

ks
wf + grad p = ρfR b in Ω× I, (17)

div(vs + nF wf) = 0 in Ω× I. (18)

The partial derivative with respect to time is given as ( • )′. Convective terms are neglected
according to the assumption of a geometrically linear theory. The system of equations consists
of the balance of volume of the mixture, i. e. the mixture’s continuity equation (18). Eq. (17)
is the balance of momentum of the fluid constituent. Here, we have to remark, that we neglect
the fluid extra stresses (Tf

E ≈ 0) with respect to the momentum exchange, i. e. the interaction
force between the solid and the fluid constituent [26]. This restricts the model to fluid-flow
in the inner domain of a porous medium. Surface effects at the border of a saturated porous
medium to a pure Newtonian fluid can not be investigated by this constitutive relation. In
addition, we have assumed a proportionality between the non-equilibrium part p̂f

neq of the
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A TIME DISCONTINUOUS GALERKIN METHOD FOR FULLY SATURATED POROUS MEDIA 9

momentum interaction of the fluid (also denoted as the effective drag force p̂f
E , c. f. [30, §5.2])

and the seepage velocity wf := vf−vs, leading to p̂f
neq ∝ wf. This results in a transient Darcy-

type equation (17). More realistic constitutive relations like e. g. Forchheimer-type equations
for larger Reynolds numbers Re > 1 can be constructed in an analogous way adding higher-
order terms of wf on the right-hand side of the former relation. Material parameters are the
intrinsic permability ks and the dynamic viscosity of the fluid µfR. Notice, that the instrinsic
permeability of the solid skeleton is linked to the Darcy permeability via ks (ρfR g) = kf µfR,
while g is the acceleration of gravity. We remark here, with respect to the principle of frame
indifference it is natural to choose a relative velocity wf (seepage velocity) or nfwf (filter
velocity) as the appropriate process variable. In the considered model, the non-equilibrium
part, i. e. the dissipation D, depends on the relative quantity D = p̂neq ∝ wf. Thus, it is
guaranteed that in the corresponding equilibrium case the relative motion between the fluid
and the skeleton vanishes, i. e. wf ≡ 0 and the equilibrium state is reached. For a detailed
discussion concerning this point, we refer to the state of the art review of Wilmanski [67].
Furthermore, it is obvious, that Eq. (16) refers to the balance of momentum of the mixture,
while the Lagrangian multiplier p(x, t) is identified as the pore-pressure of the fluid. Ts

E is the
Cauchy extra stress tensor of the solid constituent. Hooke’s law relates the Cauchy stresses to
the symmetric part of the displacement gradients. b is the body force which is related to the
gravity. Eq. (15) was introduced to reduce the order of temporal derivatives to one. Thus, the
present system of equations is compatible to the implementation of the DGT scheme.
The primary variables of the proposed model are the displacement us, the velocity vs = (us)

′
s

of the solid phase, the seepage velocity wf concerning the relative movement of the fluid phase
with respect to the solid phase, as well as the pore pressure p of the fluid.
Due to the concept of superimposed constituents of the solid and fluid phases in the mixture
the boundary conditions are described separately as follows

us = ūs on Γs
D × I,

(Ts
E − p I) · n = t̄ on Γs

N × I,
wf = w̄f on Γf

w × I,
p = p̄ on Γf

p × I,

(19)

where ∂Ω = Γs
D

⋃
Γs

N = Γf
p

⋃
Γf

w with Γs
D

⋂
Γs

N = ∅ and Γf
p

⋂
Γf

w = ∅. The initial conditions
are prescribed for both constituents as

us(x, t0) = us,0(x) at Ω × t0,

vs(x, t0) = vs,0(x) at Ω × t0,

wf(x, t0) = wf,0(x) at Ω × t0.

(20)

Since there exists no time derivative of the pore pressure p in the Eqs. (15-18), its value is solved
in a consistent way within the system of differential algebraic equations. The weak form of the
governing set of equations is obtained in analogy to the previous section. Thus we multiply
the Eqs. (15-18) with certain test functions δu = {δus, δvs, δwf, δp} and integrate over the
space-time slab Qn. Integration by parts for an artificial (here vectorial) time derivative Ψ′

leads to ∫
Qn

Ψ′ · δΨ dQn = −
∫

Qn

Ψ · δΨ′ dQn +

∫
Ω

[
Ψ̆ · δΨ

]tn+1

tn

dv. (21)
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10 Z. CHEN, H. STEEB AND S. DIEBELS

Here, δΨ is introduced as the corresponding vector-valued test-function. In analogy to the
previous introduction in Eq. (10), we introduce the flux

Ψ̆ :=

{
Ψ0(x, t0), if n = 0,

Ψ−(x, tn), otherwise,
where Ψ−(x, tn) = lim

ε→0+
Ψ(x, tn − ε), (22)

in which Ψ0 is the prescribed initial value (e. g. the initial displacement of the solid
constituent us,0). Let uh = {us,h,vs,h,wf,h, ph} denote the discrete weighting-functions and
δuh = {δus,h, δvs,h, δwf,h, δph} be the corresponding set of discrete test-functions. Again, we
assume that the finite-dimensional function space Wh ⊂ W consists of tensor products of
spatial and temporal weighting- and test-functions. Thus, we can define the underlying finite
element problem as:

Find uh ∈ Wh, such that B(uh, δuh) = L(δuh), ∀ δuh ∈ Wh. (23)

For the sake of notational convenience, we suppress the subscript ( • )h on the right-hand-side
of the following equations of the linear and bilinear form. Then, the bilinear form is given as:

B(uh, δuh) =

N∑
j=1

{ ∫
P j

h

−us · δu′s dQn −
∫
P j

h

vs · δus dQn +

∫
Ωj

h

(u−s,n+1 − ŭs,n) · δus dv

−
∫
P j

h

{
[(ns ρsR + nfρfR)vs + nf ρfR wf] · δv′s − (Ts

E − p I) : grad δvs

}
dQn

+

∫
Ωj

h

[(ns ρsR + nf ρfR)(v−s,n+1 − v̆s,n) + nf ρfR(w−
f,n+1 − w̆f,n)] · δvs dv

−
∫
P j

h

{ρfR (vs + wf) · δw′
f − (

nfµfR

ks
wf + gradp) · δwf}dQn

+

∫
Ωj

h

ρfR(v−s,n+1 + w−
f,n+1 − v̆s,n − w̆f,n) · δwf dv

+

∫
P j

h

div(vs + nf wf) δp dQn
}
.

The linear form is given as

L(δu) =

M∑
k=1

∫
Γs

N,e×In

t̄ · δvs da dt

+

N∑
j=1

{
∫
P j

h

(ns ρsR + nf ρfR)b · δvs + ρfR b · δwf)dQn}.

Notice again, that we have integrated by parts all terms in the above equations containing
partial derivatives with respect to time. Thus, we obtain the previously defined flux operator
(22) at the border of the time-slab. It is worth noticing, that no temporal update through
the flux operation is available for the pore pressure p. Its value is solved within the resulting
system of algebraic equations in a consistent way on every time-slab Qn.
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5. NUMERICAL EXAMPLES

5.1. The one-dimensional erosion problem

The simplified erosion or suffosion problem of a fluid-saturated sample of polydisperse
cohesionless granulates can be described by the classical parabolic model equation, for details
we refer to [56]

∂t(φ)− div q = 0, in Ω× I
with Ω ∈ R1 = [0, 1] m and I = [0, 2 × 104] s. A = 1 × 10−4 m/s2 represents the isotropic
(scalar) porosity of the specimen that plays the role of a porosity diffusivity coefficient. A
non-smooth initial distribution of the porosity φ is given as

φ0(x) =

{
0.27, 0.25 m < x < 0.75 m,
0, otherwise

and the given homogeneous Dirichlet boundary is prescribed for

φ(0, t) = φ(1, t) = 0 .

For this simple model example we employ standard Lagrangian polynomials in space and in
time. In the spatial domain, we investigated linear weighting- and test-functions. In Fig. 4
we depict the numerical results of the IBVP obtained with the classical MOL and with the
presented DGT method. First, Fig. 4(a) shows the result obtained by the trapezoidal rule ‡

(CD) with 20 spatial elements and 20 time-steps (∆t = 1000 s). In Fig. 4(b) we used refined the
temporal discretization, i. e. 2000 time-steps ∆t = 10 s while keeping the spatial discretization
fixed. In Fig.4 (c) we depicted the CD result with refined spatial discretization N = 200. A
CD result with both refined spatial and temporal discretization (N = 200 and ∆t = 10 s) is
shown in Fig. 4(d). From these diagrams, we observed that the spurious oscillations due to
Fig. 4(e) is the result obtained with the backward-Euler method (BE) and Fig. 4(f) is those
with DGT(1), both are calculated with a coarse discretization in space and time (20 spatial
elements and ∆t = 10 s). Both results are stable and of first order accuracy. As it is well-
known for the Navier-Stokes equation, spurious oscillations in the numerical solution could
be caused by insufficient mesh resolution in the boundary layer, [32, 34, 65]. Hereby, we have
observed a similar effect in the space-time domain. The coarse temporal discretization is not
able to reproduce the locally steep gradient in the initial phase, which consequently leads to
spurious oscillations in the numerical results. As it is observed in the numerical results, these
oscillations are transported within the temporal domain, see Fig. 4(a-d). We also observe,
in Fig. 4(b), the spurious oscillation damps out in the pass of time which indicates that the
oscillations could be avoided by a even finer temporal discretization. A likely parabolic problem
was calculated by Quarteroni et al. [57, pp. 623], analyzing the heat equation in a uniaxial
bar with non-smooth initial conditions. Under the same space and time discretization, the

‡The trapezoidal rule reads, c. f. Strang [64, p. 564]:

∂t( • ) = a ( • ) −→ ( • )n+1 − ( • )n

∆t
=

1

2
a [( • )n + ( • )n+1]

with ∆t = tn+1 − tn.
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12 Z. CHEN, H. STEEB AND S. DIEBELS

author showed that the Crank-Nicolson method (trapezoidal rule) leads to oscillating solutions
while the backward-Euler method produces stable results. Owning to the strong numerical
dissipation within the backward-Euler scheme, the numerical results are always stable even
under rarely coarse discretizations, but nevertheless, from Fig. 5 which shows the temporal
profile of porosity at x = 0.25 m, difference can be observed. Comparing to the less satisfying
results of the backward-Euler method, the DGT(1) method under a relative coarse time step
length agrees with the analytical result quite well. It is also observed that the largest jump
appears at the initial state (t = t0), where the gradient of the analytical solution is large. It
is obvious, that the weak enforcement of the non-smooth initial condition φ0 within the DGT
method renders more accurate numerical solutions. Fig. 6 shows the spatial distribution of
the gradient of the porosity (gradφ = q/A). It has to be noticed that under the same space
and time discretization, the gradient of the porosity obtained by the CD method shows large
and unrealistic oscillations while the solution of the DGT(1) method is smooth and reliable. In
Fig. 7 we depict the curves at x = 0.25 m obtained by various DGT(p). For the sake of a better
illustration, we show just two time-steps with ∆t = 1000 s. Hereby, the spatial discretization
is fixed by 20 linear element in space. It can be observed that the amount of the weakly
enforced discontinuity in the temporal domain diminishs with higher order of the temporal
weighting functions. Furthermore, we note that the high gradient of the analytical solution
at the beginning of the process is well reproduced with higher order (i. e. cubic) weighting
functions.

5.2. Dynamic response of a soil column under a step loading

In the second numerical example we investigate the dynamic response of a soil column.
The height of the concerned fully-saturated soil specimen is 10 m. A uniform step load
F (t) = 10h(t) kN is applied at the drained upper surface, where h(t) is the Heaviside function.
The remaining boundaries are treated as rigid and undrained, see Fig 8. The chosen material
parameters are listed in Tab. I. The properties of the solid skeleton are prescribed with the

Es = 1.4516× 104 kN/m2 ks = 1× 10−12 m2 ρfR = 1000 kg/m3

νs = 0.3 γfR = 1× 104 N/m3 ρsR = 2000 kg/m3

nf
0 = 0.33

Table I. Material parameters

Youngs’s modulus and Poisson’s ratio Es and νs respectively, ks is the (scalar) intrinsic
permeability and ρsR is the effective density. For the fluid-phase, we give the effective weight
γfR and the effective density ρfR. The initial volume fraction of the fluid phase (porosity)

nf
0 is also given. Under the saturation condition, the corresponding initial volume fraction of

the solid phase is ns
0 = 1 − nf

0. The space-time discretization consists of a regular temporal
discretization with a constant time-step ∆t = const. and an irregular discretization in space,
see Fig. 8. Since we have not yet investigated an adaptive strategy neither in space nor in time,
such a spatially-graded mesh takes into account the high pressure gradient near the upper
surface. Due to the requirement of the Babuška-Brezzi condition [9, 19], we apply quadratic
weighting functions for us and vs, and linear weighting functions for wf and p in the spatial
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Figure 4. (a)CD: 20 spatial elements, ∆t = 1000 s, (b)CD: 20 spatial elements, ∆t = 10 s, (c)CD: 200
spatial elements, ∆t = 1000 s, (d)CD: 200 spatial elements, ∆t = 10 s, (e)Euler: 20 spatial elements,

∆t = 1000 s, (f)DGT(1): 20 spatial elements, ∆t = 1000 s

domain as depicted in Fig. 8. The chosen polynomials in the time domain are standard linear
Lagrangian polynomials.
Concerning the present consolidation problem, the applied external load F (t) on the drained
boundary causes a discontinuity in the pore-pressure field p(t). Within the first period of time,
when the external load is applied suddenly, the deformation of the solid skeleton is neglectable,
and therefore, the total external load is supported by the pore-pressure. Such an effect leads
to jumps in the pressure field from zero at t = t0 (initial state) to the certain value that
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withstands the external force at t = t0 + ε. Afterwards, as the fluid is squeezed out at the
drained boundary and the deformation in the solid skeleton increases, the solid phase supports
more external load. In the meantime, we observe that the pore-pressure decreases from the
drained boundary to the depth. Problems arise if we apply the classical finite element method
with continuous weighting- and test-functions combined with a finite difference method in
time (MOL). This trouble stems in the fact that the standard MOLs are not able to reproduce
the discontinuous phenomena, i. e. jumps in the pore pressure field. Thus, if the gradients
of the pore-pressure field are increasing, spurious oscillations occur in the numerical solution,
especially for extremely small time-steps ∆t. Within the DGT however, the underlying weak
form is fulfilled on the time-slab. Thus, any strong discontinuity of the analytical solution has
not to be reproduced exactly as it is fulfilled only in a weak sense within the time-interval.
Therefore, the described phenomena can be obtained efficiently. In Fig. 9, we depicted the
space-time distribution of the pore pressure field p(x, t) obtained by DGT(1) with a time-step
size ∆t = 0.1 s. As shown, the discontinuity in the pressure field caused by the suddenly applied
external load F (t) is very well reproduced. The displacement distribution of the solid skeleton
is shown in Fig. 10. It is observed that the numerical results agree well with the well-known
physical observations.
Next we observe the evolution of the seepage velocity wf at the point P (x = 2.5 m) depicted
in Fig 8. In order to demonstrate the improved behavior of DGT, we compare the numerical
results with the results obtained by the implicit backward-Euler scheme in the temporal
domain, as it is quite a common approach in the TPM [25, 31]. Compare the results under the
same spatial discretization of the DGT and the MOL, we observed that the seepage velocity
distribution wf obtained with the DGT with a time-step length ∆t = 0.1 s agrees already
very well with the finest result ∆t = 0.0001 s of the backward-Euler scheme. This impressively
demonstrates the improved numerical behavior of the DGT compared to the backward-Euler
method. Regarding the results of the backward-Euler method with varying time-step lengths
in detail (∆t = 1, 0.1, 0.01, 0.0001 s), we observe further the effect of numerical dissipation,
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Figure 8. Initial boundary value problem, space-time discretization and spatially-mixed finite elements
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Figure 9. Space-time pore-pressure distribution p(x, t) calculated by the DGT(1) with a time-step
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see Fig 11. With a large time-step (∆t = 1 s) the numerical dissipation is relatively large
and the traveling seepage velocity wave (Biot’s wave) is completely damped out. With a even
finer temporal discretization (∆t = 0.0001 s) the result agrees well with the one of the DGT
method (with ∆t = 0.1 s). We denote here, in spite of increased DOFs due to discontinity
on the discrete time level, the efficiency of the applied DGT(1) method is superior to the
backward-Euler scheme.
Furthermore we want to remark within practical (e. g. inhomogeneous) applications it is more
or less impossible to detect a priori an optimal time-step length within the MOL. Thus, it is
very difficult to balance the time-step length as, on the one hand, we damp out the traveling
waves applying a large time-step and, on the other hand, we get spurious oscillations at the
drained boundary using very small time-steps. Therefore, adaptive a posteriori strategies based
e. g. on embedded Runge-Kutta schemes are necessary within the MOL, c. f. [27]. Obviously we
also can involve adaptive strategies into the present coupled space-time finite element scheme.
Besides coupled space-time strategies based on duality techniques [6, 48, 61] simple temporal
error indicators based on the jump terms [20, 68, 69] can be motivated. Within a system of
Differential Algebraic Equation (DAE) there usually exits an optimal time step length. Further
refinement exceeding such optimal time step length would even worsen the results [1, 33, 38].
In practical applications it is hard to detect this limit of refinement, therefore a jump based
error indicator maybe more useful.
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5.3. Elastic response of a partially-loaded soil block

In this section, we consider a 2-dimensional partially loaded soil specimen as depicted in Fig. 12.
In contrast to the previous investigation, we are now interested in calculating an inhomogeneous
IBVP. The fully-saturated soil foundation of 10 m× 10 m is partially subjected to a constant
external load F = 15 kN, see Fig 12. The free boundary at the upper-left part of the specimen
is perfectly drained. Thus, a Dirichlet boundary condition is prescribed for the the pore-
pressure, i. e. p = 0. The left and right walls and the bottom of the foundation are assumed
to be rigid and undrained. The spatial discretization and the chosen spatially mixed finite
element formulation is depicted in Fig. 12. Due to the reasons mentioned in the last examples,
we choose biquadratic Lagrangian polynomials for the solid-phase quantities (us,h and vs,h)
and bilinear ones for the quantities of the fluid phase (wf,h and ph). Similar IBVPs have already
been investigated in literature, c. f. [2, 25, 50], thus we are able to compare our results with the
latter investigations. With respect to the material parameters we follow the work of [25] and
[2], c. f. Tab. II. In the present investigation, we also analyze the movement of two corner points

Es = 1.4516× 104 kN/m2 ks = 1× 10−11 m2 ρfR = 1000 kg/m3

νs = 0.3 γfR = 1× 104 N/m3 ρsR = 2000 kg/m3

nf
0 = 0.33

Table II. Material parameters for the 2-dim problem

denoted as A and C, see Fig. 12. Since the horizontal movement of A and C is prevented by
the rigid specimen walls only vertical movements are observable. Fig. 13 shows the numerical
results obtained by backward-Euler schemes, again with different time-step lengths ∆t. Since
the applied external load F at the Neumann boundary is small, the observed motion of the
nodes A and C have almost the same amount but opposite directions. We want to remark that
our results obtained with a time-step-length ∆t = 0.01 s is very similar to the one presented
by Diebels & Ehlers [25]. However, refining again the time-step length (∆t = 0.0001 s), the
previously numerically damped-out wave appears over the complete time interval. Due to the
small Darcy permeability kf = 10−4 m/s (equivalent to the intrinsic permeability ks = 10−11

m2), within such a short time interval (I = 2 s), the total fluid-discharge is very small and, the
consolidation process of the soil specimen is still at the very beginning, c. f. [50]. Therefore, we
conclude that the fast attentuation of the oscillations in the displacement field is unphysical
and can be completely assigned to the numerical dissipation of the chosen backward-Euler
scheme, c. f. [25]. Fig. 14 shows the history of the solid displacement us at the same nodes
obtained by the DGT(1) method with a varying temporal discretization. We observe, that even
with a relativly large temporal discretization (∆t = 0.01 s), the quality of the result obtained
with the DGT method agrees with the one of the backward-Euler scheme with a very small
time-step (∆t = 0.0001 s) very well. Again, it has to be remarked that temporal jumps occur
in the results of the coarse discretization of the DGT approach (∆t = 0.05 s). This motivates
again to formulate a simple error indicator and to refine the temporal discretization within
the space-time finite element approach if jumps occur.

