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SHORT SUMMARY 

During the last years transdermal drug delivery has gained increasing interest 

due to the high acceptance of patients. However the major problem of drug delivery via 

the cutaneous route are the barrier properties of the skin which are located in the stratum 

corneum. To study the potential of polymeric biodegradable nanocarriers on drug 

delivery to and through the skin  the well known biodegradable copolymer poly(D,L-

lactide-co-glycolide) (PLGA 50:50) was used as main component of the carrier system. 

As model drug  flufenamic acid, an antiinflamatory drug, was incorporated. Nanoparticles 

in the size range of 200 to 400 nm were prepared by means of a solvent extraction 

technique. In vitro skin transport experiments using Franz diffusion cell systems and the 

Saarbrücken model showed an enhancement effect for encapsulated flufenamic acid 

independent of particle size. Surprisingly, also the presence of drug-free nanoparticles in 

a preparation (hydrogel) with flufenamic acid in solution has also increased the 

permeated amount of drug. As mechanism of action an acidic nano-environment around 

the particles could be identified by confocal laser scanning microscopy and permeation 

experiments using buffered and non-buffered preparations. Other studies have shown 

that nanoparticles were able to penetrate into the hair follicles when massage was used. 

These results underscore the potential of polymeric biodegradable nanoparticles as 

carriers for transdermal drug delivery. Especially, the acidic pH of the nano-environment 

of the particles might be an advantage to develop special formulations designed for 

acidic drugs or might be used to re-establish the physiological acidic pH on the skin 

surface. 
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KURZZUSAMMENFASSUNG  

Infolge der hohen Akzeptanz bei Patienten hat die transdermale Applikation von 

Arzneistoffen mittels Trägersystemen in den letzten Jahren zunehmend an Bedeutung 

gewonnen. Für die kutane Arzneistoffinvasion stellen jedoch die Barriereeigenschaften 

der Haut, welche im Stratum corneum lokalisiert sind, ein großes Problem dar. Um das 

Potential polymerer, bioabbaubarer und nano-partikulärer Trägersysteme auf die 

Arzneistoffinvasion in und durch die Haut zu untersuchen, wurde das schon ausführlich 

charakterisierte sowie bioabbaubare Copolymer Poly-(D,L-lactide-co-glycolide) (PLGA 

50:50) als Trägermaterial eingesetzt. Als Modellarzneistoff wurde Flufenaminsäure, eine 

antiinflamatorisch wirksame Substanz, in die Nanopartikel inkoorperiert. Unter 

Verwendung der „Lösungsmittel Extraktions Technik“ wurden Partikel im Größenbereich 

von 200 bis 400 nm hergestellt. Durch in vitro Experimente mit Franz-Diffusionszellen 

und dem Saarbruecker-Penetrationsmodell konnte gezeigt werden, dass, unabhängig 

von der Partikelgröße, der Arzneistofftransport verkapselter Flufenaminsäure in bzw. 

durch die Haut erhöht war. Überraschender Weise konnte bei Zugabe arzneistofffreier 

Nanopartikel in eine Zubereitung (Hydro-Gel) welche Flufenaminsäure in gelöster Form 

enthielt ebenfalls eine erhöhte Arzneistoffpermeation beobachtet werden. Mittels 

Konfokaler Mikroskopie und Permeationsexperimenten wurde als 

Wirkungsmechanismus, sowohl für gepufferte als auch für ungepufferte Präparationen, 

ein saurer pH-Wert im Nanometerbereich um die Partikel herum nachgewiesen. Des 

weiteren konnte gezeigt werden, daß Nanopartikel unter Anwendung einer Massage in 

Haarfollikel penetrieren. Die Ergebnisse unterstreichen das Potential polymerer, 

bioabbaubarer Nanopartikel als Trägersysteme für die transdermale Anwendung. 

Insbesondere der saure pH-Wert im Nanometerbereich um die Partikel könnte Vorteile 

für die Entwicklung spezieller Formulierungen für saure Arzneistoffe bieten. Weiterhin 

wäre auch eine mögliche Applikation zur Wiederherstellung des physiologischen, leicht 

sauren pH-Wertes der Hautoberfläche im Fall pathophysiologischer Veränderungen 

denkbar. 



 

 

 

 

 

 

 

 

 

 

CHAPTER 1: GENERAL INTRODUCTION 

 

 

 

Sections of this chapter: 

- Have been submitted for publication as part of the book chapter entitled 

“Models for skin absorption and skin toxicity testing”, Preclinical 

Biopharmaceutics - in situ, in vitro, and in silico tools for drug absorption 

studies, Springer (in preparation) 

- Will be submitted as part of the review article entitled “Nanoparticles – present 

and future as drug delivery systems to the skin”, European Journal of 

Pharmaceutics and Biopharmaceutics (in preparation). 
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1.1. THE DERMAL BARRIER 

The skin, in Latin called cutis, is considered the largest organ of the body, 

accounting more than 10% of the body mass and having an average surface of 

approximately 2 m2. This organ enables the body to interact most intimately and 

dynamically with the environment. The functions of the skin are considered essential for 

the survival of the human beings in a relatively aggressive environment, providing a 

multifunctional interface between the body and the surrounding media. These functions 

have been classified as protective, homeostatic, or sensorial. The first two mentioned are 

mainly function of its barrier properties, allowing the survival of humans among changes 

in environmental temperature, relative humidity, dangerous substances such as 

chemicals, bacteria, allergens, radiation, etc. To maintain its characteristics, this organ is 

in a continual renewing process [1]. Due to its barrier properties, the skin membrane is 

equally capable at limiting the molecular transport from and into the body. Overcoming 

this barrier function will be the purpose of transdermal drug delivery. 

In order to understand the biopharmaceutical effects of dermatological 

formulations, it is necessary to know the anatomy, physiology and chemical composition 

of the skin.  

Anatomically, the skin consists on 4 basic layers: the stratum corneum (nonviable 

epidermis), viable epidermis, dermis and subcutaneous tissues (Figure 1). In addition to 

these structures, there are also several associated appendages: hair follicles, sweat 

glands, apocrine glands, and nails.  

The subcutaneous tissues, the innermost layer, is characterized by a fibrous 

connective structure, which is composed mainly by elastic fibres and fat. This layer acts 

as insulator, shock absorber, and reserve depot of calories and supplier of nutrients for 

the more superficial skin layers. On its domain are found the base of the hair follicles, the 

secretory portion of the sweat glands, the cutaneous nerves as well as networks of 

lymph and blood vessels. 
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Figure 1: Structure of the human skin1  

 

The dermis is a fibrous layer that supports and strengthens the epidermis. Its 

thickness varies from 2-3 mm. It consists of a matrix of loose connective tissue 

composed by collagen, a fibrous protein, embedded in a semigel matrix, which contains 

water, ions and mucopolysaccharides. This matrix helps to hold the cells and allows the 

oxygen and nutrients to diffuse to the epidermal cells. This layer contains an extensive 

blood vessel and nervous network, as well as hair follicles, sebum and sweat glands. 

