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1. Zusammenfassung 
Membranproteine (MPs) spielen in diversen zellulären Prozessen eine wichtige Rolle. Die Mehrheit 
der MPs bestehen aus einem Bündel von Transmembran (TM) Helices, die die Bezeichnung helikale 
Membranproteine (HMPs) tragen. Derzeit schätzt man, dass etwa 20 - 30% der Leseraster im 
sequenzierten Genom  HMPs kodieren. Ungeachtet ihrer allgemeinen Bedeutung in der Biologie und 
ihrer großen Ansammlung im Genom sind bis jetzt lediglich etwa 50 dreidimensionale HMP 
Strukturen bekannt. Dem gegenüber stehen mehr als 1000 bekannte Strukturen von verschiedenen 
Faltungsmuster von wasserlöslichen Proteinen. Erkenntnisse zu den molekularen Mechanismen der 
HMPs können dadurch schwer gesammelt werden. Diese ungünstige Situation hängt zum einen stark 
mit der hohen Schwierigkeit zusammen, qualitativ hochwertige Kristalle dieser Proteine für 
Röntgenstrahl-Analysen zu generieren, und zum anderen mit der Tatsache, dass HMPs durch ihre 
meist enorme Größe für die Strukturaufklärung mittels NMR Spektroskopie ungeeignet sind. 
Computerunterstützte Methoden zur Vorhersage struktureller Eigenschaften der HMPs basierend auf 
der Aminosäure-Sequenz könnten in diesem Sachverhalt von großem Interesse sein. Zusätzlich 
könnten computerunterstützte Analysen interessante Aspekte ihrer Struktur und Funktion aufzeigen, 
die experimentelle Studien nicht aufzeigen können.  
Diese Arbeit fasst jahrelange Anstrengungen zusammen, die sich auf 4 publizierte Artikel (Artikel I - 
IV) aufteilen. In Artikel I wurde der Versuch unternommen, mittelmäßig aufgelöste HMP-Strukturen 
mit einer geringen Zahl von TM Helices durch Packungsregeln und konservierte Sequenzmotive zu 
modellieren. In Artikel II wurde eine grundlegende Untersuchung durchgeführt, um den Grad der 
Korrelation zwischen exponierten Motiven in den TM Helices zur Doppelmembranschicht und ihren 
Eigenschaften wie Hydrophobizität und konservierten Motiven zu analysieren. Darauf aufbauend 
wurde in Artikel III ein optimaler Weg zur Generierung von Skalen vorgestellt, die 
Paarungspräferenzen der 20 Aminosäuren mit der Doppelmembranschicht auf der Basis von 
bekannten HMP-Strukturen zu bewerten. Die Ergebnisse zeigen überraschenderweise, dass das 
architektonische Prinzip von HMPs am besten durch die partiellen spezifischen Volumina der 
Aminosäuren beschrieben werden kann. Artikel IV präsentiert TMX (TransMembrane eXposure), eine 
neue computerunterstützte Methode zur Vorhersage der Lipidzugänglichkeit der TM-Aminosäuren in 
HMPs, die bisherige Methoden deutlich an Genauigkeit übertrifft. Unter 
http://service.bioinformatik.uni-saarland.de/tmx ist eine Web-Schnittstelle für TMX aufrufbar.  
Die Ergebnisse dieser Arbeit dienen als solides Sprungbrett für weitere interessante Studien, denen die 
Gruppe von Prof. Volkhard Helms nachgehen wird. Schließlich wird experimentell arbeitenden 
Biologen ein umfangreicher Satz an Methoden für Rechnungen und Vorhersagen zur Verfügung 
gestellt, der ihnen helfen wird, biochemische und biophysikalische experimentelle Daten zu 
rationalisieren, und anschliessende Experimente zu entwerfen. Zusätzlich zu diesen ergänzenden 
Aufgaben können komplexere computerunterstützte Analysen unser Verständnis über Struktur und 
Funktion von HMPs ausweiten und vertiefen, so wie es in den Artikeln II und III bereits diskutiert 
wurde. 
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2. Abstract in English 
Helical membrane proteins (HMPs) play a crucial role in diverse cellular processes. Given the 
difficulty in determining their structures by experimental techniques, it is desired to develop 
computational methods for predicting their structural characteristics. In addition, computational 
analysis can provide interesting insights into their structure and function that experimental work can 
not provide. This thesis summarizes years of such computational endeavours, comprising 4 published 
papers (Paper I ~ IV). In Paper I, it was attempted to model low-resolution tertiary structures of HMPs 
with a modest number of transmembrane (TM) helices from packing constraints and sequence 
conservation patterns. In Paper II, a fundamental investigation was undertaken to analyze the degree of 
correlation between exposure patterns of TM helices to the membrane and their properties such as 
their hydrophobicities and conservation patterns. In Paper III, on the basis of the work presented in 
Paper II, an optimal way of deriving the propensity scales of the 20 amino acids to preferentially 
interact with the membrane as reflected in known HMP structures was presented, which revealed a 
surprising fact that the architectural principle of HMPs is best captured by the partial specific volumes 
of the amino acids. In Paper IV, the development of TMX (TransMembrane eXposure), a novel 
computational method for predicting the lipid accessibility of TM residues of HMPs, was described, 
which significantly outperforms other existing methods. A web interface for TMX is available at 
http://service.bioinformatik.uni-saarland.de/tmx.  
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3. Abstract in German 
Helikale Membranproteine (HMPs) spielen in diversen zellulären Prozessen eine bedeutende Rolle. In 
Anbetracht der Schwierigkeit, die Struktur dieser Proteine mittels experimenteller Techniken 
aufzuklären, ist es erstrebenswert, computerunterstützte Methoden für ihre Strukturaufklärung zu 
entwickeln. Zusätzlich könnten computerunterstützte Analysen interessante Aspekte ihrer Struktur und 
Funktion aufzeigen, die experimentelle Studien nicht aufzeigen können. Meine Doktorarbeit fasst 
jahrelange Anstrengungen zusammen, die sich auf 4 publizierte Artikel (Artikel I ~ IV) aufteilen. In 
Artikel I wurde der Versuch unternommen, mittelmäßig aufgelöste HMP-Strukturen mit einer 
geringen Zahl von Transmembranprotein (TM) Helices mit Hilfe von Packungsregeln und 
konservierten Sequenzmotiven zu modellieren. In Artikel II wurde eine grundlegende Untersuchung 
durchgeführt, um den Grad der Korrelation zwischen exponierten Motiven in den TM Helices zur 
Doppelmembranschicht und ihren Eigenschaften wie Hydrophobizität und konservierten Motiven zu 
analysieren. Darauf aufbauend wurde in Artikel III ein optimaler Weg zur Generierung von Skalen 
vorgestellt, die Paarungspräferenzen der 20 Aminosäuren mit der Doppelmembranschicht auf Basis 
von bekannten HMP Strukturen zu bewerten. Die Ergebnisse zeigen überraschenderweise, dass das 
architektonische Prinzip von HMPs am besten durch die partiellen spezifischen Volumina der 
Aminosäuren beschrieben werden kann. Artikel IV präsentiert TMX (TransMembrane eXposure), eine 
neue computerunterstützte Methode zur Vorhersage der Lipidzugänglichkeit der TM-Aminosäuren in 
HMPs, die bisherige Methoden deutlich an Genauigkeit übertrifft. Unter 
http://service.bioinformatik.uni-saarland.de/tmx ist eine Web-Schnittstelle für TMX aufrufbar. 
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4. Membrane proteins 
 

 

4.1 Introduction to membrane proteins 

Integral membrane proteins (denoted hereafter as MPs) permanently reside in biological membranes 
for their functions. Due to the peculiar chemical character of biological membranes (compared to 
aqueous media where water-soluble proteins reside), MPs display structural characteristics distinct 
from those of water-soluble proteins [1]. The most notable is that only two structural types are 
observed in known MP structures. The first type is of a helix-bundle type whereas the other is of a �-
barrel type. It is currently estimated that helix-bundle type MPs account for 20 ~ 30% of open reading 
frames of sequenced genomes [2]. Furthermore, all the MPs that are drug targets are of a helix-bundle 
type. In contrast, �-barrel MPs have been restricted to the outer membrane of Gram-negative bacteria, 
mitochondria and chloroplasts [3]. Thus, the helix-bundle type is overwhelmingly predominant and 
more important from a biological viewpoint. For these reasons, we concentrate on helix-bundle type 
MPs (denoted hereafter as HMPs) in this work. 
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Depending on the way HMPs are embedded in the membrane, HMPs can be classified into three 
groups as shown in Fig. 1. Few cases are known for monotopic HMPs, and most studies on HMPs 
have been on bitopic and polytopic HMPs. 
HMPs are involved in diverse cellular processes, which can be briefly summarized as follows: 

• Active transport of solutes across membranes: Active transport means transport against 
concentration gradients and thus requires an energy source. Membrane transporters are 
classified into two types depending on which energy source they use for active transports. The 
first type is those that utilize the energy released upon ATP hydrolysis, including P-type 
adenosine triphosphatases (ATPase) [4] and ABC transporters [5, 6]. The second type is those 
that couple active transport of one type of solutes with downhill transport of another type of 
solutes, including the well-known major facilitator superfamily (MFS) transporters [7, 8]. 
Several crystal structures of membrane transporters have become available over the last few 
years, revealing the molecular basis for active transport across the membrane (Fig. 2). 

•  Channels across membranes: Unlike transporters, channels usually mediate passive transport. 
However, like transporters, channels perform highly selective transport (e.g. water channels 
transport only H2O, not H3O+, in spite of their similarity). Ion channels are of significant 
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importance in nervous systems because they propagate action potentials. Moreover, ion 
channels play a crucial role in the homeostasis of most cells. In 2003, the Nobel Prize in 
Chemistry was awarded to Roderick MacKinnon for his work on potassium channel [9] and 
Peter Agre for his work on water channel [10] (Fig. 3). 
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• Receptors: Cells must be able to respond to external signals properly for survival. The primary 
loci of signal reception are receptor proteins in membranes. Of many receptors, the most 
prominent example would be G-protein coupled receptors (GPCRs) [12]. Genes encoding this 
huge family are estimated to occupy ~ 5% of the worm genome and ~ 3% of the human 
genome. GPCRs recognize and relay external signals to G-proteins in the cytoplasm, which 
then activate downstream signal transduction pathways. It is remarkable that they can process 
external signals in a vast array of diverse forms such as electromagnetic waves, small 
molecules and macromolecules (Fig. 4). 
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• Energy generation: All key proteins in the energy generation process, e.g. oxidative 
phosphorylation and photosynthesis, are HMPs. They usually incorporate cofactors and 
mediate oxidation/reduction of substrates. In fact, the first high-resolution HMP structure was 
that of bacterial photosynthetic reaction center in 1984 by Johann Deisenhofer, Robert Huber 
and Hartmut Michel [13]. It was not only the first HMP crystal structure, but also the most 
complex molecular structure that had been solved by X-ray crystallography up to that point in 
time. For that achievement, they shared the Nobel Prize in Chemistry in 1988 (Fig. 5). 

• Other functions: HMPs play an important role in signal processing by metabolizing lipid 
molecules, as in the case of Membrane-Associated Proteins in Eicosanoid and Gluthathione 
Metabolism (MAPEG) family members [14]. Also, it has become increasingly clear that 
intramembrane proteolytic processes mediated by HMPs represent critical steps in intracellular 
signal transductions [15].  
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In addition, several pathological roles have been ascribed to HMPs. Most notable would be the TM 
glycine zipper motif of HMPs implicated in Alzheimer’s disease and prion disease [16]. In this regard, 
it is worth noting that two of the most widely prescribed drugs in the world – fluoxetine (Prozac) and 
omeprazole (Prilosec) – target membrane transporters. 
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4.2 Biogenesis of HMPs 

Water-soluble proteins usually fold on their own upon being released from the ribosome. The 
biogenesis of HMPs is a bit more complicated due to the additional need for them to be embedded in 
biological membranes. The endoplasmic reticulum (ER) membrane is the main place where biogenesis 
of HMPs takes place. 
Upon emerging from the ribosome, the signal sequences of HMPs are recognized by the signal 
recognition particle (SRP), a ribonucleo-protein complex, forming a ribosome nascent chain (RNC)-
SRP complex [17, 18]. In eukaryotes, this complex formation causes a temporary arrest of the nascent 
chain elongation in the ribosome. The signal sequences are highly degenerate: they are stretches of 7 ~ 
25 amino acids with hydrophobic ones overrepresented [19]. Signal sequences can be classified into 3 
groups according to the mode of translocation and the cleavability [20] (see below). The degenerate 
nature of signal sequences and yet their exquisite recognition by the SRP are remarkably contrasting. 
The RNC-SRP complex is then targeted to the SRP receptor (SR) embedded in the ER membrane. 
Both SRP and SR contain GTPase domains. Upon the RNC-SRP complex being targeted to the SR, 
the GTPase domains of SRP and SR form a dual active site where the O3´ of one GTP becomes a key 
component of the active site of the other GTPase. This duality allows a reciprocal activation of GTP 
hydrolysis by both GTPase domains, which is thought to be coupled to and thus to govern docking of 
the RNC-SRP complex onto the translocon [18]. 
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The translocon is a heterotrimeric complex of HMPs, called the Sec61 complex in eukaryotes and the 
SecY complex in eubacteria and archaea [21]. The � subunits (Sec61� in mammals, Sec61p in S. 
cerevisiae, SecY in bacteria and archaea) contain 10 TM helices, forming a pore through which 
secretory proteins cross the membrane and TM segments get shunted laterally to the surrounding 
membrane milieu (Fig. 6). The 10 helices can be related to each other by a pseudo-symmetry through a 
two-fold rotation axis in the membrane plane. However, the symmetric nature of the two halves is not 
obvious from the primary structure. The � subunits contain 1 TM helix and 1 helix lying on the 
cytoplasmic surface of the membrane, clamping the two halves of the � subunit. The � subunits 
contain 1 helix and are not essential for the function of the translocon.  
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The translocon essentially works as a switching station. It lets secretory proteins cross the ER 
membrane while it shunts TM helices of HMPs laterally into the ER membrane via its lateral exit (Fig. 
7). This dual mode of channelling, along with the diversity of substrates it handles, makes the 
translocon distinct from other channels. It has been controversial whether the translocon works as a 
monomer or as a homo-oligomer [21-23]. Recent crystal structures of archaeal translocon (depicted in 
Fig. 6) suggested that single translocon molecules form a functional channel [21], and this suggestion 
was recently corroborated by biochemical experiments [23]. 
Upon the RNC-SRP complex being docked onto the translocon complex, the ribosome resumes the 
elongation of the nascent chain, and the SRP gets dissociated from the complex, returning to the 
cytosolic pool of SRPs. Since the translocon complex provides a passive conduit, the driving force for 
the translocation process is provided by the elongation reaction taking place in the ribosome [17, 18]. 



 13 

	
	
	
 

 

 

Figure 7. ���	$���	��	���	�
�
�����
	�
��	���	��������	(
	���	������	�����.	���	��
�	��	���	
�
�
�����
	��	�������	��	���	����	�����
�	F
��	�	�
�
��������
	�����
���	�
	�	��	�����
�	
�
��
�	 ���	 ��
�	 
����
.	 ���	 ����	�����
	 ��	 �������	 ��	��$�	 ����	��	 �	 
����@����	 ���
�	
�����
.	���
�
�	���	��
��	���	�����	������
	��0@��C	�
�	��+@��5.	�����	��
	��	����
��	
��	 ���	�����	��	 ���	 ���������.	 ��	�����$��	 ��	 ��
����
	 ��	 �	 ����
��	����	 ��
	 ���	����
�
�	
�
��
���
	��	��	�����
��� 
 

 

4.2.1 Topogenesis of HMPs 

Once the ribosome docked onto the translocon resumes the elongation process of the nascent chain, a 
series of events unique to the biogenesis of HMPs and quite complicated begin to take place. It is well 
worthwhile to go over the topology of HMPs [20, 24] before we look into these poorly-understood 
complicated events. This concept is unique to HMPs since they are essentially constrained in the 2D 
space of the membrane plane. What is meant by “topology” here is the boundaries of TM segments in 
the primary structure and the location of intervening loops as well as N and C termini with respect to 
the membrane plane. For example, if a protein with three TM segments places its N terminus in the 
cytoplasmic (in) side and its C terminus in the exoplasmic (out) side, its overall topology is referred to 
as Nin–Cout. A simple example would make clear why this concept is so important for HMPs. Lactose 
permease (LacY, Fig. 2A) is an HMP in the inner membrane of E. coli responsible for importing 
lactose from the outside to inside of the cell. As with other membrane transporters, the transport of 
lactose by LacY happens only in one direction, i.e. in the direction from the outside to inside of the 
cell. LacY displays an Nin–Cin topology. Hence, LacY of an Nout–Cout topology would, if ever possible, 
transport lactose from the inside to outside of the cell and thus be useless or even detrimental to E. coli 
(due to constraints, other possible topologies are not feasible). As expected, E. coli generates only 
LacY of an Nin–Cin topology. 
As mentioned briefly above, the first major events in the topogenesis of HMPs are how a signal 
sequence inserts into the membrane and whether it remains intact or is cleaved off upon insertion. As 
shown in Fig. 8, cleavable signals and signal anchors induce the translocation of the C terminal 
sequence while reverse signal anchors induce the translocation of the N terminal sequence. As the 
name implies, cleavable signals get cleaved off upon being inserted. Thus, secreted proteins usually 
possess only a cleavable signal (case a in Fig. 8). If proteins have a cleavable signal and a TM 
segment, the final topology becomes Nout–Cin, and this type of proteins are collectively referred to as 
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type I MPs (case b). If the signal remains intact, the topology gets reversed, resulting in an Nin–Cout 
topology (case c, type II MPs). If proteins possess only a reverse signal anchor, its final topology is the 
same as that of type I MPs (case d). Yet, type I MPs need the assistance of signal peptidases for 
maturation while proteins with a reverse signal anchor do not. Thus, the latter class of proteins is 
referred to as type III MPs. The story gets more complicated when it comes to the topogenesis of 
polytopic HMPs (cases e, f and g). 
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Having overviewed the different modes of HMP topogenesis, now the question is how the topogenesis 
of HMPs is controlled in the cell. Referring back to the LacY example above, how does E. coli make 
sure that only LacY of the Nin–Cin topology is synthesized? Remarkably, the topogenic signal is 
encoded in the amino acid sequence of HMPs, and the machinery for biogenesis of HMPs exquisitely 
decodes the topogenic code of HMPs and produces only HMPs of correct topology. In 1986, von 
Heijne made a seminal discovery that the loops enriched with Arg and Lys tend to be located in the 
cytoplasmic side [25, 26] and subsequently demonstrated that it is possible to predictably manipulate 
the topology of HMPs by changing charge distributions [27, 28]. This tendency has been dubbed the 
positive-inside rule. Since there is no general electric potential difference between the two sides of the 
ER membrane, local charges from the machinery for biogenesis of HMPs should be responsible for the 
positive-inside rule [20]. Even though this may sound deceptively simple, the exact molecular 
mechanism for the positive-inside rule still remains unknown. Since the discovery by von Heijne, a 
number of other factors have also been shown to be involved in the topogenesis of HMPs. As 
intuitively expected, the folding of sequence segments N terminal to a reverse signal anchor sterically 
hinders N-terminal translocation, irrespective of the charge distribution, which suggests that 
polypeptides should unfold in order to be translocated through the translocon pore [29]. The 
hydrophobicity of signal sequences themselves also contributes to the topogenesis of HMPs. Strongly 
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hydrophobic sequences insert with an Nout–Cin topology, even when the sequence N terminal to the 
signal contains more positive charges than that C terminal [30, 31]. 
 

 

4.2.2 Recognition of TM segments by the translocon 

Another important element in the biogenesis of HMPs is how TM segments are actually recognized 
and inserted by the translocon. Overrepresentation of hydrophobic amino acids in TM segments of 
HMPs clearly suggests that hydrophobic amino acids are important for the recognition of TM 
segments. Yet, exactly how? This important question was answered by experimental studies from von 
Heijne’s group [32].  
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The experimental system explained in Fig. 9 opens a fruitful avenue to interrogating the translocon to 
find out how it actually recognizes TM segments. By measuring the insertion efficiency of synthetic H 
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segments, von Heijne and his coworkers were able to derive a scale that the translocon uses to 
distinguish between TM and non-TM segments [32] (Fig. 10). 
In addition to uncovering the biological scale shown in Fig. 10, a couple of important observations 
were also made, revealing interesting insights into the molecular mechanism of the recognition of TM 
segments by the translocon and their subsequent insertion into the membrane. First, a strong 
correlation was observed between the amphiphilicity of H segments and the degree of integration into 
the membrane, suggesting that, during the recognition by the translocon and subsequent insertion into 
the membrane, H segments form a helix where the hydrophobic part contacts the membrane phase 
while the hydrophilic part contacts the protein components of the translocation machinery. This is in 
agreement with cross-linking data indicating that emerging signal sequences contact not only protein 
molecules but also lipid molecules. The second noteworthy point was that the effect of a Pro residue 
on the membrane insertion of the H segment was strongly dependent on its position in the H segment. 
When placed in the N terminal positions, it displayed only mild effects. Yet, when placed in the C 
terminal positions, it strongly hindered the membrane insertion of the H segment. In water-soluble 
proteins, Pro is frequently found in the N terminal positions of helices, but is almost completely absent 
in the C terminal positions. In light of these patterns of Pro occurrence in helices, the position-
dependent effect of Pro suggests that helix formation is somehow necessary for the translocon to 
properly recognize TM segments and for their subsequent insertion into the membrane, as also 
suggested above. 
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4.2.3 Interaction among TM segments during their membrane 

insertion 

Polytopic HMPs contain more than one TM segment, each of which should be inserted into the 
membrane. Then, the following question arises naturally of whether TM segments of polytopic HMPs 
get inserted independently on their own or there is any sort of systematic interactions among TM 
segments so that the whole insertion process gets facilitated. Sketchy survey of crystal structures of 
HMPs would make even a novice to the membrane protein research ask this question because there 
exist so many TM segments that are not hydrophobic enough for an independent insertion into the 
membrane. Interactions among TM segments during the insertion process should be responsible for 
the assisted insertion of weakly hydrophobic TM segments. Even though there had been circumstantial 
evidence supporting this idea, direct evidence was obtained rather recently. 
In 2000, two research groups independently demonstrated that hydrogen bonding interactions can 
drive a strong association of model TM helices in detergents and the inner membrane of E. coli [33, 
34]. Given a low dielectric constant of the membrane milieu and thus strongly promoted hydrogen 
bonding interactions therein, this may sound trivial today. However, it had a broad and deep impact on 
our understanding of the association of TM helices, a central component of the folding of HMPs (see 
below). Upon these observations, an immediately emerging question was then whether we could 
observe similar effects of hydrogen bonding interactions in the context of the translocon-mediated 
membrane insertion of TM helices of polytopic HMPs. This is exactly what the experimental studies 
to be discussed dealt with. 
von Heijne and his coworkers devised an interesting experimental system shown in Fig. 11. The 
original motivation for this experimental system was the observation that one of the most difficult 
cases for computational methods of predicting the topology of HMPs is when a very long, apolar 
stretch of amino acids is identified in the sequence. In such cases, it is not clear whether to predict it as 
a single long TM segment or as a pair of TM helices connected by a tight turn. By mutating residues 
occurring in the middle portion of H2 of Fig. 11, they attempted to find out what determines the 
topologic outcome of very long, apolar stretches of amino acids [35]. 
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Incidentally, this experimental system turned out to be as fruitful for studying stabilizing interactions 
of TM helices during their membrane insertion as for the original purpose. Hermansson and von 
Heijne introduced two Asn or Asp residues to the H2 segment of Fig. 11, one to each half of the H2 
segment [36]. If the polar residues were introduced to proper positions in the sense that they could 
form a hydrogen bond in case the H2 segment was inserted into the membrane as a helical hairpin (B 
of Fig. 11), the introduced polar residues would be expected to promote the formation of a helical 
hairpin. The results were interesting in several folds [36]. First, it confirmed the expectation that the 
formation of helical hairpin is promoted by hydrogen bonding interactions between a pair of polar 
residues. Second, the promoting polar residues displayed position-specific effects. Namely, the pairs 
of positions, 8-33 and 8-37, were stabilizing whereas 8-35 and 10-33 were not. It was not immediately 
obvious why these faces are special. On the other hand, it suggests that TM helices while being 
inserted can not rotate freely, the reason of which is not yet known. Overall, these observations are 
strongly indicative of stabilizing interactions among TM helices during their membrane insertion. 
A second piece of evidence supporting stabilizing interactions among TM segments during their 
membrane insertion came also from von Heijne and his coworkers, this time using a slightly different 
experimental scheme (Fig. 12). 
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The motivation for the experimental setup in Fig. 12 is to directly investigate whether hydrogen 
bonding interactions can help marginally hydrophobic TM helices to be inserted into the membrane. 
Some strategically chosen positions in the H2’ and H segments were mutated to either Asn or Asp, and 
the expectation was that if the introduced polar residues formed a stabilizing hydrogen bond, it would 
help the marginally hydrophobic TM helix (the H segment in Fig. 12) to be pulled into the membrane, 
the degree of which could be measured by SDS-PAGE as for the above cases. The experimental 
results confirmed the expectation [37]. This confirmation has a broad relevance to the biogenesis of 
polytopic HMPs. The insertion efficiencies of single TM helices taken from natural polytopic HMPs 
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are estimated to be much lower than 1 (unpublished data). For the case of bacteriorhodopsin, a 
prototype HMP consisting of 7 TM helices, even if we assume that each TM helix gets inserted on its 
own (i.e. no stabilizing interactions at all among TM helices during the membrane insertion) with an 
efficiency of 0.9, the overall biogenesis efficiency for this protein would be 70.9 � 0.48, which is 
unacceptably low. This low number strongly suggests the existence of some sort of biological 
safeguard mechanisms for the inherently complex biogenesis of polytopic HMPs. Stabilizing 
interactions among TM helices during their membrane insertion seem a favourable candidate. Clearly, 
further experimental studies would be needed to resolve this issue completely. 
 

 

4.3 Structure prediction of HMPs 

It still remains at its infancy to predict tertiary or quaternary structures of HMPs, in contrast to the 
progress being made in water-soluble proteins as reported by the biannial CASP contest [38]. Hence, 
most efforts have so far been focused on predicting either simple structural characteristics of HMPs 
such as their topology and solvent accessibility or tertiary structures of homo-oligomeric complexes of 
bitopic HMPs for which symmetry-based constraints can be easily implemented to drastically reduce 
the conformational search space. 
 