In Fig. 15 we depicted some numerical results in one chart. Due to numerical dissipation it is
observed that with a coarse time step length, i. e. ∆t = 0.01 s, the amplitude of the calculated
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results of the backward-Euler schemes decrease dramatically. Nevertheless, the frequencies
of the propagation wave is barely influenced. Moreover, we want to mention that this is in
agreement with previous works of Diebels & Ehlers [25] and Arduino et al. [2]. On the other
hand, we observe the excellent agreement of the results obtained with the DGT(1) with a
large time step length (∆t = 0.01 s) and the one of the backward-Euler scheme with a small
time step length (∆t = 10−4 s). Thus, we conclude, that in spite of the increased number of
DOFs at each time slab, the DGT method maybe much more efficient than the ordinary MOL
approach.

6. CONCLUSION

In the present work, we studied a coupled space-time Galerkin method with discontinuous
weighting- and test functions in the temporal domain. As it was shown within several numerical
examples the developed finite element method is stable and efficient, and, which has to be
emphasized, requires no auxiliary variable as it is needed in so-called DG-Penalty methods.
The underlying weak form of the finite element approach is fulfilled on each time-slab, which
leads to a method that is more flexible than the classical MOL, and is able to reproduce physical
discontinuous phenomena occurring in various applications of fluid-flow through porous media.
Furthermore, the numerical method shows a wide potential to develop both coupled space-time
adaptive strategies based on residual- and/or gradient-based error estimation techniques and
simple decoupled adaptive methods based on an error indicator of the temporal jump terms.
In the present work, the possibility in both h and p-refinements in time is shown. It has to
be concluded, that h-refinement leads to system matrices which can be compared to ordinary
techniques (MOL) with respect to their sizes. On the other hand, the p-refinement technique
with higher order weighting functions in the time domain enables larger time step lengths, i. e
less time steps. However, a blow-up in the resulting system of algebraic equations at the time
slab level must be taken into account.
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28. W. Ehlers. Poröse Medien - Ein kontinuumsmechanisches Modell auf der Basis der Mischungstheorie.

Technical report, Berichte aus dem Fachbereich Bauwesen, Universit”at GH-Essen, 1989.
29. W. Ehlers. Grundlegende Konzepte in der Theorie Poröser Medien. Technische Mechanik, 16:63–76, 1996.
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SUMMARY

We present a novel space-time Galerkin method for solutionsof second order time-dependent problems. By
introducing the displacement-velocity relation implicitly, the governing set of equations is reformulated into a
first-order single field problem with the unknowns in the velocity field. The resulting equation is in turn solved
by a time-discontinuous Galerkin (DGT) approach [9], in which the continuity between the time intervals is
weakly enforced by a specialupwindflux treatment. After solving the equation for the unknown velocities, the
displacement field quantities are computeda posteriori in a post-processing step. Various numerical examples
demonstrate the efficiency and reliability of the proposed method. Convergence studies with respected to theh-
andp-refinement and different discretization techniques are given. Copyright c© 2000 John Wiley & Sons, Ltd.

KEY WORDS: space-time FE, time-discontinuous Galerkin methods, elasto-dynamics

1. INTRODUCTION

The idea of applying the Finite Element Method (FEM) in the temporal domain can be traced back to
the work of Argyris & Scharpf [1] and Fried [17]. Remarkable development has been done by Hughes
& Hulbert [20], who introduced the Galerkin Least Square term into the FEM formulation to enforce
the inter-element consistency. These methods have also been applied to second-order hyperbolic
equations [20, 21, 22, 23], whereby the second-order equation is first degenerated into an equation
system of two first order equations.
Apart from the Least Square treatment, theupwind treatment, first introduced by Reed & Hill [28],
has been commonly accepted in the Discontinuous Galerkin (DG) community. The mathematical
foundation of this method was analyzed by Lesaint & Raviart [25] and Johnson & Pitkäranta [24],
among others. Cockburn and Shu [12, 13, 14] developed the Runge-Kutta Discontinuous Galerkin
method (RKDG) to solve space-time coupled problems. These semi-discrete methods essentially
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employ a FEM mesh in space and advance the solution via the Runge-Kutta scheme in time. By
rewriting the second-order equation as a degenerated first order equation system, the method is
also capable of solving time-dependent scalar advection-diffusion equations [15]. Bassi & Rebay
[4] extended the spatial DG method to solve the compressibleNavier-Stokes equation, in which the
second-order equation was treated in a similar manner so that both the solution and its gradient
were approximated in the same function space. Remarkable development in solving second-order
diffusion equations was made by Baumann & Oden [5, 6, 7], who developed the Nitsche’s approach
to solve the convective-diffusion problems efficiently. Further studies concerning the error estimation
of Baumann’s method were achieved by Riviéreet al. [3, 2, 29]. A good overview of the historical
perspective and various applications of the DG method can befound in [10]. More recently, various
efforts have been made in developing the methods composed ofa semi-discretization mesh in space and
advancing the solution with a discontinuity-eliminating-operator in time, see [26, 27]. In the present
work a new space-time discontinuous Galerkin scheme is developed for the solution of classical wave
propagation problems in elastic media. We circumvent the standard technique of solving a second-order
time-dependent problem by means of an equation system composed of two first-order equations. The
method is somewhat analogical to the Nyström methods [18],in which we embedded the derivative
of the primary unknowns in the governing equation. The Hybrid Velocity Integration (HVI) scheme
presented in this work is designed to solve second-order problems directly. To do this, the displacement-
velocity relation is embedded implicitly by means of a consistent integration of the velocity. The
resulting first-order equation is solved via the the time-discontinuous Galerkin (DGT) method [9] on a
space-time finite element mesh. After solving the equation for the velocity field, the displacement field
is updated subsequently within a post-processing step.
The structure of the present work is as follows: In the following section, we present the HVI
formulation for an Ordinary Differential Equation (ODE). Next, a generalized HVI method for a simple
space-time coupled problem is given in Section 3. Section 4 is devoted to various numerical examples
in which the convergence study of the HVI method is presented. The paper is closed with a short
conclusion and discussion about future works.

2. HYBRID VELOCITY INTEGRATION (HVI)

2.1. Continuous weak form of a simple model equation

The HVI method can be introduced by a simple model equation resulting from rigid body dynamics.
For the sake of simplicity, the prototype equation (ODE) is given by

M ü+D u̇+ C u = F, with t ∈ I = [ t0, T ], (1)

whereu(t) is the displacement,̇u(t) andü(t) are the velocity and the acceleration, respectively.M ,D
andC are mass, viscosity and stiffness coefficients, respectively. The right hand side termF (t) denotes
the external force. In order to solve equation (1) uniquely,associated initial conditions are given for
the displacement and the velocity as

u(t0) = u0 and u̇(t0) = v0. (2)

Introducing the velocity-displacement relationv(t) ≡ u̇(t), the model equation (1) can be written as a
two-field displacement-velocity formulation like

M v̇ +Dv + C u = F, t ∈ I = [ t0, T ]. (3)

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2000;00:1–6
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Furthermore, the weak form of Eq. (1) on an intervalIn = [ tn, tn+1 ] is obtained by multiplying (3)
with a proper test functionδv,∫

In

{
(Dv + C u) δv

}
dt−

∫
In

M v δv̇ dt+ [M v̆ δv]tn+1
tn

=
∫
In

F δv dt. (4)

Note that in the above expression, we have integrated the inertia term by parts in time. Next, we apply
theupwindflux treatment to thĕv. Applying theupwindflux treatment in time was introduced in [11]
and has been successfully applied to the dynamical analysisof porous materials in [9]. Theupwind
flux of v̆ reads

v̆(tn) =
{
v0, for n = 0,
v−(tn), otherwise,

with v±(tn) = lim
ǫ→0+

v(tn ± ǫ). (5)

Hence, for an arbitrary intervalIn we have

[M v̆ δv]tn+1
tn

=
{
M (v−(tn+1)− v0) δv, for n = 0,
M (v−(tn+1)− v−(tn)) δv, otherwise.

(6)

According to the discontinuous approximation, inconsistent values of velocitiesv(tn) (“jump”) at time
tn occur. The jump is introduced as[[v]] := |v+(tn) − v−(tn)|, see Figure 1(a). The solution strategy
with respect to the first order equation has been discussed extensively in [9], which will not be repeated
here. Hence, we proceed to the treatment of the displacementfieldu in Eq. (4). Integrating the velocity-
displacement relationv(t) = u̇(t) to an arbitrary timet (tn < t < tn+1), we obtain the expression for
the unknown fieldu as

u(t) = ũ(tn) + gu(t), (7)

with

ũ(tn) =
{
u0, for n = 0,
u(tn) otherwise,

and gu(t) =

t∫
tn

v dτ. (8)

According to such a relation, we note that the displacement fieldu(t) can be implicitly related to the
integral of the velocitygu(t) and an integration constantũ(tn). In contrast to the upwind treatment of
v̆(t), cf. (5), there exist no jumps at the discrete timetn, see Figure 1(b). Hence, we formally obtain

v

t
tn−1 tn tn+1

v−(tn−1)

v+(tn−1)

v−(tn)

v+(tn)
v−(tn+1)

v+(tn+1)

(a) velocityv

u

t
tn−1 tn tn+1

u(tn−1)

u(tn)
u(tn+1)

(b) displacementu

Figure 1. Velocity and displacement distribution based on linear velocity approximation

the weak form as∫
In

{[
Dv + C {ũ(tn) + gu(t)}] δv}dt−

∫
In

M v δv̇ dt+ [M v̆ δv]tn+1
tn

=
∫
In

F δv dt. (9)
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Note that in the above weak form, the only unknown field is the velocityv.

2.2. Discrete weak form

Within our numerical approach discontinuous trial- and test functionsvh andδvh are chosen. LetVh

denotes a finite-dimensional function space. The finite element problem can be formulated as: Find
vh ∈ Vh such that∀ δvh ∈ Vh the following weak form holds,∫
In

{[
Dvh + C guh

(t)
]
δvh

}
dt+ C ũh(tn)∆t−

∫
In

M vh δv̇h dt+ [M v̆h δvh]tn+1
tn

=
∫
In

F δvh dt.

(10)
The ũh(tn) and theguh

are the corresponding terms related to the discrete quantities uh and vh.
Moreover, since the quantity of̃uh(tn) is a constant with respect to the current intervalIn, its integral
in (9) is substituted by[C ũh,n ∆t] with ∆t = tn+1 − tn. Next, we discuss the contribution of the
integral

∫
In [C guh

(t)] δvh dt in detail. Obviously, this term can be integrated numerically by various
numerical integration schemes. However, in order to guarantee an efficient and accurate numerical
solution, a consistent integration scheme for both the displacement and the velocity field has to be
employed. For the sake of simple notation, we introduce the termH as

H =
∫
In

guh
(t) δvh dt = J

+1∫
−1

guh
(ξ) δvh dξ,= J

+1∫
−1

Jξ

ξ∫
−1

vh dτ

 δvh dξ, (11)

where J and Jξ denotes the corresponding Jacobians, see (49) - (50). According to the Gauss
quadrature, equation (11) can be evaluated by

H = J
∑
GP

wi guh
(ξi) δvh(ξi). (12)

HereGP is the number of Gauss integration points,ξi andwi are the weights and local positions of
Gauss points, respectively. Assume that the discrete trial- and test-functions are given as

vh =
p+1∑
l=1

Nl v̂l and δvh =
p+1∑
k=1

Nk δv̂k, (13)

whereNl andNk represent the Lagrangian polynomials of orderp. The nodal values of the trial-
and test-functions are introduced byv̂l andδv̂k, respectively. The consistent integration scheme forH
according to the Gauss quadrature can be written as

H = J
∑
GP

wi

(
J

p+1∑
l=1

N ξi

l v̂l

)(
p+1∑
k=1

Nk δ v̂k

)
(14)

with
N ξi

l := Jξi

∑
GP

wj Nl(ξ
j
i ). (15)

A detailed derivation is given in the Appendix.
From (14), we note that the integral

∫
In [C guh

(t)] δvh dt can be evaluated within a standard FEM
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procedure. Moreover, it has to be pointed out thatN ξi

l can be considered as a new class of polynomials
defined for each polynomialNl at each Gauss pointξi. Note that the value ofN ξi

l is independent of the
nodal solutionv̂l. According to a chosen polynomialNl and the corresponding integration scheme,
the evaluation ofN ξi

l has to be carried out only once. Thus, we would like to point out that no
extra numerical effort due to the calculation ofN ξi

l is demanded within the computational process.
After solving Eq. (10) for the unknown velocitiesvh, the displacement fielduh is achieved in a post-
precessing step like

uh,n+1 = ũh,n +

tn+1∫
tn

vh d τ. (16)

So far, we have illustrated the solution strategy of the discrete weak form (10). It has to be mentioned
that the integration of the displacement fielduh is carried out by a consistent Gauss integration
scheme. Furthermore, depending on the polynomial orderp, as long as sufficient integration points
are employed, the integration can be carried out exactly.

3. SPACE-TIME COUPLED GALERKIN FORMULATION

After presenting the main idea of the HVI method by a simple ODE equation, we proceed now to
generalize the HVI scheme to a coupled space-time Galerkin method. First of all, let us recall the
definition of the space-time domain. The spatial domain is introduced asΩ with a position vector
x ∈ Rd, d = 1, 2, 3. The space-time domainQ is constructed by adding the time axis orthogonal to the
spatial domainΩ, so that we obtainQ := Ω × I. According to the time discretization, the so-called
time-slabQn is defined analogously byQn := Ω×In. For further details concerning the notation and
the space-time discretization we refer to [9].

3.1. Elastic wave-propagation

The governing equation of wave propagation in a linear elastic solid is described by the Lamé-Navier
equation†

ρ ü− µ div gradu− (µ+ λ) grad div u = 0 in Ω× I, (18)

with the boundary conditions on the Dirichlet boundaryΓD and Neumann boundaryΓN (∂Ω =
ΓN

⋃
ΓD andΓN

⋂
ΓD = ∅)

u = ū on ΓD × I and T · n = (2µ gradsym u + λ (div u) I) · n = t̄ on ΓN × I, (19)

†Splitting the vector fieldu = u1 + u2 into an irrotational part(rotu1 = 0) and into a solenoidal part(div u2 = 0),
respectively, we can divide equation (18) into a scalar equation describing the propagation of a compressional wave andinto a
vector-valued equation describing the propagation of the shear wave,

ρ φ̈− (λ + 2 µ) div grad φ = 0 and ρ m̈− µ div gradm = 0. (17)

In equation (17) we have introduced the scalar potentialφ(x, t) with u1 = grad φ and the vector potentialm(x, t) with
u2 = rotm.
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wheren denotes the outward normal vector on the Neumann boundaryΓN . The initial conditions are
given for both the displacementu and the velocitieṡu as

u = u0, at Ω× t0 and u̇ = v0, at Ω× t0. (20)

The elastic parameters are given by the Lamé constantsµ and λ. The density is denoted byρ.
Analogously, by introducing the displacement-velocity relation of the vector field quantitiesv = u̇,
Eq. (18) yields

ρ v̇− µ div gradu− (µ+ λ) graddiv u = 0 in Ω× I. (21)

Theupwindflux of the vector quantity̆v and the displacement̃u are given by

v̆(x, tn) =
{

v0, for n = 0,
v−(x, tn), otherwise,

and ũ(x, tn) =
{

u0, for n = 0,
u(x, tn) otherwise,

(22)

with v±(x, tn) = lim
ǫ→0+

v(x, tn ± ǫ). The implicit expression of the displacement fieldu(x, t) based

on the integral of the velocity fieldv(x, t) can be written as

u(x, t) = ũ(x, tn) + gu(x, t) with gu(x, t) =

t∫
tn

v(x, τ) dτ, tn < t < tn+1. (23)

It is necessary to point out that the differential operatorsgrad(•) anddiv(•) are pure spatial operators.
Since integration over the time and differentiation in space are commutative, the following expressions
hold

gradu(x, t) = grad ũn + gradgu(x, t), with gradgu(x, t) =

t∫
tn

gradv(x, τ) dτ,

div u(x, t) = div ũn + div gu(x, t), with div gu(x, t) =

t∫
tn

div v(x, τ) dτ.

(24)

Hereby, the subscriptn denotes the quantity at time leveltn. The weak form is obtained by multiplying
Eq. (21) with a proper test functionδv and integrating over the time-slabQn. Bearing in mind that both
differential operationsgrad ũn anddiv ũn are known with respect to the time slabQn, we obtain the
following weak form∫

Qn

{
− ρv · δv̇ + µ gradgu : grad δv + (µ+ λ) div gu div δv

}
dQ

+ ∆t
∫
Ω

{
µ grad ũn : grad δv + (µ+ λ) div ũn div δv

}
dv

+
∫
Ω

ρ
[
v−n+1 δv − v̆n δv

]
dv =

∫
ΓN×In

t̄ · δv da dt.