The most adjacent layer of the dermis, called papillary layer, provides the nutritional 

support to the viable epidermis. The papillary layer plays no only a nutritional function but 

also a role in the temperature, pressure and pain regulation. In addition, it contains a 

sparse cell population: fibroblasts, responsible for the connective tissue synthesis; mast 

cells, which are involved in the immune and inflammatory responses; and melanocytes, 

involved in the production of melanin. 

                                                 
 
1 Modified from the source  http://www.agen.ufl.edu/~chyn/age2062/lect/lect_19/lect_19.htm, 14.02.2007 
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The viable epidermis consists of several cell strata varying in the differentiation 

level. From the bottom, the stratum basale is composed of two keratinocyte types, one 

that acts as stem cells having a proliferation capacity, and the second one which serves 

as anchor to the basement membrane. It contains as well: Merkel cells, Langerhans cells 

and melanocytes.  

During the differentiation process the epidermal layers (stratum spinosum, 

granulosum, lucidum and corneum) are converted to corneocytes. Herein cellular 

changes includes the extrusion of lamellar bodies, loss of the nucleus and an increase in 

the keratin amount until the stratum corneum is formed [1, 2].  

The stratum corneum (SC), the outermost layer of the epidermis, also called 

non viable epidermis, has an approximately thickness of 10 – 20 µm that can vary from 

one body site to the other. It consists, in a given cross-section, of 15 – 25 flattened, 

stacked, hexagonal, and cornified cells (corneocytes, also called horny cells) anchored in 

a mortar of highly organized intercellular lipids. This structure has been described as 

brick and mortar model (Figure 2) and is considered the rate controlling barrier in the 

transdermal absorption of substances. Each corneocyte is approximately 40 µm in 

diameter and 0.5 µm thick, and it is composed mainly of insoluble bundled keratins 

(approx. 70%) and lipid (~20%) located in the cell envelope. The intercellular matrix 

consists of lipids and desmosomes for the corneocyte cohesion [1]. The lipids of this area 

are distinctive in many respects: (i) they provide the only continuous phase (diffusion 

pathway) from the skin surface to the base of the SC; (ii) its composition (mainly 

ceramides, free fatty acids and cholesterol) is unique among biological membranes and 

particularly noteworthy is the absence of phospholipids; (iii) despite this deficit of 

phospholipids, polar bilayer-forming lipids, the SC lipids exist as multilamellar sheets; 

and (iv) the predominantly saturated, long-chain hydrocarbon tails facilitate a highly 

ordered, interdigitated configuration (Figure 2).  The staggered corneocyte arrangement 

in a lipid matrix is suggested to provide a highly tortuous lipoidal diffusion pathway 
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rendering the membrane 1000 times less permeable to water relative to other biological 

membranes Due to the continuous phase, the intercellular lipid layer is considered the 

most important transdermal absorption pathway for small substances [3]. The turnover of 

the complete SC layer occurs once every 2 – 3 weeks [1]. 

 

Figure 2: Schematic representation of the “brick and mortar” model of the stratum corneum,  
lipid bilayer organisation and possible pathways 2 

 

The SC by its composition and structure is considered to act as the main barrier 

for the exchange of substances between the body and the environment. And therefore 

became the real challenge on drug delivery into and through the skin. Moreover, this 

anatomical barrier is accompanied by the intracutaneous metabolism, a high drainage 

rate due to blood and lymph capillary present in the dermis and a peripheral immune 

system [4]. 

 
                                                 
 
2 Reprinted from International Journal of Pharmaceutics, Vol. 131, Moghimi HR, Williams AC, Barry BW, A 

lamellar matrix model for stratum corneum intercellular lipids II. Effect of geometry of the stratum corneum 
on permeation of model drugs 5-fluorouracil and oestradiol, p119, Copyright 1996, with permission from 
Elsevier. 
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1.2. TRANSDERMAL DRUG DELIVERY 

During the last years, developments in transdermal drug delivery have been 

incremented focusing mainly on overcoming problems associated with the skin barrier 

properties. Nevertheless, the transdermal delivery offers several advantages: the skin 

represents a relatively large and readily accessible surface area for absorption, the 

application is a non-invasive procedure that allows a continuous intervention, and it is 

possible to cease the absorption preventing overdose or undesirable effects. Compared 

with the traditional oral administration route, transdermal delivery shows additional 

advantages: it minimize the first-pass metabolism, it avoids drug degradation under the 

extreme acidity of the stomach, it prevents erratic delivery due to food interactions, and it 

provides more controlled delivery. Among its major disadvantages are: not all 

compounds are suitable for transport across the skin, there are different permeation rates 

depending on age, race, site of application and individuals, and also skin diseases can 

influence it [5, 6].  

The goal of the transdermal administration of drugs is not to achieve a bolus-type 

drug input; rather, it is usually designed to offer a slow, sustained release of drug over 

long periods of time. Current transdermal delivery systems, as transdermal occlusive 

patches, are capable to deliver drugs in cases that oral administration is limited by poor 

bioavailability, side effects associated with high peak plasma concentrations or poor 

compliance due to the need of frequent administration [3, 7].  

The criteria that merit consideration in transdermal delivery of drugs are: the 

nature of the barrier (discussed in the previous section), the balance between 

physicochemical properties of the membrane and the drug, and the technologies 

available to facilitate the transdermal transport.  

Under normal conditions, there are three pathways postulated for the absorption 

of substances through the SC: transcellular, intercellular (paracellular) (Figure 2) and 

transappendageal [5]. The predominant route of transdermal penetration of the majority 
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of the applied drugs is through intercellular spaces; therefore, the transdermal pathway is 

much longer than the normal stratum corneum thickness (~20 µm) which was estimated 

as long as 500 µm. If the transcellular pathway is predominant, the diffusion involves 

several partitioning steps into the lipo- and hydrophilic domains of the corneocytes and 

the lipid layers before reaching the viable epidermis [8]. The transdermal absorption 

process requires drug characteristics or an appropriate carrier which should be able to 

deliver the drug to the desired skin deepness to reach topical or systemic effects. 

