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Abstract

The present work deals with the application of different semiempirical potentials to the
global optimization of transition and noble metal clusters. The three energetically lowest
isomers of gold and silver clusters with up to 150 atoms have been determined. For struc-
tural and energetical comparison, additional computations have been performed on nickel
and copper systems. The results confirm the applicability of the embedding functions
even to the smallest metal particles. In order to determine general cluster properties, we
have introduced structural and energetical descriptors such as stability function, moments
of inertia, radial distribution of distances, similarity function quantifying the similarity
to different fcc and icosahedral fragments, and how much a cluster of N atoms can be
considered as made of a N — 1 - atom cluster plus one additional atom. When possible,
comparison was made to ab initio and experimental results. While copper, nickel and
silver clusters show very similar structural and energetical properties, gold clusters differ
markedly from those systems. In contrast to the regular icosahedral cluster growth ob-
served for Ni and Cu, and the decahedral for Ag, the gold particles show irregular growth
with predominant low-symmetric lowest-energy isomers, and no preferred structural pat-
tern.

The second part of this study concerns dynamical processes of deposition of clusters
on metal surfaces. The cluster-cluster interactions were followed from the Low Energy
Cluster Beam, using a newly developed Molecular Dynamics algorithm, simulating the
experimental procedure. It was found that applying even little kinetic energy to the
clusters leads to the formation of diverse (meta)stable products. The cluster molecules
emerged from the collision processes had relatively short lifetimes, and were crucially
dependent on the initial orientation of the impacting clusters.

Deposition of clusters on substrates was carried out using particularly stable and
particularly unstable copper cluster structures. The results showed that at low impact
energies the structure of the smallest deposited cluster, Cu;3, remained preserved on the
surface up to relatively high impact energy of 0.5 eV /atom, where it collapsed on the
surface forming a monolayer. Similar behavior was observed for the particularly unstable
Cuys. The final products of the cluster deposition depended on all parameters of the
deposition process, i.e., impact energy, cluster size, relative orientation and position.



Abstrakt

Die vorliegende Arbeit beschéftigt sich mit der Anwendung verschiedener semiem-
pirischer Potentiale zur globalen Optimierung von Ubergangs- und Edelmetal-Clustern.
Es wurden die drei energetisch niedrigsten Isomere von Gold- und Silber-Clustern mit
bis zu 150 Atomen bestimmt. Um die Strukturen und Energien vergleichen zu kdnnen,
wurden zuséatzliche Berechnungen mit Nickel- und Kupfer-Systemen durchgefiihrt. Die
Ergebnisse bestéitigen die Anwendbarkeit der Embedding-Funktionen auf kleinste Met-
allpartikel. Um allgemeine Cluster-Eigenschaften bestimmen zu kénnen, wurden struk-
turelle und energetische Deskriptoren eingefiihrt, wie zum Beispiel Stabilitdtsfunktion,
Massentriigheitsmoment, Radiale Verteilungsfunktion oder Ahnlichkeitsfunktion, welche
die Ahnlichkeit von verschiedenen fcc und ikosaedrischen Fragmenten quantifiziert und
inwiefern ein Cluster (bestehend) aus N Atomen als ein Cluster aus N — 1 Atomen plus
ein zusétzliches Atom betrachtet werden kann. Wenn mdglich wurde mit ab initio und
experimentellen Ergebnissen verglichen.

Wiéhrend Cu-, Ni-, und Ag-Cluster sehr dhnliche strukturelle und energetische Eigen-
schaften zeigen, unterscheiden sich Au-Cluster erheblich von diesen Systemen. Im Gegen-
satz zu dem regelméfigen ikosaedralen Cluster-Wachstum, welches fiir Ni und Cu beobachtet
wurde, und dem dekaedralen Wachstum fiir Ag zeigen die Au-Partikel unregelméfiges
Wachstum, das zu vorwiegend niedrigsymmetrischen Isomeren fiihrt. In diesem Fall
bevorzugen die Au-Partikel keine bestimmten Wachstumsmuster.

Der zweite Teil dieser Arbeit bezieht sich auf dynamische Prozesse der Deponierung
von Clustern auf metallenen Oberflichen. Die Cluster-Cluster-Wechselwirkungen wur-
den dem Low Energy Cluster Beam-Experiment (LECB) nachgeahmt, in dem man einen
Molecular Dynamics Algorithmus entwickelt hat, der die experimentelle Prozedur simuliert.
Man fand heraus, dass selbst niedrige kinetische Anfangsenergie der Cluster zur Bildung
von verschiedenen (meta)stabilen Produkten fithrt. Die Cluster-Molekiile, welche aus
dem Kollisionsprozess entstehen, sind relativ kurzlebig, und hingen entscheidend von der
urspriinglichen Orientierung der zusammenstofenden Cluster ab.

Die Deponierung von Clustern auf Oberflichen wurde mithilfe von besonders stabilen,
bzw. instabilen Strukturen von Kupfer-Clustern durchgefiihrt. Diese Ergebnisse zeigen,
dass bei niedrigen Anfangsenergien die Struktur des kleinsten deponierten Clusters, Cuys,
auf der Oberflache erhalten bleibt. Bei htheren Anfangsenergien von 0.5 eV /Atom bildet
das Cluster eine Monoschicht auf der Oberfliache. Ein &hnliches Verhalten wurde mit dem
besonders instabilen Cu;g Cluster beobachtet. Die Endprodukte der Cluster-Deponierung
héngen von allen Parametern des Deponierungsprozesses ab, wie Anfangsenergie, Clus-
tergrofe, relativer Orientierung, und Position.



Zusammenfassung

Seit mehr als 20 Jahren sind Cluster ein Brennpunkt fiir Experimentalisten und
Theoretiker, da sie eine wichtige Rolle in Bereichen wie Nanoindustrie, Katalyse, In-
formationsspeicherung, Kolloid- und Biophysikalischer Chemie sowie dem Transport von
Medikamenten innerhalb des metabolischen Kreislaufes spielen. Die richtige Bestimmung
der Strukturen der Cluster ist entscheidend fiir die erfolgreiche Anwendung, da diese
aufgrund ihres grofen Oberfliche/Volumen-Verhéltnisses Eigenschaften zeigen, die sehr
empfindlich sind in Bezug auf Anderungen in der Cluster-Geometrie. Deshalb kann eine
ungenaue Bestimmung der Struktur zu falschen Vorhersagen von Cluster-Eigenschaften
fiihren. Gegenwiértig sind selbst die neuesten experimentellen Techniken nicht in der Lage,
eine zweifellose Zuordnung von bestimmten Geometrien zu einem untersuchten Cluster
durchzufithren. Nur theoretische Untersuchungen kénnen eine verniinftige Grundzustand-
skonfiguration fiir eine gegebene Clustergrofie ermoglichen. Hier sind die first-principles
Methoden auf Berechnungen von vordefinierten Konfigurationen beschrankt, welche 10 -
20 Atome enthalten. Es gibt sehr wenige semiempirische Untersuchungen, die sich auf die
global-Minima Strukturen von Metallen mit bis zu 80 Atomen beziehen. Die Strukturen
der mittelgrofen und groften Cluster mit 80 - 150 Atomen sind bisher noch nicht griindlich
untersucht worden. Selbst fiir die kleinsten Cluster kann das Problem durch Anwendung
der first-principles Methoden nicht gelost werden. Es wurden jedoch alternative Meth-
oden vorgeschlagen, welche eine Kompromisslosung zwischen Genauigkeit und Effizienz
bieten.

Semiempirische Potentiale, welche zu der Embedded-Atom Methode (EAM) Familie
gehoren sowie das many-body Gupta-Potential wurden erfolgreich auf niedrig-dimensionale
Systeme angewandt, unter anderem Nanodridhte, Oberflichendefekte und Legierungen.
In vorherigen Arbeiten hat man die Anwendbarkeit der EAM Methoden zur richtigen
Beschreibung von kleinsten Ni- und Cu-Clustern bewiesen. Wéihrend sowohl die origi-
nale Version, die von Daw, Baskes und Foiles vorgeschlagen wurde, als auch die spéter
entwickelte Version von Voter und Chen, die Ni- und Cu-Cluster sehr genau beschreiben,
wurde nur die Voter-Chen Version als geeignet fiir Gold-Cluster betrachtet. Eine alterna-
tive Methode, die Eigenschaften der Gold-Cluster zu beschreiben bietet die modifizierte
EAM, so wie sie spater von Baskes vorgeschlagen wurde.

Die vorliegende Arbeit basiert auf der Anwendung von EAM- und Gupta-Potentialen
zur globalen Strukturoptimierung von Ubergangs- und Edelmetal Clustern. Es wurde
eine globale Strukturoptimierung von kleinen und mittelgroffen Nanoclustern von Cu,
Ni, Ag, und Au durchgefiihrt. Strukturelle und energetische Eigenschaften, wie z.B.
Stabilitdt, Symmetrie, Wachstum, Form der Cluster, Massentrigheitsmoment, Radiale
Verteilungsfunktion, Ahnlichkeitsfunktion, und inwiefern ein Cluster bestehend aus N
Atomen als ein Cluster aus N — 1 Atomen plus ein zusétzliches Atom betrachtet werden
kann, wurden quantifiziert.

Fiir Gold-Cluster mit bis zu 150 Atomen wurden auch die Vibrationsfrequenzen und
Wirmekapazititen berechnet. Die bestimmten Vibrationsfrequenzen vom Gold-Dimer,
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180cm ™!, sind in guter Ubereinstimmung mit dem experimentellen Wert von 191 cm™,

was darauf hindeutet, dass die anderen Frequenzen auch gut reproduziert werden konnen.
In Ubereinstimmung mit fritheren experimentellen und theoretischen Untersuchungen er-
hilt man durch die Anwendung jedes einzelnes Potentials die global-minimum-Struktur
des Auss Clusters als niedrig symmetrisch. Man fand heraus, dass das globale Minimum
vom Auyy; Cluster deutlich niedrigere Energie besitzt als das vollstdndige dritte Mackay
Tkosaeder Auyy7, was bisher als global-minimum-Struktur fiir diese Clustergrofe betra-
chtet wurde. Wéahrend die Ergebnisse zeigen, dass beide Clustergrofen nicht besonders
stabil sind, weisen das unvollstindige zweite Mackay Ikosaeder Aus, und das 146-Atom
Dekaeder hohe Stabilitédt auf, im Gegensatz zu den Ergebnissen von Silber-Clustern.

Unsere Berechnungen weisen darauf hin, dass sowohl mit dem Gupta- als auch mit dem
EAM-Potential die Silber-Cluster energetisch und strukturell den Ni- und Cu-Clustern
dhnlicher sind, als den Au-Clustern, zumindest fiir kleine und mittlere Grofen. Letzte
theoretische Untersuchungen mit Ag-Clustern mit bis zu 20 Atomen ordnen diese An-
lichkeit der mafiigen s — d Hybridisation, die in Cu und Ag existiert. Ein Vergleich
zwischen unseren Ergebnissen fiir Ag-Cluster und Berechnungen mit Cu- und Ni-Clustern
lassen ein dhnliches Wachstum fiir alle 3 Metalle bis zu ungefdhr 55 Atomen erkennen.
Oberhalb dieser Grofe wachsen Ni und Cu ikosaedrisch, wihrend das iiberwiegende Wach-
stumsmuster fiir Ag-Cluster dekaedrisch ist. Parallel zu der Auswertung der Cluster-
Eigenschaften wurde eine strukturelle Zuordnung trapped ion electron diffraction Daten
fiir ausgewéhlte Ag-Cluster-Grofen. Man fand heraus, dass ikosaedrische Strukturen als
besonders stabile Konfigurationen fiir Cluster mit 19, 38, 55, 59, 75, und 79 Atomen do-
minieren. Das Gupta-Potential liefert, dass das Clusterwachstum im Grofenbereich 65 -
139 Atomen dekaedrisch ist, nur mit Ausnahme von Agrg.

In den meisten Experimenten liegen die Cluster weder in Gasphase vor, noch sind
sie isoliert. Um dynamische Prozesse in Verbindung mit der Deponierung von Cluster
auf Oberflichen zu untersuchen, entwickelten wir einen constant-energy Molecular Dy-
namics Algorithmus. Indem dieses Programm benutzt wurde, wurden Kollisionsprozesse
studiert, welche in der Herstellung von Clustern in der LECB experimentellen Technik
stattfinden. Die Abhéngigkeit des Produktes von der Anfangsenergie, relativer Orien-
tierung der zusammenstofenden Cluster, und ihrer Grofen, wurden untersucht. Dimer-
bildung der CuyCuy, Cu;Cuy, Cu;gCuyg, Cuy3Cuysz, Cui4Cuyy, und Cuy9Cuyg Molekiilen
dhnlich zu fritheren Ergebnissen fiir Na-Cluster wurde nachgewiesen. Das CuyCuy Molekiil
besitzt eine Lebenszeit von mehr als 8 Picosekunden, dennoch ist die Dimerbildung fiir
alle Fille sehr empfindlich gegeniiber Anderungen in der Anfangsorientierung der kolli-
dierenden Cluster. Fiir hohere Stofkenergien wurde eine Dimerbildung nicht beobachtet.
Unsere Ergebnisse zeigen, dass man erwarten muf, dass selbst unter extrem guten experi-
mentellen Bedingungen Cluster-Cluster-Kollisionsexperimente zu einem breiten Spektrum
von Produkten fiihren. Die stabilsten Strukturen wurden fiir sehr niedrige Stofsenergien
beobachtet.

Schlieklich wurde die Deponierung von kleinen und mittelgrofsen Cu-Cluster auf die
Cu(111) Ebene simuliert. Es wurde nach einer Beziehung zwischen Deponierungsen-
ergie der Cluster und der strukturellen und energetischen Charakterisierung der Pro-
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dukte gesucht. Eine hchere Stofsenergie fiihrte zu einer niedrigeren Energie des gesamten
Systems, was mit einer zunehmenden Wechselwirkungsenergie zwischen Oberfliche und
Cluster erkliart wurde und nicht mit einer Clusterstruktur von hoéherer Stabilitdt. Die
kleineren Cluster erreichten héhere maximale innere Temperaturen im Vergleich zu der
grofseren Cuss Struktur, was auf die niedrigere Anzahl von Atomen zuriickzufiithren war,
welche zu einer zunehmenden Mobilitét fithrte. Die deponierten Cluster zeigten bedeu-
tende strukturelle Umordnungen auf der Oberfliche und verloren schnell die Ahnlichkeit
zur Anfangskonfiguration. Die Endprodukte der Clusterdeponierung hingen empfindlich
von allen Parametern des Deponierungsprozesses ab, wie Clustergrofe, Stofsenergie, rela-
tiver Orientierung, und relativer Position.






Chapter 1

Introduction

Clusters form the link between the microscopic objects considered by the atom- and
molecular physics at one extreme and the bulk solids at the other. Their large surface-to-
volume ratio gives them unique physical and chemical properties. Transition and noble
metal clusters have been recently investigated in connection with the synthesis of nanos-
tructured materials and devices, and diverse applications in the medicinal and colloidal
chemistry, as well as in the catalysis. Their growth or aggregation are in close relation
with the way they are produced. In the past 20 years, different experimental setups have
been developed, like gas aggregation techniques and scanning tunneling microscopy.

However, none of the experimental methods has been capable of unambiguous deter-
mination of the cluster structure. Therefore, for both theoreticians and experimentalists,
the problem of proper determination of the structures of the small and medium-sized
particles remains addressed. Moreover, the quantum-size effects and the evolution from
molecule to bulk system have not been thoroughly discussed. It has been extremely diffi-
cult to draw a bridge between theory and experiment, as the experimentalists often work
with fractions of cluster sizes of relatively large particles (1-2 nm, corresponding to few
hundreds of atoms), while even the most powerful first principles studies have difficulties
with the global optimizations already at very small cluster sizes. For clusters with more
than 10 - 20 atoms unbiased structure determinations are not computationally feasible,
only selected structures with chosen geometries are relaxed. This is also due to the very
large number ( 10 - 10 ) of local minima already at these cluster sizes.

Alternatively, the global optimizations of larger clusters are all based on semiempir-
ical potentials like the EAM, Sutton-Chen, Murrell-Mottram, or the many-body Gupta
potential. With these methods, unbiased calculations have been performed up to the
80-atom cluster. The medium-sized clusters ( 80 < N < 150) are still scarcely studied.
Besides few first principles studies considering particular structural motifs, there exists
no further investigation on the clusters in this size range.

Mass spectra experiments on clusters have shown that some cluster sizes appear very
often in the spectra. These especially favored energetically structures were called 'magic’.
The magic sizes are different for the different systems. For the transition and noble metal
clusters, for example, 'magic-numbered’ clusters are those that possess closed electronic
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8 CHAPTER 1. INTRODUCTION

and /or geometric shell. Such clusters have number of atoms N = 2, 8, 13, 38, 55, 147,
309, etc.

In the present work, the structural and energetical stability of various isolated transi-
tion and noble metal clusters will be discussed. Some of the studied systems have been
extended up to 150 atoms. Therefore, the use of semiempirical approaches is the only
choice, if one wants to perform an unbiased structure optimization of clusters with more
than several atoms. The applied computational scheme allowed us to optimize thousands
of isomers for a cluster with 150 atoms in less than one day with very good energetical
and geometrical accuracy.

In the experiment, the clusters remain very seldom isolated, but rather deposited onto
different substrates, which has become rapidly an attractive field in the elaboration of
nanomaterials and nanodevices. The main problem is if the nanoparticles change signif-
icantly their shapes, and how. In order to study the deposition of these small particles,
a Molecular Dynamics scheme was developed. The code used the same semiempirical
potentials with which the isolated clusters were optimized. Finally, further modifications
were implemented in the Molecular Dynamics program in order to study thermodynamical
properties, such as melting phenomena.

This work is organized as follows: in Chapter 2 a short introduction to the density
functional formalism is given, as well as the potentials based on it used in this study.
The algorithms used in the global structure optimization are also described. The most
important results for gold clusters with up to 150 atoms are presented in Chapter 3. Their
structural and energetical properties are discussed in details, a comparison between the
smallest clusters obtained with semiempirical potentials and ab initio studies is made.
Further, thermodynamical properties, like vibrations and heat capacities are presented.
For the same size range, a comparison between different semiempirical approaches is made
for silver clusters. The main results, similarities and differences between these clusters and
systems we have studied before, are generalized in Chapter 4. In Chapter 5, smaller nickel
and copper clusters with up to 60 atoms are studied. Their thermodynamical properties
are compared to those of the gold clusters in the same size range. The main features of the
developed MD algorithms are described in Chapter 6. Their application in the collision
processes between isolated metal clusters existing in the experiment, and the deposition
of clusters onto metal surfaces, are discussed in Chapters 7 and 8. Finally, in Chapter 8
we summarise and conclude.



Chapter 2

Clusters

The clusters can be considered to constitute a new type of material, since they often
have properties which are fundamentally different from those of discrete molecules or the
relevant bulk solid. The term cluster means an aggregate of a countable number (2-10",
where n can be as high as 6 or 7) of particles (i.e atoms or molecules). The constituent
particles may be identical, leading to homo-atomic, or they can be two or more different
species - leading to hetero-atomic clusters. These clusters may be studied in the gas phase,
in a cluster molecular beam, adsorbed onto a surface or trapped in an inert matrix.

Clusters are formed by most of the elements in the periodic table - even the rare gases.
Clusters of the coinage metals copper, silver, gold are to be found in stained glass windows
and silver clusters are important in photography. Some clusters, such as water clusters,
are even found in the atmosphere. Carbon nanoclusters are now well known, including
the famous soccer ball-shaped Cg, and related fullerenes and the needle-like nanotubes.
The clusters can be separated into metallic, semiconductor, ionic, rare gas clusters, and
cluster molecules.

Metallic elements from across the periodic table form a wide variety of clusters. These
include: the simple s-block metals such as the alkali and the alkaline earth metals, where
the bonding is metallic, delocalized and non-directional, involving primarily the valence
s orbitals; sp-metals, where the bonding involves both the s and the p orbitals and has a
degree of covalent character; and the transition metals, where the degree of covalency is
greater and there is also higher directionality in the bonding, which involves the valence
d orbitals. Metal clusters may be composed of a single metallic element or of more than
one metal, giving rise to the subclass of intermetallic or nanoalloy clusters.

There is considerable experimental and theoretical interest in the study of elemental
clusters in the gas phase and in the solid state. Clusters are of fundamental interest
both due to their own intrinsic properties and because of the central position they occupy
between molecular and condensed matter science. One of the most compelling reasons
for studying clusters is that they span a wide range of particle sizes, from the molecular
to the microcrystalline. Clusters also constitute a new type of material, nanoparticles,
which may have properties which are distinct from those of either discrete molecules or
bulk matter.
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Since clusters have a high percentage of their atoms on the surface, there is a strong
link between the chemistry and physics of clusters and of the surfaces of bulk matter.
As surface atoms have by definition lower coordination numbers than the bulk atoms,
there is the possibility of cluster surface rearrangements, analogous to the reconstructions
observed for bulk surfaces, which lower the cluster’s surface energy by forming additional
surface bonds. Clusters may also be stabilized by the coordination of ligands to their
surface. The reactivity of under-coordinated surface atoms makes clusters of interest as
models for heterogeneous catalysis on bulk metal surfaces. In fact, since metal clusters
are small metal particles, clusters (generally supported on an inert oxide substrate) can
themselves be used as very finely dispersed metal for catalysis.

A large nanotechnology industry has sprung up on the past decade, motivated by the
need to build devices for a variety of electronic, optical, magnetic and even mechanical ap-
plications, often using clusters as the basic building blocks. Another rapidly growing area
of nanotechnology is the field of organic and bio-organic nanoscience, which encompasses
topics such as supramolecular chemistry and molecular recognition, critical for the design
of molecular scale machines and computers. At the beginning of the twenty-first century,
clusters promise to play a pivotal role as components in novel electronic, magnetic and
optical devices.

Since many cluster properties (e.g. cluster geometries, binding energies and energy
barriers) are not easily measured directly from experiment, theoretical models and com-
putational methods have been very useful in helping to interpret spectroscopic (e.g. UV-
visible and photoelectron spectroscopy) and mass spectrometric data. The field of clusters
also serves as an exacting testing ground for theoretical methods - testing the range of
validity of theoretical models derived from the extremes of atomic/molecular and solid
state physics. One of the challenges for theory is to come up with a theory of cluster
structure and bonding which is applicable over and extremely large size range - from a
few atoms to millions of atoms.

2.1 Cluster experiments

Cluster experiments can be divided into three main stages: cluster generation, cluster
investigation, and cluster detection. As the latter constitutes mainly of mass-spectra
measurements, here we will concentrate on the first two issues. It is important to note
that progress in cluster science has followed closely on the development of new experimen-
tal techniques. In particular, the development of molecular beam techniques has enabled
the study of free clusters in an interaction-free environment. The study of free clusters,
however, presents a number of problems associated with difficulties in measuring physi-
cal properties of single particles and with generating intense size-selected cluster beams.
Since there are often many cluster isomers with similar energies and low barriers to in-
terconversion, the concept of cluster structure may not always be well defined. Another
class of experiments involves the deposition of size-selected clusters on a substrate such
as graphite, silicon or an inorganic one, or in an inert gas matrix. While such experi-
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Figure 2.1: Examples for fullerene, metal, ionic, and semiconductor clusters.

ments allow individual clusters to be studied by microscopic techniques, it is difficult to
infer the geometric or electronic structure of a free cluster from that of the corresponding
surface-supported cluster, since such clusters may be perturbed by the substrate. Finally,
since clusters in a molecular beam are generally not in thermodynamic equilibrium, the
concept of temperature is not well defined in this case.

2.1.1 Cluster formation

The first stage in a cluster experiment is the generation of the clusters. They are generated
in a cluster source, and the generation consists of the processes of vaporization (production
of atoms or molecules in the gas phase), nucleation (initial condensation of atoms or
molecules to form a cluster nucleus), growth (the addition of more atoms or molecules to
the initially formed nucleus), and coalescence (the merging of small clusters to form larger
clusters). As well as growing, clusters can also shrink by evaporation or fragmentation.
Depending on the nature and conditions of the source, different size distributions of
clusters may be generated.

In cluster experiments, the extent of clustering depends on many factors - for example,
in supersonic beam experiments, important factors are the stagnation pressure, the carrier
gas temperature - with lower temperatures and higher pressures leading to larger clusters.
If the local thermal energy of the beam is less than the binding energy of the dimer, then
a three-atom collision can lead to the formation of a dimeric nucleus, with the third atom
removing the excess energy as kinetic energy:



12 CHAPTER 2. CLUSTERS

In the presence of an excess of cold, inert carrier or quench gas (B), the nucleation step
is more efficient:

The dimer acts a site for further condensation. By increasing both the nozzle diameter
and the stagnation pressure, the average cluster size and density increase. The initially
formed cluster nucleus acts as a seed for further cluster growth. Early growth occurs by
accretion of atoms one at a time. Subsequently, collisions between smaller clusters can
lead to coalescence and the formation of larger clusters:

Ay + A — Ay (2.3)

In the cluster growth region, the clusters are generally quite hot, so there is competition
between growth and decay - i.e clusters shrinking by losing individual atoms (evaporation)
and /or fragmentation (splitting into two or more clusters).

It is also difficult to measure and define the cluster temperature accurately. If there
is negligible clustering then cluster temperatures are very low. Cluster growth, which
is an exothermic process, causes an increase in the temperature (i.e the internal energy
increases due to the heat of condensation of the added atoms). In heavily clustered beams,
where there is a high ratio of atoms to clusters, and the clusters are larger, the clusters
are very hot, possibly molten, when generated.

There are three main mechanisms by which clusters, in a molecular beam can lower
their temperature, and these are the collisional, evaporative, and radiative cooling. In the
collisional cooling, the collisions with other atoms in the beam remove the excess energy
as kinetic energy:

AN(T1>+B<KE1) —>AN(T2 <T1)+B(KE2 > KEl), (25)

where B may be another atom of element A or an inert carrier gas atom. Using a
cold carrier gas leads to more efficient collision cooling. This cooling mechanism is only
significant in the condensation and initial expansion regions.

The clusters can lower their internal energies also by evaporation - i.e by losing one
or more atoms in an endothermic desorption process. In order for evaporation to occur,
internal energy must be channelled into the appropriate cluster vibrational modes, in
order to overcome the kinetic activation barrier to bond breaking. After evaporation, this
excess energy is imparted as kinetic energy to the escaping atom

An(Th) = An_1(To < T1) + A(KE) — Ay_o(Ts < To) + A(KE) — ... (2.6)
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This mechanism is the only cooling mechanism once free flight has been achieved, i.e,
when collisions no longer occur. Finally, clusters can lower their internal energies by
emitting infrared radiation:

AN<T1) — AN<T2 < Tl) + hv (27)

Radiative cooling is an inefficient cooling mechanism, which is slow compared with the
time scales of typical cluster experiments. The distribution of cluster sizes produced by
a cluster source depends on a number of factors. The distribution is strongly influenced
by the particular cluster source being used. The size distribution depends on the way
in which the vapor is generated, the initial temperature and pressure, the presence of a
carrier or quenching gas, the dimensions and shape of apertures and nozzles.

