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1   Short summary 

 

The lung is more and more of interest for local as well as for systemic administration 

of drugs. Nevertheless, the development of modern inhalable medicines is moving 

forward only slowly. Especially the lack of safety and efficacy data combined with 

unsatisfactory in vitro models for the investigation of the complex processes on the 

air-blood barrier decelerates the development of new aerosol medicines. 

In the first part of this thesis the transport of peptides with different molecular weight 

across submersed human alveolar epithelial cells has been investigated. The 

measured absorption / secretion rates allow quantifying of permeability and the 

identification of active or passive transports, but the influence of formulation 

parameters like size or charge disappears after preparing solutions and adding these 

in the fluid filled apical compartment of submersed cell culture. However, with the aid 

of a relatively simple insufflator syringe and air interface cultivated cells, a deposition 

more close to the in vivo situation was possible. It was found that air interface 

deposition yielded higher absorption rates and that differences in particle size 

significantly influenced the absorption rates only after air interface deposition but not 

after liquid interface deposition. Even if the application with the insufflator syringe 

offers the opportunity to deposit dry particles on the air interface of cell monolayers 

the method wasn’t able to simulate in vivo relevant impaction processes. Especially 

in case of dry powder aerosols composed of large carrier lactose particles and 

adherent micronized drug crystals, impaction processes during aerosolisation 

normally accomplish separation of the drug from the carrier. Only the sufficiently 

small (< 5 µm) drug crystals are deposited in the deeper regions of the lung. As the 

insufflator fails to separate the drug crystals from the carrier lactose, and as the 

particle size of the carrier particles significantly influences the dissolution and 

absorption behaviour, a cell compatible aerosol impingement system was designed. 

A commercial available MSLI was modified to incorporate cell culture inserts in the 

relevant stages. Complex powder formulations could be size fractionated and the 

size fractions which are able to reach in vivo the deep lung were deposited on cell 

monolayersSignificantly changed absorption behaviour could be detected in 

dependency of cell culture fluid volume, particle size and deposition mode. 
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2   Kurzzusammenfassung 

 

Im ersten Teil der Dissertation wurde die Permeation von gelösten Peptiden mit 

verschiedenem Molekulargewicht durch Monolayer humaner alveolarer Epithelzellen 

untersucht. Auch wenn das Arbeiten mit Lösungen für die Untersuchung intestinaler 

Absorptionsvorgänge die in vivo Situation ausreichend genau wiedergibt, stellt diese 

Methode keine realistische Applikationsart für Aerosole dar, da die menschliche Luft-

Blut Schranke beim gesunden Patienten nur mit einem ausgesprochen dünnen 

Flüssigkeitsfilm bedeckt ist, der nur den hundertsten Teil der Dicke üblicher 

Flüssigkeitsschichten in submersen Zellkulturen ausmacht. Realitätsnah lassen sich 

jedoch Calu-3 Zellen als Modelle des Bronchialepithels, und primäre humane 

alveolare Epithelzellen als Modell der alveolaren Bereiche der Lunge, ohne 

flüssigkeitsgefülltes apikales Kompartiment kultivieren 

Im zweiten Teil der Arbeit wurde mittels solcher an der Luft-Grenzschicht kultivierter 

zellulärer Modelle untersucht inwiefern die Applikation als Lösung oder in Form eines 

trockenen Pulveraerosols den Transport von Arzneistoffen beeinflusst. Nach 

Deposition trockener Aerosolformulierungen auf Luft-Grenzschicht kultivierte Zellen 

konnten signifikant schnellere Resorptionsvorgänge gemessen werden Obwohl die 

angewandte Applikation mittels einer Insufflator Spritze an sich schon eine sinnvolle 

Verbesserung von Transportexperimente an Modellen der Luft-Blutschranke darstellt, 

berücksichtigt die Insufflator Spritze nicht alle Aerosol Charakteristika. Vor allem im 

Falle von Aerosolen mit Laktose Partikeln als Wirkstoffträger war die Insufflator 

Spritze nicht in der Lage die Separation der mikronisierten Arzneistoffkristalle von 

den wesentlich größeren Laktose Trägern zu bewerkstelligen. Um auch diese 

Prozesse wirklichkeitsnah zu simulieren wurde im dritten Abschnitt der Arbeit ein 

zellkompatibler Kaskaden-Impaktor entwickelt. In diesem war es möglich sowohl eine 

realistische Auftrennung der Aerosole nach der Partikelgröße als auch die Deposition 

der einzelnen Partikelfraktionen auf Luft-Grenzschicht kultivierte Zellmonolayer nach 

zu ahmen. 
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3   Abbreviations 

 

AIC Air interface culture 

AID Air interface deposition 

CF Cystic fibrosis 

EVOM Epithelial Volt Ohm Meter 

GLP-1 Glucagon-like-peptide 1 

hAEpC Human alveolar epithelial cells 

HSA Human serum albumin 

HGH Human growth hormone 

HL (number) Human lung (number of the isolation) 

HPLC High pressure liquid chromatography 

IgG Immunglobuline G 

IL-8 Interleukine-8 

IPL Isolated perfused lung 

LIC Liquid interface culture 

LID Liquid interface deposition  

LRP Lung resistance protein 

MDR Multi drug resistance 

MMAD Mass median aerodynamic diameter 

MSLI Multi stage liquid impinger 

pAEpC Porcine alveolar epithelial cells 

PBS Phosphate buffered saline 

PTH Parathyroide hormone 

rAEpC Rat alveolar epithelial cells 

TEER Transepithelial electrical resistance 

TF Transferrin 

TJ Tight-junctions 

 



 

6 

 

4   Definitions 

 

In the following chapters four abbreviations are frequently used. The terms “air and 

liquid interface culture” describe two different methods of cell cultivation, whereas the 

similar terms “air and liquid interface deposition” refer to two different methods to 

bring drugs in contact with the surface of epithelial cell culture models for the purpose 

of epithelial transport experiments. 

 

Air interface culture - AIC 

Only few cells of epithelial origin are growing in vivo on an air interface. In case of 

models of intestine, colon, vagina or other epithelia which are usually in contact with 

aqueous environment the submersed culture reflects the in vivo situation. However, 

for modelling of epithelia which are normally in contact with the air submersed culture 

doesn’t mimic the in vivo situation. Therefore it was tried to cultivate some cell types 

on semipermeable membranes without a fluid filled apical compartment. In this 

culture model only the basolateral compartment is filled with cell culture medium. To 

avoid hydrostatic pressure the fluid level in the basolateral compartment must be 

lower than the cell monolayer. Control of the cell growth by light microscopy as well 

as by electrical resistance measurement is limited. Apical secreted substances like 

mucus or surfactant are accumulated and not washed away during feeding. 

 

Liquid interface culture - LIC 

Liquid interface culture describes the cultivation of cells under fluid layers. The most 

cells need a fluid filled apical compartment. Furthermore culture as well as 

experimental handling is easier if a fluid filled apical compartment is available. In 

dependency of the used filter insert system fluid layers with a thickness between 400 

and 600 µm are covering the cells. All secreted substances are distributed in the 

apical liquid compartment and mucosubstances are removed by changing of the 

medium. 
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Figure 4-1 Schematic representation of AIC and LIC on semipermeable filtermembranes. In the 

AIC (left) the cells grow on the air, in the LIC (r ight) the cells are covered with cell culture 

medium. 

 

Air interface deposition - AID 

During air interface deposition dry aerosol particles are deposited on the surface of 

cell monolayers. The deposition can be done by a spatula, an insufflator syringe, or 

with the aid of impingement systems. Air interface deposition is widely used in 

environmental toxicology but more or less unknown in pharmaceutical aerosol 

research. Air interface deposition is the sole possibility to bring cells in contact with 

original particles without dispersing them first in a liquid medium. Properties like 

radicals on the surface, zeta potentials, diameter or surface structure are conserved 

and may be significantly different compared to the same particle dispersed in 

aqueous medium. 

 

Liquid interface deposition - LID 

In case of liquid interface deposition solutions or suspensions are applied in the 

apical compartment of a cell culture insert. Liquid interface deposition is possible on 

air interface cultivated cells as well as on liquid interface cultivated cells. It is 

important to distinguish between cultivation and deposition. 
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Figure 4-2 AID and LID in comparison. AID is accomp lished with a Penncentury ® insufflator 

syringe. 

 

In summary four different combinations of cultivation and deposition techniques are 

possible: 

� LIC / LID: The widely used submersed transport experiment, dissolved or 

suspended drug are applied in submersed cell culture systems. 

� LIC / AID: Dry particles in the solid state are deposited on the surface of the fluid 

filled apical compartment. Wetting, dissolution and/ or sedimentation occur after 

deposition. In contrast to LIC / LID some particle properties can be conserved and 

influence especially dissolution velocity. 

� AIC / LID: Cells which were cultivated without a fluid filled apical compartment 

were blanket with a drug solution or suspension. Typical features of the air 

interface cultivated cells like presence of mucus are conserved in parts. 

� AIC / AID: Dry particles in the solid state are deposited on a dry cellular surface. 

All properties of the particle formulations are conserved. The contact between the 

particles and the cell is as close as possible. AIC / AID seems to reflect the in vivo 

situation after powder inhalation in the most realistic manner. 
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5   General introduction 
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Bur M, Henning A, Lehr C-M, Alveolar epithelial cell culture – a useful tool in aerosol 

drug delivery research, Respiratory Drug delivery X; Biological, Pharmaceutical, 

Clinical, and Regulatory Issues Relating to Optimized drug Delivery by Aerosol; Boca 

Raton Resort and Club, Florida, April 23-27, 2006. 

 

Bur M, Bock U, Haltner-Ukomadu E and Lehr CM; In vitro Models for Pulmonary 

Drug Absorption", in K. Bechtold-Peters; H. Luessen (ed.) "Pulmonary Drug 

Delivery", Editio Cantor Verlag, Aulendorf, (2007), pp.58-81. 
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5.1   Background 

The year 2006 marks two important events for the pulmonary drug delivery research. 

At first metered dose inhalers celebrate their 50th birthday, and secondly Exubera® – 

the inhalable insulin – came onto the market. But nevertheless, inhalation is still an 

underutilized route of drug delivery. Even if medicine application via the lung has 

been in clinical use since the earliest days of medical history and aerosolized 

medications were particularly popular at the end of the 19th century (especially 

Asthma cigarettes, containing stramonium leaves with atropine-like effects) only less 

than 50 different drugs are permitted as inhalable formulation at the moment. Even 

though inhalation drug therapy is applied since thousands of years, in most of the 

cases the pure drugs and no formulations are permitted for application in the lung. 

Solely lactose, water and sodium chloride are auxiliary materials which can be used 

for the formulation of medical aerosols. Sustained release, which is widely used in 

oral drug delivery, is not realized yet in inhalation therapy. 

However in recent years, the lung has been studied more and more as a possible 

route of administration for the treatment of systemic diseases, such as diabetes 

mellitus. The lung provides direct access, thin resorption barrier, enormous surface 

area, and relatively low enzymatic activity, which all together are in favour of 

systemic absorption of drugs. In a foreseeable future, we will see not only more 

efficacious inhaled therapies for respiratory diseases, but also the introduction onto 

the market of aerosols for gene therapy and the treatment of systemic diseases. 

Especially missing knowledge about the processes on the air-blood barrier and the 

lack of safety data are constraining the development of new innovative inhalative 

medicines. Furthermore, the lung as a major port of entry has developed a system to 

prevent the invasion of unwanted airborne particles from the environment into the 

body. Airway geometry, humidity, mucociliary clearance and alveolar macrophages 

play a vital role in maintaining the sterility of the lung and consequently are obstacles 

for aerosol medicines. 
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5.2   Structure and function of the lung 

In this chapter the anatomy of the human lung as place of drug administration is 

elucidated. Mainly anatomical features which are of relevance for drug absorption are 

described in more detail. As one of the primary interfaces between the body and the 

environment, the respiratory system is constantly exposed to airborne particles, 

potential pathogens and toxic gases in the inspired air. As a result, a sophisticated 

respiratory host defence system, present from the nostrils to the alveoli, has evolved 

to clear offending agents. The system comprises mechanical (i.e. air filtration, cough, 

sneezing, epithelial tightness and mucociliary clearance), chemical (antioxidants, 

antiproteases and surfactant lipids) and immunological defence mechanisms. From a 

drug delivery perspective, the components of the defence system represent barriers 

that must be overcome to ensure efficient drug deposition and absorption from the 

respiratory tract. 

5.2.1    Anatomy of the human respiratory organ 

The fundamental function of the lung is the distribution of the inspired air and the 

expulsion of the gaseous waste product CO2 from the body. Atmospheric air is 

pumped in and out regularly through a system of pipes, called conducting airways, 

connecting the alveolar gas exchange region with the outside of the body. About 85% 

of the total lung volume consist of gas exchange parenchyma (alveolar sacs, alveoli, 

and alveolar capillary network), and about 6-10% of conducting airways (bronchi and 

bronchioles). The remaining part of the lung consists of nervous and vascular tissue 

[1]. The conducting airways, which are composed of the nasal cavity and associated 

sinuses, the pharynx, larynx, trachea, bronchi and bronchioles, have to filter, heat 

and humidify the inspired air. Below the larynx the trachea, a pipe about 10 to 12 cm 

long and 2 cm wide is located. Its wall is fortified by cartilage rings. At its lower end, 

the trachea divides in an inverted Y into the two main bronchi, one each for the left 

and the right lung. From the end of the trachea to the periphery of the airway tree, the 

airways repeatedly branch dichotomously into two daughter branches with smaller 

diameters and shorter length than the parent branch [2]. For each new generation of 

airways, the number of branches is doubled and the cross-sectional area is 

exponentially increased. The conducting region of the airways generally constitutes 

generation 0 (trachea) to 16 (terminal bronchioles). 
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The respiratory region, where gas exchange takes place, generally constitutes 

generation 17-23 and is composed of respiratory bronchioles, the alveolar ducts, and 

the alveolar sacs (see Figure 5-1). 

 

 

 

Figure 5-1 Model of human airway system assigned to  generations of symmetric branching 

from trachea (generation 0) to the alveolar region (generations 15–23), ending in alveolar sacs. 

Modified after [2]  

 

5.2.2    Major components of the lung – barriers fo r drug 

absorption 

The lung epithelium can be divided in two parts according to function and 

localisation. 

5.2.2.1   Epithelium 

The air-blood barrier of the gas exchange area is composed of the alveolar epithelial 

cells (surface area 140 m2) on one side and the capillary bed (surface area 130 m2) 

on the other side of a thin basement membrane. The extensive surface area of the 

air-blood barrier in combination with its extreme thinness (0.1-0.5 µm) permits rapid 

gas exchange by passive diffusion. The airway epithelium provides a tight ciliated 
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barrier that clears the airways from deposits in the airway mucus, prevents 

indiscriminant leakage of water and solutes into the airways, secretes components 

for the airway lining fluid and mucus layers and modulates the response of 

inflammatory cells, vessels, and smooth muscle. The bronchial epithelium is 

composed of seven different cell types, i.e. goblet cells, basal cells, ciliated cells, 

brush cells, serous cells, Clara cells, and neuroendocrine cells [3]. The epithelium 

lining the terminal bronchioles is columnar or cuboidal and is composed of ciliated 

cells and Clara cells. In the alveolar region, mainly two cell types are present: the 

epithelial type I and II cells. The squamous type I cell covers approximately 96% of 

the alveolar surface area and has an average cell thickness of 0.26 µm. 

Characteristically the alveolar type I cell has a large cytoplasmic volume and displays 

only few cellular organells. These morphometric features are favorable for gas 

exchange and for drug transport. About 3% of the alveolar surface is covered by the 

much smaller cuboidal type II cells, which synthesize and secrete surface active 

materials [4]. The apical membranes of the epithelial cells are joined by tight 

junctions that divide the cell membranes into the functionally distinct apical and 

basolateral domains. Tight junctions (TJ) represent the most apical cell-cell contacts 

in epithelial and many endothelial cell sheets and are important for their barrier 

function [5]. In addition, tight junctions act as a kind of fence maintaining the specific 

lipid and protein composition of apical and basolateral membrane domains in 

polarized epithelia. In freeze-fracture electron micrographs tight junctions appear as 

branched beaded strands of particles that fuse the outer leafs of the plasma 

membranes of opposing cells. Occludin [6] and claudins [7] were identified as the 

major integral membrane proteins forming the continuous tight junction strands. The 

junctional adhesion molecule, a member of the Ig superfamily of single 

transmembrane domain proteins, was found associated with tight junction strands [8]. 

Both, occludin and claudins have four transmembrane domains and their N- and C-

terminal ends are located in the cytoplasm. This topology generates two extracellular 

loops that are supposed to provide the intercellular interaction sites [9]. The C-

terminal domain of occludin and claudins serves as a binding site for a complex set 

of proteins including a number of PDZ-domain proteins (ZO-1, ZO-2, ZO-3), kinases 

and phosphatases [10]. This association with different signalling molecules indicates 

that tight junctions are more than simple barriers separating compositionally distinct 

environments. In contrast, they appear to be involved in the reception and conversion 
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of signals from and to the cell interior [11]. As a consequence of the existence of tight 

junctions we will find a higher transepithelial electrical resistance (TEER) in an 

epithelium with a high density of tight junctions then in a leaky epithelium. The body 

knows example for both cases. On the one hand the mammalian proximal tubule with 

less than 10 Ohm*cm2, on the other hand the mammalian urinary bladder with an 

electrical resistance from more then 10,000 Ohm*cm2. The human lung epithelium is 

also a tight epithelium (≈ 3,000 Ohm*cm2), because it has to resist the loss of water 

from the body in the airspace. 

5.2.2.2   Endothelium 

The lung is unique among tissues in that about 40% of total cellular composition is 

capillary endothelium, which is the largest capillary endothelial surface in the body. 

The alveolar-capillary endothelium has specialized organell-free domains to provide 

a particularly thin (from 200 nm down to 30-35 nm) barrier for gas exchange [12]. 

Furthermore, the endothelial cells have a relatively large number of endocytotic 

vesicles [13]. Until now the endothelial barrier for the drug absorption is not sufficient 

investigated. 

5.2.2.3   Interstitium and basement membrane 

The interstitium of the lung, the extracellular and extravascular space between cells 

in the tissue, contains a variety of cells (fibroblasts, myofibroblasts, pericytes, 

monocytes, lymphocytes, plasma cells), collagen, elastic fibers, and interstitial fluid. 

Its main role is to separate and bind together the specific cell layers in the tissue. The 

main drainage pathway for the interstitial fluid is the lymphatic vessels. The outer 

border of the interstitium is defined by the epithelial and endothelial basement 

membranes. The basement membrane modulates the movement of fluid, molecules, 

particles and cells from the air space and blood into the interstitium. However, 

plasma proteins and most solutes are thought to diffuse relatively unhindered through 

it [14]. The light microscopic pictures Figure 5-2 to Figure 5-6 give an impression 

about the filigree structure of the human lung.  
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Figure 5-2 Cross-section through alveolar sacs in t he deep lung. The flat cell bodies of the type 

I cells are dominating. 

 

 

Figure 5-3 Overview picture of a bronchioles. Muscl e cells and tissue circumvent the highly 

folded bronchial epithelium. 
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Figure 5-4 Section through bronchial tissue of the upper airways. Connective tissue and 

cartilage provide a basis for the ciliated bronchia l epithelium. 