(25)

Note that the second and the third lines in Eq. (25) are designated as pure spatial integrations occurring
at the temporal borders of the time-slabQn. Moreover, both̃un andv̆n are known quantities, which

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng2000;00:1–6
Prepared usingnmeauth.cls



INT. J. NUMER. METH. ENGNG CLASS FILE 7

are either solutions from the previous time slabQn−1 or the prescribed initial values.
So far we have obtained the weak form (25) formulated in the velocity field v. The displacement field
u is embedded implicitly as a function of the velocityv, c. f. (23), more details concerning the FEM
formulation are given in the Appendix.
Next, we have to reformulate the boundary conditions (19) given for the displacement fieldu to those
prescribed in the velocity fieldv. Nevertheless, we note that in Eq. (25) the Neumann assignment t̄
holds. Taking into account that (23) is valid also on the Dirichlet boundaryΓD, we obtain

u(x, t) = ũn(x) +

t∫
tn

v(x, τ) dτ ≡ ū with x ∈ ΓD, (26)

which leads to

v̄ = ˙̄u− ˙̃un, on ΓD × I and ũ0 = ū0, on ΓD × t0. (27)

The second relation is derived by takingt = tn = t0 in (26). Similarly, by inserting Eq. (24) in the
Neumann assignment in (19) at the initial timet0, we obtain

T · n = (2µ gradsym ũ0 + λdiv ũ0 I) · n = t̄ on ΓN × t0. (28)

Thus, we note that the argumentũ0 = u0 is valid forx ∈ (Ω∂Ω), the corresponding initial assignment
on the DirichletΓD and NeumannΓN are given in (27) and (28), respectively.

3.2. HVI finite element scheme

Let P = {Ph(Ω × In)} be the set of all partitions of the time slabQn. Next, the spatial continuous
time-slabQn = Ω× In is subjected to a spatial discretization, i.e. the finite element meshPh

Ph =
⋃
M

P i
h with 1 ≤ i ≤M. (29)

The mesh consists ofM space-time finite elementsP i
h = Ωi

h×In, whereΩi
h (1 ≤ i ≤M ) denotes the

disjoint subdomains ofΩ. Assume that the finite-dimensional function spaceVh consists of the tensor
products of spatial and temporal trial- and test-functions. With the continuous weak form given in (25)
we are able to formulate the underlying finite element problem:

Findvh ∈ Vh, such that ∀ δvh ∈ Vh, there exists B(vh, δvh) = L(δvh). (30)

The bilinear formB(vh, δvh) and the linear formL(δvh) read

B(vh, δvh) :=
M∑
i=1

∫
P i

h

{
− ρvh · δv̇h + µ gradgu,h : grad δvh + (λ+ µ) div gu,h div δvh

}
dQ

+
M∑
i=1

∫
Ωi

h

{
ρv−h,n+1 · δvh

}
dv,

L(δvh) :=
E∑

k=1

∫
Γk

N,h×In

t̄ · δvh da dt+
M∑
i=1

∫
Ωi

h

{
ρ v̆h,n · δvh

}
dv

− ∆t
M∑
i=1

∫
Ωi

h

{
µ grad ũh,n : grad δvh + (λ+ µ) div ũh,n div δvh

}
dv,

(31)
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whereE denotes the number of edgesΓi
N,h of the subdomainΩi

h that encounter the Neumann boundary
ΓN . Solving Eq. (26) forvh, the displacement fielduh is computed according to the integral

uh,n+1 = ũh,n +

tn+1∫
tn

vhdt. (32)

So far we have accomplished the solution strategy of the HVI method for a coupled space-time
problem. By embedding the displacement-velocity relationimplicitly in the weak formulation, the set
of unknowns is reduced to the velocity field. In this sense, wedegenerate the second-order equation to
a first-order one without expanding the dimension of the matrix system. Furthermore, by modifying the
polynomials according to (15), the solution procedure is compatible to a standard time-discontinuous
FEM code. Besides, as has already been discussed in [9], inconsistent quantities, i. e. “jumps”,
contribute to the stability and accuracy of the numerical solution. Such jumps can be served as a
heuristical error indicator in the time domain leading tohp−refinement approach. Moreover, according
to the consistent integration scheme given here, the displacement fielduh as well as its associated
quantitiesgraduh anddiv uh can be integrated exactly.

4. NUMERICAL EXAMPLES

4.1. The simple model example

In the first example, we focus on a Single Degree of Freedom (SDOF) described by the motion equation
like

M ü(t) + C u(t) = 0 with t ∈ I = [0, 4] s (33)

with the stiffnessC = 100 [Ns/m] and the unit massM = 1 [kg]. The system is started from the static
state with an initial displacement

u0 = u(t = 0) = 10 [m], v0 = v(t = 0) = 0. (34)

For such a simple system, the exact solution reads

u(t) = 10 cos(10 t), v(t) = −100 sin(10 t). (35)

Figure 2 shows the numerical results obtained by the HVI method with linear trial- and test functions
in space and time and a uniform time step size∆t = 0.1 [s]. For comparison, results obtained by
the standard Newmark method with the same time step size (∆t = 0.1 [s]) are depicted in the same
figure, Figure 2. We observe that both methods lead to stable solutions. However, the HVI method
provides a much more accurate solution than the Newmark method, in which less phase delay due to
the numerical dispersion is observed. Moreover, since the displacementuh depends on the integral of
the velocityvh, even with linear trial functions forvh, we obtain a rather smooth numerical solution of
uh with the HVI method, see Figure 2(b). Also, despite the discontinuous approximations forvh, no
visuable jumps in the plot scale are observed.
Next, we define the error in theL2 norm for both the velocity and the displacement field as

ev =

√√√√ 1
N

N∑
n=1

[
v(tn)− vh(tn)

]2
and eu =

√√√√ 1
N

N∑
n=1

[
u(tn)− uh(tn)

]2
, (36)
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Figure 2. Numerical solutions of the velocityvh and the displacementuh with ∆t = 0.1 s calculated with the
HVI method and the classical Newmark scheme.

whereu(tn), v(tn) anduh(tn), vh(tn) represent the exact and the finite element solutions at discrete
time leveltn, respectively.N is the number of time steps. Figure 3 shows the convergence rate with
respect to the velocityvh as well as the displacementuh fields, wherebyp represents the order of the
trial- and test functions. It can be observed that the convergence rate for the velocity is ofO(p + 1),
and a slightly higher convergence rate in the displacement fielduh is achieved
As for the Galerkin finite element methods, the natural norm reflecting the quantity of the numerical
solution scheme with respect to numerical accuracy and stability is the energy norm. Next, we study the
energy conserving property of the HVI scheme for this simplemodel problem. The proposed SDOF
system is an energy conservation system, for which the totalenergyE is given by the sum of the
potential energy (V = 1

2C u
2) and the kinetic energy (K = 1

2mv2), i. e.E = V +K. The error in the
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Figure 3. Convergence rates of velocities and displacements obtained by the HVI method with polynomials of
orderp.

total energy is defined as

eE =

√√√√ 1
N

N∑
n=1

[
E − Eh(tn)

]2
, (37)

with E the exact total energy, andEh(tn) =
1
2
(C u2

h,n +M v2
h,n) represents total energy of the finite

element solution at the timetn. N denotes again the number of total time steps. Figure 4 shows the
convergence rate of the energy norm obtained with the HVI method. We observe that the convergence
rate of erroreE is ofO(p+ 1) for the given problem.

e E

1

1
1

1
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4
5

p = 1
p = 2
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p = 4

100

1E-2

1E-4

0.001 0.01 0.1

1

1

h

Figure 4. Convergence rate in the energy norm for the simple model example calculated by the HVI methods with
polynomials of orderp.

4.2. One-dimensional wave propagation in an elastic bar

In the second example, we investigate the wave propagation problem in a one-dimensional bar. The
governing equation is a special form of Eq. (18) and the prototype of a second-order wave equation

ü(x, t)− u′′(x, t) = 0, with x ∈ L = 1 [m], and t ∈ I = [0, 1] [s], (38)
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where(•)′′ represents the second order derivative in space. In order tominimize the influence of
numerical dispersion, a sinusoidal spatial distribution of the initial condition is chosen

u0(x) = u(x, t = 0) = sin
(

2 π
L
x

)
, v0 = v(x, t = 0) = 0. (39)

Both ends of the bar are fixed such that we have the Dirichlet boundary conditions for the displacements
as

u(x = 0, t) = 0, u(x = L, t) = 0, with t ∈ I. (40)

Owing to the simplicity of the given problem, the exact solution can be expressed in form of a Fourier
series like

u(x, t) =
∞∑

m=1

Am cos
(
mπt

L

)
sin
(mπx

L

)
, with Am =

2
L

L∫
0

u0 sin
(mπx

L

)
dx. (41)

Figure 5 shows examplarily the exact solution for the displacement (u(x, t)) as well as for the velocity
(v(x, t) = u̇(x, t)).

I
L

u

1 1

1

−1

0

0

0

(a) displacementu

IL

v

1 1

0
0

0

8

−8

(b) velocityv

Figure 5. exact solutions

The problem is now computed with20 bilinear elements (linear trial/test functions both in space and in
time) and with the temporal discretization size∆t = 0.1 [s]. Figure 6 shows the HVI solution recorded
at pointx = 0.25 [m]. Due to the employment of linear polynomials, we obtain alinear distribution
of the velocityvh. Inconsistent values (jumps) on time-slab interfaces are observed, see Figure 6(a).
However, it has to be mentioned that the jumps don’t spoil thenumerical result but contribute to a more
accurate solution. Since the displacementuh relates to the integral of the velocityvh, its distribution is
nevertheless continuous and fits the exact solution very well, see Figure 6(b).
As is well known, such an initial boundary value problem can also be solved within the classical
MOL (Method of Lines). Therein, the problem is first discretized with a spatial FEM mesh, and the
resulting system of ODEs is in turn solved by a time difference scheme, e. g. the Newmark scheme.
For comparison, in Figure 6 we depicted also the solutions obtained by the Newmark scheme with the
same spatial (20 linear element in space) and temporal (∆t = 0.1 [s]) discretization. We observe, with
such discretization, the solutions of this HVI method are much more accurate than those obtained by
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Figure 6. Newmark vs. HVI solution atx = 0.25

the Newmark scheme.
Next we study the property of the convergence rate of the space-time coupled HVI formulation.
For such space-time coupled problems, the temporal and spatial refinement must be performed
simultaneously (uniformly decreasing∆t and∆x), cf. [22]. Here, we introduce the space-time mesh
parameter as

h = max{c∆t,∆x}, (42)

wherec is the dilatational wave speed, i. e.c = 1 [m/s] for the given problem, and∆x and∆t are the
size of the finite element discretization in space and in time, respectively. Moreover, same orders of
polynomials in space and in time are chosen, which are denoted byp in the latter context.
For this space-time problem we define the error in theL2 norm as

e2 =

√√√√√ 1
N L

N∑
n=1

∫
L

[
�(x, tn)−�h(x, tn)

]2
dx, with � ∈ u, v (43)
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in which N is the total number of time steps andL denotes the length of the bar. The quantities
v(xi, tn), u(xi, tn) represent the exact solutions at(xi, tn), whilevh(xi, tn), uh(xi, tn) are the discrete
solutions obtained by the HVI method.
Figure 7 shows the convergence rate of the HVI solution ineu andev. Here, we observe a similar
convergence rate as for the simple SDOF problem. The convergence rate in the velocity fieldvh turns
out to beO(p + 1), and a slightly higher convergence rate in the displacementfield uh than in the
velocity fieldvh is observed.
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(b) displacement

Figure 7. Convergence rate of velocities and displacementsobtained by the HVI method with polynomials of order
p in space and time.

Next, the propagation of a discontinuous wave form is investigated. Hereby, a rectangular spatial
distribution of the initial displacement as

u0(x) =
{

10, 0.49 [ m ] < x < 0.51 [ m ]
0, otherwise

and v0(x) = 0, (44)

is chosen. For comparison, we solve the given problem with the Newmark method, the HVI method
and the first order DGT method based on an equation system withtwo first-order equations, cf. [9].
The DGT method based on a system of two first order equations isabbreviated as the RDG method in
the latter context. Respecting the space-time mesh parameter given in Eq. (42), as for the current case
with c = 1 [m/s], uniform discretizations in space and time are chosen. Moreover, in order to minimize
the numerical effort, linear polynomials in space for the Newmark method and bilinear polynomials in
space and time for the HVI method as well as for the RDG method are employed. Figure 8 shows the
numerical results computed with20 finite element and∆t = 0.05 [s] by the three different methods,
while Figure 9 show those results computed with100 element and∆t = 0.01 [s]. Note that due to
the coarse spatial discretization in the case of20 elements, the initial assignment (Eq. (44)), can not be
well resoluted. Thus the triangular form initial displacement is resulted in Figure 8. Only in the case
of finer discretization (100 element), this initial assignment can be rather well resoluted, see Figure 9.
In these diagrams, we observe that numerical dispersion spoils the solution of the Newmark method
on the both discretizations (20 and100 elements), while more stable results are achieved by the HVI
and the RDG method. As is known, the conventional semi-discretization method (MOL) normally
suffers from the numerical dispersion and spurious oscillation in modeling the wave solutions with
sharp gradient and discontinuities, cf. [8]. As for the current problem, the Newmark method fails in
reproducing the high modes inherenting in the discontinuous initial assignment whereby dramatically
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numerical dispersion is observed. In contrast, more accurate results are obtained by the HVI and the
RDG method. Moreover, as for the HVI method, weak numerical dispersion in the velocity field is
observed, while the displacement field is less influenced. The best results are obtained by the RDG
method. However, we denote that the numerical effort of solving the equation system of two first-order
equations with the RDG method is almost twice as much as thoseof solving a single equation with
the HVI method. Nevertheless, the results of the HVI method is much better compared to the solution
obtained by the Newmark method under the same discretizations.
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Figure 8. Propagation of discontinuous wave front computedwith 20 element∆t = 0.05 [ s ] with Newmark
method, HVI method and RDG method
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Figure 9. Propagation of discontinuous wave front computedwith 100 element∆t = 0.01 [ s ] with Newmark
method, HVI method and RDG method
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4.3. Propagation of a compressional wave in two dimensions

Next, we focus on the wave propagation in a two-dimensional elastic medium. For the sake of
simplicity, the propagation of the scalar compressional wave is considered. The governing equation
of the compressional wave (see (17)) reads

φ̈(x, t)−c2 div gradφ(x, t) = 0, in Ω×I, with Ω = [−5,−5]×[5, 5] andI = [0, 3] s, (45)

where φ(x, t) represents the displacement andc2 is an elastic parameter withc =
√
λ+ 2µ

representing the speed of the wave propagation. Homogeneous Neumann (stress-free) boundary
conditions are assumed. The initial condition is given for the displacement as

φ(x, t0) =
{

10 cos(|x|π), |x| < 1,
0, otherwise,

and φ̇(x, t0) = 0, ∀x ∈ Ω. (46)

The computation is carried out by the HVI method on a quadrilateral mesh of40 × 40 elements with
bilinear trial- and test-functions in space and first order polynomials in time. Concerning the Courant-
Friedrich-Lewy condition, c. f. [16], which ensures the stability of the numerical solution, a uniform
time step length of∆t = 0.25 [s] is employed. Figure 10 shows the snapshots of both the velocity
φ̇h(x, t) and the displacementφh(x, t) at timet = 1 [s], 2 [s] and3 [s]. From these pictures we observe
more or less isotropic wave forms in the media. We denote here, upon the current spatial discretization
(40× 40 elements), the anisotropy in the phase speed introduced by the orientation of the elements is
rather small. Thus, we conclude that the numerical solutions agree well with the physical observation.
In order to study the applicability and generality of the proposed HVI method, we apply the method to
quadrilateral and triangular finite element meshes with both regular and Delaunay grids. Hereby, the
influence of mesh anisotropy on the numerical solution is considered. We computed the given problem
upon four different grids (P1-P4) with comparable DOFs, as shown in Figure 11. The time step size
is fixed to∆t = 0.2 [s]. Linear trial and test functions in space and time are employed. In Figure 11
we depicted contour plots of velocities and displacements at t = 3.0 [s]. Herein anisotropies in the
wave forms are shown, which imply differences in the wave speeds with respect to different directions.
Nevertheless the qualitative behavior of the propagating dilatational wave is less influenced. Next, we
define the error normev as

ev =
1
L

L/2∫
−L/2

√
(vh(x, t1)− v(x, t1))

2 dx, with t1 = 3 [ s] and L = 10 [ m ] (47)

with vh andv the finite element solution and the exact solution, respectively. Figure 12 shows the polar
plot of the errorev with respect to various cuts of the solution at angelψ (0 < ψ < 180◦). We observe
a more or less isotropic wave form obtained on the unstructured triangular grid (P4). However, the
smallest error occurs in the P2 grid along the direction withthe highest grid density.
Next, we compute the above problem again with quadrilateralmeshes of20×20 and80×80 elements.
With respect to the mesh parameter introduced in Eq. (42), the time step lengths∆t are chosen to
be 0.5 [s] and0.125 [s], respectively. Bilinear polynomials in space and linear polynomials in time
are employed. Figure 13 shows the profiles of the velocityφ̇ and the displacementφ at x2 = 0,
t = 2 [s]. Hereby we observe a convergence towards a (numericallycomputed) reference solution.
Furthermore, we point out that for such a space-time coupledproblem reducing the size of the time
step∆t while holding the spatial discretization fixed cannot improve the accuracy of the numerical
result extensively, since the temporal approximation procedure cannot compensate the error induced
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Figure 10. Wave propagation in a homogeneous media computedwith 40×40 bilinear element with∆t = 0.25 [s]

by the spatial discretization [19].

4.4. Two-dimensional wave propagation in an elastic medium

In the last example, we compute the propagation of longitudinal and transversal waves in an elastic
solid media. A square block of the size50× 50 [m2] is subjected to an impulse load̄t, see Figure 14.
The material parameters correspond to dry soil, withλ = 1.447 · 108 [N/m2], µ = 9.8 · 107 [N/m2]
andρ = 1884 [kg/m3], c. f. [30]. The governing equation is given by Eq. (18). Forsuch a linear elastic
material, we expect to observe a compressional and a shear wave propagating at different phase speeds
cP (=

√
(λ+ 2µ)/ρ) andcS (=

√
µ/ρ), respectively.

Figure 15 shows the vertical component of the velocityvh and the displacementuh (computed by
100× 100 bilinear quadrilateral elements with∆t = 0.001 [s]) at timet = 0.05 [s] andt = 0.10 [s].
In these contour plots, we obviously observe two wave frontstraveling in the body which can be easily
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Figure 12. Polar plot of errorev with respect to discrete ”cut” of the discretizations (P1–P4)

identified as the compressional and the shear wave, respectively. Furthermore, the most significant
property of the shear wave is the fact that it propagates at the direction45◦ to the normal. According to
our numerical simulation the compressional wave speed is423.1 [m/s] and the shear wave speed reads
230.5 [m/s], corresponding to the analytical speeds425.25 [m/s] and228.07 [m/s], respectively. Thus,
we conclude that the numerical simulation has a good agreement with the exact solution.