2.1.2 Investigation of clusters

Many experiments involving clusters rely on being able to separate them according to
their mass. In order to do this, it is generally necessary to ionize the clusters so that mass
selection can be accomplished by deflecting the clusters in a magnetic or electric field.
Depending on the material and the type of experiment, either cations or anions may be
created. Cations and/or anions may also be formed in the initial cluster generation step.

These charged clusters are easily separated and selected usually by using mass spec-
trometry. In the time-of-flight (TOF) mass spectrometer, cluster ions are accelerated by
a succession of homogeneous electric fields into a field-free flight tube, finally impacting
on an ion detector. The mass-to-charge ratio M /@ of the cluster is determined from the
measured time-of-flight. The mass resolution is limited by the initial conditions and tim-
ing accuracy, but the resolution of the analyser is not mass-dependent, and the resolution
(6M/M=10"*-1073) is good throughout the mass range. One disadvantage of the TOF
spectrometer is that it only operates on short cluster pulses and thus low ion intensities
are detected.

There are four main media for studying the nature of clusters: molecular beams, inert
matrices, supported on surfaces, and in the solid state.

Cluster molecular beams afford the opportunity to study isolated clusters, free from
the influence of ligand or supports. While this is clearly desirable, and molecular beam
technology has developed tremendously over the past decade, such studies of free clusters
present difficulties associated with generating a sufficiently high flux of clusters with a
narrow enough size distribution to give definitive information on specific clusters.

Clusters can be also deposited in an inert matrix, which may be liquid, glassy or
crystalline, and is generally made up of condensed rare gases or molecules. Matrix iso-
lated clusters may be studied by direct UV-visible and IR spectroscopy, or electron spin
resonance.

When clusters are supported on the surface of an inert substrate, such as ionic oxide
or a layered semiconductor, it is possible to study the individual clusters using surface
microscopy techniques. These include scanning tunneling microscopy, scanning electron
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microscopy and atomic force microscopy. For larger particles, X-ray and electron diffrac-
tion techniques can be used to study the degree of crystalline order in individual clusters.

Finally, in the recent years, it has proved possible to crystallize solids composed of
clusters. In order to prevent cluster coalescence the clusters are generally coated by
surfactant molecules - usually organic thiols or thioethers, and these crystals can be
studied using X-ray diffraction and microscopy.

If there is an inherent stability associated with a given number of atoms in a neutral
cluster then, all other factors being equal, this will give rise to a greater abundance of these
clusters and a large peak in the mass spectroscopy intensity, e.g, a magic number. Magic
numbers are found to be most prominent when cluster generation leads to establishment
of a quasi-equilibrium, due to high initial cluster temperatures (e.g. 300-600K for alkali
metal clusters) and slow cooling.

In the case of small metal clusters, it is possible to generate high intensity molecular
beams of size-selected clusters. In this case the measurement of direct UV-visible and IR
absorption spectra are possible. However, experiments on free clusters in molecular beams
generally make use of the high sensitivity of mass spectroscopy for the detection of charged
particles. Thus, a UV-visible absorption spectrum of a beam of mass-selected ionized
clusters can be measured by scanning the frequency of the laser used for photoexcitation.
The absorption spectrum is traced out by monitoring the intensity of the mass of the
undissociated cluster as a function of laser frequency.

Alternatively, the high sensitivity of detectors for charged particles means that exper-
iments involving charge separation are particularly useful for clusters. Such experiments
include the measurement of photoelectron spectra of neutral or anionic clusters, as well as
the measurement of traditional mass spectral abundances of cationic or anionic clusters.
Magnetic or electric fields can be used to deflect or collect cluster cations or anions or the
ejected electrons.

Neutral and ionized clusters can be excited either y absorption of light or by elec-
tron or ion impact. The excited clusters may then relax by emitting radiation, losing
an electron and/or evaporation/fragmentation. This photo fragmentation can also give
information as to the cluster binding energy, as can the related collision-induced fragmen-
tation/dissociation process.

Mobility measurements

In the past decade, a cluster ion chromatography, based on the cluster ion mobility, was
developed. In these experiments, cluster ions are mass selected and injected into a long
drift tube, which is filled with an inert buffer gas at a controlled temperature and pressure.
The cluster mobilities depend on the number of collisions with the buffer gas and these
in turn depend on the collisional cross sectional area, and hence the shape of the cluster.
Assuming that the collisions with the buffer gas do not lead to preferential orientation of
the clusters, for a given number of atoms, spherical clusters have the smallest collision
cross sections and therefore travel fastest through the drift tube. As they rotate in the drift
tube, prolate spheroidal clusters (where one dimension or axis of the cluster is appreciably
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longer than the other two) carve out a large sphere, and thus have high collision cross
sectional areas and slow drift times. Oblate clusters (where one dimension or axis of the
cluster is appreciably shorter than the other two) have collisional cross-sectional areas,
and hence drift times, intermediate between those of spherical and prolate geometries. In
this way cluster isomers, which have the same number of atoms but different shapes, are
temporally separated in the drift tube and appear at different times at the detector.

Electron diffraction

Electron diffraction studies have been performed on rare gas and metal clusters in cluster
molecular beams. In such experiments, a well collimated electron beam (with electron
energies in the range 30-50 keV) is crossed with a cluster beam. The electrons are scattered
by atoms in the cluster and the diffraction pattern (arising from the interference of the
scattered electrons) is collected on a photographic film or by an electron detector. Because
the information from diffraction experiments is averaged over all clusters that the electron
interact with, electron diffraction measurements require a narrow cluster size distribution
and a reasonably high cluster intensity. A number of X-ray diffraction studies have also
been carried out on metallic clusters deposited on inert substrates. In both electron and
X-ray diffraction studies of clusters, the diffraction pattern is interpreted by generating a
model of the cluster and adjusting the model so as to maximize the agreement with the
experimentally measured pattern. Diffraction experiments can be used to determine the
structures and sizes and mean temperatures of the clusters.

Microscopic techniques

The most direct way of determining the structure of a cluster is by using microscopy. This
necessitates the immobilization of the cluster on a substrate. Because of the small length
scales of the order of 107° m of atomic diameters and interatomic distances, traditional
optical microscopy cannot be used. Instead, the atomic structure of clusters is imaged
by electron microscopy, using electron beams, that can be accelerated to an appropriate
energy and can be focused by electrostatic lenses. Electron microscopy techniques, such as
transmission electron microscopy (TEM), scanning electron microscopy (SEM) and high
resolution electron microscopy (HREM) can now achieve atomic resolution.

In scanning probe microscopy (SPM) techniques, the shape of surfaces and clusters are
mapped out using a needle tip that is positioned by piezoelectric drives, with an accuracy
of 107 m, i.e smaller than the width of a single atom. This enables such techniques to
display atomic resolution. The needle tip is tracked backwards and forwards across the
substrate and detects atoms in one of two ways. In scanning tunneling microscopy (STM)
a potential bias is applied between the needle tip and the substrate, causing electrons to
tunnel from the surface to the needle. The STM can operate in constant current mode
(where the height of the tip above the substrate is varied so as to keep the tunneling
current constant) or in constant height mode (where the varying tunneling current is
measured). Another variant of scanning probe microscopy is atomic force microscopy
(AFM), where the repulsive force between the tip and the substrate is measured.
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Figure 2.2: Image of Iron atoms on Copper (111) obtained with STM techniques. Re-
produced from M. F. Crommie, C.P. Lutz, and D.M. Figler. Confinement of electrons to
quantum corrals on a metal surface. Science 262, 218-220 (1993).

In summary, although there has been a significant development in the experimental
setups and many new techniques have been introduced, the experimental data still can
not unambiguously define the structures of the studied clusters. Even the most novel
experiments need corresponding computational models which are adjusted in order to
achieve best agreement with the experimental results, and the latter have to be compared
to prospective candidate structures optimized with ab initio or semiempirical methods.
Many of the smallest metal clusters with up to 10-15 atoms have been extensively studied
by photoelectron spectroscopy combined with density functional calculations|60]. How-
ever, the structures of the larger clusters remain still unidentified. In this work, the
structural and energetical patterns of clusters of transition and noble metals have been
determined by using semiempirical and density functional approaches. Where it was pos-
sible, comparison to the experimental data was made. Our aim is to find general trends
in the cluster growth and deposition on surfaces, as well as to give further insight into the
structural and energetical properties of these unique particles.



Chapter 3

Computational methods and algorithms

In this Chapter we will give a short overview of the density functional theory formalism
and the semiempirical potentials based on it, and further we will present the main features
of the used algorithms for global structure optimization.

3.1 Density Functional Theory

The main problem for the theoreticians remain the solution of the Schrédinger’s equation

HVU = EV, (3.1)

which is still possible to calculate without any approximation only if we treat the most
simple system, e.g, the hydrogen atom. In order to be able to consider multielectron
systems, an approximate solution of this fundamental equation is needed. The Born-
Oppenheimer approximation that neglects the free motion of the nuclei for the time
during which the electrons move, and thus separating the Hamiltonian into electronic
and nuclear motion, is the first approximation applied in the ab initio methods. Focusing
only on time-independent properties within this approximation we can solve Schrodinger’s
equation for the electrons:

HY, = EV,, (3.2)

where WU, is the electronic wavefunction depending on all electronic degrees of freedom,
e.g., three position-space and one spin coordinate for each electron. For the calculation of
experimental observables we need to know the complete N-electron wavefunction .. The
density-functional theory itself is based on the two fundamental theorems by Hohenberg
and Kohn published in 1964.

3.1.1 Hohenberg-Kohn Theorems

According to Hohenberg and Kohn it is possible to calculate any ground-state property of
a given system if we know the distribution of the total electron density p(r). Hence, the
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total electronic energy of a given system F;,; becomes a functional of the electron density
p(r)

Eiot = Eint[p(1)]. (3.3)

Then
Eulp(w)) = Flp(x)] + [ plx)Ve (1) (3.4)

Here, V..(r) is the external electrostatic potential that is determined by the atomic
nuclei. F[p(r)] is a universal potential that is independent of the external potential and,
therefore, also of the geometry of the nuclei of the system. Through the potential, the
electron density p(r) determines the Hamilton operator and, thereby, all ground state
properties. The total number of electrons of the system is also defined by p(r):

N = /p(r)dr. (3.5)

According to the second Hohenberg-Kohn theorem, a variation of the ground state electron
density

Ap(r) = p(r) + dp(r), (3.6)

results in a positive change of the total ground state energy:

E.[Ap(r)] > E.[p(r)] (3.7)

By changing the electron density to Ap(r) the number of electrons remains unchanged:

/Ap(r)dr: /p(r)dr. (3.8)

Thus, for calculation of any ground state property of the system it is no longer necessary
to calculate the whole N-particle wavefunction of the system but simply the electron
density.

3.1.2 Kohn-Sham Equations

Unfortunately, the Hohenberg-Kohn theorems themselves do not lead to the development
of a particular density functional. In 1965 Kohn and Sham published a method for
the calculation of the electron density with the so-called Kohn-Sham equations. Alike
the Hartree-Fock equations, the Kohn-Sham equations are also split into single particle
solutions of the Schrodinger formula. Therefore, one needs to find a solution of this set
of single-particle equations, which are depicted as follows:

o) = Tlpte)) + | ote) [vm<r> ; gvom} de + B, [p(r)]. (3.9)
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Here E.[p(r)] is the total electronic energy of the system, 7T is the kinetic energy, [ p(r) Ve, (r)dr
is the energy resulting from the external potential, and (1/2) [ p(r)Ve(r)dr the Coulomb
energy which is resulting from the electron repulsion (the factor 1/2 deletes the double-
counted terms). E!_ is the exchange-correlation energy and contains all terms that are
not included in the other three add ens.

After exertion of the variational principle using the Lagrange multiplier p that is the
chemical potential for the electrons, we obtain

oT oE’
o Vi) + Vlo) + 222 = (3.10)

where p has been introduced to satisfy the condition

N = /p(r)dr. (3.11)

The difference between the Hohenberg-Kohn formalism and the last equations is that
according to Kohn and Sham the particles are non-interacting. These /N non-interacting
particles shall move in an external potential V,¢(r) that is defined in such a way that the
electron density and the energy are equal to the electron density and the energy of the
original system of interacting particles. The corresponding relation is embedded in the
following formula:

Eulp(m) = T[] + [ ple)Vegs(o)ir (3.12)

After applying the variational principle we obtain

5TKS
- (r) = 3.13
5 + Verp(r) = 1 (3.13)
with
0T  oTKS OF'

Ve =—— - Vea 1% —=e 3.14
£(r) 3p 5p + Vear(r) + Ve (r) + 5p (3.14)

It is important to know that the kinetic energy 759 of the fictive system is not equal to
the kinetic energy T of the real system.

The resulting Hamiltonian is significantly simplified and can be written as the sum of
N single-particle operators izef £

N N
~ 1 . .
H=3 {_ Vet Veff(ri)] = hegs(i) (3.15)
=1 i=1

We can write the many-body wavefunction as a single Slater determinant:

‘I’:|1/11,¢2,---,1/)N |, (3-16)

and the single-particle equations are:
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hegs(D)¥(i) = €t (3.17)
These determine the single-particle energies ¢;. Finally, the electron density is the sum
over the N orbitals with the lowest single-particle energies ¢;:

p(r) = an | i(r) ° (3.18)

where n; is the occupation number of the ith orbital. The electron density of the system
consisting of non-interacting particles has been constructed in such a way that it is equal
to the electron density of the real system. However, the single-particle wave functions of
the non-interacting particles 1); and energies ¢; are not identical with those of the electrons
but practice has shown that they provide a good approximation to them.

3.2 The Embedded Atom Method

The Embedded Atom Method is entirely based on the density functional formalism, with
the only significant difference that the electron density is calculated numerically for wide
range of atom distances, and therefore its recalculation updating the positions of the atoms
at each step becomes unnecessary. Therefore, the potential is expected to predict results
similar to those obtained with the conventional ab initio methods, and to be extremely
computationally efficient due to the omission of the Hamiltonian.

3.2.1 The EAM of Daw and Baskes

The main idea of the EAM was initially proposed by Daw, Baskes and Foiles (DBF)
[1, 2, 3] in 1983-1986 as suitable approach for extended systems with largely delocalized
electrons (mainly for early and late transition metals), and since then the generality of the
functions of the EAM of DBF has been successfully tested by numerous applications to
different problems in metals and alloys, such as defects, surface and interface structures,
surface and bulk phonons, etc.

According to this theory, the energy change associated with placing an atom into a
host system of atoms is a functional of the electronic density of the host system before the
new atom is embedded [4]. The energy of the host with impurity is then a functional of
the unperturbed host electron density and a function of the impurity charge and position.
By analogy with the approach of Stott and Zaremba, Daw and Baskes consider each atom
of a metal as an impurity embedded in a host provided by all other atoms.

The principle of the method is to split the total energy of the system into a sum over
atomic energies:

N
Etot == ZEZ (319)
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N |
Eior = Z Fi(p) + 2 Z ®ij(ri;) (3.20)
i 1,7 #1
where pl* is the local electron density at site i, F; is the embedding energy, i.e., the energy
required to embed an atom into this density, and the electron-electron interaction ¢;; is
modeled as sums of short-ranged, pair potentials between atoms ¢ and j separated by

distance 7;:

¢ij(Rij) = (3.21)

Adjustable parameters that define F; and ¢;; have been obtained by fitting to known
bulk properties such as sublimation energy, lattice constant, the heat of solution of bi-
nary alloys, and, additionally, using the universal equation of Rose 5] that describes the
sublimation energy of the most metals as a function of lattice constant. The values for
p%, F; and Z; are available in numerical form for Ni, Cu, Ag, Au, Pd, and Pt]6].

3.2.2 The EAM of Voter and Chen

Another version of the EAM was proposed by Voter and Chen|7, 8, 9] few years after the
original potential appeared. This version of the EAM distinguishes from the version of
Daw and Baskes mainly by means of the parameterization and by the form of the pair
potential. Furthermore, the version of Voter and Chen takes into account properties of
the dimer as well as bulk properties in the fitting procedure, whereas Daw and Baskes
use only bulk properties of the metals in their parameterization. In the fitting procedure
of Voter and Chen the pairwise interaction is taken to be a Morse potential,

o(r) = Dy[1 — eiO‘M(T*RMW — Dy (3.22)

where the three parameters D,;, Rj; and «, define the depth, position of the minimum,
and a measure of the curvature near the minimum, respectively. The density function,
p(r), is taken as:

p(r) = r8le ™" 4 2% 727" (3.23)

where 3 is an adjustable parameter. To be suitable for use in molecular dynamics, the
interatomic potential ¢(r) as well as the electron density p(r) should be continuous. This
is accomplished by forcing ¢(r) and p(r) to go smoothly to zero at a cutoff distance, 7.y,
which is used as a fitting parameter. The five parameters defining ¢(r) and p(r): Dy,
Ryr, apr, B, and 1y, are optimized by minimizing the root-mean-square deviation (X;ms)
between the calculated and experimental values for the three cubic elastic constants,
the vacancy formation energy, the bond length and the bond strength of the diatomic
molecule. The values of p¢, ¢;; and Fj(p;) that are used by the Voter-Chen version, are
also available in numerical form for Ni, Pd, Pt, Cu, Ag, Au and Al.[10]
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3.3 The Gupta potential

The Gupta potential|[11| has been derived from the Gupta’s expression for the cohesive
energy of a bulk material and can be written in terms of repulsive and attractive many-
body terms, which are obtained by summing over all atoms:

N

Vous = ) [W(z') — Vm(z')] (3.24)

i=1

where

V(i) = ﬁ: A(a,b)exp{— p(a,b)(m(z b>—1)} (3.25)

J=1()

and

N 1
my; 2 Tij ’
V™m(i) = { | Z ¢*(a,b)exp l— 2q(a,b) (7’0(@, b 1)} } (3.26)
J=1(#1)

In these three equations r;; is the distance between atoms 7 and j, and A, 1y, (, p,
and ¢ are fitted to experimental values such as cohesive energy, lattice parameters and
independent elastic constants for the reference crystal structure at 0 K. The tight-binding
version (TBG) from Ref.[12, 84| uses reduced units for the energy and the coordinates, e.g.
the parameters ry and ( are set to 1, additionally, a scaling factor equal to 0.5 is applied
to the total energy V.s. This does not allow direct structural comparison between the
clusters obtained with this version of the Gupta potential (TBG) and those predicted with
the EAM and the extended version of the Gupta potential[13] (nG). Hence, for structural
comparison, the reduced coordinates of the clusters are to be scaled by appropriate factor.
In this way, the structural peculiarities of the clusters obtained with the two versions of
the Gupta potential can be compared.

3.4 Computational scheme

Performing a geometry optimization is often the first step one takes when studying a
molecule using computational methods. Geometry optimizations typically attempt to lo-
cate a minimum on the potential energy surface (see Fig. 3.1) in order to predict equilib-
rium structures of molecular systems, although they may also be used to locate transition
structures. The potential energy surfaces specify the way in which the energy of a molec-
ular system varies with small changes in its structure. In this way, a potential energy
surface is a mathematical relationship linking the molecular structure and the resultant
energy. For example, for a diatomic molecule, the potential energy surface can be rep-
resented by a two-dimensional plot with the internuclear separation on the X-axis and
the energy at that bond distance on the Y-axis; in this case the potential energy surface
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is a curve. For larger systems the surface has as many dimensions as there are internal
degrees of freedom within the molecule. The potential energy surface illustration depicted
at Fig. 3.1 considers only two of the degrees of freedom within the molecule, and plots
the energy above the plane defined by them, creating a surface. Each point represents a
particular molecular structure, with the height of the surface at that point corresponding
to the energy of that structure. Our example surface contains three minima: a minimum
is a point at the bottom of a valley, from which motion in any direction leads to a higher
energy. Two of them are local minima, corresponding to the lowest point in some lim-
ited region of the potential surface, and one of them is the global minimum, the lowest
energy point anywhere on the potential surface. Different minima correspond to different
conformations or structural isomers of the molecule under investigation. The illustration
also shows two maxima and a saddle point (the latter corresponds to a transition state
structure).

At both minima and saddle points, the first derivative of the energy, known as the
gradient, is zero. Since the gradient is the negative of the forces, the forces are also zero
at such points. A point on the potential energy surface where the forces are zero is called
a stationary point. All successful optimizations locate a stationary point, although not
always the one that was intended. Geometry optimizations usually locate the stationary
point closest to the geometry from which they started.

The programs using the following algorithms within the EAM of Daw, Baskes, and
Foiles were kindly provided by Dr. V. Grigoryan. Using expression (3.20) one can calculate
the total energy of any cluster with any structure as a function of atomic coordinates {]?Z},
Etot(ﬁl, 1%2, - ,Z%N). In order to obtain the closest local total-energy minimum we use
the variable metric/quasi-Newton method.[14]

For searching the global minima an Aufbau/Abbau algorithm was developed (see Fig.
3.1). Tt consists of the following steps:

1) We consider two cluster sizes with N and N + K atoms with K ~ 5 — 10. For
each of those we study a set of randomly generated structures, N.,, ~ 1000. Using the
quasi- Newton method the N,,, relaxed structures are identified and the structures of the
lowest total energy selected.

Each of the N,,, starting structures for a cluster with M atoms is generated using
a random-number generator for positions within a sphere or a cube of volume V,; =
(p * bun)>M, where b, is the nearest-neighbor distance in the bulk metal and p =
0.96, 1.0, 1.04, i.e. we considered slightly compressed, normal, and slightly expanded
structures. We included the constraints that the smallest allowed inter-atomic distance
was 0.5b,,, and each atom has to interact with at least two others.

2) One by one, each of the M atoms is displaced randomly, and the closest local
minimum is determined. If the new structure has a lower total energy than the original
one, the new one is kept, and the old one discarded. This is repeated approximately
500 — 1000 times (depending on cluster size).

3) This leaves us with two ‘source’ metal clusters, Mey and Mey i with their lowest
total energies. One by one an atom is added at a random position to the structure with N
atoms (many hundred times for each size), and the structures are relaxed. In parallel, one
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by one an atom is removed from the structure with N+ K atoms  for each intermediate
cluster with N’ atoms we consider all N’ + 1 possible configurations, that one can obtain
by removing one atom from the Mep,; cluster. >From the two series of structures for
N < M < N + K those structures of the lowest energies are chosen and these are used
as seeds for a new set of calculations. First, when no lower total energies are found, it is
assumed that the structures of the global-total-energy minima have been identified, and
we proceed to larger clusters. Moreover, we can keep information not only about the
single energetically lowest isomer, but more low-lying ones.

When there are no new structures with lower energies, the most stable ones are used as
input in a routine that disturbs the cluster structure in order to check for possible lower-
energy isomers. In most of the cases it is convenient to generate about 1000 candidate
structures. The first structure corresponds to the unchanged geometry of the source
cluster. Then the distances between the atoms are expanded consecutively by 1.0, 1.3,
1.6, 1.9, and 2.2 A, e.g. the bonds of the source cluster are expanded by 1 A and the
structure is optimized. This is repeated approximately 200 times. Then the structure
with lowest energy, which could be the initial cluster, is selected and its bonds expanded
by 1.3 A, and this is done again for 200 cluster generations, then it continues with the next
disturbance coefficient. This program allows us to check if the lowest-energy structure
predicted by the Aufbau/Abbau algorithm lies indeed in the global minimum for that
cluster size. In some 90% of the cases the global minima clusters have been successfully
identified by Aufbau/Abbau, however, when a new minimum is found with the disturbance
algorithm, this structure is used as an input in new series of Aufbau/Abbau calculations,
until no lower-energy configurations are found.
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Figure 3.1: The Potential Energy Surface (PES) of the clusters and our Aufbau/Abbau
algorithm for global structure optimization.
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Chapter 4

Gold clusters

4.1 Introduction

Gold clusters|[15, 16| have been recently investigated in connection with the synthesis of
nanostructured materials and devices [17, 18, 19, 20, 21]. Their structural and energetic
properties have been studied with High-Resolution Electron Microscopy (HREM) and
various spectroscopic techniques |22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37,
38, 39]. Literature concerning small Auy clusters is enriched with numerous investigations
based on density-functional methods [41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 58, 57, 59| that are not yet capable of giving a definite answer to the problem at what
cluster size the structural 2D 3D transition occurs. Recent studies combining theory
and experiment |60, 61, 62, 63| show that the gold clusters are planar at least up to N =7
for Ref.|61], or up to N = 12, according to Hakkinen|60] and Furche et al.[62]. The global
optimization is difficult for the ab initio methods already at very small cluster sizes. The
authors of Ref.[42, 54| performed density functional calculations on clusters containing
more than 30 atoms, relaxing selected high-symmetric configurations. Alternatively, the
global optimizations of larger clusters are all based on approximate methods like molecular
dynamics [64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75| and semiempirical potentials like
the EAM [27, 76, 77|, Sutton-Chen 78|, Murrell-Mottram [79, 80|, or the many-body
Gupta potential [81, 82, 83, 84, 85, 86]. Using these methods, unbiased calculations were
performed up to the 80-atom cluster. The medium-sized clusters ( 80 < N < 150) are
still scarcely studied. Besides the first-principles study of Héberlen et al. 42|, and the
EAM calculations by Cleveland et al.|27, 76, 77| considering particular structural motifs,
there exists no further investigation on the clusters in this size range.

In most of the studies, special attention is paid to the so-called 'magic-numbered’
clusters, that possess closed electronic and/or geometric shell. Various calculations on
the first ‘magic’ cluster Au;s have pointed to the formation of an icosahedron [41, 42, 78,
79, 84, 86]. Only the authors of Ref.|49, 50| found disordered structure as the lowest-lying
isomer of this cluster. On the other hand, the semiempirical potentials |76, 78, 79, 86]
and the density functional study by Hakkinen et al.[44] on the Augg cluster predicted the
truncated octahedron to be the global minimum for this cluster size. However, on the
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basis of first-principles and Gupta potential calculations, the authors of Ref.[83, 85] state
that a disordered structure is actually lower in energy than the symmetric. It is most
probable that the obtained structure depends on the type of the used potential, as by
using another form of the same potential, Darby et al.[86] found a truncated octahedral
structure to be the global minimum of Augsg. The situation is more clear for the Auss and
Augzs clusters, where a disordered structure |78, 81, 82, 84, 85, 86] and a Marks decahedron
(m-Dsyp,) |82, 84| seem to lie in the global minima.

Several groups performed calculations on larger clusters minimizing symmetric ini-
tial configurations, hence the structures most probably do not correspond to the global
minima. Few clusters were studied - the octahedral Aurg |76, 78] and Auysg [76], the
decahedral Auyg;, Aujg, and Auyyg [76], and the icosahedral Auyy; [42, 76]. The struc-
tures and energetics of the clusters between these high symmetrical ones remain scarcely
investigated.

In the present Chapter the structure and energetics of the three most stable isomers
of small and medium-sized Auy clusters with 2 < N < 150 have been determined for
each cluster size by using a combination of the embedded-atom method in the version of
Voter and Chen|7, 8, 9] (VC), the variable metric/quasi-Newton method, and our own
Aufbau,/Abbau method.