 

 

Figure 5-5 Cross-section through a blood vessel in the deep lung. The diffusion distance for 

gas and drug molecules is very short. 
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Figure 5-6 Columnar ciliated cells as a part of the  mucociliary escalator in the upper airways. 

 

5.2.2.4   Epithelial lining fluids 

Solid drug particles delivered to the respiratory tract need to be wetted and dissolved 

before they can be absorbed and exert their therapeutic activity. Although the 

humidity in the lung is near 100%, the volume of the epithelial lining fluid is small [15]. 

The thickness of the lining fluid in the airways is estimated to 5-10 µm and is 

gradually decreased along the airway tree until the alveoli, where the thickness is 

estimated to be about 0.01-0.08 µm [14]. The volume and composition of the 

epithelial lining fluid is controlled by active ion transport and passive water 

permeability of the respiratory epithelium. Like the gastric mucosa, the airway 

mucosa is coated with a layer of phospholipids, which in association with mucins 

lubricate and protect the epithelium from offending agents. In the alveolar region, the 

surface fluid consists of a thin biphasic layer of plasma filtrates overlaid by a 

monolayer of pulmonary surfactant [14]. The lung surfactant is synthesized and 

secreted by the alveolar type II cells and comprises a unique mixture of 

phospholipids and surfactant-specific proteins [4]. The characteristic lamellar bodies 

in the type II cells serve as storage depot for the surfactant before this is secreted 

onto the alveolar surface [16]. Surfactant forms an insoluble film at the surface of the 
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alveolar lining fluid and decreases the surface tension in the alveoli. Thereby the 

extensive alveolar air-liquid interface is stabilized, which promotes lung expansion on 

inspiration and prevents lung collapse on expiration. The lung surfactant has also 

been found to enhance local pulmonary host defense mechanisms by serving as a 

barrier against adhesion of microorganisms and to enhance phagocytosis by alveolar 

macrophages [17]. The lung surfactant undergoes a constant dynamic process of 

turnover and metabolism, including removal by the mucociliary escalator, 

phagocytosis and recycling. In drug development it should be considered that 

complex interactions between drugs and lung surfactant are described. Balakrishnan 

et al. [18] found for example a 107-fold increased solubility of griseofulvin in presence 

of surfactant. The role of surfactant in pulmonary drug delivery is not yet completely 

understood. 

 

 

Figure 5-7 Schematic drawing of the bronchial and a lveolar physical absorption barrier.  
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5.2.2.5   Alveolar macrophages 

The alveolar macrophages are found on the alveolar surface. These phagocytic cells 

play important roles in the defence mechanisms against inhaled bacteria and 

particles that have reached the alveoli. Macrophages arrive to alveoli via the 

capillaries after production within bone marrow from monocytes. Particles deposited 

in the lung of rats have been demonstrated to be phagocytized by alveolar 

macrophages within a few hours [19]. The macrophages are cleared from the alveoli 

to the bronchioles by the lining fluid, and then from the airways by the mucociliary 

escalator. 

Alveolar macrophages can be on the one hand trapped within the connective lung 

tissue of the alveolar walls and on the other hand mobile and scavenge for particles 

which are trapped within the surfactant layer. However, the lung tissue macrophages 

and alveolar macrophages share several functions: defense against pathogens, 

ingestion and destruction of potential allergens, clearing of particulates, and 

presentation of antigens to T cells. 

The alveolar macrophage can leave the lungs by ascending in the layer of mucus on 

the 'mucociliary escalator' to the larynx or by passing into alveolar lymphatics.  

Since harvesting of these cells by bronchoalveolar lavage was first described in 

1961, alveolar macrophages have been extensively investigated. This population is 

the predominant cell type within the alveolus, and undoubtedly serves as the first line 

of host defense against inhaled organisms and soluble and particulate molecules. 

Early studies focussed on this endocytic role and delineated the cells' phagocytic and 

microbicidal capacities. More recent investigations demonstrated an extensive 

synthetic and secretory repertoire including lysozyme, neutral proteases, acid 

hydrolases and O2 metabolites. In addition, the complex immunoregulatory role of the 

macrophage has also been appreciated. These cells have been shown to produce a 

wide variety of pro- and anti-inflammatory agents including arachidonic acid 

metabolites of the cyclooxygenase and lipoxygenase pathways, cytokines which 

modulate lymphocyte function and factors which promote fibroblast migration and 

replication. 
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5.2.2.6   Mucociliary clearance 

The mucociliary clearance is probably the most important mechanical defence in the 

lung. The lung is continually at risk of exposure to noxious environmental agents and 

respiratory pathogens. A sophisticated series of defence mechanisms have been 

developed to protect the airways from these insults, keeping the lungs clean and 

allowing gas exchange to occur. The conducting airways are protected by local 

mucociliary defence mechanisms that involve the integration of ciliated epithelium, 

periciliary fluid and mucus. Mucus acts as a physical and chemical barrier on to 

which particles and organisms adhere. Cilia lining the respiratory tract beat in a 

regular coordinated manner, propelling overlying mucus from the airways to the 

oropharynx where it is either swallowed or expectorated. Seiler et al. [20] measured 

for the mucociliary escalator a velocity of approximately 80 µm/s in healthy patients. 

But also regulation of periciliary fluid is essential to optimize mucociliary clearance 

and to provide a milieu in which airway antimicrobial agents are effective. Disruption 

of the interplay between ciliated epithelium, periciliary fluid and mucus may occur in 

diseases such as cystic fibrosis and asthma.  

The thickness of the mucus layer varies along the conducting airways, being about 8 

µm in the trachea and about 2 µm in the bronchioles [21]. The mucus layer is 

continuous in the larger human bronchial airways, but consists of discontinuous spots 

in the smaller bronchi and bronchioles. The surface liquids of the ciliated airways are 

composed of two phases: one aqueous periciliary phase of epithelial lining fluid close 

to the cell surface, in which the cilia beat, and one gel phase of mucus on top of the 

aqueous phase. A phospholipid layer between the phases lowers the surface tension 

between them. Mucus is secreted primarily from the serous cells of submucosal 

glands and from goblet cells, and is composed of water (95%), glycoproteins 

(mucins) (2%), proteins (1%), inorganic salts (1%) and lipids (1%) [22]. Regulation of 

the water content is of significant importance to maintain the optimal viscoelastic 

properties of the mucus.  The first barrier to absorption of drugs is the airway surface 

liquid, including mucus. The thickness of this layer will determine the concentration of 

the drug in solution, and therefore its rate of entry into the tissue. The ability of the 

drug to penetrate the mucus barrier depends on particle charge, solubility, 

lipophilicity and size. 
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5.2.2.7   Metabolic processes in the lung 

The lung serves as a primary site for xenobiotic metabolism. Alveolar macrophages 

and bronchial epithelial cells are part of over 40 different cell types in lung tissue with 

different levels of metabolic competence [23, 24]. Compared to the liver and 

intestine, the lung is thought to play a minor role in the metabolism of drug 

compounds. Although a number of CYP isoforms have been identified in human lung 

tissue, a comprehensive survey of most human pulmonary xenobiotic metabolizing 

enzymes in different human lung tissue compartments has not been performed and 

the characterization of drug metabolizing functions of the different cell types is a 

complex task. Generally, all metabolizing enzymes found in the liver are also present 

in the lung, although in lesser amounts. Especially the proteolytic activity in the 

epithelial lining fluid and interstitial fluid is of major interest when aiming at pulmonary 

delivery of therapeutic peptides [25]. Even if the lung is thought to have a lower 

proteolytic activity than many other organs relatively high activity of exopeptidases 

(e.g. aminopeptidases) have been found in rat bronchoalveolar lavage fluid, on the 

surfaces of the cells lining the respiratory tract and in the pulmonary circulation [26]. 

However, the lung is the only organ through which the entire cardiac output passes; 

and in consequence of this high pulmonary blood flow, the metabolic capacity of the 

lung should not be ignored. 
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5.2.3   Mechanisms of drug transport across the air-blood b arrier 

Deposition of particles of a size >0.5 mm mass median aerodynamic diameter 

(MMAD) takes place via inertial impaction and gravitational sedimentation, with 

smaller particles being deposited due to Brownian diffusion. The site of deposition of 

an aerosol in the bronchial tree depends on the inspiratory manoeuvre and the 

characteristics of the aerosol. The depth of the deposition is inversely related to the 

inspiratory flow rate with high inspiratory flow increasing central deposition. Whole 

lung deposition also increases when a breath-holding pause after inspiration is 

included. The particles are deposited after inhalation on an epithelial barrier. 

5.2.3.1   Small molecule drug absorption 

The function of an epithelium is the control of resorption or secretion of substances. 

Some substances like water can diffuse through the epithelium by using the 

intercellular space, but most substances need an energy dependent transport. 

 

Figure 5-8 The five main transport routes for drug transport across an epithelium. Adopted 

from [27] 
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Five main transport pathways (Figure 5-8) are distinct: 1) transcellular diffusion; 2) 

paracellular diffusion; 3) carrier-mediated uptake at the apical domain followed by 

passive diffusion across the basolateral membrane 4) transcytosis 5) active secretion 

or efflux. Paracellular passive diffusion means the transport between two cell bodies, 

without any participation of cellular structures. This pathway is only possible for water 

itself and small water soluble molecules. Transcellular diffusion is also a passive, 

concentration driven process, but in this case the molecule has to penetrate and to 

diffuse along the membrane of the cell. Carrier mediated uptake at the apical domain 

followed by passive diffusion across the basolateral membrane is an important case 

for many physiological compounds but also for some drugs. With the aid of pumps, 

carriers and so one, molecules can be transported against a concentration gradient. 

Transcytosis is the preferred pathway for large molecules and is mediated by the 

cellmembran which includes the molecules in a cave and transports this cave 

through the cell body. Finally active secretion, also referred to as efflux, is an ATP 

dependent process, which results in a net inhibition of the passive, concentration 

driven absorptive transport of some drugs.  

5.2.3.2   Transport proteins 

For some transport processes, the epithelial cell needs specialized transport 

proteins. These transport proteins can be divided in two groups: 

Carriers which generate their energy by antiport or by cotransport of a second 

molecule, and pumps which need a separate energy source. 

Carriers are further subdivided in symporter and in antiporter. Mainly in epithelia with 

a high resorption or secretion power like the epithelium of the Henley loop a lot of 

different transport proteins are expressed. In the human lung, exchanger for sodium, 

potassium, and calcium were detected. ß- Receptors as well as cardiac glycoside 

sensitive transporters were investigated. In the alveolar region of the human lung the 

function of these transporters is the maintenance of an osmotical gradient, which is 

the source for the water equilibrium in the lung [28]. 
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5.2.3.3   Efflux systems 

Multidrug resistance (MDR)- phenomena, caused by cellular efflux systems have 

been identified as an important element of various biological delivery barriers, such 

as the intestinal mucosa or the capillary endothelium of the brain and their relevance 

for the efficacy of drug therapy is meanwhile widely accepted [29]. It may therefore 

also be expected that the presence of some membrane associated transporter 

molecules, such as P-glycoprotein (P-gp) and the multidrug resistance protein 

associated protein-1 (MRP1), also play a role in limiting drug absorption through the 

pulmonary epithelium. To date, the exact role of the lung resistance related protein 

(LRP) in MDR is unclear. Delivered drugs may be without any effect if they are 

transported out of the cells after a very short period of time. Vice versa, inhibition of 

efflux systems, such as P-gp, is discussed as a way to increase drug absorption and 

efficacy. In the human lung there is so far no direct evidence for P-gp-mediated drug 

efflux, but in human lung cell culture the P-gp has already been found. Therefore, 

one might infer that P-gp-like efflux systems are also existent in the human lung in 

vivo. 

 

5.2.3.4   Blood circulation 

After overcoming all these drug absorption barriers the drug molecules reach the 

blood and can be transported in the different regions of the human body. Two 

different circulatory systems, the bronchial and the pulmonary, supply the lungs with 

blood. The bronchial circulation is a part of the systemic circulation and is therefore 

under high pressure. It receives only small parts of the cardiac output and supplies 

the airways (from the trachea to the terminal bronchioles), pulmonary blood vessels 

and lymph nodes with oxygenated blood and nutrients. In addition, it seems to be 

important for the distribution of systemically administered drugs to the airways and 

for the absorption of inhaled drugs from the airways. The pulmonary circulation 

comprises an extensive low-pressure vascular bed, which receives the entire cardiac 

output. It perfuses the alveolar capillaries to secure efficient gas exchange and 

supplies nutrients to the alveolar walls. Alveolar deposited drugs are transported via 

the pulmonary blood circulations very fast in the different regions of the body. 
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5.3   Biological models for assessment of pulmonary 

drug absorption 

In order to respond to the flood of new active ingredients currently being generated 

by combinatorial chemistry or molecular biological synthesis, selection procedures 

able to filter out rapidly and economically those drug candidates with the highest 

development potential are required. This necessitates the measurement of 

fundamental biopharmaceutical parameters very early in the drug development 

process. Any pharmaceutically active agent must be able to overcome the body's 

natural protective mechanisms. A broad variety of biological barriers can be 

simulated in the laboratory by cell monolayer models. Apart from ethical aspects, the 

advantage of these in vitro test systems is that permeability studies can be performed 

at high throughput rates under controlled and reproducible conditions. The validity of 

such a model is ultimately reflected in its ability to accurately predict the behaviour of 

an active ingredient at the corresponding in vivo barrier. 

 

 

Figure 5-9 In vitro test systems – the golden mean between manageability and explanatory 

power. 
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5.3.1   Isolated perfused organs 

Experiments utilising a whole isolated perfused lung (IPL) for the examination of 

various hemodynamic parameters such as pulmonary blood flow and arterial 

pressure-flow relationships have been reported for over 80 years. Experimental 

conditions such as temperature, pH, hydrostatic and osmotic pressures within the 

pulmonary perfusate can be readily controlled. The most common species used in 

IPL models is the rat. If the lung is totally isolated from the animal then the vascular 

system that remains intact is that which serves only the pulmonary region, and hence 

airway to perfusate transfer of solute will reflect predominantly the pulmonary 

transport properties and less that of the tracheo-bronchial tree. IPL was used for a lot 

of resorption studies, Byron and Patton [30] investigated the kinetic of pulmonary 

drug absorption of synthetic polypeptides and Manford [31] showed a good 

correlation between the drug permeability in the isolated perfused rat lung and in 

16HBE14o- cells. However, the functional enzymatic equipment of the whole isolated 

perfused lung is advantage and disadvantage at the same time. Only in this ex vivo 

system we can simulate with highest touch to reality deposition and absorption of 

pharmaceutical relevant aerosols. The most important disadvantage of the IPL model 

is the relatively short tissue viability of two or three hours. After this space of time 

Saldias et al. [32] observed a functional breakdown of the epithelium. 

 

5.3.2   Cell culture systems 

5.3.2.1   Immortalized cell cultures 

High-throughput screening (HTS) is the most important process of testing a large 

number of diverse chemical structures against disease targets to identify 'hits'. HTS is 

characterized by its simplicity, rapidness, low cost, and high efficacy. As a 

multidisciplinary field, HTS involves automated operation-platforms, highly sensitive 

testing systems, specific cell based screening models (in vitro), abundant 

components libraries and data acquisition and processing systems [33]. However, a 

major limiting factor in useful application of HTS is that the quality of the information 

generated is totally dependent on the quality of the cell system used. Ideally, freshly 

isolated human tissue samples should be used for such studies. In the case of cell 

types present in blood this is relatively easy to obtain but for other tissues biopsy 

material is required. There are obvious problems in routinely obtaining human tissues 
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for experimental purposes and even where it is possible it is often difficult to obtain 

tissue from properly matched groups of individuals. This is further compounded by 

the fact that the exact composition of cell types is likely to vary between different 

biopsies, even if they are ostensibly derived in the same manner. Such differences 

will have a significant impact on the results of the analyses. Immortalized human cell 

cultures have been used in an attempt to overcome the problems of tissue 

availability. 

 

5.3.2.1.1   Bronchial cell cultures 

Calu-3 

Calu-3 is an adenocarcinoma cell line derived from a 25-year old Caucasian male. It 

has been suggested to express tight barrier properties on the basis of 

electrophysiological studies. The presence of tight-junctions (TJ) proteins was 

confirmed by immunoblotting and functional properties of the monolayers were 

studied by measurements of transepithelial electrical resistance and mannitol 

permeability [34]. Calu-3 cells have been the subject of relatively many 

investigations. After a few investigations about the equipment of the cells with ion 

channels or receptors, the cell line was relatively fast used as tool for transport 

studies. Mathia et al. [35] studied the permeability characteristics of Calu-3 to passive 

and actively transported drugs and they correlated the data with other in vitro models 

and rat lung absorption in vivo. Air interface cultured Calu-3 cells grown on collagen-

coated permeable filter supports formed "tight" polarized and well differentiated cell 

monolayers with apical microvilli and tight-junctional complexes. Solute permeability 

was dependent on lipophilicity and inversely related to molecular size. Calu-3 cells 

actively transported amino acids, nucleosides and dipeptide analogs. The 

permeability characteristics of Calu-3 cells correlated well with primary cultured rabbit 

tracheal epithelial cells in vitro, and the rate of drug absorption from the rat lung in 

vivo. Also the transport pathway of zinc insulin across the Calu-3 cell monolayer was 

elucidated. Transport of zinc insulin was found to be higher in the absorptive 

direction, than in the secretory direction [36]. Beyond the use as transport model 

Calu-3 cells can be also employed for the investigation of metabolic processes. 

Borchard et al. [37] cultivated Calu-3 cells on microporous filters at an air interface for 

16-18 days, and incubated the cells with the glucocorticosteroid budesonide. With the 



 

28 

aid of mass spectrometry of cell extracts fatty acid conjugates of budesonide were 

detected. It seems that Calu-3 cells are able to store budesonide by intracellular 

conjugation. Therefore, it was suggest using of the Calu-3 cell model as a tool for 

examination of local pharmacokinetics and metabolism of glucocorticosteroids at the 

bronchial epithelium. Glucosteroids were also employed for a study about the efflux 

system P-glycoprotein in Calu-3 cells [38]. The P-gp modulation efficacy of 

glucosteroids was determined by its ability to increase the accumulation of the P-gp 

substrate rhodamine 123 in the cells. Because of the high tightness and the easy 

cultivation conditions, Calu-3 cells are widely used for transport studies. Although 

Calu-3 is a bronchial (i.e. not alveolar!) epithelial cell line, it is often used also as a 

model of the pulmonary epithelium in general. To increase the simulation of the in 

vivo conditions, the cultivation of the cell lines under air interface culture conditions 

was tried. ZO-1, as indicator for the tight- junctions, was found in cells grown in both 

AIC and LCC (liquid culture conditions). However, only LCC-grown cells exhibit 

protein ZO-1 localized as a zonula-occludens-like regular belt connecting 

neighbouring cells. The presence of typical tight-junctions has been confirmed by 

electron microscopy. Immunostaining for occludin, claudin-1, connexin 43 and E-

cadherin has demonstrated intercellular junction structures only in the cells in LCC. 