 

4.3.1 Topology prediction of HMPs 

The earliest efforts in predicting structural characteristics of HMPs focused on identifying TM 
segments from the amino acid sequence based on experimentally determined hydropathy indices of the 
20 amino acids [39, 40]. For each target residue, the average hydropathy index was computed by 
considering a window of residues centering on the target one, which was then compared with a 
heuristically determined cutoff value for classification into either TM segment or non-TM segment. 
An important improvement in this field was made upon the observation (the positive-inside rule), as 
mentioned above, that intervening loops enriched with positive charges tend to be disposed on the 
cytoplasmic side [25, 26]. In addition to making it possible to predict the location of intervening loops, 
this observation also led to improvements in identifying TM segments from the sequence. Consider 
the case depicted in Fig. 13 where, upon scanning the query sequence, you identify a sequence of 
segments L1 – TM1 – L2 – TM2 – L3 where TM1 is a marginally hydrophobic TM segment and TM2 
a strongly hydrophobic TM segment. Without the positive-inside rule, it might not be so clear how 
much one can trust the prediction result for TM1 – the marginally hydrophobic TM segment, i.e. it is 
quite likely to be a false positive. However, with the positive-inside rule, one can classify it as a TM 
segment with certainty because L1 and L3 are constrained to be on the cytoplasmic side and TM2 
must cross the membrane and the only way to satisfy these constraints is for TM1 to cross the 
membrane as well. The discovery of the positive-inside rule led to the development of the first fully 
automated topology prediction program, TOPPred [41]. TOPPred first scans the sequence for certain 
and putative TM segments and then sorts out the most likely topology, including none, some or all of 
the putative TM segments, based on the charges of loop segments. In this framework, other techniques 
might be used to detect potential TM segments. For example, PHDhtm utilizes an artificial neural 
network [42], and DAS is based on a sequence profile [43]. 
Instead of scanning the sequence for potential TM segments and then sorting out possible topologies, 
the search for potential TM segments can be integrated with the evaluation of possible topologies in a 
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single step. This idea was embodied in Memsat [44]. In Memsat, the most likely topology is predicted 
on the basis of correlations between the amino acid distribution of the query sequence and known 
distributions for each type of topologically distinct regions (cytoplasmic and exoplasmic segments and 
TM segments). Probabilistic approaches based on hidden Markov model (HMM) have also been 
exploited for the topology prediction of HMPs. Some popular examples based on HMM are 
HMMTOP [45] and TMHMM [46]. In fact, so many different approaches have been proposed so far 
that it is beyond the scope of this thesis to discuss all of them. Recently, Rost and his coworkers have 
set up a standard benchmark webserver so that any newly developed hydrophobicity scale or topology 
prediction method can be objectively assessed using a battery of measures that have been found 
applied in the literature [47]. Assessment on the basis of this benchmark set showed that PHDhtm and 
TMHMM took the lead in terms of both sensitivity and specificity, achieving the per-residue accuracy 
of up to 80% and the per-segment accuracy of up to 84%. The confusion rate for distinguishing 
between TM proteins and non-TM proteins was estimated to be 1% whereas that for distinguishing 
between TM helices and cleavable signal sequences was estimated to be 20 ~ 30%. Other studies also 
evaluated the performance of available prediction methods, revealing the overall limited accuracy of 
predicting TM segments [48, 49].  
Predicting the topology of HMPs (or put simply, identifying TM segments) has been one of the most 
profitable tasks in structural bioinformatics of HMPs. Arguably, it is one of the fields in structural 
bioinformatics for which the highest prediction accuracy has been achieved. Nevertheless, the recent 
evaluation studies point to the need for new ideas/algorithms for this classical problem. In this regard, 
it is interesting to note that MINNOU, a novel method based on neural networks along with a novel 
input encoding scheme, seems to outperform PHDhtm and TMHMM [50]. 
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4.3.2 Predicting rotational conformations of TM helices 

Prediction methods usually need a training set to be fine-tuned, and the developmental course of 
prediction methods seems strongly dependent on the course of data availability. For example, the best-
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performing protein structure prediction methods for water-soluble proteins such as ROSETTA [51] 
and TASSER [52] would not have been possible without the immense number of known structures. 
Unlike water-soluble proteins, it still remains extremely difficult to determine high-resolution 
structures of HMPs via conventional experimental techniques such as X-ray crystallography and NMR 
spectroscopy. Presumably for this reason, each time a new structure is determined, it is published in 
either Science or Nature. 
As shown in Fig. 14, the first HMP crystal structure came out in 1985, which was the photosynthetic 
reaction center from R. virdis as mentioned in Section 4.1. Prior to that, the only structural information 
available about HMPs was a modest-resolution view of bacteriorhodopsin, which was established in 
1975 by electron microscopy (EM) by Henderson and his coworker [53]. It revealed a bundle of long 
helical rods perpendicular to the membrane plane, suggesting that HMPs might well be thought of as 
an assembly of TM helices. This view well matched up with the stretches of ~ 20 hydrophobic 
residues found in MPs that were assumed to traverse the membrane and gained support from 
subsequent structure determinations for bacterial photosynthetic reaction center [13, 54], 
bacteriorhodopsin [55], halorhodopsin [56], cytochrome c oxidase [57], and glycophorin A [58]. 
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Since HMPs are essentially constrained in the 2D space of the membrane plane, they form relatively 
easily 2D crystals, which are well suited to structural investigation by EM. The outcome is usually a 
low- or medium-resolution projection view of the arrangement of TM helices onto the membrane 
plane. Although quite useful, the main limitation of this medium-resolution structural information is 
that 1) it is nearly impossible to identify which TM segments in the sequence correspond to which 
density rods in the projection view and 2) even if one manages to identify the identity of density rods, 
it is never trivial to model a TM helix structure onto a density rod (i.e. put simply, one has to predict 
the rotation angle of a TM helix about its helix axis if it is reasonably straight). No computational 
methods have been developed to date for the first issue, and it has been usual to rely on indirect 
biochemical or biophysical data to sort out possible arrangements. Assuming the first issue is settled, 
most computational methods have been directed to the second issue of predicting the rotational angle 
of TM helices about their helix axes [60-63].  
A natural approach to predicting the face of a TM helix exposed to the membrane would be to derive a 
propensity scale of the 20 amino acids to interact with the membrane and then to score different 
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rotational conformations of the TM helix according to the propensity scale to find an optimal one. In 
this framework, the most important element is the propensity scale, which explains the quest for an 
optimal propensity scale from the early 80’s [61, 62, 64-67]. Hydrophobicity scales were the first 
candidate for it, based on the argument that the core part of the membrane is very hydrophobic and 
thus the face of a TM helix exposed to it should also be hydrophobic. This argument was later found to 
be partially correct. Namely, the face of a TM helix exposed to the membrane is usually hydrophobic, 
perhaps due to the reason mentioned, yet the inside of HMPs is found to be as hydrophobic as their 
outside in the TM region [68]. The lack of difference in hydrophobicity between the inside and outside 
of HMPs in the TM region rendered hydrophobicity scales incompetent for predicting the face of TM 
helices exposed to the membrane. Early efforts also included the derivation of new scales from 
sequence data different from conventional hydrophobicity scales. For example, Taylor and colleagues 
derived a scale based on the assumption that the tendency of amino acids to be exposed to the 
membrane versus to be buried in the protein structure would be reflected in their relative occurrences 
in TM and non-TM regions of bitopic MPs [69]. Samatey and colleges devised a scale based on the 
assumption that amino acids with a similar propensity to be exposed to the membrane would be 
positioned on the same face of TM helices [62]. Finally, Pilpel and colleagues derived a scale 
(kPROT) based on the assumption that the tendency of amino acids to be exposed to the membrane 
versus to be buried in the protein structure would be reflected in their relative occurrences in bitopic 
and polytopic HMPs [61]. These early approaches, however, turned out to be rather ineffective. 
A breakthrough in this field was made by exploiting the observation that the inside of HMPs tends to 
be more conserved than the outside in the TM region. In fact, the observation was already made in 
1987 [54], and there were even active suggestions in the early 90’s to incorporate it as constraints for 
structural modelling of HMPs [69, 70]. However, no systematic efforts were made until 2001 to tap 
this observation for structural modelling of HMPs, even though there were sporadic cases where 
conservation properties of TM residues were fruitfully exploited as constraints for predicting rotational 
conformations of TM helices [60]. In 2001, Arkin and his coworkers showed that TM residues buried 
in the interface of different subunits tend to be less conserved than those buried in single subunits [71], 
reigniting the interest in the application of the conservational behaviour of TM residues. Subsequently, 
Ben-Tal and his coworkers [63] and Weinstein and Beuming [72] exploited it in predicting rotational 
conformations of TM helices. Quite recently, Liang and Adamian developed a highly effective scheme 
for predicting exposed faces of TM helices from the sequence [73], taking advantage of conservation 
properties of TM residues and the canonical structure of TM helices. This new method achieved an 
impressive prediction accuracy of ~ 88% for known HMP structures.  
The problem of predicting the face of TM helices exposed to the membrane can be cast in several 
different forms. One can embark on it as it is – devise a scoring scheme and find optimal rotational 
conformations, as mentioned above. A main limitation here is that it assumes the availability of helix 
parameters, most commonly from EM studies. Even though it was stated above that HMPs form 
relatively easily 2D crystals for structural analysis by EM, it should be stressed that it is never easy to 
obtain 2D crystals of HMPs. Thus, from a computational biologist’s viewpoint, a better treatment of 
the problem would be to predict the exposed face of TM helices from the sequence, without resorting 
to any experimental data. This treatment becomes possible upon recognizing the predominant 
canonical structure of TM helices, as was first noted by Liang and Adamian [73]. At the heart of this 
treatment is to predict which TM residues get exposed to the membrane. This task – predicting TM 
residues exposed to the membrane and those buried inside – is essentially a binary classification 
problem, and there are tons of well-established machine-learning techniques available for it. 
Nevertheless, this point has never been appreciated, and only one approach – rather empirical – has 
been proposed so far [66]. In Paper IV, we describe the development of TMX (TransMembrane 
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eXposure), a novel computational method for predicting the binary burial status of TM residues from 
the amino acid sequence, which greatly outperforms the empirical approach.  
 

 

4.3.3 Structural modelling of homo-oligomeric complexes of bitopic 

HMPs 

We now turn to modelling of the structures of homo-oligomeric complexes of bitopic HMPs, another 
classical structural bioinformatics problem of HMPs. There have been great interests in developing 
computational methods for modelling such complexes for two reasons. First, polytopic HMPs are way 
too complicated, and there have been few known structures from which to learn how they fold and 
maintain their stability. Second, unlike polytopic HMPs and hetero-oligomeric complexes of bitopic 
HMPs, homo-oligomeric complexes of bitopic HMPs are relatively easy to model due to inherent 
symmetry constraints that can be easily implemented to drastically reduce the conformational search 
space. Moreover, the two-stage model for the folding of polytopic HMPs [74] has justified the strategy 
of focusing first on homo-oligomeric complexes of bitopic HMPs and then transferring knowledge 
garnered there to polytopic HMPs. 
It may be in order to look first into the two-stage model for the folding of polytopic HMPs. In 1990, 
Engelman and Popot proposed that the folding of polytopic HMPs can be separated into two 
energetically distinct steps [74]. In the first step, TM helices are established to satisfy the hydrogen 
bonding potentials of backbone polar atoms in the hydrophobic environment of the membrane. Once 
established, these TM helices are usually independently stable and often regarded as autonomous 
folding units. Unfolding of TM helices and the resulting exposure of polar backbone atoms to the 
hydrophobic environment would be energetically unfavourable. In the second step, independently 
stable TM helices associate laterally to form a functional tertiary structure. The two-stage model was 
based on a number of experimental observations. First, the lateral association of different subunits is 
frequently observed in HMP structures. Second, experimental studies on the refolding of 
proteolytically cleaved and denatured bacteriorhodopsin (bR) fragments support the notion behind the 
two-stage model. bR consists of 7 TM helices and a retinal prosthetic group. It functions as a light-
activated proton pump. One big advantage of using bR for studying the folding and assembly of 
polytopic HMPs was that the retinal group functions as a very sensitive probe for protein 
conformations and thus it is possible to infer protein conformations by spectroscopic techniques. 
Chymotrypsin cleaves the loop segment connecting the second and third TM helices of bR, generating 
two peptide fragments. It was experimentally demonstrated already in the early 80’s that the two 
initially denatured peptide fragments, upon renaturation and addition of the retinal group, can form a 
complex indistinguishable from native bR in terms of spectroscopic properties and light-activated 
proton-pumping activities [75, 76]. Later, crystallographic analysis of the complex showed that its 
structure is nearly the same as that of native bR [77], suggesting that native bR structure sits in a free 
energy minimum. It had an important implication given that the anisotropic environment of the 
membrane and the complexity of the translocon-mediated biogenesis of HMPs make it possible for 
native HMP structures to get biosynthetically trapped at a state of high energy that could not be 
reached during the refolding event in vitro. Moreover, these results are such as would be predicted 
from the two-stage model. In light of the two-stage model, understanding of the factors driving the 
homo-oligomeric association of biotopic HMPs in the membrane would also be useful for elucidating 
the folding and thermodynamic stability of polytopic HMPs. As a model system for the homo-
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oligomeric association of biotopic HMPs in the membrane, the dimerization of the TM helix of 
glycophorin A (GpA) has been intensively studied using a variety of tools. 
GpA is a bitopic HMP found in erythrocytes with unknown function. Earlier studies showed that the 
dimerization of GpA is mediated by its single TM helix and sequence-specific [78]. Its dimerization is 
so strong that it is stable even in sodium dodecyl sulphate (SDS), a very strong detergent that 
denatures almost all non-covalent interactions. This persisting stability in SDS was exploited in a 
pioneering study by Engelman and his coworkers that identified the residues mediating the 
dimerization [78]. At that time, the prevailing view about the oligomerization of HMPs was that 
charged residues generally play a more important role than tight packing interactions via van der 
Waals interactions, which was primed by several observations. The interhelical salt bridge between the 
single TM domains of the T-cell receptor complex (TCR) � subunit and CD3� was shown to be central 
to the assembly of TCR [79]. In the assembly of the Fc� receptor, interactions between the TM domain 
of the � subunit of the Fc� receptor and the equivalent domain of the � subunit of TCR/CD3 were 
shown to play a critical role, which were suggested to be mediated by single aspartic acid residues of 
the two TM domains [80]. In contrast to these examples, the TM segment of GpA does not possess 
any charged residues. To elucidate the forces driving the dimerization of the GpA TM helix, Engelman 
and his cowokers carried out systematic mutagenesis of each of the 23 residues in the TM segment. 
The results were interesting in several respects. First, the dimerization of GpA was sequence specific 
to a surprising extent. In some sequence positions, even the most conservative mutations, e.g the 
replacement of Gly83 with Ala, were not tolerated, completely disrupting the dimerization capacity. 
Second, interestingly, these hypersensitive sequence positions occurred with a period of 3.9 residues. 
These observations pointed to the existence of a special face of the GpA TM helix for dimerization, 
and the face was featured by small amino acids flanked by �-branched amino acids that would be well 
suited to the “knobs into holes” type of tight packing interactions. Molecular modelling based on these 
experimental constrains and the symmetry constraint for a homo-dimeric complex yielded a right-
handed dimer with a helix-helix crossing angle of ~ 40° [81, 82]. In this molecular model, the two 
most hypersensitive glycine residues (G79 and G83) were located in the helix-helix interface, 
facilitating a close contact between the two helices. Later, the structure of the dimeric TM domain of 
GpA was determined by NMR (Fig. 15) [58], and it was found that the root mean squared deviation 
(RMSD) for C alpha atoms between the molecular model and the NMR models is just ~ 1Å. 
Before we move on, it would be rewarding to look more into the broad impact that the studies on the 
dimerization behaviour of GpA have had on our current understanding of what drives the association 
of TM helices. Visual inspection of the NMR models made it clear that, as predicted by the molecular 
model above, the exquisite degree of packing in the dimeric TM domain of GpA is largely driven by 
the G79XXXG83 motif, explaining the intolerance of Gly79 and Gly83 even to conservative mutations. 
The groove formed by Gly is filled by the ridge formed by a neighboring �-branched amino acid (Val 
for GpA) on the opposite chain. In addition to filling the groove, �-branched amino acids further 
promote dimerization by reducing entropic penalties incurred upon dimerization: �-branched amino 
acids are allowed to populate only one rotameric state in a helix conformation and thus there is no 
reduction in rotameric freedom upon dimerization. There can still be one more way in which the 
GXXXG motif can positively contribute to a tight packing of TM helices: the C�–H���O hydrogen 
bond [83], i.e. the hydrogen bond between the hydrogen atom bonded to a C� atom and an oxygen 
atom, which is a bit different from conventional hydrogen bonds in that the hydrogen atom is activated 
not by N or O but by C�. There were two synergistic observations behind this controversial proposal. 
One was a careful survey of known HMP structures by Senes et al. that revealed the presence of a 
multitude of candidate C�–H���O hydrogen bonds [83]. The others were quantum chemical 
calculations estimating the energy of the C�–H���O hydrogen bond to be as much as ~2.5 kcal/mol in 
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vacuum, which is approximately half the energy of conventional hydrogen bonds [84, 85]. However, 
experimental studies raised doubts on this proposal. Bowie and his coworkers found that one of the 
candidate C�–H���O hydrogen bonds highlighted by Senes et al. is not stabilizing at all [86]. The 
energy of candidate C�–H���O hydrogen bonds in the GpA NMR models as measured by Arbely and 
Arkin was only ~0.88 kcal/mol [87]. Thus, further studies are warranted before definite conclusions 
can be made as to whether stabilizing C�–H���O hydrogen bonds are really there in HMP structures 
[88]. 
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Now, it seemed that the GXXXG motif is crucial to the association of TM helices. But how general is 
its importance? If nature has adopted the GXXXG motif as a general mechanism for helix-helix 
interactions in the membrane, three easily verifiable predictions are to be envisaged. First, the 
GXXXG motif should be overrepresented in TM sequences. To see whether this is indeed the case, 
Senes and his colleagues devised a novel formalism for calculating the exact expectancies of pairs of 
amino acids in individual TM sequences [89]. The main themes observed were pairs of small amino 
acids (Gly, Ala and Ser) separated by three residues and flanked by large aliphatic amino acids (Ile, 
Val and Leu) as seen in the GpA TM sequence. The most overrepresented motif was the GXXXG 
motif with a p value of less than 10-33, and it was in most cases flanked by �-branched amino acids (Ile 
and Val). Second, one should be able to retrieve the GXXXG motif from a randomized sequence 
library in quest for motifs mediating helix-helix interactions in the membrane. Russ and Engelman 
designed a library of random sequences based on the right-handed dimerization motif of GpA that 
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covered ~107 sequences [90]. Using the newly developed TOXCAT system [91] that selects TM 
sequences capable of helix-helix association in the inner membrane of E. coli, they were able to 
identify sequence patterns with a high-affinity helix-helix interaction in the membrane. The most 
common motif isolated was GXXXG, occurring in more than 80% of the isolates. Third, the GXXXG 
motif is to be found to play an important role in other HMPs as well. In fact, since 2000, the GXXXG 
motif has been steadily demonstrated to be important in a diverse set of bi- and poly-topic HMPs. For 
it is simply out of reach to discuss all of them here, just a few examples are mentioned.  The GXXXG-
like motifs were shown to mediate homo- and hetero-dimerization of the single TM domains of ErbB 
family members [92, 93]. APH-1 is a polytopic HMP involved in the formation of the �-secretase 
complex and essential for the notch/glp-1 signal transduction pathway important for embryogenesis. 
The conserved GXXXG tandem repeat (GXXXGXXXG) in its fourth TM domain was shown to be 
critical to its stable association with the �-secretase complex [94]. The GXXXG motif was also shown 
to be involved in the gating transition of the MscS mechanosensitive channel [95]. 
The last question on the GXXXG motif for helix-helix interactions in the membrane is whether the 
GXXXG motif alone is sufficient for inducing a strong association of TM helices. Put another way, 
the dimerization (or generally association) potential – is it encoded throughout TM sequences or in 
just a few hot spots such as the two glycines of the GXXXG motif? This question was in part 
motivated by the observation that the TM helix of the major coat protein of the M13 bacteriophage 
(MCP-TM), in spite of possessing the GXXXG motif, forms a relatively weak homo-dimer [96]. 
Interestingly, such low-affinity homo-dimerization appeared to be a requirement for phage viability 
[97], raising the intriguing possibility that the dimerization potential of MCP-TM is tailored by the 
neighboring residues of the GXXXG motif such that it does not get trapped to the dimeric state, which 
would be detrimental to phage viability. As expected, when the neighboring residues were mutated to 
those found in the GpA TM helix, the dimerization capacity was significantly enhanced, nearly to two 
thirds the level of the dimerization of the GpA TM helix [98]. Remarkably, mutations in just two 
sequence positions were already sufficient for a significant boosting of the dimerization potential of 
MCP-TM (mutation of either position alone did not enhance the dimerization potential, though). The 
two residues are as long as ~ 18Å (12 residues) apart in space, revealing that neighboring residues that 
may be far apart from one another act together to modulate the dimerization potential of a TM helix. 
The emerging picture was then the one in which the GXXXG motif act in concert with neighboring 
residues to fine-tune the dimerization potential of a TM helix such that it can fulfil its biological 
requirements. Later, it was demonstrated that the GpA TM helix can dimerize even when the GXXXG 
motif is abolished by mutations [99], reinforcing the notion that sequence context can considerably 
modulate the inherent dimerization potential of the GXXXG motif. 
At the heart of the GXXXG motif-mediated association of TM helices is van der Waals interaction. 
Then, what about electrostatic interactions in the association of TM helices (more generally in the 
folding of HMPs)? Since the membrane environment displays a low dielectric constant, electrostatic 
interactions can be significantly promoted in it compared to in an aqueous environment where 
solvation by polar media screens off much of electric charges. Hence, electrostatic interactions could 
be considered a determinant for the association of TM helices, with the possibility of even inducing 
promiscuous association of TM helices. Nevertheless, electrostatic interactions had not been a 
favourable candidate until 2000, partly due to the overwhelming importance of van der Waals 
interactions in the dimerization of the GpA TM helix, as discussed. 
In 2000, two research groups, independently, came up with similar ideas to find out whether 
complementary packing interface alone is generally enough for driving the association of TM helices, 
as suggested by the case of GpA (the strongest known TM helix dimer) [33, 34]. Their experimental 
systems were designed on the basis of a dimeric leucine zipper structure found in water-soluble 
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proteins. Leucine zipper sequences exhibit a heptad repeat pattern (abcdefg)n, where the residues at a 
and d are usually hydrophobic and create a tight ‘knobs into holes’ packing interface in the dimeric 
structure, as seen in the yeast transcription factor GCN4 [100]. In the case of the GCN4 leucine zipper 
sequence, the residues at a and d are Val and Leu, respectively, except for one Asn at position a, 
which forms an asymmetric hydrogen bond across the dimer interface. What kind of role does this pair 
of buried Asn residues play in the thermodynamic stability of the GCN4 structure? A study by 
Harbury et al. revealed that an Asn to Val mutation increases the stability of the dimeric structure 
[101]. However, upon the mutation, a mixture of dimeric and trimeric forms began to appear. Hence, 
the Asn residue provides specificity for the dimeric state at the expense of stability. Then, what would 
happen if we convert the leucine zipper helix into a membrane-soluble analogue? Would the Asn 
residue provide specificity for the dimeric form at the expense of stability also in a membrane 
environment? This is exactly what the two research groups pursued. Interestingly, the Asn residue 
turned out to be also critical to the dimerization of TM helices bearing the GCN4 leucine zipper 
sequence, yet in a wholly different way from what was observed in water-soluble counterparts. 
The two groups converted the GCN4 helix into a membrane-soluble analogue by mutating surface 
residues to hydrophobic amino acids while conserving buried ones. Except for the buried Asn, the 
internal packing of this membrane-soluble leucine zipper appears perfect for dimerization in a 
membrane since it is long enough to span the membrane, adopts a common helix-helix crossing angle 
and, most importantly, its complementary internal packing is reminiscent of that found in GpA. Then, 
if the Asn residue is mutated to a hydrophobic amino acid to bring the internal packing state to 
completion, would it display a similar degree of dimerization to GpA? Surprisingly, no dimerization 
was observed [33, 34]. Then, what if we conserve the Asn residue? Again surprisingly, a strong level 
of oligomerization (dimerization and trimerization) was observed, although not at the level of GpA. 
NMR experiments indicated that the Asn side chains were involved in hydrogen bonding interactions 
[34]. Thus, Asn-mediated hydrogen bonding interactions seemed to drive a strong association of 
model TM helices. Furthermore, it was demonstrated that, when a single Asn residue was grafted onto 
a poly-Leu background, it induced a strong level of oligomerization while the poly-Leu background 
sequence itself did not display any level of oligomerization [34]. Two Asn residues, when grafted onto 
the poly-Leu background, provided additive effects in driving the oligomerization of TM helices. 
Follow-up studies further demonstrated that other polar amino acids such as Asp and Glu can also 
induce similar degrees of oligomerization [102, 103]. These results led to the conclusion that 1) tight 
packing interaction alone may not be sufficient for the association of TM helices and 2) hydrogen 
bonding interactions mediated by polar residues could play a crucial role in the association of TM 
helices. 
We now go back to the original subject of this subsection: structural modelling of homo-oligomeric 
complexes of bitopic HMPs. Perhaps, it would be fair to say that the foundation of this field was laid 
down by the Engelman group when they generated structural models for the dimeric TM domain of 
GpA [81, 82], which, as mentioned above, turned out to be very similar to NMR models. This was a 
tour de force at that time, given that structure determination of HMPs was far from a feasible task as it 
is still the case and this was the first concrete case realizing the proposition of aiding structural studies 
of HMPs by molecular modelling supplemented with experimental constraints. The molecular 
modelling protocol used by the Engelman group was very simple. Starting conformations were 
generated by systematically varying the helix-helix crossing angle and the rotational angle of each 
helix about its helix axis. Then, for each of the starting conformations, they carried out simulated 
annealing Monte Carlo (MC) calculations. Resulting conformations were then clustered, and the 
clusters meeting 1) symmetry-based constraints and 2) experimental constraints, usually in the form 
that mutation-sensitive residues should be located in a helix-helix interface, were selected and their 
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average structures became final models. Since then, a number of modifications have been proposed 
such that one can predict structures even without experimental constraints. For example, it was 
proposed that one can rely on conservation properties instead of mutational data [104] because 
conserved residues tend to be located in helix-helix interfaces while variable ones tend to get exposed 
to the membrane, as mentioned above. One of the most successful approaches – the one proposed by 
Kim and Bowie [105] – does not even use conservation properties. The core idea of their method was 
that 1) walk through the search space exhaustively, identifying low-energy conformations (as 
evaluated by their custom-made scoring function heavily dependent on van der Waals interaction) and 
2) cluster low-energy conformations and the average structure of the most populated cluster becomes a 
final model. In spite of its simple nature, it generated structural models that are consistent with 
available experimental data for a number of biotopic HMPs.  
Almost all approaches proposed thus far use symmetry-based constraints and thus are not applicable 
for modelling hetero-oligomeric complexes, e.g. a hetero-dimer of TM helices. Given the simplicity of 
the system, i.e. the association of two (rather) rigid TM helices in a membrane environment, it seems 
feasible that one develops computational methods based on sound physical theories that properly deal 
with the fine balance between enthalpic and entropic components so that hetero- as well as homo-
oligomeric complexes can be modelled with a reasonable accuracy without resorting to any 
constraints. In my Master’s thesis, it was attempted to develop a heuristic scoring function that can be 
applied to both hetero- and homo-oligomeric complexes of bitopic HMPs [106]. Although partially 
successful, it was significant in that it opened an avenue for further developments. 
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5. Computational methodology 
 

 

5.1 Linear regression 

One of the central questions on HMPs is how their thermodynamic stability is maintained in a 
membrane milieu. It is quite conceivable that one may be able to answer this question, at least partially, 
by interrogating known HMP structures. In fact, our novel statistical analysis of known HMP 
structures reported in Paper III revealed a surprising fact that the thermodynamic stability of HMPs 
can be well approximated by the Cohn & Edsall partial specific volumes [67, 107]. A key to this 
insightful analysis was to note the direct relationship between the Pearson’s correlation coefficient (i.e. 
covariance normalized by standard deviations) and a sum of squared errors, as shown below. 
To make things more concrete, consider a situation shown in Fig. 16. From a known structure, we 
know which TM residues are buried inside the protein structure and which ones are exposed to the 
membrane. Moreover, we know the frequencies of occurrence of the 20 amino acid types in each 
sequence position, based on a multiple sequence alignment (MSA). Now equipped with these pieces of 
information, how can we answer the question of what known HMP structures tell about their 
thermodynamic stability in the membrane milieu? 
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It may be easier to answer the question if it is cast in a slightly different form. Namely, what do known 
HMP structures tell about the propensities of the 20 amino acid types to preferentially interact with the 
membrane? If this propensity scale turns out to be exactly the same as, for example, the White-
Wimley (WW) scale [109], then we can infer that the folding and thermodynamic stability of HMPs 
are fully governed by the forces modelled in the WW scale. Technically, then, how can one derive 
such propensity scales from known HMP structures? Our answer was that one derives a propensity 
scale such that the Pearson’s correlation coefficient gets maximized between the mean propensities of 
TM residues to be exposed to the membrane (Eq. 1) and their degrees of exposure to the membrane. 
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                                                                                                                                                  (1) 
 
In Eq. 1, S(i) is the mean propensity of TM residue i to be exposed to the membrane, the index j runs 
over the 20 amino acid types, fi(j) the frequency of amino acid type j in TM residue i (obtained from 
an MSA), and ß(j) is the propensity value of amino acid type j. A nice point of this insightful 
formulation is that the correlation coefficient is directly related to the sum of squared errors (Eq. 2). 
 
                                                                                                                                                  (2)  
                                                                                                                                              
In Eq. 2, SSE(ß) is the sum of squared errors between the mean propensities to be exposed to the 
membrane and the observed degrees of exposure (Eq. 3), r(ß) the correlation coefficient between them 
and k a constant � 0. SSE(ß) and r(ß) are functions of ß, as indicated. 
 
                                                                                                                                                  (3)  
 
In Eq. 3, Y is a column vector of size N (the degrees of exposure to the membrane of TM residues 
constituting the data set), X a matrix of N by 21 (the frequencies of occurrence of the 20 amino acid 
types and 1) and ß a column vector of size 21 (the propensity values of the 20 amino acid types and an 
intercept value). 
Eq. 2 reveals that maximization of the correlation coefficient with respect to ß is equivalent to 
minimization of the sum of squared errors with respect to ß. Minimization of the sum of squared errors 
in the realm of Eq. 1 is the task of linear regression. Hence, Eq. 2 enables one to derive a propensity 
scale from known HMP structures in an analytically exact manner. The propensity scale encoded in 
HMP structures is given by the first 20 elements of ß in Eq. 4. 
 
                                                                                                                                                  (4)  
 
Is Eq. 4 the end of a story? A careful look would reveal that there might be a problem of overfitting in 
the answer as given by Eq. 4. When counting only non-redundant high-resolution structures, one is left 
with only ~25 HMP structures. This is way too low to fairly represent the whole population of HMPs 
found in a typical genome. Nonetheless, we desire to extract a generalizable picture from such small 
data set. One way of doing so is to decay weights, known as ridge regression in linear regression. The 
modified answer is then given by Eq. 5. 
 
                                                                                                                                                                (5) 
 
In Eq. 5, 	 is a complexity parameter that determines the extent of weight decay. If it goes to zero, one 
is faced with overfitting problems. In contrast, if it is assigned very large numbers, all the propensity 
values converge to 0, destroying distinct features of the 20 amino acid types. In our case, values 
between 0.00001 and 10 seemed to be fine. 
We computed correlation coefficients between the derived propensity scale (the first 20 elements of � 
in Eq. 5, termed the MO scale) and various empirical scales. The Cohn & Edsall partial specific 
volumes turned out to be most strongly correlated with the MO scale. Thus, one may conclude that the 
thermodynamic stability of HMPs in the membrane milieu can be best captured by the Cohn & Edsall 
partial specific volumes. Notably, the Cohn & Edsall partial specific volumes were derived in 1943 
when there were no known protein structures at all. 
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5.2 Linear and non-linear classification 

As mentioned above, it still remains extremely difficult to experimentally determine high-resolution 
structures of HMPs. Thus, it is highly desirable to develop sequence-based computational methods for 
predicting structural characteristics of HMPs. For water-soluble proteins, two structural characteristics 
have been the main target of computational prediction methods: secondary structure and solvent 
accessibility. For HMPs, the prediction of secondary structures does not carry as significant a 
momentum as for water-soluble proteins because TM segments are known to usually adopt helical 
conformations to satisfy the hydrogen bonding potentials of polar backbone atoms in a membrane 
milieu. In contrast, the prediction of solvent accessibility of HMPs has remained to date nearly 
untouched. The ability to predict which TM residues are buried in the protein structure and which ones 
are exposed to the membrane would be quite helpful in elucidating not only the structure-function 
relationship of HMPs but also various cellular processes mediated by this important class of proteins. 
In Paper IV, the development of TMX (TransMembrane eXposure), a novel computational method for 
predicting the burial status of TM residues, is presented. TMX is a two-step prediction method. In the 
first step, it computes a positional score for a query TM residue. In the second step, the computed 
positional score is input to a linear support vector classifier (SVC) for predicting the burial status of 
the query TM residue. 
Here, we briefly review the theory of SVCs. The theory of SVCs evolves from a simpler case of 
optimal separating hyperplanes that, while separating two separable classes, maximize the distance 
between a separating hyperplane and the closest point from either class. 
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Fig. 17 shows a hyperplane L defined by the equation f(x) = ß0 + ßTx = 0. Here, L is a line because we 
are in the 2D space. The signed distance of any point x to L is computed to be ß*T(x – x0) = (ßTx + 
ß0)/||ß||. The problem to be solved for obtaining optimal separating hyperplanes as defined above 
becomes then 
 

(6) 
 

 
In Eq. 6, the values of yi for one class are set to be 1 (the class sitting above the hyperplane in case of 
Fig. 17) while those for the other class are –1 (the class sitting beneath the hyperplane in case of Fig. 
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17), as logically expected. The set of constraints in Eq. 6 ensures that all the points are at least a signed 
distance C from a separating hyperplane defined by ß0 and ß. For two separable classes, all the signed 
distances can be set greater than or equal to zero, and one is simply to maximize C. For a non-
separable case, Eq. 6 should be modified (see below). 
The norm constraint for ß can be eliminated by replacing the constraints with 
 
                                                                                                                                                                (7) 
 
or equivalently 

(8) 
 
Then, the original optimization problem is recast as 
 

(9) 
 
 
 
This is a typical convex optimization problem, i.e. a quadratic minimization task with a set of linear 
constraints. The Lagrange primal function to be minimized with respect to ß and ß0 is 
 

 
(10)  

 
Setting the derivatives to zero, we obtain 
 
                                                                                                                                                              (11) 
  
 
 
                                                                                                                                                              (12)  
   
Upon plugging Eqs. 11 and 12 into Eq. 10, we obtain the so-called Wolfe dual 
 

(13)  
 
 
The solution is obtained by maximizing LD, a simpler convex optimization problem compared with Eq. 
10. The solution must simultaneously satisfy the Karush-Kuhn-Tucker conditions, which include Eqs. 
11, 12 and 14. 