4.2 Small gold clusters

First we calculated the bond length of the Au, dimer with the two versions of EAM. The
obtained with the VC approach value of 2.40 A was in a very good agreement with first-
principles studies (2.55 A) and the experiment (2.47 A), while the EAM of Daw, Baskes,
and Foiles underestimated the bond length (1.80 A) and overestimated the binding energy
of the dimer. For this reason we chose to work with the Voter-Chen version that describes
correctly the dimer properties. However, this potential, like all other semiempirical poten-
tials, does not include explicitly the electrons and their orbitals, therefore for the smallest
gold clusters, where the spin-orbit interactions play important role, the global minima
structures are compact (see Table 4.4.1), and the planar structures only metastable. In
the size range N = 4 — 7 the first principles studies obtain these 3D configurations as
higher-lying isomers, which can serve as example how the inclusion of electronic effects
can change the energetic ordering of the isomers. On the other hand, the addition of elec-
trons in the semiempirical potentials would restrict their use only to small and relatively
larger clusters. An appropriate choice are the Density Functional Tight-Binding methods
(DFTB) that include explicitly the electrons and are computationally more efficient than
the common density functionals. In a recent study|[91] we showed the important role that
the electronic effects play in the values of the binding energy and the stability functions.
However, except for N = 4, where a rhombus was the lowest-lying isomer according to
the DFTB method, all the ground state structures for the smallest gold clusters Aus —
Aug had 3D shapes. On the other hand, even the most recent density-functional studies
are still not in agreement at which cluster size the structural transition 2D — 3D occurs.
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According to the LDA study by Wang et al.[50], it is the pentagonal bipyramid that lies
in the global minimum of Au;. Remacle and Kryachko|59| suggested that the gold clus-
ters are planar at least up to N = 9, while Walker|58| predicts that the transition occurs
at Auj;. Using ion mobility measurements and ab-initio molecular dynamics Kappes et
al.[61, 62| found that the 3D transitions occur at Auj, and Aug. The same group studied
the adsorption of CO on isolated gold cluster cations in the size range N = 1 — 65. The
smallest clusters with 4 < N < 6, and Aug were found to be planar, while for Au; the
global minimum was a 3D structure, but not a bipyramid, in contrast to the results of
Wang|[50]. In a combined experimental and theoretical study Hékkinen and coworkers|60]
confirmed the 2D — 3D transition at Auj,, however, Xiao and Wang[57] suggested that for
the neutral clusters this occurs first at Au;s5. In most of the cases the planar structures
are competing with 3D isomers, and the energetic differences are insignificant, which in
turn means, that the ordering of the isomers depends strongly on the used functional and
the starting conditions. For example, Hékkinen et al.[48] compared the global minima
of relativistic and nonrelativistic Au; clusters and found that for the nonrelativistic gold
the lowest-lying isomer was a capped octahedron that corresponds to our second isomer
for this cluster size. At larger cluster sizes the potential used in this study yields results
in agreement to density functional and experimental studies. The study by Hékkinen
et al.[44] on the Ausg cluster predicted the truncated octahedron to be the global mini-
mum, and a recent experiment|39| shows that the Aug; cluster most probably is not an
icosahedron, but a structure with low symmetry, in agreement to our results.

In summary, we can conclude that although our results for the smallest gold clusters
correspond to higher-lying isomers within the first principles methods, due to the lack of
electronic effects, our method is sufficiently accurate in describing the larger gold clus-
ters with N > 9, where most probably the planar structures begin to compete with 3D
configurations.

4.3 Comparison to first principles calculations

In order to compare our results for the smallest gold clusters to the ones predicted by the
Density Functional formalism, we performed spin-polarized density functional optimiza-
tions of gold clusters with up to 10 atoms. For the largest clusters only a few possible
structures were considered, due to the very large computational time needed (about a
week on a Pentium IIT computer to optimize only one Aujqg structure).

The first issue to be addressed is the role of relativity in connection with the proper
choice of a density functional in the program package Gaussian 03. All calculations with
Au clusters were performed using relativistic effective core potentials developed partic-
ularly for systems where the spin-orbit coupling plays important role in the geometric
configuration. We calculated the bond length and vibrational frequency of the gold dimer
Auy with various exchange, correlation, and hybrid functionals, the results from which
can be seen at Table. 4.1.

Although the local spin density approrimation LSDA implemented in the Vosko-Wilk-
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Table 4.1: The Auy, bond length and vibrational frequency as predicted by different
functionals and the experiment.

Method | d[A] | wlem™]
B3LYP | 2.58 163
BLYP | 2.59 158
PBE 2.55 169
PW91 | 2.56 167
VWN | 2.49 194
exp 2.47 191

Nusair (VWN) functional gives the results that best agree with the experimental values,
the LSDA functionals are no longer used for optimizations of gold clusters, due to their
tendency to overbind and thus predict mainly three dimensional global minima structures,
as found by Wang et al.|50]. Recent experimental studies|60] unambiguously point to
the formation of flat gold clusters up to at least 12 atoms. The results most close to
the experimental values, except those from VWN, are predicted by the Perdew-Burke-
Ernzerhof (PBE) functional. In our calculations we used a functional containing both
exchange and correlation parts modeled by the PBE approximation (PBEPBE). The
relativistic CEP-121G basis set is an effective core potential that separates the electrons
of the atom into core and valence ones. The 79 electrons of the gold atom are split into
60 core and 19 valence ones, the influence of the core electrons is described by an effective
potential, and the Schrédinger equation is solved only for the remaining 19 electrons.
Calculations on the dimer were performed also with other basis sets, the LanL.2DZ and
the Stuttgart/Dresden (SDD) ones, however, the results were worse than those obtained
with the CEP-121G basis set.

At Fig. 4.1 to Fig. 4.3 are shown the optimized structures of gold clusters with 3 <
N < 10 atoms, their symmetries and energy differences are described in Table 4.2. All
previous density functional studies denote the obtuse triangle of about 66° as the global
minimum structure for the Aus cluster, although the next isomer, an acute triangle, is only
about 0.022 eV higher in energy. The other possible configurations, namely the chain and
the equilateral triangle, lie significantly higher, especially the latter one, which we were
able to optimize only in its triplet electronic configuration. This is the global minimum for
this cluster size according to the Voter-Chen potential, however, the inclusion of electronic
effects here makes it possible to find a structure with lower symmetry as ground state
already for this cluster size, as the semiempirical potential is optimized using spherical,
nondirectional electron density.

Again, for Auy, our semiempirical global minimum corresponds to a tetrahedron, which
is the energetically most unfavored structure according to the PBEPBE functional. All
isomers for this cluster size are already known, only the square has not been widely studied,
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however, in this calculations it is the fourth isomer, but when using other functionals or
semiempirical methods, it could become a favored structure, close or degenerate with the
ground state.

The only one cluster structure for which it is known that it is most probably the
global minimum for the according cluster size, is the Ags cluster. Almost 10 years ago,
Haslett, Bosnik, and Moskovits[110] obtained Raman spectrum of Ags, mass-selected from
a sputtered jet of silver cluster ions, neutralized and matrix isolated in solid argon. In
order to assign the spectrum, they performed normal coordinate vibrational analysis for
the considered W-shaped cluster and the Cs, trigonal bipyramid, as well as a number
of other geometries. At least 7 distinct peaks were observed, which ruled out the high-
symmetry structures, since they all possess vibrational degeneracies and therefore can not
account for the number of peaks observed. The highest symmetry that could be assigned
was the Cy, one, with all possible modes being non-degenerative and Raman active. To
distinguish between the remaining two possible structures, they extended the vibrational
analysis to include a rough calculation of the relative Raman intensities of each mode.
The results showed that a very strong band at 162cm~! corresponded to a very weakly
Raman active B; mode in the bipyramidal structure as opposed to the strongest A; mode
in the planar structure, therefore they could unequivocally assign the spectrum to the
trapezoidal planar Ags. It is very probable that this is also the ground state for the
gold cluster, as suggested by various experimental studies|60, 61, 62|. Its third isomer,
with trapezoidal shape, and the Y-shaped structure are proposed here for the first time,
according to our knowledge. The trapezoid comes immediately after the two popular
lowest-energy structures, and has significantly low energy comparing to the next isomers.
The high symmetrical trigonal bipyramid lies again rather high in energy, but the most
unfavored structure for this cluster size is the capped square, in contrast to the results
for the Auy cluster.

The finding that the trapezoidal shape seems to be energetically advantageous is con-
firmed by the results for the global minima of Aug and Auy, which can be considered as
capped and bicapped trapezoid. For Aug the energetical differences between the isomers
are significantly large, however, the octahedron and the "boat"-shaped structure corre-
spond to the first and second lowest-lying isomers for this cluster size according to the
VC potential. It is not clear why the global minima for these small clusters are all two di-
mensional according to the density functional formalism. As mentioned before, Hikkinen
et al.|48] tried to address this question and optimized relativistic and nonrelativistic Au;
clusters and found that for the nonrelativistic gold the lowest-lying isomer was a capped
octahedron that corresponds to our second isomer for this cluster size. This structure is
presented only in Table 4.2, in order to avoid repetition. Hence, the results obtained with
the EAM method are comparable to those from nonrelativistic first-principles calculations.

The LDA studies from the past decade established the 2D — 3D crossover for gold
at N = 7, where the global minimum structure for this cluster size was the pentagonal
bipyramid, which is most probably due to the overbinding in LDA leading too early to
three dimensional configurations. Wang et al.|50| found this structure as global minimum
for Auy, followed by the hexagon, while the latter was the preferred configuration accord-
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Table 4.2: Energy separations of isomeric structures from the ground state structure
(eV). The calculated lowest-energy structures are marked in bold.

N Shape Sym. | AE | N Shape Sym. | AE
3 obtuse triangle Cy, | 0.00| 7 capped triangle Cs |0.00
3 acute triangle Cop | 002 7 crown Co, | 0.13
3 chain Dern | 0.04 | 7 tricapped tetrahedron Co, | 0.22
3 | equilateral triangle | Dg, | 1.50 | 7 hexagon Con | 0.23
4 trapezoid Dy, | 0.00| 7 bicapped bipyramid Cs 0.29
4 Y Co, | 010 | 7 pentagonal bipyramid D5, | 0.36
4 zigzag Cop | 0.47 | 7 | bicapped square pyramid | Cy, | 0.58
4 chain Doon | 092 | 7 incomplete bipyramid Cy | 0.62
4 square Dy, | 069 | 7 zigzag Cq, | 148
4 tetrahedron Ty | 272 | 7 capped octahedron Cq 1.75
5) \WY% Co, [0.00 | 8 capped rhombus Dy, | 0.00
5 X Doy, | 043 | 8 capped hexagon Coy | 0.25
5 trapezoid Co, | 0.63 | 8 bicapped octahedron I Cq, | 0.27
) triangle Cs 0.81 | 8 | bicapped octahedron II Dy; | 0.36
5 pyramid Co, | 0.84 | 8 capped tetrahedron Cs 0.46
5 Y Co | 1.17 | 8 crown Coy | 048
5 | trigonal bipyramid | Ds, | 1.35 | 8 | bicapped octahedron III | D3y | 1.79
5 square Co | 20519 capped hexagon I Csy, | 0.00
6 triangle D3, | 0.00| 9 capped hexagon II Cy, | 0.12
6 | pentagonal pyramid | Cs, | 0.79 | 9 trapezoid Dy, | 0.17
6 double rhombus Doy | 1.32 | 10 double hexagon Doy, -
6 boat Cy 1.58

6 chevron Csy | 1.69

6 square Doy, | 1.78

6 octahedron Oy, 1.81
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ing to a study by Hakkinen and Landman|46] six years ago. The same group found three
years later|60| a better configuration than the hexagon, the capped Aug triangle, and the
tricapped square (crown) as the second lowest-lying structure. Nevertheless, the pentag-
onal bipyramid, our semiempirical global minimum, is only 0.36 eV higher in energy than
the PBEPBE ground state, which makes it the only one semiempirical minimum lying so
close to the ab-initio one. Using other functionals, for example in the local spin density
approximation, one could determine this configuration as ground state or degenerated
with the ground state structure, as reported before.

Few years ago, the global minimum structure of the Aug cluster was considered to be
a distorted bicapped octahedron, however, recent studies[58, 59| reveal that its ground
state most probably has the shape of a capped rhombus and is two dimensional. The
next isomers are a bicapped hexagon and a series of three dimensional structures. All of
them, except for the last isomer, the bicapped octahedron III, lie very close in energy to
the ground state and also between themselves. This bicapped octahedron is the global
minimum for this cluster size according to the VC potential, however, in the PBEPBE
formalism it lies about 1.8 eV higher in energy than the ground state. The sixth isomer,
about 0.5 eV higher in energy than the capped rhombus, is also a bicapped hexagon,
which according to our knowledge has not been proposed before.

Finally, the number of the considered isomers for the clusters with N = 9 and 10 atoms
becomes more and more reduced, due to the extremely long computational time needed for
the optimization of each structure. The density functional methods could be appropriately
used for such heavy systems only up to 10-15 atoms, optimizing chosen structures and
using effective core potentials developed especially for these systems. Beyond 10 atoms one
needs a computationally efficient method with reasonable compromise between accuracy
and capability, and exactly such are the potentials used in the present work - they allow
us to optimize thousands of atoms without severe geometrical constraints, and the most
important issue is that the calculations remain completely unbiased.

At Fig. 4.4 are shown the calculated stability function, the HOMO-LUMO (highest
occupied molecular orbital — lowest unoccupied molecular orbital) gap, and the obtained
ionization potentials for the global minima structures of the clusters with up to 8 atoms.
The stability function, FEio (N + 1.1) + Eio (N — 1.1) — 2E(N.1), where Ei(N.k) is
the total energy of the energetically k-lowest isomer of the Auy cluster, shows peaks
identifying the highly stable structures. Both the stability function and the HOMO-
LUMO gap exhibit odd-even oscillations indicating that the even-numbered clusters are
relatively more stable than their odd-numbered neighbors. This stabilization is most
likely due to spin pairing in these clusters. The HOMO-LUMO gap is particularly larger
for Auy and Aug, and has its minimum at the 3-atom cluster, in contrast to the results
by Wang et al.[50], who obtained the linear chain, our 3 isomer, as the ground state for
this cluster size. Our results are in very good agreement with those from Ref.[46], except
for the Auj cluster, whose HOMO-LUMO gap is more close to the results obtained by
Wang, although the lowest-energy structure in all considered studies is the W-shaped
trapezoid. Among the smallest clusters, the Aug one has the highest particular stability.
The ionization potentials are calculated as the difference between the total energies of the
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Figure 4.4: The stability function, the HOMO-LUMO gap Ey, and the calculated (solid
squares) and experimental (open triangles) ionization potentials of the gold clusters. The
experimental values are from Ref.[95].

positively charged, and those of the neutral clusters. The best agreement between theory
and experiment is found for Auy, and Aus, with deviations growing with the number of
atoms.

In summary, although the structures predicted by the EAM are not among the first
isomers for a given cluster size according to the PBEPBE functional, the omission of the
relativistic effects collocates these structures very close or degenerate to the global minima.
The EAM formalism has proved its applicability to these small particles|93, 132], therefore,
considering the results for the smallest clusters with up to 7 atoms as exhaustively studied
by the first principles methods, here we will concentrate on the larger clusters that can
be described only by the semiempirical approaches.
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4.4 Energetic properties

4.4.1 Binding energy

The high stability of the so-called 'magic-numbered’ clusters has become a subject of great
interest in connection with its applicability in the medicinal and the colloidal chemistry,
as well as in the production of catalysts and high-tech nanomaterials.

In Fig. 4.5 are presented the binding energy per atom for the global-minima structures,
as well as the difference between the total energies of the lowest-lying isomers obtained
by us and those found by Sebetci et al.[89]. One can see that the difference increases
almost linearly with the number of atoms and has its maximum at N = 79, where we
obtained a truncated octahedron in contrast to the structure with D3, symmetry found by
Sebetci and Giiveng. At N = 52 they obtained an uncentered icosahedron-like structure
with Cgp, symmetry, that lies energetically between our second and third lowest isomers.
As the methods for the global minima optimizations used by these authors and ours are
completely different (basin-hopping Monte Carlo algorithm used by Sebetci and Giiveng
and the Aufbau/Abbau method developed by us), it is quite possible that the higher-
lying isomers found by them would not be found when using our approach, and vice
versa. However, having observed the differences in the symmetries of the ground state
structures and those in the total energies, we can conclude that our approach performs
better in the global-minima search, at least for clusters with up to 80 atoms.

4.4.2 Stability

In order to identify the particularly stable clusters we have taken into account the following
criteria. The clusters can be considered as very stable if their binding energy per atom
is much larger than that of the two neighboring clusters. This can be quantified through
the stability function, Fio (N + 1.1) + Eot (N — 1.1) — 2FE o (N.1), where Fi(N.k) is the
total energy of the energetically k-lowest isomer of the Auy cluster. This function, that
has maxima for particularly stable clusters, is shown in Fig. 4.6.

Here we can identify a large number of particularly stable clusters, i.e., so-called magic
clusters. These are found for N = 4, 6, 10, 13, 15, 17, 23, 28, 30, 36, 38, 40, 42, 45, 49,
54, 58, 61, 64, 66, 68, 73, 75, 77, 79, 82, 84, 89, 92, 95, 101, 109, 111, 116, 118, 124,
128, 133, 135, 140, 144, and 146. The most pronounced peaks occur at N = 13, 30, 40,
54, 75, 79, 82, 124, 133, 140, and 146. In agreement with Sebetci and Giiveng|89|, the
54-atom icosahedron without a central atom is found to be more stable than the Auss
cluster. The latter possesses a distorted icosahedral structure with Cg, symmetry, lying
with 0,374 eV lower than the perfect icosahedron obtained by Sebetci and Giiveng, with
2,9 eV lower than the decahedron, and is with 3,27 eV energetically favored comparing
to the cuboctahedron. In our study, all the three lowest-lying isomers of Auss; have
lower energy than the symmetric structures, in agreement with previous studies where
disordered configurations were found as global minima for Aus;[81, 82, 85, 86]. For Augss
and Auys, a cuboctahedron [44, 78, 79, 86, 89| and a Marks decahedron |78, 82, 84, 89]
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Figure 4.5: On the left - the binding energy per atom as a function of size for the
energetically lowest isomers of N up to 150, the dashed line shows the bulk value; on the
right - the difference between the total energies of the lowest-lying isomers with up to 80
atoms obtained by Sebetci et al. and those found by us.
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Table 4.3: Point groups of the optimized gold clusters.

denoted as N.1

41

The lowest-lying isomer is

N N1 N2 N3|N N1 N2 N3| N N1 N2 N3| N N1 N2 N3
2 Dsn 40 D3 C; Co | 78 Cop Cg C |116 Cs Op Gy
3 Dg, 41 ¢ G C |79 Oy Gy C |117 Cy Co (G
4 Ty 42 Dy Tqg C; | 80 C5 O Cg |118 Gy C (G
5 Dgh 43 D2 Cl C1 81 Cgv CS Cl 119 Cl Cl Cl
6 Onp Gy 4 C; Gy Cp | 82 Gy Cs3 Gy | 120 G G C
7 Dsy Cs Gy |45 Co G Cp | 8 Co G G121 G G C
8 Doy Cs Dsyg |46 C3 Cyo Cp | 84 C G G |122 G G (G
9 Cq Dy, Cg |47 C Gy Cp | 8 C G G123 C C (G
10 C3y Dyg Dgp [48 C; Doy Cy | 86 Co Gy Cg | 124 G G Cq
11 Gy Gy Gy |49 C G G | 87 Cy G G125 G G C
12 C; Gy Dg, |50 C G Cp | 8 C G G126 C4 C; (G
13 I C, Gy |bh1 G C C |8 Co C Cg 127 C G G
14 Cs, Gy Gy [ 52 Dsg Gy Cop | 90 C; G Gy | 128 Cy G Gy
15 Dgg Cop Cg |53 Cs Csp Cp | 91 C G Gy | 129 Cp Gy Gy
16 Co Dg, Cop |54 I, C Cg | 92 C; Gy G 130 Cy Gy Gy
17 Ty Dag G |55 Csy Co Cp | 93 G G Gy [131 Gy G C
18 Cyq Gy G |56 Co Gy Cy | 94 G G Gy 132 C G C
19 Dz, Dyg Cop |57 G G G | 95 G G Gy [133 Cyy G Cy
200 Dgg Dy Do, |88 C; Cy Cp |96 C C C |134 C GCo G
21 G (G Gy |89 G C Cp | 97T Cp Cp G |13 C G (G
22 G Gy Dg |60 Cs Cy Cp |98 C C C |136 Co C (G
23 Cyy Gy GCg |61 Cgp Gy Cop| 99 Co Cp G | 137 Coy G (G
24 C, Cy Gy |62 Cg C Cp 100 C C G |138 Cs C (G
25 Cy (G Gy |63 Cop Cy Cg | 101 Co Dg, C [139 Cop G G
26 C Gy Gy |64 Cop Cp Cg 102 C; Cp C |140 O Co G
27 Gy Cy Gy |65 Cp Cp Cp 103 Co Gy Cp | 141 Gy Gy Gy
280 Gy Gy Gy |66 Co Co Cp 104 G Cy Cp | 142 G G Cq
29 Gy Gy Gy |67 Co Cp Gy 105 Gy Cg Co | 143 Cy Gy G
30 Csy Cp Gy |68 Co Cp Gy |106 Cs Cp G | 144 Co Gy Gy
31 C3 C; Cs |69 Cy C G |107T C C Gy |145 G Gy C
32 Doy Cs3 Gy |70 C G Cp 108 Co Gy Cy | 146 D5, Gy Cy
33 Cy Cp Cp |71 Gy Gy Cp | 109 Csy Cp Cp |17 C C G
34 Tqg Cg Gy |72 Co G G |110 Gy C Cp | 148 C C (G
35 Coy D3 Co |73 Cop C Gy 111 G C Cp |149 C C G
36 Cop Gy Dy |74 Cy GCs Gy 112 Gy G Cp 150 G C G
37 Coy C Gy |75 Dy, Cop Cg | 113 T Co Dy

383 Op Dy Gy |76 Co Cy Gy 114 C3 Co Gy

39 Ds Gy Cyu |77 Cop Gy GCo | 115 Cy C; G
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Figure 4.8: Some Auy clusters with high or peculiar symmetry.
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were obtained, in agreement with first-principles and semiempirical studies. However, two
studies employing the many-body Gupta potential denoted amorphous configurations as
global minima of Ausg [83, 85|, which is most probably due to the parameterization of the
potential, as Darby et al.[86] found an octahedron as lowest-lying isomer by using another
version of the same potential.

The most striking result is that the 146-atom Marks decahedron is more stable than
the Auyy; icosahedron. According to our study, the third Mackay icosahedron lies with
2,89 eV lower than the cuboctahedron, with 2,53 eV lower than the decahedron, but with
0,37 €V higher than a disordered structure with partly decahedral construction. To our
knowledge, this is the first study predicting a disordered global minimum for the Auy47
cluster.

According to our other criterion for a particularly stable cluster, such a cluster occurs
if the energy difference between the two energetically lowest isomers Eyo (INV.2) — Eyot(N.1)
is large. This energy difference is shown in Fig. 4.7, and comparing to Fig. 4.6 we can see
that many of the clusters that are particularly stable according to the first criterion are
stable also according to the second one.

4.5 Structural properties

In this subsection, instead of discussing in particular the structures of the individual
clusters, we shall introduce different quantities that are devised to reduce the available
information to some few key numbers. The theoretical background of the descriptors used
in the subsection was introduced by us in a previous work.[93]

4.5.1 Overall cluster shape

First we shall consider the overall shape of the clusters. As we showed in our earlier report
on Ni clusters[93], it is convenient to study the 3 x 3 matrix containing the elements

1 N

Iy = u2 Z(Rn,s — Ros)(Rnt — Roy) (4.1)
I n=1

with u; = 1A being a length unit, and s and ¢ being z, y, and z, and with
N
Ro =+ ; R, (4.2)

being the center of the cluster. The three eigenvalues of this matrix, I,,, can be used
in separating the clusters into being overall spherical (all eigenvalues are identical), more
cigar-like shaped (one eigenvalue is large, the other two are small), or more lens-shaped
(two large and one small eigenvalue). The average of the three eigenvalues, (I,,), is a
measure of the overall extension of the cluster. For a homogeneous sphere with N atoms,
the eigenvalues scale like N°/3. Hence, we show in Fig. 4.9 quantities related to I,, but



44 CHAPTER 4. GOLD CLUSTERS

scaled by N=%/3. The shape analysis in Fig. 4.9 separates the clusters into being overall
spherical, more cigar-like shaped, or more lens-like shaped. One can see that only few
clusters have a spherical shape (these are found for the energetically lowest isomer for N =
4,6, 13, 17, 34, 38, 54, 79, and 140, and for the next one for N = 42 and 116), all of them
corresponding to high-symmetrical isomers (cf. Table 4.4.1) and, for the lowest-energy
isomer most of them to the class of magic clusters. It is interesting that the average value
follows more or less the same curve for all the three isomers, with some deviations at N
= 130, 146, and 147. Also the largest differences show similar behavior, except for some
few cases mainly for N below 40 and between 80 and 85. Therefore, except when the
eigenvalues are all very similar (i.e., the largest difference is very small, which occurs for
N around 50, 70, 100, 116, and 140), the overall shape (i.e., lens- or cigar-like) is the same
for all three isomers.

b
<9 .
S ——— .
=}
L1 8

(/N33

0.3 0.4 05 0.6

| /N5/3

max xo
0.4

Figure 4.9: Different properties related to the eigenvalues [I,,. In the upper panel
we show the average value together with points indicating whether clusters with overall
spherical shape (lowest set of rows), overall cigar shape (middle set of rows), or overall
lens shape (upper set of rows) are found for a certain size. Moreover, in each set of
rows, the lowest row corresponds to the energetically lowest isomer, the second one to
the energetically second-lowest isomer, etc. In the lower panel we show the maximum

difference of the eigenvalues for the three different isomers.
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Figure 4.10: The distribution of radial distances (in A) for the lowest-lying isomer as
a function of cluster size. Each small line represents (at least) one atom with that radial
distance.

The construction of atomic shells can be easily seen from the distribution of radial
distances shown in Fig. 4.10 for the ground state structures as function of the cluster
size. Up to N around 50, no trends can be identified, but for N just above 50 a clear
tendency towards shell construction can be seen for the first isomer. This corresponds to
the formation of the Aus, icosahedral cluster. Also for N close to 110 and around 140 shell
constructions for the lowest-lying isomer are observed. In the latter case, this corresponds
to the formation of an octahedron. The radial distributions for the second and the third
isomers are not shown, as they are quite similar to that for the first isomer. Particular
shell constructions are found only for highly symmetrical clusters corresponding to N =
42, 48, 80, 101, 116, and around Au3 for the second isomer, and around N = 40, 60,
116, and 130 for the third isomer.

4.5.2 Similarity functions

We have found earlier|93, 132] that it was useful to monitor the structural development
of the isomer with the lowest total energy through the so-called similarity functions. We
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Similarity function

Similarity function

Similarity function

Similarity function

Figure 4.11: Each panel shows the similarity function for all the three isomers when
comparing to (a) an icosahedral cluster, and (b—d) a spherical fragment of the fec crystal
where the center of the fragment is placed at (b) the position of an atom, (c) the middle
of a nearest-neighbor bond, and (d) the center of the unit cell, respectively.
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Figure 4.12: (a) the average coordination number, (b) the minimum coordination num-
ber, and (c) the average bond distances as functions of cluster size. The dashed lines in
(a) and (c) show the corresponding bulk values for gold.
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define the radial distances from the center for each of the atoms of a given cluster Auy
P = R, — Ryl (4.3)

and sort these in increasing order.