These morphological findings have been paralleled by higher transepithelial electrical 

resistance values and similar fluxes of the hydrophilic permeability marker 

fluorescein-Na under LCC compared with AIC conditions [39]. Also the expression of 

mucus could be observed only after AIC culture. To visualize the presence of mucus 

on the apical surface of air interface cultivated Calu-3 cells acid mucosubstances 

were stained with alcian blue. Slices of cell monolayers were fixed in a formaldehyde 

solution (4% in PBS) at room temperature for 30 min. Samples were then dehydrated 

through a graded series of ethanol at 70%, 96%, and 100% at room temperature and 

kept in xylene until embedding. For mounting, samples were soaked in paraffin wax 

at 60°C over night and embedded the next day. Embed ded samples were cut in four-

micrometer thin sections with a microtome (Leica Microsystems, Nussloch, Germany) 

and mounted on glass slides at room temperature. Samples were dewaxed with 

xylene and were rehydrated by a graded series of ethanol at 100%, 96%, and 70%, 

for 10 min each, at room temperature. The sections were washed with de-ionized 

water and stained with Alcian Blu (3% 30 min, room temperature). After washing the 

sections with de-ionized water, the sections were counterstained with fast nuclear red 
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(5 min, room temperature) and dehydrated through a graded series of ethanol at 

70%, 96% and 100% and xylene. Sections were stored in xylene until mounting with 

cover slips using Roti-Histokitt. The sections were examined with an Axiovert XY light 

microscope (Carl Zeiss, Jena, Germany) at 400x magnification. Strongly acidic 

mucosubstances stain blue, nuclei pink to red, and the cytoplasm pale pink. 

 

 

Figure 5-10 Light microscopic picture of Alcian blu e staining of Calu-3 cells 

after 8 days air interface culture (left side) or l iquid interface culture (right 

side). 

 

Cell morphology as well as mucus production can be influenced by the culture 

conditions. Air interface culture yields higher production of mucosubstances. 

Furthermore air interface cultivated cells show a more bronchial-like structure. 

Columnar cell bodies and mucus secreting cells characterize the AIC culture. In 

contrast, liquid interface culture causes real monolayers with flattened cells. Mucus 

seems to be washed away. 

 

16HBE14o- 

Another human bronchial epithelial cell line 16HBE14o-, immortalized by virus 

transformation, shows also significant transepithelial resistance and can be used for 

transport studies. In comparison to the Calu-3 cells the 16HBE14o- cell line seems to 

express more P-glycoprotein, lung resistance-related protein (LRP) and caveolin-1. 
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Immunocytochemical staining showed expression of P-gp localized at the apical 

membrane of 16HBE14o- cell layers. The flux of rhodamine 123 across cell layers 

exhibited a greater appearance permeability (Papp) value for the secretory direction. 

This asymmetry disappeared in the presence of verapamil, a P-gp inhibitor. The 

16HBE14o- cell line may be a suitable candidate for an in vitro model for mechanistic 

studies of drug transport processes involved in the smaller airways, because it shows 

drug transport systems that are also present in the human bronchus in vivo [40]. 

 

CFBE41o- 

The CFBE41o- cell line was generated by transformation of cystic fibrosis tracheo-

bronchial cells with SV40 and is homozygous for ∆F508-CFTR over multiple 

passages in culture and expresses a number of proteins relevant in the context of 

pulmonary drug absorption for example P-gp, LRP and caveolin-1 [41]. Cystic fibrosis 

(CF) is a lethal genetic disease caused by a mutation in the cystic fibrosis 

transmembrane conductance regulator (CFTR), which mainly functions as a chloride 

channel. The main clinical symptoms are chronic obstructive lung disease with 

excessive inflammation and chronic infection, which is responsible for most of the 

morbidity and mortality associated with CF, and pancreatic insufficiency. The 

CFBE41o- cell line should be useful for studies in the scope of CF gene transfer or 

alternative treatment using small drug molecules and gathering further knowledge 

about the disease on the cellular level, without the need for primary culture.  

 

5.3.2.1.2   Alveolar cell cultures 

A549 

The A549 cell line possesses type II cell phenotype and has been widely used as a 

system to study the regulation of pulmonary surfactant synthesis. However, cultured 

A549 cells do not undergo transition to form a phenotype similar to that of a type I 

cell. Furthermore, although the A549 cell has received some attention as a 

monolayer culture for the study of solute transport, its cell architecture and barrier 

properties are quite distinct from that of a type I cell monolayer. Thus, an in vitro cell 

model of the human alveolar epithelium possessing the relevant qualities of the 

alveolar epithelium in situ is definitely needed. The A549 line is a human lung 
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adenocarcinoma derived by explant culture from the peripheral airways of a 

Caucasian male with lung cancer. A549 cells show a very high mannitol permeability 

coefficient, and approached the characteristics of cell-free filters alone. The 'leaky' 

monolayers formed by the latter airway carcinoma cell lines failed to show significant 

immunostaining of the tight junction protein ZO-1. The leaky formation of tight 

junctions in A549 is also the cause for very low transepithelial electrical resistances 

by these monolayers. This suggests that the formation of peripheral rings of ZO-1 

staining is related to the formation of tight junctions and that these junctions are the 

probable reason why these monolayers have low permeability to mannitol. A549 

exhibited staining for desmoplakin, but no staining of E-cadherin. The functional tight 

junction deficits of the A549 cell line seem to preclude its use in permeability studies. 

Nevertheless, some authors have also reported comparatively high TEER values and 

permeability rates for filter-grown A549 cells, which might be a question of optimized 

culture conditions [42]. 

The use of immortalized cell lines is limited by the fact that in many cases cells loses 

their characteristics during in vitro culture and will senesce after a certain number of 

cell divisions. Immortal cell lines from primary cultures are not a perfect 

representation of the original cells in primary culture. Because of these problems a 

great majority of researchers resort to the use of primary non-cancer cell lines. 

 

5.3.2.2   Primary cell cultures 

5.3.2.2.1   Animal origin 

Rat cells 

Because of the relatively easy isolation protocol and the trouble-free availability, rat 

alveolar epithelial cells are the most commonly used primary animal cell model for 

pulmonary research. Protein transport across alveolar epithelial cells in rat primary 

culture has been investigated with special regard to the transport mechanisms and 

the underlying pathways by Kim et al. [43]. Primary cultured rat pneumocyte 

monolayers grown on tissue culture-treated polycarbonate filters were used for this 

study. These monolayers comprise alveolar epithelial type I-like cells and develop 

high barrier resistance (>2,000 Ohm*cm2). 
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Porcine cells 

The advantage of porcine based cell culture lies in its ease of availability, because 

animals intended for slaughter can be used. In other words the source material is no 

problem and no more additional animals will have die for research purposes. 

Furthermore the morphology of porcine mucosa seems to be comparable with human 

epithelial cells especially with regard of electrophysiology and enzymatic equipment 

[44]. Steimer et al. [45] characterized porcine alveolar epithelial cells (pAEpC) in 

primary culture in consideration of morphology, bioelectrical and biochemical 

properties. pAEpC were shown to grow in confluent monolayers with functional tight 

junctions. Maximum transepithelial electrical resistance of about 2,000 Ohm*cm 2 

were observed and the presence of tight-junctional proteins could be proven. The 

differentiation from type II cells to type I like cells could be monitored by 

immunostaining of alveolar specific cell markers like caveolin for type I and surfactant 

protein C for type II cells. First transport experiments with sodium fluorescein showed 

the qualification of the pAEpC model for pulmonary drug absorption studies. 

 

5.3.2.2.2   Human origin 

Lung alveolar epithelium in vivo is composed of two specialized epithelial cell types, 

the squamous alveolar epithelial type I cell, which constitutes approximately 93% of 

the alveolar epithelial surface area, and the surfactant-producing cuboidal alveolar 

epithelial type II cell. Current evidence supports the hypothesis that type II cells serve 

as the sole progenitor for the type I cells in vivo [4, 46]. Accordingly, isolated type II 

cells in culture lose their characteristic phenotype and acquire over a 5- to 10-day 

period morphological and biochemical markers characteristic of type I cells. 

Morphological changes during differentiation include the generation of monolayers 

with high transepithelial electrical resistance (>1,000 Ohm*cm2) and a loss of 

microvilli, an increase in the cell surface area and the development of thin 

cytoplasmic attenuations extending away from a protruding nucleus. The isolation of 

type II cells predominantly from rat and rabbit lung tissue and their culture over time 

leading to a primary culture of type I - like cells is now an established technique for 

different purposes. Although the isolation of primary human alveolar cells has been 

described before [47] human primary cells are not commonly used as an in vitro 
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model for the air-blood barrier. The isolation of human alveolar type II epithelial cells 

(hAEpC) and their primary culture was described by Elbert et al. [48], which results in 

confluent monolayers capable of generating tight-junctional complexes and high 

transepithelial electrical resistance. The morphological cell change from an type II 

phenotype to an type I - like cell phenotype over time of culture was described by 

Fuchs et al. [49]. Moreover, the formation of characteristic plasma membrane 

structures termed caveolae and the synthesis of their major structural protein, 

caveolin-1, was observed in these cells. The caveolae membrane system is of 

interest because of its potentially important role in macromolecule transport across 

the air-blood barrier of the lung [50] including both the clearance of endogenous 

protein from the airspace and the absorption of inhaled therapeutic protein. Primary 

type II alveolar cells are isolated from human non-tumour lung tissue, which is 

obtained from patients undergoing lung resection. The isolation is performed 

according to a protocol described by Elbert et al.[48], for a detailed description of the 

isolation procedure please see chapter 6.2.2. Formation of functional tight-junctional 

complexes and generation of confluent monolayers after a few days in culture was 

routinely determined by measuring TEER using an electronic voltmeter. After 

reaching confluence the alveolar monolayers of hAEpC typically revealed TEER 

values of 1,000-2,000 Ohm*cm2 on day 6-8 post seeding. The formation of tight 

junctions was also routinely monitored by immunofluorescent staining for zonula 

occludens protein-1 [49]. 
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6  Human primary epithelial cells for investigation of 

transport processes of macromolecules over the 

pulmonary epithelium 

 

Abstract:  

In this study, we investigated bi-directional fluxes (i.e., in absorptive and secretive 

directions) of human serum proteins [albumin (HSA), transferrin (TF), and 

immunoglobulin G (IgG)] and peptides/proteins of potential therapeutic relevance 

[insulin, glucagonlike peptide-1 (GLP-1), growth hormone (GH), and parathyroid 

hormone (PTH)] across tight monolayers of human alveolar epithelial cells (hAEpC) 

in primary culture. Apparent permeability coefficients (Papp; ×10−7 cm/s, mean±S.D.) 

for GLP-1 (6.1 ± 0.9 (absorptive) versus 1.9 ± 0.5 (secretive)), HSA (2.4 ± 1.0 versus 

0.2 ± 0.3), TF (0.9 ± 0.2 versus 0.3 ± 0.1), and IgG (0.4 ± 0.2 versus 0.2 ± 0.1) were 

all strongly direction-dependent, i.e., net absorptive, while PTH (2.2 ± 0.3 versus 

1.8 ± 0.8), GH (8.3 ± 1.2 versus 9.0 ± 3.4), and insulin (0.8 ± 0.2 versus 0.7 ± 0.4) 

showed no directionality. Trichloroacetic acid precipitation analysis of tested 

molecules collected from donor and receiver fluids exhibited very little degradation. 

This is the first study on permeability data for a range of peptides and proteins across 

an in vitro model of the human alveolar epithelial barrier. These data indicate that 

there is no apparent size-dependent transport conforming to passive restricted 

diffusion for the tested substances across human alveolar barrier, in part confirming 

net absorptive transcytosis. The obtained data differ significantly from previously 

published reports utilising monolayers from different species. It can be concluded that 

the use of homologous tissue should be preferred to avoid species differences. 

 

Parts of this chapter have been published in: 

Bur M, Huwer H, Lehr CM, Hagen N, Guldbrandt M, Kim KJ, Ehrhardt C; Assessment 

of transport rates of proteins and peptides across primary human alveolar epithelial 

cell monolayers; European Journal of Pharmaceutical Sciences. 2006 Jun; 28(3): 

196-203. 
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6.1   Introduction 

Although immunocytochemical and biochemical approaches have been used to 

demonstrate the presence of serum proteins (e.g. albumin, transferrin and 

immunoglobulin G) on the epithelial surface of the distal air space and in 

bronchoalveolar lavage fluid, the ability of proteins to traverse the alveolar epithelium 

remains a subject of debate [28, 51]. Besides the discussion in the physiological 

arena, the lung is discussed as potential alternative route for the systemic delivery of 

proteins and peptides [30]. The goals of this part of the thesis were to assay the in 

vitro permeability characteristics of a series of drug compounds across monolayers of 

primary cultured human alveolar epithelial cells (hAEpC) grown on tissue culture-

treated filter inserts. These monolayers comprise alveolar epithelial type I-like cells 

and develop high barrier resistance (>1,500 Ohm*cm2) [48]. The drug compounds 

used for this study were proteins and peptides having different structural features 

with a molecular weight (MW) range from 3,300 to 150,000 Da. Permeability data of 

these proteins across hAEpC monolayers has not been published previously; 

however, some of the compounds have been used in transport experiments in other 

in vitro and/or in situ models [28, 51, 52]. For glucagon-like peptide-1 (7-37) (GLP-1) 

and parathyroid hormone (1-38) (PTH) no permeability studies are available at all, 

while reports on the permeability of insulin, growth hormone (GH), serum albumin 

(HSA), transferrin (TF) and immunoglobulin G (IgG) are available to a certain extent. 

Since all proteins under investigation are either endogenous compounds or 

derivatives thereof, it is likely that interactions with the corresponding receptors 

occur, which, in some cases, might result in internalisation and transcytosis. 

Therefore, a brief summary on receptor expression pattern, especially in lung tissues, 

has been added, where data was available. 
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6.2   Materials and methods 

6.2.1   Proteins 

Human insulin (I0259), fluorescein isothiocyanate (FITC)-labelled human serum 

albumin (A7016) and FITC-labelled immunoglobulin G (F9636) were obtained from 

Sigma (Deisenhofen, Germany). 125I-labelled parathyroid hormone (1-38) (T-055-

12) and glucagon-like peptide-1 (7-37) (T-028-13) were purchased from Phoenix 

Pharmaceuticals (Karlsruhe, Germany) and 125I-labelled growth hormone 

(NEX100050) and transferrin (NEX2120050) came from PerkinElmer (Rodgau, 

Germany). 

 

6.2.2   Cell culture 

Primary human type II alveolar epithelial cells (hAEpC) were isolated from nontumour 

lung tissue which was obtained from patients undergoing lung resection. The use of 

human material for isolation of primary cells was reviewed and approved by the 

respective local ethical committees (State Medical Board of Registration, Saarland). 

Isolation was performed according to a slightly modified protocol previously 

described by Elbert et al. [48]. Briefly, the chopped tissue was digested using a 

combination of 150 mg trypsin type I (T8003, Sigma) and 0.641 mg elastase 

(LS002279, CellSystems, St. Katharinen, Germany) in 30 ml BSS (balanced salt 

solution, 137 mM NaCl, 5.0 mM KCl, 0.7 mM Na2HPO4•7 H2O, 10 mM HEPES (N-[2-

hydroxy-ethyl]piperazine-N´-[2-ethanesulfonic acid]), 5.5 mM glucose, penicillin (100 

units/ml) and streptomycin (100 µg/ml), pH 7.4) for 40 min at 37°C. The alveolar 

epithelial type II cell population was purified by a combination of differential cell 

attachment, percoll density gradient centrifugation and by magnetic cell sorting (Anti-

HEA (EpCAM) MicroBeads, Miltenyi Biotec, Bergisch Gladbach, Germany). The 

isolated type II cells were then seeded at a cell density of 600,000 cells/cm2 on 

collagen/fibronectin coated polyester filter inserts (Transwell® Clear 3470, 6.5 mm in 

diameter, 0.4 µm pore size, Corning, Wiesbaden, Germany) using SAGM medium 

(CC-3118, Cambrex Bio Science, Verviers, Belgium) containing penicillin (100 

units/ml) and streptomycin (100 µg/ml) and with addition of low serum (1% foetal calf 

serum). Formation of functional tight-junctional complexes and generation of 

confluent monolayers was routinely determined by measuring transepithelial 
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electrical resistance using an epithelial voltohmmeter (EVOM, WPI, Berlin, Germany). 

After reaching confluence, hAEpC monolayers typically revealed TEER values of 

1,500 – 3,500 Ohm*cm2 on day 7-8 post seeding. Formation of tight junctions was 

also routinely monitored by immunolabelling for the tight junctional protein, occludin. 

The average yield of type II cells was 0.8 * 106 cells/g tissue (n = 19) with a purity of 

type II cells in the range of >90%, determined by staining for alkaline phosphatase. 

 

6.2.3   Transport studies 

Transport experiments were conducted using hAEpC monolayers from two different 

isolations on day 7 or 8, when TEER values peaked. Both sides of cell layers were 

washed twice with pre-equilibrated bicarbonated Krebs-Ringer buffer (KRB, 15 mM 

HEPES (N-[2-hydroxy-ethyl]piperazine-N´-[2-ethanesulfonic acid]), 116.4 mM NaCl, 

5.4 mM KCl, 0.78 mM NaH2PO4, 25 mM NaHCO3, 1.8 mM CaCl2, 0.81 mM MgSO4, 

5.55 mM glucose, pH 7.4). Transwell® Clear grown cell layers were then placed in 

new 24- well cluster plates containing 800 µl per well of KRB prewarmed to 37°C. 

After 60 min of equilibration, transport experiments were initiated (i.e., t = 0) by 

replacing the donor fluid with 220 µl (apical) or 820 µl (basolateral) of KRB containing 

the respective drugs. The initial concentration in the donor fluid was assayed by 

drawing 20 µl samples immediately after the initiation of flux measurements. Samples 

(100 µl) were drawn serially from the receiver compartment at t = 30, 60, 120, 180 

and 240 min. After each sampling, fresh transport buffer of an equal volume was 

returned to the receiver side to maintain a constant volume. At the end of the 

transport experiment, again 20 µl samples were drawn from the donor fluid and 

assayed for its drug content. Each experiment was performed in duplicates using 4-6 

cell layers in either apical-to-basolateral (AB) or basolateral-to-apical (BA) direction, 

using cells from two different isolations. In order to assess the integrity of cell layers 

during the flux experiment, TEER was measured before and after each transport 

experiment. Flux (J) was determined from steady-state appearance rates of each 

compound in receiver fluid. The apparent permeability coefficient, Papp, is calculated 

according to the equation 

Papp = J / (A * C i) 

where Ci is the initial concentration of the substance under investigation in the donor 

fluid and A the nominal surface area of cell layers (0.33 cm2) utilised in this study. 
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6.2.4   Sample analysis 

Radioactivity 

Samples of 125I-labelled proteins (GLP-1, PTH, GH and TF) were collected in 

scintillation vials and 2 ml of Ultima Gold scintillation cocktail (PerkinElmer) were 

added. Activity of the samples was assessed on a Tri-Carb liquid scintillation counter 

(PerkinElmer). 

 

Fluorescence 

Fluorescence of samples of FITC-labelled HSA and IgG were analysed in 96-well 

plates using a fluorescence plate reader (Cytofluor II, PerSeptive Biosystems, 

Wiesbaden, Germany) at excitation and emission wavelengths of 485 and 530 nm, 

respectively. 