5. DISCUSSION AND CONCLUSIONS

In the present work, we studied a novel Hybrid Velocity Integration (HVI) scheme for second-order
time-dependent problems. With an implicit embedment of thedisplacement-velocity relation, the
governing equation is formulated in a one-field first-order problem in time with primary unknowns
in the velocity field. A numerically consistent and exact integration scheme for the displacement field
according to Gauss quadrature is proposed, which can be handled within a space-time finite element
code. The resulting first-order equation is solved by the time-discontinuous Galerkin method on a
space-time finite element mesh, whereby a naturalupwindflux is employed to enforce the continuity
between the time intervals. Convergence studies with respect to bothp- andh- refinement are presented.
Various numerical experiments demonstrate the efficiency and applicability of the proposed space-time
finite element method. The introduced technique builds up a general framework to treat second-order
problems in time in an efficient way. In a subsequent paper we intend to applied the method to coupled
problems of wave propagation in a fluid-saturated porous media.
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Figure 15. Contour plots of velocities and displacements

APPENDIX

I. Simple model equation

According to the weak form (10) we have to discuss the integration of the quantity

H =
∫
In

guh
(t) δvh dt = J

+1∫
−1

Jξ

ξ∫
−1

vh dτ

 δvh dξ. (48)

Herein, the Jacobian sJ andJξ are given as

J =
tn+1 − tn

2
and Jξ =

t− tn

ξ + 1
. (49)
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AlthoughJξ is function ofξ andt, its value can be determined uniquely with respect to a uniform
mapping[ tn, tn+1 ] → [−1, 1 ], cf. Figure 16. Thus we obtain

Jξ =
t− tn

ξ + 1
=
tn+1 − tn

2
= J (50)

t

ttn tn+1

−1 +1

ξ

Figure 16. Uniform mapping[ tn, tn+1 ]→ [−1, 1 ]

Applying the Gauss quadrature to (48) we get

H = J
∑
GP

wi guh
(ξi) δvh(ξi) (51)

with

guh
(ξi) = J

ξi∫
−1

vh dτ = J Jξi

+1∫
−1

vh dη = J Jξi

∑
GP

wj vh(ξj
i ) (52)

withGP the number of Gauss points,wi andξi the weight and the position of the corresponding Gauss
point, respectively. In (52) we introduced the mapping[−1, ξi ] → [−1,+1 ]. The positionξj

i can be
calculated by

ξj
i =

1
2
(ξi + 1)(ηj

i + 1)− 1 with ηj
i ∈ [−1,+1 ] and ξi ∈ [−1,+1 ], (53)

whereηj
i is the local position of the Gauss points, see Figure 17.

Moreover, sinceξi represents a fixed position of a Gauss point, the integral (52) can be determined
uniquely. The JacobianJξi is given as

Jξi =
ξi + 1

2
. (54)

Figure 17 shows examplarily the calculation ofξj
i of two Gauss points. Assume that the discrete trial-

and test-functions are

vh =
p+1∑
l=1

Nl v̂l and δvh =
p+1∑
k=1

Nk δv̂k. (55)

with the Lagrangian polynomialsNl andNk of orderp, v̂l andδv̂k the nodal values of the trial- and
test-functions, respectively. By inserting equations (55) into (52) we obtain

guh
(ξi) = J Jξi

∑
GP

(
wj

p+1∑
l=1

Nl(ξ
j
i ) v̂l

)
= J

p+1∑
l=1

N ξi

l v̂l (56)

with
N ξi

l := Jξi

∑
GP

wj Nl(ξ
j
i ), (57)

which ensures a consistent Gauss quadrature ofgu,h(ξi) with GP Gauss points.
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Figure 17. Evaluation ofgu(ξi) with a two Gauss points example

II. Space-time coupled formulation

The space-time trial- and test functionsvh andδvh consist of tensor products of polynomials in space
and time like

vh =

(
q+1∑
m=1

Mm

p+1∑
l=1

Nl

)
v̂α and δvh =

(
q+1∑
n=1

Mn

p+1∑
k=1

Nk

)
δv̂β (58)

with the spatial polynomialsMm andMnof orderq and the Lagrange polynomialsNl andNk of order
p. α andβ are indices of the nodal values regarding the space-time domain. Bearing in mind the new
type of temporal polynomialsN ξi

l , see (57), the integralgu,h at each Gauss point(ηj , ξi) can be written
as

gu,h(ηj , ξi) =

(
q+1∑
m=1

Mm(ηj)
p+1∑
l=1

J∆tN
ξi

l

)
v̂α, with J∆t =

tn+1 − tn

2
(59)

whereηj denotes the generalized Gauss point position in space whileηi represents the position in the
time domain. Hereby we have obtained a similar structure forgu,h andvh. Therefore the integral with
respect togu,h and its associated quantitygradgu,h anddiv gu,h can be evaluated according to the
Gauss quadrature as familiar in the conventional FEM code.
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Abstract We present an EVI-space-time Galerkin
method applied to dynamic analysis in fluid-saturated
porous materials. The physical model is based on a
materially incompressible solid skeleton saturated by a
barotropic fluid. The deformation of the solid matrix
is described by a compressible Neo-Hookean material
law. The model equations are formulated in the La-
grangian description of the solid skeleton. In respect of
the numerical modeling, by use of the Embedded Ve-
locity Integration (EVI) technique, the governing set of
second-order time-dependent equations is transformed
to a first-order one, which is in turn solved by a time-
discontinuous Galerkin method. In addition, a stability
factor α, describing the embedded integration scheme
of the displacement-velocity relation, is introduced. De-
pending on the chosen value of the α factor, the stability
property of the overall solution can be enforced. Numer-
ical experiments demonstrate the superior performance
of the proposed method with respect to accuracy and
low numerical damping in comparison with conventional
time-stepping schemes.

Keywords Porous media · Finite deformation · Space-
time FEM · Discontinuous Galerkin method · Embedded
Velocity Integration method

1 Introduction

Fully-saturated porous materials consisting of a solid
phase and a pore fluid phase have found lots of ap-
plications in our daily life, e. g. soils, rocks, polymer
foams, human bones, biological tissues, etc. Since the
pioneering work of Terzaghi [1], a great amount of works
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have been carried out to develop the theoretical foun-
dation for the macroscopic modeling of porous media.
Among others, Biot presented a three-dimensional con-
solidation model [2] and investigated systematically the
propagating waves in biphasic mixtures [3; 4; 5]. The
classical mixture theory was first investigated by Trues-
dell & Toupin [6]. In the following years, various works
have been presented using continuum theories of the mix-
tures, [7; 8; 9; 10], etc. A historical survey is given in the
monographic work by de Boer [11].
In seismological and petroleum engineering, propagating
waves within saturated and unsaturated porous material
are of great interest. Due to the small amplitudes of the
elastic waves, it is sufficient to adopt the small-strain as-
sumption, such that a linear theory taking into account
the inertia forces of the solid and fluid phase is usually
applied. However, for the modeling of bio-materials, e. g.
soft tissues, or in the design of energy absorbing mate-
rials, e. g. cushion, where large deformations are usually
present, a material model allowing for finite deforma-
tion is inevitable. Borja et. al [12] presented a frame-
work for investigating elastoplastic consolidation at fi-
nite strains. Diebels & Ehlers [13] investigated the geo-
metrically linear and nonlinear dynamic deformation of
materially incompressible porous materials. Thermody-
namically consistent formulations of non-linear deforma-
tion were studied by Advani et. at [14; 15] and Larsson &
Larsson [16]. Therein, the general assumption that both
constituents are materially incompressible with constant
densities is adopted. More recently, Li et. al [17] pro-
posed a complete model consisting of materially com-
pressible solid and fluid constituents of porous media at
finite strain, in which a Neo-Hooke material law com-
bined with a Kelvin viscous mechanism was applied for
the description of solid deformation. Nevertheless, in the
presence of a highly compressible pore-fluid in a matrix
with large porosity, the deformation of the mixture is
strongly dependent on the deformation of the porous
solid skeleton and the compressible response of the fluid,
such that the compression of the solid grain itself can
usually be neglected, cf. [11; 18]. In the current work,
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we adopt a biphasic hybrid model consisting of materi-
ally incompressible solid phase and a compressible fluid
phase [19; 20]. The deformation of the solid skeleton is
described by a modified Neo-Hooke law [21; 22].
In respect of the numerical simulation technique, a space-
time discontinuous Galerkin method is applied. Since
the early work of Argyris & Scharpf [23] and Fried
[24], in which they applied the Finite Element Method
(FEM) in the temporal domain, the space-time Galerkin
method has been developed rapidly. Years later, Hughes
& Hulbert [25] proposed the so-called penalty time-
discontinuous Galerkin method in which a Least Square
term was introduced to enforce the continuity between
the time intervals. Later on, this idea has been applied
to hyperbolic equations [26; 27; 28]. A more innovative
idea was to employ a so-called upwind flux treatment
to enforce the continuity. Using the upwind flux instead
of a penalty term to enforce the interelement continuity
was originally a technique in the finite volume method,
which was first introduced to the FEM community by
Reed & Hill [29]. Cockburn and co-workers developed
this idea to the more general Runge-Kutta Discontinu-
ous Galerkin (RKDG) method, in which they applied the
upwind flux treatment in the spatial domain and solved
the resulting Ordinary Differential Equations (ODEs) in
time with a Runge-Kutta approach [30; 31; 32].
In previous works [33; 34], we applied the upwind flux
to the temporal domain, and developed a coupled Time-
Discontinuous Galerkin method (DGT). The method has
been successfully applied to the analysis of propagating
waves in porous materials. However, due to the restric-
tion of the upwind flux term to first-order systems, before
being solved by the DGT method, the governing set of
second-order equations in time had to be degenerated
into a set of two first-order equations, cf. [33].
In the present work, we apply the DGT scheme for the
solution strategy of coupled problems. By using the Em-
bedded Velocity Integration (EVI)1 technique [34], we
circumvent the direct solution of the balance of momen-
tum with respect to the solid displacement, and solve
the resulting first-order equation for the velocity field
with the DGT method. The solid displacement is subse-
quently computed according to a consistent integration
of the velocities. Furthermore, beside the exact integra-
tion scheme proposed in [34; 35], a generalized EVI inte-
gration scheme complemented with a stabilization factor
α is developed. The overall numerical stability of the so-
lution can be enhanced by the proper choice of the sta-
bilization parameter α.
The structure of the paper is as follows: In the next sec-
tion, we introduce the balance equations of the biphase
porous materials in the Lagrangian description of the
solid phase. In section 3, after giving a brief introduc-
tion of the EVI technique, we derive the generalized EVI

1 Originally the method was named “Hybrid Velocity Inte-
gration (HVI)”, but in the present work, the term “Embedded
Velocity Integration (EVI)” was used for convenience.

scheme with a stabilization factor α. In section 4, a cou-
pled space-time finite element weak form is given. In sec-
tion 5, we present some numerical experiments to demon-
strate the performance of the model. In the last section
we briefly discuss the proposed methods and mention
related future work.

2 Balance equations

We consider a two-phase fluid-saturated porous medium
consisting of a solid phase ϕs and a fluid phase ϕf.
The model is based on the thermodynamically consistent
Theory of Porous Media (TPM), cf. [9; 36; 37; 38; 39].
According to the idea of the mixture theory, different
constituents at positions Xs and Xf in the reference con-
figurations, are superimposed at position x in the current
configuration. The partial density ρi = ni ρiR (i ∈ {f, s})
is defined as the mass of the constituent ϕi with respect
to the total volume of the mixture, i. e. ρi = dmi/dv. The
volume fraction is denoted as ni = dvi/dv and ρiR rep-
resents the so-called effective or true density of the con-
stituent ϕi. As a consequence, the density of the mixture
ρ equals the sum of the partial densities, i. e. ρ = ρs +ρf.
The dynamic behavior of a mixture consisting of incom-
pressible constituents, i. e. ρsR =const and ρfR =const,
was studied in [13]. In the current work, we focus on
a so-called biphasic hybrid model, in which only the
solid phase ϕs is considered as materially incompress-
ible, i. e. ρsR =const., while the fluid phase behaves like
a barotropic fluid, i. e. ρfR = f(p), [19; 20]. Assume that
there exists no mass exchange between the solid and fluid
phases, the mass balance of each constituent can be writ-
ten as

(ρi)′i + ρi div(x)′i = 0, i ∈ {s, f}. (1)

Herein, (•)′i represents the material time derivative fol-
lowing the motion of the constituent ϕi

(•)′i =
∂(•)
∂t

+ grad(•) · vi, (2)

in which vi denotes the velocity of the phase ϕi, i. e.
vi = (x)′i. We define grad(•) and div(•) as the gradient
and the divergence operator with respect to current con-
figuration.
Since the solid constituent is assumed to be materially
incompressible (ρsR =const.), the mass balance of the
solid constituent can be simplified to the volume balance
as

(ns)′s + ns div vs = 0. (3)

Introducing the seepage velocity wf = vf − vs, which
describs the relative velocity between the solid and fluid
phases, we relate the material time derivate of the two
constituents by

(•)′f = (•)′s + grad(•) ·wf. (4)
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Bearing in mind the definition of the partial density ρf =
nf ρfR, we obtain the mass balance of the fluid as

(nf ρfR)′f + nf ρfR(div wf + div vs) = 0. (5)

Applying (4) to the material time derivative in (5), the
mass balance of fluid phase yields

(nfρfR)′s + div(nfρfRwf) + nfρfR div vs = 0. (6)

Multiplying (3) with the effective density of the fluid
ρfR and adding up to (6), we get the mass balance of the
mixture in current configuration as

nf(ρfR)′s + ρfR div vs + div(ρfR nfwf) = 0. (7)

Herein, we have taken into account the saturation condi-
tion nf + ns = 1. For the sake of simple notation, in the
following context, we suppress the subscript in the ma-
terial time derivative following the solid phase motion,
i. e. (•)′ = (•)′s.
Assume that the bulk modulus of the fluid Kf is con-
stant, the equation of state for the fluid effective density
may be chosen as [17]

ρfR = ρfR
0 exp

(p− p0

Kf

)
, (8)

in which ρfR
0 and p0 denote the initial fluid effective den-

sity and the pore pressure, respectively. p denotes the
pore fluid pressure at the current state. The material
time derivative of the fluid density (ρfR)′ in (7) can be
further replaced by, [17]

(ρfR)′ =
ρfR

Kf
(p)′. (9)

Finally, by inserting (9) into (7), we get the mass balance
of the mixture in current configuration as

nf ρfR

Kf
(p)′ + ρfR div vs + div(ρfR nf wf) = 0. (10)

It can be seen that the third term in (10) represents the
mass flux of the fluid flowing through the unit area of
the solid matrix. For future convenience, we introduce
here the filter velocity, which is also known as the Darcy
velocity, as q = nf wf.
Let Fs denote the deformation gradient of the solid skele-
ton and Js = detFs be the Jacobian determinant. More-
over, since the solid phase is assumed to be materially
incompressible, its volume change can be directly derived
by

ns = ns
0J

−1
s , nf = 1− ns, (11)

in which ns
0 is the initial volume fraction of the solid.

Next, we introduce the Piola transformation of the filter
velocity q, cf. [17]

Q = Js F−1
s q. (12)

For convenience, we define the vector

Q = Fs Q = Js q = Js nf wf. (13)

Moreover, let θ = Js p be the intrinsic Kirchhoff pressure,
by use of the chain rule of differentiation, we get

θ′ = J ′s p + Js p′ = p Div vs + Js p′. (14)

In the above expression, we have made use of the Piola
identity [40]

J ′s = Js div u′s = Div vs. (15)

Herein, Grad(•) and Div(•) represent the gradient and
the divergence operator with respect to the reference
configuration of the solid phase, i. e. with respect to Xs.
Multiplying (10) with the Jacobian determinant Js, the
mass balance of the mixture with respect to the reference
configuration can be written as 2

nf ρfR

Kf
θ′+ρfR

(
1− nf

Kf

θ

Js

)
Div vs +Div(ρfR F−1

s Q) = 0.

(17)

The momentum balance of the mixture in current con-
figuration is given by [13]

(nsρsR + nf ρfR)v′s + nfρfR{w′
f + [grad(vs + wf)]wf}

= div(Ts
E − p I) + (ρf + ρs)b, (18)

in which b is the body force. According to the Terzaghi’s
effective stress principle [41], the total stress within the
mixture equals

T = Ts
E − p I, (19)

in which Ts
E is the extra stress of the solid phase.