(14)  
 
From Eq. 14, it is inferred that if �i is not zero, then yi(xi

Tß + ß0) = 1, which means that xi sits on the 
boundary of the empty slab (“empty” in the sense that there are no training points found within the 
slab, Fig. 18A) centering on the optimal separating hyperplane. Conversely, if yi(xi

Tß + ß0) > 1, �i 
should be zero and xi does not contribute to the optimal separating hyperplane, as indicated by Eq. 11. 
Now, it is clear that the optimal separating hyperplane is defined solely by the set of training points 
(xi) with non-zero �i, i.e. those points sitting on the boundary of the empty slab via �i > 0. Such a set of 
points is often called “support vectors,” explaining the origin of the term “support vector” in “support 
vector classifiers.” Given the estimates of ß and ß0, the classifier function is written as 
 

(15) 
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In the case shown in Fig. 17, if the sign of a query point is computed to be positive, it is classified to 
the class sitting above the hyperplane. Otherwise, it is classified to the class sitting beneath the 
hyperplane. 
A notable feature of the formalism behind optimal separating hyperplanes is that it depends only on a 
relatively small number of data points with �i > 0 in forming a classification boundary while ignoring 
those points far from the boundary and can thus be more robust against model misspecification. 
However, if the model specification is 100% right, it might not be perfect because it heavily focuses 
on potentially noisier data at the boundaries of the classes. To some extent, this is also the case for 
SVCs (see below). 
As mentioned above, the formalism described thus far is applicable only to separable cases (Fig. 18A). 
For inseparable cases (i.e. the two classes are not separable with a hyperplane as shown in Fig. 18B), 
Eq. 9 should be modified. One way of doing so is to still maximize C in Eq. 6 while allowing for some 
points to be on the wrong side. Technically, it is modeled as follows. Each point gets assigned a slack 
variable 
 as shown in Fig. 18B, and the constraints in Eq. 6 are modified as shown in Eq. 16. 
 

(16)  
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With these new constraints, there are now two quantities to be minimized. One is ||ß|| as in Eq. 9, and 
the other the sum of the values of the slack variable assigned to the points. Thus, one formulates the 
following for inseparable cases. 
 

 
(17)  

 
 
The variable � in Eq. 17 is often called a regularization constant and determines how much weight one 
should put on bounding the sum of the values of the slack variable relative to minimizing the squared 
length of � in the overall minimization process. The effects of � will be discussed below in conjunction 
with the use of non-linear kernels. The way of solving Eq. 17 is the same as that for Eq. 9 for 
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separable cases. Namely, one formulates the Lagrange primal function, from which the Wolfe dual 
function is derived and solved. The Lagrange primal function is formulated as follows. 
 
 
Setting the derivatives to zero, we get the conditions in Eq. 19, along with the constraints �i, �i, �i � 0 
for i = 1,…, N. Upon plugging the conditions in Eq. 19 into Eq. 18, the Wolfe dual function is derived 
(Eq. 20). 
 
 
                                                                                                                                                              (19)  
 
 

 
(20)  

 
 
The values of �i maximizing LD and simultaneously satisfying all of the Karush-Kuhn-Tucker 
conditions become the solution. The only difference from the separable cases addressed above is that 
there are now two types of support vectors. One type is those sitting on the edge of the slab, for which 
the slack variable gets assigned a value of 0. The remainders are either inside the slab or on the wrong 
side of the separating hyperplane. 
The formalism described thus far generates linear classification boundaries. Non-linear classifiers are 
more flexible than linear ones and might achieve better prediction accuracies. The usual tactic to go 
beyond linearity is to enlarge the feature space using basis expansions and then to apply linear 
classifiers to the enlarged feature space. Linear classifiers in the enlarged feature space are translated 
to non-linear classifiers in the original feature space. For the selected basis functions hm(x), m = 
1,…,M, each feature vector xi is transformed to generate a derived feature vector h(xi) = (h1(xi), 
h2(xi),…, hM(xi)). 
Seen from this perspective, the formalism for separating hyperplanes is particularly well suited for 
going beyond linearity with the basis expansion technique. The Wolfe dual function (Eq. 20) involves 
feature vectors only via their inner products. The resulting classifier (Eqs. 15 and 19) also involves 
feature vectors only via their inner products. With derived feature vectors, the Wolfe dual function is 
straightforwardly translated as 
 
                                                                                                                                                              (21) 
  
Similarly, the solution function f(x) is translated as 
 
                                                                                                                                                              (22) 
 
Usually, it is computationally expensive to enlarge feature vectors using basis expansions. In our case, 
however, we do not need derived feature vectors themselves, as Eqs. 21 and 22 suggest. All we need is 
their inner products. Thus, it is not necessary to explicitly specify h. Rather, the knowledge of a kernel 
that computes the inner products of derived feature vectors is sufficient for all intents and purposes. 
Theoretical analysis showed that the kernels should be a symmetric positive (semi-) definite function. 
Three popular kernels found in the literature are (1) polynomial (�u´v+coef0)degree, where � is a 
modulating constant for the inner product of u and v, coef0 a constant in the polynomial expansion and 
degree the degree of the polynomial, (2) radial exp(-�|u-v|2) and (3) sigmoid tanh(�u´v+coef0).  

(18) 
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The role of � in Eq. 17 is clearer with the use of non-linear kernels. Large values of � will put more 
weights on minimizing the sum of the values of the slack variable and thus result in a wiggly 
boundary, potentially overfitting to the training data. In contrast, small values of � will lead to 
smoother boundaries, which might yield smaller generalization errors. Several studies on predicting 
the solvent accessibility of water-soluble proteins have suggested that the radial kernel seems superior 
to others, presumably due to its flexibility [110-112]. Yet, in our study in Paper IV, the linear kernel 
was found to be most effective, suggesting that non-linear kernels suffer from overfitting problems. 
 

 

5.3 Feature selection 

As mentioned above, TMX currently uses an SVC with a linear kernel for a binary classification. It 
may be a good idea to try other classifiers such as boosted classification trees for boosting the 
prediction accuracy of TMX. Equally good, though, would be to refine input vectors themselves. 
Initially, the input vectors for TMX consisted of 441 elements (the frequencies of occurrence of the 20 
amino acid types and the conservation index for each in a window of 21 residues centering on the 
query residue). The reason for considering a window of 21 residues in predicting the burial status of 
the query residue is that one can better account for long-range effects with enlarged windows. 
However, the shortcoming of enlarged windows is that the signal-to-noise ratio decreases as a window 
size increases. For instance, it is intuitively clear that not all of the 441 elements would contribute 
equally to the prediction; many of them may simply be noises. Thus, one is forced to make an 
unpleasant tradeoff between long-range effects and signal-to-noise ratio. However, it may be possible 
to circumvent this unpleasant tradeoff. For instance, by a feature selection, i.e. by filtering out noisy 
elements. Refining input vectors in this fashion might also be helpful in overcoming the curse of 
dimensionality, a pathologic phenomenon associated with high dimensionalities of input vectors [113]. 
The existing feature selection techniques can be classified into two categories depending on whether 
they generate transformed features (usually via a linear combination of original features) or just cull 
out original features as they are. We preferred the latter to the former because of the enhanced 
interpretability (especially considering that the feature vector in our case resides in a 441 dimensional 
space). Another point of choosing the latter is that the former usually involves inversion of matrices 
(of a considerable dimension), which is often numerically unstable or costly. Of several alternatives, 
we adopted the Fisher’s index. In our opinion, the Fisher’s index is conceptually attractive, well suited 
to continuous features as in our case and numerically efficient. Put simply, the Fisher’s index 
measures the ability of a feature to simultaneously maximize the distance between the centroids of the 
two classes and minimize the overlap between the two classes as shown in Figure 19. 
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The Fisher’s index of the ith feature is computed as follows. To turn off the effects of the other 
features, we set vi = (0…0 1 0…0)T, i.e. vi is a column vector with all the components set to 0 except 
for the ith component set to 1. The distance between the centroids when projected onto vi is computed 
as [vi

T(c1-c2)]2 where cj is the centroid of the jth class. The overlap of the two classes when projected 
onto vi is computed as vi

TSvi where S is the common covariance matrix for the two classes. Based on 
these two quantities, the Fisher’s index is computed as FI(i) = [vi

T(c1-c2)]2/vi
TSvi. In our case, a feature 

selection based on the Fisher’s index led to dramatic improvements in the prediction accuracy. 
Without any feature selection, the prediction accuracy was 76.0% on a benchmark set of 3138 TM 
residues. Upon feature selections, it was raised to 77.2% (a statistically significant improvement as 
judged by the Wilcoxon signed rank test). In addition to boosting prediction accuracies, the Fisher’s 
index allowed us to find which elements are discriminating between buried and exposed TM residues, 
another boon of a feature selection analysis. 
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6. Conclusions and outlook 

The thesis is based on three published papers and one submitted manuscript.  
 
The first paper (Paper I) is  
Park, Y. and Helms, V. (2006) Proteins, 64, 895-905. Assembly of Transmembrane Helices of Simple 
Polytopic Membrane Proteins from Sequence Conservation Patterns. 
In this paper, it was demonstrated that it is feasible to generate native-like structural models for 
polytopic HMPs with a modest number of TM helices from packing constraints and sequence 
conservation patterns. In spite of their low-resolution nature, they should be helpful in rationalizing 
experimental data and designing further experiments, as exemplified for the case of V-type ATPase in 
the paper. 
 
The second paper (Paper II) is  
Park, Y. and Helms, V. (2006) Biopolymers, 83, 389-399. How Strongly do Sequence Conservation 
Patterns and Empirical Scales Correlate with Exposure Patterns of Transmembrane Helices of 
Membrane Proteins? 
In this paper, sequence conservation patterns and a set of commonly used empirical scales were 
examined to find how strongly they correlate with exposure patterns of HMPs. In addition, the 
examination of previously proposed knowledge-based scales suggested that there could be a better 
way of deriving a knowledge-based scale from known HMP structures. 
  
The third paper (Paper III) is  
Park, Y. and Helms, V. (2007) Bioinformatics, 23, 701-708. On the Derivation of Propensity Scales 
for Predicting Exposed Transmembrane Residues of Helical Membrane Proteins.  
Encouraged by the suggestion made in Paper II, we developed an analytical formalism for deriving a 
propensity scale from known HMP structures. The derived scale revealed that the thermodynamic 
stability of HMPs can be best captured by the Cohn & Edsall partial specific volumes.   
 
The submitted manuscript (Paper IV) is  
Park, Y. and Helms, V. Prediction of the Burial Status of Transmembrane Residues of Helical 
Membrane Proteins 
In this manuscript, we describe the development of TMX, a novel computational method for 
predicting the burial status of TM residues of HMPs. Its prediction accuracy is significantly higher 
than that of previously proposed methods. Moreover, TMX provides confidence scores for the 
predictions made, making it well-suited to real application settings. Feature selection incorporated in 
TMX allowed for interesting insights into the architectural principle of HMPs. 
 
A number of conclusions may be drawn from the study reported in this thesis. 
1. For TM residues, it is the conservation property that most strongly correlates with their exposure 
patterns. The conservation property makes it possible to generate low-resolution structural models of 
HMPs with a modest number of TM helices. 
2. In combination with the frequencies of occurrence of the 20 amino acid types in TM residues, the 
conservation property enables one to predict the burial status of TM residues with an accuracy of 
~80%. 
3. Computational analysis of known HMP structures showed that the thermodynamic stability of 
HMPs in a membrane milieu can be best captured by the Cohn & Edsall partial specific volumes.  
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The study reported in this thesis lays a firm foundation for several follow-up studies. The formalism 
for deriving a propensity scale of the 20 amino acids to preferentially interact with the membrane as 
reflected in known HMP structures (Paper III) can be straightforwardly applied to ß-barrel MPs. Also, 
it can be applied to the interfacial regions of both HMPs and ß-barrel MPs. A comprehensive cross-
analysis of the 4 propensity scales would reveal similarities and dissimilarities in how the folding and 
thermodynamic stability of the two types of MPs are achieved in two distinct regions (interfacial and 
hydrophobic core regions) of the membrane. 
Surprisingly, Paper III revealed that the thermodynamic stability of HMPs can be best captured by the 
partial specific volumes of the 20 amino acids. This observation raises several interesting questions, 
which can be readily answered. One would be to which extent one can predict helix faces exposed to 
the membrane from partial specific volumes. Here, we are not really interested in prediction accuracies 
themselves but focus on physical explanations for the structural organization of HMPs. Can we 
observe periodic variations of partial specific volumes along TM segments using discrete Fourier 
transform power spectra? Would this also be of help in predicting the boundaries of TM segments? 
Can we see an enrichment of amino acids with a small partial specific volume in HMPs of 
thermophiles vs. those of mesophiles? 
Regarding TMX reported in Paper IV, it would be desired to incorporate topology prediction methods 
into TMX so that one can get a global overview, in a single step, of the schematic organization of the 
polypeptide chain in the membrane. Also, it would be desired to look for other classifiers and novel 
input encoding schemes for boosting prediction accuracies as much as possible.  
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Abstract 
The transmembrane (TM) domains of most membrane proteins consist of helix bundles. The 
seemingly simple task of TM helix bundle assembly has turned out to be extremely difficult. 
This is true even for simple TM helix bundle proteins, i.e., those that have the simple form of 
compact TM helix bundles. Here, we present a computational method that is capable of 
generating native-like structural models for simple TM helix bundle proteins having modest 
numbers of TM helices based on sequence conservation patterns. Thus, the only requirement 
for our method is the presence of more than 30 homologous sequences for an accurate 
extraction of sequence conservation patterns. The prediction method first computes a number 
of representative well-packed conformations for each pair of contacting TM helices, and then a 
library of tertiary folds is generated by overlaying overlapping TM helices of the representative 
conformations. This library is scored using sequence conservation patterns, and a subsequent 
clustering analysis yields 5 final models. Assuming that neighboring TM helices in the 
sequence contact each other (but not that TM helices A and G contact each other), the method 
produced structural models of CA RMSD of 3 ~ 5 Å from corresponding crystal structures for 
bacteriorhodopsin, halorhodopsin, sensory rhodopsin II, and rhodopsin. In blind predictions, 
this type of contact knowledge is not available. Mimicking this, predictions were made for the 
rotor of the V-type Na+-ATPase without such knowledge. The CA RMSD between the best 
model and its crystal structure is only 3.4 Å, and its contact accuracy reaches 55%. 
Furthermore, the model correctly identifies the binding pocket for sodium ion. These results 
demonstrate that the method can be readily applied to ab initio structure prediction of simple 
TM helix bundle proteins having modest numbers of TM helices. 
 
 
Introduction 
Over the past decade, steady progress has been noted in the structure prediction of soluble 
proteins.1 Especially in the new fold category, a couple of methods such as Rosetta2 and 
TASSER3 have shown admirable performance. In contrast, little has been achieved in the 
structure prediction of membrane proteins. As pointed out by White and von Heijne,4 two 
fundamental problems need to be addressed for the development of reliable structure 
prediction methods: the mechanisms of the biological assembly of membrane proteins and the 
thermodynamic principles of their structural stability in the lipid bilayer. Even though great 
strides have been made regarding the two problems over the past years,5-11 our understanding is 
not yet sufficient. In fact, as discussed by White,12 the situation seems to get more complicated 
than expected, in light of the complex structures recently presented for the ClC chloride 
channel13 and the KvAP voltage-gated potassium channel.14 The end-to-end arrangement of 
helices within the hydrophobic core of the membrane seen in the aquaporin family15 also 
compounds our understanding about membrane protein folding. 
Nevertheless, for simple membrane proteins, i.e., those that have the simple form of compact 
transmembrane (TM) helix bundles, structural modeling can, in principle, be divided into two 
steps according to the well-established two-stage model16: determination of the portions of the 
primary sequence that traverse the membrane and assembly of these TM helices. Since TM 
boundaries can be accurately predicted in many cases,17-22 the structural modeling boils down 
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to assembly of TM helices. This has been considered an easier problem compared to the 
structure prediction of soluble proteins. Yet, years of work have attested that this is still too 
difficult a problem, and successful structural modeling has been mostly confined to homo-
oligomeric complexes,23-26 where symmetry constraints can be easily imposed on to simplify 
the conformational search problem. The current study tackles structural modeling of simple 
TM helix bundle proteins (being “simple” as defined above) that consist of modest numbers of 
TM helices. 
So far, a number of studies have been reported about structural modeling of polytopic 
membrane proteins. In 1997, Baldwin and his coworkers presented a method for assembling 
the TM helices of the rhodopsin family of G-protein-coupled receptors (GPCRs) based on 
helix parameters extracted from cryo-electron microscopy (cryo-EM) maps and sequence 
conservation patterns.27 The study demonstrated that sequence conservation patterns can be a 
powerful tool for structural modeling. Yet, the presence of EM maps was a prerequisite for the 
presented methodology, which is really a heavy requirement given that EM maps are as 
difficult to get as crystals for the determination of atomic-scale structural models. Subsequently, 
Goddard and his coworkers developed a computational method of predicting the structures of 
GPCRs.28,29 However, their method also assumed the presence of EM maps, since it is based on 
helix parameters extracted from EM maps. A computational method of different nature has also 
been proposed, where a set of distance constraints is utilized for the generation of a small 
number of feasible TM helix bundles.30,31 This method successfully predicted the structure of 
bovine rhodopsin using a set of 27 distance constraints.31 Even though it is relatively easier to 
get this type of experimental constraints than EM maps, it is still expected to be quite laborious 
to obtain that many experimental constraints routinely. The method presented in this study 
does not make any heavy assumptions of this sort. Since it is based on sequence conservation 
patterns, the only requirement is the presence of more than ~ 30 homologous sequences. Given 
rapid increases in the size of sequence databases, we regard this requirement as quite light. 
 
 
Methods 
Overview of the prediction protocol 
The fundamental assumption of our prediction protocol is that, even though complex tertiary 
interactions among non-neighboring TM helices are expected to play an important role in the 
determination of overall structures, we could split, to a large extent, modeling of TM helix 
bundles into modeling of TM helix pairs and subsequent assembly to TM helix bundles. This 
assumption might not hold for complex polytopic membrane proteins, yet it is expected to be a 
reasonably good approximation for simple TM helix bundle proteins, the focus of the current 
study.  
Based on the pairwise separation scheme, we first compute representative well-packed 
conformations for each pair of contacting TM helices. Then, a library of tertiary folds is 
generated by overlaying overlapping TM helices of the representative conformations. This 
library is scored using sequence conservation patterns. As is usually done in the protein 
structure prediction field, a clustering analysis of the top-scoring folds and subsequent rigid-
body refinements produce 8 candidate models. This whole process is repeated 50 times. The 
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generated candidate models are then pooled, and the same clustering analysis yields 5 final 
models. This overall flow of the prediction protocol is depicted in Fig. 1. 
 
Test proteins 
As outlined above, we restricted our attention to simple TM helix bundle proteins as 
represented by bacteriorhodopsin.32 We were reluctant to test the prediction protocol against 
structure fragments, for example, the N- or C- terminal domains of lactose permease,33 because 
they are not “clean” domains as understood in soluble proteins. Since we score the library of 
tertiary folds using sequence conservation patterns, membrane proteins with small numbers of 
homologous sequences in sequence databases were not suitable, either. With these criteria in 
mind, we found 5 suitable targets from the list of membrane proteins with known structure 
summarized by White (http://blanco.biomol.uci.edu): bacteriorhodopsin (bR),32 halorhodopsin 
(hR),34 sensory rhodopsin II (sR),35 rhodopsin,36 and the rotor of the V-type Na+-ATPase 
(NtpK).37 The sequence identities of the three bacterial rhodopsins are ~ 30%. Yet it is to be 
noted that a couple of recent studies considered them to be independent targets.38,39  
Since the prediction protocol generates a structural model for the TM domains of the test 
proteins, TM boundaries need to be defined before structural modeling. The current study 
focuses on the second stage of the two-stage model: assembly of independently stable TM 
helices to TM helix bundles. Thus we simply took TM boundary information from the PDB-
TM database.40 Once defined, individual TM helices were constructed as ideal right-handed �-
helices with backbone dihedral angles of � = -57° and � = -47°. Random perturbations in the 
TM boundaries taken from the PDB-TM database within a variation of ±2 residues did not 
affect prediction results significantly (data not shown). 
 
Systematic conformational search of the TM helix bundles 
As stated above, the way we travel through the conformational space of a given TM helix 
bundle is by overlaying overlapping helices of the representative conformations. Thus, one 
first needs to compute representative conformations. This is carried out as follows: For each 
pair of contacting TM helices, 3888 conformations are to be explored in a systematic way (see 
below). These are scored by our newly developed scoring function.41 Then, the 1000 lowest-
energy conformations are clustered into a few groups, and the centroid conformations for the 
groups become the representative well-packed conformations. 
It is an open issue how many lowest-energy conformations are to be clustered into how many 
groups. Empirically, we chose to cluster 1000 lowest-energy conformations into 13 groups. 
With regards to the number of representative conformations assigned to each pair of contacting 
TM helices, we investigated the possibilities from as large as 40 to as small as 10. Going below 
11 gave significantly poorer results for some test proteins. Going up beyond 15 slightly 
improved the results, yielding a model of C alpha atom root-mean-square deviation (CA 
RMSD) of 2.5 Å for some cases. Yet, the total computational time increases rapidly with the 
number of representative conformations. For example, when using 13 conformations for each 
pair of contacting TM helices of the 7 TM helix bundle protein, the computational cost for 
generating a library of tertiary folds is 136, taking ~ 10 minutes on a 2.8 GHz processor. 
However, it takes ~ 150 hours on the same processor when using 40 conformations for each 
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pair (406). It is desirable to use sufficient numbers of representative conformations to guarantee 
an acceptable quality of results, as long as affordable on a typical workstation. Numbers 
between 11 and 15 seem to be a good choice in this regard for TM helix bundles consisting of 
7 TM helices. For TM helix bundles with 4 TM helices, the numbers between 31 and 35 seem 
to be a good choice. For reasons of limited space, we only present results with 15 
representative conformations for bR, hR, sR, and rhodopsin (all have 7 TM helices). For NtpK 
(having 4 TM helices), the results with 35 representative conformations are reported. 
For a systematic and unbiased scanning of the conformational space of a pair of contacting TM 
helices, we first randomly rotated the two TM helices. Then, four of the six variables 
describing their relative orientations were manipulated as follows (Fig. 2). Describing the 
helix-helix distance, �, was set to 9.0 Å, which is a typical value observed for contacting TM 
helices.42 To allow the two helices to contact each other at different positions, δ was varied in 
steps of 5.0 Å in the range of –5.0 Å ~ 5.0 Å for both helices. Describing the two rotational 
angles about the helix axes, � and � were varied in steps of 20°. �, describing the tilting angle, 
was allowed among -24°, -12°, 12°, or 24°. In total, 3888 (3·18·18·4) conformations were 
explored. We could have performed a denser scanning of the conformational space, yet we 
observed that the current degree of scanning is dense enough for simple TM helix bundle 
proteins. Furthermore, a rather coarse scanning is desirable given that the next step is a 
clustering calculation. As before, we optimize the side chain conformations of each structure 
explored using SCWRL43 and compute interaction energies with a cutoff at 9 Å. Those 
conformations were removed during the scanning that harbor steric clashes (1.5 Å cutoff for 
the inter-atomic distance between heavy atoms of the SCWRL-optimized structure). Our 
earlier report41 defined the interaction centers only for 11 amino acids. The expanded list of the 
interaction centers for all 20 amino acids is summarized in Table 1. Clustering was performed 
using the average linkage clustering algorithm.44 
Upon generating representative conformations for contacting TM helix pairs, a library of 
tertiary folds was built by overlaying overlapping TM helices of the representative 
conformations. To speed up the computation, TM helix bundles were represented only by CAs 
from this step on. Folds with bad contacts (distance between CAs of different TM helices of 
4.0 Å or less) were removed. TM helix bundle proteins are well known to form compact 
structures.45 Thus loosely packed folds were removed as well. For this, we calculated the 
average distance between all pairs of CA-based helix centers. Simple experiments on a 2D grid 
show that 16.0 Å is a reasonable upper bound for TM helix bundles consisting of 7 TM helices 
(Fig. 3). This compactness filter was also useful in keeping the sizes of libraries to a 
manageable level. For TM helix bundles with 4 TM helices, it was not necessary to apply this 
sort of compactness filter since the sizes of the libraries were inherently small.   
 
Scoring of a library of TM helix bundle folds based on sequence 
conservation patterns 
A number of studies have shown that the more conserved a sequence position is, the less likely 
it is to be exposed to the lipid bilayer.27,46,47 We make use of this observation for scoring the 
libraries of TM helix bundle folds. Specifically, scores were computed using the following 
equation. 
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In Eq. 1, the index i runs over the residues making up the TM helix bundle. rSASAi is the 
solvent-accessible surface area (SASA) of the sequence position i in the TM helix bundle 
divided by its SASA when the TM helix containing it is isolated from the TM helix bundle, 
taking values between 0 (for fully buried residues) and 1 (for fully exposed residues). For 
computing the SASAs of CA-only models, the probe radius was set to 4.0 Å to mimic all-atom 
results as best as possible. Calculation of SASAs was performed using the BALL library.48 CIi 
is the conservation index of the sequence position i estimated from a multiple sequence 
alignment (MSA) using the variance-based method (Eq. 2, see below). The suite of web 
services at the EBI website (http://srs.ebi.ac.uk/srsbin) was used when obtaining MSAs. A 
maximum of 500 similar sequences were retrieved from the Uniprot database49 using 
BlastP50,51 with a significance cutoff of 10-4 while keeping the other parameters to the default 
values, and aligned against the query sequence using ClustalW52 with all the parameters set to 
the default values. One wishes to obtain MSAs where the diversity of sequences within the 
significance cutoff is represented as fully as possible for the accurate estimation of 
conservation indices. This seemed to be satisfied for all test proteins except rhodopsin; the 
sequence identity of the least similar sequence to rhodopsin was ~ 40%. Thus, we restricted the 
search for similar sequences to rhodopsin to the Swissprot database.53 To get rid of sequence 
fragments in the raw MSAs, a sequence identity filter of 25% was applied, and remaining 
sequences were realigned using ClustalW with all the parameters set to the default values. A 
recent analysis has shown that one needs to align at least 20 sequences to accurately estimate 
conservation indices from MSAs.54 In all cases, the number of sequences in the refined MSA 
was greater than 30 (specifically, Bacteriorhodopsin – 45, Halorhodpsin – 30, Sensory 
rhodopsin II – 30, Rhodopsin – 149, NtpK – 54). In the current implementation, the more 
conserved a sequence position, the higher its conservation index. Accordingly, the better a 
given TM helix bundle manifests the sequence conservation pattern, the lower is its score 
computed by Eq. 1. 
 
Estimation of conservation indices from multiple sequence alignments 
Conservation indices were estimated from multiple sequence alignments using the following 
variance-based method.54 

        � −=
j jj fifiC 2))(()(                       (2) 

In Equation 2, C(i) is the conservation index for the sequence position i in a multiple sequence 
alignment, fj is the overall frequency of amino acid j in the alignment, and fj(i) is the frequency 
of amino acid j in the sequence position i. Obviously, positions with fj(i) equal to fj for all 
amino acids j are assigned C(i) = 0. On the contrary, C(i) takes on its maximum for the position 
occupied by an invariant amino acid whose overall frequency in the alignment is low. In order 
to account for the redundancy of aligned sequences, amino acid frequencies were weighted 
using a modified method of Henikoff and Henikoff as implemented in PSI-BLAST.51,55 The 
conservation indices computed by Eq. 2 were then normalized by subtracting the mean from 
each conservation index and dividing by the standard deviation. Actual calculations were 
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performed using a program written by Pei and Grishin,54 which is freely available at 
ftp://iole.swmed.edu/pub/al2co/. As Eq. 2 implies, “conserved” in this study means being 
identical, disallowing “conserved” substitutions. More sophisticated methods taking 
“conserved” substitutions into account usually generated similar conservation indices (data not 
shown). Thus, the seemingly simple Eq. 2 appears sophisticated enough to accurately extract 
sequence conservation patterns from multiple sequence alignments. The current scoring 
scheme (Eq. 1 combined with Eq. 2) was found to work remarkably well for predicting the 
rotational angles of TM helices about the helix axes derived from EM maps (manuscript 
submitted for publication), which is why we used it for the current study. 
 