 

ELISA 

Samples containing insulin were analysed by an enzyme-linked immunosorbent 

assay (ELISA, Active Insulin, Diagnostic Systems Laboratories, Sinsheim, Germany) 

according to the manufacturers instructions. 

 

Data analysis 

Data are presented as mean ± standard deviation (n) where n is the number of 

observations. Differences among group means were determined by one-way analysis 

of variance followed by post-hoc Newman-Keuls procedures, p < 0.05 was taken as 

the level of significance. 

 

Stability of the protein label 

Binding efficiency of the label was assessed by trichloroacetic acid (TCA) protein 

precipitation. Briefly, an equal volume of 20% TCA was added to the respective 

protein sample and left for 30 min incubation on ice. Subsequent to centrifugation (15 

min at 4°C), the supernatant was carefully removed,  300 µl cold acetone were added 

and the sample was centrifuged again (5 min at 4°C) . Then, supernatant and pellet 

were individually assessed for either radioactivity or fluorescence. In none of the 

investigated samples unbound label could be detected. 
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6.3   Results of peptide transport studies 

6.3.1   Glucagon-like peptide 1 

Glucagon and related peptides constitute a family included in the proglucagon 

molecule, which is identical in sequence in the pancreas, intestine and brain. In gut L 

cells the C-terminal portion of proglucagon is predominantly processed to glucagons-

like peptide-1 (GLP-1) and GLP-2. Further processing of GLP-1 produces the 

truncated and amidated forms of the peptide; GLP-1(1-36) (MW 4,111 Da) amide, 

GLP-1(7-36) amide (MW 3,297 Da) and GLP-1(7-37) (MW 3,355 Da), which all retain 

biological activity. GLP-1 receptors have been reported to be located in pancreatic 

endocrine cells, gastric glands, and in adipocyte, lung and brain membranes [53]. 

Upon binding to its receptor, GLP-1 and -2 stimulate insulin secretion in a 

glucosedependent manner and have significant effects on gastrointestinal motility 

and secretion. In the lung, GLP-1 receptors have been determined in rat and human 

in submucosal glands of the trachea, the smooth muscle of pulmonary arteries and in 

cells considered to be type II pneumocytes [54-56], where they are responsible for 

mucus secretion, pulmonary smooth muscle relaxation and increased surfactant 

secretion [57, 58]. Here, for the first time bidirectional transport studies with GLP-1(7-

37) were performed. Twelve monolayers of hAEpC for absorptive (i.e. apical to 

basolateral) transport experiments and 12 monolayers for secretive (i.e. basolateral 

to apical) transport experiments were used from isolations HL 193 and HL 194. 

Respective mean TEER values were 1,965 ± 589 Ohm*cm2 (absorptive) and 

1,966 ± 411 Ohm*cm2 (secretive). GLP-1(7-37) showed a significant net absorption 

across the monolayers. 
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Figure 6-1 Transport of 125I GLP-1(7-37) across hAE pC monolayers [cm/sec]. The filled bar 

represents absorptive ( n =12), the empty bar secretive direction ( n = 12). 

 

6.3.2   Parathyroid hormone 

Parathyroid hormone (PTH) is secreted by the parathyroid glands and is a major 

mediator of calcium and phosphate metabolism through its interactions with 

receptors in kidney and bone. It has been purified extensively and appears to be a 

protein containing 84 amino-acid residues, a sequence of which about 33 to 35 are 

necessary for biological activity. PTH binds with high affinity to PTH1 and PTH2, 

members of the superfamily of G protein-coupled receptors. Northern blot analysis of 

normal human tissues revealed a limited tissue distribution in kidney, lung, placenta 

and liver [59]. In the rat, PTH receptor-1 transcripts are highly expressed in PTH 

target tissues, kidney and bone. Receptor transcripts, however, also are expressed in 

many other tissues, including aorta, adrenal gland, bladder, brain, cerebellum, 

breast, heart, ileum, liver, lung, skeletal muscle, ovary, placenta, skin, spleen, 

stomach, uterus and testes [60]. PTH2 receptor amino acid sequence is most similar 

to PTH1, but unlike the PTH1 receptor, it is activated by PTH and not by PTH-related 

peptide (PTHrH). PTH2 receptor messenger RNA is abundantly expressed in arterial 

and cardiac endothelium and at lower levels in vascular smooth muscle. It is also 
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abundant in the lung, both within bronchi and in the parenchyma, and is present 

within the exocrine pancreas [61]. Parathyroid hormone-related protein (PTHrP) is a 

growth inhibitor for rat alveolar type II cells and could be a regulatory factor for rat 

alveolar epithelial cell proliferation after lung injury [62]. PTHrP also suppressed cell 

proliferation to approximately 80% of the control level and increased surfactant 

protein A production in human H441 respiratory epithelial cells [63]. PTH(1-34) has 

shown an absolute bioavailability of ~34% in in vivo study in rats making it a 

promising candidate for pulmonary drug delivery [64, 65]. Here, for the first time 

bidirectional transport studies with PTH(1-38) (MW 4,458 Da) were performed. Ten 

monolayers of hAEpC for absorptive transport experiments and 11 monolayers for 

secretive transport experiments were used from isolations HL 186 and HL 189. 

Respective mean TEER values were 2,982 ± 1,310 Ohm*cm2 (absorptive) and 

2,938 ± 800 Ohm*cm2 (secretive). PTH(1-38) showed no significant directionality. 
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Figure 6-2 Transport of 125I PTH(1-38) across hAEpC  monolayers [cm/sec]. The filled bar 

represents absorptive ( n =10), the empty bar secretive direction ( n = 11). 
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6.3.3   Insulin 

A two-chain polypeptide hormone produced by the ß-cells of pancreatic islets. Its 

molecular weight is approximately 5,800 Da. The ∀- and ∃-chains are joined by two 

interchain disulfide bonds. The ∀-chain contains an intrachain disulfide bond. Insulin 

regulates the cellular uptake, utilisation, and storage of glucose, amino acids and 

fatty acids and inhibits the breakdown of glycogen, protein and fat. Because of the 

high potential of inhalational application, permeability characteristics of insulin have 

been widely investigated in different available in vitro models. The results of these 

investigations, however, are not always very consistent. Pezron and co-workers 

reported a net secretion across Calu-3 bronchial epithelial cells [36], while other 

groups, using 16HBE14o- cell layers, observed a mere paracellular transport without 

any directionality [66]. Insulin receptors are expressed in lung tissue, but do not seem 

to be involved in the processing of the protein [67-69]. The relatively low systemic 

bioavailability of inhaled insulin might be due to enzymatic degradation in the air 

space or phagocytosis by alveolar macrophages. Across hAEpC monolayers insulin 

did not exhibit a significant (P < 0.05) asymmetry in permeability. In addition, the 

observed Papp values were in the same order of magnitude as reported for FITC-

labelled dextran (MW 4,000 Da) across hAEpC monolayers by Elbert et al. [48], 

indicating that no active transport process is involved. The Papp value in absorptive 

direction was 7.66 ± 1.48 * 10-8 cm/s, in the secretive direction it was 7.23 ± 3.55 * 

10-8 cm/s. Cells from isolations HL 79 and HL 85 were used. Mean TEER values 

were 1,430 Ohm*cm2 for the absorptive and 1,220 Ohm*cm2 for the secretive 

direction. The comparably lower permeability values could be allegeable to a 

possible degradation of the protein. 
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Figure 6-3 Transport of insulin across hAEpC monola yers [cm/sec]. The filled bar represents 

absorptive ( n = 8), the empty bar secretive direction ( n = 8). 

 

6.3.4   Growth hormone 

The protein encoded by this gene is a member of the somatotropin/prolactin family of 

hormones which play an important role in growth control. The gene, along with four 

other related genes, is located at the growth hormone locus on chromosome 17 

where they are interspersed in the same transcriptional orientation; an arrangement 

which is thought to have evolved by a series of gene duplications. The five genes 

share a remarkably high degree of sequence identity. Alternative splicing generates 

additional isoforms of each of the five growth hormones, leading to further diversity 

and potential for specialisation. This particular family member is expressed in the 

pituitary but not in placental tissue as is the case for the other four genes in the 

growth hormone locus. Mutations in the gene or deletions of the gene lead to growth 

hormone deficiency and short stature. The isoform I has 191 amino acid residues 

and a molecular weight of 22,125 Da. Action of GH is regulated upon binding to the 

membrane-bound growth hormone receptor (GHR) and/or the soluble growth 

hormone binding protein (GHBP). The GHR has been found in adult rabbit lung [70], 

rat foetal and neonatal lung (together with GHBP) [71], inflamed normal human 
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airway cells [72], but not in foetal human lung [73] and adult and foetal murine lung 

[74]. The GHR has also been found in Caco-2 cells [75], for which previously an 

asymmetric, but P-glycoprotein inhibitor-dependent absorption of GH has been 

reported [76]. Since 15 years, considerably successful studies have been conducted 

to administer GH via the pulmonary route [77, 78]. Regional deposition as well as 

formulation had significant impact on the absolute bioavailability, which has been 

found to vary between 8% to 45% [79, 80]. In our bidirectional transport studies with 

GH eight monolayers of hAEpC were used for absorptive transport experiments and 

12 monolayers for secretive transport experiments. The cells were cultured from 

isolations HL 192 and HL 193. Respective mean TEER values were 

1,702 ± 598 Ohm*cm2 (absorptive) and 2,243 ± 460 Ohm*cm2 (secretive) HG 

showed no significant directionality. 
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Figure 6-4 Transport of 125I growth hormone across hAEpC monolayers [cm/sec]. The filled 

bar represents absorptive ( n =8), the empty bar secretive direction ( n = 12). 
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6.3.5   Albumin 

Albumin is a soluble, monomeric protein which comprises about one-half of the blood 

serum protein. Albumin functions primarily as a carrier protein for steroids, fatty 

acids, and thyroid hormones and plays a role in stabilising extracellular fluid volume. 

It is a globular unglycosylated serum protein of molecular weight 65,000 Da. The 

human albumin gene is 16,961 nucleotides long from the putative 'cap' site to the first 

poly(A) addition site. It is split into 15 exons which are symmetrically placed within 

the 3 domains that are thought to have arisen by triplication of a single primordial 

domain. Albumin is synthesised in the liver as preproalbumin which has an N-

terminal peptide that is removed before the nascent protein is released from the 

rough endoplasmic reticulum. The product, proalbumin, is in turn cleaved in the Golgi 

vesicles to produce the secreted albumin. Active processing of albumin has been 

reported for different species and tissues. Of particular interest are studies utilising 

monolayers of human intestinal epithelial Caco-2 cells [81], rat alveolar epithelial [43] 

and endothelial cells [82]. A concentration dependent absorption of albumin could 

also be observed from the intact lung [28]. Although the underlying mechanisms are 

still element of discussion, a series of hypothesises has been confirmed 1) albumin 

transport is dominated by the transcytosis pathway, 2) this mode of transport is 

saturable within physiological concentrations, 3) binding of albumin to a limited 

number of high-affinity sites on the epithelial and endothelial cell may activate 

albumin transport by the release of caveolae from the membrane, and 4) the bulk of 

the albumin within the transport vesicles is in the fluid phase [82-84]. It should be, 

however, noted that most experiments were conducted using serum albumin of 

bovine origin and not from the respective donor species of the tissue. In the 

presented study, transport studies of human serum albumin were conducted using 10 

monolayers of hAEpC for absorptive transport experiments and 8 monolayers for 

secretive transport experiments. The monolayers were cultured from isolations HL 

184 and HL 195. Respective mean TEER values were 4,278 ± 1,779 Ohm*cm2 

(absorptive) and 2,056 ± 535 Ohm*cm2 (secretive). In Figure 6-5, the Papp values for 

albumin are depicted. The relatively high error might be ascribed to the low 

concentrations in the samples which were close to the resolution limit of the 

fluorescence reader. Nevertheless, a noted tendency to net absorption can be 

observed. 
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Figure 6-5 Transport of FITC albumin across hAEpC m onolayers [cm/sec]. The filled bar 

represents absorptive ( n =10), the empty bar secretive direction ( n = 8). 

 

6.3.6   Transferrin 

Transferrin is a glycoprotein with an approximate molecular weight of 76,500 Da. It is 

thought to have been created as a result of an ancient gene duplication event that led 

to generation of homologous C- and N-terminal domains each of which binds 1 ion of 

ferric iron. The function of this encoded protein is to transport iron from the intestine, 

reticuloendothelial system and liver parenchymal cells to all proliferating cells in the 

body. In addition to its function in iron transport, this protein may also have a 

physiologic role as granulocyte/pollen-binding protein (GPBP) involved in the removal 

of certain organic matter/allergens from serum. Receptors for TF have been found on 

Caco-2 cells [85] and also in human bronchial epithelial cells [86] and rat alveolar 

type II epithelial cells [87]. In all cases, the receptor is mostly expressed on the basal 

aspect of the cells. In Calu-3 cells, TF was found to be secreted mostly from the 

apical site [88], while significant net absorption was observed in rat alveolar epithelial 

monolayers. Intriguingly, an enhanced absorption of TF-conjugates has been 

demonstrated, despite the basal localisation of the transferrin receptor [89, 90]. Eight 

monolayers of hAEpC for absorptive and 9 for secretive transport experiments were 
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used from isolations HL 186 and HL 189. Respective mean TEER values were 

2,976 ± 1,257 Ohm*cm2 (absorptive) and 3,336 ± 661 Ohm*cm2 (secretive). 

Transferrin showed a significant net absorption across the monolayers. 
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Figure 6-6 Transport of 125I transferrin across hAE pC monolayers [cm/sec]. The filled bar 

represents absorptive ( n = 8), the empty bar secretive direction ( n = 9). 

 

 

6.3.7   Immunoglobulin G 

IgG antibody molecules have biological properties such as transport across the 

maternal-foetal membranes, interaction with the classical complement system and 

fixation to heterologous tissues resided in the Fc fragment of IgG. IgG molecules 

have a molecular weight of 150,000 Da and a sedimentation coefficient of 7S. Four 

subclasses of IgG have been identified on the basis of antigenic and structural 

difference residing in the heavy chains designated r1, r2, r3 and r4. Exactly how IgG 

crosses epithelial barriers to function in host defence and mucosal immunity remains 

unknown [91, 92]. The MHC class I-related Fc receptor (FcRn) has been found on 

the epithelial surfaces of the intestine [93], bronchi [94] and alveoli [95] and might 

play an important role in IgG transcytosis. The transport of human IgG was 

conducted using 8 monolayers of hAEpC for each absorptive and secretive direction. 
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The monolayers were cultured from isolations HL 191 and HL 196. Respective mean 

TEER values were 1,523 ± 274 Ohm*cm2 (absorptive) and 1,767 ± 463 Ohm*cm2 

(secretive) In Figure 6-7, Papp values for IgG transport are shown. The relatively high 

error might be ascribed to the low concentration in the samples which were very 

close to the resolution limit of the fluorescence reader. IgG showed a slight but not 

significant net absorption across hAEpC monolayers. 
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Figure 6-7 Transport of FITC IgG across hAEpC monol ayers [cm/sec]. The filled bar represents 

absorptive ( n = 8), the empty bar secretive direction ( n = 8). 

 



 

50 

 

6.4   Summary 

In this study, transport characteristics of a series of proteins and peptides across 

monolayers of polarised primary human alveolar epithelial cells (hAEpC) have been 

assessed. Permeability data of these molecules across hAEpC monolayers has not 

been reported to date; however, some of the compounds have been used in 

transport experiments in other in vitro and/or in situ models [28, 51, 52]. For 

glucagon-like peptide-1(7-37) (GLP-1) and parathyroid hormone (1-38) (PTH) no 

permeability studies are available at all, while reports on the permeability of insulin, 

growth hormone (GH), serum albumin (HSA), transferrin (TF) and immunoglobulin G 

(IgG) are available to a certain extent.  

Of the investigated compounds, GLP-1, HSA, TF and IgG showed net absorptive 

transport behaviour, while PTH, GH and insulin exhibited no distinct directionality. 

None of the compounds revealed net secretion or any significant breakdown during 

the flux studies. Due to the high potential of inhalational application as opposed to 

injections required, permeability characteristics of insulin have been widely 

investigated in several respiratory in vitro models. The results of these investigations, 

however, are not always very consistent. Pezron and co-workers reported net insulin 

secretion across Calu-3 bronchial epithelial cells [36], while other groups, using 

16HBE14o- cell layers, observed symmetric transport [66], suggesting paracellular 

diffusion of insulin.  

As for GH transport, receptors for GH (GHR) have been reported in Caco-2 cells [75], 

where previously an asymmetric, but P-glycoprotein inhibitor-dependent, absorption 

of GH was shown [76]. Over the last 15 years, the absorption of GH via the 

pulmonary route has been reported with relatively good bioavailability (8 - 45%) [78]. 

Regional deposition as well as formulation appears to make significant impact on the 

absolute bioavailability of GH [79, 80]. 

Non-passive (i.e., transcytotic) transport of albumin across monolayers of human 

intestinal epithelial Caco-2 cells [81], rat alveolar epithelial cells [43], and endothelial 

cells [82] has been reported. A concentration-dependent absorption of albumin was 

also shown for the intact rat lung [28]. Although the underlying mechanisms are slow 

to emerge, it appears that albumin transport is most likely dominated by the 

transcytosis pathway, in that albumin transport saturates with physiological 
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concentrations and that binding of albumin to a limited number of high-affinity sites at 

the caveolae on the epithelial and endothelial cell may constitute albumin transport 

across lung air-blood barrier [82-84]. It should be noted that most experiments were 

conducted using serum albumin of bovine origin, and not homologous type as in our 

studies. Receptors for TF have been found in Caco-2 cells [85], human bronchial 

epithelial cells [86] and rat alveolar type II epithelial cells [90]. In all cases, the 

receptor is mostly expressed on the basal aspect of the cells. In Calu-3 cells, TF was 

found to be net secreted into apical fluid [88], while significant net absorption was 

observed in rat alveolar epithelial cell monolayers [52]. Intriguingly, an enhanced 

absorption of TF-conjugates has been demonstrated, despite the basal localisation of 

the transferrin receptor in Caco-2 and rat pneumocytes [87, 88].  

Exactly how IgG crosses epithelial barriers to function in host defence and mucosal 

immunity remains unclear, although MHC class I-related Fc receptors (FcRn) are 

reported to be expressed at the epithelial barriers of the intestine [93], bronchi [94] 

and alveoli [95]. Transcytosis of IgG mediated by FcRn across rat alveolar epithelial 

cell monolayers and other barriers has been published recently[95]. 

When permeability data were compared with molecular weight values, no clear cut 

“inverse” relation can be found (Figure 6-8; Figure 6-9; Table 1). 

 

Figure 6-8 Correlation between molecular weight and  rate of basolateral to apical transport. 
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Figure 6-9 Correlation between molecular weight and  rate of apical to basolateral transport. 