In general the barrier limitations imposes that the drug chosen for transdermal 

delivery should be pharmacologically potent and has physicochemical characteristics 

which allow it to cross the main barrier, the stratum corneum. Among these requirements 

are: the drug must possess both lipoidal and aqueous solubility, which promote its 

permeation through the domains of the stratum corneum, i.e. and appropriate partition 

coefficient (KO/W ~ 1-3) to have an optimum absorption ; the drug mobility must be high, 

i.e. molecular weight and volume must be appropriate to facilitate its diffusion through the 

lipid bilayer. The permeation through the skin will also depend on the ionization degree of 

the drug at physiological and formulation pH, influencing as well its solubility and partition 

behaviour [3, 4, 8, 9]. 

A good transdermal delivery system must not only provide an adequate drug 

release from the formulation, but also allow considerable  amounts of drug to overcome 

the skin barrier, ensure a non-irritancy of the skin, and also ensure that the drug will not 

be inactivated on the skin’s  surface or during the permeation process [10]. 
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1.2.1.  Strategies to overcome the epidermal barrier 

Since several years, researchers have been working on the development of new 

strategies to improve the delivery of drugs through the skin. These could be separated in 

physical and chemical methods. 

 

Physical enhancement methods  

♦ Iontophoresis, which involves the use of low current via an electrode in 

contact with the skin, inducing the drug delivery promotion through ion 

repulsion, decrease on the resistance of the skin and electroosmosis in case 

of large molecules. 

♦ Electroporation that uses the application of high voltage impulses during a 

very short time to create temporary pores on the skin, the driving force of the 

drug permeation is the ion repulsion or the electroosmosis.  

♦ Sonophoresis uses low frequency ultrasonic energy to disrupt the lipid 

packing in the SC creating aqueous pores which improve the drug delivery.  

♦ Local thermal treatments [4, 11]. 

♦ Mechanical perforation of the SC by high-velocity particles (ballistic) [11]. 

♦ Micro-needles array inducing the temporary loose of the barrier properties 

until the layer is recovered by the normal turnover cycle, as well as local 

thermal treatments have been used to deliver drugs [12].  
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Drug delivery systems 

♦ Lipidic flexible particles as liposomes, niosomes, ethosomes and 

transferosomes. 

♦ Solid lipid nanoparticles and nanostructured lipid carriers  

♦ Solid polymeric nanoparticles, of biodegradable and non-biodegradable 

characteristics [11] 

 
Chemical enhancement methods  

♦ Increasing the hydration state of the SC by a high water content in the 

formulation or by occlusion (which prevents the trans-epidermal water loss 

from the tissue), some examples of this effect are given by patches and 

ointments, but tissue over-hydration is not a general rule for penetration 

enhancement;  

♦ enhancers which disrupt the lipid organization in the SC such as azone, 

terpenes, fatty acids, dimethylsulphoxide (DMSO) and alcohols; 

♦ compounds able to alter the protein organization in the SC, such as DMSO or 

urea;  

♦ compounds which increase the solubility of the drug within the SC, e.g. 

Transcutol® P.  

The enhancement effect can also act indirectly, for example: 

♦ modifying the thermodynamic activity of the drug in the formulation at the 

moment of the application, e.g. ethanol; 

♦ solubilizing the drug in the donor, in case of poor soluble substances, e.g. 

surfactants. 
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The main disadvantage of the chemical penetration enhancers is that most of 

them induce irritation or sensitation, cause damage and reduce the barrier function for a 

longer time. These conditions are not desirable in the process of transdermal drug 

administration [11, 13] 

 

1.3.  SELECTED DRUG CARRIER SYSTEMS FOR DERMAL DELIVERY 

 

1.3.1.  Solid nanocarriers in transdermal drug delivery 

During the last decades, the study of inorganic and colloidal particles such as 

nanocapsules, nanospheres, nanostructured lipid carrier, etc. has been focused as 

dermal/transdermal drug delivery carriers. Some of them will be addressed in detail in the 

following section.  

In general, solid colloidal nano-carriers systems have been extensively studied as 

drug delivery systems (DDS), mostly for oral and parenteral applications, and have 

shown to be one of the most promising strategies to achieve site-specific drug delivery 

[14]. To be considered as potential human drug delivery systems requires that the 

material has to be biocompatible, preferentially biodegradable, or at least should be able 

to be excreted [15]. This my be the reason why only a limited number of biodegradable 

polymeric nanoparticles [9, 16-20], solid lipid nanoparticles (SLN) and nanostructured 

lipid carriers (NLC) [21-30] have been studied with respect to their potential for drug 

systemic and topical administration. Nanoparticles can be used to deliver a wide variety 

of substances as hydrophilic or hydrophobic drugs, proteins, vaccines, biological 

macromolecules, etc., and they can be formulated for targeted delivery, e.g. to the brain, 

lungs, lymphatic system, or made for long term systemic circulation [16]. 
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1.3.1.1 Lipid nanocarriers 

Both, SLN and NLC, are composed of physiological and biodegradable lipids, 

which possess a low cytotoxicity and also low systemic toxicity [31].  SLN consist of pure 

solid lipid while NLC are made of a solid matrix entrapping liquid lipid compartment [25]. 

These carriers have been the most extensively studied for drug and cosmetic dermal 

applications. 

There are two main preparation methods described for SLN, the high pressure 

homogenization methods, which can be performed under hot or cold conditions 

depending on the drug stability, and the microemulsion technique. 

SLN posses some advantages when compared with liposomes (also lipid carriers 

but without a solid structure) and emulsions, e.g. the protection against chemical 

degradation of the drug and the modulating capacity of the active compound release. 

The main disadvantage of SLN is that during storage the drug entrapped is expulsed due 

to a change in the lipid conformation to a lower energy crystal state, a transformation 

from polymorphic to perfect crystals, which allow no guest molecules in the structure. To 

overcome this problem NLC were developed. In these nano-carriers, solid and liquid lipid 

are mixed in such a combination that the particle solidifies upon cooling but does not re-

crystallize, remaining in amorphous state. This allows the drug to be accommodated in 

the particle for a longer time and will increase the drug loading capacity of the systems 

[24]. 

Several authors have studied the potential of SLN and NLC as topical delivery 

systems. Examples of the use of lipid solid nanocarriers are: Santos Maia et al (2000)  

have shown that the incorporation of prednicarbate into SLN increase the amount of drug 

which penetrated the human skin layers compared with a commercially available cream 

[27]; on the other hand, Wissing and Müller (2002) incorporating the sunscreen 

oxybenzone into SLN, reported a decrease of the SC penetration, characteristic desired 

when sunscreens are used [32].  
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The potential of these carriers are variable and must be studied specifically for 

the drug and delivery system. 