Generation of 8 candidate models 
Upon scoring of the library based on sequence conservation patterns, 500 top-scoring folds 
were clustered into 8 groups using the average linkage clustering algorithm, and average 
structures were generated for the 8 groups, yielding 8 candidate models. Again, it is an open 
issue how many top-scoring folds are to be clustered into how many groups. The combination 
500/8 was chosen empirically. However, any reasonable choice seems fine because the 
prediction protocol is run 50 times and the candidate models generated are going to be pooled 
in the end (see below). Average structures were generated by optimal superimposition of the 
corresponding ideal helices onto the averaged coordinates. As a result, the 8 models do not 
have deviations from ideal geometry such as distortions in bond length, angle and dihedral 
angle. Yet, they did contain steric clashes due to their average nature. To correct for 
deficiencies of this type, a rigid-body refinement step was carried out. There are many possible 
ways for performing rigid-body refinements. The most natural one complementing the discrete 
nature of the previous step of overlaying overlapping TM helices of representative 
conformations seems to relax the angles formed by three neighboring TM helices (Fig. 4). For 
example, when forming a triple of TM helices ABC from pairs AB and BC, the position of TM 
helix C relative to that of TM helix A is fully determined by the relative orientation of A to B 
and that of B to C. This leaves no room at all for the adjustment of TM helix C’s position 
relative to that of TM helix A. Relaxing the angle formed by the three projection points onto 
the membrane plane of the CA-based centers of the three TM helices is a natural way for 
adjusting the positions of TM helices. 
First, TM helices were translated along their helix axes to align their CA-based centers to the 
midplane of the lipid bilayer. Then to remove any steric clashes present in the average 
structures, we relaxed all the interhelical distances to 9.6 Å, which is the average distance 
between contacting TM helices.42 Then, we relaxed the angles as follows: Starting with the 
smallest one, we change it in 1° increments over the range of -25° ~ 25° around its current 
value in search of the angle that minimizes the maximal fractional exposure of individual TM 
helices to the lipid bilayer while inducing no steric clashes (distance between CAs of different 
TM helices of 5.0 Å or less). This process was repeated with the next smallest angle until all 
the angles were relaxed. Figure 4 depicts this rigid-body refinement step. This rigid-body 
refinement process was iterated two times. 
 
Generation of 5 final models 
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Since we start with randomly rotated helices for an unbiased scanning, every run of the above 
procedure does not generate results of the same quality. For this reason, we repeat the 
procedure 50 times, as depicted in Fig. 1. Upon running the prediction protocol 50 times, the 
candidate models generated so far are pooled, and a clustering analysis is carried out to yield 5 
final models. Each run generates 8 candidate models as described above, and the number of 
pooled candidate models becomes 400 (8 times 50). Out of these, 50 top-scoring models are 
clustered into 8 groups. Then, average structures are computed for the 5 most-populated groups, 
generating 5 final models. Other combinations than 50 top-scoring models and 8 groups 
generate similar results (data not shown). Thus the choice of 50/8 is not really critical. For the 
ab initio structure predictions of NtpK (having 4 TM helices), the prediction protocol is run for 
all possible permutations of the connectivity of TM helices (3 in this case, see below). Thus, 
the number of pooled models becomes 1200 (3 times 8 times 50), and 150 top-scoring models 
are clustered into 8 groups (in line with the above proportion 400:50 = 1200:150). The reason 
for generating 5 final models was because predictors are allowed to submit a maximum of 5 
models in CASP experiments.56 
 
Computational expense 
The computation of representative conformations for each pair of contacting TM helices takes 
~ 10 minutes on a 2.8 GHz processor. Generation of a library of tertiary folds and concurrent 
scoring based on sequence conservation patterns for a TM helix bundle with 7 TM helices 
takes ~ 15 minutes on the same processor. All together, one run of the prediction protocol 
requires ~ 90 CPU minutes. 
 
 
Results 
Summary of the prediction results 
Given that there exist no sophisticated scoring functions for modeling the structures of 
membrane proteins, sequence conservation patterns might be a viable alternative. Even though 
this conjecture appears feasible given the previous studies that reported a successful 
application of sequence conservation patterns for predicting the rotational angles of TM helices 
about their helix axes.27,46 it has never been confirmed. In other words, it is not clear whether 
sequence conservation patterns could be equally powerful for ab initio structural modeling 
where helix parameters extracted from EM maps are not assumed. When we launched the 
current investigation, we immediately encountered the problem of scarcity of suitable test 
systems. Since the presented prediction protocol starts with computation of representative 
conformations of each pair of contacting TM helices, the protocol should be run for all 
possible permutations of the connectivity of TM helices for an ab initio structure prediction. 
Admittedly, this is nearly impossible for a TM helix bundle consisting of 6 or more helices. 
Out of the 5 test proteins, only NtpK has less than 6 TM helices. Thus, for the other 4 test 
systems (bR, hR, sR, and bovine rhodopsin), we were forced to perform a rather limited test. 
Namely, we assumed that neighboring TM helices in the sequence contact each other: TM 
helix pairs AB, BC, CD, DE, EF, and FG contact each other. Since we do not assume that TM 
helices A and G contact each other, the number of possible TM helix bundle folds remains 
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quite high (For example, see Fig. 6). As a result, it is still quite difficult to predict the correct 
arrangement pattern of TM helices, let alone accurate predictions of tilting and rotational 
angles of individual TM helices. For NtpK, we do not assume this type of connectivity 
knowledge, making ab initio predictions. 
We first present the prediction results for the three bacterial rhodopsins and bovine rhodopsin, 
for which we assumed the connectivity knowledge as mentioned above. Shown in Fig. 5 are 
the superimpositions of the best models onto the corresponding crystal structures. Table 2 
summarizes quantitative comparisons between the predicted and experimental structures. For 
the three bacterial rhodopsins (bR, hR and sR), the relative positions of TM helices are 
correctly modeled. Remarkably, the rotational angles of TM helices about their helix axes are 
predicted with high precision in most cases, including bovine rhodopsin. This level of accuracy 
rivals that of the best-performing methods specialized in the prediction of the rotational angles 
of TM helices about the helix axes extracted from EM maps.57,58 On the other hand, the 
coupled prediction of an overall fold pattern and the rotational angles of individual TM helices 
about their helix axes is, to a large extent, something expected, given the way TM helix bundle 
folds are generated: overlaying overlapping TM helices of the representative well-packed 
conformations of contacting TM helix pairs. As expected, the prediction quality for rhodopsin 
is relatively poor because the pairwise separation scheme is problematic for its complex 
structure. Specifically, TM helix C is deeply buried in the structural core, and this appears to 
induce the separation of TM helices D and E. As a result, TM helices D and E do not contact as 
significantly as other contacting pairs do while, in our approach, we assume they do. Fig. 6 
shows the properties of the other 4 final models for bR. It clearly demonstrates that even after 
assuming that neighboring TM helices in the sequence contact each other, the number of 
overall fold patterns remains quite high, and thus it is not trivial to predict the correct fold 
pattern.  
When it comes to structural modeling of TM helix bundle proteins, it is of considerable interest 
to predict helix-helix contacts because they play an important role in maintaining the structural 
and functional integrity. Since the models generated by the current protocol consist only of 
CAs, it is not straightforward how to define interhelical contacts. Given that the average 
interhelical distance of contacting TM helices of polytopic membrane proteins is 9.6 Å,42 it is 
reasonable to define a contact for two CAs belonging to different TM helices with the distance 
between the two smaller than 7.5 Å. We computed two measures of interhelical contact 
predictions. The first one is accuracy, i.e., TP/Npred, where TP = true positives and Npred = total 
number of predictions made. The second one is coverage, i.e., TP/Nobs, where Nobs = total 
number of observed contacts in experimental structures. Table 2 lists these numbers for each 
test protein. Complementary to the values of CA RMSD, the values of accuracy and coverage 
indicate that models of reasonably good quality have been generated for the 4 test proteins. 
This, in turn, demonstrates that sequence conservation patterns work equally powerfully in a 
situation where helix parameters extracted from EM maps are not available. 
To confirm that sequence conservation patterns played a major role in the positive results of 
Table 2, we made an experiment with sequence conservation patterns. Namely, we clustered 
500 highest-score (instead of the 500 lowest-score) folds for generating 8 candidate models, 
and 50 highest-score candidate models were clustered to yield 5 final models, performing the 
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other steps in the same way. (Another possible control would have been to select 500 folds and 
50 candidate models randomly; we chose the highest-score ones since we believed that this 
scheme would better reveal the discriminating power of the scoring function between ‘good’ 
and ‘bad’ folds). Table 3 shows dramatic changes in the results. Considerable increases in CA 
RMSD are observed for all 4 test proteins. As a result, the values of accuracy and coverage of 
interhelical contact predictions nearly drop to 0%, confirming that sequence conservation 
patterns play a critical role in generating native-like structure models. 
 
Ab initio structure prediction 
For the current protocol to be a practical method, it should work without assuming the 
connectivity of TM helices since the connectivity of TM helices is as hard to establish as high- 
or medium-resolution structures. In other words, the prediction protocol should be run for all 
possible permutations of the connectivity of TM helices. Due to computational complexity, this 
is feasible only for TM helix bundles having less than 6 TM helices. Of the 5 test proteins, 
NtpK is the only one satisfying this criterion. Since it has just 4 TM helices, one has to deal 
with 3 ((4-1)!/2) permutations only. In our test, we used the permutations, ABCD, ABDC, 
ACBD. All together 1200 candidate models were generated (400 for each permutation), and 
150 top-scoring ones were clustered to generate 5 final models, as described in the Methods 
section. Table 4 summarizes the results. Again, the rotational angles of TM helices about the 
helix axes were predicted with reasonable accuracy (Fig. 7-1). Remarkably, the accuracy of 
interhelical contact predictions reaches 55%. This level of accuracy can be considered 
exceptionally good, given the standards used in the CAPRI experiments.59 We made a 
comparison to the standards of the CAPRI experiments because the current modeling is more 
like docking of predefined entities (ideal TM helices) rather than structure prediction from 
scratch. Furthermore, the model correctly predicts the Na+ binding pocket, revealing a cluster 
of Thr64, Gln65, Gln110, and Glu139 in the structural core (Fig. 7-2). With the knowledge that 
NtpK functions as a pump of Na+,37 one can readily identify this cluster of highly polar 
residues in the core of a TM helix bundle as the binding site for a sodium ion. This 
demonstrates that structural models generated by the current prediction protocol might be 
useful for designing mutational experiments and rationalizing experimental data for simple TM 
helix bundle proteins having modest numbers of TM helices. 
 
 
Discussion 
Lessons from the structure prediction of soluble proteins indicate that effective structure 
prediction techniques can be devised only after we understand the sequence-structure 
relationship by seeing enough numbers of structures. So far we have seen just ~ 30 distinct 
folds of membrane proteins, which is clearly not enough. The lack of understanding about the 
principles of membrane protein folding further complicates the structure prediction problem. 
Therefore, it is expected to be extremely difficult to develop a generic structure prediction 
technique for membrane proteins in the near future. Yet, as claimed by many researchers over 
the years based on the well-known two-stage model, structural modeling of simple membrane 
proteins, i.e., those that have the simple form of compact TM helix bundles, can be 



� �

accomplished in two steps: prediction of the portions of the primary sequence that traverse the 
membrane and assembly of these TM helices to TM helix bundles. Yet, this claim has never 
been realized for polytopic membrane proteins, even for simple ones as defined above. To our 
knowledge, the current study is the first tackling ab initio structure prediction of polytopic 
membrane proteins with concrete positive results. Specifically, it demonstrates that sequence 
conservation patterns enable us to generate native-like structural models for simple TM helix 
bundle proteins consisting of less than 6 TM helices. Among 5 final models, there always 
exists at least one model close to the crystal structure, not only in terms of CA RMSD but also 
in terms of helix-helix contacts. 
One may wonder whether it is feasible to single out the best model out of 5 final ones. Table 5 
summarizes the properties of the 5 final models for the test proteins in terms of their cluster 
size and score as computed by Eq. 1. In some cases, the best model is either the largest cluster 
or a best-scoring model. Yet, it is not the case for NtpK. Thus, it is not clear whether these 
indicators actually reflect the genuine difference between correct and wrong models. 
Furthermore, since we could not carry out a comprehensive benchmark test, we feel that it does 
not make much sense to look for any discriminating features between correct and wrong 
models.  
As in soluble protein structure prediction,2,3 the presented method depends on many parameters, 
i.e., how many top-scoring conformations to cluster into how many representative 
conformations, how many top-scoring folds to cluster into how many candidate models, how 
many top-scoring candidate models to cluster into how many final models. Yet, as noted above 
several times, the results did not critically depend on the particular choices of the parameters: 
any reasonable choices other than the current ones seem fine. For this reason, we believe that 
the presented method should be generally applicable to TM helix bundles with less than 6 TM 
helices, even though, due to the lack of suitable test proteins, we could not carry out large-scale 
benchmark tests as in soluble protein structure prediction. 
The attractive feature of the current approach is that it only requires the availability of ~ 30 
homologous sequences. Given rapid increases in the size of sequence databases, we believe 
that this requirement is relatively light. A couple of recent studies showed that TM helix bundle 
proteins with less than 6 TM helices are quite prevalent in the sequenced genomes.20,60 Thus, 
we expect the presented prediction protocol to be helpful in elucidating the structure and 
function of simple TM helix bundle proteins. One particular example would be proteins of the 
tetraspanin family, which play diverse roles in cell adhesion, migration, and cellular activation 
and signaling.61,62 
As pointed out by a number of previous studies,63-65 distortions in the ideal helix geometry are 
abundant in TM helix bundle proteins, and they often play an important role in maintaining the 
functional and structural integrity. Thus, a more meaningful structure prediction should 
consider such aspects. Yet, we feel that such delicate structural aspects are extremely difficult 
to model with a reasonable accuracy. Clearly, more work is needed in this aspect of structural 
modeling. On the other hand, structural models obtained by the current approach might be of 
help for cases where canonical helices are a reasonably good approximation to real structures, 
as shown by the NtpK test case. 
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Table 1. Positions of the interaction centers 
Amino acid Position of the interaction center 

Gly CA atom 

Ala, Ser, Cys 0.6*CA atom + 0.4*CB atom 

Val, Thr 0.1*CA atom + 0.9*CB atom 

Ile CB atom 

Pro 0.8*CA atom + 0.2*CG atom 

Leu, Asp, Asn 0.3*CA atom + 0.7*CG atom 

His, Phe, Glu, Gln CG atom 

Met 0.5*CA atom + 0.5*SD atom 

Tyr 0.3*CG atom + 0.7*CZ atom 

Trp 0.5*CG atom + 0.5*CD2 atom 

Lys, Arg CG atom + 0.2* the vector from CA to CG 

0.8*CA atom + 0.2*CB atom means a vectorial sum of 0.8 times the vector from an origin to 
the position of the CA atom and 0.2 times the vector from the same origin to the position of the 
CB atom. 
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Table 2. Summary of the prediction results 
 Bacterorhodopsin Halorhodopsin 
CA RMSD 3.0 3.9 
 Acc: 44% Cov: 46% Acc: 43% Cov: 48% 
 Z shift XY shift Tilt Rotation Z shift XY shift Tilt Rotation 
TM helix A 0.4 0.4 20 24 0.9 1.8 16 19 
TM helix B 0.7 2.0 7 57 1.8 2.3 1 27 
TM helix C 0.6 1.9 13 7 0.9 2.8 7 1 
TM helix D 0.1 1.6 11 3 0.1 2.6 11 32 
TM helix E 1.0 2.3 2 30 2.1 4.9 12 44 
TM helix F 0.8 2.9 5 1 1.8 2.3 7 27 
TM helix G 0.2 1.9 2 2 0.4 2.6 8 5 
 Sensory rhodopsin II Rhodopsin 
CA RMSD 3.0 5.2 
 Acc: 45% Cov: 51% Acc: 21% Cov: 28% 
 Z shift XY shift Tilt Rotation Z shift XY shift Tilt Rotation 
TM helix A 0.1 1.5 7 17 0.2 2.3 29 29 
TM helix B 0.6 2.4 8 27 0.1 1.0 17 3 
TM helix C 0.6 1.6 15 22 0.1 6.1 28 18 
TM helix D 0.1 1.8 15 11 0.9 1.6 11 13 
TM helix E 0.3 3.0 4 19 0.8 1.7 23 21 
TM helix F 0.6 3.3 2 5 1.1 2.1 17 19 
TM helix G 0.1 1.2 0 1 0.1 0.6 21 21 
CA RMSD: the best (smallest) CA RMSD in angstroms of the 5 final models with respect to the 
corresponding crystal structure 
Z shift: the difference in angstroms between the CA-based centers of predicted and 
experimental conformations along the membrane normal. 
XY shift: the difference in angstroms between the CA-based centers of predicted and 
experimental conformations along the membrane plane. 
Tilt: the angle difference in degrees between the helix axes of predicted and experimental 
conformations. 
Rotation: the angle difference in degrees between the rotational angles of predicted and 
experimental conformations around the helix axes. 
Acc: accuracy of the helix-helix contact predictions, i.e., TP/(TP+FP), where TP and FP stand 
for true and false predictions, respectively. 
Cov: Coverage of the helix-helix contact predictions, i.e., the percentage of the contacts 
observed in the experimental structures that have been correctly predicted. 
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Table 3. Effects of inverting the scoring scheme based on sequence conservation patterns 
 Bacterorhodopsin Halorhodopsin 
CA RMSD 7.6 7.0 
Acc 0% 0% 
Cov 0% 0% 
 Sensory rhodopsin II Rhodopsin 
CA RMSD 6.6 7.5 
Acc 1% 5% 
Cov 1% 5% 
Definitions for CA RMSD, Acc, and Cov are the same as those given in Table 2. 
This is a negative result. As described in the text, it has been obtained by clustering the 500 
highest-score folds and 50 highest-score candidate models (instead of the 500 lowest-score folds 
and 50 lowest-score candidate models as for Table 2). It demonstrates that sequence 
conservation patterns work as a powerful scoring function, discriminating between ‘good’ and 
‘bad’ folds in the library. 
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Table 4. Summary of the ab initio structure prediction for NtpK 
 NtpK 

CA RMSD 3.4 

 Acc: 55% Cov: 23% 

 Z shift XY shift Tilt Rotation 

TM helix A 0.5 1.9 14 36 

TM helix B 1.2 1.0 14 43 

TM helix C 1.3 0.7 4 20 

TM helix D 0.8 0.6 17 58 

Definitions for CA RMSD, Acc, Cov, Z shift, XY shift, Tilt, and Rotation are the same as those 
given in Table 2. 
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Table 5. Properties of the 5 final models for the test proteins 
 Bacteriorhodopsin Halorhodopsin Sensory 

rhodopsin II 
Rhodopsin NtpK 

Model Cluster 
size 

Score Cluster 
size 

Score Cluster 
size 

Score Cluster 
size 

Score Cluster 
size 

Score 

1 17 -19.1 11 -16.0 12 -19.1 14 -23.4 5 -7.9 
2 5 -19.9 5 -17.3 5 -15.9 11 -19.8 11 -8.9 
3 6 -17.1 7 -17.8 4 -19.7 4 -20.5 17 -8.6 
4 8 -18.1 11 -19.1 7 -18.7 9 -21.1 8 -8.0 
5 7 -13.7 10 -11.9 16 -20.4 8 -23.1 12 -7.6 

For each test protein, model 1 is the closest to the corresponding crystal structure in terms of CA 
RMSD. Score means sequence conservation scores computed by Eq. 1 
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Figure 1. The flowchart of the prediction protocol. 
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Figure 2. Degrees of freedom for a pair of contacting helices. � and � are the rotational angles 
about their helix axes. � indicates the crossing angle between the two helix axes. � describes the 
sliding motion along the respective helix axis, measuring the distance between P1a (the crossing 
point between the helix axis and the axis for �) and P1b (geometric center of the helix). The 
remaining degree of freedom describes the motion along the line connecting the two closest 
points (P1a and P2a) on the helical axes, designated as �. 
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Figure 3. A few examples of compact conformations of a 7 TM helix bundle protein. Helix 
centers on a 2D grid are shown. The interhelical distance is set to 9.0 Å, and the compactness 
value is calculated as described in the Methods section. The results are as follows: (A) 14.55 Å, 
(B) 13.47 Å, (C) 14.08 Å, and (D) 14.65 Å. Thus 16.0 Å used in the present study is a 
reasonable upper bound.  
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Figure 4. Rigid-body refinements. Panel 1 is the average structure, viewed from the N terminus. 
The distance between TM helices A and B is too short, resulting in several steric clashes, and 
TM helix G is overly exposed to the lipid bilayer. Overall, Panel 1 depicts an image untypical of 
simple well-packed TM helix bundle proteins. In order to correct for the deficiencies, we relax 
the interhelical distances and the 5 angles formed by the projection points onto the membrane 
plane of the CA-based centers of each of the 5 triples of neighboring TM helices (from ABC to 
EFG). All 6 interhelical distances are relaxed to 9.6 Å for the removal of any steric clashes, 
resulting in Panel 2. Out of the 5 angles, the one formed by TM helices DEF is the smallest. So 
we relax this angle, leading to Panel 3. Then the angles are relaxed in the order of ABC, BCD, 
CDE, EFG, resulting in Panels 4 - 7. 
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Figure 5. Superimposition of the best models (yellow) onto the corresponding experimental 
structures (red), viewed from the N-terminus. Panel 1 – bR, panel 2 – hR, panel 3 – sR, panel 4 
– rhodopsin. Quantitative comparisons are presented in Table 2. This figure was created using 
the program Weblab viewer (MSI). 
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Figure 6. The 4 incorrect models for bacteriorhodopsin. 
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Figure 7. (1) Superimposition of the best model (yellow) onto the 2bl2 structure (red). 
Quantitative comparisons are presented in Table 4. (2) View of the predicted sodium binding 
pocket. Q65, Q110, and E139 are clustered in the core of the TM helix bundle, indicating the 
binding site for sodium ions. The side chain conformations were modeled by using SCWRL.43 
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Abstract 
Given the difficulty in determining high-resolution structures of helical membrane proteins, 
sequence-based prediction methods can be useful in elucidating diverse physiological processes 
mediated by this important class of proteins. Predicting the angular orientations of 
transmembrane (TM) helices about the helix axes, based on the helix parameters from electron 
microscopy data, is a classical problem in this regard. This problem has triggered the 
development of a number of different empirical scales. Recently, sequence conservation patterns 
were also made use of for improved predictions. Empirical scales and sequence conservation 
patterns (collectively termed as “prediction scales”) have also found frequent applications in 
other research areas of membrane proteins: for example, in structure modeling and in prediction 
of buried TM helices. This trend is expected to grow in the near future unless there are 
revolutionary developments in experimental characterization of membrane proteins. Thus, it is 
timely and imperative to carry out a comprehensive benchmark test over the prediction scales 
proposed so far to find out their pros and cons. In the current analysis, we use exposure patterns 
of TM helices as a golden standard, because if one develops a prediction scale that correlates 
perfectly with exposure patterns of TM helices, it will enable one to predict buried residues (or 
buried faces) of TM helices with an accuracy of 100%. Our analysis reveals several important 
points. First, it demonstrates that sequence conservation patterns are much more strongly 
correlated with exposure patterns of TM helices than empirical scales. Second, scales that were 
specifically parameterized using structure data (structure-based scales) display stronger 
correlation than hydrophobicity-based scales, as expected. Third, a non-negligible difference is 
observed among the structure-based scales in their correlational property, suggesting that not 
every learning algorithm is equally effective. Fourth, a straightforward framework of optimally 
combining sequence conservation patterns and empirical scales is proposed, which reveals that 
improvements gained from combining the two sources of information are not dramatic in almost 
all cases. In turn, this calls for the development of fundamentally different scales that capture 
the essentials of membrane protein folding for substantial improvements. 
 
 
Introduction 
Membrane proteins play a crucial role in diverse physiological processes, including signal 
transduction, the transport of solutes across the membrane, and the maintenance of ionic 
concentrations in the cell. The transmembrane (TM) domains of many membrane proteins 
consist of helix bundles. Their formation is believed to be driven, to a large degree, by the high 
desolvation penalty of exposing polar backbone atoms to the lipid bilayer.1,2 In spite of recent 
technical advances,3-5 it still remains difficult to determine high-resolution structures of helical 
membrane proteins via X-ray crystallography or NMR spectroscopy. In certain cases, yet, they 
are amenable to structure determination through cryo-electron microscopy (cryo-EM), which 
usually results in intermediate- or low-resolution structural information, i.e., the positions of TM 
helices, but not those of individual amino acids.6,7 If the correspondence is established between 
TM segments of the sequence and densities on the EM map assumed to be TM helices with the 
help of experimental data, then computational tools for predicting the rotational angles of TM 
helices about the helix axes come into play. A recent study on gap junction channels highlighted 
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how helpful computational methods of predicting the rotational angles of TM helices can be in 
elucidating important physiological processes.7 
Early approaches for this classical problem were based on the concept of hydrophobic moments: 
they predicted the angular orientations of TM helices by aligning the hydrophobic moments to 
the lipid bilayer.8,9 Various hydrophobicity scales were utilized for this purpose, (to cite a few, 
the Eisenberg consensus scale,9 the Kyte-Doolittle scale,10 the Goldman-Engelman-Steitz 
scale11) even though the aim of these scales was primarily to identify TM segments from the 
sequence. However, hydrophobic moments turned out to be a poor indicator of the angular 
rotations of TM helices.12,13 This triggered the development of a new generation of empirical 
scales, including kProt,14 the tmlip series,15 and the Beuming-Weinstein scale.16 The latest 
approaches rely on sequence conservation patterns as well as empirical scales for improved 
predictions, following the observation that conserved residues tend to be buried in the interior of 
TM helix bundles while variable residues tend to be exposed to the lipid bilayer.17,18  
In addition to the problem of predicting the rotational angles of TM helices, empirical scales and 
sequence conservation patterns (collectively termed as “prediction scales”) have found many 
applications in other research areas of membrane proteins as well. For example, Park et al. 
fruitfully used sequence conservation patterns as a scoring function in the context of free 
modeling, i.e., modeling tertiary structures without experimental constraints.19 Sequence 
conservation patterns enabled us to model the structure of the rotor of the V-type Na+-ATPase 
with an root-mean square deviance (RMSD) of 3.4 Å. A control computation that used 
scrambled sequence conservation patterns demonstrated that sequence conservation patterns 
played a crucial role in the positive results. Recently, Adamian and Liang have devised a 
protocol for predicting buried TM helices based on sequence conservation patterns and their 
own empirical scale.15 In a benchmark test, they were able to predict 15 out of 19 buried helices 
and 39 out of 43 boundary helices, reaching an accuracy of ~ 90%. 
Considering the difficulty in determining high-resolution structures of membrane proteins by 
experimental techniques, the prediction scales, as an inexpensive auxiliary tool, will find 
increasing applications in diverse areas in the future. Thus, it seems imperative, at the current 
point, to carry out a large-scale thorough benchmarking of the prediction scales proposed so far 
to find out their pros and cons. Even for the simplest question of which prediction scale is best 
for predicting lipid-exposed faces of helical membrane proteins, we do not have a clear answer. 
The reason is simply that it was not possible to undertake such a comprehensive benchmark test 
until recently due to lack of enough numbers of high-resolution structures.  
One of the most important elements in performing an objective benchmark test is to choose a 
right golden standard. In comparing different prediction scales in the context of predicting lipid-
exposed faces of TM helices, the golden standard should be exposure patterns of TM helices 
(see the Methods section). This is because if the correlation between the exposure patterns of 
TM helices and their positional scores calculated from a prediction scale is 1, then it enables one 
to predict buried/lipid-exposed faces of TM helices with an accuracy of 100%. Therefore, in the 
current analysis, we adhere to the rule that the more strongly a prediction scale is correlated 
with exposure patterns of TM helices, the better it is. 
 
 



���

Methods 
Two different ways of comparing the performance of different prediction scales can be 
conceived. One strategy considers the average angular errors of predicted rotational angles of 
TM helices14 whereas the other one investigates how strongly prediction scales are correlated 
with exposure patterns of TM helices. In this paper, we adopt the second way because it is 
defined straightforwardly for all helical membrane proteins. 
 
Benchmark proteins and computation of exposed patterns 
A non-redundant set of TM helix bundle proteins (less than 25% sequence identity pairwise and 
with resolution better than 3.5 Å) was generated based on the lists of membrane proteins with 
known structure compiled by White (http://blanco.biomol.uci.edu) and by Michel 
(http://www.mpibp-frankfurt.mpg.de/michel/public/memprotstruct.html). Some proteins, even 
though satisfying the above criteria, were not included in the analysis for the following reasons: 
1rhz_C (chain C of PDB ID 1rhz), 1occ_K, 1vf5_E, 1vf5_F, and 1ehk_C – not enough 
homologous sequences available; 1fft_C and 1l7v_A – defects in TM helices; 1jb0 and 2axt – 
due to idiosyncratic extensive protein-cofactor interactions throughout the protein structures. A 
final list of benchmark proteins is listed in Table 1. 
Exposure patterns of TM helices of these benchmark proteins are represented by their relative 
solvent-accessible surface area (rSASA) values. The rSASA value of a residue was obtained by 
dividing its SASA value in the crystal structure by its reference value. The reference value of a 
given residue is its SASA value in the context of a tripeptide helix Gly-X-Gly, where X is the 
given residue. Thus, the exposure pattern of a TM helix is represented as a string of real 
numbers between 0 and 1. The probe radius was set to 2.0 Å to approximate the radius of CH2 
group. Calculation of SASAs was performed using the BALL library.20 
Functionally relevant internal cofactors were included in computation of rSASA values. Since 
crystal structures of membrane proteins do not include hydrogen atoms, the program REDUCE 
was used to add hydrogen atoms.21 Another point to be considered in computing rSASA values 
is whether to use a monomeric structure or an oligomeric structure. Our guiding principle was to 
use functionally obligatory oligomeric states because the tendency of conserved residues to be 
buried is thought to be due to functional and/or structural constraints. We note, however, that 
there are some ambiguities in a few cases. For example, the H+/Cl- exchanger (1KPL), the 
mitochondrial ADP/ATP carrier (1OKC), and the Na+/H+ antiporter (1ZCD) are all known to be 
a functionally dimer. However, due to different crystallization conditions, only the H+/Cl- 
exchanger exists as a dimer in the crystal structures. So, it appears that even though these 
proteins primarily function as a dimer in vivo, the dimerization is dependent on environmental 
conditions and not strictly obligatory for keeping their structural (and/or functional) integrity. 
Unless there is convincing evidence that oligomerization is functionally required (e.g., the 
dimeric forms of cytochrome bc1 and b6f complexes), we always chose the monomeric state. 
Table 1 lists the oligomeric states adopted for the benchmark proteins.  
Since it only makes sense to apply hydrophobicity scales to the hydrophobic core of the lipid 
bilayer, the most hydrophobic 20 Å thick portion was taken for each of the test proteins, using 
the Eisenberg hydrophobicity scale9 and the membrane normal vectors from the PDB_TM 
database.22 As in most previous studies, we restrict our attention to boundary TM helices, with 
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“boundary” defined as having an overall fractional exposure to the lipid bilayer of equal or 
greater than 0.05. 
 