 

This may be related to involvement of non-passive transport processes, at least for 

some of the macromolecules. In general, the observed permeability values of the 

peptides and proteins followed the same trend were and in the same order of 

magnitude as those observed in an in vitro model of rat pneumocyte monolayers (see 

Table 1). Apparent differences in the absorption profile (i.e., poor correlation between 

human vs. rat monolayer studies) might be attributable to the use of homologous 

proteins used in the present study, as opposed to non-homologous proteins (e.g., 

bovine serum albumin and human growth hormone) used in the rat monolayer 

studies. 
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Table 1 Values for molecular weight, isoelectric po int (IEP) and apparent permeability ( Papp) 

across monolayers of hAEpC. Comparative values acro ss rAEpC monolayers (rat) are taken 

from Matsukawa et al. [52] 

 

This study, for the first time, shows transport characteristics of a series of proteins 

and peptides across monolayers of polarised primary human alveolar epithelial cells. 

The obtained data differ significantly from previously published reports utilising 

monolayers from different species. It can be concluded that the use of homologous 

tissue should be preferred to avoid species-differences. 
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The liquid interface deposition on epithelial pulmonary cells doesn’t reflect the in vivo 

situation in the healthy lung. In case of utilizing 3460 filter inserts with a surface of 

1.13 cm2 and an apical volume of 500 µl a fluid layer with a thickness of 442 µm 

covers the cells. If the lung in vivo was covered with similar thick fluid layers like in 

the LID experiments the human lung would be filled with 56 litres of fluid (140 m2 * 

442 µm). However, measurement of the fluid volume in the healthy lung figured out 

only 100 ml liquid in the complete lung. Consequently, only fluid layers in the range of 

0.5 to 1 µm covers the lung surface. Thin fluid layers are essential to permit gas 

diffusion and therefore interferences in the fluid regulation in the human lung cause 

always perilous complications. 

Also the resorption of administered pharmaceutical aerosols can be influenced by the 

fluid layers in the lung. Concentration gradients and dissolution rates are two 

parameters which are controlled directly by the fluid volume. In the following chapter 

the influence of the deposition conditions on the transport of drugs across our models 

of the human air-blood barrier were investigated. 
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7  Effect of air versus liquid interface deposition on 

transport of salbutamol sulphate and budesonide 

across pulmonary cell monolayers 

 

Abstract: 

Dry powder aerosol particles are deposited after inhalation on the air-blood barrier of 

the lung, represented by the bronchial and/or alveolar epithelium. Our aim was to 

study the influence of drug solubility, fluid volume, and particle size on transport rate 

across pulmonary cell monolayers in dependency of air or liquid interface aerosol 

deposition. 

Different aerosol powder formulations containing budesonide and salbutamol 

sulphate, respectively, were used to represent each a poorly and a highly soluble 

drug. The aerosol powders were either administered in the solid state by an 

insufflator syringe or an impinger on air exposed monolayers of human pulmonary 

epithelial cells, or first dispersed in a physiological buffer and then administered with 

a pipette to the cells, covered by a larger apical liquid volume.  

For the highly soluble salbutamol sulphate, the transport rate is mainly determined by 

the concentration gradient in the donor volume, i.e. smaller liquid volumes increases 

drug transport and drug absorption after air-interface deposition of dry powders is 

significantly higher than after administration of a drug solution. However, if the drug is 

adsorbed on large (> 100 µm) carrier particles absorption after air interface 

deposition was reduced, probably due to too thin liquid layer. 

For the poorly soluble budesonide, the transport rate is mainly limited by solubility 

and wetting of the drug powder, i.e. the difference between air and liquid interface 

deposition is less pronounced, but drug absorption is still significantly improved, if the 

drug is deposited as a micronized powder (< 2 µm) in comparison to larger particles.  

Air interface deposition yields higher transport rates and better reflects the situation 

in vivo than liquid interface deposition. When designing novel in vitro models for the 

simultaneous study of drug deposition and absorption using pulmonary epithelial cell 

cultures, also the aerodynamic properties /deposition behaviour of the particles must 

be adequately addressed.  
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7.1   Introduction 

 

Progress in powder technology as well as in device development nowadays enables 

effective deposition of medical aerosols in the different regions of the lung [96, 97]. 

An enormous surface, low enzymatic activity, thin resorption barrier, and high blood 

flow are the major advantages of the lung as site for local and systemic drug delivery 

[97]. In difference to the intestine, vagina, colon, or the endothelium, the human air-

blood barrier is an air interface epithelium. But this does not mean that it is 

completely dry. Corresponding to its different functions, the lung epithelium is 

covered with a lining fluid of different function and dimensions. The conducting 

airways are covered with a mucus layer which can be divided further in three parts: 

an aqueous sol phase adjacent to the epithelial cells and embedding the beating 

cilia, an overlying viscous gel phase, and on the top of the mucus small amounts of 

surfactant. Special viscoelastic properties and sufficient big volumes of fluid allow the 

embedding and transport of particles to the pharynx. The thickness of the bronchial 

mucus layer has been reported to vary in the range of 20 to 60 µm [21]. 

The situation is however different in the respiratory area of the peripheral lung. 

There, a relatively thick mucus layer like in the bronchial region would inhibit the gas 

exchange. Only 7 to 70 nm of surfactant [15] – a mixture of phospholipids with 

special viscoelastic properties and low surface tension [98] – coats the epithelium in 

the deep lung. Mucus is not present in the deep lung but for small airways Geiser et 

al. [99] reported the simultaneously presence of mucus and surfactant. Simplistic, it 

can be assumed that the bronchial region is covered with a 10 to 100 µm thick highly 

viscous mucus layer and the alveolar region with a 10 to 100 nm low viscous liquid 

layer. 

In consequence, particles deposited in the lung first interact with the lung surface 

liquid layer. This means that i.e. particles with a diameter of 3 µm can be submersed 

in the surface liquid layer in the bronchial region, but at most be wetted in alveolar 

region. In essence, this scenario is sketched in Figure 7-8. Erosion and dissolution, 

which typically control drug release from drugs administered in the solid state and 

maybe rate limiting for drug absorption are limited by the constricted fluid volume. 

Submersed cell culture systems as they are typically used in the pharmaceutical 
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science to study transport processes across e.g. the intestinal epithelium (e.g. Caco-

2 cells) are only of limited relevance for the more or less dry surface of the lung 

epithelium. In this study the influence of air interface deposition (AID) of 

pharmaceutical aerosols on air interface cultured pulmonary cell monolayers on the 

absorption rate was addressed. To reflect the different epithelial structures in the 

bronchial and the alveolar region Calu-3 cells as model for the bronchial part of the 

lung and human primary alveolar epithelial cells for simulating of the air-blood barrier 

in the deep lung [100] were used. Different powder formulations of the highly water 

soluble salbutamol sulphate and the poorly water soluble budesonide were used to 

study the influence of the deposition conditions on the absorption rate across two 

different cell culture models of the upper and lower pulmonary epithelial barrier, 

respectively. 

7.2   Materials and Methods 

7.2.1   Aerosol powders  

Salbutamol sulphate and budesonide in pharmaceutical quality were a kind gift of 

Boehringer Ingelheim (Ingelheim, Germany). As models for different dry powder 

formulations SalbuHEXAL® Easyhaler® (Hexal, Holzkirchen, Germany), Ventilastin® 

Novolizer® (Viatris, Bad Homburg, Germany), and Salbutamol Cyclocaps® 

(Jenapharm, Jena, Germany) were used. All three contain salbutamol sulphate and 

micronized lactose as carrier. 

Easyhaler® BudiHEXAL (Hexal, Holzkirchen, Germany), Cyclocaps® Budesonide 

(Jenapharm, Jena, Germany) and the Autoinhaler® (CT Arzneimittel, Berlin, 

Germany) were selected as different budesonide formulations. 

7.2.2   Aerosol application  

7.2.2.1   Unfractionated powder application with in sufflator syringe  

The DP-4 Dry Powder Insufflator (Penn-Century®, Philadelphia, USA) was used to 

deposit amounts between 1 and 5 mg of powders on the surface of cell monolayers. 

The lactose – drug mixtures were taken out from the reservoirs (Easyhaler®, 

Novolizer®) or the capsules (Cyclocaps®), respectively, and transferred in the holding 

chamber of the DP-4. In case of the Autoinhaler® the ring tablet was pulverized in a 

mortar and the powder sieved through a 500 µm mesh sieve before aerosolisation. A 
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10 ml syringe was used for applying the necessary amount of air to produce small 

puffs of aerosolized powders. 

 

Figure 7-1 DP-4 with air syringe (www.penncentury.c om) 

 

7.2.2.2   Application of size fractionated powders with a multi stage liquid 

impinger  

A multi stage liquid impinger (MSLI) with integrated cell monolayer was utilized to 

separate the carrier lactose from the adhesive drug particles and simultaneously 

deposition of the released drug particles on the cell surface. Filter inserts - containing 

monolayers of Calu-3 cells cultivated on the air interface - were placed directly under 

the fourth stage nozzle of the MSLI (Erweka, Heusenstamm, Germany). Details on 

the construction and validation of the modified impinger are described in chapter 8.3. 

Powder from the generic DPI´s were deposited onto the monolayers after 

aerosolisation for 30 s at 30 L/min from gelatine capsules (Eli Lilly, Indianapolis, IN, 

USA) using a Spinhaler device (Fisons, Bedford, MA, USA). The filter insert was then 

returned to a 12-well plate and placed back into an incubator at 37°C. 

 

 

 

 

 



 

60 

7.2.3   Cell culture  

7.2.3.1   Human alveolar epithelial cells (hAEpC)  

Isolation of primary human type II pneumocytes was performed according to a 

protocol modified from those of Elbert et al. [48] and Ehrhardt et al. [101]. For more 

detailed description of isolation procedure and culture see chapter 6.2.2. Integrity of 

cell monolayers was every second day determined by measuring transepithelial 

electrical resistance using an epithelial voltohmmeter (EVOM, WPI, Berlin, Germany). 

7.2.3.2   Calu-3 cells 

The human adenocarcinoma cell line Calu-3 was obtained from ATCC (Manassas, 

VA, USA). Cells of passage number 38 to 56 were seeded onto Transwell Clear® 

permeable filter inserts at a density of 100,000 cells/cm2. Immediately on seeding, 

cells were grown in 500 µl apical and 1500 µl basolateral media (Eagle’s minimum 

essential medium (PAA, Pasching, Austria) supplemented with 10% foetal bovine 

serum, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 100 µg/ml 

streptomycin and 100 U/ml penicillin) at 37°C in a 5% CO2 incubator. For air interface 

culture 1 day after seeding the apical medium was removed and the basolateral 

medium was reduced to 500 µl. In the liquid condition culture the medium was 

changed every second day. Also the AIC cells were fed one over the other day with 

500 µl medium basolaterally. The cells were cultivated until day 21 after seeding. In 

the LCC culture the tightness of the epithelial barrier was proofed by measuring the 

transepithelial electrical resistance. 

7.2.4   Transport studies 

The transport of salbutamol sulphate and budesonide across the cell monolayers 

was studied after air interface deposition (AID) of powders as well as after application 

of drug solution/suspension. We used hAEpC monolayers with TEER > 

1,000 Ohm*cm2 on days 6 to 9 post plating and Calu-3 cells in the age of 21 days. 

The integrity of the barrier was measured before and after the transport experiments. 

In cases of air interface deposition the complete cell culture medium was removed 

from the system, and only the basolateral compartment was refilled with 500 µl (Calu-

3 cells) or 200 µl (hAEpC) prewarmed Krebs-Ringer solution. In case of MSLI 

deposition the filter inserts were placed after aerosol application back in the culture 

plates and the basolateral compartment was filled with 1,500 µl prewarmed KRB. 
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In all experiments after determined time points up to 4 hours samples of 120 µl were 

taken from the acceptor compartment and the sample volume was refilled with 

prewarmed KRB. At the end of the experiment the cells in the apical compartment 

were lysed with 200 µl DMSO (Sigma, Deisenhofen, Germany) and the apical 

compartment was unified with the basolateral compartment. A sample was taken to 

allow the calculation of the totally administered initial dose. The content of drug in the 

samples was quantified by HPLC. During the transport experiment the cell 

monolayers were agitated using an orbital shaker at constant stirring rate (100 rpm) 

at 37°C under humidified conditions.  

Air interface deposition was performed with the DP-4 insufflator syringe or with the 

MSLI on air interface cultivated cells. The transport of the drugs in solution (liquid 

interface deposition LID) across the monolayers was determined with submersed 

cultivated cell monolayers to which was added to the apical compartment a solution 

(30 µM for budesonide and 1,000 µM for salbutamol sulphate, respectively) of the 

powders in 200 µl KRB. Calculation of the apparent permeability coefficients was 

conducted in the same manner like described in chapter 6.2.3. In all experiments 

without a measurable amount of liquid in the donor compartment the transported 

amount in percent of the administered dose versus the time was plotted. Experiments 

were carried out with at least n = 6 using cells from different passages. 

 

7.2.5   HPLC analytics  

The contain of drug in the basolateral, apical and in the cellular compartment was 

determined on the one hand to get hints on intracellular storage of drug, and on the 

other hand for calculation of the complete administered dose. 

The HPLC system consisted of a Dionex P680 HPLC pump and a Dionex UVD 340U 

detector operating at 277 nm (Dionex, Germering, Germany). Samples were injected 

using an ASI 100 automated sample injector. The analytical column used was a 

LiChrocart RP-18 column (125 x 4 mm i.d., particle size 5 µm, Merck, Darmstadt, 

Germany). 

In case of salbutamol sulphate analytic the mobile phase was triethylamine - 

phosphate buffer pH 6.0 – methanol (90:10, v/v) and the column temperature was 

maintained at 40°C. A constant flow-rate of 1.0 ml/ min was employed throughout the 

analyses. Also the amounts of transported budesonide were analysed by HPLC. The 

same column and HPLC system like in the salbutamol sulphate analytic was used. A 
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more lipophilic mixture of 60% phosphate buffer pH 2.5 and 40% acetonitril was 

chosen as mobile phase. The flow rate was 1.7 ml/min and the temperature of the 

column oven was 40°C. The detection limit for the s albutamol sulphate analytic was 

determined with 25 ng/ml. The robustness of the method was checked in presence of 

proteins (bovine serum albumin and foetal calf serum) as well as in the presence of 

DMSO which is used to dissolve the cells after the transport experiments. In all cases 

an elution of the salbutamol sulphate was observed after 3.2 minutes run time. The 

linearity of the analytic was proofed for the range between 25 ng/ml and 250 µg/ml. 

For budesonide the retention time was 3.7 minutes and the detection limit was 30 

ng/ml and the linearity was proven in the range from 30 ng/ml to 400 µg/ml. DMSO 

and the cell culture medium did not influenced the analytic negatively. 

 

7.3   Results 

Liquid interface deposition was conducted by pipetting a solution in the fluid filled 

apical compartment of filter grown human alveolar epithelial cells and bronchial Calu-

3 cell monolayers. The concentration of 30 µM for budesonide and 1000 µM for 

salbutamol sulphate were on the one hand below the saturation concentration and on 

the other hand high enough to quantify also the drug concentration in the basolateral 

compartment with the HPLC. No significant differences in the permeability across the 

two different cell models were measured. Budesonid was in both absorptive as well 

as secretive direction highly permeable. No preferred transport direction could be 

detected. The more hydrophilic salbutamol sulphate was transported with 10 fold 

reduced rate in comparison to budesonide. Only in the primary alveolar cells a 

slightly expressed favorized absorptive transport could be observed. For detailed 

transport rates see Table 2. 
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Salbutamol sulphate 

 

Budesonide 

Papp A to B 

hAEpC 
0.67 ± 0.34 * 10-6 9.84 ± 0.47 * 10-6 

Papp B to A 

hAEpC 
0.37 ± 0.23 * 10-6 19.7 ± 1.51 * 10-6 

Papp A to B 

Calu-3 
0.28 ± 0.16 * 10-6 8.59 ± 0.34 * 10-6 

Papp B to A 

Calu-3 
0.24 ± 0.09 * 10-6 22.4 ± 0.77 * 10-6 

 

Table 2 Apparent permeability [cm/sec] of the two m odel drugs salbutamol sulphate and 

budesonide across monolayers of hAEpC and Calu-3 ce lls; data present mean ± standard 

deviation; n = 6. 

 

In all air interface deposition experiments with micronized pure drurgs as well as with 

powder formulations only transport in resorptive direction was measured. Air 

interface deposition always resulted in significantly faster transport rate, compared 

with liquid interface deposition. The transport after air interface deposition was 

characterized by a pronounced initial burst effect. After 4 hours the transport of 

micronized budesonide after AID was 21.0 ± 9.0% compared to 5.9 ± 0.1% after LID 

(see figure 1). In both cases the complete amount of budesonide in the system was 

equal and with 30 µM below the saturation concentration. For the three dry 

formulation aerosols similar transport was found when the dry powder was dissolved. 

In all cases 4 hours after application between 26.4% and 29.5% was transported 

(see Figure 7-2). 
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Figure 7-2 Transport of salbutamol sulphate and bud esonide across Calu-3 cell monolayers. ♦♦♦♦ 

Transport after air interface deposition (AID) ; •••• Transport after application as solution (data 

present mean ± standard deviation; n = 6) 

 

In contrast, air interface deposition of the powder formulations revealed significant 

differences in the transport rates. After air interface application we measured after 4 

hours 55.1% absorption for the powder taken from the Autoinhaler®. Easyhaler® and 

Cyclocaps® absorption was similar (47.0% and 46.9%, respectively) but significant 

slower then the Autoinhaler® formulation (see Figure 7-3 left). 
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Figure 7-3 Transport of budesonide deposited ( ∆ Cyclocaps® ; •••• Autoinhaler®; ♦♦♦♦ Easyhaler® ) 

as dry powder with the aid of DP-4 insufflator syri nge (left side), or pipetted as suspension 

(middle), or applied with a Spinhaler device and th e cell compatible MSLI (in all cases applied 

30 µM on air interface cultivated hAEpC; data prese nt mean ± standard deviation; n = 6) 
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Microscopic analysis of the particle sizes in the Autoinhaler® powder showed 

significant smaller particles with a diameter under 20 µm in comparison with 

diameters of approximately 100 µm in the Cyclocaps® and Easyhaler ® powders (see 

Figure 7-4). 

 Cyclocaps® Easyhaler® Autoinhaler® 

Budesonide 

   

Salbutamol 

sulphate 

   

 Cyclocaps® Easyhaler® Novolizer® 

Figure 7-4 Light microscopy of the different dry po wder aerosols. Scale bar presents 500 µm 

 

 

Also the hydrophilic salbutamol sulphate was transported significantly faster after 

application as aerosol. As determined for both drugs in solution, salbutamol sulphate 

has an approximately 10 fold slower intrinsic permeability across cell monolayers 

than budesonide. Therefore all transported amounts of salbutamol were expected to 

be smaller in comparison to budesonide. 8.56 ± 3.58% of the air interface deposited 

salbutamol sulphate was transported after 4 hours. Simultaneously only 

0.59 ± 0.09% of salbutamol sulphate was transported, when administered as solution 

(see Figure 7-2). 

Likewise for the drug salbutamol sulphate, we tested three different aerosol products. 

Similar to the budesonide experiments no difference was detectable in the LID 

experiment. Only the AID resulted in different transport behaviour of the three aerosol 

powder formulations. Easyhaler® and Cyclocaps® powder showed the same particle 

size distribution in the microscopic picture and similar absorption rate (see Figure 

7-5). 