Following the concept of effective stresses [41], we intro-
duce the following total stresses

P = Ps
E − θ F−T

s , (20)

S = Ss
E − θ C−1

s , (21)

2 Let B0 and ∂B0 be an arbitrary domain and its bound-
ary in the reference configuration, while B and ∂B are their
counterparts in the current configuration, there exists the fol-
lowing transformationZ
B

div(ρfR q) dv =

Z
∂B

ρfR q · n da

=

Z
∂B0

J ρfR q · (F−T N) dA =

Z
B0

Div(ρfR J F−1 q) dV

=

Z
B0

Div(ρfR F−1 Q) dV =

Z
B0

Div(ρfR Q) dV, (16)

where n and N are the unit outward normal on ∂B and ∂B0,
respectively.
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in which P and S are the first and second Piola-Kirchhoff
stress, i. e. P = Fs · S. The corresponding extra stresses
of the solid phase are denoted by Ps

E and Ss
E. The right

Cauchy-Green deformation tensor is denoted by Cs, i. e.
Cs = FT

s · Fs.
By constructing the constitutive law for the solid effec-
tive stress, we note that with respect to a hybrid model
consisting of an incompressible solid phase and a com-
pressible fluid phase, the Jacobian determinant Js must
fulfill

ns
0 ≤ Js < ∞, (22)

which means that there exists a compaction point when
all fluid has been squeezed out of the matrix and pores
are closed, i. e. Js = ns

0. After reaching this compaction
point, no further volume change is possible and the solid
material behaves like an incompressible material. In the
current work, we employ the modified Neo-Hooke model
[22] developed for the porous material

Ss
E = µ (I−C−1

s ) + λ (1 − ns
0)

2
[ Js

1− ns
0

− Js

Js − ns
0

]
C−1

s ,

(23)

in which λ and µ are the Lamé parameters of the solid
skeleton. Note that µ and λ characterized the macro-
scopic properties of the porous matrix material.
The material time derivative of the vector Q reads

Q′ = J ′s nf wf + Js nf w′
f + Js wf (nf)′. (24)

By use of the saturation condition, we further obtain

Js (nf)′ = Js (1− ns)′

= −Js

(ns
0

Js

)′
=

ns
0

Js
J ′s = ns J ′s. (25)

Inserting now (25) into (24), we can get

Js nf w′
f = Q′ − J ′s wf = Q′ − J Div vs Q, (26)

in which J = 1/(Js nf). Thus, we can rewrite the balance
of momentum of the mixture (18) in reference configu-
ration of the solid phase as

(ρs
0 + (Js − ns

0)ρ
fR)v′s + ρfR (Q′ − J Div vs Q)

+ ρfR Grad (vs + JQ) (F−1
s Q)

= Div(P− θ F−T
s ) + (ρs

0 + (Js − ns
0) ρfR)b,

(27)

in which ρs
0 = ns

0ρ
sR denotes the initial partial density

of the solid constituent.
In the following, let us look at the momentum balance
of the fluid constituent in current configuration, [13]

ρf{(wf + vs)′ + [grad(vs + wf)]wf}
= − grad(nf p) + p̂f + ρf b. (28)

Here, p̂f represents the interaction force describing the
exchange of momentum between the solid and the fluid
phase

p̂f = p gradnf − (nf)2γfR

kf
wf, (29)

in which γfR is the effective weight of the fluid, i. e.
γfR = ρfR g where g is the gravity constant, and kf is
Darcy’s permeability. Inserting (29) into (28), we get

ρf{(wf + vs)′ + [grad(vs + wf)]wf}

= −nf grad p− (nf)2 γfR

kf
wf + ρf b. (30)

For the sake of simplicity, we restrict ourselves to
isotropic and constant permeability. An evolution of the
permeability depending on the deformation state of the
solid matrix is not involved. Considering the develop of
permeability depending on the deformation of the solid
phase, the interested readers are referred to [42; 21].
In addition, the gradient operator in current configura-
tion can be transported to reference configuration of the
solid phase by

gradp = (Grad p)F−1
s . (31)

By use of the relation (26), we get the balance of mo-
mentum of the fluid in the Lagrangian description of the
solid phase

ρfR (Q′ − J Div vs Q) + (Js − ns
0) ρfR v′s

+ ρfR Grad(vs + J Q) (F−1
s Q)

= −(Js − ns
0)

[
Grad

θ

Js

]
F−1

s − nfγfR

kf
Q

+ (Js − ns
0) ρfR b.

(32)

So far we have derived the balance equations of a two-
phase hybrid model with the primary variables {vs, Q, θ}
in reference configuration of the solid phase. The model
problem can be closed by a proper definition of boundary
conditions and the associated initial values. Given the
spatial domain Ω ∈ Rk (k = 1, 2, 3) in the undeformed
state, the boundary of Ω is composed of a superposition
of the solid and fluid part ∂Ω = Γ s = Γ f. Each boundary
is split into Neumann and Dirichlet parts, Γ i = Γ i

N ∪Γ i
D

with Γ i
N ∩ Γ i

D = ∅, i. e. i ∈ {s, f}. Let I = [t0, T ] be the
temporal domain, the boundary conditions are given as

vs = v̄s, on Γ s
D × I,

PN = P̄, on Γ s
N × I,

Q ·N = Q̄, on Γ f
N × I,

θ = p̄, on Γ f
D × I,

(33)

where N denotes the unit outward normal vector on the
boundary. v̄s is boundary value the solid velocity defined
on the reference configuration. P̄ and Q̄ are the normal
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traction applied on the mixture and the normal fluid flux
through a unit surface of the undeformed solid matrix,
respectively. p̄ is fluid pressure function defined on the
Dirichlet boundary of the fluid phase.
The associated initial conditions are given for

us(Xs, t0) = us,0(Xs),
vs(Xs, t0) = vs,0(Xs),
θ(Xs, t0) = θ0(Xs).

(34)

Further details concerning the model set-up and the
derivation of the governing equations can be found in
the literature [36; 37].
We denote that in the community of the TPM, it is usual
to introduce the kinematic relation

vs = u′s (35)

as an extra auxiliary equation to construct a four-
field equation system with the primary variables
{us,vs, Q, θ} and solved the resulting first-order system
with an implicit numerical approach, e. g. the backward
Euler method or others, [43]. Alternatively, it is also
possible to solve a three-fields formulation with the
primary variables {us, Q, θ} with the Newmark scheme
[44]. However, both approaches are based on finite
difference schemes, i. e. the Method of Lines (MOLs),
which is often known as numerically inefficient.
In our previous work, we have investigated a space-
time discontinuous Galerkin (DGT) approach for the
solution strategy of incompressible porous mixtures
with a four-field formulation [33]. However, due to the
restriction of the flux treatment in the DGT method
to time-dependent systems of first-order, a four-field
formulation including the kinematic relation (35) as an
extra governing equation is applied. It is obvious that
by introducing the extra equation (35) in the governing
set of equations, a larger system of algebraic equation is
resulted, which increases the computational burden.
In the current work, we employ the so-called Em-
bedded Velocity Integration (EVI) technique [34] to
construct an equation system with the primary variables
{vs, Q, θ}. The resulting equation system is composed
of first-order equations, which can be solved by the flux
based space-time discontinuous Galerkin method [33].
No extra auxiliary equation is introduced, which makes
the approach very efficient for solving second-order
time-dependent equations.

3 The EVI(α) formulation

We construct the space-time domain by adding the time
axis orthogonal to the spatial domain, i. e. Q = Ω × I.
According to the discrete time interval In = [tn, tn+1)
(0 ≤ tn < tn+1 ≤ In), we further define the space-
time slab Qn = Ω × In. Analogical to conventional

MOLs, the numerical solution is solved on each time-
slab subsequently. Here, we apply the time-discontinuous
Galerkin method [33] for the solution strategy, such that
discontinuous approximations for the primary variables
in time are employed. By use of the Embedded Velocity
Integration (EVI) technique, the kinematic relation (35)
is involved implicitly into the time-integration scheme.
Hence, the second-order time-dependent problem with
the unknown displacement field us(x, t) can be trans-
formed into a first-order one with the unknown velocities
vs(x, t). After solving the first-order equation for the ve-
locities, the displacement field is obtained explicitly in
a post-processing step according to a consistent integra-
tion of the velocities. Analogical to the Newmark scheme,
the computation starts with the given information, i. e.
initial velocity and initial displacement. For each sub-
sequent time step, the input information is the solu-
tion obtained at the end of the previous time slab. Note
that the EVI technique is different to the conventional
order-reduction one, where both the displacement and
the velocity fields are solved as primary variables simul-
taneously. In a previous work, we proposed a high-order
EVI method applied to elastic wave propagation prob-
lems [34]. Therein, an exact integration scheme for the
displacement is proposed, such that no degeneration of
the solutions was involved by the numerical integration.
Convergence studies with respect to the simple model
equation demonstrated the accuracy of the method. In
the current work, a generalized EVI method is studied
which allows for an implicit evaluation of the displace-
ment. In comparison with the exact integration scheme,
the implicit one implies more numerical dissipation, that
contributes to the numerical stability of the overall so-
lution. In addition, we introduce a stabilization factor α
into the numerical integration scheme. Depending on the
chosen values of the factor α, the stability of the over-
all solution can be enforced. This property is important
in practical computations, such that without an extreme
refinement of the discretization, the overall stability can
be achieved by a simple modification of the integration
scheme.
For the sake of completeness, we recall briefly the ba-
sic idea of the EVI method. The kinematic relation of a
material point Xs reads

u′s(Xs, t) = vs(Xs, t), t ∈ In. (36)

Integrating the above equation to an arbitrary time t,
i. e. tn < t < tn+1, we obtain

us(Xs, t) = ũs,n(Xs) + gu,s(Xs, t), (37)

where gu,s(Xs, t) denotes the time integral of the veloc-
ity from the lower bound of the interval tn to the actual
time t (t < tn+1)

gu,s(Xs, t) =

t∫
tn

vs(Xs, τ) dτ, (tn < t < tn+1), (38)
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and ũs,n represents the continuous distribution of the
solid displacement at tn

ũs,n(Xs) =
{

us,0(Xs), n = 0,
us(Xs, tn), otherwise. (39)

Herein, us,0 is the given initial condition of the solid dis-
placement and us(Xs, tn) represents the discrete value of
us at the time tn. In practise, this value represents the
numerical solution obtained at the end of the previous
time-slab Qn−1.
Next, the integral of gu,s of the material point located
at Xs over the time interval In can be evaluated by ap-
plying the Gauss quadrature∫
In

gu,s(Xs, t) dt = J

GP∑
i=1

wi g∗u,s(Xs, ξi), (40)

in which GP is the number of Gaussian points, wi and ξi

are the corresponding weight and the position of the ith
Gaussian point, respectively. J = (tn+1 − tn)/2 denotes
the Jacobian and g∗u,s(Xs, ξi) represents the integration
of the velocity from −1 to a fixed position of a Gaussian
point ξi, which can be again evaluated by the Gauss
quadrature as

g∗u,s(Xs, ξi) = J

ξi∫
−1

vs(Xs, ξ) dξ

= J Jξi

GP∑
j=1

wj vs(Xs, ξ
j
i ). (41)

Herein, Jξi = (ξi+1)/2 denotes the Jacobian of the map-
ping from the interval [−1, ξi] to the canonical interval
[−1, +1]. ξj

i is the position of the jth Gaussian point in
the interval [−1, ξi], i. e. ξj

i = Jξi(ξj + 1) − 1. Inserting
Eq. (41) into Eq. (40), we obtain∫
In

gu,s(Xs, t) dt

= J2
GP∑
i=1

wi Jξi

GP∑
j=1

(
wj vs(Xs, ξ

j
i )

) . (42)

Obviously, depending on the order of the temporal ap-
proximation of vs, as long as enough Gauss points are
chosen, Eq. (42) can be evaluated exactly.
Note that (37) represents an exact expression of us, such
that the integral of gu,s is evaluated at the actual time
t. We remark, according to an implicit evaluation of us,
we have

us(Xs, t) = ũs,n(Xs) + gu,s(Xs, tn+1). (43)

Herein, gu,s(Xs, tn+1) represents the integral of velocity
vs(Xs) over the whole time interval In. Thus, gu,s(Xs)

can be evaluated directly by the ansatz of the velocity
vs

gu,s(Xs, tn+1) = J

GP∑
j=1

wj vs(Xs, ξj). (44)

According to the implicit approach, the integration of
gu,s(Xs, t) over the interval In can be expressed in a
similar way∫
In

gu,s(Xs, t) dt =
∫
In

gu,s(Xs, tn+1) dt

= J2
GP∑
i=1

wi

GP∑
j=1

(
wj vs(Xs, ξj)

) .

(45)

It has to be remarked, that the evaluation of Eq. (44)
is formally identical to the evaluation of the primary
variable vs(Xs, t) over the time interval In. Implicit
solutions are achieved by evaluating the displacement
us(Xs, t) at the end of the interval, rf. Eq. (43).
As it is well known, the inherent numerical dissipation
of implicit approaches contributes to the stability of the
overall solution. However, too strong numerical dissipa-
tion also affects the accuracy of the solution. Therefore,
it is natural to introduce a α factor, which enables an
easy control of the integration scheme, such that

us(Xs, t) = ũs,n(Xs) + gα
u,s(Xs, t), (0 ≤ α ≤ 1),

(46)

with

gα
u,s(Xs, t) =



t∫
tn

vs(Xs, τ) d τ, if α = 0, (exact),

tn+1∫
tn

vs(Xs, τ) d τ, if α = 1, (implicit).

(47)

The choice of 0 < α < 1 leads to a method which lies
between the implicit and the exact approach. Further de-
tails concerning the derivation of the stability parameter
α are given in the appendix.
It is obvious that the construction of the deformation
gradient Fs can be directly derived from the solid dis-
placement us. Therefore, analog to Eq. (46), we derive

Fs(Xs, t) = F̃n
s (Xs) + Fα

g(Xs, t), (48)

with

F̃n
s (Xs) = I + Grad ũs,n(Xs), (49)

Fα
g(Xs, t) = I + Gradgα

u,s(Xs, t). (50)
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Analogically, the right Cauchy-Green tensor Cs as well
as the second Piola Kirchhoff tensor of the solid phase
Ss

E (rf. (23)) can be computed correspondingly.
So far we have discussed the temporal integration of the
displacement fields and its related quantities with respect
to a single material point Xs. As long as the complete ap-
proximation of the unknown quantities is available, the
space-time integration can be solved straight forwardly
by evaluating the Gauss quadrature values in the space-
time domain.
In the next section, we proceed with the finite ele-
ment variational form of the space-time discontinuous
Galerkin method. As stated before, the resulting set of
first-order time-dependent equations is solved for the pri-
mary unknowns {vs, Q, θ}. Nevertheless, it has to be
mentioned, that the idea of embedding the displacement
field as the integral of the velocity is independent of the
chosen time-stepping approach. The EVI technique can
be applied to other space-time Galerkin methods as long
as a finite element approximation of the velocity in the
time domain is available, e. g. [25; 45] etc. For a time-
difference scheme, e. g. the Euler method or the New-
mark method etc., since there exists no complete approx-
imation of the velocity field in the time domain3, it is not
possible to apply a consistent integration of the velocity
and displacement fields over the time interval. Thus, the
MOL approaches are not suitable for the application of
the EVI technique.

4 Weak form and Space-time finite element
formulation

In the next, we discuss the weak form used in a space-
time Galerkin formulation. According to the DGT
method, discontinuous approximations in time are ap-
plied. The consistency over the time interval is enforced
weakly by the flux treatment. The upwind flux at discrete
time level tn is defined as [33; 46]

˘[•]n =
{

[•]0, if n = 0,

[•]−n , otherwise,
[•]−n = lim

ǫ→0+
[•](Xs, tn − ǫ),

(51)

where [•] = {vs, Q, θ}.
The weak form of the mass balance is obtained by mul-
tiplying Eq. (17) with a test function δθ and integrating

3 For the finite difference method, only quantities at dis-
crete time level tn are available.

over Qn∫
Qn

{
− nf

Kf
θ δθ′ +

(
1− nf

Kf

θ

Js

)
Div vs δθ

− (F−1
s Q) ·Grad δθ

}
dQ +

∫
Ω0

nf

Kf
θ−n+1 δθ dV

=
∫
Ω0

nf

Kf
θ̆ δ θ dA +

∫
ΓN×In

Q̄ δθ dAdt.

(52)

Herein, we have applied the integration by parts in time
to achieve the terms that act only on the borders tn and
tn+1 of the time interval.
Analogically, by multiplying Eq. (27) with a test function
δvs and subsequently integrating over the time-slab Qn,
we get the weak form of the mass balance of the mixture
as∫
Qn

{
− {[

ρs
0 + (Js − ns

0)ρ
fR

]
vs + ρfRQ

} · δv′s
− ρfR

{J Div vs Q−Grad(vs + J Q) (F−1
s Q)

} · δvs

+ (P− θ F−T
s ) : Gradvs

}
dQ

+
∫
Ω0

{
[ρs

0 + (Js − ns
0)] v−s,n+1 + ρfR Q−

n+1

}
· δvs dV

=
∫
Ω0

{
[ρs

0 + (Js − ns
0)] v̆s + ρfR Q̆

}
· δvs dV

+
∫

ΓN×In

P̄ · δvs dAdt.

(53)

Here, P̄ is the external force acting on the mixture.
The weak form of the momentum balance of the fluid
phase is derived by multiplying (32) with the test func-
tion δQ and in turn integrating over Qn∫
Qn

{
− [Q + (Js − ns

0)vs] · δQ′

−
[
J Div vs Q−Grad(vs + JQ) (F−1

s Q)
]
· δQ

+
Js − ns

0

ρfR

[
Grad

θ

Js
F−1

s +
nfγfR

kf
Q

]
· δQ

}
dQ

+
∫
Ω0

[
Q−

n+1 + (Js − nf)v−s,n+1

]
· δQ dV

=
∫
Ω0

[
Q̆ + (Js − ns

0) v̆s

]
· δQ dV

+
∫

Qn

(Js − ns
0)b · δQ dQ.

(54)
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Note that due to the mathematical character of the gov-
erning set of equations, cf. remarks in [47], quadratic
shape functions are chosen for the spatial approxima-
tions of the solid phase variables vs, while linear ones
are selected for fluid phase unknowns Q and θ.
After solving the set of equations for the primary vari-
ables {vs, Q, θ}, the solid displacement us is computed
subsequently in a post-processing step

us,n+1 = ũs,n + gu,s(x, tn+1). (55)

The deformation gradient Fn+1
s must be updated accord-

ingly

Fn+1
s = I + Gradus,n+1. (56)

In order to solve the set of equations efficiently, the lin-
earization of the weak forms is inevitable. In the current
work, the nonlinear set of equations is solved by a global
Newton-Raphson scheme, which ensures quadratic con-
vergence [40; 48]. In this context, it should be remarked
that the consistent linearization of the EVI method with
respect to the Lagrangian formulation presented in Sect.
2 is much simpler than the respective linearization with
respect to the current configuration.

5 Numerical experiments

Next, we present one- and two-dimensional numerical
experiments calculated by the EVI method. For the rea-
son mentioned before, cf. [47], quadratic trial- and test-
functions in space are chosen for vs and linear ones are
used for Q and θ. Different orders of polynomials in time
for the different primary variables are possible, but not
investigated here. The influence of the stabilization pa-
rameter α is investigated. A detailed convergence study
with respect to a simple model equation was given in
[34]. Therein, the numerical experiment of the simple
elastic wave equation demonstrates a convergence rate of
O(p + 1) for the velocities, and a slightly higher conver-
gence rate for the displacement field if exact integration
is applied for the velocity-displacement relation. Due to
the complexity of the multiphase system, a direct de-
termination of the wave velocity is not available. In the
following examples, the size of the time step is chosen
in such a way that the overall stability of the numerical
solution is guaranteed.

5.1 Porous matrix under step load

In the first example, we perform a one-dimensional con-
solidation test. The geometry and the boundary con-
ditions of the specimen are shown in Fig. 1. The soil
tube is saturated by a fluid with the compressibility
Kf = 1.0 × 109 Pa, i. e. water. The effective density
of the solid is ρsR = 2000 kg/m3, and the initial effective

p̄ = 0

p̄ = 0

H
0

=
1

m

P̄

solid phase ϕs

fluid phase ϕf

Fig. 1 Geometry of a one-dimensional column and the spa-
tial discretization.

density of the fluid is ρfR
0 = 1000 kg/m3. Both Lamé

constants of the solid skeleton are λ = 8375 kPa and
µ = 5583 kPa. The initial porosity of the specimen is
nf

0 = 0.33 and the Darcy permeability is kf = 10−4 m/s.
For the problem at hand, due to the fact that the fluid
compressibility is much larger than the structural com-
pressibility of the solid skeleton, the solid and the fluid
constituents can be considered to be materially incom-
pressible. A compression of the mixture is only possible
due to a fluid flux moving relative to the deforming skele-
ton.
At first, a step load P̄(t) = 3 kPa is applied to the
drained upper surface. Here, the deformation of the solid
skeleton is within the linear regime, whereas the analyt-
ical settlement for the steady state, i. e. t → ∞ can be
directly achieved via, cf. [17].