Simultaneously we consider a large spherical fragment of a fcc crystal as well as a large
cluster of icosahedral symmetry, here Auggg. Also for these we define a radial distance for
each atom, r],, which also are sorted. In order to compare a given cluster with those two
systems we calculate subsequently

1 N 1/2
0= |5 -] (4.4)
n=1
giving the similarity function
1
S=— 4.5
1+ q/u (4:5)

(u; = 1A). S approaches 1 if the Auy cluster is very similar to the reference system, i.e.,
a fragment of the fecc crystal or an icosahedral cluster. In Fig. 4.11 we show the resulting
functions in four cases, i.e., when comparing with the relaxed Ausgg cluster, and when
comparing with three fragments of the fcc crystal differing in the position of the center
(i.e., the position of an atom, the middle of a nearest-neighbor bond, and the center of
the unit cell, respectively).

One sees both that clusters that clearly resemble fcc fragments and that clusters that
resemble icosahedral clusters can be identified. The most pronounced peaks for the icosa-
hedral structures correspond to N = 13, 55, and 147, the first-, second-, and third-layer
Mackay icosahedron, respectively. Clusters with icosahedral structures are also found in
the interval between N = 75 and N = 79, as discussed in the previous subsection. The
octahedral ones are found around N = 6, 8, 13, 28, 38, and 79. Beyond N = 135, the
values for the fcc-like clusters decrease, whereas an increased similarity with the icosahe-
dral clusters is observed. It is interesting to notice that the structures are built up over
a certain range of cluster sizes so that, e.g., the icosahedral structure for NV = 55 can be
seen also for both larger and smaller values of N around this value.

4.5.3 Coordination numbers

In Fig. 4.12 are shown the average and minimal coordination numbers, and the average
bond lengths of the clusters. We define two atoms as being bonded if their interatomic
distance is less than 3.49 A, which is the average value between the nearest-neighbor
distance (2.89 A) and the next-nearest-neighbor distance (4.08 A) in bulk Au. Moreover,
we distinguish between inner atoms with a coordination number of 12 or larger and surface
atoms with a coordination number less than 12.

Fig. 4.12(a) presents the average coordination number as a function of N. A saturation
towards the bulk limit of 12 is seen, although one has to remember that even for the
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largest cluster of our study 94 out of 150 atoms are characterized as surface atoms. Also,
the function increases monotonically with the size of the systems, with oscillations in
particular for the clusters with N = 17 and 18, which is due to the formation of a
tetrahedron for Auy;, and a structure with Cy, symmetry at N — 18, respectively. The
latter is already obtained with the EAM method (see Ref.[89]), but this is the first time
when a tetrahedral configuration is found for the Auy; cluster. Its second isomer in this
study (Dyg) is already found by Wilson and Johnston|79| as a lowest-lying minimum.

The minimum atomic coordination for each cluster size is shown in Fig. 4.12(b). The
existence of low-coordinated atoms, i.e with coordination numbers of 3 or 4, could point
to the occurrence of a cluster growth, where extra atoms are added to the surface of the
cluster, whereas the higher coordination numbers could indicate a growth where atoms are
inserted inside the cluster, or, alternatively, upon a strong rearrangement of the surface
atoms. This is the case for the gold clusters, with few exceptions at N = 14, 17, 18, 78,
83, and 134, where lower coordinations are found. The lowest coordination corresponding
to Auyy is in connection with the formation of an icosahedron plus one additional atom on
the surface. At N = 17 and 18, some structural changes take place, as discussed above.
Aurg and Augs correspond to structures with decahedral motif capped with one additional
atom. This is also the case for Au;3; where the C,, symmetry of the decahedral structure
corresponding to N = 133 is lowered by adding an atom on the surface.

Fig. 4.12(c) shows the average bond length as a function of the cluster size. The
dashed line corresponds to the bulk value of 2.89 A. The average bond length for all
the structures is smaller than the bulk value, especially for Au;; and Auyg, where more
compact structures are formed. However, this property approaches the bulk value faster
than the average coordination number.

4.5.4 Cluster growth

The central point in most of the molecular dynamics studies on gold clusters is to identify
how the clusters grow and if the cluster with N atoms could be derived from the one with
N — 1 atoms simply by adding one atom. In order to quantify this possible relation, first
we consider the structure with the lowest total energy for the (N — 1)-atom cluster. For
this we calculate and sort all interatomic distances, d;, 1 = 1,2,--- | w Subsequently
we consider each of the N fragments of the N-cluster that can be obtained by removing
one of the atoms and keeping the rest at their positions. For each of those we also calculate

and sort all interatomic distances d}, and calculate, subsequently,

5 N(N-1)/2

1/2
i vy X @-ar| (4.6)

=1

Among the N different values of ¢ we choose the smallest one, ¢, and calculate the
similarity function

1

S=——— 4.7
1 + Qmin/ul ( )
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Figure 4.13: The similarity function as function of the cluster size. It describes whether
the cluster with N atoms is similar to that of N — 1 atoms plus an extra atom.

(u; = 1A) which approaches 1 if the Auy cluster is very similar to the Auy_; cluster plus
an extra atom.

The similarity function, shown in Fig. 4.13, approaches 1 if the Auy cluster is very
similar to the Auy_; cluster plus an extra atom. We see indeed that for NV up to around 50,
S is significantly different from 1, confirming that in this range the growth is complicated.
The most pronounced peaks occur at 6 < N < 9, 15 < N < 20, 34, 38, 39, 52, 56, 79, 80,
85, 111, 126, 140, 141, and 145 < N < 147. Many of them correspond to high symmetrical
clusters, however some of the clusters with larger peaks (N = 39, 56, 62, 85, 111, 126,
141, and 145) have lower symmetry. The octahedral Ausg and the low-symmetrical Ausg
are structurally very different from their N-1-atom neighbors. Ausg marks the end of the
icosahedral shell built between Aus, and Auss, and the clusters resume their disordered
growth. The octahedral Aug; is followed by the disordered Aug,, and the decahedral
Augs comes after the disordered Augs. Between the decahedral Au;;o and Auyqg lies
the disordered Auyy;. The addition of one atom to the disordered Aup,s leads to the
formation of an unfinished but regular decahedron at N = 126. The decahedral Auj4;
comes immediately after the octahedron corresponding to N = 140. Although Auyyy has
partly decahedral construction, its N+1-atom neighbor is disordered. It seems that for
each cluster size there is a rearrangement of the gold atoms, and no a particular growth
motif was observed. This in turn means that the cluster growth is very complicated and
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it is difficult to consider it as an one-by-one atom addition.

4.6 Vibrational spectra and heat capacities

4.6.1 Dynamical matrix

We computed the vibrational spectrum of gold clusters with up to 150 atoms using the
harmonic approximation. Employing the analytical form of the Hessian matrix, we con-
structed the 3N x 3N dynamical matrix

1 0?FEin)
A LV 4.
Dhing <M 8Rm8ij> (4.8)

containing the second derivatives of the total energy with respect to the atomic coordinates
in the equilibrium configuration. In this formula M is the atomic mass and R,; denotes
the coordinates (i = z,y, z) of atom n. We performed the numerical diagonalization of
the dynamical matrix

’Dni,mj - w2(5nm5ij’ =0 (49)

in which §,,,, the Kronecker symbol, equals unity if n=m and is zero otherwise, and w is
the vibrational frequency. In this study we have determined the vibrational frequencies
for each global minima cluster size, however, we will discuss in details only the minimal
and maximal vibrational frequencies. These are presented at Fig. 4.14 where one can see
the maximal frequencies in the upper panel, and the minimal vibrations are shown in the
bottom panel. Even the frequency of the dimer Aus is well reproduced - the experimental
value is 191 cm ™!, and the obtained with the Voter-Chen EAM is equal to 180 cm~!. The
small difference is due to the slight contraction of the dimer bond in the EAM (2.40 A)
compared to the experiment (2.47 A).

4.6.2 ’Magic numbers’ in the spectra

The magnitude of the vibrations is most pronounced up to N = 31, then it decreases
significantly leaving only one island at 92 < N < 108, where probably some structural
changes take place. The most pronounced peak corresponds to Aujg that has D5, sym-
metry. However, none of the next maxima or minima belongs to a structure of high
symmetry, therefore in order to be able to draw a general trend, we proceed to the
minimal frequencies. At the bottom panel, the dashed line at 20K corresponds to the
temperature for which the heat capacities per vibrational mode were calculated, see Fig.
4.15. In this way, if a particular cluster has vibrations at or below this temperature, there
will be most probably also a corresponding peak in the heat capacity. At Fig. 4.15 the
values of the heat capacities for N up to 15 are presented separately as they begin with
very small values and increase rapidly in this cluster range. The vibrations corresponding
to these clusters are also far above the 20 K temperature, therefore the most interesting
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Figure 4.14: The maximal (a) and the minimal (b) vibrational frequencies as function

of the cluster size.



4.6. VIBRATIONAL SPECTRA AND HEAT CAPACITIES 53

0.21 1 1 1 1 1 1 1 1 1 1 1 1 1 0.21
91 121,122
31 39 69 103 145
0.18 n 0.20
21
0.15 | 27 0.19
0.12
= " 0.18
>
@)
0.09
= 34 0.17
30
0.06
u 38 Jo.16
0.03
- 18 - 0.15
0.00 | 1 1 1 | 1 1 1 1

3 6 9 12 15 17 32 47 62 77 92 107 122 137 152
N N

Figure 4.15: The calculated heat capacities per vibrational mode at 20 K as function
of the cluster size.

contributions will be first beyond N = 20. We can see that the clusters whose minimal
frequencies are far above the 20 K limit show corresponding low heat capacities - these
are found for N = 18, 30, 38, 54, 61, 64, 75, 79, many of them belonging to the class of
magic clusters. Also the cluster vibrations lying significantly below the 20 K temperature,
show corresponding large heat capacities - these are Ausy, Augg, Auss, Augg, and Auyys.

4.6.3 The low-symmetrical Aus; and Auyy; clusters

For the Auss and Auyy; clusters a comparison was made between the vibrations of the
low-symmetrical clusters obtained as global minima in this study and their icosahedral
relatives. The results are shown in Fig. 4.16. In both cases, the spectra of the low-
symmetrical clusters decreases monotonically, while, as expected, the icosahedral isomers
show very high degeneracy of the vibrations.

To our knowledge, there is not an experimental vibrational spectrum of Auss or Auyyr
to which we could compare our results. There exists an experimental work by Marcus and
coworkers|[94] on the 55-atom gold cluster made by the Schmid process. They performed
optical absorption and temperature-dependent x-ray-absorption fine-structure (EXAFS)
measurements on that cluster and the results were consistent with a fcc cuboctahedral
structure. Another study by Hékkinen et al.[39] employing photoelectron spectroscopy
and density-functional methods revealed the low-symmetrical nature of the Aug; cluster.
However, there is not a data that undoubtedly engages a theoretically obtained structure
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Figure 4.16: On the left - the vibrational frequencies of the ground state of Auss, and

its icosahedral isomer; on the right - the same for Auyy;

to experimental findings, at least not for Auss and Auyy;. These are to be the main point

of further studies.



Chapter 5

Silver clusters

5.1 Introduction

The smallest silver particles remain a subject of great interest to both experimental-
ists and theoreticians, due to their possible applications in the catalysis, photochemistry,
nanoscience. Although various spectroscopic and microscopic techniques have been ap-
plied to study the properties of silver clusters|95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 34,
105, 106, 107, 108, 109], none of them could define unambiguously the cluster symmetry.
Only one study[110] on the Raman spectrum of Ags revealed that the molecule had a
planar trapezoidal structure. Much theoretical efforts have been devoted to the determi-
nation of the accurate lowest-energy structures, optical and conductive properties of these
small particles. Numerous first principles calculations|111, 112, 48, 113, 114, 115, 116]
denote Agg as the last two dimensional cluster size, while according to the tight-binding
methods[117] the smallest three dimensional cluster is more likely to be Ag;. However,
both approaches predict the odd-even energy oscillations found from the experiment|95,
96]. According to the spherical jellium model[118, 119], the electronic shell closure is
expressed as pronounced peaks in the ionization potentials at cluster size 2, 8, 14, 20, 40,
etc. The model successfully interpreted the magic numbers found for alkali metals, and
although silver has many d-electrons, its 4d orbitals are low-lying and this metal is more
likely to be also well described. A recent[120]| density-functional study on silver clusters
in the size range N = 9 - 20 atoms predicted that layered structures are the lowest-energy
isomers for clusters with less than 16 atoms, while the larger ones most probably are
compact with quasispherical shape.

In order to be able to extend their studies beyond the too small silver clusters, many
groups have employed (semi-)empirical potentials, in some cases combined with Molecular
Dynamics techniques, to investigate static and /or dynamical properties[121, 122, 123, 124,
125]. The authors of Ref.[87, 126] used constant-energy molecular dynamics simulations
to study the structures and melting behavior of different fcc metal clusters with up to
23 atoms. The model predicted that all clusters had structures based on icosahedral
packing and therefore exhibit similar thermodynamic behavior. Another version of the
Embedded Atom Method used in [126] was employed by Garcia Gonzalez and Montejano-

95
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Carrizales[127] to analyze the structural stability and symmetry of nickel, copper, silver
and platinum clusters, comparing the cohesive energy of various clusters with the same
number of atoms but with different structures. Baletto and coworkers|128, 129, 72| studied
the growth of larger silver clusters by means of molecular dynamics simulations, where in
one of their works the sizes of the clusters were extended up to 40000 atoms|72]. It was
shown that the structures of the clusters depended crucially on the temperatures at which
the growth occurred. Investigating three main structural motifs - icosahedral, decahedral,
and (truncated) octahedral, they found that icosahedra were favored at small (N < 147),
decahedra at intermediate (300 < N < 20000), and octahedra at large sizes(N > 30000).
Similar trend was obtained by Calvo and Doye[130] in a study on the pressure effects on
cluster growth.

In this Chapter we have studied silver clusters with up to 150 atoms using two different
versions of the many-body Gupta potential|11], whose parameters are shown in Table 5.1,
in order to observe system- and potential-specific as well as -independent properties. We
shall here compare part of the results obtained with these two potentials to silver clusters
with up to 60 atoms independently studied with two different EAM approaches.

Table 5.1: Parameters in the two versions of the Gupta potential used here.

Parameter | tight-binding[12] | 2"¢ order[13]

AJeV 0.09944 0.1028
p 10.12 10.928
q 3.37 3.139
ro/A 1.0 2.892
¢/eV 1.0 1.178

5.2 Energetical properties

In order to check the accuracy of the chosen potentials, we calculated the dimer bond
length with all approaches and compared the results to LDA and experimental values. As
can be seen from Table 5.2, all potentials are capable of good description of the shortest
cluster bond length, with the VC potential closest to the experimental value, which is due
to its parameterization to the dimer properties. As will be discussed below, the global
minima structures obtained with the VC potential are identical to those obtained with
the other potentials up to cluster size N=15.

5.2.1 Point groups of the clusters

The point groups of the global-minima structures and the first two isomers with N up to
150 atoms obtained with the two versions of the Gupta potential are shown in Table 5.3
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Table 5.2: The bond length (in A) of the Ag dimer as calculated with the tight-binding
Gupta (TBG), the extended Gupta potential (nG), the Embedded Atom potentials DBF
and VC. The dimer bond length obtained in reduced units (TBG) is appropriately scaled.
The results are compared with LDA and experimental values.

System | nG |  TB | VC | DBF| LDA[116] | exp.[131]
Agy | 2449 | 2448| 2501 | 2.443 | 249 | 2.53

and Table 5.4. In order to check the reliability of these approaches, results for the smaller
and intermediate silver clusters (up to 60 atoms) obtained with the two versions of the
EAM are shown in Table 5.5. In previous works we optimized nickel|93|, copper|[132] and
gold clusters|133] with up to 150 atoms using the DBF and VC EAM potentials. There we
proved the applicability of the EAM potential to the smallest nickel and copper clusters.
However, the DBF potential was not capable of proper description of the smallest gold
clusters|90|, especially the dimer molecule, therefore we used only the Voter-Chen version
for the calculations of the global minima structures. Here, we aim to find an appropriate
method to treat the smaller and intermediate silver clusters, as well as to determine the
similarities and differences between the different potentials applied to these systems.

The first differences for the global minima silver clusters can be found in Table 5.3
and Table 5.5 already at cluster size N = 15, where the global minimum found for Ag;;
(Dgq) exists as second isomer according to the nG potential. Likewise, the DBF method
also denotes the highly symmetrical structure as a second isomer. The Agss second
isomer obtained with the nG potential has T symmetry like the global minimum of this
cluster size predicted by VC/DBF, while all isomers for this cluster size found with the
TBG potential are disordered. The highly symmetrical Dg, structure appears as third
isomer at N = 22 for the silver clusters obtained with the Gupta potentials, but is not
among the three lowest-lying isomers according to the DBF potential. Our results for the
global minima structures of silver clusters with N = 6, 7, 12, 13, 14, 19, 38, 55, and 75
atoms are consistent with those from Ref.[84]. Up to N = 22 our global minima structures
obtained with the nG potential are identical to those found with the Sutton-Chen potential
(SC) by Doye and Wales|78|. The disadvantages of the SC potential such as strong
overbinding and resulting short bonds and high binding energies lead to the identification
of highly compact structures as global minima. Therefore, it is not surprising that the
global minima obtained in Ref.[78]| are structurally very different from ours. A detailed
discussion is offered in our previous work|[132], hence here we will concentrate mainly on
the structural comparison between the Gupta and EAM potentials. A symmetrical Doy
structure lies in the global minimum of Ags, according to both Gupta potentials, and is a
second isomer for the VC potential. Not surprisingly, for all potentials the global minimum
of N = 38 is a truncated octahedron, the second Mackay icosahedron is most probably
the ground state structure at N = 55, and the 75-atom Marks decahedron appears to
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be the lowest-energy configuration for this cluster size. Growth of silver clusters reveals
wide icosahedral windows around N = 53 - 55 and N = 144 - 147. Although the most
probable ground state geometry of the 79-atom cluster according to the semiempirical
studies is an octahedral one, the TBG potential founds a rather disordered structure with
C, symmetry. It seems that low- and high-symmetrical isomers are indeed close in energy,
and the small differences between the potentials lead to various predictions for the ground
state configurations. Finally, an icosahedral global minimum is found for the Agq4¢ cluster
with the nG potential, while the octahedron and the icosahedron are not energetically
favored by the DBF potential.
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Table 5.3: Point groups of the silver clusters with up to 77 atoms optimized with the
nG and TBG potentials.

N N.1 N.2 N.3 N N.1 N.2 N.3

2 Don 40 C./Dm  C./Ds C1/C.
3 D3y, 41 Cs/Dy Csy/Csv  Csy/Csy
4 Ty 42 C./C, C,/C Cay/Cy
5 Dan 43 C./C, Cs/C.  Cy/C.
6 On Coy 44 C,/Cy C1/C, C,/Cy
7 Dsn Cae Cy 45 C./C, C,/C, C,/C,
8 D2d Cs D3d 46 CQV/CS Cl/Cl Cl/Cl
9 CQV/CZV D3h/CZV CQV/CS 47 Cl/cl CS/CI Cs/cl
10 C3v/CSV D2h/D2h 02/02 43 DQ/D2 CS/CI CS/CS
11 CQV/CZV CZ/CQ CQV/CZ 49 CSV/CSV CS/CI Cs/cl
12 C5v/05v D2d/D2d DSh/D3h 50 CS/CS CS/CS CS/CS
13 T,/Ih C,/C, C,/Cy 51 C,/Cs C,/C, C1/C,
14 C3V/C3V CQV/CQV C6V/CQ 52 C2V/C2v CS/C3V CS/D2
15 CQV/DGd Dﬁd/CQV C2V/C2V 53 C2V/C5v C2V/D2 C5V/D5d
16 CS/C2V Cl/Cl CS/CS 54 C5V/Ih Ih/C5v CQV/D2
17 Cy/Coy  Co/Cy Cp/Cs | 55 I,/I, C1/Cs C,/C,
18 CS/C2 CS/CS C2/C2v 56 C3V/CS CS/CQV Cs/c3v
19 Dsn/Dsn Ca/Cs C,/Cs 57 Cy/Cs  Cy/Cy C,/C,
20 Cay/Cyy  Dgy/Dy D3q/Dsq | 58 Csv/Csy  C1/Cy C1/Csy
21 C1/01 Cl/Cl CQV/DQ 59 CQV/Cl Cl/CQV Cl/Cl
22 C,/C, C1/C Den/Den | 60 C,/C, C,/Cs C1/C,
23 C,/Dy  Ds/Cs  C,/Cq 61 Co/Coe  Cy/Cs C1/Cs
24 C./C, C,/Ds C,/C, 62 C,/C, C,/C. C,/C,
25 Cs/Cs Csv/Cy Cav/Cy 63 Coy/Cov  Cy/Cq Ci/Cy
2 C./C, Dan/Cav  Cay/Co | 64 C./C, C1/C C,/C,
27 C./C, Cy/Cs C./C, 65 Coy/Coy  C1/Cs C,/C,
28 C./Dy  T/C. C./C, 66 C./C, C,/Cs C,/C,
29 C3/Co  Ca/Cs Cy/Cy 67 Coy/Cay  Cs/C, C,/C,
30 Cy/Cs Co/Ci  C1/C, |68 Coy/Coy  Cy/C, C1/C,
31 Coy/Cs  Ca/Cs Csy/Dy | 69 Cy/Cs C,/C;  C,/C
32 D2d/D2d CZV/CQV CQ/CS 70 CS/CS Cl/Cl Cl/Cl
33 CQV/CS Cl/CQ CS/CZV 71 CQV/C2V Cl/Cl Cl/Cl
34 Cy/Cy C,/Dy  C,/C, 72 Cy/Cs C1/Cs C1/C,
35 C,/D; Ds/C, Co/Dy | 73 C,/Cs C,/C, C1/Dsy
36 C,/Cs C,/C, C,/D, | 74 Cs/Cse  C1/Cy C,/Cs
37 C3v/02v CS/C2v C2V/Cs 75 D5h/D5h CS/CS CI/CS
38 Oh/Oh C5v/])4h D4h/D2 76 C2v/02v CS/CS CS/CS
39 C5V/D4 C4V/D3 CS/CS 7 C2V/C2v CI/C2V CI/CQV
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Table 5.4: Point groups of the silver clusters with 77 — 150 atoms optimized with the
nG and TBG potentials.

N N.1 N.2 N.3 N N.1 N.2 N.3

7 0.0 GG Cyn/Cy |116  Ds/Tn  On/T  Cy/On
79 0y/C.  Cy/Ca  Cy/Co |17 Cy/C,  CJC, /G
8 C/C.  C/C.  C/C. |18 c/C G GG
81 Cy/Co C/C.  Ci/C.  |119 € /Ci  Cu/Cs  Ci/Cy
82 Ch/Ch C./C.  CJC. |120 coJc.  CJ/C GG
83 Coy/Coy  Cy/Cy C1/Cay 121 Cay/Cov  Cy/Cy Ci/Cy
84 C.)C.  Ca/Cae Co/C. |122  C./C.  CJC,  Cy/C.
85  C./C.  C.JC.  C.JC. 123 Cw/Ca C/Ci GG
86  Cw/Ch C/C.  C.JC 124 C.JC.  Ci/C GG
87  C./C.  C.JC.  Cyc. 125 cyc, QJc Cc
88  C.C.  C/C.  C/C. 126  CJC. /G GGy
8 C./C.  C/C.  CJC, |12 CJC.  CJC  C.JC.
00  C.JC.  Ci/C  C/Ci 128 C.C,  Ca/C.  Cy/C.
o1 C/C  C/C GG 129 CJC. /0, C/Cy
92 C/C  Ci/C C/Ci 130 Ca/Ds  Ci/C Cy/C
03 C/C GG GG | 131 CJC.  CJC.  C.JC.
04  C/C,  C/C C/Ci 132 CJC. /0 GGy
05  C/C,  Ci/C C/Ci 133 CJC, GG Cy/C
96  C/C.  C/C  C/Ci | 134 CJC,  Ci/C.  Cy/Ca
07 Cy/C,  C)C  C/C, | 135 C.C.  Ci/C.  C./C.
98  C.JC,  Ta/C, GG |136 GG GG GG
99  C./C.  C/C  C/Ci | 137 CJC, /0, GG
100 Ca/C. C/C,  CJC, 138  C./C.  C/C,  C/C
101 Du/Dsn  C./C.  C./C. | 139 Ca/Ds  C./C;  Cse/C.
102 C.JC.  C.JC.  Ci/Cse | 140  Csu/C.  Cse/On  Cau/C.
103 Cwn/Cse Cy/C.  CoDy | 141  C./C.  C./Co  Ci/C,
104 C/C,  C.JC,  C/C, | 142  Cu/Dy  C./)C.  C./C.
105 Co/Co  Co/Coe  C./Ci | 143 C.JCy  C./C.  C./C,
106  C,/C,  C.JC.  C./C. |144  Cy/Dy  Dsa/ln  Cay/Ds
107 Co/Co  Ci/Cae  Ci/Cy, | 145  Cs/T  Co/Dy  Cu/Dy
108 C,/C,  C/C  C/C | 146 LI, o1 Dsy/C,
109 C/C, GG C/C |14 LL C./C.  C.JC.
110 C,/C,  C/C  CJC, |48  CJC,  CJC.  C.C
111 C/C, G /C; Ci/Ci | 149 Ca/Cy  Ca/Dy  Cof/Cae
112 C/C, G /C Ci/C, | 150 C./C.  Ci/Cs  Cy/C.
113 C/C  C/C GG

114 /0, CJC GG

115 C,/C,  C/C  Ci/Cy
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Table 5.5: Point groups of the silver clusters with up to 60 atoms optimized with the
VC and DBF EAM potentials.