500 µm 
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Figure 7-5 Transport of salbutamol sulphate deposit ed (∆ Cyclocaps® ; •••• Ventilastin® 

Novolizer®; ♦♦♦♦ Easyhaler® ) as dry powder with the insufflator syringe (left side), or pipetted as 

suspension (in the middle) or applied using a Spinh aler device and the MSLI (in all cases 1000 

µM donor concentration and applicated on air interf ace cultivated hAEpC monolayers; data 

present mean ± standard deviation; n = 6) 

 

Remarkable changes in the transport behaviour were detected only for the 

Novolizer® formulation. The transport of salbutamol sulphate from Novolizer® after 

AID was significant lower in comparison to the two other formulations. 

In order to investigate the effects of aerodynamic properties of the generic aerosol 

powders we decided to perform additional experiments in the modified multistage 

liquid impinger. The differences in transport rates of the generic aerosols after 

application with the insufflator syringe disappeared by application of the powder with 

the aid of the multi stage liquid impinger. Air interface cultivated Calu-3 cells were 

placed under the nozzle of the fourth stage and the generic aerosols were 

aerosolized with a flow rate of 30 l/min. On the cell surface collected powder of all 

three generic aerosols showed same drug absorption characteristics. The faster 

absorption from the Autoinhaler® powder disappeared as well as the slower transport 

from the Novolizer® powder (see Figure 7-3 and Figure 7-5). 

 

Mucus on Calu-3 cells, induced by air interface cultivation, did not influence the 

transport of salbutamol sulphate in a significant manner. The air interface culture 

initiates the production of mucus which covers the whole surface with a thin layer. 

The existence of mucus could be confirmed by alcian blue mucus staining (see 

Figure 5-10). There was no significant difference in the transport rate of salbutamol 

sulphate deposited at the air interface of these cultivated cell monolayers in 

comparison to a liquid interface cultivated cell monolayer where the apical 
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compartment was removed before the deposition of the aerosol on the cellular 

surface. Thus, the presence of mucus even slightly promoted the transport of 

salbutamol sulphate, possibly by accelerated dissolution of the aerosol particles (see 

Figure 7-6). 
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Figure 7-6 The fluid volume in the donor compartmen t as velocity limitation parameter in the 

transport of salbutamol sulphate (Easyhaler®) acros s hAEpC cell monolayers; + 3.4 µl; x 6.8 µl; 

∆ 12.5 µl; •••• 25 µl; ♦♦♦♦ 50 µl; o 100 µl (data present mean ± standard devi ation; n = 4) 

 

In a next set of experiments the influence of the total fluid volume in the donor 

compartment on the transport rate was investigated in more detailed. A significant 

decrease of the transport rate, corresponding with an increase of the fluid volume, 

was observed. Starting with only 3.4 µl buffer in the donor compartment of air 

interface hAEpC cell monolayer transport rate similar in “dry” cell monolayers was 

measured. By increasing of the buffer volume to 6.8 µl the transport rate decreased. 

Above 25 µl there was no further volume dependency of the transport rate 

detectable. 

If the poorly water soluble budesonide (as budesonide Easyhaler® powder) was 

applicated as dry powder on the air interface of Calu-3 cells, and than overlaid with 

25 or 200 µl of buffer, faster transport rates were detectable (see Figure 7-7).  
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Figure 7-7 Wetability and solubility as rate limiti ng parameters in the transport of salbutamol 

sulphate (Easyhaler®) and budesonide (Easyhaler®) a cross hAEpC cell monolayers. ∆ 

application as dry powder with subsequent adding of  25 µl buffer; O application as dry powder 

without any fluid adding; ♦♦♦♦ application as dry powder with subsequent adding o f 200 µl buffer, 

(data present mean ± standard deviation; n = 4) 

 

To investigate the influence of solubility on the transport rate the same experiment 

was conducted a second time in a slightly modified manner. The budesonide 

Easyhaler® powder was suspended/soluted in 25 µl and then applied on the cell 

monolayer. As consequence of the anticipated wetting and dissolution, faster 

transport rates were detectable. However, for the highly water soluble salbutamol 

sulphate it makes no difference whether the drug is administered in solid state on air 

interface cells and then covered with buffer or solvated at first in the buffer and then 

applied as solution. 
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7.4   Summary 

Budesonide and salbutamol sulphate are two widely used aerosol drugs to treat 

pulmonary diseases. Permeability data for drug solutions across different cell culture 

systems are available. Our measured Papp values correspond very well with 

published data from different laboratories [35, 37, 102, 103]. The determined A to B 

and B to A ratio of the two drugs support in case of salbutamol sulphate and hAEpC 

the involvement of active transport processes in the absorption as was reported 

earlier by Ehrhardt et al [104]. 

To the best of our knowledge transport studies of pharmaceutical aerosols across 

cell cultures after air interface deposition have previously not been reported. An ultra 

fast absorption of amorphous pure drug aerosols after deep lung inhalation in canine 

was recently described by Rabinowitz et al. [105]. The two drugs alprazolam and 

prochlorperazine were detectable in the left ventricular blood after 20 seconds and 5 

seconds earlier then after intravenous application. The enormous concentration 

gradient of the deposited drug served as an explanation for the rapid onset of 

absorption. Also in our in vitro experiments we measured very fast absorption with 

pronounced burst effect. Normally experiments to predict the uptake of aerosolized 

drugs across the human air-blood barrier are made in animal experiments or with 

submersed cell culture models of the pulmonary barrier. However, as our data 

demonstrate, working with cells submersed in a larger apical volume of donor fluid 

does not reflect the in vivo situation of the more or less dry resorption barriers in the 

lung. According to Bastacky et al. [106] and Scarpelli et al. [15] the thickness of the 

liquid layer which covers the epithelial surface in the deep lung was measured 

between 21 nm and 200 nm with differences dependent on the site of measurement. 

Particles with a diameter of 1 µm, which can land on the respiratory epithelium of the 

deep lung where no mucus is present, would be immersed only with 1/50 to 1/5 of 

their diameter in the liquid phase. Geiser et al. [19] postulated an interesting 

mechanism for the uptake of ultrafine insoluble particles after landing in the deep 

lung. Nonphagocytotic processes, interfacial and line tension effects and non 

membrane bound particles could be detected in macrophages and red blood cells. 

Without any doubt this mechanism is relevant for single small particles, but it is 

limited on insoluble particles. However, in case of pharmaceutical aerosols the 

situation is obviously different. Prior to absorption of a compound in molecularly 

dispersed state, the preceding drug release governed by wetting, spreading and 
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dissolution must be started. A transport of complete, non dissolved particles is 

unlikely, mainly for particle sizes of aerosolized drugs larger than the nanoscale. By 

analysis of the cell lysat in our experiments, neither in case of budesonide nor in the 

case of salbutamol sulphate formulations significant amounts of the drug was found 

internalized in cells. The absorption of drugs from such aerosolized solid state drug 

particles across the air-blood barrier can be assumed to occur in two steps. First the 

drug must dissolve in the relatively small volume of the apical lining fluid, resulting in 

a highly concentrated drug solution with a steep concentration gradient. In a second 

step, absorption occurs by transport across the cellular epithelial barrier. Provided 

that drug absorption occurs relatively fast, the rate of the overall process is governed 

by the rate of particle dissolution/drug release. The onset and rate of the transport is 

determined by the rate of particle dissolution. After dissolution of the drug the 

following transport process can be described by Fick’s first law: 

 

J = -D (dc/dx) 

 

where J is the flux across a membrane which is the product from the diffusion 

constant D and the concentration gradient (dc/dx). According the equation the 

amount of the aqueous phase influences the concentration gradient. We could show 

that the transport rate of non solubility limited salbutamol sulphate - released from 

lactose carrier particles - decreased with rising amounts of transport buffer in the 

donor compartment. By stepwise increasing the liquid phase the point can be 

estimated where the volume of the aqueous phase has no longer any influence on 

the transport rate. In case of hAEpC cells and salbutamol sulphate we measured 

above 12.5 µl no influence of the volume of the liquid phase on the transport rate. A 

volume of 12.5 µl corresponds with a fluid height of 110 µm. The used Easyhaler® 

contains lactose carrier particles with a diameter of approximately 100 µm. That 

implies the total submersion of the particle in the next higher fluid volumes of 25 µl or 

even more. The lactose carrier dissolves very fast and the resulting solution contains 

the total amount of free drug. 

No significant differences between cells with mucus layer and cells without mucus 

could be detected. Mucus seems not to influence the transport velocity in the chosen 

experimental setup; the mucus hydrogel seems not to represent a significant 

additional biological barrier, at least not for budesonide and salbutamol. 
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A change of epithelial barrier function could be not detected after aerosol application 

on the cell monolayer with the aid of the DP-4 insufflator. Also Fiegel et al.[107], 

observed no damage after particles bombardment on mucus covered air interface 

cultivated cells. However, leakage of the barrier after particle impaction on washed, 

mucus-free cells support the hypothesis that mucus protects the cells by absorbing of 

the impaction forces.  

In the submersed setup no differences between the model formulations of salbutamol 

sulphate and budesonide were detected. The Papp values did not differ from the Papp 

value of the blank drug. Only in the air interface deposition setup differences in the 

transport rate could be measured. 

The slower transport of salbutamol sulphate deposited as Ventilastin® Novolizer® 

(0.41 ± 0.26% after 4 hours for powder from the Ventilastin® Novolizer® compared to 

5.28 ± 1.26% and 5.23 ± 0.80% for the Cyclocaps and Easyhaler powders) can be 

explained with the larger size of the carrier lactose, and therefore slower dissolution 

in the limited apical fluid volume. The effect of the carrier lactose disappeared by 

application of the powder with the aid of the MSLI. The particle degradation by 

impaction forces in the mouthpiece and stages of the MSLI separates the salbutamol 

sulphate crystals from the carrier lactose [108]. The resulting small salbutamol 

sulphate particles can be solvated very fast in the small amounts of fluid on the cell 

surface. In consequence no differences regarding the drug transport rate after 

application of the salbutamol sulphate formulations in the MSLI could be observed. 
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Figure 7-8 Different liquid layer thickness decides  about wetting or submersion of deposited 

particles. 

 

Also the budesonide formulations showed size dependent effects on transport rate. 

The pulverized Autoinhaler® tablet showed the fastest transport rate which can be 

explained by the smallest particle size. Cyclocaps® and Easyhaler® formulations led 

for both drugs to similar, but slower transport behaviour. Also in the size of the 

powder we found no significant differences. However, it must be pointed out that this 

phenomenon disappeared after size separating deposition in the MSLI. 

By using such a model that also address aerodynamic properties of aerosol powders 

by mimicking the in vivo deposition mechanisms impaction, diffusion, and 

sedimentation, similar transport rates for all model formulations could be shown. 

Especially the impaction force which separates the micronized drug crystals from the 

big lactose carriers seems to be a critical factor in air interface deposition of powder 

aerosols. The prepared powder from the Autoinhaler® by manually grinding was not 

comparable with the powder generated from the device in case of regular use. The 

abrading of the ring tablet results to larger particles then the pulverisation of the 

tablet in a mill and subsequent sieving. However not only for drug delivery studies but 
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also for cytotoxicity investigations the air interface deposition offers new possibilities. 

It was demonstrated by Limbach et al. [109] that very small particles (Ceria 

nanoparticles with a diameter of 50 nm) underlie not the sedimentation forces in 

submersed cell culture systems. In consequence small particle uptake could not be 

measured. These results do not correlate with in vivo data where especially very 

small particles show extremely high permeation rates in cells and tissues [19]. 

In summary the air interface deposition on dry epithelial surface appears to mimic 

better the in vivo situation on the human air-blood barrier than the typically used 

submersed cell culture models. The fluid volume controls at first the drug release rate 

from particles. Thereafter, the fluid volume influences the concentration gradient, 

which is according to Fick´s first law the motor of passive transport processes. The 

deposition by the insufflator syringe simulates sufficiently realistic the dissolution and 

absorption processes occurring after deposition on a wet mucosal surface, but not 

aerosol deposition itself. The limitations of the air interface deposition with a relatively 

simple insufflator syringe, however, become apparent in cases of drug formulations 

where aerodynamic properties of the aerosolized powder particles get critical. 

Nevertheless the application by insufflator syringe offers the possibility to study the 

effects of particles and powder formulations on pulmonary drug absorption and 

epithelial barrier functions by direct deposition on such filter-grown epithelial cells.  

This may be more relevant for future studying pulmonary controlled release 

formulations, where the amount of available apical liquid is likely to affect both drug 

releases as well as permeability modulating effects (e.g. permeability enhancement) 

as well as for toxicological studies on engineered or environmentally born 

nanoparticles. 

Air interface deposition yields higher transport rates and better reflects the situation 

in vivo than liquid interface deposition. Application by insufflator may suffice if 

aerodynamic properties of the aerosol particles are not critical. To address also 

aerodynamic properties more sophisticated setups like the cell compatible multi 

stage liquid impinger can be used. A use in drug delivery as well as in toxicological 

investigations seems possible and advantageous. Under such conditions, pulmonary 

cell culture models offer a way to simulate the most important peculiarity of aerosol 

drug delivery: absorption of a relatively high dose within a relatively short time after 

deposition on slightly wetted epithelial surface. 
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8  Development of a cell compatible aerosol 

deposition system to investigate aerosol particle – 

alveolar cell interactions 

 

Abstract: 

 
The following chapter gives an overview about instrumented approaches to 

investigate the interactions of pulmonary administered formulations with in vitro 

cultivated epithelial cells. Different cell compatible aerosol application devices, which 

allow simultaneously deposition and drug absorption quantification, are described. 

Differences between long time but low dose aerosol deposition in environmental 

toxicology and short time bolus inhalation of pharmaceutical aerosols are elucidated. 

Furthermore, a modified Astra type multi stage liquid impinger (MSLI) with integrated 

bronchial cell monolayers was used to mimic pharmaceutical aerosol deposition on 

air interface cultivated Calu-3 cells. The practicability of a size selective deposition 

experiment with subsequent absorption study was proven for three different 

salbutamol sulphate and budesonide formulations. In case of application without size 

separation the absorption rates of the model aerosols differed but correlated with the 

size of the carrier lactose particles. However, after deposition in the MSLI, which is 

simulating also in vivo relevant impaction and in consequence the separation of the 

drug crystals from the carrier lactose, the absorption rates of the formulations have 

been equivalent. 
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8.1   Introduction 

The following chapter gives in the first part an overview about the existing 

instrumented approaches to investigate the interactions of pulmonary administered 

formulations with epithelial cell cultures in vitro and describes in the second part a 

new setup developed in our laboratory. Different experimental approaches to 

simultaneously assess deposition and subsequent absorption of pharmaceutical 

aerosol formulations, typically by adapting some existing impactor/impinger devices 

to accommodate pulmonary epithelial cell culture systems are described. Differences 

between long time but low dose aerosol deposition in environmental toxicology and 

short time bolus inhalation of pharmaceutical aerosols are elucidated. 

The inhalation route is of general interest for the application of drugs in order to treat 

systemic and local diseases [96, 97, 110]. Recent advances in the development of 

inhalation devices and particle technology are allowing to deliver small molecules as 

well as proteins and peptides with sufficient efficacy to the lung [30, 111]. However, 

this option is limited mainly due to missing data regarding safety and uptake of drugs 

and excipients after inhalation. Proven safety and high bioavailability of a drug or 

excipient after oral administration does not warrant safety and efficacy after 

inhalation. The lack of safety data is generally regarded as the reason that at the 

moment only few drugs and excipients are approved for pulmonary application. 

Especially missing in vitro test systems decelerate development of modern inhalable 

medicines. One cause for this drawback is the complexity of inhalation [112] and 

pulmonary deposition, which is hardly to simulate in vitro. 

Also application of drug to the in vitro model accounts for conduction in a 

physiologically relevant manner. Adding a drug solution to the apical compartment of 

a cell culture, or in a filled Ussing chamber does not mimic the in vivo situation, 

where an aerosol deposits on a moistened surface. The deposition directly on the 

cells leads to enormous differences compared to LID. There are enormous 

differences for both, for the aerosol as well as for the cells. Regarding the fact that 

predominantly particles with diameters of 1 - 5 µm are deposited in the alveolar 

region, where a 7 - 70 nm deep fluid layer covers the cells, the particle will be, 

subsequent to deposition, only with its “toes” in the water. Erosion from the minor 

liquid layer on the underneath and degradation starting on the complete surface by 
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the humidified atmosphere is observed in vivo. However, surface properties like zeta 

potential and roughness, etc. are conserved. These parameters are probably not 

important to drug release and toxicity [113] but will be lost after dispersion/dissolution 

of the aerosol powder in transport buffer. Therefore, particles excessively modified or 

even solvated by the dispersion fluid may not be relevant for in vivo situation and 

such approaches should be avoided in in vitro experiments. Also for droplet aerosols, 

one will observe a much higher concentration gradient after application of aerosol 

droplets compared to a diluted drug solution. Consequently, droplet aerosols should 

not be diluted in in vitro experiments by using LID models. 

 

8.2 The optimal cell compatible aerosol deposition 
system 

 

As addressed above, application of drugs in a physiologically relevant manner can 

solely be conducted as aerosol deposition on air interface cell culture inserts. 

Regarding the techniques to deposit aerosols on cell surfaces, pharmaceutical 

science may profit from the experience in environmental toxicology. However, whilst 

toxicological studies on aerosols are typically focusing on the exposure of xenobiotic 

compounds at a certain concentration over a given period of time, pharmaceutically 

relevant aerosols are to be administered usually as a metered, single dose. 

8.2.1   Aerosol classification systems 

8.2.1.1   The MSLI 

The pharmacopoeias describe different aerosol classification devices for metered 

bolus inhalation. Especially, the multi stage liquid impinger (MSLI) shows good 

correlation to the in vivo deposition and is the most applied impingement system in 

pharmaceutical research. Due to the high air flow rate in the device (30 l/min), only 

impaction and sedimentation as deposition mechanism are simulated sufficiently in 

the MSLI; however, diffusion, the major deposition process in the deep lung in vivo, is 

not reflected correctly. A thin liquid layer on the stages mimics he surfactant layer in 

the lung and avoids the rebound of particles after impaction. The common 

acceptance as well as the simple construction and handling make the MSLI a good 

development basis for a cell compatible pharmaceutical impingement system 
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8.2.1.2   Deposition systems used in environmental toxicology 

The recently published aerosol deposition system CULTEX® [114] allows continuous 

exposure of lung cell monolayers to complex atmospheres. The device was 

developed as a tool for the assessment of environmental lung toxicology. CULTEX® 

enables treatment of epithelial cells, cultivated on permeable filter inserts with 

aerosols and subsequent to impingement in vitro assays and permeability 

measurement [115]. By controlling pO2, pCO2, and humidity, cells and lung slices 

stay viable for at least 48 h. The apparatus setup is shown in Figure 8-1. As it can be 

seen there pulmonary cell monolayers are placed on membranes inside a deposition 

chamber. The CULTEX® system is entirely made of a glass facilitating the housing of 

three vessels with cell culture inserts, whereas the temperature of these vessels is 

controllable. Nutrient medium is directed to the cell culture insert vessels via a tube 

system. The device allows sampling of medium for biological analysis during the 

experiment, e.g. for measurement of transported drug amount. The test aerosol is 

drawn into the deposition chamber via a tube system using negative pressure. The 

analysis of several aerosol compounds including particle concentrations can be 

performed online parallel to the cell exposure. 