 

1.3.1.2 Polymeric nanocarriers 

Not as extensively as SLN the potential of polymeric nanocarriers have been 

studied for skin drug delivery. 

Polymeric nanoparticles are particles of less than 1000 nm in diameter that can 

be prepared from natural or synthetic polymers. Natural polymers, such as protein and 

polysaccharides, have been not widely used since they vary in purity, and often require 

preparation processes which can lead to drug degradation. The most widely used 

polymers are synthetic polymers as polyalkylcyanoacrylates, poly(lactic acid), 

poly(glycolic acid) or their copolymers, poly(lactide-co-glycolide), etc. The last mentioned 

polymers have a very well known biocompatibility and resorbability through natural 

pathways, and their degradation and drug release rate can be regulated according to the 

polymer composition (monomers proportions and linkages)  [16, 33].  

Poly(D,L-lactide-co-glycolide) (PLGA) have been extensively studied for different 

therapeutic applications such as sustained drug, vaccine, and gene delivery [34-36]. 

PLGA microparticles were described as vehicles for topical drug delivery, providing a 

reservoir system for release into the skin [19, 36]. Other polymeric nanoparticles 

examples have been: poly(ε-caprolactone) NP, used by Alvarez-Román (2004) et al to 

increase the availability of octyl methoxycinnamate within the SC [9];  and chitosan NP, 

used by Cui and Mumper (2001) for vaccine delivery to the viable epidermis [17]. 

Despite of the apparent advantages compared with other DDS, polymeric 

nanoparticles appear rather unexplored for drug delivery to the skin. 

 



General Introduction 
 

 

16 

1.3.2.  Nanocarrier – skin interaction mechanism 

Following the topical application of a dermatological formulation the absorption of 

the active compound could follow the transcellular, intercellular (paracellular) and 

transappendageal pathway through the epidermal barrier.  

The mechanism of interaction of the nanoparticulated carrier systems and the 

skin and also the transport pathways within the membrane of the drug and/or the carrier, 

are required to establish the possibility of using such systems to optimize the drug 

transport process [9]. It has been described that SLN, due to its particle size, are able to 

ensure a high adhesion to the SC enhancing the amount of drug which penetrates into 

the viable skin. Furthermore, for SLN particles between 200 and 400 nm an occlusive 

effect has been described on artificial membranes [30], and reducing the trans-epidermal 

water loss and increasing the penetration of a occlusion sensitive drug into the skin 

layers [29, 37].  

In another hand, in vivo studies indicated that NLC have been able to increase 

the anti-inflamatory effect of indomethacin on the time, correlated well with an increased 

permanence of the drug in the SC layers studied using tape stripping method [23].  

The role of the hair follicles in the penetration process is often neglected based 

on the fact that the orifices of the hair follicles occupy only approximately 0.1% of the 

total skin surface area. However it is not considered that the hair follicles is an 

invagination of the epidermis extended deep into the dermis, increasing the absorption 

area below the skin surface [38, 39].  

In the case of polymeric carriers, Rolland et al have demonstrated hair follicle 

targeting using 5 µm PLGA-adapalen-loaded microparticles [38], as well as de Jalon et al 

have shown PLGA-microparticles penetration into porcine skin [36]. In other studies, 

copolymer nanoparticles have been shown by Shim et al to deliver monoxidil through the 

skin in a size dependent form when hairy rats where used [20]. Using polystyrene 

nanoparticles of 20 and 200 nm in diameter and porcine ear skin, Alvarez-Román et al 
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have demonstrated that particles accumulate in the follicular opening and that smaller 

particles favour this localization [40]. Bigger particles of the same polymer (0.75 – 6 µm) 

were tested by Lademann’s group showing in vitro and in vivo size dependent particle 

penetration that was independent of the hair type (terminal vs. vellus hairs). A massage 

increased the penetration into the hair follicle [41]. Finally, the same group have 

extensively studied the follicle penetration of particles using human skin and titanium 

dioxide microparticles which were found to reach only the outer layers of the SC as well 

as deep into the hair follicles. They stated out that particle penetration was dependent on 

the “activity” of the hair follicle, i.e. hair growth and sebum production will influence the 

particle penetration process [42-45]. As described before, follicular penetration of 

nanoparticles (see figure 3) appear to be a promising mechanism for drug delivery. 

 

 

Figure 3: Size dependence of hair follicle particle penetration 3 

 

The hair follicle delivery has several pharmacokinetic advantages as a reduction 

or bypass of the tortuous pathway of the transepidermal absorption, decrease of the drug 

systemic toxicity when the follicle act as long term delivery reservoir and increasing 
                                                 
 
3 Reprinted from Roberts M.S. et al, Dermatological and transdermal formulations, page 175, figure 35, 

Marcel Dekker , Inc., 2002, with permission from Taylor & Francis (UK). 



General Introduction 
 

 

18 

additionally the therapeutic index of some drugs as well as reducing the applied dose or 

frequency of administration. Micro- as well as nanoparticles have been demonstrated to 

reach deep into the hair follicles, where the barrier posses only a few layers of 

differentiated corneocytes and can be considered highly permeable, and additionally the 

hair follicles can act as long-term reservoir, beneficial condition when transdermal 

delivery is intended. 

Techniques as confocal laser scanning microscopy (CLSM) offer the possibility of 

visualizing the distribution of fluorescent probes in a skin sample by optical sectioning 

without previous cryofixation or embedding of the tissue, and it is considered as a 

valuable method for reporting the extent of penetration of molecules into the skin and for 

identifying the transport pathways [9]. Multi-photon fluorescence imaging can also be 

applied as technique for determinations in vivo tissue absorption/accumulation of 

dermatological and cosmetical preparations, such as interaction of nanoparticulated 

systems with the skin [46, 47].  

 

1.3.3.   Nanocarrier toxicology 

Nanocarriers are present in different dermatological and cosmetic formulations. 

The most commonly used carriers are liposomes; solid poorly soluble materials as 

titanium dioxide and zinc oxide; polymer particles and SLN.  

The small size of the carriers give them an increased ratio surface to total atoms 

or molecules exposed to the interaction with cellular systems, increasing its biological 

activity. This large activity can either positive (e.g. antioxidant, carrier capacity for 

therapeutics, penetration of cellular barriers for drug delivery) or negative (e.g. toxicity, 

induction of oxidative stress or of cellular disfunction), or a mixture of both. However, in 

strong contrast to the efforts to increasing its positive properties for improving the human 

health are the limited attempts to evaluate the potentially undesirable effects of 

nanoparticles when administered for medical or cosmetical purposes [48].  
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Some of the studies undertaken to evaluate the toxicological potential of 

dermatologically applied nanoparticles have reported the following results: 

♦ Titanium dioxide nano- and microparticles have been studied by 

Lademann et al who report that micro-sized particles get through the 

human SC and into the hair follicles [44]; on other study, carried by 

Menzel et al, using commercially available sunscreen creams and pig skin 

has reported the penetration of nanoparticles (approximately 15 nm in 

diameter) in the SC and into the underlying stratum granulosum through 

the intercellular space [49]. Gamer et al studied the penetration of zinc 

oxide by tape-stripping method on porcine skin and found that 

approximately 100% of the applied amount remain in the uppermost 

layers of the SC, only a few samples showing the presence of particles in 

the deeper layers [50]. 