∆H =
P̄(t)H0

Mc
, and Mc = λ + 2 µ, (57)

in which Mc is known as the constrained modulus of the
solid skeleton. Fig. 2 show the numerical results com-
puted via the exact EVI (α = 0) method with different
temporal discretizations ∆t. We observe that even if the
displacement fields of both computations, ∆t = 0.01 s
and ∆t = 0.001 s, converge asymptotically to the ana-
lytical settlement, in the diagram of the corresponding
velocities, strong oscillations are observed in both ex-
periments, i. e. ∆t = 0.01 s and ∆t = 0.001 s. These
unphysical oscillations diminish with the pass of time.
We denote that a even larger time step, i. e. ∆t = 0.1 s,
leads to an unstable solution. such that the spurious os-
cillation becomes dominant.
We remark that these spurious oscillations are closely re-
lated to the physical characteristic of the consolidation
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Fig. 2 Solid displacement (left) and solid velocity (right) at the top of the specimen computed by the EVI (α = 0) method.
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Fig. 4 Solid displacement (left) computed by the EVI(0) method at finite deformation and small deformation cases and
velocity (right) at finite deformation.

process. Due to the drained condition p̄ = 0 on the upper
boundary of the sample, the consolidation process begins
with a extremely steep gradient in the pore pressure field
close to this drained boundary, which results in steep in-
creasement in the both velocity fields, i. e. solid velocity
vs and seepage velocity wf. Thus, an insufficient spatial
mesh resolution in the vicinity of the drained bound-
ary leads to spurious oscillation in the numerical results.
Furthermore, depending on the accuracy of the time-
stepping method, these unphysical oscillations may prop-

agate in time and pollute the complete computational
domain. Such phenomena is analogical to the boundary-
layer effect occurring in convection-dominated flow prob-
lems, whereby very fine discretization in the vicinity of
the boundary-layer must be used in order to avoid these
unphysical oscillations, cf. [49; 50; 51; 52]. However, it is
usually known as numerical inefficient to refine the mesh
discretization only to eliminate the spurious oscillations
in the boundary-layer, such that various stabilization
approaches have been developed. Among others, there
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are the streamline upwind Petrov Galerkin (SUPG)[53],
Galerkin Least Square methods (GLS) [54; 55], etc.
Next, we compute the same problem by the stabilized
EVI method with α > 0. Here, by use of the stabilized
integration scheme, we are able to compute the prob-
lem with a larger time step length ∆t = 0.1 s. Fig. 3
shows the settlement and the solid velocity at the top
of the specimen obtained with α = 0.1, 0.3, 0.5. Despite
different choices of the α parameter, there is no signif-
icant difference in the displacement diagram, see Fig. 3
(left). However, difference arises in the solid velocity di-
agram, Fig. 3 (right). Here, different α values lead to
different damping characteristics of the solution. Obvi-
ously, increasing the value of α, we increase the amount
of the numerical dissipation in the numerical scheme,
which further contributes to eliminating the discontinu-
ities, i. e. jumps in the solution.
Next, in order to exam the response in the finite deforma-
tion range, we increase the external load to P̄ = 5 MPa.
Fig. 4 (left) shows the surface displacement of the con-
solidation obtained by the finite deformation and by the
small deformation model (linear model). Obviously, the
finite deformation model predicts a much smaller defor-
mation state than the linear model. As for the finite de-
formation case, solutions computed by EVI(α = 0) and
EVI(α = 0.1) with ∆t = 0.1 s at finite deformations
are depicted. As a reference, we plot the solution com-
puted by the EVI(0) with a finer temporal discretization
∆t = 0.01 s in the same figure, i. e. Fig. 4. It is observed
that the solution of the stabilized EVI with α = 0.1 co-
incides with the reference solution even better than that
of the exact EVI method (α = 0). Fig. 4 (right) shows
the diagrams of the solid velocity obtained by the ex-
act EVI(0) and stabilized EVI(0.1) with ∆t = 0.1 s. We
observe that there are strong oscillations in the EVI(0)
solution, while the EVI(α = 0.1) leads to more smooth
solution. It is seen that even with a very small α fac-
tor, the stability of the overall solution can be enhanced
significantly. In this case, the accuracy of the solution is
improved by a stabilized approach.

5.2 Porous matrix under partial compression

Next, we consider a two-dimensional dynamic consoli-
dation problem that has been investigated in various
publications in the past, cf. [33; 13; 17]. An instanta-
neous load P̄ = 15 kPa is applied to the right half
of the upper surface of a soil block, see Fig. 5. The
sample has the physical dimensions of 10 × 10 m2. The
side walls and the bottom of the specimen are assumed
to be rigid and undrained. The spatial domain is cov-
ered by a coarse mesh of 10 × 10 grids. The solid ma-
trix is saturated by a nearly incompressible fluid with
Kf = 22 GPa. The Lamé parameters of the porous ma-
trix are λ = 8.27 GPa, µ = 5.6 GPa. The density of the
solid is ρsR = 2700 kg/m3 and the initial density of the

p = 0
P̄

A

solid phase ϕs

fluid phase ϕf

P̄ [kN/m2]

0

t

15

Fig. 5 Geometry and boundary conditions of the porous
matrix as well as the spatial discretization and the external
load

fluid is ρfR
0 = 1000 kg/m3. The initial porosity of the

solid matrix is nf
0 = 0.42. In the present example, the

quality of a local result is considered, i. e. the vertical
component of the solid displacement us and the solid
velocity vs at point A, see Fig. 5.
Fig. 6 shows results computed by the exact EVI(α = 0)
method with linear polynomials in time. The solution
is compared with the ones calculated by the three-stage
implicit Runge-Kutta Method (Cash3(2))[56; 57] which
is a second-order method. In Fig. 6, as for the coarse
temporal discretization ∆t = 0.1 s and ∆t = 0.05 s,
the EVI (α = 0) leads to slightly better results than
those obtained by the Cash3(2), in that less numeri-
cal damping in the amplitude is resulted. As for the
fine discretization ∆t = 0.01 s, both methods produce
similar results. We denote that further refinements in
∆t has also been tested but do not produce visible
improvement in the plotted scale. It has to be men-
tioned, that the Cash3(2) approach is only suitable for
the first-order time-dependent problem. Therefore, it re-
quires the four-fields formulation with the primary vari-
ables {us,vs, Q, θ}. The total number of Degree of Free-
doms (DOFs) sums up to 1727 per time step. However,
by embedding the kinematic relation implicitly, the EVI
method is suitable for a three-field formulation with the
EVI method. Despite the extra unknowns in the time
domain introduced by the discontinuous approximation
in time, the total DOFs of the EVI approach turns out
to be 2090. Moreover, since there are several internal
calculation stages involved in the Cash3(2) scheme, we
found out that with the same spatial and temporal dis-
cretizations, the computation time of the Cash3(2) is
even slightly longer than the EVI approach.
Next, we compare the numerical effort of the EVI(α)
method with the Time-Discontinuous Galerkin method
(DGT) [33]. Same as the Cash3(2) scheme, the DGT
approach can only handle first-order equations, such
that a four-field formulation with the primary unknowns
{us,vs, Q, θ} is applied. For the current discretization,
i. e. 10×10 elements, and linear polynomials in time, the
DGT formulation leads to 3454 DOFs per time slab (the
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solid phase variables us and vs are solved with quadratic
polynomials in space while linear polynomials for the
fluid phase variables Q and θ are employed). Fig. 7 shows
the numerical solutions of the solid displacement and the
velocity obtained by the DGT and by the exact EVI(0)
method. In the results obtained with a coarse temporal
discretization ∆t = 0.1 s, obvious jumps are observed in
the primary unknowns. Note that for the DGT method,
both the solid displacement us and its velocity vs are
solved as primary variable, while for the EVI(0) method,
only the solid velocity vs is solved as primary unknown.
Moreover, by use of the EVI method, since the displace-
ment field is computed as integral of the velocity, its
distribution is always continuous and smooth. In these
diagrams, only the results at discrete time levels tn are
plotted. No interpolation concerning the integration of
velocities in between the time levels tn and tn+1 is con-
cerned. With a refined time step size ∆t = 0.01 s, both
methods lead to similar results. No obvious jumps are
observed on the plot scale. Moreover, we denote that the
jumps shown in the numerical solutions can serve as an
easy and reliable error indicator for an adaptive strategy
[33].
In Fig. 8 we depict those results obtained by the exact
EVI(α = 0) method with linear (p = 1) and quadratic
(p = 2) polynomials in time. The size of the time step
is fixed as ∆t = 0.1 s. Again, as for the displacement,
only the results at discrete time levels tn are plotted,
no interpolation within the time intervals is applied.
Here, the advantage of the proposed space-time Galerkin
method is highlighted. Increasing the polynomial order
(p-refinement in time) or decreasing the size of the time-
slab (h-refinement) leads to more accurate numerical so-

lutions. Obviously, choosing quadratic polynomials in
time results in a larger algebraic system of equations
(3135 DOFs per time-slab) than those of linear polyno-
mials in time (2090 DOFs per time-slab). However the
extra effort caused by employing higher order polynomi-
als in time can be compensated by allowing for a larger
time step length without degenerate the accuracy of the
solution.
At last, we investigate the influence of the stabiliza-
tion parameter α. Fig. 9 shows the results computed
by EVI(α) method with different values of the stabi-
lization parameter α. Hereby, the spatial and temporal
discretizations are kept fixed (10× 10 elements in space
and ∆t = 0.01 s). To compare the effect of numerical
damping, the solution calculated by the backward Eu-
ler scheme is depicted in the same figure. Comparing
both implicit methods, the implicit EVI(1) method and
the backward Euler scheme, the implicit EVI(α) method
leads to even more accurate numerical results. Moreover,
the choice of α = 0.5 implies less numerical damping
than the fully implicit approach (α = 1), leading to less
damped solution. According to this example, depending
on the characteristics of the solution, the best results are
achieved by the exact EVI(0) method. Nevertheless, ac-
cording to the given numerical results, it is shown that
the stabilization parameter α can serve as an effective
quantity to adjust the effect of numerical damping in the
EVI(α) method. Obviously, this property is essential for
the applicability of the numerical approach in realistic
applications.
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Fig. 11 Numerical solutions at the control point obtained for the sample A, B and C.

5.3 Two-dimensional impaction test on polyethylene
foam

In the last example, we investigate impaction tests on
air-filled polyethylene foams. The polyethylene foam is
usually used as cushioning material in the crash test.
A through understanding of the mechanical behavior of
polyethylene foam under impact loading is important for
the realistic design in practice. The effective density of
the solid matrix is ρsR = 910 kg/m3, with the both Lamé
constants λ = 375 MPa, µ = 187.5 MPa. The initial
porosity of the foam is 0.95 and the Darcy permeabil-
ity is kf = 6.722 · 10−4 m/s, cf. [58]. The initial den-
sity of air is ρfR

0 = 1.21 kg/m3, with the compressibility
Kf = 0.133 MPa. In order to simulate more realistic ex-
periments, a rigid impervious plate with the line density
m̃ is sticked to the foam, see Fig. 10. The rheological
model of the current experiments can be considered as a
nonlinear mass-spring-damper system. The deformation
of the foam is modeled by the compressible Neo-Hooke
material law [21; 22] together with the compressible air,
while the energy dissipation is caused by the interac-
tion force between the two phases. Moreover, in order
to study the influence of the geometry of the specimen
to the response of the transient load, we perform tests
on samples of size 400 × 100 mm2, 200 × 100 mm2 and
100×100 mm2 subsequently. By cutting the sample into
small pieces, we increase the permeable surface of the

sample with respect to the volume, which further influ-
ence the mechanical response of the sample. During the
experiments, the bottom of the samples are undrained,
while both side walls are assumed to be perfectly drained.
A constant load P̄ = 0.1 GPa is applied to the rigid plate
of a line density m̃ = 7000 kg/m. For the sake of simplic-
ity, we don’t consider the influence of the gravity force.
We perform the numerical experiments with an uniform
element size of 0.01 × 0.0125 × 0.0002 [m2 s] in the
space-time domain. Here, due to the fact that the ma-
trix is highly compressible, according to the chosen dis-
cretization, no extra stability enforcement is necessary,
such that we perform the computation with the exact
EVI(α = 0) method. Furthermore, in order to reduce
the size of the algebraic system, linear approximations
in time are employed. Fig. 11 shows the development of
solid displacements, solid velocity and pore pressure at
the control point, see Fig. 10. It is observed that the
amplitude in the solid phase variables (solid displace-
ment and solid velocity) decreases with increase of the
width of the sample. i. e. the amplitude of sample A is
the largest, and that sample C is the smallest. In con-
tract to the solid phase, in the fluid phase variable, i. e.
pore pressure, we observe the complete inverse effect,
such that the maximum pressure occurs in the largest
sample, i. e. sample A, and the highest pressure of the
sample B is greater than that of the sample C. Obvi-
ously, by increasing the width of the sample, we increase
the length of the path way of the air flow to the per-
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Fig. 10 Geometry and boundary conditions of sample A, B
and C.

meable surface, which further results in a faster pore
pressure development in the sample. As a consequence,
the transient stiffness of the larger sample is greater than
the smaller one, cf. [42]. In the present investigation, the
evolution of the permeability depending on the porosity
development, which is beyond the scope of this work, is
not taken into account. Furthermore, within the short
period of observation time, the decrease in the ampli-
tude of the oscillations, as a consequence of the energy
dissipation due to the interaction forces between the two
phases, is not observed.

6 Conclusion

In the present work we investigate a three-fields formu-
lation for the dynamics of multi-phase material at finite
strains. The deformation of the solid skeleton is described
by the modified Neo-Hooke material law [21]. The dy-
namical response of the porous material is modeled by
the so-called EVI method introduced in [34]. The result-
ing three-fields equation system is solved on a coupled
space-time finite element mesh with a Time Discontinu-
ous Galerkin method (DGT), cf. [33]. The interelement
consistency between the time-slabs is enforced weakly by
an upwind flux treatment. Moreover, by introduction of
the α parameter, we are able to control the numerical
dissipation inherent to the EVI scheme, which further
contribute to the stability of the overall solution. The
feasibility of a stable Galerkin approach in the temporal
domain is demonstrated by both p- and h-refinements.
Furthermore, the efficiency of space-time Galerkin meth-
ods for coupled problems can be increased by adaptive
strategies based on space-time error indicators. Obvi-

ously, such techniques have to be developed in the fu-
ture.

Appendix

Without loss of generality, we consider a prototype equa-
tion like∫
Qn

us ·δvs dQ =
∫

Qn

gα
u,s ·δvsdQ+∆t

∫
Ω

ũs,n ·δvs dv. (58)

Herein, we made use of the relation (46) and took into
account that the value of ũs,n was known with respect
to the current interval In. Next, for the sake of a sim-
ple notation, we consider Eq. (58) for spatially constant
quantities. Therefore, only the temporal integration is
investigated∫
In

us · δvs dt =
∫
In

gα
u,s · δvs dt + ∆t ũs,n · δvs. (59)

According to the standard Gauss quadrature, the inte-
gral over In can be carried out as∫
In

gα
u,s · δvs dt = J

GP∑
i=1

wi g∗,αu,s(ξi) · δvs(ξi), (60)

where GP denotes the number of Gaussian points, wi

is the weight and ξi is the position of the correspond-
ing ith Gaussian point. J represents the Jacobian of the
mapping from the time interval [tn, tn+1] to the canoni-
cal interval [−1, +1]. Note that by employing the Gauss
quadrature rule, only a discrete value of g∗,αu,s(ξi) regard-
ing the individual Gaussian point ξi is considered

g∗,αu,s(ξi) = J

ξα
i∫

−1

vs(ξ) dξ, (1 ≤ α ≤ 0). (61)

We denote, as for an exact integration scheme (α = 0),
there exists ξα

i = ξi, which is the position of ith Gaus-
sian point, while for an implicit scheme, we have ξα

i = 1,
which is independent of the positions of the individual
Gaussian points. Fig. 12 examplarily shows the exact
and implicit integration scheme with a linear polyno-
mial evaluated with one Gaussian point. It is obvious to
see that the difference between an implicit and an exact
integration of g∗,αu,s lies alone in the integration domain.
With α = 1 (implicit), the integration interval of g∗,αu,s

covers the whole canonical interval [−1, +1], while with
α = 0 only the integration from the lower bound of the
canonical interval −1 to the current position of the Gaus-
sian point ξi is involved. Taking the linear mapping, we
further derive ξα

i = α(1 − ξi) + ξi, see Fig. 12.
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−1−1 −1 +1+1 +1 ξ1ξ1 ξ1

g
∗,0
u,s

g
∗,α
u,s g

∗,1
u,s

α = 0 0 < α < 1 α = 1

Fig. 12 Evaluation of g1
u,s , g0

u,s and gα
u,s (0 < α < 1) with

one Gaussian point example. ξ1 is the position of Gaussian
point.

Next, applying the Gauss quadrature rule for the evalu-
ation of Eq. (61), we get rf. [34]

g∗,αu,s(ξi) = J Jα
i

GP∑
j=1

wjvs(αξj
i ), (62)

in which Jα
i = (α(1 − ξi) + ξi + 1)/2. αξj

i denotes the
new position of the jth Gaussian point on the interval
[−1, α(1− ξi) + ξi], i. e. αξj

i = Jα
i (ξj + 1)− 1.