N N.1 N.2 N.3 N N.1 N.2 N.3

2 Deoh/Doch 32 D3/Csy  Doa/D3  Coy /Ty
3 Dy/Da 33 /Gy, Cy/C. C./C

4 Tq/Tq 34 Cs/Cyq Cs/Cyq Cy/Cy

5 Dgy, /D3y 35 D3/D3  Cy,/Csy  Cyy/Cy
6 On/Oy Cay/Cay 36 Cy/Cy C1/Cy Cs/Cy

7 Dsn/Dsn Cs/Csy Co/Cy 37 Csv/Cy  Dy/Cs,  Cy/Cy

8 Doq/Dag Cs/Cs  Dsq/Dsq 38 On/On  Du/Csy  Dy/Csy
9 CQV/CQV D3h/D3h CI/CZV 39 C5/C5V C5V/CS C4v/Cs
10 Csv/Csy Daon/Daq Dyq/Dop 40 Cs/Cyq Dy/Cq Cy/Cy

11 Co/Cope  Cs/Cy  Cou/Ch 4 CJC,  Cy/C,  C./Ch

12 Csy/Csyv Ci/Daq Dsn/Cy 42 Coy/Cs  Cs/Cs C1/Cy

13 LT,  C/C. C./C. 43 C,)C,  CJC. C/C

14 C3v/CSV CQV/CZV CGv/Cl 44 CS/CI CQ/CS Cs/cl

15 Dea/Coe  Cou/Dga Cay/Coy 45 C.)C. C.JC.  Cy/Cy

16 C./C,  C/C. Dun/Cy 46 Cou/Coy Ci/Ci  Cu/Cy

17 C2/C2 CS/CS C2V/Cs 47 C1/Cl C1/Cs CS/CS

18 CS/CS C2/C5v C2V/Cs 48 C2V/Cs CS/CS CS/CQV
19 Dg/Ds Ci/C;  Cy/C. 49 Cpn/Cy Co/C.  C/Cy

20 Cs/Ca Dy/Dsa  Dsa/Ds 50 C./C.  Ca/C. Ci/Cy

21 CJC  Ci/C.  Co/C. 51 Cwn/C.  C,/C.  C/Cy

22 C.)C  De/C. Cy/C 52 Cy/Coy Co/Cy  Cu/Ch

23 Dsn/Dsn, Cy/Co Dan/Cs 53 Cav/Cav Dsda/Dsq Cay/Coy
24 DS/CQV CZV/CS CS/D3 54 C5v/C5v Ih/Ih CQV/CZV
295 Cy/C;  Ci/C.  Ca/Cy 5 I/L. Ci/C.  C./Cy

2%  Cy/Cy  Cae/Ta Cs/Coy 56 Cy/Cyy  Cay/Ce  Can/Ch
27 CC,  C./C.  Cy/Cy 57 C.)C. Cy/C.  C./C.

28 T/T  Cy/C  C./Ca 58 Ca/Cae  C1/Cr Cy/C

29 C3/CS CQV/CZV CS/02 59 Cl/C2v CSV/Cl CZV/CI
30 C.)C. Ci/Cay Cy/Cy 60  C,/C. C.JC C./Co
31 Cs/Cq C,/Cy C,/Cq
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5.2.2 Stability

The energetical differences between the first and second isomers can give information
whether they are energetically very close and most probably exist as a mixture in the ex-
periment, or the global minimum lies very low compared to the next isomers, which is the
case of the Agrg cluster obtained with the nG potential at Fig. 5.1. The results obtained
with the TBG potential are not shown, as they are very similar to these. Here, along with
the peaks corresponding to the 'magic’ N — 13, 38, 55, and 147 clusters, many new peaks
appear. They correspond to N = 63, 71, 79, 95, 101, 115, 120, 121, 126, 130, and 139.
All of them except for the Aggs and Agrg clusters have decahedral structures, the ground
state of Aggs has a distorted icosahedral configuration. The energetical peculiarities can
be generalized by using the stability function presented at Fig. 5.2 for the silver clusters
optimized with the nG potential. A comparison with the TBG, DBF, and VC potentials
is made for the size range 2-60 atoms (Fig. 5.3).

As already seen at the energy differences between the first isomers, the Agss and
Agog clusters are not particularly stable. Instead, for the first time the Agss and Agg;
clusters appear to be magic. The Agg; cluster can be viewed as made of the Agss icosa-
hedron capped with 6 atoms on one of its sides. In comparison to the results for copper
clusters|[132], here the silver clusters with N = 86, 92, 116, 119, and 131 atoms are not
particularly stable, while the magic Agis; and Agi3 can not be found in the stability
function for the copper clusters. The Agi14, Agi31, and Agy3; clusters are not magic in
comparison to the nickel ones[93], while the silver structures with N = 95, 101, 121, 130,
and 139 are absent in the nickel stability function.

At Fig. 5.3 are shown the stability functions for silver clusters with up to 60 atoms
obtained with the TB Gupta potential, the DBF and VC versions of the EAM method.
One can see that both EAM methods yield very similar results comparing to the TB
potential, where the characteristic peaks at N = 19, 23, 28, and 49 are missing. Instead,
two new magic clusters appear at N = 48 and 58. They are also found at the stability
function for the nG potential. These structures have Dy and Cs, symmetries, respectively.
Although the global minima for Agss according to the DBF and VC potentials have the
same symmetry, none of them appears as highly stable in the corresponding similarity
functions.
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Figure 5.1: The energetical difference between the two lowest-lying isomers within the
nG potential.
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tentials.
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5.3 Growth patterns

5.3.1 Similarity functions

The similarity functions obtained comparing the nG silver clusters to those found with the
TBG, DBF, and VC potentials are shown at Fig. 5.4. Although the two Gupta potentials
are very similar, they seem to lead to significantly different structures around N = 15
and beyond Ags,. However, revising Table 5.3 and Table 5.4 we see that for these cluster
sizes most of the global minima according to the first potential correspond to higher-lying
isomers within the second one, and vice versa, which is also the case for most of the DBF
and VC structures.

Surprisingly, the larger silver clusters (Fig. 5.5) obtained with the two Gupta poten-
tials are more similar than the smaller ones with up to 60 atoms. The largest structural
differences occur at N = 140 and 141, where the global minima of these two clusters have
icosahedral constructions according to the nG potential. On the other hand, the lowest-
lying Agq40 and Agq4; isomers predicted by the TBG potential have decahedral structures.
A previous work|134] using a LDA density functional code predicted icosahedral global
minima for the silver clusters with N — 55, 135, and 140 atoms. According to all po-
tentials used in this study, the second Mackay icosahedron is most probably the ground
state of Agss. However, our three lowest-lying isomers of Agy35 obtained with both Gupta
potentials have decahedral structures. Moreover, applying the Abbau algorithm starting
from our icosahedral Agy4g global minimum, we were able to obtain an icosahedral isomer
for the Agi35 cluster size, but it lay around 0.6 eV above our global minimum. Cuboc-
tahedral fec structures, as considered in Ref.[134], are not among our three lowest-lying
isomers for the three cluster sizes, except for the second Agy4o isomer obtained with the
tight-binding Gupta potential.

Further insight into the cluster growth could be obtained if we consider how different
a cluster with N atoms could be if it is compared to a N-1-atom one plus one additional
atom, e.g in this way one can follow the structural changes occurring at the different
cluster sizes. These growth patterns could be seen at Fig. 5.6, where we compare the global
minima structures obtained with the nG potential for each cluster size. A more detailed
comparison (for nickel and copper clusters) can be found in our previous works|93, 132].
There are many structural differences to be seen, which indicates an irregular growth of
the silver clusters. Comparing to nickel and copper, where also significant differences were
observed for the smaller clusters with up to 50 atoms, here there are a few strong peaks
for the larger Agrg, Agsy, Agor, Ag116, Ag117, and Agiyo clusters. The second strongest
peak in the figure, corresponding to Agsg, is due to the transition from the octahedral
global minimum for the 38-atom cluster to an icosahedral ground state, which is also the
case for the fcc Agrg and the decahedral Aggy. Although the clusters with N = 115,
116, and 117 atoms all have decahedral configurations, the last two ones are structurally
very different, also between themselves. According to our results, the cluster growth is
decahedral in the size range N — 65 - 139 atoms, with one exception at the octahedral
Agr9. Our previous studies on copper and nickel clusters pointed to an icosahedral cluster
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Figure 5.4: The similarity functions for the nG silver clusters compared to the structures
obtained the TB Gupta potential, the DBF and VC potentials.
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Figure 5.5: The similarity functions for the comparison between the nG and TBG silver
clusters. The structures of the TBG clusters are appropriately scaled.

growth, while the gold clusters showed irregular behavior, forming for each cluster size
different, more compact structures. This was also observed at the similarity functions
for the different metals - there are significant structural differences between silver and all
other studied systems. Although the main 'magic’ numbers and structures for N = 19,
38, 55, 75, and 147 remain the same for the silver clusters, these seem to be the only few
structurally very similar structures to the corresponding copper and nickel ones, except
for the smallest clusters with N up to 15.

5.3.2 Minimal coordination numbers

Finally, another structural descriptor that can give general information on the cluster
configuration is the so-called minimal coordination number that is described elsewhere|93,
132]. Its lower values, 3 and 4, indicate growth by deposition of atoms on the cluster
surface, while the large values point to insertion of atoms inside of the cluster, e.g. this
leads to the formation of more compact structures. At Fig. 5.7 are presented the calculated
coordination numbers for the silver clusters obtained with the two Gupta potentials.
They are very similar, with few exceptions, for example at cluster sizes N — 56 and
148 that correspond to the second and third Mackay icosahedra plus an additional atom
on the surface, with low coordination numbers that are clearly visible within the nG
potential, but are absent in the corresponding TB Gupta results. Similar absence was
found also at the corresponding copper clusters, although the global minima structures
had the same configurations. However, most of the copper clusters had predominantly
large coordination numbers, with very few clusters with coordination number equal to
4. Here, the low-coordinated structures are significantly more, especially at the smaller
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cluster sizes - N = 25, 29, 34, 36, 47, 50, and 62 - 65 for the nG potential in comparison
to the TBG one. On the other hand, the clusters with N = 39 - 41 atoms obtained with
the latter potential have low coordination numbers that are connected with the formation
of Agsg fee-based structures capped with the extra atoms on the surface.

Concluding this section, the structural descriptors used in this work reveal a decahedral
cluster growth, which gives us a further insight into the silver cluster behavior. An atom-
by-atom growth is observed along with preference of compact structures. However, the
silver clusters are structurally not similar to any of the previously studied copper, nickel,
or gold systems.

5.4 Comparison to the experiment

In a series of combined experimental and theoretical studies[108, 135] the structures of
mass selected silver cluster cations were probed by trapped ion electron diffraction per-
formed at temperature of 100K. The experimentally obtained scattering intensity was
compared to results from theoretical calculations using proposed structures optimized
with the Turbomole program package. For all cluster sizes, the experimental data was
best described by structures containing the icosahedral motif, also regarding the Agsg
and Agrg clusters that have always been considered to be truncated octahedra by the
semiempirical approaches.

In this section we compare our results obtained with the nG potential for the cluster
sizes of N = 19, 38, 55, 59, 75, and 79 atoms to the experimental results for the electron
diffraction, which were kindly provided by the authors of Ref.[135].

The experimental reduced molecular scattering intensity sM“"(s) as shown in Ref.[135]
is determined from the following formula:

M (s) = 5 Kﬂ) _ 1} | (5.1)

I at I back

where [,; is the atomic scattering contribution and I, an unspecific background, ap-
proximated by a flat function of the form:

[back(s) = Aexp(—as) + Z(CLZSZ) (52)

For a homoatomic cluster, the theoretical reduced molecular scattering function sM* o
can be approximated as:

_L2 2 ; o
sMtheor(g') = %emp( 28 ) ZZ (—Smg;ﬁ )) (5.3)
A E
where N is the number of atoms in the cluster, s is the momentum transfer, and r;;
the distance between atoms ¢ and j. The mean square vibrational amplitude L and
the amplitude scaling factor S, are used together with a scaling factor for the s scale,
ks, where s’ = kgs. Usually Eq. 5.3 is fitted to the experimental molecular scattering
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intensity simultaneously with an unspecific background intensity approximated usually
by a flat function of a momentum transfer.|135] Hence, one does not expect an important
influence of the background intensity function on the fitting procedure. The parameters
L, S., and k, are calculated by minimizing the difference between sM*?(s) and sM*°" by
a x? fit. The calculated scattering intensities of our three best-fitting structures for each
cluster size are shown in Fig. 5.8 - Fig. 5.13 together with the experimental data.

Most of the semiempirical potentials including the many-body Gupta potential predict
the global minimum structure of the neutral Ag;9 cluster to be a double icosahedron
with D5, symmetry. However, the density functional study in Ref.[135| showed that this
structure is 0.38 eV higher in energy than a distorted icosahedron capped with six atoms.
On the other hand, in our study the difference between the first and the second lowest-
lying isomers is 0.36 eV. It seems that the DFT calculations could significantly change the
ordering of the isomers, as none of the structures proposed for this cluster size in Ref. [135]
except for the double icosahedron corresponds to any of our low-energy isomers. However,
our calculations are constrained to neutral systems, and the cations could exhibit different
low-energy structures, very probably compact and with lower symmetry, as suggested also
by these authors. Here, the structure that shows the best fit to the experimental data is
the double icosahedron, followed by the low-symmetrical C,, structure. Our third isomer
with partly octahedral construction could be excluded due to its poor description of the
experimental results at about 5.2 and 8.5 A~

According to previous semiempirical studies, the clusters with 38 atoms possess closed
electronic and geometric shell and exhibit particular stability. Many studies have assigned
a truncated octahedral symmetry to the Agsg cluster, however, there have been icosahe-
dral and disordered isomers close in energy with the ground state. Our results show an
energy gap of 0.17 eV between the fcc global minimum and the next isomer, which has
icosahedral structure with Cj, symmetry. This structure was also considered in Ref.[135]
as a successful candidate, where it was obtained as a cation and had a lower C; symmetry.
This configuration together with two isomers of higher energy is presented at Fig. 5.9. The
second and the third structures were obtained by simultaneous removal of 17 atoms from
the icosahedral Agss cluster and optimization of the resulting clusters. All possible struc-
tures correspond to the binomial coefficients for 55 and 38, which turned out to be about
1 500 000 possible configurations. As it was impossible to optimize this number of struc-
tures we restricted the search to 5000 isomers. Surprisingly, the icosahedral cluster with
lowest energy corresponded to the already mentioned Cj, structure that was the second
isomer for this cluster size. The next two isomers have slightly higher energies comparing
to the Agss cuboctahedral cluster and describe very well the experimental scattering in-
tensities, in agreement with a previous study|[108|, where it was proposed that the ground
state of the Agsg cluster is most probably not a single structure, but rather a mixture of
low-energy icosahedral isomers. In this case the diffraction experiments encouraged us to
search for new ways to calculate the isomers.

For the next cluster sizes, Agss and Agsg, our three lowest-lying isomers give a very
good description of the experimental data. Numerous experimental and theoretical studies
have denoted the icosahedron as the structure most likely lying in the global minimum
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for the first cluster size. Moreover, this cluster is also magic-numbered as seen before,
and exhibits particular stability. Its second isomer is separated with more than 0.5 eV
from the ground state and differs from the icosahedron only by the rearrangement of one
atom. Here, cuboctahedral and decahedral configurations can be eliminated as potential
candidates, as according to the nG potential the decahedral Agss cluster lies 0.93 eV
higher in energy than the icosahedron and describes very poorly the experiment, and the
cuboctahedron was found to be unstable with this potential.

The global minimum and the next two isomers of the Agsg cluster correspond to the
Agss icosahedron capped with four additional atoms. As the three structures are very
similar, they give also almost the same scattering intensities as seen in Fig. 5.11. Here the
small structural differences between the clusters can not be explicitly seen in the resulting
scattering intensities, as many structures having the same growth patterns, but with
different configurations, give very similar results. Therefore, it is difficult unequivocally
to assign a particular structure to the experimental data. Instead, one can propose a
particular structural motif, as in the case of the Agsg cluster, where it has been shown
that the octahedral isomer that is always preferred by the semiempirical studies in fact
is most probably not seen in the experiment as an energetically favored structure. Here,
unambiguous assignment of the structures can not be made, however, it is clearly seen
that for all considered cluster sizes icosahedral clusters lie in the global minima, while for
the Agsg cluster most probably several icosahedral isomers lie close or degenerate with
the global minimum.

The global minima structures for the Agrs and the Agrg clusters according to the
semiempirical potentials correspond to a Marks decahedron and a truncated octahedron,
respectively. The Marks decahedron describes relatively well the experimental data, show-
ing only one shoulder at 4.8 A~! and can not be unequivocally excluded as potential low-
energy structure. In our study the nG potential predicts this structure to be the global
minimum for this cluster size, followed by two decahedral isomers with energy separation
of 0.36 eV and 0.37 eV from the decahedron, respectively. The same is the situation
for the Agrg cluster where the octahedral minimum lies 0.9 eV below the next two iso-
mers that also have octahedral construction. It is clear that the icosahedral isomers will
have significantly higher energy than the global minima according to this potential. As
seen in Ref.[135], cuboctahedral isomers can be ruled out as possible candidates for both
cluster sizes. Therefore, after exhaustive search for icosahedral isomers we were able to
obtain configurations that indeed describe significantly well the experimental data, but
are energetically unfavored comparing to the global minima structures. Probably ab initio
calculations may change the energetical ordering, but what becomes obvious is that only
icosahedral structures are able of proper description of the experimental findings. Within
the Gupta potential the structural factors for larger clusters only can lead to preference
of more compact structures with fcc or decahedral symmetry. Even more important is
that the present calculations were performed for neutral clusters, while the experimental
diffraction is obtained using positively charged clusters. Recent experimental studies|60]
show that even for the smallest gold clusters the positive or negative charge can lead to
different global minima structures, therefore here it is also to expect significant changes in
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the energetical ordering of the isomers. Another aspect for speculation why the diffraction
experiments do not see fec structures could be connected with the entropy effects. In prin-
ciple, it is possible that the temperature effects could change the ordering of isomers|177],
and, respectively, could make the icosahedral motifs more favorable. All these experiments
were taken at a finite temperature of 100 K

The most important results are that for all cluster sizes icosahedral isomers are close
or lying in the ground state, with possible mixing with decahedral structures. The bulk
octahedral construction is not preferred, which reminds us that these small particles are
not pieces of the large crystal, but unique systems.
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Figure 5.8: Experimental(black circles) and theoretical(red line) reduced molecular scat-
tering intensities for Agyg. Our three lowest-lying isomers corresponding to the panels
marked with (a), (b), and (c), are presented from left to the right with side and top view.
For each structure the point group and the energy separation from the ground state (in

eV) are shown.
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Figure 5.9: Comparison between the experimental(black circles) and theoretical(red
line) reduced molecular scattering intensities for Agss. Here only the three best-fitting
isomers are shown.
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Chapter 6

Nip, Cupy and Auy clusters:
2 < N <60

6.1 Introduction

Earlier empirical studies on nickel and copper clusters found that both metals have similar
global-minima structures and growth properties, while the properties of the gold clusters
may vary from method to method. For example, for Cuy and Niy clusters|78, 86, 92, 93,
136, 137| highly stable structures are the first and second Mackay icosahedra at N = 13
and N = 55. A fcc truncated octahedron was found to be the global minimum for the
corresponding Nisg and Cusg clusters. However, Kabir et al.[136] found a structure with
icosahedral geometry to be most likely the global minimum of the Cugsg cluster, which
in our study|132| is the second lowest isomer after the octahedron. The gold clusters
show a complicated growth, possessing disordered lowest-lying or degenerated with the
ground state isomers|81, 82, 83, 84, 85]. Results obtained with first-principles calculations
predicted a disordered structure[49, 50| as the global minimum of the first magic-numbered
gold cluster, Auy3, while methods based on empirical many-body potentials denoted the
icosahedron as the most stable configuration|73, 78, 79, 86, 89|. For the Ausg cluster
the empirical potentials|73, 78, 79, 86, 89| as well as the first-principles calculations of
Hékkinen et al.|[46] denoted the fec truncated octahedron to be the most stable structure,
while other studies pointed to the formation of either a disordered minimum or amorphous
low-lying isomers|82, 83, 84, 85]. Recent experiments and calculations|39, 81, 82, 84, 85,
86| suggest that Aus; possesses a low-symmetrical structure, in contrast to the results
obtained with the Murrell-Mottram and Sutton-Chen potentials|78, 79|. Accordingly, in
order to obtain further insight into the structures of the not-too-small metal clusters, it is
highly important both to study the influence of the potential that has been used and to
perform unbiased structure optimizations. With this objective we have studied clusters of
three metals, Ni, Cu, and Au, using two different versions of the embedded-atom method,
and the many-body Gupta potential in order to study system- and potential-specific as
well as -independent properties. The results for the gold clusters optimized with the
Voter-Chen version of the EAM are taken from Chapter 3.

79
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Table 6.1: Parameters|13| defining the Gupta potential for Ni, Cu, and Au clusters.

Parameter Ni Cu Au

AleV 0.0376  0.0855  0.2061
P 16.999  10.960  10.229
q 1.189 2.278 4.036
ro/A 2.491 2.556 2.884
C/eV 1.070 1.224 1.790

6.2 Binding energies

We began with calculation of the bond length of the dimers, Niy, Cuy, and Au,. Our
results together with EAM, ab initio and experimental values from Ref.[140| are shown
in Table 6.2.

Table 6.2: The calculated bond length (in A) of the dimers in comparison with ab initio
and experimental values. nG denotes the n-body Gupta potential, while DBF and VC
denote the EAM versions of Daw, Baskes, and Foiles and of Voter and Chen, respectively.

System nG/DBF/VC ab initio exp.

Ni 2.38/2.13/2.22 2.17 2.20
Cu 2.23/2.15/2.23 2.17 2.22
Au 2.31/1.81/2.40 2.55 2.47

The bond length of Cuy calculated with the Gupta potential is equal to the VC value
and shows very good agreement with the experiment, while only the latter potential gives
reasonable value for gold dimer. However, the Ni; bond length obtained with the nG
method shows the largest deviation from the experimental value, which suggests that
the results for the small nickel clusters could differ from those obtained with the EAM.
From the two version of EAM, the results from the DBF method are very similar to
those obtained with the ab initio methods, except for Au, where one can see significant
differences, which suggests that the DBF version could provide proper geometries of Ni
and Cu clusters even for the smallest cluster sizes, but may fail for small Au clusters|90].
On the other hand, the VC version gives an overall good agreement, which is due to its
parameterization also to dimer properties.

Our further calculations confirm this statement. On the next figure(Fig. 6.1) is pre-
sented the binding energy per atom for the three metals with the three different potentials.
One can see that agreement between the calculated binding energies is very good for cop-
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Figure 6.1: Binding energy per atom as a function of the cluster size for the three
metals with the three different potentials. The dotted lines at the bottom show the
experimental dimer values, which for copper and gold are taken from Ref.[138|, and for
Ni from Ref.[139].
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per, for gold the DBF and especially the nG-potential overestimate the binding energy
of the smaller gold clusters, while for the Niy clusters each potential predicts different
values. Moreover, while for the other two metals the curves approach each other at larger
N, for nickel at N = 60 the three potentials give binding energies that still differ signifi-
cantly from each other. The method that gives the best results is again the Voter-Chen
potential.

6.3 Structural and energetical similarities

The differences in the binding energies per atom for the three metals with the three
potentials are presented at Fig. 6.2 to Fig. 6.4 together with the corresponding similarity
functions. The best agreement is found for the copper clusters, where the differences
between the binding energies are insignificant except for the smallest clusters. On the
other hand, the binding energies also for the larger nickel and gold clusters differ for each
potential. Here, the VC potential gives the most reasonable values (see Fig. 6.1) due to
its parameterization to the dimer properties. The structures of the DBF and VC copper
clusters are very similar, and significant disagreements are observed only at N = 16, 17,
27, 35, 36, and 41, while for the nickel clusters there are more fluctuations, although the
agreement is nevertheless reasonable. In contrast to these results, for gold the differences
begin already at N = 12, moreover, the similarity function approaches 1 only for few
values of N. The many-body Gupta potential appears to predict structures that are more
similar to the DBF potential rather than to the VC version.

More details about the similarities and differences between the three metals and po-
tentials can be obtained through the stability function shown in Fig. 6.5. Here, we find
that the Niy and Cup clusters have very similar stability functions, whereas the prop-
erties of the corresponding gold clusters are different. The particularly stable copper
clusters within the three potentials have N = 13, 19, 23, 28, 43, 46, 49, and 55 atoms,
while only the nG and VC methods denote Cusg as a magic-sized cluster. For nickel, the
same differences at the middle part of the figure are observed, where, according to the
nG potential, the Niys, Nigg, and Nigg clusters are particularly stable. According to all
methods, the global-minimum configuration of Nisg is an octahedron, however, only the
nG potential points to its high stability, which could be due to the differences between
this method and the EAM family of potentials. Except for the particular stability of Nigg
within the nG potential, representing the only difference between the stability functions
of the two metals, the copper and nickel clusters possess the same magic-sized clusters
with the same symmetries. The situation is completely different for the case of the gold
clusters, where each potential predicts different magic sizes, except for the first Mackay
icosahedron Au;3, where the three potentials are in agreement. The particularly stable
clusters according to the DBF method have N = 13, 15, 17, 22, 24, 30, 40, and 44 atoms.
The Augs and Auyy clusters obtained with this method have higher symmetries (Dgj, and
Cs,, respectively) than the corresponding global minima obtained with the other two
methods. According to the DBF potential, many stable clusters have similar or lower
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symmetries than the corresponding VC and nG clusters. The Augg and Auss clusters are
not particularly stable, while the Aus, icosahedron without a central atom is a magic-sized
cluster according to the VC method. In agreement with previous studies on gold clusters
with the many-body Gupta potential [81, 82, 84, 85, 86|, the lowest-lying isomer of Aus;
found by us is low-symmetrical (see Table 6.5).

For better understanding of the peculiarities of the small and larger clusters, one
has to analyze their symmetries, which for the lowest three isomers with N up to 13
atoms are presented in Table 6.3, and the point groups of the lowest-lying structures
with 14 < N < 60 atoms obtained with the three potentials are presented in Table 6.4
and Table 6.5. The Nigs, Augs, and Auy 3 isomers do not exist within the nG and DBF
potentials.

All small clusters found with the three potentials have the same global minima, except
for Auyy, where the nG potential predicts a structure with a Dyy symmetry. In agreement
with previous semiempirical and molecular dynamics studies, the global minima for the
clusters with 13 atoms correspond to the second Mackay icosahedron. On the other
hand, Wang et al.|50| obtained a disordered structure for the Au;z cluster on the basis
of first-principles calculations. By using the Generalized Gradient Approximation (GGA)
Olviedo and Palmer[49] confirmed this result and found a low symmetrical ground state
also for Cu;3. Observing the second and third isomers, one can determine that the EAM
potentials give similar results, while the nG potential prefers configurations with higher
symmetry. For the nickel clusters, the nG potential gives 7 differences in the symmetries
compared to the other two potentials, 8 for copper, but only 3 for gold, where in two of
the three cases there is not agreement also between the two EAM potentials. It seems that
the Gupta potential works well even for the smallest gold clusters, although it slightly
overestimates the binding energy, and the differences observed for Cu and Ni could be
dependent on the parameterization of the potential.

The results presented in Table 6.4 and Table 6.5 show that the difference between the
EAM and the nG potentials for copper diminishes at the larger clusters. There are only 7
differences between the nG potential and the EAM methods for the copper clusters, 14 for
the nickel, but 30 for the gold ones. The differences between the DBF and the VC version
of the EAM are 6 cluster sizes for copper, 9 for nickel, and 24 for gold, which in turn
means that for a given gold cluster it is hard to find two equal symmetries. For copper
and nickel, the EAM and the Gupta potentials predict altogether very similar results,
while for the gold clusters all methods lead to different structures, which one more time
confirms their complicated growth.