 

Figure 8-1 Principle of the Cultex ® setup, mainly impaction and sedimentation processe s are 

simulated. 
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Aufderheide et al. [115] performed experiments with human lung cells directly 

exposed to a diesel exhaust line. In contrast to any other exposure concepts for 

complex mixtures, this experimental setup facilitates a direct and reproducible 

contact between the cell monolayer and the test atmosphere. This could be achieved 

by following improvements: i) strict separation of the medium and gas supply, ii) the 

application of cell culture membranes with small pore size thus preventing accidental 

donor aerosol contact during the exposure, iii) transport of the test atmosphere 

directly to the apical side of the cells.  

Results clearly indicate effects on the cells of native diesel exhaust from different 

engine operating conditions already after 1 h of exposure. However, a 1 hour 

exposure to a pharmaceutical aerosol is not clinically relevant, and thus, for 

pharmaceutical realistic exposure, high deposition within one breath, i.e. five 

seconds, would be necessary and of vital importance. 

 

A another setup developed for environmental toxicology questions is described by 

Tippe et al. [116]. A commercially available perfusion unit (MINUCELL, Bad Abbach, 

Germany) is adapted to study biological effects of fine and ultrafine particles on cells 

[117]. The radially symmetric stagnation point flow arrangement deposits particles 

uniformly and quantifiably onto a cell layer. Due to the low flow velocity over the 

membrane (approximately 5 ml/min), mechanisms of particle deposition are 

convective transport and diffusion and only less impaction. For cell exposure, 

Anodisc membranes (Whatman, Maidstone, UK) with 47 mm diameter and a pore 

size of 0.2 µm were used. These membranes remain completely plane after 

humidification, which is important for homogeneous nutrient medium transport from 

the basolateral compartment and for homogenous particle deposition during 

exposure. Confluent A549 epithelial cells were integrated in the chamber system. 

Ultrafine carbonaceous model particles with a count median mobility diameter of 

about 95 ± 5 nm were delivered to the exposure system. After six hours, 

87 ± 23 ng/cm2 of particles were deposited homogenously on the cell surface 

(deposition efficiency of 2%). Compared with therapeutically single doses of 

pulmonary administered drugs such as budesonide or salbutamol (100 µg or more), 

this deposition efficacy is significantly too low. Nevertheless, the aerosol deposition 
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system of Tippe et al. could be used after minor modifications in order to increase the 

deposition efficacy as an aerosol deposition model for pharmaceutical questions. 

 

Figure 8-2 Setup from Tippe et al., low flow rate b ut simulation of deposition by diffusion. 

 

Schreier et al. [118] used the MSLI to generate a simulation aerosol system for 

studying gene delivery. Hereby, the device can be used to study the characteristics 

of aerosol formulation, stability, delivery efficacy and expression efficacy of delivered 

gene products. The impinger consists of a PARI® nebulizer, a controller for 

temperature and humidity and an Andersen cascade impactor, in which stages are 

seeded with pulmonary cells (2-CFSME0-, derived from submucosal 

tracheobronchial glands of a CF patient). Cell viability retains over 95% subsequent 

to deposition experiments. A fluorescent dye was used to visualize aerosol 

distribution and to monitor cellular uptake. Additionally, the majority of a gene product 

was delivered to stages 1 through 5 which are corresponding to the in vivo area from 

the pharynx to the terminal bronchi excluding the alveolar space. Then, a 

corresponding, although very low, transfection of cells was found with the majority of 

transfected cells on stages 4 and 5. This experiment was the first application of a cell 

compatible cascade impinger and inspired further experiments with viable impactors. 
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A crucial question for pulmonary drug delivery is the effect of aerosol impaction on 

cell viability. In difference to slow air streams applied in environmental toxicology 

setup (only a few ml per minute), pharmaceutical setup are working with high air 

velocity between 30 and 60 l/min. For such high air velocity even small particles have 

high impaction forces and hence might induce toxic effects. In a study from Fiegel et 

al., the integrity of Calu-3 cell monolayers impinged with polymeric large porous 

particles was investigated by means of measurement of the transepithelial electrical 

resistance and transport of the paracellular transport marker fluorescein-sodium. 

Filter inserts containing cell monolayers were placed directly under the second stage 

nozzle of an Astra-type liquid impinger (Erweka, Heusenstamm, Germany) as shown 

in Figure 8-3. Microparticles were aerosolized onto the monolayers for 30 s at 

30 l/min via a Spinhaler device. The filter insert was then returned to a cell culture 

plate and placed back in an incubator. Light microscopy images of the monolayers 

confirmed that particles were not aggregated when deposited on the monolayers and 

those particles were dispersed homogeneously across the entire cell monolayer 

surface. Also scanning electron microscopy (SEM) images of both AIC and LCC 

grown monolayers impinged with microparticles, revealed no apparent damage of the 

monolayers. Although there was no detectable effect on the transepithelial electrical 

resistance, monolayers grown under LCC conditions showed an increased flux of the 

paracellular marker fluorescein-sodium, when compared to the AIC monolayers. 

Mucus staining of the cell monolayers exhibited positive staining only for Calu-3 cells 

grown under AIC conditions. This mucus on monolayers may protect cells against 

microparticle impingement by means of a protective coating, thus cushioning the 

landing of the particles. In contrary, mucus produced by cells grown under LCC 

conditions likely dissolves into the apical fluid as it is produced and is removed by 

aspiration of the supernatant prior to particle impinging. Therefore, microparticles 

landing directly on the surface of cells grown under LCC conditions may cause 

damage to the barrier properties. 
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Figure 8-3 MSLI with inserted cell culture, impacti on forces are the critical factor. 

 

A further “proof of principle” was conducted by Cooney et al. [119] who demonstrated 

the feasibility of the Andersen six-stage viable particle sampler as a cell compatible 

deposition device. Permeability coefficients of FITC - dextranes after impaction as 

aerosols on Calu-3 cells could be calculated. Deposition did not negatively affect cell 

monolayers integrity. 

In both described setups, deposition on the inserts was approximately 50% or less of 

the amount usually anticipated on an equal sized area without cell culture inserts. 

This difference may be explained by the changed distance between orifice plate and 

impaction surface in the cell culture insert. The collection efficacy of an impactor 

decreases with an increase in the ratio of the orifice plate to impaction plate distance 

over jet width. Observations indicate that, though the inserts are not at an optimal 

distance from the orifice plate and are not exactly at the same position compared to 

the original collection stage, the cell culture inserts do function as an impaction 

surface for particles in a relevant size range. The previously described approaches 

may be seen as disadvantageous because of the low deposition rates. In order to 

circumvent this issue, an improved cell compatible MSLI with cell culture monolayers 

inserts was designed. In this approach, the cell culture inserts do not interfere with 

the air stream in the stage and as a consequence deposition efficacy and deposition 

pattern is not altered compared to non modified MSLI. But not only the deposition 

system, but also the inserted cell culture decides about the value of the model. 
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8.2.2   Cell culture used in aerosol deposition systems 
Depending on particle characteristics and breathing pattern, particulate aerosols are 

impinging in various regions of the lung. In the bronchial as well as in the alveolar 

region, the particles are sedimentating on an epithelium, in both cases the main 

barrier for pulmonary drug absorption. Already in the 1980’s, attempts have been 

made to simulate the respiratory epithelia using isolated organs or organ slices [120]. 

However, these approaches have been limited by functional breakdown of the tissue 

[32], missing reproducibility and high costs (see chapter 5.3.1) [121]. Finally, 

progress in cell culture overcame these issues and led to standardized and validated 

models of the air-blood barrier. For instance, the immortalized bronchial cell lines 

Calu-3 [35] and 16HBE14o- [31] develop when grown on semi-permeable filter 

inserts tight and polarized monolayers suitable for transport studies. For the alveolar 

region, up to now, no immortalized cell line with sufficient barrier properties is 

available; however, primary cell cultures isolated from different species [51], including 

from human origin, are reported in literature [48, 49, 101, 122]. 

Inspired by the successful employment of the intestinal cell line Caco-2 as model to 

predict oral absorption, pulmonary cell culture based models were used in the same 

manner. However, the cultivation of pulmonary cells under a deep fluid layer (liquid 

culture conditions, LCC), which may be acceptable for an in vitro model of the 

intestinal barrier, is not an adequate method for the air-blood barrier [45]. Especially, 

for the Calu-3, 16HBE14o-, and the primary alveolar models, the possibility of air 

interface culture was confirmed [39]. Also co-culture approaches with endothelial 

cells [123] [124], dendritic cells [42], or macrophages [125] were conducted in order 

to increase the complexity and the explanatory power of these models. In conclusion, 

sufficiently realistic barrier models for measuring safety and uptake/transport of drugs 

in viable impinger are available [100, 126, 127]. For our purpose we have chosen 

AIC cultivated Calu-3 cells. 
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8.3   Materials and Methods 

8.3.1   Inverted cell culture of Calu-3 cells 
The human adenocarcinoma cell line Calu-3 was purchased from American Type 

Culture Collection (ATCC, Manassas, VA, USA). Fluorescein-sodium (flu-Na), tissue 

culture media, and all other reagents were obtained from Sigma (Deisenhofen, 

Germany). Transwell Clear® inserts (12.0 mm inner diameter, pore size 0.4 µm) were 

purchased from Corning Costar (Bodenheim, Germany). The modified stainless steel 

cell culture plate for the inverted cell culture was custom-made by Erweka 

(Heussenstamm, Germany). The modification – holes with bigger diameter - was 

necessary to allow the inversion of the filter inserts (see Figure 8-4) during seeding 

and culture. Also the special tubes, which are slipped over the lower part of the 

inverted filter, to generate a new separated apical compartment during seeding, 

enforced a higher construction. 

 

 

 

Figure 8-4 The principle of the inverted cell cultu re. 1: lid 2: cartridge 3: cell monlayer 4: cell 

culture medium 5: stainless steel culture plate 6: filter insert; A: inverted style; B: normal style 
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Calu-3 cells (passage number 41 to 46) were seeded onto the bottom site of inverted 

Transwell Clear® permeable filter inserts at a density of 105 cells/cm2. Before 

seeding, special tubes were sheathed over the inverted cell culture insert to generate 

a liquid-tight new apical compartment in which the seeding can take place. 

Immediately after seeding, cells were grown in 500 µl apical and 2,000 µl basolateral 

media (Eagle’s minimum essential medium supplemented with 10% foetal bovine 

serum, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 100 µg/ml 

streptomycin and 100 U/ml penicillin) at 37°C in a 5% CO2 incubator. The inserts 

could be reversed two days after seeding and adhesion of the cells. In case of air 

interface culture the bottom side seeded filter inserts were not upturned, but cells 

cultivated under AIC conditions were fed all two days with 1000 µl fresh media 

basolaterally only. Simultaneously Calu-3 cells were seeded under identical 

conditions on the top side of non inverted filter inserts. 

 

8.3.2   The modified MSLI 

The MSLI consists of a mouthpiece, 4 impaction stages, each containing 10 ml KRB 

buffer during operation, and a final filter stage. The liquid in the impinger can be 

expected to reduce particle bounce and re-entrainment. Specified as apparatus A in 

the European Pharmacopoeia, the multi stage liquid impinger originally designed by 

Astra Draco, Lund, Sweden is a versatile cascade device that is used for testing both 

MDIs and DPIs for the determination of particle size distribution. Such a commercial 

available MSLI was modified by Erweka (Heussenstamm, Germany) with the 

objective of integration of cell monolayers in the bottom of the stages. Therefore, two 

holes per stage were drilled into the bottom of the stages 2 and 3, housing the 

inverted cell culture inserts. Consequently, cultivation of pulmonary cells on the 

underneath of a cell culture insert was necessary. The inner diameter of the drilled 

wholes is exactly the external diameter of commercially available Transwell® filter 

inserts. Since the cell culture insert extends into the lower stage, and thus might 

affect aerodynamic properties in this particular stage, the filter was encapsulated with 

stainless steel. 
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Figure 8-5 The third stage of a MSLI with inserted Transwell ® filter inserts. 

 

After modification a cell crown filter can be inserted in the stage without any 

aerodynamic changes in the upper stage (see Figure 8-6). 

 

Figure 8-6 Cross-section of a MSLI stage with inser ted cell culture. 
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The cell monolayer is perfectly integrated in the stage lining fluid (10ml) and the cell 

surface is flush with the fluid layer in the stage. The MSLI was operated with an 

Erweka Vacuum Pump (H.D.-Pump) and a pump rate of 30 l/min. The air flow was 

controlled by a digital flow meter (Model M1A, Copley, Therwil, Switzerland). The 

time of inhalation was managed by a testing unit for dry powder inhalations (Erweka, 

Model FG1) which allows adjusting the duration of inhalation and amount of air. 

 

 

8.3.3   Electron microscopy 

For SEM analysis, cells were fixed with 2.5% glutaraldehyde in 0.03 M potassium 

phosphate buffer (pH 7.4), dehydrated in a graded ethanol series and placed finally 

in absolute ethanol. Following critical point drying with carbon dioxide, the specimens 

were mounted on stubs and sputtered with gold to a layer thickness of 10nm. 

Scanning electron micrographs were recorded on a Philips XL30 SEM (FEI Co. 

Philips Electron Optics, Zurich, Switzerland) at 10kV. 

 

For TEM analysis cells were fixed with 2.5% glutaraldehyde in 0.03 M potassium 

phosphate buffer, pH 7.4. The cells were postfixed with 1% osmium tetroxide in 0.1 

M sodium cacodylate buffer, and with 0.5% uranyl acetate in 0.05 M maleate buffer. 

Cells were then dehydrated in a graded series of ethanol and embedded in Epon. 

Ultrathin sections were cut and transferred on 200 - mesh uncoated copper grids, 

stained with uranyl acetate, counter-stained with lead citrate and observed with a 

Philips 300 TEM at 60 kV (FEI Company Philips Electron Optics, Zuerich, 

Switzerland). 

8.3.4   Measurement of Interleukin-8 

Cytokine concentrations were quantified using commercial available sandwich ELISA 

kits (PromoCell, Heidelberg, Germany). In brief, quantification of IL-8 took place using 

mouse monoclonal anti-human IL-8 antibody diluted to 4.0 µg/ml in phosphate 

buffered saline PBS. Recombinant human IL-8, serially diluted from 5,000 pg/ml was 

utilised as standard. Cell culture medium samples were diluted 1:20 with 0.1% bovine 

serum albumin, 0.05% Tween 20 in PBS, immediately before use. Secondary 

detection antibody was rabbit anti-human IL-8 antibody. Incubation of samples and 

standards, and then of the secondary antibody, took place on a plate agitator for 1 h 
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at 37°C. Between each stage, all  wells were aspirated, washed forcefully five times 

with wash buffer (0.05% Tween 20 in PBS), and blotted dry. Measurement of 

absorbance took place using wavelengths of 450 and 550 nm. All samples were 

analyzed in duplicate. Cytokine concentrations are expressed per volume of cell 

culture medium (ng/ml). 

 

8.3.5   Salbutamol and budesonide as hydrophilic and lipoph ilic 

model drugs 

Budesonide and salbutamol powders taken from Cyclocaps® (Jenapharm, Jena, 

Germany) Easyhaler® (HEXAL, Holzkirchen, Germany), Ventilastin® Novolizer® 

(Viatris, Bad Homburg, Germany), and Autoinhaler® (CT Pharma, Berlin, Germany) 

were aerosolized onto Calu-3 monolayers using a Spinhaler device (Fisons, Bedford, 

MA, USA). The powders were transferred in capsules to allow the aerosolisation in 

the Spinhaler device for 30 s with a flow rate of 30 L/min. Upside down cultivated 

Calu-3 cells were inserted in the third stage of the modified MSLI and the impinger 

was sealed. The stages were flooded with 10 ml warmed KRB and 10 mg of the 

powder were aerosolized. After powder application the filters were placed upside 

down in the modified stainless steel plate and placed back into an incubator at 37°C. 

The basolateral compartment was filled with KRB. Samples were taken after 

determined time points from the receptor compartment. 

Furthermore the same experiment was carried out a second time by powder 

application with a spatula on the dry cellular surface and a third time after solution of 

the formulations in buffer and application of the resulting solution in the apical cell 

compartment. 

The deposited and transported amount of salbutamol sulphate was analysed by 

reversed phase HPLC (see chapter 7.2.5). 
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8.4   Results 

8.4.1   The inverted cell culture 

8.4.1.1   Cell morphology 
A first comparison of the morphology of normal and inverted Calu-3 cell culture was 

performed by electron microscopy pictures. As well in transmission as in scanning 

mode no significant differences in the dimensions and in the structure are detectable. 

In the first days of culture the inverted cells showed a higher attitude in cross-section. 

Also in the scanning picture a stronger profiled surface was observable. But during 

the culture until day 10 the cells get more and more flattened and on day 17 no 

optical difference between the two cell cultures was visible (see Figure 8-7). A belt of 

tight-junctions circumrounding the cell bodies and ciliary structures were detectable 

independent of the culture style. 

 

 

Figure 8-7 SEM and TEM pictures of Calu 3 cells in the age of 17 days (B and D inverted 

culture, A and C normal culture). 
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8.4.1.2   Barrier properties 
 

The inverted cell culture developed tight-junctions slightly slower than under normal 

conditions, but reached the same value after 10 days in culture. 
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Figure 8-8: TEER development of LCC Calu-3 cells in  dependency of the culture style; black 

bars represent inverted style, grey bars normal sty le (Mean ± std. dev. n= 6-18; P < 0,05). 

 

The TEER of the normal culture peaked on day 9 (TEER 957.2 ± 269.4 Ohm*cm2; 

n=18) in contrast to the lower maximum in the inverted cell culture on day 12 after 

seeding (TEER 735.83 ± 269.4 Ohm*cm2; n=6). Statistical significant differences in 

the TEER values between normal and inverted culture was found only for the time 

period between day 8 and 10 of culture (see Figure 8-8). In consequence all 

transport experiments were carried out after day 10 or more in culture. 

 

 

 

 



 

92 

The transport of fluorescein-sodium (flu-Na) across the cell monolayers was 

performed to determine differences in the barrier function in consequence of the 

culture conditions. Experiments were carried out with n = 6, using cells from five 

different passages in the age of 10-15 days. Krebs Ringer Buffer (KRB; pH 7.4) was 

used as transport buffer. Flu-Na solution (50 µM in KRB buffer) was added to the 

apical (500µl) or basolateral (1,500µl) compartment of each well. The cell monolayers 

were agitated using an orbital shaker at constant stirring rate (100 rpm) at 37°C 

under humidified conditions. The initial concentration of flu-Na in the donor fluid was 

assayed by taking a 20 µl sample. 200 µl samples were taken at predetermined time 

points up to 360 min from the receptor compartment and replaced with an equal 

amount of fresh warmed buffer. The fluorescence of flu-Na was measured in 96-well 

plates using a fluorescence plate reader (Cytofluor II, PerSeptive Biosystems, 

Wiesbaden, Germany) at excitation and emission wavelengths of 485 and 530 nm, 

respectively. Samples were diluted with KRB where appropriate. Apparent 

permeability coefficients of the cell monolayers, Papp, were calculated according to 

the equation in chapter 6.2.3. 