Consequently, inserting Eq. (62) into Eq. (60), we get∫
In

gα
u,s · δvs dt

= J2
GP∑
i=1

[
wiJ

α
i

GP∑
j=1

(
wjvs(αξj

i )
)
· δvs(ξi)

]
. (63)

Furthermore, we define the shape function vs and the
test function δvs as

vs(ξ) =
p+1∑
l=1

Nl(ξ)v̂l, δvs(ξ) =
p+1∑
k=1

Nk(ξ) δv̂k, (64)

in which Nl denotes the polynomial of the highest or-
der p. v̂l represents the nodal value of the velocities and
δv̂l are the corresponding test values. Thus, the velocity
vs(αξj

i ), cf. Eq. (63), can be expressed as

vs(αξj
i ) =

p+1∑
l=1

Nl(αξj
i ) v̂l. (65)

We observe that as long as the type of shape function
Nl and the number of Gaussian points GP as well as the
stabilization parameter α are fixed, the quantity Nl(αξj

i )
can be determined uniquely. From Eq. (65) we observe
that Nl(αξj

i ) is independent of the nodal solution v̂l.
Moreover, a new type of polynomial depending on the
order of shape function and the integration scheme can
be introduced as

N
ξα

i

l = J Jα
i

GP∑
j=1

wj Nl(αξi
j). (66)

Note that the N
ξα

i

l is only given at the chosen Gaussian
points. Inserting Eq. (66) into Eq. (63) and taking into
account the communication property of summations, we
further obtain∫
In

gα
u,s · δvs dt

= J

GP∑
i=1

[
wi

( p+1∑
l=1

N
ξα

i

l v̂l

) · ( p+1∑
k=1

Nk(ξi) δv̂k

)]
. (67)

We denote that this expression is identical to a conven-
tional finite element approximation except for the ap-
proximation function N

ξα
i

l . N
ξα

i

l is an integral of the ap-
proximation function Nl, cf. Eq. (66) at the Gaussian
point ξi. However, we note that N

ξα
i

l is independent of
the nodal solution v̂l. This property simplifies the com-
putation dramatically, since as long as the approximation
function Nl and the integration Gaussian points ξi are
chosen, the computation of N

ξα
i

l needs only to be carried
out once.
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des Tones aus dem Verlauf der hydromechanis-
chen Spannungserscheinungen, Sitzungsberichte der
Akademie der Wissenschaften in Wien, mathematisch-
naturwissenschaftliche Klasse 132 (1923) 125–138.

2. M. A. Biot, General theory of three-dimensional consol-
idation, J. Appl. Phys. 12 (1941) 155–164.

3. M. A. Biot, Theory of propagation of elastic waves in a
fluid-saturated porous solid. I. Low-frequency range, J.
Acoust. Soc. Am. 29 (1956) 168–178.

4. M. A. Biot, Theory of propagation of elastic waves in a
fluid-saturated porous solid. II. Higher frequency range,
J. Acoust. Soc. Am. 29 (1956) 179–191.

5. M. A. Biot, Mechanics of deformation and acoustic prop-
agation in porous media, J. Appl. Phys. 33 (1962) 1482–
1498.

6. C. A. Truesdell, R. Toupin, The classical field theories,
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Abstract. A space-time discontinuous Galerkin finite element method is proposed
and applied to a convection-dominant single-phase flow problem in porous media.
The numerical scheme is based on a coupled space-time finite element discretization
allowing for discontinuous approximations in space and in time. The continuities on
the element interfaces are weakly enforced by the flux treatments, so that no extra
penalty factor has to been determined. The resulting space-time formulation pos-
sesses the advantage of capturing the steep concentration front with sharp gradients
efficiently. The stability and reliability of the proposed approach is demonstrated by
numerical experiments.

Keywords: discontinuous Galerkin methods, convection-dominant flow, porous
media

1. Introduction

The objective of this paper is to study an efficient numerical method
for the simulation of miscible flow in porous media. The numerical
investigation of such problems can be dated back to [1, 2, 3]. However,
the traditional approaches such as finite difference, finite volume and
continuous finite element methods usually fail to capture the steep
concentration fronts in heterogeneous porous materials. Since the last
decade, more and more attention has been focused on the use of the
spatial discontinuous Galerkin (DGS) methods to model convection-
dominant flows in porous media, [4, 5, 6, 7]. The advantage of using such
DGS approaches lies in the fact that these methods are locally mass
conservative and that they are able to capture the steep concentration
front without extreme refinement in the discretization. Among the va-
riety of different DGS formulations, there are some most popular ones,
such as the Oden-Baumann-Babuska (OBB) scheme [8], the Nonsym-
metric Interior Penalty Galerkin method (NIPG) [9], the Symmetric
Interior Penalty Galerkin method (SIPG) [10, 11] and the Incomplete

∗ The author is grateful to the DFG (German Science Foundation - Deutsche
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Interior Penalty Galerkin method (IIPG) [12, 13]. We mention that
except the OBB formulation, the other three can be classified to the
penalty method with a penalty factor σ. However, with a proper choice
of the penalty factor, all the four formulations lead to very similar
numerical results [4, 14].
With respect to the dynamic modeling, it is common to solve the
time-dependent problem, e. g. transport phenomena, in a semi-discrete
manner, i. e. by means of the Method of Lines (MOL), such that the
governing set of Partial Differential Equations (PDE) is first evaluated
in space according to a finite element discretization to produce an
Ordinary Differential Equation system (ODE) in time, which can be
in turn solved by a time difference approach, e. g. the Euler method,
the Newmark method, etc. However, these time-stepping schemes are
often known as low efficient suffering from strong numerical dissipation
and dispersion [15, 16]. Besides the time difference approaches, studies
of using finite element method in time can be dated back to 1960s,
[17, 18, 19]. Using finite element discontinuous approximation in time
was first proposed by Hughes & Hulbert [20]. Therein, they proposed a
decoupled space-time Galerkin method, in which a continuous Galerkin
approximation is applied in space to produce an ODE system, which
is in turn evaluated by a discontinuous Galerkin method in time, cf.
[21, 22, 23]. This method is also known as semi-discrete approach, in
that the spatial and temporal integrations are evaluated subsequently.
In the previous work of the authors, we investigate a space-time cou-
pled discontinuous Galerkin formulation. By use of finite element shape
function consisting of tensor products of polynomials in space and in
time, we are able to evaluate the spatial and temporal integration simul-
taneously. As the finite element approximation is continuous in space
but discontinuous in time, the method is called Time-discontinuous
Galerkin method (DGT) [24]. In contrast to decoupled methods, i. e.
semi-discrete methods, a coupled formulation has advantage in less
numerical dispersion and dissipation. Moreover, it is easy to develop a
simple efficient space-time discretization scheme based on the coupled
formulation. Higher order methods can be achieved straight forwardly
by employing higher order polynomials in space and in time.
In the current work, we combined the DGT approach in time with
the OBB formulation [25] in space to construct a coupled numerical
formulation that is neither continuous in space nor in time. We remark
that as the treatment of enforcing the continuity in time and in space
are decoupled, such a combination of the DGT with the DGS approach
is generally allowed. In addition, other popular DGS formulations, i. e.
NIPG, SIPG and IIPG, combined with the DGT method in time have
also been tested. It has to be mentioned, with the proper choice of
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the penalty factor, no significant difference has been observed in the
numerical solutions.
The structure of the current work is as follows, in the next section,
we discuss briefly about the modeling aspect of the miscible flow
through porous materials. After that, a coupled space-time discontinu-
ous Galerkin (DGST) formulation for the solution of model equations
is proposed. In the next section, some numerical experiments are per-
formed in order to demonstrate the behavior of the new space-time
coupled scheme. We close our discussion with a short conclusion.

2. Physical modeling

The physical model describes the procedure of a liquid mixture through
a rigid porous skeleton with a constant porosity φ(x, t). The liquid
mixture ϕl consists of a resident fluid ϕf and a solvent fluid ϕa, i. e.
ϕl = ϕf ∪ ϕa. The partial density of the liquid mixture ρ is given by
ρ = ρa +ρf, in which ρa and ρf are the partial density of the solvent and
the resident fluid, respectively. The mass-specific concentration c of the
solvent is defined as c := ρa/ρ. For the sake of simplicity, we assume that
the density ρ of the liquid mixture is a constant. Next, we introduce the
barotropic velocity of the liquid mixture as v = (ρfvf+ρava)/ρ, in which
vf and va represent the velocity of the resident and the solvent fluid,
respectively. Note that this barotropic velocity can be further related to
the filter velocity or Darcy’s velocity q through q := φv. The diffusion
velocity da is introduced as da = va − v.
Taken into consideration that the porous skeleton is rigid, the field
equations of the system can be obtained by evaluating the continuity
equation and the momentum balance of the liquid mixture ϕl, as well
as the mass balance of the solvent fluid ϕa as

divv = 0, (1)
ρal − divTl = p̂l + ρb, (2)

φρ ∂t(c) + div(ja + φ c ρv) = 0. (3)

In eq. (2), Tl denotes the Cauchy stress tensor, ρb is the volume force
and al is the acceleration of the liquid mixture. p̂l represents the
momentum exchange between the liquid mixture ϕl and solid phase
ϕs. The stress tensor of the liquid mixture can be further written as
Tl = −φp I + Tl

E. An order-of-magnitude analysis [26, 27] shows that
for standard conditions of liquid-flow in porous media, the so-called ex-
tra stress Tl

E of the liquid is of higher order, which is not counted here.
The momentum exchange p̂l can be expressed as the sum of an equilib-
rium part p̂l

eq and a non-equilibrium part p̂l
neq, i. e. p̂l = p̂l

eq + p̂l
neq, cf.
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[28]. Usually, the equilibrium part p̂eq is proportional to the gradient
of the porosity φ and the pore pressure p, i. e. p̂l

eq = p gradφ, while
the non-equilibrium part p̂neq is an isotropic vector-valued function of
the non-equilibrium process variable v. In the simplest case, it is a
linear function of v, i. e. p̂l

neq = −[(φ2 µl)/ks]v, in which µl and ks are
the dynamic viscosity of the liquid mixture and the so-called intrinsic
permeability, respectively. Generally, the dynamic viscosity of the liquid
mixture µl is a function of the concentration c, i. e. µ = µl(c). Since
the liquid acceleration al is mostly very small, it is common to neglect
this term, i. e. al = 0 in eq. (2). Thus, eq. (2) boils down to Darcy’s
equation

q =
ks

µl
grad p. (4)

In eq. (3), the diffusion flux ja can be modeled by the Fick’s law given by
ja = −D·grad ρa, in which D denotes the second-order diffusion tensor.
Note that in the current work, we do not consider mass exchanges, e. g.
chemical reactions between the solvent and the resident fluid. Insert-
ing the Fick’s law into eq. (3) and eq. (4) into the continuity equation
eq. (1), we obtain the set of field equations on the spatial domain Ω ∈ R2

over the time I = [t0, T ] as

φ∂t(c) + div(cq−D grad c) = 0, in Ω× I, (5)

div
[
ks

µl
grad p

]
= 0 ≡ divq, in Ω× I. (6)

The boundary ∂Ω consists of non-overlapping Dirichlet part Γa/l
D and

the Neumann part Γa/l
N of the liquid mixture ϕl and the solvent fluid

ϕa, respectively, i. e. ∂Ω = Γl/a
D ∪Γl/a

N and Γl/a
D ∩Γl/a

N = ∅. The boundary
conditions are given for the pressure p and for the concentration c as

p = p̄ on Γl
D × I,

c = c̄ on Γa
D × I,

q · n = q̄ on Γl
N × I,

(cq−D · grad c) · n = cin on Γa
N × I,

(7)

in which p̄ and c̄ are the pressure and concentration prescribed on the
Dirichlet boundaries. The inflow flux of the liquid mixture is denoted
by q̄. cin represents the concentration of the inflow fluid.
The associated initial conditions at t = 0 are given for the fluid pressure
p and the concentration c as

p = p0 at Ω× t0, and c = c0 at Ω× t0. (8)
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Figure 1. A finite element patch of four quadrilaterals Eh = {E1 ∼ E4} with the
boundaries Kh = {e1 ∼ e12}, among which {e9 ∼ e12} are interior edges.

3. Finite element weak form

In the current work, we investigate a coupled space-time discontinuous
Galerkin method (DGST) for the solution strategy of single-phase flow
problems. The space-time domain Q is constructed by adding the time
axis orthogonal to the spatial domain Ω, i. e. Q = Ω×I. The temporal
domain I is discretized into a sequence of time intervals In = [tn, tn+1),
with tn < tn+1. As a consequence, we introduce the discrete space-time
slab as Qn = Ω × In, rf. [24]. Let Eh = {E1, E2, . . . , ENE

} be subdi-
visions of the discrete spatial domain Ωh ∈ Ω consisting of triangles
or quadrilaterals. The edges of each subdivision Ei are denoted by ∂Ei

(i < NE). Kh = {e1, e2, . . . , eNK
} represents the union of all edges in Eh.

Furthermore, nk
i represents the the outward normal vector on ∂Ei that

coincides with the edge ek and ni stands for the union of all outward
normal vectors on ∂Ei. Figure 1 shows examplarily one of such a finite
element patch with four quadrilaterals.
Moreover, according to the direction of the flows over the edges, we can
further divide the edge Kh into an inflow part K−h and an outflow part
K+

h ,

K−h = {x ∈ (ek ∩ ∂Ei) : (q̃h(x) · nk
i (x)) > 0}, K+

h = Kh \ K−h . (9)

Note that due to a discontinuous approximation of the pressure ph, dif-
ferent values of the filter velocities qDG

h = (ks/µl) grad ph are evaluated
from both sides of the edge. In eq. (9), q̃h stands for the continuous pro-
jection of the filter velocity qDG

h on the edge. More details concerning
the projection approach will be mentioned later. We denote the normal
vector as nk

j =
∑
d

(nd ed), (d = 1, 2), in which ed represents the basis
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vector. The operator {nk
j } is defined as {nk

j } =
∑
d

(nd ed·ed), (d = 1, 2).

The vector nk
i is considered as positive if {nk

i } > 0. According to the
direction of the positive normal vector, we can uniquely define the jump
on this edge. Assume that ek is the interior edge shared by the two finite
elements Ei and Ej , i. e. ek = ∂Ei ∩ ∂Ej . For {nk

i } > 0, we define the
jump of a function ψ as

[[ψ(x, t) ]]ek
= ψj(x, t)− ψi(x, t), x ∈ ek, {nk

i } > 0, (10)

where ψl = {ψ(x, t) : x ∈ (ek ∩ ∂El)}. The jumps may be defined for
the concentration and the pressure, i. e. ψ ∈ {c, p}. Analogically, the
average of a vector Ψ on the boundary ek is given by

〈Ψ(x, t) · n〉|ek
= 1

2

(
Ψi(x, t) · nk

i + Ψj(x, t) · nk
i

)
, {nk

i } > 0, (11)

with Ψl(x, t) = {Ψ(x, t) : x ∈ (ek ∩ ∂El)}. This operation is required
for the flux terms, i. e. Ψ = {(D · grad c), (ks/µl) grad p}. In addition,
according to the direction of the flow, the spatial upwind flux ψin on
the edge ek is given by

ψin(x, t)|ek
=

{
ψi(x, t), if (q̃ · nk

i ) > 0,
ψj(x, t), otherwise. (12)

Obviously, if inconsistent values of ψ occur on the interior edges, the
flux ψin on the edge ek equals the value on the inflow part ek ∈ K−h . In
Figure 2a, we depict examplarily the spatial upwind flux ψin on a finite
element patch of four quadrilaterals. We remark that, due to the intro-
duction of the flux treatment on the boundaries, the Dirichlet boundary
conditions are assigned as inflow flux rather than strict assignments,
i. e. Γl/a

D ∈ K−h , cf. [29].
Analog to the spatial upwind flux definition, we define the temporal
upwind flux ψ̆n at time tn as, cf. [24, 30]

ψ̆n(x) =
{
ψ0(x), if n = 0
ψ−(x, tn), otherwise, (13)

with
ψ−(x, tn) = lim

ε→0+
ψ(x, tn − ǫ), (14)

where ε is an infinitely small positive number. The temporal upwind
definition ψ̆n implies that the value of ψ at the discrete time level tn
equals its immediate previous value ψ−(tn). For n > 0, the immediate
previous value ψ−(tn) results from the previous computation on the
time-slab Qn−1 at time tn, while for the initial step n = 0, ψ̆0 stands
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b. upwind flux ψ̆(tn) in time

Figure 2. Upwind fluxes in space and in time

for the initial condition, see Figure 2b. Obviously, such a definition
fulfills the causality condition that the information travels “from the
past to the future”. Moreover, we denote that the algebraic solution
schemes on each time-slab are decoupled, so that ψ̆n serves as the
initial condition for the current time-slab Qn. Such a sequential solution
scheme is favorable as it avoids huge algebraic system consisting of the
total number of Degree of Freedoms (DOFs) on the space-time domain
Q. Nevertheless, adopting larger time step sizes without degenerating
numerical accuracy can be easily achieved by employing higher order
polynomials in time. A further discussion of the temporal upwind flux
technique can be found in [24, 30].
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Figure 3. Approximation of a 1-dim spatial problem with the DGST formulation

Let W be the finite dimensional functional space consisting of tensor
products in space and in time. W consists of discontinuous piecewise
polynomials over the subdomains Ej and the time intervals In. Fig-
ure 3 examplarily shows a one-dimensional spatial problem with four
finite elements in space and three time-slabs in the temporal domain.
Herein, linear polynomials in space and in time are employed. Noting
that since the flux treatments in space and in time are decoupled,
we construct the finite element weak form by combining the spatial
discontinuous Galerkin scheme with the time-discontinuous Galerkin
scheme [24] independently. In the current work, we construct the spatial
discretization of the pressure equation (eq. (6)) with the OBB scheme
[31], while the concentration equation (eq. (5)) is formulated either by
the OBB scheme, the NIPG scheme [9], the SIPG scheme [10, 11] or
the IIPG scheme [12, 13]. It has to been mentioned, all these four
spatial formulations are very similar, which can be identified by a pair
of parameters ǫ and σ (cf. [4]). The resulting space-time finite element
problem can be formulated as follows:
Find uh = [ch, ph]T ∈ W, such that ∀δuh = [δch, δph]T ∈ W there
exists

B(uh, δuh) = L(δuh). (15)

paper.tex; 6/05/2008; 11:27; p.8



A space-time Galerkin method for single-phase problem 9

The discrete bilinear form B(uh, δuh) and the linear form L(uh) are
given as

B(uh, δuh)

=
NE∑
j=1

{ ∫
Ej×In

{ − φ ch ∂tδch +
ks

µl
grad ph · grad δph

+D grad ch · grad δch − ch(qh · grad δch)} dv dt

+
∫

(∂Ej\Γa
D

)×In

(q̃h · nj) cinh δch dadt+
∫
Ej

φ c−h,n+1 δch dv
}

+
Pe∑

k=1

{ ∫
ek×In

{〈k
s

µl
grad δph · n〉[[ ph ]]− 〈k

s

µl
grad ph · n〉[[ δph ]]

+ǫ 〈D grad δch · n〉[[ ch ]]− 〈D grad ch · n〉[[ δch ]]

+σ [[ ch]] [[δch]]} dadt
}

+
∑

ek∈Γl
D

{ ∫
ek×In

{(k
s

µl
grad δph · n) ph − (

ks

µl
grad ph · n) δph } dadt

}
+

∑
ek∈Γa

D

{ ∫
ek×In

{ǫ (D grad δch · n) ch − (D grad ch · n) δch

+σ ch δch} dadt
}
,

(16)

L(δuh) =
∑

ek∈Γl
D

{ ∫
ek×In

{(k
s

µl
grad δph · n) p̄} dadt

}
+

∑
ek∈Γl

N

{ ∫
ek×In

q̄ δp dadt
}

+
∑

ek∈Γa
D

{ ∫
ek×In

{ǫ (D grad δch · n) c̄− (q̃h · n) c̄ δch

+σ c̄ δch} dadt
}

+
∑

ek∈Γa
N

{ ∫
ek×In

cin δch dadt
}

+
NE∑
j=1

{ ∫
Ej

φ c̆h,n δch dv
}
.