Derivation of positional scores for the prediction scales 
Multiple sequence alignments (MSAs) are needed to estimate positional scores from the 
prediction scales. For each test protein, a maximum of 1000 similar sequences were retrieved 
from the non-redundant database (nr) in an automatic fashion using BLAST URLAPI 
(http://www.ncbi.nih.gov/BLAST) with all the parameters set to default values. Initial MSAs 
were then built by using ClustalW23 with all the parameters set to default values. Then, sequence 
fragments (not longer than 80% of the length of the query sequence) were deleted from the 
MSA. This was crucial for improving the quality of final MSAs. From these refined MSA, 6 
different percent identity criteria (from 40% to 15% in steps of 5%) were applied, yielding 6 
final MSAs for each test protein. A recent analysis has shown that one needs to align at least 20 
sequences to accurately estimate conservation indices from MSAs.24 Thus, positional scores 
were computed only for cases of 20 or more sequences in the final MSA.  
As described by Pei and Grishin,24 four different methods were used to estimate conservation 
indices from MSAs. The first method is an entropy-based one (denoted hereafter as “ENT”). 
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In Eq. 1, C(i) is the conservation index for the sequence position i in a multiple sequence 
alignment, fa(i) is the frequency of amino acid a in the sequence position i. The second method 
is a variance-based measure (denoted hereafter as “VAR”). 
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In Eq. 2, fa is the overall frequency of amino acid a in the alignment. A position with fa(i) equal 
to fa for all amino acids a is assigned C(i) = 0. On the contrary, C(i) takes on its maximum for 
the position occupied by an invariant amino acid whose overall frequency in the alignment is 
low. The third and fourth methods are sum-of-pairs measures. 
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In Eq. 3, Sab is an amino acid scoring matrix. In the third method (denoted hereafter as “SOP1”), 
Sab is an identity matrix while, in the fourth method (denoted hereafter as “SOP2”), it is a 
BLOSUM62 matrix. Thus, unlike other methods, the fourth one takes into account conservative 
mutations in its computation of conservation indices. In order to account for the redundancy of 
aligned sequences, amino acid frequencies were weighted in all four methods by using a 
modified method of Henikoff and Henikoff as implemented in PSI-BLAST.25,26 Actual 
calculations were performed using a program written by Pei and Grishin,24 which is freely 
available at ftp://iole.swmed.edu/pub/al2co. 
For empirical scales, positional scores were computed in an analogous way. 
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In total, 8 empirical scales were considered in the analysis. They are the White-Wimley octanol 
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scale (denoted hereafter as “ww”),27 the Eisenberg hydrophobicity scale (“eis”),9 the Kyte-
Doolittle hydrophobicity scale (“kd”),10 the kProt central version (“kP”),14 the Beuming-
Weinstein knowledge-based scale (“bw”),16 the Goldman-Engelman-Steitz scale (“ges”),11 and 
the TMLIP1 and 2 scales.28 
 
Analysis of correlation between the prediction scales and exposure 
patterns of TM helices 
Correlation coefficients (CCs) for a set of n data points (xi, yi) were computed as follows. 
            
                                                                          (5) 

 
To analyze the periodicity of the prediction scales, the discrete Fourier transform power spectra, 
P(w), was calculated as previously described.29-31 
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In Eq. 6, S is the number of residues in the TM helix being analyzed, score(j) is the positional 
score for the jth sequence position (computed by either Eqs. 1 – 4), w is the rotational angle 
between residues around a helix axis, and score  is the mean score of the TM helix being 
analyzed. The �-helical character, �, of the P(w) curve can be quantified as 

                            ��=Ψ
�

�

�

�

180

0

115

85

)()(6 dwwPdwwP                    (7) 

An ideal helix with 3.6 residues per turn yields an angle of 360°/3.6 = 100° between successive 
residues. Thus, the greater the fraction of the P(w) curve that is in the �-helical region (85° - 
115°), the greater the resultant �. In other words, the more conforming the prediction scale to 
the helical periodicity, the greater its �-helical character (�). The normalization factor 6 in Eq. 7 
accounts for the difference in integration ranges. 
 
Support vector machine 
For predicting buried residues of the test proteins, the support vector machine (SVM) as 
implemented in the e1071 package32 of R33 was used. Unlike the usual usage of SVM, the 
current study employs SVM as an assessing tool of the prediction scales. Specifically, training 
errors of a linear SVM are interpreted as directly reflecting the quality of a prediction scale in 
question. 
 
 
Results and Discussion 
Overall correlation 
Table 2 summarizes the overall correlations between exposure patterns of boundary TM helices 
and the prediction scales. Of the 12 prediction scales considered in the analysis, sequence 
conservation pattern derived from the variance-based method (Eq. 2) is the most strongly 
correlated. It is observed that, in general, sequence conservation patterns, derived from any of 
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the four different methods, are always better than empirical scales, demonstrating the superiority 
of sequence conservation patterns over empirical scales. Significant differences in the 
correlational property of the 4 sequence conservation scales suggest that not every algorithm 
estimating conservation indices from a given MSA is equally effective. The poor performance 
of SOP2 over the simpler ENT or VAR scales is contrary to the naive expectation that it should 
be better because it takes conservative mutations into account in the derivation of conservation 
indices. The 8 empirical scales can be divided into 3 groups: a group of classical hydrophobicity 
scales (kd, eis, ges, ww), kP, and a group of structure-based scales (bw, tmlip1, tmlip2). Among 
the 8 empirical scales, the structure-based scales are expected to be better than others because 
they were specifically parameterized using structure data for the purpose of predicting 
buried/lipid-exposed faces of TM helices. Other scales were developed before high-resolution 
structural data became available. In addition, the main purpose of classical hydrophobicity 
scales was to identify TM segments from the primary sequence. Not surprisingly, Table 2 shows 
that bw is the best among the 8 empirical scales. tmlip1 and tmlip2 are slightly worse than bw. 
We suspect that this might be due to different assumptions behind their derivation.28 The 
discrepancy between bw and tmlip1/tmlip2 again suggests that not every learning algorithm is 
equally effective. Relating to this point, it is noteworthy that ww, eis, kd are as good as tmlip1 in 
this comparison. On the other hand, these observations raise the following interesting question: 
would there then be an even better way of parameterization than that used in the derivation of 
bw? This point will be addressed in future work. Another noteworthy point in Table 2 is the 
poor performance of kP (the kProt central version). Unlike the classical hydrophobicity scales, 
kP was developed, based on sequence data, for the purpose of predicting buried/lipid-exposed 
faces of TM helices. In its original publication,14 it was argued to be better than kd, eis, ges, 
based on the structure data available that time. (Comparison to the ww scale was not made.) 
Table 2 reveals that even though it performs slightly better than ges, it is not as effective as kd 
and eis. This points out the importance of a large-scale benchmarking. The overall poor 
correlation between exposure patterns of TM helices and the 4 hydrophobicity scales 
corroborates a previous conclusion that membrane proteins are not “inside-out” proteins.13 
As shown in Fig. 1, the overall correlation of sequence conservation patterns with exposure 
patterns of TM helices appears rather weak. Due to different quality of MSAs and possibly 
different functional and structural constraints to which each test protein are subject, the degree 
of correlation between conservation and exposure to the lipid bilayer may not be the same for all 
test proteins. Table 3 lists the CCs for individual proteins based on 35% MSAs. Apart from few 
outliers (those with a CC of lower than 0.15), CCs range over 0.3 ~ 0.7. It is interesting to note 
that the outliers are all from dimeric structures of analogous proteins. However, inspection of 
the outliers did not reveal any particular discernable characteristics: the numbers of sequences in 
the final alignment are much higher than 20 (the cutoff number); some consist of three TM 
helices while some are single TM helices. Some of these outliers disappear when using different 
MSAs such as 30% or 25% MSAs (data not shown), which indicates that the quality of MSAs is 
partly responsible for these poor correlations. Then, it would be natural to further characterize 
the quality of MSAs by computing confidence intervals of the derived scores using bootstrap 
techniques.28 Unfortunately, it is prohibitively expensive in the current context. Instead, we 
characterize the quality of MSAs in a way that takes advantage of the fact that we are analyzing 
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boundary TM helices. Unlike buried TM helices, the rSASA values of boundary ones display a 
periodic pattern reflecting the periodic pattern of their environmental heterogeneity. Thus, a 
prediction scale that exhibits periodic patterns along boundary TM helices is expected to 
correlate strongly with their exposure patterns. The �-helical characters of the prediction scales 
(Eq. 7) quantitatively capture how close their periodic patterns are to the �-helical pattern. Table 
4 shows that there is a significant correlation between �-helical characters of the prediction 
scales and their degrees of correlation with exposure patterns of TM helices. It is more 
pronounced for sequence conservation patterns than for empirical scales. This observation is 
important because it suggests that �-helical characters of MSAs can be used as a reliability 
measure. When it is not clear which cutoff value to choose in generating MSAs, as usual, it 
might be sensible to choose a cutoff value from which the MSAs of largest �-helical characters 
are generated. Figure 2 shows that this hypothesis holds in most cases. 

 
Combining sequence conservation patterns and empirical scales in an 
optimal way 
Sequence conservation patterns and empirical scales may represent information of different 
nature (ideally, complementary nature) about the propensity of residues of TM helices to get 
exposed to the lipid bilayer. Then, combining the two sources of information may lead to 
improved predictions. In fact, two recent studies exploited this idea. In the study by Fleishman 
et al.,34 an empirical scoring function combining sequence conservation patterns and their own 
hydrophobicity scale was parameterized against bacteriorhodopsin crystal structures. In another 
study, Beuming and Weinstein derived a knowledge-based propensity scale for each type of 
amino acids to be exposed to the lipid bilayer, to be used in conjunction with sequence 
conservation patterns for predicting which residues of a TM helix are exposed to the lipid 
bilayer or buried in the interior of TM helix bundles.16,35 Due to their empirical nature, it is hard 
to grasp how optimal their formulations are. However, the two studies concluded that sequence 
conservation patterns were more crucial to the positive results. 
In our context of computing CCs, it is rather straightforward how to combine different sources 
of information in an optimal manner: we combine different scales such that the combined scales 
correlate with exposure patterns of TM helices as strongly as possible. Using gradient-descent 
optimization for this task, we generated every possible binary combination of the 12 prediction 
scales. Table 5 shows their CCs with exposure patterns of TM helices. Several points are 
noteworthy in Table 5. First, the best combinations are sequence conservation patterns plus 
structure-based scales (specifically, the bw scale). Second, for these best combinations, the 
improvements gained are not dramatic, as previously reported by Beuming and Weinstein.16 
Third, no dramatic improvements are observed in almost all cases, suggesting that sequence 
conservation patterns and empirical scales are not complementary to each other. We interpret 
this as implying that fundamentally different propensity scales that capture the essentials of 
membrane protein folding are needed for substantial improvements. Fourth, the ww scale, 
which correlates by itself poorly with exposure patterns of TM helices, is as effective as the bw 
scale as auxiliary information when combined with sequence conservation patterns. 
 
Practical applications 
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The above analysis indicated that sequence conservation patterns are more strongly correlated 
with exposure patterns of boundary TM helices than empirical scales. Also, an optimal way of 
combining the two sources of information was proposed, which revealed that the combination 
of the VAR and bw scales is most optimal. Its CC is 0.44 whereas that of the VAR scale alone is 
0.40 and that of the bw scale alone is 0.26. Practically, what does this difference of 0.04 in the 
CC values mean? It might be that the VAR scale with a CC of 0.40 and the kd scale with a CC 
of 0.21 are equally bad in practical prediction settings. To investigate this issue, we made use of 
a linear support vector machine (LSVM). Due to its linearity, training errors of LSVM are 
thought to directly reflect the quality of the prediction scales. 
So far, we restricted the analysis to boundary TM helices. However, it is usually difficult to 
reliably distinguish between buried and boundary TM helices from the sequence, even though 
progress is being made in this problem.15 Thus, in making predictions for buried residues (those 
with a rSASA of � 0.05), we included all the residues located in the hydrophobic core of the 
lipid bilayer to mimic real situations. This is also necessary for this analysis to be comparable to 
a previous study.16 The 35% MSAs of the test proteins were taken, which resulted in a total of 
4058 data points. Of these, 2007 and 2051 data points correspond to exposed and buried 
residues, respectively. Thus, a prediction accuracy of 51% is the baseline. A point to be clarified 
in this sort of analysis is with what criterion to classify a given residue as buried. Different 
criteria such as rSASA of 0 or rSASA of 0.07 were used in previous studies.16,28 How to choose 
suitable criteria appears to depend on how to compute rSASA values. In our case, an rSASA 
value of 0.05 looks appropriate. Figure 3 shows the distribution of the rSASA values of the 
4058 data points, which reveals that a proper binary classification should be the one separating 
the data points at the rSASA value of 0.05.  
Table 6 summarizes the results, revealing a number of interesting points. First, in spite of the 
different natures of the two measures of assessing the quality of the prediction scales 
(computing CC values and the binary classification of the burial state of residues), a comparison 
with Table 5 indicates that there is an overall agreement between the two measures. The best 
performing scales in Table 6 (sequence conservation patterns plus either ww or bw) are also the 
ones with highest CC values in Table 5. The kP and ges scales, which most poorly correlate with 
exposure patterns of TM helices, perform most poorly in predicting the binary burial states of 
residues of TM helices. In fact, the performance of these two scales, when used alone, is no 
better than the baseline accuracy (51%). Second, as in Table 5, the ww scale is as helpful as the 
structure-based scales (bw, tmlip1 and tmlip2) as auxiliary information when combined with 
sequence conservation patterns. A possible explanation for this is that the ww scale captures 
genuine differences between buried and exposed residues of TM helices, and this gets 
pronounced when optimally combined with sequence conservation patterns. Relating to this, it 
is interesting to note the following characteristics of the ww scale: unlike other empirical scales, 
it is an experimentally determined one, taking into account contributions from backbone atoms. 
A recent study demonstrated that a biological hydrophobicity scale that was measured in vitro 
strongly correlates with the ww scale.36 Beuming and Weinstein reported that their empirical 
formulation combining sequence conservation patterns and the bw scale enabled them to 
achieve a prediction accuracy of ~ 75% on a test set of 11 proteins.16 In this work, optimal 
combinations of either ENT, VAR, or SOP1 with bw yielded a similar prediction accuracy of 
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74% on the same subset of proteins (data not shown). This implies that the formulation 
suggested by Beuming and Weinstein is almost optimal. 
 
 
Conclusion 
The current study reports a comprehensive benchmark test of the prediction scales proposed 
thus far in terms of their correlations with exposure patterns of boundary TM helices. Sequence 
conservation patterns are shown to display a stronger correlation than empirical scales. Yet, 
overall correlations are poor for both classes of prediction scales. In addition, the two classes of 
prediction scales are not complementary to each other, and thus combining the two sources of 
information yields only marginal improvements. This calls for the development of scales of 
fundamentally different nature for substantial improvements. 
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Table 1. Proteins used in the analysis 
PDB Protein name Chain Oligomeric State 

1. 1BRR Bacteriorhodopsin A Monomer 

2. 1F88 Rhodopsin A Monomer 

3. 1K4C KcsA potassium channel C Tetramer 

4. 1MSL MscL mechanosensitive channel A Pentamer 

5. 1RHZ Translocon A, B Monomer 

6. 1J4N Aquaporin A Monomer 

7. 1FX8 Glycerol facilitator channel A Monomer 

8. 1XQF Ammonia channel A Monomer 

9. 1KPL H+/Cl- exchanger A Monomer 

10. 2A65 Leucine transporter A Monomer 

11. 1IWG AcrB multi-drug efflux transporter A Monomer 

12. 1PV7 Lactose permease A Monomer 

13. 1PW4 Glycerol-3-phosphate transporter A Monomer 

14. 1XFH Glutamate transporter A Monomer 

15. 1ZCD Na+/H+ antiporter A Monomer 

16. 1SU4 Calcium ATPase A Monomer 

17. 2BL2 V-type Na+-ATPase A Decamer 

18. 1PRC Photosynthetic reaction center L, M, H Monomer 

19. 1L0V Fumarate reductase (E. coli) C, D Monomer 

20. 1QLA Fumarate reductase (W. Succinogenes) C Monomer 

21. 1KQF Formate dehydrogenase N B, C Monomer 

22. 1Q16 Nitrate reductase A C Monomer 

23. 1NEK Succinate dehydrogenase C, D Monomer 

24. 1ZOY Complex II C, D Monomer 

25. 1OKC Mitochondrial ADP/ATP carrier A Monomer 

26. 1OCC Cytochrome C oxidase (aa3 type) A, B, C, D, G, I, 
J, L, M 

Monomer 

27. 1EHK Cytochrome C oxidase (ba3 type) A, B Monomer 

28. 1FFT Ubiquinol oxidase B Monomer 

29. 1BGY Cytochrome bc1 complex C, D, E, G, J Dimer 

30. 1VF5 Cytochrome b6f complex A, B, C, D, H Dimer 

31. 2GFP EmrD multi-drug transporter A Monomer 
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Table 2. Overall correlation between exposure patterns of boundary TM helices and positional 
scores calculated from the prediction scales 
Identit
y 

10 11 12 13 ww eis kd kP bw ges tmli
p1 

tmli
p2 

15 0.30 0.33 0.30 0.26 0.21 0.20 0.23 0.15 0.27 0.13 0.22 0.25 

20 0.33 0.35 0.32 0.28 0.21 0.21 0.23 0.15 0.26 0.13 0.22 0.25 

25 0.35 0.37 0.34 0.29 0.21 0.20 0.22 0.14 0.27 0.13 0.22 0.25 

30 0.39 0.39 0.36 0.31 0.20 0.19 0.21 0.13 0.26 0.12 0.20 0.23 

35 0.40 0.40 0.38 0.32 0.21 0.19 0.21 0.13 0.26 0.12 0.21 0.24 

40 0.39 0.39 0.37 0.31 0.21 0.19 0.21 0.13 0.26 0.12 0.20 0.24 
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Table 3. Correlation between exposure patterns of boundary TM helices and the 11 scale based 
on 35% MSAs 
ID chain CC ID chain CC ID chain CC ID chain CC 

1brr A 0.47 1su4 A 0.62 1occ D 0.36 1vf5 C 0.12 

1f88 A 0.65 1prc L 0.55 1occ G 0.47 1vf5 D 0.06 

1k4c C 0.56 1prc M 0.37 1occ I 0.54 1vf5 H 0.02 

1rhz A 0.49 1prc H 0.55 1occ J 0.47 2gfp A 0.14 

1j4n A 0.40 1kqf B 0.30 1occ L 0.52 1ehk A 0.46 

1fx8 A 0.55 1kqf C 0.45 1occ M 0.33 1fft B 0.17 

1xqf A 0.44 1nek C 0.15 1bgy C 0.39 1l0v C 0.13 

1kpl A 0.49 1nek D 0.44 1bgy D 0.53 1l0v D 0.34 

1iwg A 0.37 1okc A 0.46 1bgy E 0.03 1zoy C 0.47 

1pv7 A 0.45 1q16 C 0.53 1bgy G 0.01 1zoy D 0.44 

1pw4 A 0.38 1occ A 0.29 1bgy J 0.17    

1xfh A 0.32 1occ B 0.44 1vf5 A 0.53    

1zcd A 0.65 1occ C 0.56 1vf5 B 0.50    
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Table 4. Overall correlation between the �-helical characters of the prediction scales and their 
degrees of correlation with exposure patterns of boundary TM helices 
Identit
y 

10 11 12 13 ww eis kd KP bw Ges tmli
p1 

tmli
p2 

15 0.60 0.60 0.59 0.55 0.43 0.48 0.48 0.37 0.46 0.38 0.40 0.42 

20 0.59 0.57 0.55 0.55 0.40 0.45 0.43 0.37 0.45 0.37 0.36 0.40 

25 0.58 0.57 0.56 0.56 0.43 0.44 0.40 0.30 0.47 0.33 0.37 0.40 

30 0.56 0.56 0.57 0.56 0.41 0.44 0.41 0.31 0.43 0.33 0.36 0.38 

35 0.53 0.53 0.52 0.49 0.39 0.48 0.45 0.35 0.42 0.36 0.37 0.38 

40 0.53 0.53 0.53 0.50 0.37 0.48 0.46 0.38 0.40 0.39 0.39 0.40 
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Table 5. Overall correlation between exposure patterns of boundary TM helices and optimally 
combined prediction scales based on 35% MSAs. 
Identity 10 11 12 13 ww eis kd kP bw ges tmli

p1 
tmli
p2 

10 0.40 0.40 0.40 0.40 0.43 0.42 0.41 0.40 0.44 0.40 0.42 0.42 

11  0.40 0.40 0.41 0.42 0.41 0.41 0.40 0.44 0.40 0.41 0.42 

12   0.38 0.38 0.41 0.40 0.39 0.38 0.42 0.38 0.39 0.40 

13    0.32 0.37 0.34 0.33 0.32 0.39 0.32 0.34 0.36 

ww     0.21 0.21 0.23 0.22 0.27 0.22 0.22 0.24 

eis      0.19 0.21 0.19 0.26 0.23 0.21 0.24 

kd       0.21 0.23 0.27 0.24 0.22 0.24 

kP        0.13 0.27 0.14 0.21 0.24 

bw         0.26 0.26 0.26 0.26 

ges          0.12 0.23 0.26 

tmlip1           0.21 0.25 

tmlip2            0.24 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



�
�

Table 6. Accuracies of predicting buried residues of the test proteins by a linear SVM using the 
prediction scales from 35% MSAs. 
Identity 10 11 12 13 ww eis kd kP bw ges tmli

p1 
tmli
p2 

10 68 68 69 69 70 69 68 68 70 68 69 69 

11  67 68 68 69 68 68 68 70 67 68 68 

12   66 66 69 68 67 66 70 66 67 68 

13    66 68 66 64 66 67 64 66 65 

ww     64 64 64 64 63 64 65 62 

eis      62 60 62 64 63 62 62 

kd       60 64 64 60 61 64 

kP        52 64 51 60 64 

bw         64 64 64 64 

ges          52 58 64 

tmlip1           61 64 

tmlip2            64 
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Figure 1. The correlation between the VAR scale and the rSASA values for the 3191 residues of 
the boundary TM helices of the test proteins located in the hydrophobic core of the membrane 
bilayer, based on 35% MSAs. A weak tendency is observed that the lower the rSASA value, the 
higher the VAR scale value. The CC is –0.40. 
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Figure 2. A plot displaying the �-helical character, �, of the VAR scale (the vertical axis) and 
its correlation with exposure patterns of TM helices (the horizontal axis), based on 35% MSAs 
for a subset of the test proteins. Overall, the higher the �-helical character of the VAR scale, the 
more strongly correlated it is with exposure patterns of TM helices. 
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Figure 3. The distribution of rSASA values of the 4058 residues of the test proteins. 
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Abstract 
Helical membrane proteins (HMPs) play a crucial role in diverse physiological processes. 
Given the difficulty in determining their structures by experimental techniques, it is desired to 
develop computational methods for predicting the burial status of transmembrane residues. 
Deriving a propensity scale for the 20 amino acids to be exposed to the lipid bilayer from 
known structures is central to developing such methods. A fundamental problem in this regard 
is what would be the optimal way of deriving propensity scales. Here, we show that this 
problem can be reformulated such that an optimal scale is straightforwardly obtained in an 
analytical fashion. The derived scale favorably compares with others in terms of both 
algorithmic optimality and practical prediction accuracy. It also allows interesting insights into 
the structural organization of HMPs. Furthermore, the presented approach can be applied to 
other bioinformatics problems of HMPs, too. 
All the data sets and programs used in the study and detailed primary results are available upon 
request. 
 
 
Introduction 
Helical membrane proteins (HMPs) play a crucial role in diverse physiological processes, 
including energy generation, signal transduction, the transport of solutes across the membrane, 
and the maintenance of ionic and proton gradients. Several studies have suggested that HMPs 
account for 20 – 30% of open reading frames of sequenced genomes (Liu, et al., 2002; Wallin 
and von Heijne, 1998). In spite of their physiological importance and genomic abundance, less 
than 1% of the proteins with known structure are HMPs (Chen and Rost, 2002). 
Given this circumstance, it is desirable to develop computational methods for predicting 
structural aspects of HMPs. At the heart of such efforts lies the development of a propensity 
scale for the 20 amino acids to be exposed to the lipid bilayer (Adamian, et al., 2005; Beuming 
and Weinstein, 2004; Pilpel, et al., 1999). Based on the recently increased number of 
experimentally determined 3D structures, Beuming and Weinstein derived a knowledge-based 
scale (the BW scale), which in combination with sequence conservation patterns enabled them 
to predict the burial status of TM residues with an accuracy of 80% (Beuming and Weinstein, 
2004). Remarkably, Adamian and Liang (the TMLIP1/TMLIP2 scales) achieved a prediction 
accuracy of 88% in a similar study by taking advantage of the fact that most helix-helix 
interactions in the TM region can be recapitulated as occurring between two heptad repeat 
frames originally developed for coiled coils (Adamian and Liang, 2006). 
The ways the BW and TMLIP1/TMLIP2 scales were derived represent three different learning 
algorithms for deriving a propensity scale from known structures. Our previous study revealed 
that the three algorithms are not equally effective (Park and Helms, 2006). A natural question 
that arises is which algorithm works better and why. Or more fundamentally, what would be 
the optimal way of deriving a propensity scale? This is an important problem not only from an 
algorithmic viewpoint but also from a practical viewpoint. An optimal algorithm would yield a 
propensity scale that faithfully captures the affinities of the 20 amino acids to preferentially 
interact with the lipid bilayer as reflected in experimental HMP structures. The knowledge of 
such a scale might allow interesting insights into the folding of HMPs. In this report, we show 
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that one can reformulate this problem by selecting a sensible objective function such that an 
optimal scale (the MO scale) is straightforwardly obtained in an analytical fashion. A 
comparative analysis reveals that the MO scale favorably compares with others not only in 
terms of algorithmic optimality but also in terms of practical prediction accuracy. The MO 
scale also suggests interesting insights into the structural organization of HMPs compared to 
that of soluble proteins. Moreover, we show that the algorithm used for deriving the MO scale 
can be also applied to other bioinformatics problems of HMPs.  
 
 
Methods 
Generation of the data set 
A non-redundant high-quality data set (less than 25% pairwise sequence identity and resolution 
better than 3.0 Å) was generated based on the lists of HMPs with known structure compiled by 
White (http://blanco.biomol.uci.edu) and by Michel (http://www.mpibp-
frankfurt.mpg.de/michel/public/memprotstruct.html) as of September 2006. Some protein 
chains were omitted in spite of satisfying the above criteria either because we could not 
retrieve enough numbers of homologous sequences from sequence databases or the average 
pairwise identity of aligned sequences is greater than 80% (i.e., a diverse set of homologous 
sequences is not available). The final data set comprises 41 protein chains of 2901 TM residues 
(Table 1). To ensure the high homogeneity of the data set, residues located outside of the 
hydrophobic core of the lipid bilayer were excluded from the data set. The hydrophobic core of 
each protein chain, defined to be the region for which the probability of occurrence of the 
hydration waters of the lipid head groups is zero (White and Wimley, 1999), was derived from 
the location of the carbonyl groups of the lipid molecules along the membrane normal and the 
effective hydration profile obtained from the OPM database (Lomize, et al., 2006a; Lomize, et 
al., 2006b). 
 