Flu-Na was transported in normal and inverted cell culture with the same absorption 

rate. No asymmetry between absorption and secretion was found. Apparent 

permeability coefficients were calculated for the absorptive as well as for the 

secretive direction. In normal culture 1.74 ± 0.113 * 10-6 cm/sec for the absorption 

and 1.51 ± 0.112 * 10-6 cm/sec for the secretive direction was calculated. The 

upturned cell culture resulted in similar rates 1.75 ± 0.165 * 10-6 cm/sec for the 

absorption and 1.47 ± 0.179 * 10-6 cm/sec for the secretion (see Figure 8-9). The 

integrity of the cellular barrier was confirmed before and after each transport 

experiment by measuring the TEER value. 
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Figure 8-9 Permeability of flu-Na across normal and  inverted cultivated Calu-3 cell monolayers 

(Mean ± std. dev. n=8; P < 0,05). 

 

Also in the interleukin 8 levels in normal and inverted cultured Calu-3 cells we found 

no statistically significant difference. The inverted cell culture leaded to slightly non 

significant increased interleukin 8 levels (4.32 ± 0.67 ng/ml; n=6) in comparison to the 

normal culture (4.01 ± 0.43 ng/ml; n=6). 

Inverse Normal

C
on

ce
nt

ra
tio

n 
of

 IL
-8

 [n
g/

m
l]

0

1

2

3

4

5

6

 

Figure 8-10 IL-8 levels in normal and inverted Calu -3 cell culture supernatant on day 12. 

(Mean ± std. dev. n=6) 
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8.4.2   Short characterisation of the modified impinger 

8.4.2.1   Deposition pattern before and after modification 
Flu-Na solution (13 µM, prepared with KRB buffer) was aerosolized by a PARI® 

nebulizer (Pari GmbH, Starnberg, Germany) in a sealed MSLI before and after 

modification. The deposited amounts in the mouthpiece, the stages, and the terminal 

filter were measured by quantification of the fluorescence (Cytofluor II, PerSeptive 

Biosystems, Wiesbaden, Germany) at excitation and emission wavelengths of 485 

and 530 nm, respectively. Modifications solely in stage 2 or in stage 3 resulted in 

significant increased deposition on the modified stage itself. But in case of 

simultaneously modification of stage 2 and stage 3 we found no significant changed 

deposition patterns in comparison to the non modified MSLI. 
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Figure 8-11 Deposition of flu-Na droplet aerosol in normal and modified MSLI. †,* significant differences 

from the non modified MSLI, deposited amount in the modified stages compared to the stages of the non 

modified system (Mean ± std. dev. n = 8-12. P < 0,05) 

 

In consequence, deposition of flu-Na aerosol on Calu-3 cells was accomplished in 

the second and third stage modified MSLI. 
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8.4.2.2   Deposition of droplet and powder aerosols in the vi able MSLI 
Filter inserts containing cell monolayers on the bottom side were mounted in the 

second and third stage respectively of our modified impinger and the impinger was 

sealed. Flu-Na solution (13 µM) was aerosolized onto the monolayers for 30 s at 30 

litre/min from a PARI® nebulizer. Then the filter insert was returned to the 12-well 

plate and placed back into an incubator at 37°C. Sa mples from the receiver 

compartment were taken and analyzed for flu-Na using a fluorescence plate reader. 

Samples were diluted with KRB where appropriate. To obtain data on the 

reproducibility of the aerosol application and to measure the apical deposited 

amount, slightly wetted Transwell Clear® filter inserts containing no cells (n = 6) were 

placed in the impinger and treated as described above. In the inverted culture with a 

liquid donor compartment a Papp of 1.75 ± 0.165 * 10-6 cm/sec (n=6) was measured 

after LID in contrast to a Papp of 5.81 ± 2.271 * 10-6 cm/sec (n=6) in a system with a 

dry donor compartment and MSLI mediated air interface deposition. 

 

The two drugs salbutamol sulphate and budesonide were chosen as model for highly 

water soluble and poorly water soluble drugs. The absorption rate of the 

bioequivalent generics were tested in three different setups. At first solutions 

prepared from the drug powders were applicated in a submersed cell culture. In a 

second experiment the drug powder was added on the dry cell surface with a 

spatula. In a third experiment we aerosolized the generics with the MSLI on inserted 

air interface cultivated Calu-3 cells. In liquid interface deposition conditions all three 

generics showed the same low absorption rate. However, after air interface 

deposition the transported drug amounts were after 4 hours approximately 30 times 

higher for salbutamol sulphate and 3 times higher for budesonide compared to the 

liquid interface deposition experiment. Application of the powder with the spatula 

resulted in a significant slower salbutamol sulphate transport from Novolizer® 

Ventilastin® (see Table 3) and a significantly faster absorption rate of budesonide from 

the Autoinhaler® powder. 
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  LID AID / spatula AID / MSLI 

Easyhaler® 0.4099 12.6017 12.8107 

Cyclocaps® 0.2230 12.7093 13.2954 
Salbutamol 

sulphate 
Ventilastin® 0.4356 1.0472 12.2323 

Easyhaler® 55.8130 103.1139 147.2448 

Cyclocaps® 63.9254 101.6106 148.9616 Budesonide 

Autoinhaler® 54.8950 151.8714 157.2196 

Table 3 Area under the curve of the powder formulations. Data represent mean of 4 independent 

experiments.  

 

All these differences disappeared after powder impingement with the MSLI in a third 

experiment and an equivalent high absorption rate for all generics could be detected. 

 

 

 

8.5   Discussion 

The cultivation of cells on the bottom side of filter inserts is described in the literature, 

but in all cases for experiments regarding the uptake of particles in coculture models 

consisting of two or three different cell types, or to investigate the communicative 

network of cells with different origin and function like epithelial, endothelial, and 

dendritic cells [123, 124]. Tightness and robustness of these cell monolayers are not 

strictly necessary for such purposes. However, for drug transport experiments the 

barrier tightness is a critical factor. Per definition an epithelium is called tight, if it 

builds up electrical resistance higher than 500 Ohm*cm2 [128]. Our measured Calu-3 

TEER values are in good correlation to other published TEER data [100, 103, 104]. 

Also the development and peaking of the TEER value over time fit well with data from 

literature. The morphological differences disappeared after a few days in culture and 

on day 17 no significant differences in the thickness of the cell bodies were found. 

Also the cell surface was under both culture conditions in the same manner 

structured, especially the ciliary like structures and vesicles filled with mucus could 

be observed in both cultures. In cross sections tight-junctions could be detected. The 

TEER development peaked time delayed in the inverted cell culture, which is also 

caused by the morphological differences until day 10. Because of the upturning of the 
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cells 2 days after seeding gravimetric forces could be the source for the higher height 

and time delayed barrier development of the inverted cell culture. 

To check the suitability as drug transport model the absorption of flu-Na was 

measured. This fluorescent lipophilic model substance is transported mainly by 

passive transport through tight junctions and intercellular spaces. Only if functional 

tight-junctions are expressed low transport rates will be measured. The resulting 

calculated Papp values confirmed the electrical measured tightness of the barrier. 

In consequence also the inverted cell culture of Calu-3 can be looked upon as a 

suitable model of the human air-blood barrier for drug uptake studies. 

The MSLI is a well established aerosol classification device in pharmaceutical 

sciences. The necessary modifications to integrate the cells in the stages resulted in 

slightly but non significant changed deposition patterns in case of simultaneously 

modification of stage 2 and stage 3. The deposition pattern was controlled by 

collecting the polydispers droplets from an aerosolized fluorescent solution. Further 

investigations of the deposition pattern were not carried out due to effective and short 

time deposition of drug aerosols on dry cell monolayers were the main objectives of 

the MSLI modification. While measuring the particle size distribution of aerosols was 

not the scope of the modification, effective deposition of aerosol particles in a 

physiological manner on a cell surface was possible. 

Not only the deposition on the cell surface should be designed as realistic as 

possible, but also the cellular surface by itself. In vivo the fluid layer seems to play a 

major role in the complex network of particle uptake and cleaning. After landing 

soluble drug particles will be dissolved in the more or less big lung surface fluid 

layers. The dissolution rate will be controlled by the volume of fluid on the place of 

particle deposition. Especially the particle size influences also the dissolution rate. 

Particles with diameter larger than the thickness of the fluid layer will be only with 

parts of their surface in the fluid and consequently slower dissolved. In contrast small 

particles can be submersed totally. Regarding the solubility and the wetting 

properties of the particles complex dissolution processes are resulting. After 

dissolution passive or active transport processes of the substance across the cell 

monolayer occurs. The permeation step is controlled by the cell monolayer itself, and 

is dependent of the tightness and expression of uptake transporters or efflux 

systems. In consequence, in transport experiments conducted in air interface 

cultured Calu-3 cell system two serial connected processes – dissolution and 
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transport - can be observed. By working with drug solutions in liquid interface 

deposition experiments the dissolution step is missing. 

A second difference between adding solution or dry powder aerosol in the donor 

compartment is given by different contact area. If solutions are added to the donor 

compartment a maximal contact area between substance and cell surface will be 

caused. By application of single drug particles, only parts of the cell surface or the 

lining fluid layer will be in contact with the applied substance. 

The transport of drugs across cellular barriers can be described with Fick`s first law. 

The concentration gradient is one of the major forces which regulates the absorption 

rate. After landing of single drug crystal, local high drug concentrations will enforce 

drug absorption rate in vivo. This so called ultrafast absorption of drugs was 

described by several authors [105, 129] and explained with big resorption surface 

coupled with steep concentration gradients. Also our results can be interpreted with 

the enormous local concentration gradients. We measured in all cases of aerosol 

application higher absorption rates compared with the typically used submersed 

experiments. 

The area under the curve was chosen as parameter to judge equivalence of the 

generic formulations of salbutamol and budesonide. Very similar absorption rates 

resulted after liquid interface deposition. By dissolving of the powders, which consist 

of large carrier lactose particles and small adherent drug crystals, differences in 

particle size disappeared and the drug solutions showed the same absorption rates. 

The air interface application with the spatula does not include size separation and 

fractionation of the powder in drug crystals and carrier particles. In dependency of the 

lactose carrier size we observed different absorption rates. Easyhaler® and 

Cyclocaps® formulations contained carrier lactose particles in the same range of 

diameter. But Ventilastin® consisted of significant larger carrier particles which are 

after deposition on the slightly wetted cellular surface only with parts of their surface 

in the liquid layer. Slower dissolution of the lactose and therefore also slower 

absorption were the consequence. In case of the budesonide containing Autoinhaler® 

powder the carrier lactose particle size was significantly smaller and particles 

deposited on the surface liquid can be completely submersed. Fast dissolution and 

absorption rates can be measured. 

The deposition in the MSLI simulates the in vivo inhalation where a separation of the 

adherent drug crystals from the carrier lactose occurs by impaction forces. Large 
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lactose carrier particles will be deposited in the pharynx region, and only the drug 

crystals with suitable aerodynamic properties will reach the deep lung. Also in our 

case the different generics were size separated and only drug crystals, but no carrier 

lactose particles were deposited on the cell monolayer in the third stage. Due to all 

drug crystals in the generics have similar diameters comparable absorption rates 

could be measured. Mainly the size of the particles seems to influence the absorption 

rate after air interface deposition of soluble drug particles. 

Application with a spatula is not able to simulate the complex inhalation processes in 

vivo. 

The successful separation of the micronized drug from the different sized carrier 

lactose particles could be confirmed with the equal transport rate of the three 

generics after application in the cell compatible MSLI.  

 

 

 

 

8.6   Conclusion 
 

Based on a commercial available aerosol classification system a first prototype of a 

cell compatible pharmaceutical aerosol deposition model was developed. This model 

together with on the bottom side air interface cultivated Calu-3 cells allows the 

prediction of drug absorption rates after application in the human lung in a 

physiological relevant manner. 

First experiments with the permeability marker flu-Na suggest successful application 

of aerosols on cell monolayers and thereafter the possibility to measure substance 

transport across epithelial barriers. 

The importance of a realistic deposition simulation could be shown for three 

commercial available bioequivalent aerosols. Only after deposition in the cell 

compatible impingement system, where a separation of micronized drug crystals 

from the carrier lactose takes place, the bioequivalence of the three generics could 

be confirmed. 
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9 Perspectives 

 

In order to characterize pharmaceutical aerosols in vitro, especially in regard to the 

cellular reaction on the deposition, various experimental setup are reported in 

literature. Devices having their roots in environmental toxicology, pose promising 

starting points for further development of in vitro devices, which should allow 

application of high metered single dose aerosols. Further attempts have been made 

using compendial MSLI systems integrating pulmonary cell culture monolayers. Here, 

the conditions are more related to pharmaceutically relevant applications. However, 

the high deposition rate using these systems can only be achieved by applying high 

flow rates, solely allowing impaction and sedimentation as deposition mechanism 

and excluding diffusion. Thus, these devices are mainly suitable for modelling 

deposition in upper airways. Hereby, the most effective experimental approach is 

based upon the principle of the air/liquid exposure technique in the MSLI during 

deposition. However, by using liquid/liquid exposure technique, for instance with 

Ussing chamber, the aerosol is chemically and physically altered prior to the contact 

with the cell monolayer and findings concerning aerosol cell interaction may be 

limited. 

 

A perfect in vitro model characterizing aerosol formulations would incorporate 

cell types from various regions of the lung (tracheal, bronchial and alveolar) and 

would facilitate simulation of deposition mechanisms by impaction, sedimentation, 

and diffusion of a high metered single bolus inhalation. Furthermore, the application 

of targeted cells from human lung epithelium may reduce in the future the need for 

animal studies and may offer extrapolation of in vitro test results of aerosol 

formulation to in vivo situations. 
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10 Zusammenfassung 

 
Die Behandlung sowohl lokaler als auch systemischer Erkrankungen mit Inhalanda 

erfreut sich immer größerer Beliebtheit. Neben Weiterentwicklungen auf dem Gebiet 

der Asthmatika und Kortikoide als lokal wirksame Arzneimittel wurde mit Exubera® 

zum ersten Mal die systemische Applikation eines hochmolekularen Peptides über 

die Lunge verwirklicht. Obwohl sich weitere innovative Formulierungen zur 

Behandlung der verschiedensten Erkrankungen in der Pipeline befinden, ist es zum 

Beispiel immer noch nicht möglich retardierte Arzneiformen für die pulmonale 

Applikation herzustellen. Vor allem der Mangel an Daten bezüglich Arznei- und 

Hilfsstoffverträglichkeit nach Inhalation und Arzneistoffpermeation nach Deposition 

erweist sich als Hemmschuh der Entwicklung moderner Inhalanda. Auch das Fehlen 

geeigneter Zellkulturmodelle, welche wesentlichen Anteil an der Entwicklung 

moderner oraler Arzneiformen haben, erschwert die Entwicklung sicherer und 

effektiver pulmonaler Arzneiformen. Im Rahmen dieser Dissertation wird der Einsatz 

humaner pulmonaler Zellkulturen zur Vorhersage der Arzneistoffabsorption in vivo 

erläutert. 

Im ersten Teil der Dissertation wurde die Permeation von Peptiden mit 

verschiedenem Molekulargewicht durch Monolayer humaner alveolarer Epithelzellen 

untersucht. Für diese Experimente wurden Lösungen der Peptide hergestellt, und 

diese in die flüssigkeitsgefüllten Donorkompartimente von humanen alveolaren 

Epithelzellkulturen gegeben. Auch wenn das Arbeiten mit Lösungen / Suspensionen 

und submersen Zellkulturen weit verbreitet ist, und auch für die Untersuchung 

intestinaler Absorptionsvorgänge die in vivo Situation ausreichend genau wiedergibt, 

stellt diese Methode keine realistische Applikationsart für Aerosole dar. Die 

menschliche Luft-Blut Schranke ist beim gesunden Patienten mit einem 

ausgesprochen dünnen Flüssigkeitsfilm bedeckt, der nur den hundertsten Teil der 

Dicke üblicher Flüssigkeitsschichten in submersen Zellkulturen ausmacht. Eine 

realitätsnahe Kultivierung an der Luft-Grenzschicht ist zumindest für verschiedene 

pulmonale Zellkulturen möglich. Vor allem Calu-3 Zellen als Modelle des 

Bronchialepithels, und primäre humane alveolare Epithelzellen als Modell der 

alveolaren Bereiche der Lunge, lassen sich ohne flüssigkeitsgefülltes apikales 
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Kompartiment kultivieren. Als Folge der Kultur an der Luft-Grenzschicht produzieren 

die Zellen verstärkt Mucus oder Surfactant ähnliche Substanzen. 

Im zweiten Teil der Arbeit wurde mittels solcher an der Luft-Grenzschicht kultivierter 

zellulärer Modelle untersucht, inwiefern die Applikation als Lösung oder in Form 

eines trockenen Pulveraerosols den Transport von Arzneistoffen beeinflusst. Nach 

Deposition trockener Aerosolformulierungen auf an der Luft-Grenzschicht kultivierte 

Zellen konnten signifikant schnellere Resorptionsvorgänge gemessen werden. Die 

Applikation erfolgte mittels einer einfachen Insufflator Spritze, welche normaler weise 

zur intratrachealen Applikation von Aerosolen bei Versuchstieren benutzt wird. 

Obwohl diese Art der Deposition an sich schon eine sinnvolle Verbesserung von 

Transportexperimente an Modellen der Luft-Blutschranke darstellt, berücksichtigt die 

Insufflator Spritze nicht alle Aerosol Charakteristika. Vor allem im Falle von 

Aerosolen mit Laktose Partikeln als Wirkstoffträger ist die Insufflator Spritze nicht in 

der Lage die Separation der mikronisierten Arzneistoffkristalle von den wesentlich 

größeren Laktose Trägern zu bewerkstelligen. 

Um auch diese Prozesse wirklichkeitsnah zu simulieren wurde im dritten Abschnitt 

der Arbeit ein zellkompatibler Kaskaden-Impaktor entwickelt. In diesem war es 

möglich sowohl eine realistische Auftrennung der Aerosole nach der Partikelgröße 

als auch die Deposition der einzelnen Partikelfraktionen auf Luft-Grenzschicht 

kultivierte Zellmonolayer nach zu ahmen. Um eine störungsfreie Integration von 

dichten Zellmonolayer in den Kaskaden-Impaktor zur ermöglichen wurden in den 

einzelnen Impaktor Etagen Bohrungen in den Platten angebracht, deren 

Durchmesser exakt dem Außendurchmesser von Zellkultureinsätzen entsprachen. In 

diese Bohrungen wurden dann umgedrehte und auf der Unterseite der Membran mit 

Calu-3 Zellen bewachsene Zellkultureinsätze eingesetzt. Nach einer 

Charakterisierung der invers kultivierten Zellen hinsichtlich Differenzierung und 

Barriereeigenschaften konnten mittels dieses Modells sehr realitätsnah verschiedene 

Pulver Aerosol Formulierungen auf pulmonalen Zellen abgeschieden werden. 

Es wurden mit den entwickelten Modellen zum ersten Mal pharmazeutische Aerosole 

aus als Arzneimittel zugelassenen Trockenpulver-Inhalatoren realitätsnah auf 

Zellkultur basierte Modelle der menschlichen Luft-Blutschranke appliziert. 
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