♦ PLGA microparticles (1-10 µm in diameter) have been studied by de 

Jalón et al using pig skin and were found to penetrate into the viable 

epidermis [36]. 

♦ Solid lipid nanoparticles have shown lower toxicity than poly(lactide-co-

glycolide) or polyalkylcyanoacrylate nanoparticles when administered 

intravenously [31], but there are no studies performed when topically 

applied. 

 

Limited literature or qualitative information about penetration and effect of 

nanoparticles during the skin transport is available, only in the case of liposomes, zinc 

oxide and titanium dioxide nanoparticles toxicological information is available. In general,  

only a few conclusions can be made about the toxicological potential of nanocarriers: 
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♦ Penetration of the skin layers is size dependent. 

♦ Different type of particles have different behaviour with respect to the 

dermal membrane, and it is not possible to predict either its permeation or 

toxicological behaviour. 

♦ Parts or materials which can dissolve or leach from the particles can 

possibly penetrate the skin. 

♦ There are other studies, using particles not intended for dermatological 

use that have shown that particles can be phagocytized by macrophages 

or Langerhans cells, and this process can induce a sensitation response. 

♦ There is no evidence that particle applied to the skin can penetrate and 

enter the systemic circulation when applied to normal skin [51]. 

The available data suggest that dematologically applied nanoparticles have a  low 

human risk, but is necessary more information about the real effects under in vivo 

conditions. 

 

1.4. FLUFENAMIC ACID AS A MODEL DRUG 

Flufenamic acid (FFA), a non-steroidal anti-inflammatory drug, is known as 2-[[3-

(trifluoromethyl) phenyl] amino] benzoic acid (see figure 4). This drug is a weak acid 

soluble in organic solvents as methanol, ethanol, chloroform, and acetone, and it has a 

very low solubility in water at 22 °C 0.0067 mg/ml which can vary depending on the pH 

with a dissociation constant (pKa) of 3.9. Its solubility is increased by non-ionic 

surfactants, and by urea and sodium citrate. Flufenamic acid 1-octanol/water partition 

coefficient (log P) have been estimated by Dunn with a value of 4.88, and Terada et al 

have determined it experimentally obtaining a log P equal to 5.62 [52, 53]. 
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Figure 4: Chemical structure of flufenamic acid 

 

From this drug exists several described modifications which differ on its crystal 

properties. The present work will be referred to FFA modification II that has a melting 

point of 128°C [52]. 

Human pharmacokinetics: FFA is intestinally absorbed in a pH dependent form, 

and in extent of 100% of the administered dose, from which 51% is eliminated as drug 

and its metabolites by renal way. The active undergoes metabolic transformations to FFA 

glucuronide, 5- and/or 4’-hydroxy FFA and its respective glucuronides. Due to its 

hydrophobicity it highly binds to proteins (have been studied using bovine and human 

serum albumin, BSA and HSA respectively), and FFA have shown a site specific binding 

when HSA is used, that is characteristic for drugs which contain aromatic carboxylic acid, 

as ibuprofen and flurbiprofen [52]. Skin pharmacokinetic behaviour has not been 

described, however, Wagner et al  have shown that in the stratum corneum the 

concentration of drug increases with the incubation time, and have a good linear 

correlation among the in vitro test systems, e.g. Franz-diffusion cell system and 

Saarbrücken model, and the in vivo drug penetrated amount. In the same way the drug 

concentration rises in the deeper skin layer, but only in vitro information is available [54]. 
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1.5. IN VITRO METHODS FOR TRANSDERMAL DRUG DELIVERY 
ASSESSMENT  

 
1.5.1.  In vitro permeation studies 

The studies of in vitro skin permeation are the most common experimental set-

ups for the control of dermatological formulations. It has been carried out using a wide 

variety of experimental protocols dependent on the research group, the substances in 

study and the purpose of the substance or formulation applied to the skin. 

The in vitro methods involve the diffusion measurement of substances through 

the skin, bioengineered, various skin layers, or artificial membranes to a receptor fluid 

assembled in a diffusion cell, which can be static or flow-through (see figure 5). In Franz 

diffusion cell systems (FD-C), the formulation or substance in study is placed in the donor 

compartment, separated from the receptor compartment by a membrane, e.g. full 

thickness skin, epidermis or SC sheets, splitted skin from human or animal origin or 

bioengineered materials (keratinocyte cultures). The receptor compartment is usually a 

buffer solution, with a composition as close as possible to physiological conditions, 

normally pH 7.4. If the solubility of the substance is low, substances as ethanol, proteins, 

cyclodextrins or some surfactants can be added [55]. The sampling is performed either in 

a continuous form or at pre-determined time intervals. The system is maintained at 

constant temperature under conditions which simulate the skin surface temperature 

(32°C). 

 

Figure 5: Schematic representation of Franz diffusion test systems: Horizontal static (left) 
and flow through (right) diffusion cell 4 

                                                 
 
4 Reprinted from Walters K.A.  and Roberts M.S., Dermatological and transdermal formulations, page 200, 

Marcel Dekker , Inc., 2002 
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The dosage regime of the formulation in made under infinite (> 10 µl/cm2 or 

mg/cm2) or finite dose (≤10 µl/cm2 or mg/cm2) conditions and the donor compartment can 

be under occlusion or opened to the environment. In the first case, the occlusion of the 

system leads normally to an excessive hydration of the skin, and the second allows the 

evaporation of volatile substances.  

Constant stirring of the system ensure the diffusion of the drug by 

homogenization of the receptor. The sink conditions are maintained along the 

experimental time under the following conditions: (i) in the receptor compartment only 

10% of the saturation concentration is reached; (ii) the membrane is unaffected during 

the experimental time [56]. 