Our results for the copper clusters with the n-Gupta potential are completely con-
sistent with those by Darby et al.[86], while for gold we found lower-lying minima with
different symmetries for the clusters with N = 47, 49, 50, 54, 55, and 56 atoms. The
energy differences between their and our lowest-lying structures are as follows: 0.047
eV for Auyy, 0.066 eV for Auyg, 0.053 eV for Ausg, 0.025 eV, 0.051 eV, and 0.066 eV
for N = 54, 55, and 56, respectively. Except for Auss, all other structures have high
symmetries. Our global minimum structure of Aus; according to the nG potential is a
decahedron capped with one additional atom on one side, and it has a low C; symme-
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try, similar to the results obtained with the EAM and previous studies on gold clusters
|81, 82, 84, 85, 86]. Moreover, the next two isomers according to this potential also have
C; symmetry. The icosahedron and cuboctahedron lie above the ground state structure,
with energetical differences of 0.304 eV and 0.975 eV, respectively. The global minimum
structure obtained with the VC method (Cs, symmetry) lies with 0.374 eV below the
complete second Mackay icosahedron optimized with the same potential, while the latter
is practically unstable within the DBF version.

Table 6.3: Point groups of the lowest three isomers of nickel, copper, and gold clusters
for 6 < N < 13. nG denotes the n-body Gupta potential, DBF and VC denote the EAM

versions of Daw, Baskes, and Foiles and of Voter and Chen, respectively.

Ni Cu Au

N nG/DBF/VC  nG/DBF/VC  nG/DBF/VC
61 Oy/On/On On/On/On Ou/On/On
6.2 - /CQV/CQV CQV/CQV/CQV CQV/ - /C2v
7.1 Dsy/Dsh/Dsn Dsy/Dsy/Dsn Dsy/Dsy/Dsn
7.2 Csv/Csy/Csy Csv/Csy/Cay Csv/C2/Csy
7.3 Csv/C2/Cy Csy/Cy/Cay Ca/— /Cy
8.1 Doq/Daq/Daq Doq/Daa/Daq Doq/Daa/Daq
8.2 C./C./C. C./C./C. C./C./C,
8.3 Cay/Dsq/Daq D34q/D3q/Dsq D34q/D3q/Dsq
9.1 C2V/C2V/CQV CQV/CQV/C2V CQV/CQV/C2V
9.2 D3y /Dgy/Dan D3y /Dgy/Dan D3y /Dgy/Dan
9.3 D3h/02v/02v CI/CZV/CS C2V/C2v/cs
10.1 CSV/CSV/C?N C3v/CSV/C3v C3v/CSV/C3v
10.2 Dyq/Dan/Dan Cz/Dan/Dag Doy /Doy /Dug
10.3 CQV/CQ/CQ CQV/CQ/CQ CQ/CQ/Dgh
11.1 C2V/C2V/CQV CQV/C2V/CQV CQV/C2V/CQV
1.2 Cae/Ca/Ch Ce/Ca/C Ca/Cy/Cs
11.3 C2v/02v/02v CZ/CQV/CZV CZ/CQ/C2
12.1 C5V/C5V/C5v C5V/C5V/C5v D2d/C5v/C5v
12.2 D3h/Cl/Cl D3h/Cl/Cl CQ/DQ/CQ
12.3 Cs/Daa/Dag C1/Dsn/Dsp Cs/Daa/Dsn
13.1 L/I /T, L /I /T, I /Tn/I,
132 C,/C./C. C./Dan/Cs C./C./Cy
13.3 C./C./C. C./On/C, Cae/C1/C,




6.3. STRUCTURAL AND ENERGETICAL SIMILARITIES

89

Table 6.4: Point groups of the optimized nickel, copper, and gold clusters for 14 < N <

40.

Ni Cu Au

N  nG/DBF/VC  nG/DBF/VC  nG/DBF/VC
14 C3V/C3V/C3v C3V/C3V/C3v CGV/C2V/CSV
15 C2v/02v/02v CQV/D6d/D6d CZV/DGd/DGd
16 CS/CS/CS CS/D3h/Cs CS/D31’1/C2V
17 Cgv/CQ/Cg CQ/TC]/CQ Cgv/Td/Td
18 Csv/Cs/Cq Cs/Cs/Cs Cs/Cay/Cyy
19 Dsn/Dsn/Dsn Dsn/Dsn/Dsn Cs/Cay/Dsn
20 C2v/02v/02v C2v/02v/02v CS/CS/D3d
21 Cay/C1/Cy4 C1/Cqs/Cyq Ceyv/Cs/Cs
22 CS/CS/CS CS/D6h/D6h Cs/Dﬁh/Cl
23 D31/Dsn/Dan D31,/Dsn/Dan Dy/Cy/Cay
24 Cs/Cay/Cay Cay/D3/D3 C,/Csy/Cy
25 Cs/Cay/Cs C3/C3/C5 C1/Dy/Cy
26 Tq/Tq/Tq Tq/Tq/Tq Cs/D3n/Cy
27 CS/CQV/C2V CQV/C2V/CS CS/CS/CS
28 T/T/T T/T/T Cy/Cs/Cs
29 Dgh/03/C3 Cg/Cg/Cg Cg/Cl/Cz
30 C2V/C2V/Cs CS/CS/CS C3V/C3V/C3V
31 C,/Cy/Cy Cy3/Cs/Cy Cy/Cs3/Cy
32 Cyv/D3/Ds D3/D3/Ds C3/Cs3/Daq
33 C,/Cs/Cs Cy/Cs/Cs C,/Cy/Cs
34 T/C./C, C,/C,/C, Cy/Co/ Ty
35 D3/Coy /D3 D3/Cay /D3 Cs/Cay/Cay
36 C2V/CS/CS CS/CS/CI CQV/CZV/CQV
37 Cy/Ca/Cy Cy/Cs/Cy Cay/C1/Cay
38 On/On /Oy, On/On /O On/Cs/On,
39 Csv/Csv/Cs Csv/C5/Cs Cuv/D3/Dg
40 C,/Cs/Cs C,/Cs/Cs D,/D,/Dj
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Table 6.5: Point groups of the optimized nickel, copper, and gold clusters for 41 < N <
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60.
Ni Cu Au
N nG/DBF/VC nG /DBF/VC nG/DBF/VC
41 Cs/Cs/Cy Cs/C1/Cs Cs/D2/Cy
42 C,/Cs/Dy Cs/D2/Dy C,s/Cy/Dy
43 CS/CS/CS CS/CS/CS CQV/Cl/DQ
44 C1/Cq/Cs C1/Cs/Cs Cy/Cy/Cs
45 C,/Cq/Cyq Cs/Cs/Cs C,/Cy/Cq
46 Cav/Cay/Coy Cay/Cay/Cay Cs/C1/Cs
47 C,/C1/Cy C,/C1/Cy Ca,/C1/Cy
48 CS/CS/CS CS/CS/CS Cl/Cl/Cl
49 Csy/Csy/Csy Csv/Csy/Casy Dsn/Cq/Cy
50 Cs/Cq/Cy Cs/Cs/Cy D3, /C1/Cy
51 Cav/Cay/Coy Cay/Cay/Cay Cs/Cy/Cy
52 Csv/Csy/Cay Csv/Csy/Cay Cav/Cay/Dsg
53 C2v/02v/02v CQV/CZV/CQV C3v/CSV/C5v
54 Csv/Csv/Csy Csv/Csv/Cosy Cay/C1/1n
55 Ih/Ih/Ih Ih/Ih/Ih Cl/cl/C3v
56 Csy/Cs,/Cq Cs/Cs/Cy Doy, /Ca/Cy
o7 CQV/CS/CS CS/Cl/Cs CQV/Cl/Cl
58 CSV/CSV/CSV C3v/CSV/C3v Cl/Cl/Cl
59 C2v/02v/03v Cl/cl/cl CQV/Cl/Cs
60 CS/CS/CS CS/CS/CS C2V/CS/CS
6.4 Growth

The distribution of radial distances for all metals with all potentials is shown at Fig. 6.6.
As discussed already at gold and silver clusters, when only few values are found for a given
N, the cluster has a high symmetry and contains only few atomic shells. It is interesting
to observe how this property is not concentrated to the single values of N but is built
up over a larger range of N. This is found for all systems and potentials around N = 13
and N = 55 where the first and second Mackay icosahedra are built, except for the Auss
cluster obtained with the VC potential that has an irregular icosahedral structure, and
the icosahedral shell is built only up to the incomplete Ausy icosahedron. At Fig. 6.6
we also see that the three potentials lead to very similar results for nickel and copper,
which is not the case for gold clusters especially with the DBF and nG potentials, once
again confirming that gold is a material for which small, critical parts of the potential
may lead to significantly different results. Moreover, we observe that the results for nickel
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Figure 6.6: The radial distribution (in A) for the energetically lowest isomers. Each
small line represents at least one atom with that radial distance.

and copper resemble each other, whereas those for gold are different, with the results
from the VC potential being closer to those for the nickel and copper clusters than the
ones obtained with the DBF potential that seems to indicate irregular structures of low
symmetry.
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Chapter 7

Molecular Dynamics code

7.1 Motivation

Clusters have become an important object in the contemporary nanoscience in conjunc-
tion with their potential applications in the computer industry and the catalysis. In the
experiments, the clusters are not only investigated in the gas phase, but also deposited on
diverse substrates , where the formation of fine monolayers, or cluster islands, respectively,
is pursued. Various techniques of cluster deposition have been introduced, from FElectro-
chemical Scanning Tunneling Microscopy to Ionized Cluster Beam Deposition. There is a
growing need of computer simulations which can explain the mechanism of cluster depo-
sition on the surface, predict if the structure of the nanoparticle will be kept unchanged
when deposited, and on which kind of substrate this is most likely to happen. Moreover,
the theoretical simulations can suggest at what experimental conditions the best results
can be obtained.

The first part of this study was concentrated on the global minima optimization of
isolated metal clusters. Further, the optimized structures were to be deposited on different
metal substrates in order to study the influence of the substrate orientation, impact angle,
deposition energy, and different cluster structures, stable and unstable, for each cluster
size. The impact cluster energies used in this work are in the range of the experimental Low
Energy Cluster Beam Deposition, which allows us to compare our results to experimental
data when such is available.

To simulate theoretically the experimental process of deposition we need Molecular
Dynamics (MD) simulations, as they explicitly describe the molecular system as a function
of time, and can directly calculate time-dependent phenomena. In the next two Chapters
the cluster interaction is followed from the Low Energy Cluster Beam at the beginning
of the experiment, where collision processes are studied, up to the deposition and cool-
ing onto the surface, where cluster islands are produced. For the proper description of
these events the development of a Molecular Dynamics code becomes essential. Another
option to investigate the cluster growth on surface was to extend our Aufbau/Abbau and
Random algorithms in order to generate and optimize clusters onto substrates. However,
besides that this technique is limited only to studying the cluster growth, the maximal
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number of atoms that can be treated will be significantly smaller due to the increased
computational demand, especially when the cluster atoms are randomly generated, and
many optimization runs are needed, respectively.

As there are typically few thousands of atoms needed in order to model the surface,
we were obliged to use a semiempirical potential for the evaluation of energy and forces.
Among all potentials used in the present study, the approach that gave the results with
best agreement to previous theoretical and experimental data, was the EAM potential
as modified by Voter and Chen. We chose to implement the classical MD equations due
to the large number of atoms that had to be treated. There exist also ab initio MD
procedures, such as the Born-Oppenheimer{141] and Car-Parrinello[142] algorithms. The
Born-Oppenheimer MD is limited to small metal clusters containing 10-15 atoms, studied
in vacuum. As this formalism explicitly solves the Schrodinger equation, it has the same
limitations as the modern density functionals. The Car-Parrinello program to our best
knowledge is used mainly for the simulation of organic molecules. The proper study of
gold clusters demands the use of relativistic effective core potentials which would make
the ab initio MD simulation of larger systems containing these atoms computationally
infeasible.

In this Chapter, we will continue by giving a short overview of the basic principles
of the classical Molecular Dynamics. The equations of motion and the Velocity Verlet
algorithm used for their solution here are introduced in Sections 7.2 and 7.3, respectively.
The developed MD program is described in Section 7.4, along with the introduction of
different routines in the code. Finally, in Section 7.5 the results from some test calculations
are discussed.

Classical Molecular Dynamics Based on molecular mechanics, it addresses numerical
solutions of Newton’s equations of motion i.e. Hamiltonian mechanics on an atomistic
or similar model of a molecular system to obtain information about its equilibrium and
dynamic properties. The main justification of the MD method is that statistical ensemble
averages are equal to time averages of the system. In molecular dynamics, the forces
between molecules are calculated explicitly and the motion of the molecules is computed
with a suitable numerical integration method. The starting conditions are the positions
of the atoms (taken for example, from a known crystal structure) and their velocities
(generated from random numbers and scaled to the desired temperature). Following
Newton’s prescription, from the initial positions, velocities and forces, it is possible to
calculate the positions and velocities of the atoms at a small time interval (a time step)
later. From the new positions the forces are recalculated and another step in time made.
The cycle has to be repeated many times in the course of a full simulation, usually for
many thousands of time steps. It is worth noting that a single time step is usually of the
order of 1 femtosecond.

Calculation of the atomic forces in a molecular dynamics simulation is usually the
most expensive operation. It is normally assumed that the forces between atoms are
pair forces; that is, they act exclusively between pairs of atoms. Higher order forces,
involving three - or four body terms are also sometimes considered - especially in complex
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Figure 7.1: A generalized scheme of a MD simulation.

molecular structures. If there are N atoms in the system, there will be at most N(N—1)/2
unique atom pairs, each with an associated force to compute. The time it takes to
perform a molecular dynamics simulation is thus (approximately) proportional to NZ.
Usually however, a cut-off is applied at a certain interatomic separation, beyond which
it is assumed the force is zero. This allows more efficiency in computing the forces, since
all atom pairs need no longer be considered. Design of a molecular dynamics simulation
should account for the available computational power. Simulation size (N = number of
particles), time step and total time duration must be selected so that the calculation can
finish within a reasonable time period. However, the simulations should be long enough
to be relevant to the time scales of the natural processes being studied. Most scientific
publications about the dynamics of proteins and DNA use data from simulations spanning
from nanoseconds (107 s) to microseconds (107¢ s). To obtain these simulations, several
CPU-days to CPU-years are needed. Parallel algorithms allow the load to be distributed
among CPUs.
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7.2 Equations of motion

The most fundamental form to present the equations of motion is that by Lagrange:

0L/0i) — (0£/00) =0 (7.1

where the Lagrangian function £(q,q) is defined in terms of kinetic and potential energies:

L=K-V (7.2)

and is considered to be a function of the generalized coordinates ¢; and their time deriva-
tives gx. The kinetic and potential energies have the following forms:

=20 Pla/2mi (7.3)

where m; is the molecular mass, and the index « runs over the different (x,y,z) components
of the momentum of molecule i. The potential energy V may be divided into terms
depending on the coordinates of individual atoms, pairs, triplets, etc.:

V= Zvl T; +ZZU2 Ty, Ty +ZZ Z U3 TZ,T],Tk + .. (74)

Tg>1 i > k>5>4

The >, >, notation indicates a summation over all distinct pairs 7 and j without count-
ing any pair twice. The first term, v;(r;), represents the effect of an external field on the
system. The remaining terms represent particle interactions. The second term, vy, the
pair potential, is the most important. The pair potential depends only on the magni-
tude of the pair separation r;; = |r; - r;|, so it may be written vy(r;;). Despite the size
of three-body terms in the potential, they are only rarely included in computer simula-
tions, because the calculation of any quantity involving a sum over triplets of molecules is
very time-consuming. Fortunately, the pairwise approximation gives a remarkably good
description of the properties because the average three-body effects can be partially in-
cluded by defining an effective pair potential in the form:

V& Zvl (r; —I—ZZ S (ry;) (7.5)

T J>1

If we consider a system of atoms, with Cartesian coordinates r; and the usual definitions
of K and V, then eqn (7.1) becomes

m’LT’L f’L (7.6)

where m; is the mass of atom 7 and
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is the force on that atom. These equations apply also to the center of mass motion of a
molecule. The generalized momentum p; conjugate to g is defined as

pr = OL/04qy. (7.8)

The momenta feature in the Hamiltonian form of the equations of motion

dx = OH /Opx, (7.9)

pk = —é?H/@qk (710)
The Hamiltonian is strictly defined by the equation

H(p.a) = dwpr — L(q,4) (7.11)
k

where it is assumed that we can write ¢, on the right as some function of the momenta
p. For our immediate purposes this reduces to

H(q,p) = K(p) + V(q) (7.12)

and H is automatically equal to the energy. For Cartesian coordinates, Hamilton’s equa-
tions become

pi=-V., V=1 (7.14)

Computing center of mass trajectories involves solving either a system of 3N second-
order differential equations, eqn (7.6), or an equivalent set of 6N first-order differential
equations, eqns (7.13) and (7.14).

7.3 The Velocity Verlet algorithm

Perhaps the most widely used method of integrating the equations of motion is that
initially adopted by Verlet in 1967. This method is a direct solution of the second-order
Newtonian equations (7.6). The method is based on positions r(t), accelerations a(t), and
the positions r(t-0t) from the previous step. The equation for advancing the positions
reads as follows:

r(t+6t) = 2r(t) — r(t — 5t) + 5t%a(t) (7.15)

Here, the velocities do not appear. They have been eliminated by addition of the equations
obtained by Taylor expansion about r(t):
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r(t+6t) = r(t) + dto(t) + (1/2)6t%a(t) + ... (7.16)

r(t — 6t) = r(t) — otv(t) + (1/2)0t%a(t) — ... (7.17)

The velocities are not needed to compute the trajectories, but they are useful for esti-
mating the kinetic energy (and hence the total energy). They may be obtained from the
formula:

o(t) = r(t + 5t)23tr(t —4t)

A method which stores positions, velocities and accelerations all at the same time t, is
the Velocity Verlet algorithm used in the present work. This algorithm takes the form

(7.18)

Pt + 6t) = 1(1) + Sto(t) + %5t2a(t) (7.19)

(t + 8t) = v(t) + %575[61(75) +alt + 6t)] (7.20)

Again, the Verlet algorithm may be recovered by eliminating the velocities. The Velocity
Verlet algorithm involves two stages, with a force evaluation in between. Firstly, the new
positions at time ¢ + 0t are calculated using eqn(7.19), and the velocities at mid-step are
computed using

1 1
v(t + 5575) =o(t) + 5575&(75) (7.21)

The forces and accelerations at time ¢ 4+ 0t are then computed, and the velocity move
completed.

v(t +dt) = v(t + %(525) + %&fa(t + 6t) (7.22)

At this point, the kinetic energy at time t 4 0t is available. The potential energy at this
time will have been evaluated in the force loop. The method uses 9N words of storage, and
its numerical stability, convenience, and simplicity make it perhaps the most attractive
proposed to date. Alternative method of numerical integration are the predictor-corrector
algorithms. According to this formalism, the positions, velocities, and accelerations of
the atoms are predicted using their current values, then the forces and the corresponding
accelerations are evaluated from the new positions, all old variables are corrected using
the new accelerations, and this is repeated about 4-5 times depending on the order of the
algorithm until the quantities converge to an accurate solution. However, the numerous
iterations make these algorithms slow and memory-consuming, while the Velocity Verlet
method is fast and allows the use of a long time step, which is not the case for the
predictor-corrector techniques.
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7.4 The developed MD program

Figure 7.2 shows a simplified flow chart of our newly developed Molecular Dynamics
algorithm. The following subsections are referring to the characterizations of the processes
in the diagram. The important routines will be described in extra sections afterwards.

Start By starting the program the input parameters are read, such as number of atoms
in the studied systems, simulation time and time step, and also the impact angle between
the structures. One option determines if the initial configurations will be optimized. As
in our studies, described in the next two Chapters, we have used structures previously
optimized with the EAM approach, this option is normally switched off.

Backup Maintenance of backup data in long-time simulations is an absolute must. For
example, typical MD simulation of clusters requires 30000-50000 time steps, which on a
Pentium IIT computer take between 80 and 100 computer hours depending on the size of
the systems. Therefore, in order to use exhaustively the computer time without unde-
sirable restart of the simulation from the beginning, our program generates backup files
that contain important information about the cluster coordinates, velocities, coordinates
of the center of masses, time step and number of snapshots. Storage of the accelerations
is not needed as they can be easily recomputed from the forces, which are recovered from
the coordinates. The movement of the center of masses is important for the evaluation
of the internal temperature of the cluster, which in this work is defined as relying on the
difference between the kinetic energy emerging from the cluster movement and that of its
center of masses. This difference in turn eliminates the contribution to the energy arising
from the translational and rotational degrees of freedom. As a result of that, we obtain
the kinetic energy and the corresponding temperature defined only by the vibrational
motion of the particles. As the MD simulations involve explicit movement of the systems,
the trajectories of the interacting particles are saved periodically in order to follow the
evolution of the systems in time. Normally, it is enough to take snapshots every 5-10
steps, and even in greater intervals for the larger systems. In the present program, a
mathematical function defines how often to save the trajectories:

if (mod(itime, nprint).eq.0) (7.23)

where itime is the current step number, and nprint is the total number of simulation
steps divided by a rough value of the desired snapshots. For example, if the total number
of steps equals 20000, and the desired number of snapshots is given to be 2000, the final
number of snapshots according to the mod function will be about 1650, which corresponds
to a trajectory backup every 12 steps. This is a suitable step also regarding the size of the
trajectory file, which for 2000 atoms and 1650 snapshots will be about 150MB large at the
end of the simulation. In this way, a "movie" from the particle movements can be created
by using common commercial programs like Molden. When the program is executed for
the first time, the values in the first restart file are all equal to zero. This means that no
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Figure 7.2: A scheme of the developed MD program.
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backup is created and it moves to the next step, where the input coordinates are read. If
there is a backup, after reading it, the program continues from where it had stopped.

Read input The input is read from a single file containing the coordinates of the two
interacting systems. The program can be extended so as to treat interactions between
more systems. However, for our purposes (cluster depositions on surfaces and cluster-
cluster collisions) it was enough to work with two systems. Immediately after reading
the coordinates, the program generates an initial graphics file (pdb) containing the input
data that can be easily visualized with common programs, which is very useful in order
to eliminate possible mistakes in the input coordinates.

Optimization If the initial structures are not relaxed, or just randomly generated in a
box, there is an option to optimize them using the Steepest descent algorithm that relaxes
the structure to the next energy minimum. However, we use as input data structures from
our previous calculations, which most likely lie in the global minima for these cluster sizes,
so this option is switched off by default.

Assign velocities Here, the clusters’ center of masses are calculated, and initial veloc-
ities are applied along the (x,y,z) directions. The movement is chosen to be along the
direction linking the two particles’ center of masses. There is also an option for the par-
ticles to impact with each other under a defined angle. When a typical cluster deposition
on a surface is studied, initial velocity is assigned only to the cluster, perpendicular to the
x-y plane defined by the surface atoms. The cluster can also hit the surface in a chosen
angle, so as to smear on it [143]. Here, the initial kinetic temperature of the system is
evaluated as follows:
mv? 3

—— = —_NkgT 7.24
= 2 Ny (7:24)

where N is the number of atoms, kp is the Boltzmann constant in eV/K, and T is the
absolute temperature. In this formula, all degrees of freedom are accounted for.

Move atoms The most important part of the simulation begins with the movement
of the atoms according to the Newton law. This is the computationally most expensive
part of the simulation, therefore it is worth mentioning that the forces are evaluated only
twice in a step. Finally, the distance between the particles’ centers of masses is evaluated.
Its values give important information on the degree of penetration of the cluster in the
substrate.

Annealing At the end of the simulation event, a certain number of steps is dedicated
to the simulated annealing of the system. Simulated annealing is an essential part of
the MD simulation, in which the temperature is gradually reduced, often after an initial
heating. This gives the system an opportunity to surmount energetic barriers, and find
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non-local minima. As our program uses an NVE ensemble, e.g. the total energy, the
number of atoms and the volume of the system remain constant, we have to cool down
the structures at the end of the simulation, while since the beginning of the event the
potential energy of the system decreases as a result of the interaction between the particles.
As the total energy is kept constant, this leads to an increase in the kinetic energies of the
cluster atoms, thus, in order to obtain reasonable final structures, we perform a simulated
annealing consisting of a gradual velocity scaling at each MD step. After experimenting
with different techniques we decided to scale the velocities by a factor equal to 0.98.
As the results shown in Chapter 9 will confirm, a thermal equilibrium in the system
is reached in about 20ps simulation time, and in most of our calculations the simulated
annealing begins after 40ps, when the values of the kinetic and potential energies fluctuate
insignificantly.

Write backup After a successful MD step is made, it is important to save the progress
for the coordinates, velocities, and temperatures. At the end of each step, the backup
files for the coordinates and velocities are accessed and overwritten. Unfortunately, we
can not keep record for all quantities because of space limitations. The kinetic, potential
energies, as well as the instantaneous and internal temperatures of the systems are saved
at each step. After the simulation event, the total energy is calculated, and its fluctuations
within the microcanonical ensemble divided by the total number of atoms resulted to be
of magnitude of 107, which is a significant improvement compared to other results in the
literature, where this fluctuation was mentioned to be of order of 107°.

Fine optimization Sometimes it is useful to optimize locally the annealed structure in
order to obtain more accurate total energy, for example when two large structures have
very similar energies and it is not possible to prove visually that they are identical, such
local optimization can be very helpful. It is performed again using the Steepest Descent
technique. It is important to mention that this local optimization will not significantly
change the cluster configuration, e.g. it will not find a lower-energy isomer, which is
not the case of the global optimization methods. In order to keep the results from the
simulation exactly as they are, normally we do not use this procedure, which can be
switched on whenever it is needed.

End At the end of the simulation the final geometries of the structures are plotted
in "xyz" and "pdb" format. A suitable check if the system has reached an equilibrium
are the last values of the forces, which can be compared to the initial ones, saved in a
separate file. After the simulated annealing they are normally of magnitude 1073 - 1074,
however, if the structures are consecutively optimized the forces can be of order 1076 -
10~® depending on what gradient value we choose as a convergence criterion.
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7.4.1 The Update routine

This routine moves the atoms using the Velocity Verlet algorithm. Here, a part of it is
presented:

call force(nl,ncomp,0)

do 100 i=1,ncomp

do 101 j=1,3

fold(j,i)=fcomp(j,i)
rcomp(j,i)=rcomp(j,i)-+vcomp(j,i)*deltat+
+0.5d0*(fold(j,i) /(amu*zmas))*deltat*deltat
101 continue

100 continue

call force(nl,ncomp,0)

avx—0.d0

avy=0.d0

avz=0.d0

do 200 i=1,ncomp
vecomp(1,i)=vcomp(1,i)+0.5d0*((fold(1,i)+
+fcomp(1,i))/(amu*zmas))*deltat
veomp(2,i)=vcomp(2,i)+0.5d0*((fold(2,i)+
+fcomp(2,i))/(amu*zmas))*deltat
veomp(3,i)=vcomp(3,i)+0.5d0*((fold(3,i)+
+fcomp(3,i))/(amu*zmas))*deltat
avx—=avx-+vcomp(1,i)
avy=avy-+vcomp(2,i)

avz=avz+vcomp(3,i)

200 continue

avx=avx/float(ncomp)
avy=avy /float(ncomp)
avz=avz/float(ncomp)

do 221 i=1,ncomp
vecomp(1,i)=vcomp(1,i)-avx
veomp(2,i)=vcomp(2,i)-avy
veomp(3,i)=vcomp(3,i)-avz
221 continue

The first step is to evaluate the forces (fold) before the atom movement. Simultaneously,
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the atom positions are updated using these forces, atomic masses and time step. Then
the force subroutine is called for a second time, and the new velocities are calculated. A
small routine which removes the angular momenta is inserted in the algorithm. Here, the
velocities and the positions of the atoms in the whole interacting system corresponding
to the value of ncomp are evaluated simultaneously.