(17)

Herein, Pe denotes the total number of the interior edges. In eq. (16),
the filter velocity qh = (ks/µl) grad ph, which introduce the nonlinear
coupling into the governing set of equations. In the current work,
the nonlinear set of equations is linearized and solved by a global
Newton-Raphson scheme [32, 33]. The integral

∫
Ej

(·) dv has to be
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evaluated at the borders of the time-slab tn and tn+1. Since the
quantity of the upwind flux c̆h,n is known on the current time-slab
Qn, the integral { ∫

Ej
φ c̆h,n δch dv} can be evaluated explicitly in the

linear form L(δuh). The parameters ǫ and σ designate the various
spatial schemes for the concentration equation (eq. (5)), in particular
OBB: ǫ = 1 and σ = 0; SIPG: ǫ = −1 and σ > 0; NIPG: ǫ = 1 and
σ > 0; IIPG: ǫ = 0 and σ > 0. It can be observed that in the above
expressions, the parameter σ is a purely penalty factor that controls
the amount of jumps, i. e. [[ch]], on edges. However, it has also to be
mentioned, according to a proper choice of the penalty factor σ, all
these four approaches lead to very similar numerical solutions. In the
latter context, without special notification, the system of equations
(eq. (5) and eq. (6)) is solved by the OBB-OBB formulation, i. e. OBB
scheme for both the pressure and concentration equations.
Recall that q̃h represents the continuous projection of the discontinuous
filter velocity qDG

h on the edges. As we now apply discontinuous
approximations in space, different quantities of the filter velocity
qDG

h = (ks/µ) grad ph are evaluated from the adjacent elements on
both sides of the edge. Such an inconsistency on the interior edges
raises spurious oscillations which may further spoils the overall solution
[14, 34]. Thus, a conservative projection resulting in continuous normal
components of the filter velocities q̃h over the element boundaries is
necessary. In the present work, for the sake of simplicity, we apply the
H(div) projection for the computation of q̃h in a post-processing step.
Therefore, for the computation of the current time-slab Qn (n > 0),
the quantity of q̃ is results of the projected velocity at the end of
previous time slab tn. As for the initial step i. e. Q0, as there is no
previous computation available, we assume that q̃h = qh, and solve
the nonlinear set of equations by a global Newton-Raphson scheme
[32, 33].
It is well known that in the DGS formulations, for linear or higher-
order polynomials in space, it is usually necessary to apply a slope
limiting procedure to avoid over- and undershoot in the neighborhood
of concentration fronts, cf. [36, 4]. In the present work, by using the
DGT formulation in time, c̆h,n serves as the only input information
for the computation on the current time-slab Qn. Note that this is
either a result c−h,n obtained from the previous time-slab Qn−1 (n > 1),
or the initial condition c0 given at t = t0. Here, we apply the slope
limiting procedure to c−h,n (n > 0) in a post-processing step. So that,
only regular quantities of c̆h,n = c−h,n occur in the input data for the
computation on the current time-slab Qn. We denote that with respect
to the numerical experiments performed in our work, it is sufficient to
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apply the slope limiting procedure to c−h,n to ensure the stability of the
solution. A stabilization procedure of the pressure ph is not necessary.
We denote that this procedure is different to the most semi-discrete
methods. In usual, depending on the chosen finite difference procedure
in time, a consistent slope limiting procedure for the primary unknown
and its rate term must be developed, see e. g. [36]. In the current work,
we apply the quadratic slope limiter [37] for the limiting procedure of
the concentration c−h,n.

4. Numerical experiments

Table I. Material parameters

porosity φ 0.1 [ - ]

molecular diffusion coefficient dm 1.16e-9 [ m2/s ]

longitudinal dispersion coefficient αl 0.1 [ m ]

transversal dispersion coefficient αt 0.01 [ m ]

mobility factor M 1, 5 [ - ]

concentration of injected flow cin 1 [-]

In the following numerical experiments, we consider a square domain
of the geophysical size 1600×1600 m2, which is subjected to a pressure
difference on the left side pl = 0.1 GPa and on the right side pr = 0. A
fluid with the concentration cin = 1 is injected from the left side into
the domain, see Figure 4. Here, we apply quadratic shape functions in
space combined with linear polynomials in time for the pressure ph and
the concentration ch.
According to [38], for the two-dimensional case, the diffusion tensor
D(q) depending on the filter velocities q = [q1, q2]T is given by

D(q) = φdm I+
αl

|q|
(

q21 q1 q2
q1 q2 q22

)
e1⊗e2+

αt

|q|
(

q21 −q1 q2
−q1 q2 q22

)
e1⊗e2

(18)
in which dm is the molecular diffusion coefficient, and αl and αt are
the longitudinal and transversal dispersion coefficients, respectively. e1

and e2 represent the basis vectors. The quantities of these parameters
are given in Table I. The concentration-dependent viscosity µl(c) of the
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Figure 4. Geometry and boundary condition for problem a , band c.

liquid mixture reads [3, 5],

µl(c) = µaR

c+ (1− c)

[
µfR

µaR

]−0.25
−4

, (19)

in which µaR and µfR are the viscosities of the solvent fluid and the
resident fluid, respectively. The stability of the flow is characterized
by the mobility factor M , which describes the ratio of the viscosity of
the resident fluid to that of the solvent one, i. e. M = µfR/µaR. The
flow may be instable if the mobility factor is greater than unity, when
viscous fingering effects tends to occur. For more detail concerning the
evolution of viscous fingering effects, we refer to the review work [39].

4.1. Homogeneous domain

In the first example, we consider a homogeneous domain, see Fig-
ure 4a. The intrinsic permeability of the matrix is ks = 10−11 m−2.
We first compute the problem with the mobility factor M = 1, which
means a constant viscosity distribution, i. e. µl ≡ 0.001 Pa s. Since
the computational domain is homogeneous, the pressure distribution
is linear and remains constant throughout the whole process. Thus,
the quantity of the filter velocity q can be computed analytically,
i. e. q = 6.25 · 10−4 m/s. Note that the seepage velocity v equals
v = q/φ = 6.25 · 10−3 m/s, which is the true propagation velocity of
the solvent fluid.
The sufficient but not necessary condition for the stability of the nu-
merical scheme is the Courant-Friedrich-Levy (CFL) condition. Given
the representative element size h in space and the time step size ∆t,
the Courant number Cr can be calculated by

Cr =
|v|∆t
h

(20)
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A space-time Galerkin method for single-phase problem 13

where |v| is the maximum wave speed within an element. Generally
speaking, the Courant number has to be smaller than one, i. e. Cr ≤ 1,
to ensure numerical stability. Beside the stability criterion, the choice
of an optimal time step size ∆t for a given finite element discretization
is an important aspect in a coupled space-time finite element analysis.
It is well known, that the quality of the numerical solution can not be
improved extensively by simply reducing the size of time steps while
holding the spatial discretization fixed [40]. In the 1-dim case, for a
three-node (quadratic) element with first order time-stepping algorithm
the critical time step is [40]

∆t =
h√
6 |v| . (21)

According to the problem at hand, quadratic polynomials in space and
linear ones in time are chosen for the concentration ch and the pressure
ph. We conclude that the critical time step corresponds to the Courant
number Cr ≈ 0.4.
Figure 5 shows the concentration front at t = 1.4 · 105 s obtained
by the DGST method, the spatial conforming Finite Element method
combined with a backward Euler scheme in time (EUL) and the Spatial
Discontinuous Galerkin method with the backward Euler scheme in
time (DGS) [5]. The choice of spatial grids and the corresponding time
step sizes are listed in Table II. The sizes of the time steps are chosen
according to Cr = 0.4. For a qualitative comparison, we generate a ref-

Table II. Choice of time step sizes ∆t of various grids h0, . . . , h3 on
homogeneous/inhomogeneous domains

∆t [ s ] h0 h1 h2 h3

homogeneous domain M=1 12800 6400 3200 1600

inhomogeneous domain M=1 - 3200 1600 800

M=5 - 1600 800 400

number of elements 8× 8 16× 16 32× 32 64× 64

erence solution by the EUL with an overkill discretization. In Figure 5,
we observe that with respect to all four grids h0, . . . , h3, under the same
spatial and temporal discretization, the DGST method leads to the best
solution in that the steep concentration front is much better resolved
than the other approaches, i. e. the EUL and the DGS approaches.
Moreover, with respect to the numerical results obtained by the DGST
method on relatively coarse grids h0 and h1, inconsistent quantities,
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14 Z. Chen, H. Steeb & S. Diebels

i. e. jumps, occur nearby the steep concentration front. Obviously, we
also observe that the jumps do not spoil the numerical results, but
contribute to the accuracy of the overall solutions. The amount of the
jumps decreases in the numerical solutions of the finer discretizations
h2 and h3. Note in passing that the jumps that occur in the solution
of discontinuous Galerkin methods can be used as a simple but reliable
error indicator for further adaptive strategies, cf. [30].
In Figure 5, we also observe that there is no significant difference be-
tween the quantity of the numerical results obtained by the EUL and
the DGS method. Yet, the DGS method is well known for capturing
sharp gradients and for contributing to the stability of the overall nu-
merical solution scheme, cf. [25, 6, 5]. According to the knowledge of
the authors, so far the DGS method is always implemented by means of
semi-discrete numerical techniques, such that a discontinuous approxi-
mations in space is applied to produce an ODE system, which is in turn
solved by the backward Euler scheme, cf. [41, 5]. However, according to
our numerical experiments, we conclude that a discontinuous Galerkin
approximation in space alone does not always ensure more accurate
solutions, see Figure 5. In these cases, the error introduced by the
time-stepping method, i. e. the backward Euler scheme, is dominant.
Thus, an advanced DGS formulation in space can not rescue the overall
quality of the numerical solution. However, we remark that due to the
employment of the discontinuous approximations in space, the number
of DOFs for the solution scheme of the DGS scheme is almost four
times larger than that of the spatially conforming FE method.
Next, we compute the same problem on the coarse discretization h0

by the EUL and DGS method with a much smaller time step, i. e.
∆t = 320 s. For comparison, the numerical solution obtained by
the DGST scheme on the same spatial mesh h0 with the time step
∆t = 12800 s is depicted in the same figure, see Figure 6. Herein, due
to the much refined temporal discretization, slight difference in the so-
lutions of the EUL and the DGS are observed. Herein, the concentration
ch obtained by the EUL is continuous, while jumps are observed in the
solution of DGS method nearby the concentration front. In spite of the
slight difference, no significant improvement is obtained than that of
the DGST method with a much larger time step. Further refinements of
the time step size have also been tested, but they produce no significant
improvements. We conclude that in this case the error introduced by
the spatial discretization is dominant, such that a further refinement
of the time step can not improve the quality of the solution. However,
we denote that in achieving those comparable solutions, the size of the
time step of the DGST method is 40 times larger than those used in
the DGS and the FE methods.
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4.2. Inhomogeneous domain

Next, we consider the flow propagation in an inhomogeneous do-
main as depicted in Figure 4b. The patches with dark gray color
represent the less permeable material with the intrinsic permeability
ks = 10−14 m−2 which is 1000 times smaller than the rest of the domain
(ks = 10−11 m−2). Since it is natural to choose a mesh whose grids are
smaller than the obstacles, we perform the computations on the meshes
h1, . . . , h3.
We first consider the stable case (M = 1) with a constant viscosity
µl = 0.001 Pa s. Due to the inhomogeneity of the computational do-
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Figure 7. Filter velocity distribution q̃h of the inhomogeneous domain for the
mobility ratio M = 1.

main, the filter velocity qh can not be determined directly. However,
we conclude that the highest velocity occurs between the two parallel
patches. The distribution of the fluid pressure ph(x, t) is constant over
time. Moreover, it is easy to observe that the highest pressure gradient
occurs between the two parallel patches. Hence, we can derive that the
highest filter velocity qh in this case is almost twice as large as in the
previous example. The time steps are chosen as one half of those used
in the previous example, see Table II.
Figure 7 shows the H(div) projection of the filter velocity q̃h obtained
on the mesh h1. We observe that there is no spurious sinks or source
terms in the computational domain. The necessity and quality of this
H(div) projection were discussed extensively in [34]. Since the distri-
bution of the pressure field ph(x, t) is relatively smooth, no significant
improvement in the q̃h on h2 and h3 grids can be achieved.
Figure 8 shows the concentration profiles at different time levels, i. e.
t = 1.5e5, 3.0e5, 4.5e5, 6.0e5 s. Herein, we observe that the injected
fluid circumvents the less permeable patches. Steep concentration fronts
around these patches are well resolved, even on the coarse discretiza-
tion h1. The slope limiting procedure is applied to the concentration
field c−h,n (n > 0) in a post processing step on each time-slab Qn,
i. e. c−h,n = S(ch,n) whereby S(cn) denotes the function of the slope
limiting procedure. Despite slight over- and undershoots around the
less permeable patches, the numerical solutions are stable and reflect
the propagation phenomena of the flow. It is necessary to mention
that all three meshes, i. e. h1, h2 and h3, produce qualitatively similar
solutions. More accurate numerical solutions are obtained by a finer
discretization, i. e. h2 and h3. As the mobility factor equals one, no
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fingering effects result in the computational domain.
Next, we consider a physically more sophisticated case with a small
mobility factor M = 5, i. e. µ0 = 0.001 Pa s and µa = 0.0002 Pa s. Thus,
the viscosity µl is no more a constant but decreases with the increase
of the concentration level, cf. eq. (19). The viscosity µl is computed by

µl(x) =

{
µl(c0(x)) if n = 0,
µl(c̃n(x)), otherwise.

x ∈ Ω (22)

Since the viscosity µl varies with the concentration field, the pressure
distribution evolves over time. However, we denote that due to the
small mobility factor M = 5, the filter velocity qh(x, t) grows slowly
as the concentration level increases. The choice of the time step sizes
according to different discretizations are given in Table II.
Figure 9 shows the simulation results obtained at different time levels.
As the liquid viscosity µl decreases as the concentration level increases,
the propagation of the solvent is much faster than in the previous test,
such that the solvent fluid takes almost one half of the time to reach
the right side of the computational domain than in the stable case, cf.
Figure 8 and Figure 9. Since in the current experiment the mobility
factor is larger than one, the propagation of the flow tends to be in-
stable. However, in the results obtained by the coarse discretizations of
h1 and h2, such effects are not significant. In the solution of the finest
discretization h3, we observe that the solvent fluid tends to penetrate
through the more viscous resident fluid, leaving out vacancy around
the less permeabile patches with very low concentration.

5. Heterogeneous domain

In the last example, we consider a heterogeneous domain (1600× 1600
m2) with randomly distributed permeabilities ks in the range of [10−11,
10−14] m2, see Figure 4c. The remaining problem-relevant material pa-
rameters are listed in Table I. The boundary and initial conditions are
the same as before. We compute the problem on three non-conforming
meshes g0, . . . , g2 with different mesh densities, see Figure 10. Since
a direct determinant of the filter velocity is not available, the time
step sizes are chosen empirically, such that the stability of the overall
solution is ensured. More details with respect to the computational
effort of the meshes are given in Tab. III.
We start with the computation of the stable case with the mobility
factor M = 1, i. e. the liquid viscosity equals µl = 0.001 Pa s. Here,
by choosing different pairs of parameters σ and ǫ, we perform the
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Table III. Computational effort of non-conforming
meshes.

mesh g0 g1 g2

number of elements 332 1260 7704

number of DOFs/step 10624 40320 246528

∆t [s] 200 100 50

computation with different DGS formulations, i. e. NIPG, SIPG and
IIPG, rf. eq. (16) and eq. (17). It is well known that the choice of the
penalty parameter σ is essential for the accuracy of the solution. For
the problem at hand, it is known that the penalty factor must not
be “sufficiently large”, rf. [14], so that we set σ = 1/h, whereas h is
the representative element size in space. In Figure 11, we depicted the
concentration state at t = 1.8e5 s obtained by the four different spatial
formulations. It can be observed that with the proper choice of the σ
factor, the penalty methods, i. e. SIPG, NIPG and IIPG, produce very
similar solutions as those of the OBB methods. In this sense, we con-
clude that these penalty methods are as good as the OBB formulations
in modeling the propagation flow through the porous materials.
Next, we compute the same problem with a mobility factorM = 10, i. e.
µfR = 0.001 Pa s and µaR = 0.0001 Pa s. Figure 12 shows the concen-
trations state obtained on meshes g2 by OBB formulation at different
time levels t = 0.6e5, 1.2e5, 1.8e5 s. Here, it is obvious to observe that
fingers grow in the computational domain. Within the same period of
time, i. e. t = 1.8e5 s, in the stable case, i. e. M = 1, the solvent fluid
penetrates nearly one third of the domain, see Figure 11. However,
in the current test, i. e. M = 10, the solvent fluid has almost finger
through the whole domain. Local over- and undershoots nearby the
steep concentration fronts are observed. However, the overall solution
is stable and no degeneration of the numerical solution through local
oscillations, i. e. over- and undershoots, are obtained.

6. Conclusions

We present an efficient coupled space-time discontinuous Galerkin
method to model transport phenomena in porous media. Discontinuous
approximations in space as well as in time are employed. Due to the
employment of discontinuous approximations in the spatial and the
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temporal domains, with the same spatial and temporal discretization
the total number of DOFs of the DGST method is much larger than
that of the conventional approaches. However the extra costs of the
computational effort can be well compensated by using larger dis-
cretization either in space or in time. Moreover, various formulations of
Spatial Discontinuous Galerkin methods have been tested. According to
a proper choice of the penalty factor, all methods produce very similar
solutions. The proposed new coupled solution scheme is able to capture
steep gradients in the solution very well and is suitable for modeling
more complex phenomena, i. e. viscous fingering effects.
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Figure 8. Concentration ch at various time levels t = 1.5e5, 3.0e5, 4.5e5, 6.0e5 s in
the inhomogeneous domain with mobility factor M = 1.
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Figure 9. Concentration ch at various time levels t = 1.0e5, 2.0e5, 3.0e5 s in the
inhomogeneous domain with mobility factor M = 5.
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Figure 10. Non-conforming meshes with different mesh densities.
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Figure 11. Concentration ch at t = 1.8e5 s in the heterogeneous domain computed
by various DGS formulations with M = 1
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Figure 12. Concentration ch at various time levels t = 0.6e5, 1.2e5, 1.8e5 s in the
heterogeneous domain computed by OBB formulation with M = 10 on g2 mesh.
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