 

1.5.2.  In vitro penetration studies 

The Saarbrücken model (SB-M) was introduced in skin research by Loth and co-

workers [57-61] and has been described in detail by Wagner et al [54]. Briefly, the skin is 

put onto a filter paper soaked with Ringer solution and placed into the cavity of a Teflon 

block. The drug preparation is filled into a cavity of a Teflon punch of 2 mm in depth, 

which is applied to the skin surface and a weight of 0.5 kg is placed on top of the punch 

for 2 min, to improve the contact between the skin and the drug preparation. After this 

time, the punch is fixed on its place and the gap between the two Teflon parts is sealed 

with Plastibase® to avoid the skin water loss. See a representation of the system on 

figure 6. The whole system is transferred into a plastic box and placed into a water bath, 

or into a forced air circulation oven, at (32 ±1) °C [54]. 
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Figure 6: Schematic representation of the Saarbrücken penetration system. 

If compared with FD-C, SB-M avoids the non-physiological hydration and 

changes of the skin due to the absence of liquid as receptor medium.  This system, 

coupled to segmentation techniques, such as tape stripping or cyosectioning, allows the 

measurement of penetration profiles of the drug with respect to the depth of the tissue. 

Under infinite dose conditions, a excessive amount of drug is applied to the skin, 

ensuring a reproducible way of application It is expected that the SC reach saturation 

and the effect of rubbing due to application procedure is avoided. Under finite dose 

conditions, only a limited amount of preparation is applied to the skin surface, and it is 

possible to observe the influence of other factors such as evaporation of excipients. 

This model is suitable to study semisolid and liquid formulation (using porous 

holders), as well as patches. The experiments are carried out with different incubation 

time points. Consequently, the drug distribution in the skin layers or the formation of 

depots can be observed. At the end of the incubation time the preparation is removed 

from the skin surface, the thickness of the skin is measured and the tissue is segmented 

under standardized procedure. 

 



General Introduction 
 

 

25

1.6. CALCULATION OF PARAMETERS TO DESCRIBE TRANSDERMAL 
ABSORPTION 

For practical reasons only the processes considered on the development of this 

thesis are mathematically described. Schematically, in vitro and in vivo processes are 

presented in the figure 7. 

 

 

Figure 7: Diagrammatic representation of the processed involved on in vitro and in vivo 
percutaneous absorption 5 [62] 

                                                 
 
5 Adapted from Roberts and Anissimov, 2005 [62]  
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As shown in figure 7, under in vitro conditions, the volume (V) and the 

concentration of the donor compartment are considered to be constant over the 

experimental time, even though the receptor volume (Vr) and its clearance (Clr) are 

limited. On the other hand, under in vivo conditions, the concentration on the dermal 

tissue is conditioned to the clearance due to capillary network (ClB) and to the 

elimination/distribution from this fluid. 

The data obtained from the in vitro permeation experiments can be plotted and 

several parameters can be calculated from them. Examples of the typical obtained 

curves with the different dosage regimes are shown in figure 8. 

 

 

Figure 8: Cumulative permeation patterns following finite- and infinite-dosing regimes 6 
  

 

                                                 
 
6 from Walters K.A.  and Roberts M.S., Dermatological and transdermal formulations, page 209, figure 4, 

Marcel Dekker , Inc., 2002 
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1.6.1.  In vitro permeation studies using infinite dose regime 

Most of the in vitro studies using infinite dose conditions are carried out assuming 

that:  

♦ the concentration in the donor compartment (Cv), i.e. in the formulation 

applied, does not change considerably (change < 10%) during the 

experimental time; 

♦ the drug concentration in the receptor compartment does not exceed 10% 

of the saturation concentration on the receptor media, i.e. the sink 

conditions, in the receptor compartment, are maintained during the 

experimental time;  

♦ and the characteristics of the membrane does not change during the 

experimental time. 

If the transport through the SC is the rate limiting process, the steady-state 

approximation of the amount of solute permeated (Q) with a apparent permeation 

constant (Papp) and a lag-time (tlag) when the concentration of the donor (Cv) is applied to 

a determined area (A) during a exposure time (t) can be represented though the 

equation 1. 

If the transport through SC is the rate limiting process, after a certain lag-time 

steady-state conditions will be achieved. Assuming a  homogeneous membrane, the 

drug permeation can be described by diffusion and Fick’s first law can be applied. 

)( lagvapp ttACPQ −=  

Equation 1: Steady-state permeated amount. 
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Rearranging equation 1 leads to:  

ss
lag

vapp J
ttA

QCP =
−

=
)(  

 
Equation 2: Flux under steady-state conditions 

 

With the flux at steady-state (J), which is represented by the slope of the linear 

part of a diagram of the permeated amount of drug per area versus time (figure 8) .  

Then, the apparent permeability constant (Papp) represents the transport speed of 

the drug through the membrane, and can be calculated using the Jss and Cv. 

 

1.6.2.  In vitro penetration experiments using infinite dose regime 

Using the Saarbrücken model two types of data handling are possible:  

1. Concentration – skin depth profile:  

Plotting drug concentration in the different skin layers (mass of drug per thickness 

of the layer per area) versus skin depth (see figure 10). In this case, the formation of 

depots in the different layers can be observed.  

 

Figure 9: Example of penetration profiles of drug into the stratum corneum and deeper skin 
layers  respect to the depth, using the same formulation (infinite dose regime) at different 

incubation time. 
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For detailed information concerning the calculation steps see Wagner et al (2000) 

[54] 

Furthermore, area under the penetration curve can be calculated using the 

trapezoidal rule (see equation 3). Which may serve as surrogate for the bioavalability of 

the substance in each layer. 

∑
=

−− −+=−
n

i
iiiin ttCCtAUC

1
11 ))((

2
1)0(  

Equation 3: Area under the curve trapezoidal rule – General equation 

 

2. The calculation of penetrated amount of drug in each layer, i.e. SC or deep skin 

layers, respect to the incubation time (see figure 9). In this case the influence of 

incubation time, drug concentration and excipients can be observed, as well as, 

saturation of the stratum corneum or the influence of different skin donors and 

anatomical regions. 

 

Figure 10: Example of cumulative amount of drug into the stratum corneum and deeper skin 
layers using different formulations (infinite dose regime) according to the incubation time 
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1.7. MICRODIALYSIS AS IN VIVO DERMAL PHARMACOKINETIC TOOL 

Born in neurosciences, the microdialysis as sampling technique have been used 

since several years to monitor the drug absorption and disposition from the extracellular 

space different organs, fluids and tissues, becoming used as technique in human 

research during the late 80’s. 