7.4.2 Potential energy and forces

The subroutine for the potential energy consists of three parts which correspond to the
potential energy of the two isolated particles, and that of the whole system. In the Voter-
Chen EAM potential, a spherical cutoff radius for the potential is used, which for copper
corresponds to about 4.96 A. This makes the potential short ranged, in comparison to
other semiempirical potentials like Gupta, or Sutton-Chen. However, the advantage of
this cutoff is that the important interactions are included, and the most weak interactions
are omitted. This makes the evaluation of the potential energy significantly faster in
comparison to other potentials.

The EAM potential is in form of calculated values for the embedding energy, repulsive
potential, and density, plotted as function of the distance, e.g, they are not derived ana-
lytically. As the cluster interatomic distances most likely do not correspond to particular
points in the grid, but very probably lie between them, to ensure that the potential be-
tween these points remains continuous, the potential energy is evaluated by using a spline
on each of the quantities.

Similarly, the calculation of forces involves the evaluation of the gradient for each atom.
Here, besides the spline used for the components of the potential energy, additional spline
ensuring that the first derivatives of the energy are continuous, is introduced. Again, the
forces acting in the two particles are separately computed, as well as those in the whole
system.

The individual computation of energy and forces gives a clear overview of the dy-
namical processes occurring in the simulation. As the kinetic energy is calculated in the
same way, one can distinguish the kinetic and potential energies of the both systems. In
this way the exchange from kinetic into potential energy can be followed, and we can
determine how and which one of the two particles absorbs it.

7.5 Test system

In order to test the developed MD program on our systems of interest, we simulated the
deposition of an octahedral Cusg cluster onto a Cu(111) surface consisting of seven layers
with each layer containing 267 atoms. The substrate was previously relaxed with the
Voter-Chen potential. As seen in Fig. 7.3, the edges of the substrate are not symmetric,
which is due to the structure optimization, and not to the MD simulation. The impact
energy was chosen to be zero electron volt, and the total simulation time 40ps with
included 10ps simulated annealing. Periodic boundary conditions were applied in the x-y
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directions. We wanted to determine the optimal width of the substrate, which after test
simulations with surface consisting of 9, 8, 7, and 6 atomic layers, respectively, turned out
to remain unchanged reduced up to 6 layers. This result is also supported by the short
range interactions defined in the used potential. In our further simulations described in
Chapter 9, even at high impact energies such as 0.9 eV /atom the bottom layers of the
substrate remain unchanged. After reducing the number of layers to 7, we compared the
results obtained by "freezing" of the bottom layer atoms to other without restrictions.
The results were practically the same, therefore for the final computations we decided not
to anneal the bottom substrate layer.

At Fig. 7.3 are shown the structures of the interacting particles at the beginning
and at the end of the simulation. For the 40ps simulation time the Cusg configuration
remains very compact. As it will be shown in Chapter 9, where the time is extended up
to 50ps, during this larger period the cluster rearranges few of its side atoms, which does
not happen here. The simulation was repeated with impact energies of 0.1, 0.3, and 0.5
eV /atom.

The potential energies of both cluster and substrate decrease smoothly except for the
areas marked with red circles, where the potential energy of the substrate atoms decreases
significantly as a result of the attraction to the cluster atoms, while the cluster increases its
potential energy due to the energetical barriers which have to be surmounted in order to
break the existing bonds in the cluster and establish new ones with the substrate surface.
This process is compensated by an increase in the kinetic energy of both systems as seen
at the middle right panel of Fig. 7.3. The potential and kinetic energies change mirror-
like which is expected to happen in a constant-energy simulation. This ensures the good
conservation of the total energy, as seen at the bottom right panel, where the fluctuations
in the total energy are of magnitude 10~7 and are calculated as the difference between
the instantaneous total energy and its initial value divided by the number of atoms of the
system. This obtained result is very good not only comparing to previous studies, but
also taking into account the larger time step of 2fs and the numerical evaluation of energy
and forces within the EAM potential.
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Figure 7.3: The initial and final structure of the deposited Cusg cluster and the evolution
of the potential energies of the Cugg cluster and the Cu(111) substrate (middle and bottom
left panels). On the right panels are shown the changes in the potential (blue line) and
kinetic (red line) energy of the whole system and the fluctuations in the total energy
multiplied by factor 102,



Chapter 8

Collision processes

8.1 Introduction

Collisions processes are an important ingredient in nuclear and cluster physics.|144, 145]
For instance, cluster-cluster collisions provide an important possibility to study forma-
tion of macroscopic aggregates and cluster molecules, collision-induced dissociations, and
vibrational energy transfer between two clusters (see, e.g., [146]).

From a theoretical point of view, it is most convenient to study such processes by means
of molecular-dynamics simulations, whereby the trajectories, rotations, and dissociation
behavior of the particles can be thoroughly studied. Then, there are two approaches,
i.e., the adiabatic cluster collisions where the reaction channels involve only vibrational
and rotational excitations and the nonadiabatic collisions where also electronic effects are
included.[153] Much interest is paid to the adiabatic collisions, where larger clusters can
be studied for a longer simulation time by combining classical molecular dynamics with
(semi-)empirical potentials, whereas nonadiabatic simulations like the quantum molecular
dynamics (QMD)[154, 155] employing different density functionals, are limited to shorter
simulation times and smaller systems.

Experimentally, small copper particles, Cuy, have proven to have an unusual electro-
chemical stability,[156] which makes them attractive candidates for electrocatalysts. In
order to clarify which cluster sizes are particularly stable, Kriickeberg and coworkers|157]
studied the decay pathways and dissociation energies of small singly and doubly charged
copper clusters by employing the multiple-collision induced dissociation method. For
singly charged clusters, an odd-even oscillation in the dissociation energy was observed,
with particularly large values for N = 3, 9, 15, and 21 cluster sizes, suggesting electronic
shell closures for N = 2, 8, 14, and 20.

On the other hand, theoretical studies of collision processes between copper clusters
have so far not been presented whereas more studies on sodium clusters have been re-
ported. Thus, collision processes between magic sodium clusters with N = 2, 8, 20, and
40 atoms were studied by Schmitt and coworkers[150| using a two-center jellium model
for the ionic cores. The energetic stability of cluster molecules (i.e., Nay, Nay, molecules
resulting from Nay, +Nay, collision processes and containing the largely unchanged initial

107
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Figure 8.1: The initial structures of the copper clusters studied in the collision processes.

entities), as well as the main reaction channels of the cluster-cluster collisions were studied
theoretically by Seifert, Schmidt, and Lutz|147, 148] by using MD calculations combined
with a density-functional formalism within the local-density approximation (LDA). Ac-
cording to this study, the NagNag molecule formed in collisions between two Nag clusters
has binding energies close to that of the magic Na;g clusters, while the NagNag molecule
was unstable. A study concerning the thermodynamical stability of cluster dimers|152]
confirmed that the latter cluster molecule was not a stable structure except when the
product happened to get the structure of the stable Na;¢ cluster. This was found also by
Hékkinen and Manninen[151] using ab initio molecular dynamics. This issue was further
investigated by Zhang et al.[149| using a tight-binding approximation, where, in addition,
the possibilities of formation of the Na;gNajg9 and NaggNayy cluster dimers were studied.

The purpose of the present work is to study collision processes between two Cu clusters
with N; and N, atoms for low impact energies. Special emphasis is put on the character-
ization of the products as a function of impact energy and size of the colliding clusters.
In particular, we shall explore whether the product resembles either the initial clusters,
Cup, and Cuy,, or the most stable larger Cuy, 4y, cluster. In the former case, one may
consider the product as being a cluster molecule, whereas the latter case corresponds to a
fusion process. A study with a similar aim was recently presented by Rogan et al.|73] who
investigated collision processes between small gold clusters using a parameterized poten-
tial for the inter-atomic interactions similar to the one we shall use, i.e., the Voter and
Chen|7, 9| version of the embedded-atom method.|1] Rogan et al.|73| varied the collision
energy and the impact parameter in order to cover the complete fusion, scattering, and
fragmentation regimes. Here, however, we are interested in fusion processes in the low
collision-energy range.
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8.2 Dimer Formation

In the simulation of the reaction paths we use classical constant-energy molecular dynam-
ics in order to investigate larger structures over longer simulation time. The Newtonian
equations of motion are integrated by using the Velocity Verlet algorithm with time steps
of 1 x 107 s. The integration time in most of the simulations was 35 ps, while for the
larger clusters some of the calculations were extended up to 50 ps. In order to identify
the products of the collision processes, the simulations include a final simulated-annealing
period of 5 ps.

We simulated the collision events between various (non)magic copper clusters at
center-of-masses incident energies of £ = 0.0, 0.038, 0.1, 0.3, and 0.5 eV/atom, and
chose in all simulations the impact parameter b = 0, as our study is concerned entirely
with possible fusion processes between the clusters. In most cases the initial orientation
of the clusters contained parallel principal axes of inertia, although also some additional
calculations with different relative orientations were performed.

In all cases, we find that the total energy of the final product of the Cuy,+Cuy,
collision process is very close to that of the global-minimum structure of the Cuy,n,
cluster. This is illustrated in Fig. 8.2. It is seen that there is an overall tendency for the
total energy of the final product to decrease as a function of increasing impact energy,
although smaller deviations occur. An interesting exception is that of (N7, N3) = (6,7),
which is the lowest curve in the figure. In this case, the relative total energy shows the
largest deviations from that of the globally optimized structure with N = 13 atoms, in
particular for an impact energy around 0.3 eV /atom. A possible reason is that the Cuys
cluster is particularly stable, having the icosahedral symmetry, and that this structure
corresponds to a global total-energy minimum with a narrow basin, i.e., even smaller
deviations from this structure will lead to structures of other local total-energy minima.
In that case, it is quite unlikely that the structures that result from a collision process
will relax to the icosahedron. On the other hand, the overall decrease in the relative total
energy can be explained through the total-energy hypersurface that has an essentially
exponentially growing number of local minima with cluster size so that it becomes very
likely that the product cluster gets trapped in not the global, but in an energetically
higher-lying local total-energy minimum.

It turned out that longer simulation times in some cases lead to lower total energies
of the products, i.e., to different structures. This finding may be due to the fact that
systems at a non-zero temperature have the possibility to overcome energy barriers be-
tween different local total-energy minima, and it implies that in experiment slow and fast
cooling rates may lead to different products.

For an impact energy of 0.0 eV/atom the simulations for which the main axes of
the colliding clusters were aligned, led to the following product structures. The final
structure for Ny = N, = 6 collision constituted of two octahedra with a common side
and two additional atoms lying next to each other on one of the sides. Therefore, it
can be considered as a ‘double octahedron’ bridged by two atoms. The Ny = Ny = 13
system has a symmetrical, oblate shape suggesting the formation of a dimer. This cluster
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Figure 8.2: Various properties quantifying the end product of the Cuy, +Cuy, collision
process compared to the cluster with N = Ny + N,y atoms. The top panel shows the total
energy of the final product relative to that of the Cuy cluster, whereas the middle panel
shows the maximal internal temperature of some of the reacting clusters. Here, the labels
on the right show N;/N or No/N. In the lowest panel the similarity function quantifying
whether the structure of the final product of the collision resembles the structure of the
global total-energy minimum for the Cuy cluster. The labels show V. In each panel, the
solid curves represent the results for N < 28 and the dashed curves those for N > 38.
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Figure 8.3: The product of a Cuy, + Cuy, collision process for zero impact energy.
From left to right: (N7, N3) equals (6,6), (13,13), (14,14), and (19,19).

possesses the D3, symmetry, in contrast to the C; low-symmetrical Ny = N, = 6 and
Ny = Ny = 19 cases. On the other hand, the N; = Ny = 14 system (with Dy symmetry)
contains elements of tetrahedral symmetry and can be considered a fusion product. These
four systems are shown in Fig. 8.3.

Repeating the simulation for the N; = Ny = 6 cluster, but for other relative spatial
orientations, the structure of the global total-energy minimum for Cu;s was found at
impact energies of 0.038 eV /atom and higher. The formation of a dimer molecule was not
observed in any of the simulations for this cluster size. On the other hand, for the Cu;3 +
Cuy3 interaction at an impact energy of 0.0 eV and with aligned main axes a stable cluster
dimer was formed for around 2.45 ps simulation time, at which time a final rearrangement
led to the highly symmetrical product Cusg. For the Cuj9+Cuyg and Cuyy+Cuyy systems
short-living dimers were observed for the first 1.75 ps, and 1.4 ps of the simulations,
respectively.

In Fig. 8.4 we show the Cuy3Cu;3 dimer structures at different stages of the simu-
lation. After rotating one of the Cuy3 colliding clusters by a 90° angle around an axis
perpendicular to the collision direction and repeating the collision, a dimer formation was
not observed even at the beginning of the event, but the clusters rapidly fused resulting
in a low-symmetry product. The same behavior was observed for the simulations leading
to the Cugg and Cugg products. Therefore, the formation of dimers seems to be strongly
dependent on the initial cluster orientation.

Calculations for colliding clusters with 4, 7, and 10 atoms all led to dimer formations
at different stages of the simulations. For Cu;Cuy, the dimer existed between 0.7 ps and
2.1 ps, the CuypCuyg molecule lived for 1.2 ps, and, finally, the CuyCuy dimer turned out
to be highly stable, having a lifetime of 8.4 ps. At the end of the simulations the Cu,Cuy
system had reached the geometry of the global total-energy minimum for N = 8 whereas
the Cuyy and Cugyg clusters had low-symmetry structures, corresponding to higher-lying
isomers for those cluster sizes. The fact that the number of local total-energy minima
grows essentially exponentially with the size of the system is most likely the explanation
for why the collisions for the larger systems do not result in the structures of the global
total-energy minima.
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Figure 8.4: The formation of a Cu;3Cu;3 dimer.

In order to check the influence of the relative orientation of the clusters, we performed
calculations on the same set of clusters but with other initial orientations of the colliding
particles. The results did not indicate any dimer formation, again implying that the
outcome of the collision processes depends very sensitively on all details of the process.

8.3 Internal temperature

One interesting issue in connection with the behavior of the colliding clusters is the vari-
ation of the internal temperatures of each cluster during the collision process. We define
these as follows. For each of the two clusters we determine its center of mass,

. 1 .
Roj =~ > Ry, (8.1)

where Eza is the position of the ith atom of the jth cluster and NNV; is the number of atoms
in the jth cluster. Subsequently, the internal temperature of the jth cluster, 7}, is defined
as

N.

3 1 2 R 5

g NikT; = 57712 {|Ri,j|2 - |Ro,j|2} (8:2)
j=1
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where m is the mass of a Cu atom and the dots represent time derivatives.

The highest internal temperatures that are reached in a collision process are shown in
the middle panel in Fig. 8.2, where each curve corresponds to the value for one of the two
colliding clusters. The results show a clear difference between the smaller clusters with up
to 9 atoms and the larger ones. For three of the four cases including smaller clusters, the
temperature possesses minima at 0.038 eV /atom impact energy, which, comparing to the
zero impact energy, can be explained with the lower mobility of the cluster center of masses
of the latter, leading to a higher internal temperature. Moreover, except for the case of
energy of 0.0 eV/atom for the smallest structures, the relation between impact energy
and temperature is almost linear for all clusters. However, again the case of N = 13 and
an impact energy of 0.3 eV /atom is different, with a particularly high maximal internal
temperature. The high internal temperature suggests that the atoms are moving much,

which, therefore, may result in a final structure of an unusual low total energy, cf. Fig.
8.2.

8.4 Structural similarity

We shall now study how the structural properties of the collision product depend on
the properties of the individual properties of the colliding clusters. In particular, we
shall explore whether both or at least one of the colliding clusters experience significant
structural changes, i.e., whether one may talk about a ‘harder’ and a ‘softer’ cluster. To
this end we shall use the concept of similarity functions.[132] These can be used also to
quantify to which extent the products are more fcc- or icosahedral-like, and whether the
product resembles one or the other of the two colliding clusters.

For the Cuy,+Cuy, collision process we compared the final structure with the two
initial structures of the non-interacting clusters. We considered all subsets of Ny (N2)
atoms of the product cluster and compared each of those with the isolated cluster of /Ny
(N3) atoms. However, the results (not shown) did not indicate a correlation between size
or impact energy on the one hand and similarity function on the other. Thus, although
the total energy of the products in general decreases as a function of impact energy, cf.
the upper panel in Fig. 8.2, this does not imply that the structure of the clusters gets
increasingly different from those of the colliding clusters before impact.

Instead we compare the final structure of the Cupy, +Cuy, collision process with the
structure of the global total-energy minimum of the Cuy (N = Nj+ N3) cluster. One may
imagine that for a larger impact energy, the atoms of the colliding clusters are so mobile
that they are able to avoid getting trapped in local total-energy minima and, therefore,
will be able to obtain the structure of the global total-energy minimum. Alternatively,
for smaller impact energies it may be possible that the clusters do not break up into
smaller fragments that are not able to relax to the structure of the global total-energy
minimum. The lowest panel in Fig. 8.2 shows the results. There is at most a weak
tendency for a decreasing similarity function with increasing impact energy. Moreover,
the smaller clusters tend to obtain structures that are most different from those of the
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Figure 8.5: Various properties used in comparing the final and initial structures of the
Cup, and Cuy, clusters. The top panel shows the total energy of the final structures
relative to that of the initial one, and in the bottom panel we compare the structures
themselves using the similarity functions. For details, see the text. Moreover, the labels
show Ni/N or No/N (N = Ny + Ny). In each panel, the solid curves represent the results
for N < 28 and the dashed curves those for N > 38.
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global total-energy minima for slightly larger impact energies. The latter may surprise as
one may expect that the smaller clusters are less ‘rigid’ so that the atoms easier can find
the structure of the global total-energy minimum and, furthermore, these systems have
a smaller number of total-energy minima. On the other hand, the larger clusters may
contain an inner, core, part that is somewhat independent of the size of the cluster and,
therefore, is identified in the clusters both before and after the collision process.

When using the similarity functions in comparing the product clusters and different fcc
and icosahedral structures (not shown) fairly low values are found. This may not surprise,
as also the structures of the global total-energy minima in this size range only for few
special sizes (e.g., N = 13 for which an icosahedron is found) resemble fcc of icosahedral
fragments.

We may use Egs. (3.19) and (3.20) in analyzing the energy distribution of the final
products. Eq. (3.20) allows to ascribe each atom a certain part of the total energy and
by adding the contributions from the N; or N, atoms of the colliding clusters after the
collision, we can split the total energy of the final structure into contributions from the
two initial clusters. Finally, these can be compared with the total energies of the two
clusters before they start interacting. The results are shown in the upper panel in Fig.
8.5. Since the atoms of the final structures interact with more atoms, the total energy
goes down (becomes more negative), i.e., the relative total energies are in all cases above
1. Moreover, the smallest part (NV; = 14) of the largest system (N + Ny = 71) is of
that reason the system for which the relative total energy is the largest. Furthermore,
the figure indicates an overall decrease in the relative total energy as a function of impact
energy with some deviations for the absolutely smallest impact energies, i.e., as we have
seen above the larger impact energies make the systems get trapped in energetically
higher-lying structures.

Also when comparing the final structures of the Ny and N, atoms with those of the
initial structures (using the similarity functions above) we see, cf. the lower panel in Fig.
8.5, that in general the structures become increasingly different from the initial structures
when increasing the impact energy. But from the discussion above it is clear that this
change is not accompanied with a trend towards more stable final structures.

Finally, we shall study the structure and the overall shape of a collision process by
varying the relative orientation of the two colliding clusters as well as the impact energy.
We shall consider the single case of N; = Ny = 19. The initial orientations of the colliding
particles are shown in Fig. 8.6.

For a structure with N atoms we calculate the 3 x 3 matrix with the components
Zi]il s;t; with s; and t; being the x, y, or z component of the ith atom relative to the
center of mass. The eigenvalues of this matrix give information on the overall shape.
In particular, compact structures have a small average value and spherical systems have
three identical values.

In the upper panel in Fig. 8.7 we show the results of this analysis. It is interesting
to observe that for impact angles of 30° and 60° the overall shape depends only weakly
on the impact energy. Moreover, situations can be identified (i.e., impact angle of 30°
and impact energy of 0.3 eV /atom as well as impact angle of 60° and impact energy of
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Figure 8.6: Side and top view of the initial orientations of the two interacting Cuyq
clusters. From left to the right the impact angle corresponds to 0, 30, 60, and 90 degrees.
The configuration in which the principle axes of inertia of both clusters are aligned (right)
is also considered.

0.1 eV /atom) where the product cluster is essentially spherical. On the other hand, for
other impact angles (e.g. 0° and 180°) the final structure depends strongly on the impact
energy.

Also when comparing the initial and final structure of the colliding clusters it becomes
clear that the results depend sensitively on the impact angle. This is illustrated in the
lower panel in Fig. 8.7.
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Figure 8.7: Various properties used in comparing the final structures of the Cuyg+Cuyg
collision process. The top panel shows quantities related to the overall shape. Here, the
average value of the eigenvalues of the matrix containing ), s;t; is shown (for details, see
the text) and the insert shows the largest difference of those. In the bottom panel the
similarity function between the initial and final structures of the colliding clusters is shown.
Squares, circles, triangles, and stars mark results for impact energies of 0.0, 0.1, 0.3, and
0.5 eV /atom, respectively. Here, open and closed symbols are used in distinguishing the
two clusters.
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Chapter 9

Deposition of magic clusters on
Cu(111)surfaces

9.1 Introduction

The deposition of atomic clusters on metal surfaces has become an active field in the
past decades, since it opens up new opportunities for applications in the nano- and
biotechnologies.[158, 159, 160] As a consequence of the growing need for ways of de-
positing a cluster on a surface, new techniques like Low Energy Cluster Beam Deposition
(LECBD)[161] and Ionized Cluster Beam Deposition (ICBD)[162, 163| have been devel-
oped. By using scanning tunneling microscopy (STM)[164, 165| on the deposited clusters
one may obtain information on the cluster shape and stability, as well as possible coagu-
lation of the clusters.[33]

The experimental processes can be simulated by using Monte Carlo or Molecular
Dynamics calculations. Since the computational requirements for such simulations can
be quite large, it is most convenient to combine the calculations with (semi-)empirical
potentials for describing the interatomic interactions. Depending on the initial velocity
of the clusters, one may distinguish between three different kinds of molecular dynamics
simulations, which lead to different products: the soft landing[123, 166| of clusters with
kinetic energy less than 1 eV /atom leads to the formation of islands on the surface and
in most cases does not damage the substrate; the energetic cluster impact,[167, 168]
especially when using larger clusters (some 300-3000 atoms)|169] is of importance for
understanding the formation of thin films,[170, 171] and the bombardment with high-
energetic clusters (from eV to some few keV per atom)[172, 173, 101| leads to crater
formations, sputtering and even radiation damages.

For the applications in the microelectronics, reliable methods for the soft deposition or
growth of metal clusters on different substrates are sought.[174] However, experiments can
only provide information about the size and the approximate distribution of the clusters
on the surface, but not on the mechanism of their deposition. It is known that when a
sufficiently small cluster lands on a single-crystalline substrate, it will align epitaxic with
the substrate, and as the cluster grows in size it will react more slowly due to the lowering
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of the surface-to-volume ratio.

This Chapter addresses the question how fast the deposited cluster reaches epitaxy,
what is the influence of the initial velocity on the rearrangement of the cluster atoms and
the stability of the product on the surface, how much does the structure of the deposited
cluster change, and how similar is the deposited cluster to a fcc or an icosahedral fragment.
In particular, we have varied the impact energy and the size of the deposited cluster, and
defined different tools for a quantitative description of our results.

9.2 Simulation conditions

As substrate we consider a Cu(111) fragment consisting of seven atomic layers (in the z
direction) with dimensions 10ag x 10ag (ao being the lattice constant, in this case 3.615
A). A cutoff for the potential (4.96 A) allows us to use a relatively thin slab, making it
possible to consider a larger surface area in the two other directions. Periodic boundary
conditions are applied in the (z,y) plane.

For the collision processes we orient the first and the second Mackay icosahedra (Cuys
and Cuss) relative to the surface so that the Sg axis remains perpendicular to the (z,y)
plane, while for the Cusg cluster the truncated side with the smaller surface is placed
towards to the substrate.

The Newtonian equations of motion of the microcanonical (NV E) ensemble are in-
tegrated by using the velocity Verlet algorithm with a time step of 2 x 107'° s. For the
smaller clusters, i.e., Cuy3, Cuyg, and Cugsg, the total integration time is 50 ps, while for
the larger Cuss cluster the calculations are extended up to 90 ps. In the computational
scheme are included 10 ps simulated annealing in order to relax the final structures to
their total-energy minima. The starting velocities of the clusters correspond to 0.0, 0.1,
0.3, 0.5, 0.7, and 0.9 eV per atom, the range in which the Low Energy Cluster Beam
Deposition is performed. Both the clusters and the substrates are initially relaxed to
equilibrium at 0 K. Then an initial velocity in direction perpendicular to the substrate is
assigned only to the cluster, whereas the substrate remains cold. It could be interesting
to compare these calculations using different substrate temperatures, however, a previous
study|[175] has shown that increasing the temperature leads to a more rapid spreading of
the cluster on the surface which is compensated by a lower degree of epitaxy due to the
movements of the surface and the cluster.

9.3 Energetic properties

For each simulation a relaxed structure from the ones shown in Fig. 9.1 is released in the
vicinity of the Cu(111) substrate with a velocity perpendicular to the surface ranging from
0.0 to 0.9 eV /atom. The kinetic energies of the cluster and the substrate grow rapidly,
and for the first few hundred femtoseconds their potential energies decrease due to the
attractive interactions between the atoms of the cluster and those of the surface. Later,
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Figure 9.1: The optimized structures of Cuyz, Cuyg, Cusg, and Cuss.

when the cluster reaches the surface and begins to rearrange its atoms, the potential en-
ergy of the surface increases and ultimately the complete system reaches an equilibrium
structure, which in our calculations is determined through a simulated-annealing proce-
dure at the end of the simulation. Thereby, we model the energy uptake of a much larger
surface than the one of the simulation.

9.3.1 Kinetic temperature

Fig. 9.3 presents the translational kinetic temperatures for various combinations of clusters
and impact energies. This is calculated from the mass of the cluster and the speed of the
center of mass of the cluster. We compare this temperature with that of the substrate,
calculated from the kinetic energy of all the atoms forming the substrate.