Computation of exposure patterns 
The classification of a residue as being exposed or buried was based on its relative solvent-
accessible surface area (rSASA) value. Several choices need to be made for the accurate 
computation of rSASA values. First, the probe radius should be properly chosen. Previous 
studies used the probe radii of 1.4 Å (the approximate radius of a free water molecule) or 1.9 Å 
(the approximate radius of a –CH2– group) (Adamian, et al., 2005; Beuming and Weinstein, 
2004). Given that the solvents surrounding the hydrophobic core parts of HMPs are 
hydrocarbon chains of phospholipids, we believe that 1.4 Å is not a proper choice. 1.9 Å is not 
suitable, either, because the CH2 group of phospholipids is part of a long hydrocarbon chain 
and would not have a full mobility like a free –CH2– group. Thus, a value larger than 1.9 Å 
that well approximates the effective radius of the CH2 group of hydrocarbon chains should be 
chosen. In this study, we empirically set the probe radius to 2.2 Å. Second, when necessary, 
the two faces of the TM region (the cytoplasmic and exoplasmic faces) were capped with 
dummy atoms before computing SASA values. Many HMPs contain large interval cavities, 
and, without capping, large SASA values were assigned to residues lining internal cavities, 
making these residues look as if they were facing the lipid bilayer. Upon capping, internal 
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cavities that are inaccessible to the probe were identified and excluded in computing SASA 
values. Actual computations were carried out by using the program suite VOLBL 
(Edelsbrunner, 1995; Edelsbrunner, et al.). SASA values were normalized by dividing them by 
reference values to yield rSASA values. The reference value for an amino acid, X, is its SASA 
in the context of a nonapeptide helix GGGG-X-GGGG. It is an open issue which reference 
state to use. GGGG-X-GGGG and G-X-G have been used in similar work (Adamian, et al., 
2005; Beuming and Weinstein, 2004). In our case, essentially the same results were obtained 
using G-X-G of a helical conformation as a reference state (see Supplementary Information).   
Another point to be clarified in computing rSASA values is whether to use a monomeric or 
oligomeric form. Since there are few experimental data for the oligomerization of HMPs, it is 
not clear in most cases which form to choose. Presumably for this reason, different studies 
from different groups as well as different studies from the same group adopted HMPs of 
different oligomeric status in deriving propensity scales (Adamian and Liang, 2006; Adamian, 
et al., 2005; Beuming and Weinstein, 2004). Our guiding principle was the degrees of 
conservation for the residues involved in the oligomerization. The very reason that buried 
residues tend to be more conserved than exposed ones (Baldwin, et al., 1997; Donnelly, et al., 
1993; Stevens and Arkin, 2001; Yeates, et al., 1987) is that they are central to maintaining 
structural and/or functional integrity. Thus, we reasoned that if oligomeric forms are absolutely 
necessary for whatever reasons, this obligatory nature should be reflected in the degrees of 
conservation for the residues involved in the oligomerization. The analysis revealed that the 
potassium channel (1R3J in Table 1) is the only one for which the use of oligomeric form is 
justified (see Supplementary Information). Cytochrome bc1 complex is known to function as a 
dimer, and the 1PP9 structure in fact reveals a dimeric form (Huang, et al., 2005). However, 
the dimerization is mediated by residues located outside of the hydrophobic core, which is why 
a monomeric form is also adopted for this protein. 
 
Computation of profiles, positional scores and conservation indices 
In general, the use of a profile (the frequencies of the 20 amino acids for a sequence position) 
improves the performance of sequence-based prediction methods. Thus, we derived the 
profiles of the protein chains in Table 1 as described before (Park and Helms, 2006). Briefly, 
for each protein chain, a maximum of 1000 homologous sequences were retrieved from the 
non-redundant database using BLAST (Altschul, et al., 1997; Henikoff and Henikoff, 1994). 
Initial MSAs were then built by using ClustalW (Thompson, et al., 1994). Then, sequence 
fragments were deleted from the MSA. Sequences that are less than 25% identical to the query 
sequence were also removed. The remaining sequences were realigned using ClustalW to yield 
a final MSA, which was used to obtain the profiles. When deriving profiles from an MSA, 
amino acid frequencies were weighted using a modified method of Henikoff and Henikoff as 
implemented in PSI-BLAST (Altschul, et al., 1997; Henikoff and Henikoff, 1994). Actual 
computations were performed using the program AL2CO (Pei and Grishin, 2001), which is 
freely available at ftp://iole.swmed.edu/pub/al2co. 
For a given propensity scale P, the positional score of sequence position i, SP(i), is computed to 
be 
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where the index j runs over the 20 amino acids, fi(j) is the frequency of amino acid j in the 
sequence position i, and P(j) is the propensity value of amino acid j. 
Conservation indices were estimated by using the variance-based method (Pei and Grishin, 
2001). Our previous study showed that this method performs slightly better than other 
alternatives. 

                                                   � −=
j i jfjfiC 2))()(()(                                              (2) 

In Eq. 2, the index j runs over the 20 amino acids, C(i) is the conservation index for the 
sequence position i, f(j) is the overall frequency of amino acid j in the alignment. The 
conservation indices computed by Eq. 2 were normalized by subtracting the mean from each 
conservation index and dividing by the standard deviation. Actual calculations were performed 
again by using the AL2CO program. 
 
Performance measures 
The correlation coefficient (cc) for a set of n data points (xi, yi) was computed as follows: 
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Prediction accuracy was calculated as 
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where TP is the number of correctly predicted buried residues, TN is the number of correctly 
predicted exposed residues, FP is the number of falsely predicted buried residues and FN is the 
number of falsely predicted exposed residues. 
 
 
Results and Discussion 
Problem statement 
Given a set of known HMP structures, the task is to derive an optimal propensity scale of the 
20 amino acids to be exposed to the lipid bilayer. The derived scale would faithfully capture 
the affinities of the 20 amino acids to preferentially interact with the lipid bilayer. Also, it 
would allow one to predict exposed residues from the sequence with a highest possible 
accuracy under a linear regime as represented by Eq. 1. 
 
Overview of the previous algorithms 
Before introducing our novel learning algorithm, it is helpful to review the previous algorithms 
that were used to derive the BW and TMLIP1/TMLIP2 scales. It is often difficult to directly 
compare performance values of different learning algorithms reported in different studies 
because of the variety of data sets used and the discrepancy in state definitions. To facilitate a 
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transparent performance comparison, we implemented the algorithms for the BW and 
TMLIP1/TMLIP2 scales and carried out comparisons on the common data set (Table 1). 
The BW scale was derived in the following way (Beuming and Weinstein, 2004). 

1. For each amino acid type, compute its SF value, which is a sum of surface fraction 
values of exposed TM residues (defined as those with an rSASA > 0.10 when 
computed by using a probe with radius of 1.4 Å and the reference value from a 
tripeptide G-X-G in extended conformation). 

2. Identify the highest and lowest SF values (SFhigh and SFlow). 
3. Compute a propensity value for amino acid type j as (SFj-SFlow)/(SFhigh – SFlow) 

As the 20 amino acids are not equally abundant in the TM region, it might be necessary to 
correct for compositional bias in deriving a propensity scale. This type of correction was not 
done in the derivation of the BW scale. 
The TMLIP1 scale was derived as follows (Adamian, et al., 2005). 

1. Compute Nj,s (the number of exposed TM residues of type j, with “exposed” being 
defined as rSASA > 0.0 when computed by using a probe with radius of 1.9 Å), Ns 
(the number of exposed TM residues of all types), Nj (the number of TM residues 
of type j), N (the number of all TM residues).  

2. Pj,s = Nj,s/Ns, and Pj = Nj/N. 
3. Compute a propensity value for amino acid type j as log(Pj,s/Pj). 

The TMLIP2 scale was derived in a similar way (Adamian, et al., 2005). 
1. Compute Nj,s, Ns as for the TMLIP1 scale. 
2. Compute Nj (the number of buried TM residues of type j), N (the number of buried 

TM residues of all types). 
3. Pj,s = Nj,s/Ns, and Pj = Nj/N. 
4. Compute a propensity value for amino acid type j as log(Pj,s/Pj). 

The only difference between the TMLIP1 and TMLIP2 scales is how normalization is 
performed. In the TMLIP1 scale, normalization is based on compositional bias in the TM 
region. In contrast, the TMLIP2 scale is more like an odds-ratio type, explicitly taking into 
account the random probabilities of amino acid type j to be exposed and buried. In addition, 
the TMLIP1/TMLIP2 scales are based on count statistics, while the BW scale is not. Another 
point to be noted about the derivation of the BW and TMLIP1/TMLIP2 scales is that they 
require residues in the training set to be labeled as either being buried or exposed, which in 
turn requires a threshold rSASA value. Since there is no consensus on which rSASA value to 
use as a threshold, we explored all reasonable values (from 0.00 to 0.05 in steps of 0.01) in our 
implementation. 
 
Derivation of an optimal propensity scale 
Our starting point is fundamentally different from the approaches for the above three scales. 
We first ask what is meant by a propensity scale being “optimal”. In other words, how would 
one compare different propensity scales? Our answer is how strongly correlated the positional 
scores derived from a scale for given profiles (Eq. 1) are with the corresponding exposure 
patterns (rSASA values in our context). In fact, our answer is not novel. This measure (the 
Pearson’s correlation coefficient between the positional scores and rSASA values) has been, 
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for a long time, known to be a key property measuring the fundamental goodness of a 
prediction method and extensively used in the realm of bioinformatics of soluble proteins 
(Adamczak, et al., 2004; Ahmad, et al., 2003; Chen and Zhou, 2005; Li and Pan, 2001; 
Nguyen and Rajapakse, 2006; Pollastri, et al., 2002; Rost and Sander, 1994; Sim, et al., 2005; 
Thompson and Goldstein, 1996). 
Now that the meaning of a scale being “optimal” is clear, our task is to derive a propensity 
scale in such a way that the positional scores derived from it for given profiles are maximally 
correlated with the corresponding exposure patterns. Optimization techniques such as gradient-
based optimization and Monte Carlo techniques may be used for this purpose. However, they 
usually do not guarantee the optimality of obtained solutions. For this reason, they have to be 
run several times with different starting points. 
We find out, however, that an exact solution for this problem can be straightforwardly obtained 
in an analytical fashion. Eq. 5 provides the essential hint for our finding. 

                                                            ))(1()SSE( 2ββ rk −=                                              (5), 

where SSE(ß) is a sum of squared errors between the positional scores and rSASA values 
(formally defined in Eq. 6), k a constant � 0, and r(ß) the Pearson’s correlation coefficient 
between them.  

                                                       )XY()XY()SSE( T ßß −−=β                                  (6) 

In Eq. 6, Y is a column vector of size N (the rSASA values of the training data set), X a matrix 
of N by 21 (a profile and 1) and ß a column vector of size 21 (the propensity values of the 20 
amino acids and an intercept value). Eq. 5 reveals that maximizing the Pearson’s correlation 
coefficient with respect to ß is equivalent to minimizing SSE with respect to ß. Minimizing 
SSE with respect to ß in a linear regime is the task of a linear regression analysis. The 
analytical solution is given as follows (Hastie, et al., 2001): 

                                                                 YXX)(X T1T −=β                                               (7) 

Remarkably, this means that an optimal propensity scale (the first 20 elements of ß in Eq. 7, 
the MO scale) has been obtained in an exact, analytical manner, without involving any explicit 
summing or counting steps as in the derivation of the BW and TMLIP1/TMLIP2 scales. 
Another advantage of this formulation is that, unlike those for the BW and TMLIP1/TMLIP2 
scales, it does not require residues in the training set to be labeled beforehand as either being 
buried or exposed and thus is free from a priori assumptions.  
We would like to extract a general picture on the structural characteristics of HMPs from the 
limited data set of Table 1. The MO scale obtained by Eq. 7 might represent an overfitting to 
the data set of Table 1. In order to extract a generalizable picture, we used the ridge regression 
analysis (equivalent to weight decay methods) with the complexity parameter empirically set 
to 0.00001 (Hastie, et al., 2001). Regarding the choice of complexity parameters, it is to be 
noted that too small complexity parameters, e.g. 10-10, are likely to generate an MO scale 
overfitting to the used data set while too large complexity parameters might induce an 
unreasonably high degree of compression, assigning propensity values close to 0 to all amino 
acids.  
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The justification for using the correlation measure as an objective function is now clear. It is 
naturally connected to the sum of squared errors loss function, which enables one to treat the 
whole problem in an analytical fashion. Accordingly, the MO scale is guaranteed to be optimal 
in the linear regime, unlike others. Most importantly, this guaranteed optimality allows one to 
perform novel analyses with it (see Section 3.5).  
 
Comparative analysis 
A jack-nife test was used for measuring the performances of the propensity scales. For each 
protein chain in Table 1, four different positional scores were derived from its profile and 
temporary BW, TMLIP1, TMLIP2, MO scales that were derived from the data set of Table 1 
excluding the protein chain in question. Then, the performance of each scale was assessed in 
two complementary ways. First, by the Pearson’s correlation coefficient between the computed 
positional scores and rSASA values, corresponding to algorithmic optimality since we define 
being “good” as being strongly correlated. Second, by the accuracy of predicting the burial 
status of TM residues (Eq. 4). This corresponds to what we mean by “practical prediction 
accuracy.” Upon deriving positional scores, residues whose scores are higher than a cutoff 
value are classified as being exposed while those with a lower score as being buried. The 
cutoff value is objectively defined by a linear support vector machine on the basis of a training 
data set excluding the protein chain in question. We made use of the SVM implemented in R 
for this task with all parameters set to default values (Hsu and Lin, 2002; Karatzoglou, et al., 
2006; R Development Core Team, 2004). 
The results of the comparative analysis are shown in Table 2. (It is to be noted that figures in 
Table 2 are only for the purpose of comparing the intrinsic goodness of the 4 propensity scales. 
For predicting the burial status in real applications, one would rely on more advanced methods 
along with other information available, e.g. conservation indices.) Table 2 reveals that the MO 
scale outperforms the others in terms of algorithmic optimality. In terms of practical prediction 
accuracy, the MO scale is better than the BW and TMLIP1 scales and compares favorably with 
the TMLIP2 scale. Thus, Table 2 “experimentally” validates the practical virtues of the logic 
behind the derivation of the MO scale.  
A detailed analysis revealed two trends in the prediction results (see Supplementary 
Information). One is that the MO scale achieved more balanced predictions than others. The 
other is that, as the proportion of buried residues in the data set increased, the accuracy of 
predicting buried residues as being buried improved. This is possibly due to the weakening of 
bias introduced in the partitioning of the data set. The better performance of the 
TMLIP1/TMLIP2 scales over the BW scale suggests that it pays off to include normalization 
steps in deriving a propensity scale. The better performance of the TMLIP2 scale over the 
TMLIP1 scale indicates that not every null model is equally effective for normalization. On the 
other hand, the overall weak correlation between the positional scores computed from the MO 
scale and rSASA values of TM residues supports the suggestion that the lipophobic effect does 
not play a dominant role in folding of HMPs (Faham, et al., 2004). 
 
The MO scale 
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In addition to checking how the performance of the MO scale compares with that of others, it 
is of interest to find out how the MO scale itself compares with other scales because the MO 
scale accurately captures the affinities of the 20 amino acids to preferentially interact with the 
hydrophobic core of the lipid bilayer as reflected in experimental HMP structures. 
Table 3 lists the MO scale, and Table 4 shows its correlations with other scales. As shown in 
Table 4, there is a strong correlation between the MO scale and other structure-based 
propensity scales. In contrast, the MO scale correlates poorly with hydrophobicity scales such 
as KD, EIS, GES, WW and Hessa. This observation supports the suggestion that the scale used 
by the translocon for recognizing TM segments is not the same as that for constrained 
partitioning of TM residues between being buried and exposed to the lipid bilayer (Pilpel, et 
al., 1999). 
Perhaps most striking is the observation that the MO scale for HMPs exhibits the strongest 
correlation with PSV. Since the propensity values captured by the MO scale should reflect a 
net result of numerous complex interactions involved in the folding of HMPs, they are not 
expected to display a strong correlation with a single scale. The correlation with PSV is even 
stronger than that with the structure-based ones. However, the correlation with a related scale, 
the bulkiness scale, does not stand out as strongly. As a control experiment, we derived an 
analogous MO scale for a representative set of soluble protein structures (see Supplementary 
Information). As expected, the MO scale for soluble proteins strongly correlates with 
hydrophobicity scales. Yet, it displays only a weak correlation with PSV. 
In an effort to facilitate the interpretation of the MO scales for HMPs and soluble proteins in 
terms of more intuitive scales such as the hydrophobicity scales and the Cohn & Edsall partial 
specific volumes, they were decomposed into binary combinations of these scales using a 
linear regression analysis (For a meaningful analysis, each scale was standardized to have 
mean of 0 and standard deviation of 1). As shown in Table 5, the MO scale for HMPs can be 
interpreted as a hybrid of ~ 0.7 of PSV with ~ 0.3 of a hydrophobicity scale. In contrast, the 
MO scale for soluble proteins appears almost the same as hydrophobicity scales. 
These analyses reveal the organizing principles of each type of protein structures. The strong 
correlation of the MO scale for soluble proteins with hydrophobicity scales and the 
decomposition analysis indicate that the hydrophobic effect is a major force behind the folding 
of soluble proteins, as has been long known (Pace, et al., 1996). Regarding HMPs, two points 
are to be noted. First, the moderate correlation of the MO scale for HMPs with hydrophobicity 
scales and the decomposition analysis indicate that hydrophobicity still plays a role, albeit 
much weaker compared to the case of soluble proteins, in the thermodynamic stability of 
HMPs. Second, the strong correlation of the MO scale for HMPs with PSV and the 
decomposition analysis suggest, unexpectedly, that the structural organization of HMPs is 
better captured by PSV than by hydrophobicity. Our interpretation of this observation is as 
follows. In soluble proteins, functionally important residues are usually on the surface, and 
structural scaffolds are maintained by other residues buried inside. In this sense, functional and 
structural integrities are served by separate groups of residues. If this is not the case, a tradeoff 
between function and structural stability is to be made (Meiering, et al., 1992; Schreiber, et al., 
1994; Shoichet, et al., 1995; Zhang, et al., 1992). In HMPs, functionally important residues are 
usually found buried inside. Also, HMPs are usually well-packed, presumably to compensate 
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for the lack of the hydrophobic effect as a driving force for folding. Thus, functional and 
structural integrities are served by similar groups of residues, and one has to compromise 
between function and structural stability. One suitable way of doing so would be, whenever 
possible, to select amino acids with smaller partial specific volumes over those with larger 
partial specific volumes in the buried positions. As specific examples, we show the values 
from the MO and PSV scales for similarly charged/polar amino acids: S (MO: -0.19, PSV: 
0.63) versus T (MO: -0.18, PSV: 0.70), R (MO: -0.21, PSV: 0.70) versus K (MO: -0.10, PSV: 
0.82), D (MO: -0.27, PSV: 0.60) versus E (MO: -0.20, PSV: 0.66) and N (MO: -0.23, PSV: 
0.62) versus Q (MO: -0.22, PSV: 0.67), suggesting that amino acids with a stronger tendency 
to be buried tend to display smaller partial specific volumes. Understandably, the intriguing 
analyses presented in this section are with due caveats owing to the small size of the current 
data set. 
 
Applications 
The approach for the derivation of the MO scale can be also applied to other bioinformatics 
problems of HMPs. We use the ProperTM method as an example (Beuming and Weinstein, 
2004) for demonstration. ProperTM combines positional scores from the BW scale and 
sequence conservation patterns for improved predictions of the burial status of TM residues. 
Technically, it computes the overall score for sequence position i, OS(i), as 0.5×(C(i) – SBW(i)), 
where C(i) is the conservation index for sequence position i and SBW(i) the positional score for 
sequence position i computed from the BW scale via Eq. 1. Since SBW(i) is a linear 
combination of the profile elements, the overall approach of ProperTM to derive an overall 
score for sequence position i can be cast as follows: 

                                                    �
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where Cc is the coefficient for the conservation index (set to 0.5 in ProperTM) and Cj the 
coefficient for the jth element of the profile (set to -0.5×BW(j) in ProperTM). The natural 
question is, then, whether the set of coefficients adopted by ProperTM are optimal. They can 
be optimized via Eq. 7. In this case, X becomes a matrix of N by 22 (C(i), a profile and 1), and 
ß is a vector of size 22 (the coefficients for C(i) and the 20 profile elements, and an intercept). 
Table 6 shows the results. “P_BW” denotes the combination of the conservation index and the 
positional score derived from the BW scale according to the way proposed in ProperTM. 
“P_TMLIP1”, “P_TMLIP2”, and “P_MO” are analogously defined. “SO” denotes the 
combination based on the simultaneous optimization of the coefficients for C(i) and the 20 
profile elements. As expected, “SO” excels the others in terms of both algorithmic optimality 
and practical prediction accuracy. 
 
 
Conclusion 
The current study introduces a novel way of deriving a propensity scale for the 20 amino acids 
to be exposed to the lipid bilayer from known structures. The derived scale (the MO scale) 
favorably compares with others in terms of both algorithmic optimality and practical prediction 
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accuracy. The MO scale also suggests interesting insights into the structural organization of 
HMPs. In addition, the same approach can be applied to the problem of optimally combining a 
propensity scale and sequence conservation patterns under a linear regime, as well. 
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Table 1. Protein chains used in the analysis 
PDB ID Protein Chains 
1. 1M0L Bacteriorhodopsin A 
2. 1GZM Rhodopsin A 
3. 1R3J KcsA potassium channel C 
4. 1J4N Aquaporin A 
5. 1LDF Glycerol facilitator channel A 
6. 1XQF Ammonia channel A 
7. 1OTS H+/Cl- exchanger A 
8. 2A65 Leucine transporter A 
9. 2CFQ Lactose permease A 
10. 1YEW Methane monooxygenase B, C 
11. 1SU4 Calcium ATPase A 
12. 2BL2 Rotor of V-type Na+-ATPase A 
13. 1DXR Photosynthetic reaction center L, M, H 
14. 1KF6 Fumarate reductase (E. coli) C, D 
15. 1QLA Fumarate reductase (W. succinogenes) C 
16. 1KQF Formate dehydrogenase N B, C 
17. 1Q16 Nitrate reductase A C 
18. 1NEK Succinate dehydrogenase C, D 
19. 1ZOY Complex II C, D 
20. 1OKC Mitochondrial ADP/ATP carrier A 
21. 1V55 Cytochrome C oxidase (aa3 type) B, D, G, I, J, L, M 
22. 1EHK Cytochrome C oxidase (ba3 type) A, B 
23. 1PP9 Cytochrome bc1 complex D, E, G, J 
24. 2GIF AcrB multidrug efflux transporter A 
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Table 2. Performance comparison of the four scales 

0.00a(0.58)b 0.01 (0.55) 0.02 (0.53) 0.03 (0.51) 0.04 (0.50) 0.05 (0.48) 

Scale CCc Accd CC Acc CC Acc CC Acc CC Acc CC Acc 

BW 0.27 67.1 0.27 66.6 0.27 66.0 0.27 65.7 0.27 65.4 0.27 64.5 
TMLIP1 0.27 67.5 0.27 65.8 0.27 66.6 0.27 66.8 0.27 65.8 0.27 65.9 
TMLIP2 0.28 69.6 0.28 68.9 0.29 67.9 0.29 67.3 0.29 66.8 0.28 66.4 
MO 0.30 69.3 0.30 68.5 0.30 68.0 0.30 67.8 0.30 67.5 0.30 67.5 
aThe threshold rSASA value for specifying the residues in the data set as either being buried or 
exposed. 
bThe fraction of exposed residues in the data set. 
cAbsolute magnitude of correlation coefficient (Eq. 3) 
dAccuracy of predicting the burial status in percentage (Eq. 4) 
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Table 3. The MO scale for HMPs 
A -0.09 G -0.18 M -0.23 S -0.19 
C -0.16 H -0.24 N -0.23 T -0.18 
D -0.27 I 0.05 P -0.10 V 0.02 
E -0.20 K -0.10 Q -0.22 W -0.03 
F -0.01 L 0.02 R -0.21 Y -0.15 
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Table 4. Correlation coefficients between the MO scale and others 
Character of the 

scale 
Scale (reference) MO scale for  

HMPs 
MO scale for  

soluble proteins 
BW 0.82 NDa 

TMLIP1 0.75 NDa 
Structure-based 

TMLIP2 0.84 NDa 
KD  

(Kyte and Doolittle, 1982) 
0.73 -0.81 

EIS (Eisenberg, et al., 1984) 0.67 -0.77 
GES (Engelman, et al., 1986) 0.55 -0.80 
WW (Wimley, et al., 1996) 0.65 -0.81 

Hydrophobicity 

Hessa (Hessa, et al., 2005) -0.66 0.87 
Size Bulkinessb  

(Zimmerman, et al., 1968) 
0.70 -0.42 

Packing PSV  
(Partial specific volume)b 
(Cohn and Edsall, 1943) 

0.85 -0.34 

Others KPROT (Pilpel, et al., 1999) 0.64 -0.65 
aNot Defined: these three scales are not defined for soluble proteins 
bSee also Supplementary Information. 
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Table 5. 3 Best binary decomposition of the MO scales for HMPs and soluble proteins 
The MO scale for HMPs 

 Scale 1 (coefficient for  
the decomposition) 

 Scale 2 (coefficient for 
the decomposition) 

Correlation with  
 the original MO 

scale 
Decomposition 1 PSV (0.69) EIS (0.34) 0.90 
Decomposition 2 PSV (0.65) KD (0.34) 0.89 
Decomposition 3 PSV (0.70) Hessa (-0.31) 0.89 

The MO scale for soluble proteins 
 Scale 1 (coefficient for  

the decomposition) 
Scale 2 (coefficient for  

the decomposition) 
Correlation with  
the original MO  

scale 
Decomposition 1 Hessa (0.67) WW (-0.24) 0.88 
Decomposition 2 Hessa (0.94) PSV (0.13) 0.88 
Decomposition 3 Hessa (0.84) Bulkiness (-0.08) 0.88 
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Table 6. Performance comparison of the four scales combined with sequence conservation 
patterns. 

0.00a(0.58)b 0.01 (0.55) 0.02 (0.53) 0.03 (0.51) 0.04 (0.50) 0.05 (0.48)  

CCc Accd CC Acc CC Acc CC Acc CC Acc CC Acc 

P_BW 0.43 71.3 0.43 70.9 0.43 70.7 0.43 71.2 0.43 70.8 0.43 70.5 
P_TMLIP1 0.44 72.2 0.43 71.9 0.44 71.3 0.44 71.6 0.44 71.3 0.44 71.1 
P_TMLIP2 0.44 73.0 0.44 72.5 0.44 72.2 0.44 72.3 0.44 72.4 0.44 72.3 

P_MO 0.43 70.5 0.43 70.5 0.43 69.8 0.43 69.7 0.43 69.9 0.43 69.4 
SO 0.46 74.1 0.46 72.9 0.46 72.6 0.46 72.9 0.46 72.9 0.46 72.9 

a,b,c,dDefined in the same way as in Table 2. 
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Supplementary Information 
 
1. Soluble proteins 
 
A non-redundant set of 572 soluble protein chains (less than 25% pairwise sequence identity and resolution better 
than 2.5Å) were extracted from the PDB (Berman, H. M., et al. Nucleic Acids Res. 28, 235-242) by using the web 
server of PDB-REPRDB (Noguchi, T. & Akiyama, Y. Nucleic Acids Res. 31, 492-493). Then, for each of them, a 
multiple sequence alignment was generated as described in the Methods section. rSASA values for soluble protein 
chains were obtained by dividing the DSSP accessibility (Kabsch, W. & Sander, C. Biopolymers 22, 2577-2637) by 
the reference values reported by Samanta, U., et al. (Protein Eng. 15, 659-667) 
 
The list of 572 soluble protein chains (PDB ID+Chain ID) 
2B97A 
1NWZA 
1MUWA 
1V6PA 
1IQZA 
1GVKB 
4LZT_ 
1NKIA 
1ZLBA 
1GQVA 
1UG6A 
1P1XA 
1EB6A 
1LNIB 
1A6M_ 
1K6UA 
1EXRA 
1QTWA 
1WUIS 
1PSRB 
2C9VA 
1W66A 
2CARA 
1N62B 
1C5EA 
2AB0A 
1SU8A 
2FBAA 
1RG8A 
1AXN_ 
2HVM_ 
1PT7A 
1MH9A 
1HPI_ 
2FJEA 
2AQJA 
1Y4TA 
1ML4A 
1J1QA 
1GBG_ 
1H0HB 
1LENC 
1UBI_ 
1X1NA 

1RYIA 
1LD8A 
1JUEA 
1DOZA 
1TML_ 
1GBS_ 
1XXOA 
1LY2A 
1ULKA 
1UNKA 
1EPTB 
1OWLA 
1AFWB 
1G5TA 
2GRNA 
1TIF_ 
1LJ5A 
1MML_ 
2PII_ 
1ODSA 
1GYCA 
1H7WD 
1TG7A 
1ON3E 
1BGVA 
1B8AA 
1B8PA 
1QGJA 
1BUDA 
1KEKA 
2AKAA 
1R8CA 
1UYPA 
1CHMA 
1M0SA 
2FZSB 
1PNKB 
1F20A 
1SFTA 
1IDK_ 
1TM2A 
1PNKA 
1U7PA 
1K12A 

2CHSA 
1Q16A 
1IVUA 
1Q16B 
2CK3C 
1EU8A 
1JK7A 
2ESBA 
1ESL_ 
1CGT_ 
1ECFB 
2HPDA 
1FP3A 
1NSYA 
1Z5GB 
1APYA 
2CQSA 
1PMMA 
1VPNB 
1IGS_ 
1UGQA 
1UOK_ 
2ACVA 
2PIA_ 
1LKI_ 
1WPBA 
1R5TA 
1CB6A 
1MW3A 
1OGSA 
2PGD_ 
1XCLA 
2H29A 
1BV1_ 
1N3FA 
1COZA 
1JS1X 
1BPLB 
2D5IA 
1BPLA 
1HCGB 
1LNSA 
1KKTA 
1TARA 

1VRNM 
2FW2C 
1WDTA 
1RYDA 
1M50A 
1U19A 
1JJIA 
1DYNA 
1AW8B 
1GCB_ 
1QHWA 
1VQOM 
1FROA 
1VQO3 
1VQO1 
1VQOU 
1YXWA 
1Z9UB 
2BJ3A 
1ZJHA 
1FFYA 
1QVCB 
1MHLC 
1KT6A 
1I1XA 
1SAUA 
1TUKA 
1Z53A 
1P6OB 
1OE3A 
1J0OA 
1HEUA 
1HG7A 
2D8DB 
1M1NB 
1M1NA 
1C9OA 
1CZPA 
1WKQA 
1T1EA 
2DFCA 
1IFC_ 
2FJ8A 
1I6TA 

1JBC_ 
2BMOA 
2C1VA 
1X6IB 
1AMM_ 
1WN2A 
2SN3_ 
1HXHB 
2DEAA 
1GNLA 
1MEXL 
1LXZA 
1WDPA 
1MQKH 
1QKSA 
1RTTA 
2AEBB 
1G61A 
1OX0A 
1K3YA 
1WVFA 
2A50B 
2A50A 
1SG4A 
7FD1A 
1BXAA 
1RRO_ 
1ISPA 
1F41A 
1ULRA 
1XEOA 
1VF8A 
2BOQA 
1YPHC 
1YPHE 
1VH5A 
1UTG_ 
1U1WB 
2LISA 
2A8FB 
1HZTA 
1QH5A 
1V4PA 
1C8CA 