It consists of a microdialysis probe, a thin hollow tube made of a semi-permeable 

membrane, normally of around 200 – 500 µm in diameter, which is implanted into the 

skin and perfused with a receiver solution (perfusate) that  recovers the unbound 

permeant from the local area (dialysate) which is collected and analysed. In principle, the 

dialysis driving force of the molecular moving is the diffusion down the concentration 

gradient existing between two compartments separated by a semi-permeable membrane 

(see figure 11), that for skin in vivo conditions these compartments are represented for 

the dermal or subcutaneous extracellular fluid and the artificial physiological solution in 

the microdialysis probe lumen. In essence, the principle of the microdialysis is to create 

an “artificial blood vessel” where the diffusion of compounds flows on the direction of 

lowest concentration [63-66].  

 

Figure 11: Microdialysis principle 7 

                                                 
 
7 adapted from Elmquist and Sawchuk, 1997 [66] 
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The material of the microdialysis membrane must be biocompatible and inert, 

respect to the substance in study and to the tissue components. The molecular weight 

cut-off 8 must be large enough to allow the free diffusion of the solute, but small enough 

to assure the exclusion of proteins and other macromolecules. The most commonly used 

materials have been: cellulose, cellulose-acetate, polycarbonate, polyarylethersulphone, 

etc. 

For pharmacokinetic studies, different probe designs such as linear or concentric 

style were used.  

Fick’s second Law that considers the concentration gradient and diffusion rate of 

the substance from the medium and the surface area of the membrane mathematically 

describes diffusion microdialysis processes. One of the most important parameters to be 

considered is the flow rate of the perfusate (solution that comes into the probe), which is 

normally in the range of 0.1 – 5 µl/min, inversely related to the amount of drug recovered 

in the dialysate (solution that comes out of the probe). Other factors that strongly 

influence the drug recovery from the surrounding medium are: the lipophilicity of the 

substance, i.e. as more hydrophobic or protein bound substance as less recovered using 

an aqueous perfusate media, and the molecular weight and volume of the substance that 

will limit the pass through the dialysis membrane according to its molecular cut-off. To 

improve the recovery of lipophilic drugs strategies as addition of solvents (e.g., 

polyethylene glycol, cyclodextrins, proteins, or lipids) to the perfusate have been used 

[63, 65, 67]. 

The relative recovery (RR) of the probe, essential for data interpretation, is 

normally calculated using the retro-dialysis method, which assumes that the net transport 

                                                 
 
8 Usually defined as the molecular weight in Daltons at which 80% of the molecules are prevented from 

passing through the membrane. 
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through the microdialysis membrane from the perfusate to the surrounding tissues 

equals the net transport from the tissues into the perfusate. The relative recovery is 

calculates using the equation 4 [67]:  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
=

perfusate

dialysateperfusate

C
CC

RR  

Equation 4:  Relative recovery of a microdialysis probe using retrodialysis method.  

 

Among the techniques to determine cutaneous availability, such as tape stripping, 

biopsies or imaging procedures, microdialysis has shown to be promising having several 

advantages for the assessment of in-vivo drug pharmacokinetic profiles. The minimally 

invasive procedures ensures minor reversible trauma, allowing long term sampling under 

physiological conditions in awake individuals, that the individual itself is its own control, 

and the good temporal resolution of tissue concentration, make this technique, compared 

with the other above mentioned, require a lower number of volunteers. The obtained 

samples, due to the relatively low molecular cut-off of the membrane, are protein free 

allowing sample analysis without any further purification step and avoiding the enzymatic 

degradation of the sample. As the substance in study can be included on the perfusate, 

in situ metabolism can be acquired. Nevertheless, the small sample size is a 

disadvantage since it requires very sensitive analytical methods [56, 67, 68] 

An increasing number of studies using microdialysis of a wide range of drugs in 

animal and human subjects were performed, supporting the potential of this technique for 

bioavailability and bioequivalence studies. Some examples of studies in-vitro as well as 

in-vivo, involving different delivery systems and species are: iontophoretic drug delivery 

in rats by Mathy et al [69];  oral delivery and skin pharmacokinetics by Bielecka-Grzela 

and Klimowicz [70]; determination of salicylic compounds on rat skin by Simonsen et al 

[71], and in human skin by Leveque et al [72]; anaesthetic extended release products in 

human skin by Kopacz et al [73]; among others. 



General Introduction 
 

 

33

OBJECTIVES 

During the last years, the interest over the nanoparticles as drug delivery carrier 

system has increased due to its potential of controlled release, targeting, and stability 

advantages over other carrier systems. Several strategies, including physical and 

chemical methods, have been used to improve the delivery of drugs through the skin. 

During the last decades, the study of the potential of the nanotechnology for transdermal 

drug delivery have been mainly focused on the study of the use of solid lipid 

nanoparticles and nanostructured lipid carriers and only a few studies have been centred 

on the use of biodegradable polymeric nanoparticles. 

The aim of this doctoral thesis is to study the potential of the biodegradable 

polymeric nanoparticles, made of  poly(D,L-lactide-co-glycolide) (PLGA) , as transdermal 

delivery system. Following this general purpose, the specific objectives are:  

♦ To study the effect of PLGA nanoparticles on the skin permeation using 

flufenamic acid as model drug 

♦ To study the mechanism how PLGA nanoparticles enhance/retard the 

permeation of flufenamic acid through the skin 

♦ To study the effect of PLGA nanoparticles on the skin absorption of 

flufenamic acid in vivo 
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CHAPTER 2: PLGA NANOPARTICLES AS TRANSDERMAL CARRIER 

 

 

 

 

 

 

The content of this chapter have been published in the research article entitled 

“Influence of nanoencapsulation on human skin transport of flufenamic acid” (Javiana 

Luengo, Barbara Weiss, Marc Schneider, Alexander Ehlers, Frank Stracke, Karsten 

Koenig, Karl-Heinz Kostka, Claus-Michael Lehr, and Ulrich F. Schaefer), Skin 

Pharmacology and Physiology, 19(4):  190 – 197. Published by S Karger AG, Basel. 
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2.1. ABSTRACT 

The effect of the inclusion of flufenamic acid in PLGA nanoparticles on the 

transport of flufenamic acid into excised human skin was investigated. Penetration and 

permeation data were acquired using two different in vitro test systems: the 

Saarbruecken penetration model (SB-M), where the skin acts as its own receptor 

medium, and the Franz diffusion cell (FD-C), where the receptor medium is a buffer 

solution. For the stratum corneum no differences were found between nanoencapsulated 

and free drug. Drug accumulation in the deeper skin layers and drug transport across 

human epidermis was slightly delayed for the nanoencapsulated drug compared to the 

free drug after shorter incubation times (< 12 h). In contrast, after longer incubation times 

(> 12 h) the nanoencapsulated drug showed a statistically significant enhanced transport 

and accumulation (P<0.05). Additionally, nanoencapsulated flufenamic acid was 

visualized by multiphoton fluorescence microscopy. Particles homogeneously distributed 

on the skin surface and within the dermatoglyphs were found, but no nanoparticles within 

or between the corneocytes were detected. 
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2.2. INTRODUCTION  

Due to its special structure, the skin provides the main barrier between the body 

and the environment, at the same time it limits the drug delivery along this route [1, 6, 8, 

74, 75]. Many strategies have been employed to improve the dermal and transdermal 

delivery of drugs, e.g. increasing the effective concentration of the drug in the vehicle, 

improving the partitioning between the formulation and the skin, the use of chemical 

penetration enhancers and different physical enhancement methods [6, 76]. 