In the upper left panel we show the results for the Cuys cluster released with zero
kinetic energy in the proximity of the surface. The kinetic temperature grows rapidly
during the first picoseconds and then abruptly drops, but possessing some few further
peaks around t = 10 ps that correspond to the adsorption of the cluster on the surface. On
the other hand, the kinetic temperature of the substrate reaches a maximal temperature
of only 17 K, which shows that the large crystal acts well as a thermal reservoir. Already
after around 20 ps the system is close to the equilibrium, and at ¢ = 40 ps, the two
curves have almost converged to the same temperature. As the last 10 ps constitute the
simulated annealing of the system, they are not shown here. When increasing the impact
energy, the time needed for the system to reach thermal equilibrium decreases, and for
Cusg and Cuss the system thermalizes in only 20 ps.
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Figure 9.2: The internal temperatures of Cuy3, Cuyg, Cusg, and Cus; at impact energy
0.0 eV /atom as functions of the time.
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Figure 9.3: The translational temperatures of the Cu;3, Cujg, Cusg, and Cuss clusters
and the belonging substrates at different impact energies.
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9.3.2 Internal temperature

The translational, ‘kinetic’ temperature measures only the velocity of the colliding clus-
ters, but not their internal temperatures. In Fig. 9.2 we show the evolution of the internal
temperature with the cluster size in the case that the clusters are released with zero ki-
netic energy. The internal temperature is obtained from the velocities of the individual
atoms relative to that of the center of mass. As expected, the clusters with the most
fluctuating temperatures are those with smaller number of atoms, namely Cu;3 and Cus.
The slower heating of Cu;g compared to the Cu;z icosahedron can be explained from the
‘cigar-like’ shape of the former cluster, while the icosahedron is relatively compact, and
therefore most of its atoms more rapidly come into contact with the substrate. The larger
clusters, Cusg and Cuss, have more atoms and a smaller surface-to-volume ratio, so that
the energy can be better distributed among the atoms, which results in an overall smaller
heating, except for the first 5 ps for the Cusg octahedron. At around 15 ps all four clusters
are already close to thermal equilibrium.

It is interesting to compare the total energies of the products of the different simu-
lations, since they give information on the relative stability of the structures. Table 9.1
lists the total energies of all products together with the energies of the optimized clusters
in the gas phase. In all cases, the attractive interactions between the substrate and the
cluster leads to a lowering of the total energy of the cluster when being deposited on the
substrate. For Cuy3 the deposition driven only by the attraction to the substrate gives
the highest total energy, but increasing the deposition energy we obtain lower values with
a minimum at an impact energy of 0.5 eV /atom. The situation is different for the Cuyg
cluster, where the impact energies 0.3 and 0.7 eV /atom give more stable structures. For
the larger clusters with N = 38 and 55 the most stable structures are obtained for the
lowest impact energies, with one exception for Cus; at an impact energy of 0.9 eV /atom.

In conclusion, the energetically more stable products of the smaller clusters are ob-
tained with higher deposition energies, whereas lower deposition energies are used for the
larger clusters.

9.4 Structural patterns

9.4.1 Monolayer formation

The final structures of the collisions of the four clusters on the substrates at different
impact energies are presented in Figs. 9.4, 9.5, 9.6, and 9.7.

The shape of the Cu;; icosahedron stays almost unchanged for the lowest impact
energies. But for a deposition energy of 0.5 eV /atom the cluster spreads out on the surface
forming a slightly deformed monolayer involving also two atoms from the substrate. This
rearrangement of the atoms of both the substrate and the cluster is not observed for the
larger deposition energies. Instead, the structure becomes a symmetrical pyramid for the
impact energy equal to 0.7 eV /atom and a double layer for an energy of 0.9 eV /atom.
It has been found[176] that the relatively small (i.e., 55 — 125 atoms) three-dimensional
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Figure 9.6: The final products of Cusg clusters with different deposition energies, col-
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clusters tend to have the shape of a pyramid, with sides oriented in the directions of small
surface energy, when being deposited on a surface.

The behavior of the Cu;3 icosahedron spreading into a monolayer at impact energy 0.5
eV /atom is also found in the simulation for the Cuyg cluster. This cluster was chosen as the
energetically most unstable, for comparison with the behavior of the magic clusters with
N = 13, 38, and 55. Moreover, it possesses a not completely closed ‘double-icosahedral’
shell that becomes closed at the next cluster size, N = 19. In our simulations we find
that the monolayer obtained at energy 0.5 eV /atom is more regular than that of Cuys,
but, in general, the behavior of this cluster is very similar to that of the icosahedron.

In contrast to the results obtained for the smaller clusters, we do not find monolayer
products in the simulations with the Cusg and Cuss clusters. For Cusg all products consist
of three layers except the one obtained with the highest initial velocity, where one atom
from the cluster penetrates the surface of the substrate, but later in the simulation this
atom becomes substituted by an atom from the substrate, thus giving a double-layered
product. Like above, at a deposition energy of 0.7 eV /atom a symmetric product is formed,
and at the highest impact energy there are substitutions with atoms from the surfaces for
both cluster sizes. One interesting observation is made for the Cuss icosahedron for an
impact energy of 0.7 eV /atom where we see the formation of a fourth layer and where also
the number of atoms constituting the bottom layer of the product decreases, in comparison
with the case of 0.5 eV /atom impact energy.

In total, our simulations suggest that for impact energies in the range 0.5-0.7 eV /atom
one obtains products that consist of more layers or have a particularly high symmetry
compared with those that are found at lower deposition energies. Hence, this impact
energy range could be attractive for the production of monolayers of small clusters.

9.4.2 Similarity functions

In previous studies|[93, 132] we have demonstrated the ability of the similarity functions to
give very good qualitative and quantitative estimation of the cluster growth and the struc-
tural differences between two clusters with the same number of atoms, but structurally
different.

In Table 9.2 we show the resulting functions in five cases, i.e., when comparing the
products of the collisions with the initial My clusters, with the icosahedral Cusyg, and
when comparing with three fragments of the fec crystal differing in the position of the
center |i.e., either at the position of an atom (marked with '1’), at the middle of a nearest-
neighbor bond (marked with ’2’), or at the center of the cubic unit cell (marked with ’3’),
respectively|, where from the last case only the largest value of the similarity function is
shown.

The results suggest an epitaxic rearrangement of the cluster atoms on the fec Cu(111)
surface, since all the product clusters have values of the similarity function when compar-
ing to fec fragments that are similar or higher than those to the icosahedral cluster. It is
not surprising that the similarity functions between the original and product structures for
the larger Cugg and Cuss clusters decrease relatively smoothly when increasing the impact
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Figure 9.8: The similarities between the original clusters and the products at different
impact energies. The half-filled star and the triangle turned upside-down correspond to
the cases when the Cuy3 and Cu;g deposited clusters were translated by 0.9 A from their
initial position in order to study the influence of the substrate-surface orientation. The
half-filled pentagon and triangle at 0.5eV /atom deposition energy correspond to the final
similarity functions for the rotated by 90 degrees Cuy3 and Cuyg, respectively.
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Table 9.1: The total energy of the cluster after the collision with the surface as a function
of the impact energy per atom. The results from the calculations with translated (tr.) or
rotated (rot.) initial structures are also shown. The total energies of the initial structures
obtained with the EAM are shown for comparison.

Cluster ’ 0eV ‘ 0.1eV ’ 0.3eV ‘ 0.5eV 0.7eV 0.9eV ‘ EAM
13 -36.66 | -37.67 | -37.67 | -37.79 | -36.80 | -36.96 | -33.50
18 -52.02 | -51.91 | -52.89 | -52.53 | -52.79 | -52.15 | -47.47
38 -115.04 | -115.63 | -115.54 | -114.84 | -115.16 | -114.83 | -108.62
55 -169.79 | -169.66 | -169.49 | -169.62 | -168.48 | -170.62 | -162.62

13(tr.) -37.67 | -37.71

13(rot.) -36.96

18(tr.) 53.29

18(rot.) -52.09

Table 9.2: Each panel from top to the bottom shows the similarity function when
comparing with (top) the optimized with the EAM structure corresponding to this cluster
size, an icosahedral cluster (middle), and a spherical fragment of the fcc crystal (bottom)
when the center of the fragment is placed at (1) the position of an atom, (2) the middle
of a nearest-neighbor bond, and (3) the center of the cube, respectively. From the latter

only the highest value and its corresponding fragment are shown.

Cluster‘ 0eV ‘ 0.1eV ‘ 0.3eV ‘ 0.5eV ‘ 0.7eV ‘ 0.9eV ‘ EAM
0.724 0.829 0.830 0.506 0.622 0.544 -
13 0.739 0.847 0.848 0.513 0.635 0.554 0.966
0.741 M | 0.843® | 0.844 W | 0.664 @ | 0.696 @ | 0.6793) | 0.8581)
0.776 0.797 0.676 0.432 0.677 0.559 -
18 0.659 0.699 0.603 0.451 0.650 0.604 0.607
0.725 @ 1 0.744 W | 0.720 ® | 0.481 ® | 0.721®) | 0.611 @ | 0.706
0.561 0.543 0.545 0.506 0.525 0.418 -
38 0.570 0.548 0.549 0.519 0.530 0.441 0.656
0.694 @ | 0.676@% | 0.671 @ | 0.615 @ | 0.632 @ | 0.487® | 0.906)
0.638 0.549 0.514 0.511 0.514 0.456 -
55 0.648 0.555 0.518 0.515 0.519 0.459 0.963
0.727 @ | 0.657 @ | 0.607 @ | 0.604 ® | 0.597@ | 0.541 ® | 0.770WD
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0.4eV /atom 0.6eV /atom

Figure 9.9: The final products of Cuyz clusters with deposition energies 0.4 and
0.6eV /atom.

energy. For both clusters, the 0.9 eV/atom impact energy seems to be critical and the
similarity functions decrease abruptly, which corresponds to the large deformation of the
clusters shown in Figs. 9.6 and 9.7. However, the small Cu;3 and Cu;g clusters maintain
high similarity to their original structures at lower impact energies, and for Cuy3 there is
even an increase in the similarity for 0.1 eV /atom and 0.3 eV /atom impact energies.

The similarity functions from the structural comparison between the original and the
product clusters are shown in Fig. 9.8. At energy 0.5 eV /atom the similarity functions for
both the two smaller clusters have deep minima, and increase at higher impact energies.
This corresponds to the formation of the monolayers on the copper substrates, as discussed
above. The peaks in the similarity functions at 0.7 eV /atom can be explained with the
formation of symmetrical structures, that at even higher energies not are found where,
instead, flat structures occur.

In order to investigate the reasons for the increase in the similarity function for the
Cuys cluster, we performed simulations also with impact energy 0.2, 0.4, and 0.6 €V /atom,
which results are included in Fig. 9.8. The products of the collision of these clusters with
Cu(111) substrates are shown in Fig. 9.9, except for the case of Cuy3 with deposition
energy 0.2 eV /atom, for which the final structure is very similar to the ones obtained at
energies 0.1 and 0.3 eV /atom. From the figure it can be seen that a small change in the
deposition energy away from 0.5 eV /atom for Cu;3 leads to the formation of double-layered
structures, and the monolayered product is found only at an energy of 0.5 eV /atom.

Subsequently, for N = 13 and N = 18 for impact energies in the range 0.1-0.3 eV we
studied further collision processes where we varied either orientation of the cluster or its
position on the surface both for N = 13 and for N = 18. The results are included in the
figure, and it is clearly seen that the similarity function depends very sensitively on the



130 CHAPTER 9. DEPOSITION OF MAGIC CLUSTERS ON CU(111)SURFACES

Table 9.3: The height of the cluster (in A) after the collision with the surface as a
function of the impact energy per atom. The results for the rotated/translated copper
clusters are also shown.

Cluster ‘ 0eV ’ 0.1eV ‘ 0.3eV ‘ 0.5eV ‘ 0.7eV ’ 0.9eV

13 5.365 | 5.295 | 5.349 | 3.609 | 5.564 | 4.042
18 5.999 | 5.980 | 4.062 | 2.061 | 3.992 | 3.943
38 6.331 | 5.929 | 5.626 | 5.696 | 5.734 | 4.122
95 8.174 | 8.049 | 6.659 | 6.652 | 8.071 | 6.443

13(tr.) 5.288 | 4.103

13(rot.) 4.078
18(tr.) 4.077
18(rot.) 4.209

details of the collision process. We propose the following explanation.

When the cluster starts interacting with the substrate, the interactions can lead to
the excitation of vibrations, both of the substrate and of the cluster. If the vibrational
amplitudes of the cluster are sufficiently large, the cluster may be deformed. Which
vibrations are excited is also determined by the symmetry properties of the complete
system, cluster+substrate. Thus, if the cluster arrives at a high-symmetry position of the
surface and, in addition, so that the cluster itself shares many symmetry properties with
the substrate, only few vibrations can be excited and in that case it is much less likely
that the cluster is deformed through the deposition. On the other hand, a high-symmetry
collision may also lead to resonances between cluster and surface which, in turn, amplify
the vibration amplitudes of the cluster, so that the cluster becomes more deformed. We
suggest that the results for N = 13 and N = 18 for the first, high-symmetry deposition
processes can be explained through those two scenarios. For impact energies below 0.4 eV
the first effect can explain our findings, whereas the second one can be held responsible
for the particularly low value of the similarity function for an impact energy of 0.5 eV.
When the collision process has a lower symmetry, neither effect is pronounced.

9.4.3 Time evolution of similarity and epitaxy

In order to get further information on the structural rearrangements of the clusters during
the deposition, we shall study the temporal development of the similarity function, when
comparing with the original structure. The results are presented in Fig. 9.10. Only the
cases of impact energy of 0.0, 0.3, and 0.5 eV /atom are shown, since the results for higher
energies are similar to those for an impact energy of 0.5 eV /atom.

The larger clusters show a more smooth structural change with the time, and form the
final product faster when increasing the deposition energy. The occurrence of steps for
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the lowest impact energies suggest that certain meta-stable structures have been formed
during the deposition. Not so simple are the similarity functions for the smaller Cu;3 and
Cuyg, where there are significant fluctuations in the values with larger periods of time. We
interpret these fluctuations as indications of the large vibration amplitudes, mentioned
above, that ultimately may, or may not, lead to a change in the structure of the cluster.
The case of the Cu;g cluster deposited on the surface with zero kinetic energy is interesting
because the similarity function decreases smoothly at the beginning of the simulation, and
rapidly drops at around 7.2 ps, when the kinetic energy of the Cu;g cluster is around 0.038
eV /atom. This cluster has a cigar-like shape and is in our simulation deposited with the
long axis perpendicular to the surface. Therefore, it takes some time after the touching
of the cluster with the surface before the most distant atoms start moving.

As the last issue we shall study quantitatively whether the atoms of the deposited
cluster possess a structure that is dictated by the underlying fec substrate, i.e., to which
extent the deposition can be classified as being epitaxic. To this end we shall introduce a
parameter, the ‘index of epitaxy’, I, through

N — —
¢ = > |R—RJ|

1
= —, (9.1)
1+ q/u;

where |R’Z — §C| is the distance between the positions of the 7th atom and the closest-lying
fictitious atom in the infinite, periodic crystal that is obtained by continuing the structure
of the substrate periodically. I = 1 if perfect epitaxy is obtained.

The results are shown in Fig. 9.11 for three different impact energies of the clusters.
The calculations for the Cuss clusters were expanded over a longer period of time. It is
surprising that an increased impact energy does not necessarily lead to an increased value
of I. Moreover, the fact that in most cases [ is well below 1 implies that the interatomic
forces within the clusters are sufficiently strong to influence the final structure of the
clusters significantly. Among all simulations only the Cug cluster for an impact energy
of 0.5 eV /atom achieves a high epitaxy index which can be related to its monolayered
arrangement on the surface.

The height of the product clusters as a function of the deposition energy is shown in
Table 9.3. It can be seen that at a deposition energy 0.5 eV /atom there is a minimum in
the height of the clusters, except for the Cusg cluster that has the same height also for an
impact energy of 0.3 eV /atom. This fact suggests once again that the deposition energy
of 0.5 eV /atom could be favorable for the production of monolayers.
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Figure 9.10: The evolution of the similarity functions with the time for the simulations
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Summary and Conclusions

In the present work we have investigated structural and energetic properties of different
transition and noble metal clusters. The global optimization of the isolated particles was
carried out using our Random, Aufbau/Abbau, and Disturbance algorithms in combination
with the variable metric/quasi-Newton method.

Within this formalism, using the EAM potential as developed by Voter and Chen for
the expressions of the total energy and forces, we have determined the three energetically
lowest isomers of gold clusters in the range 2 < N < 150. Although the calculations
provide a large amount of information for each individual cluster, instead of discussing
each cluster separately, we focused on identifying general trends such as total energy
per atom, overall symmetry and shape, average bond length and coordination number,
similarity with NV — 1-atom clusters, vibrational spectra and heat capacities.

The version of EAM used in these calculations is parameterized to bulk, as well as to
the dimer properties, which allows it to describe properly the properties of the smaller gold
clusters. We have performed[90] calculations on smaller gold clusters with 2 < N < 60
atoms comparing the EAM of Daw, Baskes, and Foiles (DBF) and the version used in
this work, and we found that the DBF overestimated the binding energy of the dimer by
209% and underestimated the bond distance by 37%. For comparison, the EAM of Voter
and Chen gives dimer binding energy corresponding to 99,6% of the experimental, and
bond distance that is 92,2% of the experimental value. Therefore, we decided to expand
our studies by applying the Voter-Chen version of the EAM method.

The calculations predicted a number of particularly stable clusters, i.e., 'magic-numbered’
clusters that in many cases are in agreement with results obtained by first principles and
other semiempirical studies when such exist, but the advantage of our study is that the
structures were obtained by using a completely unbiased approach. These magic num-
bers were clearly visible both in the ‘stability function’ and in the total-energy difference
between the energetically lowest and higher-lying isomers.

We also found that even for our largest cluster the binding energy per atom has
still not converged to the bulk limit. Similarly, the average coordination number is far
from the bulk value, but higher than for nickel clusters, where several structures with
shell constructions and corresponding low coordination numbers were formed [93]. The
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average bond distance for gold has not reached the bulk value, due to the rearrangement
of the atoms for each cluster size that leads to the formation of very compact structures.

The shape analysis showed that roughly spherical clusters corresponded mainly to the
energetically lowest isomer, but in some cases also to the second-lowest one, and that
these often belong to particularly stable structures.

By analysing the distribution of radial distances as a function of the cluster size we
could identify a region with N around 55, where a shell construction was formed. Com-
paring to previous results for nickel clusters [93], where clear shell constructions were
formed at N around 13, 55, and 147, here the atoms rearrange for each global minimum,
and therefore particular shell constructions can not be observed. The similarity function
also points to the lack of regular growth.

The most central results are the calculated vibrational spectra and heat capacities.
Many of the "magic" clusters, identified with the stability function, have particularly
high or low vibrational frequencies or heat capacities, respectively. The Aug cluster
possesses the highest vibrational frequency among all cluster sizes, and the second lowest
heat capacity in the size range 16 < N < 150. The vibrational spectra and the heat
capacities appear to oscillate with the cluster size without tendencies to form "islands"
at which typical vibrations could take place, which is the case for copper and nickel
clusters[177]. It seems that the word "disordered" describes most accurately the growth
of the smallest gold particles.

For the silver clusters with up to 150 atoms we chose to use two different many-body
Gupta potentials for the evaluation of the energy and forces. According to numerous
previous studies, the Gupta potential has been successfully applied to metal clusters.
However, for silver we were able to find only one work, which considered particular clus-
ter sizes. For those cluster sizes, our minima are completely consistent with the results
obtained in Ref[84|. Up to 60 atoms, an energetical and structural comparison was made
to our independent results from two Embedded Atom Method approaches. Although the
small silver clusters obtained with all potentials are very similar, significant structural
differences occur already at Ag;s. The potential that predicts the structures most sim-
ilar to the obtained with the extended Gupta potential is not the tight-binding Gupta
approach, but the EAM of Daw, Baskes, and Foiles. Along with the peaks for the magic
N = 13, 38, 55, and 147 clusters, many new peaks appear, all of them except for the
Aggs and Agrg clusters revealing decahedral structures, the ground state of Aggs having
a distorted icosahedral configuration. The peaks corresponding to the particular stability
of Agy with N = 23, 28, and 137 atoms are missing, in contrast to previously studied
nickel[93| and copper|132] structures. The similarity functions and the minimal coordi-
nation numbers show complicated growth, especially at N = 31 - 42, N = 62, 80, 97,
117 and 140 atoms, where significant structural changes take place. The cluster growth
is predominantly decahedral, e.g., in the size range 65 - 139 atoms, with islands of icosa-
hedral and fcc structures, in contrast to the results for copper and nickel clusters, where
the main structural motif is the icosahedral construction.

The comparison to the experimental scattering intensities unambiguously shows that
icosahedral structures lie in the global minima or are degenerate with it, however, three
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out of the six experimentally suggested systems could not be described properly by the
nG potential, which predicts the octahedral Agsg and Agrg clusters and the 75-atom Mark
decahedron to lie in the ground state for those cluster sizes. The latter one could not
be unequivocally excluded as a potential candidate, which could lead to a ground state
containing a mixture of decahedral and icosahedral isomers. Regarding the Agss and Agrg
clusters, we suppose that the parameterization of the Gupta potential leads to a preference
of compact structures such as the octahedral ones. The experimental data was obtained
using cationic silver clusters that can have different global minima geometries than the
neutral clusters optimized in this work. However, the unbiased structure optimization of
many candidate configurations is still computationally infeasible for the density functional
methods, and only by using semiempirical potentials one can select prospective candidates
lying close to the global minima.

In order to compare the results from the EAM and Gupta potentials used in this work
we performed also unbiased structure optimization of Ni, Cu, and Au clusters with up to
60 atoms using the two EAM potentials and the second-moment approximated Gupta po-
tential. Regarding the binding energies, the best agreement between the three potentials
was found for copper, and the poorest for nickel, with the Voter-Chen potential giving the
most reasonable results. As expected, the corresponding differences between the binding
energies obtained with the different potentials were most insignificant at the copper clus-
ters, while for the smallest gold clusters they reached deviations of about 1.2eV /atom.
Again, the copper clusters optimized with the three potentials are structurally most sim-
ilar except for some cluster sizes, where the global minima obtained with one potential
corresponded to higher-energy isomers according to other potential, and vice versa. The
similarity functions for nickel and gold reveal significant structural differences, especially
pronounced for the gold clusters, where there are more differences than similarities, as
also suggested by the point groups of the global minima. We found that the sequence
of magic numbers is very similar for Ni and Cu clusters, but markedly different for gold,
where each potential predicts different magic clusters, and the only one agreement be-
tween the three potentials is that the clusters with N = 19, 23, 38, 46, 49, and 55 atoms
are not particularly stable in contrast to the results for copper and nickel. Similar trend
has been obtained with the Sutton-Chen potential|78|. In accordance with these results,
the distribution of radial distances clearly shows the formation of large icosahedral win-
dows ending at the complete second Mackay icosahedron at N = 55 for nickel and copper,
while for gold the distribution is more scattered, with a small shell for the icosahedral
Ausy within the Voter-Chen potential, while the global minima for Aus; obtained with all
potentials point to a low-symmetry structure, in agreement with previous theoretical and
experimental studies. It is very clear that the structures of Auy clusters depend critically
on the used potential which may be an explanation for the large scattering in the results
that have been obtained for this system. On the other hand, the weak sensitivity of the
results for copper clusters on the potential makes us propose that this may be a more gen-
eral property for those systems, i.e., also other theoretical approaches should give results
that only differ little from those presented here. Finally, whereas both EAM potentials
gave realistic results for Ni and Cu, only the VC parameterization was considered useful
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for Au.

The next issue in the present work was to investigate the cluster deposition on a
surface. This has become a subject of interest for many experimentalists and theoreticians
over the past 20 years. In order to be able to follow the processes occurring from the cluster
generation in the Low Energy Cluster Beam up to the cooling onto the substrate surface,
we developed a Molecular Dynamics program working with a constant-energy ensemble.
The program was successfully tested on copper clusters described with the Voter-Chen
potential.

We have studied collision processes between smaller copper clusters at different impact
energies in order to find possible relations between the initial energies and the energetic
and structural stability of the products. A main finding of the computations is that
with increasing impact energy the final products of the Cuy,+Cuy, collision become
increasingly different from the structure of the global total-energy minimum of the Cuy
(N = Ny + N3) cluster. The maximal internal temperature showed an essentially linear
dependence on the impact energy, i.e., the atoms become increasingly mobile, which most
likely is the reason for why the final structures of the collision processes depend sensitively
on all parameters of the collision process, i.e., size of the clusters, impact energy, relative
orientation, and impact parameter. We have demonstrated this with the exception of the
dependence on the impact parameter that was not varied.

A further outcome of the calculations was the prediction of the possible formation
of the cluster molecules CuyCuy, Cu;Cuyz, Cu;gCuyg, Cui;3Cuyz, Cu4Cuyy, and Cu9Cuyg
similar to the earlier findings for sodium clusters.[149] In all cases we have studied, the
stability of the cluster molecules (including their lifetime) shows a strong dependence on
the initial orientation of the clusters. For larger impact energies dimer formation was not
observed. The structural comparison between the product clusters and different fcc and
icosahedral structures shows that all collision products have only marginal similarity with
fec-like and icosahedral-like structures. In total, our results show that even at extremely
well-defined experimental conditions, cluster-cluster collision experiments should be ex-
pected to lead to a broad spectrum of resulting structures. The most stable structures
are obtained for low, although not almost vanishing, impact energies.

Then the clusters were deposited onto Cu(111) surfaces previously relaxed with the
EAM potential. The source Cuy clusters (N = 13, 18, 38, and 55) were taken from
our previous calculations with the Voter-Chen potential described in Chapter 6, and
corresponded to the global minima for these cluster sizes according to the used potential.
The reason we chose these clusters is that we wanted to compare the deposition behavior
of particularly stable particles such as the first and second Mackay icosahedra, and the
octahedral Cusg to that of a particularly unstable structure, such as the incomplete double
icosahedron Cu;g. The main issue was the relation between deposition energy of the cluster
and the structural and energetic characteristics of the products. As shown in Table 9.1,
a higher impact energy leads to a lower total energy of the complete system, which first
of all is due to an increased interaction energy between substrate and cluster, and not to
a cluster structure of larger stability. The larger clusters reach rapidly and smoothly the
thermal equilibrium at higher impact energies, while for the small Cu;3 and Cuyg clusters
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there are many secondary peaks in the kinetic temperatures at low energies. The slower
increase in the internal temperature of the Cuyg cluster could be related to its ‘cigar-like’
shape with the long axis perpendicular to the surface. The smaller clusters reach higher
maxima in their internal temperatures in comparison to the larger Cuss structure, which
is due to the smaller number of atoms and their increased mobility, respectively. However,
the surface heats very smoothly, without fluctuations, to constant temperatures during
the simulations, which shows that it successfully acts as a thermal reservoir.

Another important issue, is the problem how similar are the original and the product
clusters at different deposition energies, and how these similarity functions propagate with
the time. A structural descriptor, similar to one of those used in this study, was previously
introduced by Palacios et al.[175] It is remarkable that the deposited clusters have values
of this function that indicate a significant structural rearrangement, so that even softly
deposited clusters change their structure markedly from the ones in the gas phase.

Through these descriptors we are able to formulate our main conclusion: Clusters
deposited on surface, even at low impact energies, are not simply gas-phase clusters on
a substrate, but form a different system consisting of both cluster and substrate. The
structure of this system depends very sensitively on all parameters of the deposition
process, i.e., cluster size, impact energy, relative orientation, and relative position.

Further insight into the structure and dynamics of these small particles can provide
the modification of the existing software in order to describe deposition of homoatomic
and /or bimetallic clusters on diverse (non)metallic substrates.
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