2AW1A 
1JU2A 
1SMOB 
1GQIA 
2RN2_ 
1HBZA 
1HT6A 
1Y0PA 
1G6SA 
1OFNB 
2AD6A 
1QWOA 
1F1UA 
1DJ0A 
1V5DA 
1KQ3A 
1OC2B 
1UV4A 
1DQZA 
2BKVB 
1IQQA 
2DQ6A 
1I1NA 
1UI0A 
2B5HA 
1NC5A 
2GASA 
1EG9B 
1CG5B 
1WS8B 
1YT3A 
1O26B 
1YW5A 
1MD6A 
1Y0HB 
1NM8A 
1U0EA 
2FUKA 
1IT2A 
1GY6A 
1V5EA 
1FWXA 
1IWDA 
1XWWA 
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1I9DA 
2FMPA 
2A7BA 
1YO3A 
1EZWA 
1DHN_ 
1WUBA 
1E3UB 
1DOSA 
1B4KA 
1CZFA 
2F2BA 
1TH7A 
1T0BH 
1YKIA 
1FZQA 
1ZPSB 
1ERT_ 
1TXLA 
2EV6B 
1QSTA 
2FUJA 
1GXYA 
1X2TA 
1B5FA 
1LTUA 
1K6WA 
1PZ3A 
1UMKA 
1CQXA 
1NPYB 
1CHD_ 
1WD3A 
1U8FO 
1XGSA 
1XX1A 
7YASA 
1UDH_ 
1UJ8A 
2B0TA 
1GNUA 
1H4PA 
1R8NA 
1K66A 
1XKRA 
1ZAIA 
1C8KA 
1R4PB 
1Y1TA 
2A6SB 
1CMBA 
1V54H 

1SHG_ 
1R9DA 
1H8UA 
1X8DA 
2IW0A 
1GND_ 
1DMR_ 
2IW2A 
1V0ZA 
1A44_ 
1QBA_ 
2GB0B 
1IWBA 
2GAGA 
2GAGD 
1EX2A 
1VLS_ 
1PK6A 
2B3YA 
1NZOA 
1J7DA 
1DYR_ 
1YB0B 
1ONRA 
1XX2A 
1WF3A 
1VIYA 
1QGDA 
1J9JA 
1T06A 
1AGQD 
1EJJA 
1C7NA 
1UJ1B 
1QNXA 
1I5ZB 
1IAKB 
1F5MB 
1F4QB 
1C8UA 
1Z6OM 
1K7HA 
1AK2_ 
1KKJA 
1EKJG 
1KBLA 
1KX5D 
1QHDA 
1FO6A 
1KLXA 
1PTQ_ 
1NFVI 

1YNHB 
1I39A 
1K04A 
1HCZ_ 
2C59A 
1BF2_ 
1RQHA 
2FCAB 
1ENH_ 
1EZ0A 
1UHVA 
1YZYA 
2CUNA 
1FCUA 
1UN1A 
1PNOA 
1G5CA 
1A32_ 
1NU6A 
1JL5A 
1J2ZA 
1SHXA 
2CW6A 
2FBIA 
1BY4B 
1XQZA 
1ZDZA 
1UMPA 
1DTYA 
1UC2A 
1K3BB 
1K3BA 
1WU3I 
2BS3A 
2BS3C 
1DJNA 
1BOUB 
1IG8A 
1JI3A 
1SNZA 
1EI9A 
1R44A 
2F0RA 
2BC4A 
1V4EA 
1S13A 
1HPLA 
3OVWA 
1ITQA 
3SSI_ 
1CAUA 
1V6AA 

1M73E 
1YGYA 
1WPGA 
1I1IP 
1XMEA 
1MWKA 
2GNNB 
1F2KA 
1MBB_ 
1REOA 
1AYYD 
1V7UA 
1NHWA 
1NHWC 
1A6JA 
2GP3A 
1L5JA 
1KYVC 
1RKM_ 
1UB2A 
2CMZB 
2A0ZA 
1V8BA 
1TLBQ 
1QGOA 
1JDIA 
1H3QA 
1E5LA 
1NBWA 
1J36A 
1KFQA 
2A6MB 
2B3ZD 
1TJ7A 
1NMTA 
1F52A 
1G99A 
1FUIA 
1HJRA 
2A96B 
3PBH_ 
2B5OA 
1YEPA 
1CLIB 
1POIA 
1POIB 
1D0NA 
2PVAA 
1ND2B 
1ND2C 
1BM0A 
1QGKA 

1LCSA 
1B4AA 
1K5HA 
2G5HA 
1HR6A 
2G5HB 
1SZBA 
1J8QA 
1BSMA 
1TZVA 
1MQOA 
1JO0A 
1THM_ 
1H2WA 
1LLFA 
1GK8I 
2BJKA 
2FI1A 
1EZGA 
1RKQA 
1WBIA 
1QK8A 
3VUB_ 
1YGE_ 
1YRCA 
1G8AA 
1Y43B 
2DDRC 
1V37B 
1H2RL 
1FP2A 
1QH4A 
1MXRA 
1E6UA 
1X7QB 
2GDGA 
1HKA_ 
1LFMA 
1M2AA 
1WHI_ 
1P1MA 
1V5VA 
1WRVB 
1AH7_ 
1F46B 
1AGI_ 
1S67L 
2CVIA 
1KPF_ 
1IO7A 
2C3NA 
1LLMC 

1KRHA 
1OMRA 
1Y1NA 
1YPYA 
1YME_ 
1T6CA 
1USGA 
1RV9A 
2AVKA 
1SZNA 
2B2HA 
1YQZA 
3GRS_ 
2BEMA 
1QQJA 
1EDQA 
1WTJB 
1ZG4A 
1TXGA 
1Q8FA 
1BKPB 
1DP0A 
2A14A 
1KNB_ 
1CSS_ 
1JHDA 
2D80A 
1ZXIC 
1YOCB 
1MTYD 
1PMI_ 
1PB1A 
1UQRD 
2C65B 
1PXZA 
1NVMG 
2CI3A 
1F5VA 
1V58A 
2FA1B 
1IS6A 
1B2PA 
1YGTA 
1FTRA 
2FZVB 
1WAB_ 
1MXIA 
1W4XA 
1R12A 
1FVAB 
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2. Bulkiness and partial specific volumes 
 
The accession code for the Bulkiness scale from the AAindex database (Kawashima, S. and Kanehisa, M. Nucleic 
Acids Res. 28, 374) is ZIMJ680102. The accession code for the partial specific volumes of the 20 amino acids of 
Cohn and Edsall from the AAindex database is COHE430101. However, the values deposited in COHE430101 are 
not the same as those reported in the original publication. In the current study, we use the values reported in the 
original 1943 publication (Protein, Amino Acid, and Peptides. Reinhold, New York, pages 155 – 176 &370-381), 
which are listed below (Table S1). 
 
 
Table S1. The partial specific volumes from Cohn and Edsall

A  0.74 G  0.64 M  0.75 S  0.63 

C  0.61 H  0.67 N  0.62 T  0.70 

D  0.60 I  0.90 P  0.76 V  0.86 

E  0.66 K  0.82 Q  0.67 W  0.74 

F  0.77 L  0.90 R  0.70 Y  0.71 
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3. Results with G-X-G as a reference state 
 
Table S2. Performance comparison of the four scales (equivalent to Table 2 in the main text) 
 0.00a(0.58)b 0.01 (0.54) 0.02 (0.51) 0.03 (0.49) 0.04 (0.47) 0.05 (0.45) 

Scale CCc Accd CC Acc CC Acc CC Acc CC Acc CC Acc 
BW 0.30 68.1 0.30 67.1 0.30 66.5 0.30 65.5 0.30 66.2 0.30 66.4 

TMLIP1 0.29 66.8 0.29 66.9 0.30 66.3 0.29 65.7 0.29 65.4 0.29 65.9 
TMLIP2 0.31 69.2 0.31 68.3 0.31 67.7 0.31 66.5 0.31 66.5 0.31 66.5 

MO 0.32 70.7 0.32 69.4 0.32 68.5 0.32 67.5 0.32 67.5 0.32 67.3 
a,b,c,dDefined in the same way as in Table 2 in the main text 
 
Table S3. The MO scale for HMPs (equivalent to Table 3 in the main text) 

A  -0.07 G  -0.13 M  -0.16 S  -0.13 

C  -0.12 H  -0.16 N  -0.15 T  -0.13 

D  -0.18 I  0.04 P  -0.09 V  0.01 

E  -0.14 K  -0.06 Q  -0.15 W  0.00 

F  0.01 L  0.02 R  -0.14 Y  -0.10 

 
Table S4. Correlation coefficients between the MO scale for HMPs and others (equivalent to Table 4 in the main 
text) 
Character of the scale Scale Correlation coefficient 

BW 0.81 
TMLIP1 0.74 

Structure-based 

TMLIP2 0.84 
KD 0.70 
EIS 0.65 
GES 0.52 
WW 0.66 

Hydrophobicity 

Hessa -0.65 
Size Bulkiness 0.74 

Packing PSV 0.85 
Others KPROT 0.60 

 
Table S5. Best binary decomposition of the MO scale for HMPs (equivalent to Table 5 in the main text) 

The MO scale for HMPs 
 Scale 1 (coefficient for  

the decomposition) 
 Scale 2 (coefficient for 

the decomposition) 
Correlation with  
 the original MO 

scale 

Decomposition 1 PSV (0.69) WW (0.32) 0.89 
Decomposition 2 PSV (0.70) EIS (0.31) 0.89 
Decomposition 3 PSV (0.70) Hessa (-0.28) 0.88 

 
Table S6. Performance comparison of the four scales combined with sequence conservation patterns (equivalent to 
Table 6 in the main text) 
 0.00a(0.58)b 0.01 (0.54) 0.02 (0.51) 0.03 (0.49) 0.04 (0.47) 0.05 (0.45) 

Scale CCc Accd CC Acc CC Acc CC Acc CC Acc CC Acc 
P_BW 0.44 71.6 0.44 71.1 0.44 71.2 0.44 70.6 0.44 70.0 0.44 69.8 

P_TMLIP1 0.44 72.3 0.44 71.6 0.44 71.6 0.44 71.2 0.44 70.5 0.44 70.4 
P_TMLIP2 0.45 73.0 0.45 72.5 0.45 72.2 0.45 72.1 0.45 71.7 0.45 72.0 

P_MO 0.42 70.7 0.42 70.3 0.42 69.5 0.42 69.2 0.42 68.7 0.42 68.4 
SO 0.48 74.2 0.48 73.5 0.48 73.6 0.48 72.5 0.48 72.6 0.48 72.8 

a,b,c,dDefined in the same way as in Table 2 in the main text 
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4. Average conservation of interface residues of protein chains in Table 1 in 
the main text 
 
Average conservation indices for buried, exposed and interface residues of the protein chains in Table 1 of the main 
text. Exposed residues are those with an rSASA > 0.00. Interface residues are those that are exposed in the 
monomeric state and buried in the oligomeric state. Protein chains lacking interface residues are excluded in the 
analysis. 
 
Table S7. Average conservation indices for buried, exposed and interface residues 
 1m0l_A 1r3j_C 1j4n_A 1ldf_A 1xqf_A 1ots_A 
Buried 31 (1.41)a 6 (0.18) 54 (1.07) 50 (0.98) 88 (0.73) 111 (0.80) 

Exposed 65 (-0.24) 36 (-0.21) 57 (-0.09) 54 (-0.17) 72 (-0.38) 73 (-0.41) 

Interface 17 (-0.13) 8 (0.89) 24 (-0.05) 18 (-0.29) 29 (-0.22) 16 (0.45) 
aNumber of residues (their average conservation index) 
 
 2a65_A 1yew_B 1yew_C 2bl2_A 1qla_C 1kqf_C 
Buried 97 (0.31) 39 (0.16) 14 (0.22) 18 (0.82) 25 (0.56) 24 (0.63) 

Exposed 74 (-0.40) 37 (-0.36) 35 (-0.66) 47 (0.16) 52 (-0.48) 54 (-0.45) 

Interface 1 (-0.80) 20 (-0.06) 2 (0.02) 18 (-0.11) 5 (-0.54) 1 (1.06) 

 
 1nek_D 1q16_C 1v55_B 1v55_G 2gif_A 
Buried 13 (0.41) 20 (0.34) 2 (0.77) 1 (0.20) 75 (0.85) 

Exposed 37 (-0.61) 69 (-0.27) 22 (-0.18) 15 (-0.30) 90 (-0.18) 

Interface 13 (-0.50) 1 (0.00) 1 (0.15) 5 (-0.36) 25 (-0.21) 

 
Only in the case of 1r3j_C, a significant degree of conservation is found for the interface residues. For 1kqf_C, there 
is only one residue at the interface, which is not deemed to be significant. 
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5. Analysis of the nature of prediction errors 
 
Table S8. Analysis of the nature of the prediction errors reported in Table 2 of the main text 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 606 
(50.2) 

353 
(20.9) 

Buried 424 
(35.1) 

160 (9.5) Buried 543 
(45.0) 

218 
(12.9) 

Buried 655 
(54.2) 

339 
(20.0) 

0.00
a
 

(0.58)
b
 

Exposed 602 
(49.8) 

1340 
(79.2) 

Exposed 784 
(64.9) 

1533 
(90.6) 

Exposed 665 
(55.1) 

1475 
(87.1) 

Exposed 553 
(45.8) 

1354 
(80.0) 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 688 
(52.9) 

357 
(22.3) 

Buried 484 
(37.2) 

176 
(11.0) 

Buried 655 
(50.4) 

258 
(16.1) 

Buried 722 
(55.5) 

335 
(20.9) 

0.01 
(0.55) 

Exposed 612 
(47.1) 

1244 
(77.7) 

Exposed 816 
(62.8) 

1425 
(89.0) 

Exposed 645 
(49.6) 

1343 
(83.9) 

Exposed 578 
(44.5) 

1266 
(79.1) 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 747 
(54.7) 

368 
(24.0) 

Buried 642 
(47.0) 

245 
(16.0) 

Buried 750 
(55.0) 

316 
(20.6) 

Buried 774 
(56.7) 

337 
(21.9) 

0.02 
(0.53) 

Exposed 618 
(45.3) 

1168 
(76.0) 

Exposed 723 
(53.0) 

1291 
(84.1) 

Exposed 615 
(45.1) 

1220 
(79.4) 

Exposed 591 
(43.3) 

1199 
(78.1) 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 796 
(56.0) 

370 
(25.0) 

Buried 745 
(52.4) 

288 
(19.5) 

Buried 820 
(57.7) 

349 
(23.6) 

Buried 825 
(58.1) 

337 
(22.8) 

0.03 
(0.51) 

Exposed 625 
(44.0) 

1110 
(75.0) 

Exposed 676 
(47.6) 

1192 
(80.5) 

Exposed 601 
(42.3) 

1131 
(76.4) 

Exposed 596 
(41.9) 

1143 
(77.2) 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 839 
(57.5) 

386 
(26.8) 

Buried 801 
(54.9) 

335 
(23.2) 

Buried 857 
(58.8) 

362 
(25.1) 

Buried 860 
(59.0) 

345 
(23.9) 

0.04 
(0.50) 

Exposed 619 
(42.5) 

1057 
(73.3) 

Exposed 657 
(45.1) 

1108 
(76.8) 

Exposed 601 
(41.2) 

1081 
(74.9) 

Exposed 598 
(41.0) 

1098 
(76.1) 

BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed 

Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed Predicted Buried Exposed 

Buried 884 
(59.1) 

417 
(29.7) 

Buried 838 
(56.0) 

331 
(23.6) 

Buried 886 
(59.2) 

365 
(26.0) 

Buried 904 
(60.4) 

351 
(25.0) 

0.05 
(0.48) 

Exposed 613 
(41.0) 

987 
(70.3) 

Exposed 659 
(44.0) 

1073 
(76.4) 

Exposed 611 
(40.8) 

1039 
(74.0) 

Exposed 593 
(39.6) 

1053 
(75.0) 

a,bDefined in the same way as in Table 2 in the main text 
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Table S9. Analysis of the nature of the prediction errors reported in Table 6 of the main text 
SO BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed Observed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Buried 730 
(60.4) 

273 
(16.1) 

Buried 634 
(52.5) 

259 
(15.3) 

Buried 650 
(53.8) 

248 
(14.7) 

Buried 675 
(55.9) 

249 
(14.7) 

Buried 615 
(50.9) 

262 
(15.5) 

0.00a 

(0.58)b 

Expos
ed 

478 
(39.6) 

1420 
(83.9) 

Expos
ed 

574 
(47.5) 

1434 
(84.7) 

Expos
ed 

558 
(46.2) 

1445 
(85.4) 

Expos
ed 

533 
(44.1) 

1444 
(85.3) 

Expos
ed 

593 
(49.1) 

1431 
(84.5) 

SO BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed Observed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Buried 808 
(62.2) 

293 
(18.3) 

Buried 733 
(56.4) 

278 
(17.4) 

Buried 747 
(57.5) 

262 
(16.4) 

Buried 773 
(59.5) 

270 
(16.9) 

Buried 717 
(55.2) 

272 
(17.0) 

0.01 

(0.55) 

Expos
ed 

492 
(37.9) 

1308 
(81.7) 

Expos
ed 

567 
(43.6) 

1323 
(82.6) 

Expos
ed 

553 
(42.5) 

1339 
(83.6) 

Expos
ed 

527 
(40.5) 

1331 
(83.1) 

Expos
ed 

583 
(44.9) 

1329 
(83.0) 

SO BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed Observed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Buried 876 
(64.2) 

307 
(20.0) 

Buried 797 
(58.4) 

282 
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(19.4) 
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(21.1) 

0.04 

(0.50) 

Expos
ed 

486 
(33.3) 

1144 
(79.3) 

Expos
ed 

545 
(37.4) 

1141 
(79.1) 

Expos
ed 

541 
(37.1) 

1150 
(79.7) 

Expos
ed 

520 
(35.7) 

1161 
(80.5) 

Expos
ed 

569 
(39.0) 

1138 
(78.9) 

SO BW TMLIP1 TMLIP2 MO 

Observed Observed Observed Observed Observed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Predic
ted 

Buried Expos
ed 

Buried 1015 
(67.8) 

305 
(21.7) 

Buried 947 
(63.3) 

306 
(21.8) 

Buried 960 
(64.1) 

302 
(21.5) 

Buried 980 
(65.5) 

286 
(20.4) 
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a,bDefined in the same way as in Table 2 in the main text 
 
 
 
 
 
 
 
 



 

 126 

 
 
 
 
 
 
 



�����

 

11. Paper IV 

Park, Y., Hayat, S. and Helms, V. BMC Bioinformatics (2007): 8, 
302.  

Prediction of the Burial Status of Transmembrane Residues of 
Helical Membrane Proteins
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



�����

 

Title: Prediction of the Burial Status of Transmembrane 

Residues of Helical Membrane Proteins 

                      

Yungki Park, Sikander Hayat and Volkhard Helms* 

 

Center for Bioinformatics, Saarland University, Germany 

*Corresponding author 

 

 

 



�����

Abstract 
Background: Helical membrane proteins (HMPs) play a crucial role in diverse cellular 
processes, yet it still remains extremely difficult to determine their structures by experimental 
techniques. Given this situation, it is highly desirable to develop sequence-based computational 
methods for predicting structural characteristics of HMPs.  
Results: We have developed TMX (TM eXposure), a novel method for predicting the burial 
status (i.e. buried in the protein core vs. exposed to the membrane) of transmembrane (TM) 
residues of HMPs. TMX derives positional scores of TM residues based on their profiles and 
conservation indices. Then, a support vector classifier is used for predicting their burial status. 
Its prediction accuracy is 78.71% on a benchmark data set, representing considerable 
improvements over 68.67% and 71.06% of previously proposed methods. Importantly, unlike 
the previous methods, TMX automatically yields confidence scores for the predictions made. 
In addition, a feature selection incorporated in TMX reveals interesting insights into the 
structural organization of HMPs. 
Conclusions: A novel computational method, TMX, has been developed for predicting the 
burial status of TM residues of HMPs. Its prediction accuracy is much higher than that of 
previously proposed methods. It will be useful in elucidating structural characteristics of HMPs 
as an inexpensive, auxiliary tool. TMX will be made freely available to academic users 
through a web server at http://service.bioinformatik.uni-saarland.de/tmx. 
 
 
Background 
Helical membrane proteins (HMPs) play a crucial role in diverse cellular processes, including 
energy generation, signal transduction, the transport of solutes across the membrane, and the 
maintenance of ionic and proton concentrations. Several studies have suggested that HMPs 
account for 20 – 30% of the open reading frames of sequenced genomes [1, 2]. In spite of their 
biological importance and genomic abundance, less than 1% of the proteins with known 
structure are HMPs [3], and this situation is not expected to improve dramatically in the near 
future. Hence, it is desirable to develop sequence-based computational methods for predicting 
structural characteristics of HMPs. In the realm of soluble proteins, two particular structural 
characteristics have been the main target of computational prediction methods: secondary 
structure [4-10] and solvent accessibility [11-26] (often in a form of binary burial status; buried 
inside vs. exposed to the environment). For HMPs, the prediction of secondary structures does 
not carry as significant a momentum as for soluble proteins because transmembrane (TM) 
segments, which can be relatively reliably identified from the sequence by several techniques 
[27-37], are known to usually adopt helical conformations to satisfy the hydrogen bonding 
capacity of the backbone polar atoms. On the other hand, the problem of predicting the burial 
status (i.e. buried in the protein core vs. exposed to the membrane) of TM residues of HMPs 
has remained nearly untouched until now, in contrast to the situation for soluble proteins, 
which have been extensively studied (see the references listed above) following the pioneering 
work of Rost and Sander [12]. This is quite “remarkable” given that it is much more difficult to 
determine the structures of HMPs than those of soluble proteins by experimental techniques. 
The ability to predict the burial status of TM residues of HMPs from the sequence should be 
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useful in several tasks. One simple example would be to help design mutational experiments 
aimed at identifying catalytically important TM residues of transporters [38, 39] by providing a 
list of TM residues highly likely to be buried in the protein core because TM residues 
important for the transport function would not be expected to be exposed to the membrane. 
Another simple example would be to help design mutational experiments aimed at identifying 
TM residues important for protein-protein interactions in the membrane by providing a list of 
TM residues highly likely to be exposed to the membrane. 
In 2004, Beuming and Weinstein pioneered the first sequence-based computational method for 
predicting the burial status of TM residues of HMPs (denoted hereafter as the BW method), 
which was based on sequence conservation patterns and a newly derived knowledge-based 
propensity scale of the 20 amino acids to be exposed to the membrane [40]. For a rather small 
benchmark set, the BW method achieved an impressive prediction accuracy of 80%. Recently, 
Adamian and Liang reported the development of a similar method [41], but it predicts the face 
of a TM helix exposed to the membrane, not the burial status of individual TM residues. 
Hildebrand and his coworkers described a computational method for predicting whether a 
given residue is located at a helix-helix interface in the membrane [42]. Yet, this is a distinct 
prediction problem from the one the current study deals with: a residue located outside of a 
helix-helix interface can still be buried. Quite recently, Yuan and his coworkers developed a 
method for predicting the relative solvent-accessible surface area (rSASA) of TM residues 
based on support vector regression (SVR, denoted hereafter as the YU method) [43]. Even 
though the YU method does not explicitly predict the burial status of TM residues, it is 
possible to do so using the predicted rSASA values. To our best knowledge, the BW and YU 
methods are the only ones currently available for predicting the burial status of TM residues of 
HMPs. 
We have developed TMX (TM eXposure), a novel sequence-based computational method for 
predicting the burial status of TM residues of HMPs. Its accuracy is 78.71% over a much 
larger data set of 3138 TM residues, representing a considerable improvement over 68.67% of 
the BW method when evaluated on the same data set. This prediction accuracy is also higher 
than 71.06% of the YU method. Importantly, unlike the BW and YU methods, TMX 
automatically yields confidence scores for the predictions made, a highly desirable component 
for any computational prediction method, which allows the user to selectively utilize prediction 
results depending on confidence scores in real application situations. In addition, a feature 
selection incorporated in TMX reveals interesting insights into the structural organization of 
HMPs. 
 
 
Results and Discussion 
Analysis of the BW method 
TMX is novel in several aspects compared to the BW and YU methods and can be described 
without any reference to these previous methods. However, we prefer to describe the logic 
behind its development in reference to the BW method in order to contrast it with the BW 
method and highlight its novelties. 
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For predicting the burial status of a TM residue, the BW method computes its positional score 
and compares the score with a threshold [40]. If the score is higher than the threshold, it is 
predicted to be buried. Otherwise, it is predicted to be exposed to the membrane. Formally, the 
BW method computes a positional score for sequence position i, S(i), as 0.5×(C(i) – PBW(i)), 
where C(i) is the conservation index for sequence position i, and PBW(i) the propensity of 
sequence position i for being exposed to the membrane, which is in turn derived from the BW 
scale as shown in Eq. 1. The BW scale is derived from a set of HMPs with known structure. 
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In Eq. 1, the index j runs over the 20 naturally occurring amino acids, BW(j) is the propensity 
value of amino acid j in the BW scale, and fi(j) the frequency of amino acid j in sequence 
position i. Plugging Eq. 1 into 0.5×(C(i) – PBW(i)), the overall approach of the BW method for 
deriving a positional score can be cast as follows. 
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Eq. 2 indicates that S(i) is a linear combination of the conservation index and the 20 elements 
of the profile. Thus, it can be written more generally as follows. 
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where Cc is the coefficient for the conservation index (set to 0.5 in the BW method) and Cj the 
coefficient for the jth element of the profile (set to -0.5×BW(j) in the BW method). With 
achieving highest possible prediction accuracies in mind, we raise the question of whether 
setting the coefficients in Eq. 3 empirically as in the BW method is optimal or not. Our answer 
is no. Optimizing the coefficients would be a better idea. Confirming this expectation, the 
coefficients optimized by linear regression led to a prediction accuracy of 71.13%, compared 
to 68.67% of the BW method as shown in Table 1. Specifically, ridge linear regression with 
the complexity parameter set to 0.001 was used throughout this study in an effort to minimize 
generalization errors [44]. It is noteworthy that we use the same formula as the BW method – 
Eq. 3 – but with an entirely different philosophy. In the BW method, one first derives a 
propensity scale of the 20 amino acids to be exposed to the membrane from known HMP 
structures and then uses it for computing the propensity of a target residue to be exposed (Eq. 
1). This propensity of the target residue is combined with its degree of conservation to yield its 
positional score. Our analysis reveals that this overall idea of the BW method can be concisely 
summarized by Eq. 3, which immediately suggests that there is a better way of doing the job. 
There is an issue to be clarified before we move on. We implemented the BW method, and its 
performance was evaluated on the same data set as for TMX. This was necessary since it is 
often difficult to directly compare performance values of different prediction methods reported 
in different studies because of the variety of data sets used and the discrepancy in state 
definitions. A serious difficulty arose in implementing the BW method, namely setting 
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thresholds manually. As mentioned above, upon computing the positional score of a target 
residue, the BW method compares it with a threshold that has been manually set. If the 
positional score is greater than the threshold, it is predicted to be buried. Otherwise, it is 
predicted to be exposed. In a leave-one-out (jack-knife) testing scheme, thresholds need to be 
manually set separately for each of 43 protein chains in the benchmark data set (see Methods). 
Admittedly, it is impossible for us to exactly reproduce this step in the way it was performed in 
the original publication for the BW method [40]. In addition, we feel that it might be subjective 
to set thresholds manually. Then, is there any mathematical formalism that allows thresholds to 
be set in such a manner that (1) we exactly mimic the manual setting of thresholds as was done 
in the BW method and (2) yet, thresholds are set objectively and reproducibly? Our answer is a 
linear support vector classifier (lSVC, i.e. an SVC with a linear kernel). Since the hyperplane – 
f(x) = ß0 + ßTx = 0, where ßT is the transpose of a column vector ß – obtained by an lSVC in a 
one-dimensional space represents a scalar value of –ß/ß0 [44], setting a threshold via an lSVC 
is an exact computational analogue to setting it manually, yet in an objective, reproducible 
way. It is to be noted that the introduction of an lSVC to the prediction scheme transforms it to 
a two-step scheme because an lSVC also needs training and, as a result, the jack-knife scheme 
should be applied to both steps. We want to stress that the sole purpose of using an lSVC here 
is to mimic the manual assignment of thresholds as exactly as possible yet in an objective, 
reproducible fashion. Thus, we intentionally did not seek SVCs with a non-linear kernel or 
other sophisticated classifiers at this stage (but see below). 
 
Improved use of conservation indices 
Another point well worth considering in Eq. 3 is how conservation indices are incorporated. 
The average identities of sequences retrieved from sequence databases for different query 
sequences can be appreciably varying. Thus, without normalization, one may assign overall 
high conservation indices to one protein chain while assigning overall low conservation indices 
to another. Normalization of conservation indices effectively solves this bias problem, just as 
in microarray data processing. In the BW method, conservation indices are not normalized. We 
found that normalizing conservation indices leads to a significant improvement in the 
prediction accuracy, raising it from 71.13% to 73.84%. 
A second, minor aspect to be considered is how conservation indices are actually computed in 
the first place. The BW method computes conservation indices as follows. 

      )(5.0)(5.0)( iICiViC ×+×=                                  (4) 

In Eq. 4, V(i) is the volume of the polytope for sequence position i derived from a multiple 
sequence alignment (MSA), estimating the probability for the presence of a set of different 
amino acids from a set of pairwise distribution probabilities, and IC(i) is the information 
content of sequence position i [40]. Eq. 4 relies on many assumptions that are yet to be 
validated. The first are ad hoc measures taken to enforce the Euclidean space to the distances 
between aligned sequences for computing V(i) [45]. The second is the assumption used in 
computing IC(i) that the 20 naturally occurring amino acids are equally likely to occur in the 
TM region. The third is that even though it seems reasonable to assign equal weights to both 
terms in Eq. 4, it is not clear whether that choice is optimal.  
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As in our previous studies [46, 47], we derived conservation indices using Eq. 5, which is 
mathematically well-defined and relatively free from potentially problematic assumptions. 

                                                    � −=
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In Eq. 5, the index j runs over the 20 naturally occurring amino acids, C(i) is the conservation 
index for sequence position i, fi(j) is the frequency of amino acid j in sequence position i, and 
f(j) is the overall frequency of amino acid j in the alignment. As expected, the use of Eq. 5 
instead of Eq. 4 improved the prediction accuracy from 73.84% to 74.51%. It is to be noted 
that conservation indices obtained by Eqs. 4 and 5 were from the same MSAs. 
 
Extending the window size for the input vector 
At this stage, the input vector for the prediction method consists of 21 elements (20 profile 
elements and a conservation index for the target residue). Another measure that we can take to 
further improve the prediction accuracy is to additionally consider the neighboring residues of 
the target residue (i.e. increasing a window size for the input vector from 1 to any larger 
number). In fact, nearly all techniques developed for water-soluble proteins exploit this 
possibility  [12-26]. We explored all symmetric window sizes (Table 2). There are a couple of 
points to be noted in Table 2. When increasing the window size from 1 to 3 or 5, the prediction 
accuracy is decreased, suggesting that the signal-to-noise ratio deteriorated (see also below). 
The first peak in the prediction accuracy is observed at a window size of 9. It is interesting to 
note that, assuming the canonical helix conformation, when the length of a helix gets to 9, the 
first and last residues (residues at positions i-4 and i+4) face in the same direction as the 
central residue (residue at position i, corresponding to the target residue in our context). Thus, 
our results suggest that the identities of the residues lying just above and below the target 
residue on the same helix face are most indicative of the burial status of the target residue, as 
expected from the canonical helix conformation. As it is actually 3.6 residues per turn in the 
canonical helix conformation, a certain improvement is already found by including the 
positions i ± 3. Consistent with this line of reasoning, the best prediction accuracy, 75.97%, is 
observed at a window size of 15. Based on a similar observation, Adamian and Liang recently 
developed a highly effective method for predicting membrane-exposed faces of TM helices 
[41]. 
 
Feature selection 
The logic behind increasing window sizes for better predictions is that one can better account 
for long-range effects with enlarged windows. However, the shortcoming of enlarged windows 
is that the signal-to-noise ratio deteriorates as the window size is increased, as demonstrated in 
Table 2. For example, compare the prediction accuracies for window sizes of 15 and 21. The 
tradeoff between long-range effects and signal-to-noise ratios would suggest a window size of 
15 instead of 21. Is there any way of circumventing this unpleasant tradeoff? Feature selection 
might be an answer. A simple illustration will make this point clearer. An input vector for a 
window size of 21 consists of 441 elements (21 elements for each of the 21 residues). It is 
intuitively clear that not all 441 elements will contribute equally to the prediction. Many of 
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them might simply be noise. Thus, it might be possible to use enlarged windows for a better 
consideration of long-range effects and still maintain a high signal-to-noise ratio by filtering 
out noisy elements. 
Of many techniques available for feature selection, we chose the Fisher’s index for the 
following reasons. First, the Fisher’s index is conceptually attractive, having a clear meaning 
easy to understand [44]. Put simply, the Fisher’s index represents the ability of a given element 
to maximize the distance between the centroids of the two given classes and simultaneously 
minimize the overlap between them. Second, unlike techniques involving linear combinations 
of feature vectors, the Fisher’s index is highly interpretable. This is a big advantage given the 
high dimensions of our feature spaces. Most importantly, one can gain interesting biological 
insights into the structural organization of HMPs from the Fisher’s index (see below). Third, 
the Fisher’s index can be computed cheaply. Fourth, the Fisher’s index is well suited to 
continuous features (as opposed to discrete ones). 
The 441 elements of a window of size 21 were ranked according to their Fisher’s indices, and 
increasing fractions of them (in steps of 0.05) were input to the prediction (see first and second 
columns of Table 3). The best prediction accuracy, 77.21%, was obtained when using the top 
20% elements only. This accuracy is higher than 75.97% obtained by an “unintelligently” 
increased window of size 15 in the above section. Which elements rank top? As shown in 
Table 4, the top-ranking elements are mostly conservation indices, in line with previous 
findings that conservation properties of TM residues correlate strongly with their degree of 
exposure to the membrane [46, 48-50]. Also, Table 4 shows that the frequencies of occurrence 
of L, I, V and F at the target residue are highly indicative of its burial status. In this regard, it is 
interesting to note that our previous study showed that these amino acids possess the highest 
propensities to preferentially interact with the membrane [47]. The frequency of occurrence of 
G at the target residue is also strongly correlating with its burial status, ranking at the 9th place, 
which is consistent with earlier findings that glycine residues play a pivotal role in mediating 
helix-helix interactions in the membrane [51-54]. Table 4 also shows that the frequencies of 
occurrence of I, G and L at the 4th residue N terminal to the target one also strongly correlate 
with the burial status of the target residue, which makes sense considering the canonical helix 
conformation as mentioned above. 
Given dramatic improvements in prediction accuracy and interesting insights into the system 
under investigation through a feature selection as demonstrated here, it was quite surprising to 
find that almost all studies on predicting the solvent accessibility of water-soluble proteins [12-
26] have not considered it. Hence, it would be worthwhile to investigate whether feature 
selection can similarly pay off in predicting the solvent-accessibility of water-soluble proteins. 
 
Non-linear regression 
All approaches for computing positional scores thus far can be understood as an extension of 
Eq. 3. Namely, they are all linear methods. Additional improvements might be achieved by 
relying on non-linear methods. The power of non-linearity is illustrated by conservation 
indices. Conservation indices are non-linear combinations of profile elements (Eq. 5), which 
was motivated by the prior knowledge that conserved TM residues tend to be buried while 
variable ones tend to be exposed to the membrane [46, 48-50]. In fact, Table 4 showed that 
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conservation indices were the features most strongly correlated with the burial status of TM 
residues. Also, it is shown below that conservation indices play a much greater role than 
profile elements in boosting prediction accuracies. In theory, a perfect non-linear method 
should be able to find such non-linear combinations of profile elements when fed only profile 
elements. However, this is usually not the case. Whenever prior knowledge on the system 
under investigation permits sensible non-linear combinations of raw features (e.g., 
conservation indices out of profile elements), it is always good to do so explicitly. 
If there still remain untapped non-linear combinations of profile elements or profile elements 
and conservation indices that correlate with the burial status of TM residues, the use of non-
linear methods might be profitable. Of the vast array of available non-linear regression 
techniques, we made use of SVR with a radial kernel because a nice interface with R is already 
available (see Methods) and it has performed respectably in studies of water-soluble proteins 
[23, 25]. Our preliminary analysis showed that SVR with a radial kernel tends to rival SVR 
with other kernels. Once a kernel type is chosen, another important parameter to be fine-tuned 
is the regularization constant C, i.e. how much weight one should put on minimizing the costs 
of violating a decision boundary relative to maximizing the closest distance of a data point to 
the boundary [44, 55]. The general expectation from the theory is that as the regularization 
constant gets higher, a heavier weight is put on minimizing the violation costs and, as a result, 
a more wiggly decision boundary is obtained with a possibly larger generalization error. The 
default C value is 1, and we tried 4 different C values, 10, 1, 0.1 and 0.01. As above, the 441 
elements of a window of size 21 were ranked according to their Fisher’s indices, and 
increasing fractions of them (in steps of 0.05) were input to the prediction via SVR with a 
radial kernel. Table 3 shows the results (columns 3 – 6). It is immediately clear that, in almost 
all cases, linear regression outperforms SVR, indicating that the generalization errors of SVR 
are larger than those of linear regression, presumably due to its over-flexibility in fitting a 
separating boundary to a given data set. Thus, SVR does not seem advantageous over linear 
regression on this data set. Admittedly, we can not rule out the possibility that highly fine-
tuned SVR can outperform linear regression. Given limited computational resources and 
considerable amounts of computation required for a leave-one-out validation of a two-step 
prediction method (~ 40 CPU hours on a 2.4 GHz processor), it is beyond our capability to 
exhaustively scan all possible combinations of SVR parameters. However, it is our experience 
that SVR with all parameters set to default values generally performs nearly optimally. Thus, 
we are quite certain that, at least for the current purpose of predicting the burial status of TM 
residues of HMPs, linear regression is at least as effective as SVR. Supporting this conclusion, 
previous studies on water-soluble proteins demonstrated that sophisticated linear methods can 
rival non-linear ones in performance [14, 21, 26]. 
 
Optimizing classifiers 
Upon computing a positional score for the target residue, a classifier is invoked to classify it as 
either buried in the protein core or exposed to the membrane. Although any machine-learning 
technique can be used as a classifier, we have only considered lSVCs so far. The original 
reason for choosing lSVCs was, as mentioned earlier, to implement the BW method as exactly 
as possible, yet in an objective, reproducible manner, so that the BW method can be justly 



�	�
�

compared with ours. However, we may choose other classifiers for our prediction method. 
Although there are tons of available classifiers, we primarily focused on SVCs for practical 
reasons as mentioned above. Preliminary analysis showed that SVCs with a linear or radial 
kernel tend to outperform others. Thus, SVCs with a linear or radial kernel were pursued 
further in combination with 5 different regularization constants, 1, 0.5, 0.1, 0.05 and 0.01, 
chosen on the basis of the results shown in Table 3. In addition to searching for a better 
classifier, it might also be helpful in boosting prediction accuracies to refine input vectors 
themselves. So far, the input vectors for a classifier have been one-dimensional, i.e. consisting 
of a positional score for a given target residue. The input vectors for a classifier can be 
straightforwardly refined exactly in the same way as the input vectors for computing positional 
scores were refined in Table 3.  
Table 5 shows the best prediction accuracies for each combination of an SVC kernel and a 
regularization constant. An SVC with a linear kernel outperforms that with a radial one, and a 
regularization constant of 0.5 is optimal among those investigated. The best prediction 
accuracy, 78.71%, was obtained by an SVC with a linear kernel that considers the top 16 
positional scores out of the 21 positional scores (i.e. the positional scores of the target residue 
and its 10 neighbors on the N terminus and its 10 neighbors on the C terminus) derived from 
considering the top 10% of the 441 elements of a window of size 21 (Table 3). An SVC with a 
radial kernel also achieved this prediction accuracy at a regularization constant of 0.5. Due to 
its sustained performance over the examined range of regularization constants, however, an 
SVC with a linear kernel is preferred. The method that gives rise to the best performance 
becomes the method of choice and is named “TMX (TM eXposure).”  
The performance of TMX – is it “significantly” higher than that of the BW method? As 
mentioned earlier, the prediction accuracy of the BW method is 68.67% when tested on the 
same data set. The p value estimating the statistical significance of the 10.04% increase in the 
prediction accuracy achieved by TMX relative to the BW method is < 10-5 according to the 
Wilcoxon signed rank test. Accordingly, TMX is judged to be a truly better method for 
predicting the burial status of TM residues of HMPs. A final point worthy of noting is the 
architecture of TMX. TMX is a two-step prediction method, where binary classifications are 
made in the second step on the basis of positional scores computed in the first step. The two-
step architecture – is it really worthwhile? Obviously, one can directly apply SVCs to the 
profiles and conservation indices of the target residue and its neighbors for predicting its burial 
status, without computing positional scores in the first place. Several studies on water-soluble 
proteins noted that a two-step prediction scheme can better account for correlated patterns of 
properties to be predicted, leading to higher prediction accuracies [7-10, 21, 23, 24]. To test 
whether this is also the case for us, we investigated the performance of SVCs that were directly 
fed profiles and conservation indices for the prediction. Specifically, as shown in Table 3, the 
441 elements of a window of size 21 were sorted according to the Fisher’s index, and 
increasing fractions of them were fed to SVCs. The best prediction accuracy for an SVC with a 
linear kernel was 77.53%, and that for an SVC with a radial kernel 77.21%. Therefore, a two-
step prediction scheme appears to pay off in our case, too. 
 
Comparison with the YU method 
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The YU method computes the positional score of a target residue via SVR using position-
specific scoring matrices (PSSMs) obtained by PSI-BLAST [56]. In studies of water-soluble 
proteins, it has been very popular to use PSSMs as input vectors in order to boost the accuracy 
of predicting solvent accessibility [8-10, 17, 19-24]. The popularity of PSSMs has partially 
stemmed from the fact that one does not have to explicitly generate an MSA for obtaining 
PSSMs. As with the BW method, we implemented the YU method for a transparent 
performance comparison using the R interface [57, 58] of the LIBSVM library [59]. In 
implementing the YU method, we set all the parameters of SVR as optimized by Yuan et al. 
and did not intentionally seek any further optimizations. 
The best prediction accuracy of the YU method on the benchmark data set is 71.06% (fourth 
column of Table 6), much lower than 78.71% achieved by TMX (p value of < 0.001 from the 
Wilcoxon signed rank test). It is of interest to find out where the performance difference 
between TMX and the YU method comes from, except for the novelties introduced to TMX 
such as feature selection and a sophisticated classification in the second step. To this end, we 
replaced PSSMs by profiles or conservation indices to find out how different input vectors 
affect prediction accuracies. Table 6 shows that profiles alone perform similarly to (or only 
slightly better than) PSSMs. Compared with the performance of profiles or PSSMs, the 
performance of normalized conservation indices is really standing out. Moreover, a 
comparison of the performance of profiles plus normalized conservation indices shown in 
Table 2 with that of normalized conservation indices alone (C set to 1, a default value, in Table 
6) also indicates that conservation indices play a crucial role in boosting prediction accuracies. 
Thus, it may be concluded that the poor performance of the YU method is partly due to the fact 
that its input vectors – PSSMs – do not contain the information captured by conservation 
indices. In this regard, it is interesting to note that the most effective method for predicting the 
solvent accessibility of water-soluble proteins uses PSSMs as its sole input [24]. Thus, it would 
be worthwhile to check out whether replacing PSSMs by profiles plus normalized conservation 
indices would be similarly successful for water-soluble proteins. 
 
Analysis of the TMX predictions 
In addition to prediction accuracies, there are other interesting aspects worthy of analyzing. For 
example, are there any amino acids for which it is easier to predict the burial status? Is it easier 
to correctly predict buried residues as being buried than exposed residues as being exposed?  
Table 7 shows the results for each amino acid. The highest prediction accuracies were achieved 
for R, H, D and K, all of which are charged or strongly polar. Their average conservation 
indices are among the highest (data not shown). Thus, it appears that these amino acids are 
well conserved for functional (and/or structural) reasons and that their high conservation 
indices make it easier for TMX to correctly predict their burial status. In this regard, the case of 
proline is a contrasting example. Its average conservation index is among the highest, yet the 
prediction accuracy for it is among the lowest. The data set contains 43 buried and 46 exposed 
proline residues, and the average conservation indices for buried and exposed proline residues 
are 1.22 and 1.07, respectively. Thus, proline residues exposed to the membrane appear as 
strongly conserved for their structural (and/or functional) role as those buried inside. The lack 
of correlation between conservation and the burial status for proline seems to make it difficult 
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for TMX to correctly predict its burial status. Surprisingly, E is the amino acid with the lowest 
prediction accuracy. Inspection of the individual incorrect predictions for E suggests a couple 
of plausible explanations for this unexpected result. First, conserved E residues are sometimes 
exposed to the membrane (2GIF_A_346: 1.54 [residue 346 of chain A in the PDB file 2GIF: 
its conservation index is 1.54], 1OTS_A_414: 2.46, 1YEW_B_201: 1.43 and 2BL2_A_139: 
3.47), and TMX predicted them to be buried. Second, there are several buried E residues that 
are not conserved (2A65_A_112: -0.46, 2A65_A_419: -0.94, 1SU4_A_908: -0.30 and 
1QLA_C_180: 0.14), and presumably their low conservation indices hinder the accurate 
prediction of their burial status. The prediction accuracies for abundant amino acids (L, A, V, 
I, G and F) are all higher than the overall accuracy of 78.71%. 
Table 8 shows the specificity and sensitivity of TMX. The lower sensitivity (70.61%) 
compared to the specificity (84.77%) seems to reflect the biased composition of the benchmark 
data set comprising 55.86% of exposed residues and 44.14% of buried residues. 
 
Confidence scores for the predictions made 
It is highly desirable to have confidence scores available for the predictions made. Confidence 
scores allow the user to selectively utilize prediction results in real application settings. In 
TMX, the absolute magnitude of a decision value generated by the SVC is taken to be a 
confidence score for the prediction [44, 55]. As shown in Fig. 1, predictions with a high 
confidence score tend to be more accurate than those with a low one. The prediction accuracy 
rises to 90.21% when considering the 1440 predictions with a confidence score � 1.2. 1440 out 
of 3138 means a coverage of 45.89%. Thus, a fairly high coverage is maintained for prediction 
accuracies of ~ 90%, which makes TMX well suited to real application settings. 
 
 
Conclusions 
We have presented TMX, a novel sequence-based computational method for predicting the 
burial status of TM residues of HMPs. It significantly outperforms previously proposed 
methods. In addition, feature selection incorporated in TMX revealed interesting insights into 
the structural organization of HMPs. Importantly, unlike the previous methods, TMX 
automatically generates confidence scores for the predictions made, and it was shown that 
predictions with a high confidence score tend to be more accurate than those with a low one. 
Thus, in a real application setting, the user of TMX can selectively utilize prediction results on 
the basis of their confidence scores. The developmental course of TMX clearly highlighted the 
importance of conservation indices and feature selection in boosting prediction accuracies. In 
this regard, it was rather surprising to find that the most effective method for predicting the 
solvent accessibility of water-soluble proteins considers neither conservation indices nor 
feature selection. It would be interesting to investigate whether these two “new” findings can 
be favorably transferred to one of the classical bioinformatics problems of predicting the 
solvent accessibility of water-soluble proteins.  
 
 
Methods 
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Generation of the benchmark data set 
As is always the case in machine-learning studies, constructing a well-curated data set was the 
starting point of the current study. Special care was taken in selecting protein chains, 
delineating their TM boundaries and computing the rSASA values of TM residues. 
The details of generating a non-redundant high-quality data set have been described elsewhere 
[47]. Briefly, based on the lists of HMPs with known structure compiled by White 
(http://blanco.biomol.uci.edu) and by Michel (http://www.mpibp-
frankfurt.mpg.de/michel/public/memprotstruct.html) as of February 2007, protein chains with 
less than 25% pairwise identity and a resolution better than 3.0 Å were gathered, resulting in 
43 protein chains of 3138 TM residues (Table 9). To keep the data set homogeneous, residues 
located outside of the hydrophobic core of the membrane were excluded from the data set. The 
classification of a residue as being exposed vs. buried was based on its rSASA value. To 
approximate the effective radius of the CH2 group of hydrocarbon chains of phospholipids, the 
probe radius was set to 2.2 Å. When necessary, the two faces of the TM region (the 
cytoplasmic and exoplasmic faces) were capped with dummy atoms before computing SASA 
values. Many HMPs contain large internal cavities, and, without capping, large SASA values 
were assigned to residues lining internal cavities, making these residues look as if they were 
facing the membrane. Upon capping, internal cavities that are inaccessible to the probe were 
identified and excluded in computing SASA values. Actual computations were carried out 
using the program suite VOLBL [60, 61]. SASA values were normalized by dividing them by 
reference values to yield rSASA values. The reference value for an amino acid, X, is its SASA 
in the context of a nonapeptide helix GGGG-X-GGGG computed with a probe radius of 2.2 Å 
as above. 
Exposed residues were defined as those with an rSASA greater than 0.00, as in a previous 
study [62]. This threshold rSASA value is justified for HMPs given the large probe radius 
chosen in this study. As discussed before [25], this threshold is also free from artifacts arising 
from normalization and subsequent binary classification. Nevertheless, it was argued that the 
threshold for a binary classification should be set such that the data set is equally partitioned 
into the two classes to avoid statistical artifacts. An rSASA of 0.00 induces a slightly skewed 
partitioning of 44.14% of buried residues and 55.86% of exposed ones. Equipartitioning of the 
data set was achieved with an rSASA of 0.04. Additional analysis showed that the conclusions 
drawn in this study remain fully valid for this new threshold (data not shown). 
 
Computation of profiles and conservation indices 
In general, the use of a profile (the frequencies of the 20 amino acids for a sequence position) 
improves the performance of sequence-based prediction methods. For extracting profiles, one 
needs to generate MSAs. As with any sequence-based prediction methods, the careful choice 
of sequences in MSAs is very important for the performance of the prediction method. MSAs 
generated using different criteria would yield results of differing quality. Thus, it would be 
desirable to generate “optimal” MSAs for different query sequences. Unfortunately, it is 
currently impossible to do so in an objective, consistent manner without any prior knowledge 
about the three-dimensional structures of the query sequences. Thus, a reasonable approach 
that is also objective, consistent and easily reproducible by others, was taken for generating 
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MSAs, even though it might produce suboptimal MSAs for some query sequences. Its detail 
has been described elsewhere [46, 47]. Briefly, for a given query sequence, a maximum of 
1000 homologous sequences were retrieved from the non-redundant database using BLAST 
[56]. Initial MSAs were built using ClustalW [63]. Then, sequence fragments were deleted 
from the MSA. Sequences that are less than 25% identical to the query sequence were also 
removed. The remaining sequences were realigned using ClustalW to yield a final MSA, which 
was used to obtain profiles. When deriving profiles from an MSA, amino acid frequencies 
were weighted using a modified method of Henikoff and Henikoff as implemented in PSI-
BLAST [56, 64]. Actual computations were performed using the program AL2CO [65], which 
is freely available at ftp://iole.swmed.edu/pub/al2co. Conservation indices (Eq. 5) were also 
derived using AL2CO.  
 
Support vector machines 
The support vector classifier (SVC)/ support vector regression (SVR) [44, 55] implementation 
in R [57-59] was used for the current work. The parameters for SVC/SVR were set to default 
values unless otherwise noted. The YU method was implemented using the SVR 
implementation in R as described in [43].  
  
Performance evaluation 
A leave-one-out (‘jack-knife’) test was carried out to measure the performance of different 
prediction methods examined in this study. For two-step prediction methods, the jack-knife 
scheme was applied to both steps as it should be. Prediction accuracies mean the fractions of 
the benchmark data set for which the burial status was correctly predicted. 
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Table 1. Prediction accuracies of different methods examined in the study 
Prediction method Prediction accuracy [%]1 
The BW method 68.67 

TMX 78.71 
The YU method 71.062 

1 Defined as the fraction of the TM residues in the data set whose burial status was correctly 
predicted. 
2 Best prediction accuracy among 16 ones shown in Table 6. 
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Table 2. Prediction accuracies obtained by linear regression with different window sizes 
Window size Prediction accuracy 

1 74.51 
3 73.55 
5 73.96 
7 74.82 
9 75.69 
11 75.37 
13 75.81 
15 75.97 
17 75.46 
19 75.75 
21 75.59 
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Table 3. Prediction accuracies obtained by increasing fractions of the 441 elements of a 
window of size 21 

Fraction 
used in the 
prediction 

Linear 
regression 

SVR C – 101 SVR C – 1 SVR C – 0.1 SVR C – 0.01 

0.052 75.65 70.36 73.45 75.21 74.89 
0.1 76.61 71.06 75.88 75.97 74.57 

0.15 76.90 70.78 75.11 76.20 74.09 
0.2 77.21 70.65 75.14 75.78 73.58 

0.25 76.45 70.01 75.59 75.78 73.04 
0.3 76.04 71.13 75.11 75.24 72.56 

0.35 75.72 71.54 74.79 75.27 71.54 
0.4 75.91 72.69 74.76 75.11 71.80 

0.45 75.91 72.72 75.11 74.95 71.86 
0.5 76.13 72.82 75.33 75.11 71.67 

0.55 76.39 72.63 75.43 75.43 72.08 
0.6 76.04 72.69 75.43 75.14 71.61 

0.65 75.33 72.94 75.24 75.30 70.40 
0.7 74.86 73.01 74.98 74.92 70.24 

0.75 75.33 73.20 75.43 74.86 69.31 
0.8 75.75 72.75 75.75 74.44 68.48 

0.85 75.62 72.59 75.75 74.22 67.97 
0.9 75.24 72.34 75.14 74.00 67.65 

0.95 75.21 72.79 75.46 74.22 67.53 
1.0 75.59 73.26 75.97 74.16 67.85 

1 Regularization constant C was set to 10. 
2 Meaning that the top 5% of the 441 elements when ranked by the Fisher’s index were input 
for the prediction. 
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Table 4. Top 20 elements of the 441 ones of a window of size 21 according to the Fisher’s 
index 
Rank Position1 Type Fisher’s index 

1 T conservation index 0.987 
2 C4 conservation index 0.534 
3 N4 conservation index 0.469 
4 N3 conservation index 0.307 
5 N7 conservation index 0.306 
6 C3 conservation index 0.248 
7 T L 0.243 
8 C7 conservation index 0.240 
9 T G 0.203 

10 T I 0 .143 
11 C8 conservation index 0.132 
12 C1 conservation index 0.092 
13 T V 0.059 
14 N1 conservation index 0.057 
15 N4 I 0.057 
16 N4 G 0.056 
17 T F 0.053 
18 T S 0.052 
19 N8 conservation index 0.045 
20 N4 L 0.041 

1 T: the target residue, C4: the 4th residue C terminal to the target residue, N4: the 4th residue 
N terminal to the target residue. Thus, the conservation index of the target residue is most 
indicative of its burial status, and the conservation index of the 4th residue C terminal to the 
target residue is second most indicative of the burial status of the target residue. 
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Table 5. Best prediction accuracies for each combination of an SVC kernel and a 
regularization constant C 

                 Regularization constant C 
Kernel 1 0.5 0.1 0.05 0.01 
Linear 78.62 78.71 78.65 78.62 78.01 
Radial 78.55 78.71 78.23 78.30 77.25 
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Table 6. Prediction accuracies obtained by SVR with different input vectors 
Window 

size 
Profile Conservation index PSSM  

(the YU method) 
C - 11 

11 70.87 73.68 70.08 
13 71.16 73.65 69.47 
15 71.51 74.16 71.06 
17 71.19 74.16 68.23 
19 70.91 74.41 61.85 
21 70.84 74.19 59.46 

C - 2 
11 70.55 73.17 69.85 
13 70.94 73.26 69.31 
15 71.16 74.31 70.52 
17 71.64 73.61 67.11 
19 70.68 73.90 61.54 
21 70.49 74.09 59.31 

C - 5 
11 70.36 72.37 69.79 
13 71.19 72.53 69.12 
15 70.91 73.36 70.43 
17 71.32 72.72 66.92 
19 70.46 73.07 61.60 
21 70.59 72.85 59.18 

C - 7 
11 70.81 72.05 70.17 
13 71.03 72.15 69.15 
15 71.13 72.94 70.43 
17 71.19 72.37 66.89 
19 70.43 72.50 61.63 
21 70.52 72.08 59.18 

1 Regularization constant C was set to 1. 
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Table 7. Prediction accuracies for each amino acid 
Amino acid Number of 

occurrence 
Prediction accuracy [%] Fraction of exposed residues 

in the data set [%] 
A 381 80.31 45.93 
C 50 74.00 46.00 
D 19 89.47 0.00 
E 30 56.67 40.00 
F 294 80.95 73.13 
G 316 80.38 27.22 
H 42 90.48 16.67 
I 328 80.49 72.26 
K 20 85.00 55.00 
L 521 80.42 73.70 
M 128 75.78 57.03 
N 41 75.61 17.07 
P 89 61.80 48.31 
Q 26 76.92 26.92 
R 15 100.00 6.67 
S 153 71.24 39.22 
T 169 73.37 48.52 
V 365 79.45 65.48 
W 74 81.08 70.27 
Y 77 72.73 50.65 
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Table 8. Specificity and sensitivity of TMX 
 Observed 

Predicted Buried Exposed 
Buried  978 (70.61%) 267 (15.23%) 

Exposed 407 (29.39%) 1486 (84.77%) 
Sum 1385 1753 
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Table 9. 43 Protein chains used in the study 
PDB ID Protein Chains 
1. 1M0L Bacteriorhodopsin A 
2. 1GZM Rhodopsin A 
3. 1R3J KcsA potassium channel C 
4. 1J4N Aquaporin A 
5. 1LDF Glycerol facilitator channel A 
6. 1XQF Ammonia channel A 
7. 1OTS H+/Cl- exchanger A 
8. 2A65 Leucine transporter A 
9. 2CFQ Lactose permease A 
10. 1YEW Methane monooxygenase B, C 
11. 1SU4 Calcium ATPase A 
12. 2BL2 Rotor of V-type Na+-ATPase A 
13. 1DXR Photosynthetic reaction center L, M, H 
14. 1KF6 Fumarate reductase (E. coli) C, D 
15. 1QLA Fumarate reductase (W. succinogenes) C 
16. 1KQF Formate dehydrogenase N B, C 
17. 1Q16 Nitrate reductase A C 
18. 1NEK Succinate dehydrogenase C, D 
19. 1ZOY Complex II C, D 
20. 1OKC Mitochondrial ADP/ATP carrier A 
21. 1V55 Cytochrome C oxidase (aa3 type) B, D, G, I, J, L, M 
22. 1EHK Cytochrome C oxidase (ba3 type) A, B 
23. 1PP9 Cytochrome bc1 complex D, E, G, J 
24. 2GIF AcrB multidrug efflux transporter A 
25. 2IC8 GlpG rhomboid-family intramembrane protease A 
26. 2NQ2 Putative metal-chelate-type ABC transporter A 
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Figure 1. Prediction accuracy and coverage depending on confidence scores. When 
considering all predictions (i.e. predictions with a confidence score � 0.00), the prediction 
accuracy is 78.71% and the coverage is 100%. When considering only the 1440 predictions 
with a confidence score � 1.20, the prediction accuracy rises to 90.21% and the coverage falls 
down to 45.89%. 
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