Furthermore, carrier systems like liposomes, microparticles or nanoparticles (NP) [11, 77, 

78] have been explored. For microparticles, some targeting to the hair follicles has been 

shown by Toll et al. [41], using polystyrene microspheres in a range of 0.75–6 µm, and 

Lademann et al. [79], using titanium dioxide particles in a range of 0.1–0.3 µm also 

resulting in an enhanced delivery to the deeper skin layers. Studies on solid lipid NP [27, 

29, 30] also showed increased transdermal drug delivery induced by their occlusive 

effects. Alvarez-Román et al. [40] reported preferential accumulation of non-

biodegradable drug-free polymeric NP in the hair follicle opening of pig skin. In addition, 

the same authors reported an increased level within the stratum corneum of the pig ear 

of the highly lipophilic sun-protecting agent, octylmethoxycinnamate, when 

nanoencapsulated in the biodegradable polymer poly(ε-caprolactone) [9]. 

Some of the most widely used polymers in the NP formulation are poly(lactic 

acid), poly(glycolic acid), and their co-polymer, poly(lactide- co -glycolide) (PLGA), which 

are known for their good biocompatibility and resorbability through natural pathways [33]. 

In oral and parenteral applications, solid biodegradable polymeric NP based on PLGA 

have shown their advantage over liposomes by their increased stability [16, 80, 81], but 

in the field of dermal delivery their potential appears to be rather unexplored. 

The objective on this chapter was to investigate the influence of 

nanoencapsulation on the permeation and penetration of the lipophilic model drug 

flufenamic acid (FFA) into skin using PLGA as carrier polymer. In order to monitor drug 
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penetration, the Saarbrücken model [54] (SB-M) was used in which the skin itself acts as 

a receptor compartment. A tape stripping technique followed by cryosectioning of the 

deeper skin layers allows the quantification of the penetrated drug amount. Drug release 

from the formulation and drug permeation through the epidermis were studied using the 

static Franz diffusion cell (FD-C) technique. 

Due to the size differences between the hair follicles of pig skin and of human 

skin [82], which may play an important role in the results, we decided to use excised 

human skin from abdominal plastic surgery instead of pig skin. As polymer, PLGA was 

chosen in view of its excellent biocompatibility and the availability of various methods to 

prepare drug-loaded NP from this polymer. To verify the presence and to visualize the 

distribution of the applied NP on the skin, multiphoton fluorescence imaging was used. 

This technique allows to excite the natural fluorescence of the FFA in non-polar 

surroundings (λ max = 420 nm) by a two-photon absorption process. Two-photon 

excitation induced with femtosecond near infrared laser pulses offers the possibility of 

high-resolution 3-dimensional imaging of the skin [83]. 
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2.3. MATERIALS AND METHODS 
2.3.1.  Materials  

Natrosol® 250 M (Aqualon, Hercules Inc., DE, USA), Flufenamic acid, 

modification II (Kali-Chemie Pharma, Hannover, D), Poly(D,L-lactide-co-glycolide) 

(50:50) with a molecular weight of 40000 to 75000 Da (Sigma Chemical Co., St. Louis, 

MO, USA), Polyvinyl alcohol (PVA) Mowiol® 4-88 (Kuraray Specialities Europe GmbH, 

Frankfurt, D), Ringer solution, McIlvaine citric acid phosphate buffer (pH 2.2), Sodium 

hydroxide solution (0.05 M) (all components from Merck, Darmstadt, D), Plastibase® 

(Heiden GmbH, Muenchen, D), Methanol Chromasolv® (Sigma-Aldrich GmbH, Seelze, 

D), Tesa Film Kristall-klar 19 mm (Tesa AG, Hamburg, D), Ethyl acetate (Fluka Chemie 

GmbH, Bucks, Switzerland), Cellulose membrane MWCO 12000 – 14000 Da (Medicell 

International Ltd., London, LX, USA) were used as obtained from the suppliers.  

 

2.3.2.  Equipment 

HPLC System: ChromeleonTM Version 6,5 SP2, build 968; P580 Pump; ASI-100 

automated sample injector; STH 585 Column oven; UVD 170S Detector (Dionex Softro 

GmbH, Germering, D); Franz diffusion cell type 6G-01-00-15 (Perme Gear, Riegelsville, 

PA, USA); Cryomicrotome HR Mark II, model 1978 (Slee, Mainz, D); Centrifuge Sigma 

3E-1 (Sigma, Aichach, D); High-speed homogenizer Ultra-Turrax® T25 (Jahnke & Kunkel 

GmbH & Co. KG, Staufen, D); Atomic Force Microscope Nanoscope IV Bioscope™ 

(Veeco Instruments, Santa Barbara, CA, USA); Freeze-drier Alpha 2-4 LSC (Christ, 

Osterode, D); Rotavapor® R-205 (Büchi, Flawil, CH); Zetasizer® 3000 HS A (Malvern 

Instruments GmbH, Herrenberg, D); for multiphoton fluorescence imaging the 

femtosecond laser imaging system DermaInspect® (JenLab GmbH, Jena, D), equipped 

with a Chameleon laser system (Coherent Inc., Santa Clara, CA, USA) and a 

Hamamatsu PMT(H7732) detector (Hamamatsu Photonics Deutschland GmbH, 

Herrsching am Ammersee, D) was used. 
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2.3.3.  Nanoparticle preparation and characterization 

PLGA nanoparticles loaded with flufenamic acid (FFA NP) were prepared using a 

solvent extraction method. 30 mg of flufenamic acid were dissolved in a solution of 600 

mg of PLGA in 20 ml of ethyl acetate. This organic phase was added dropwise into 20 ml 

of an aqueous phase, containing 1% of PVA as a quasi-emulsifier, under stirring with a 

magnetic stirring bar. The resulting O/W emulsion was homogenized with a high-speed 

homogenizer at 13500 rpm for 10 minutes. To complete the precipitation, water was 

added up to 200 ml under stirring with a magnetic bar. Organic solvent was then 

removed using a rotating evaporator. The resulting nanoparticles suspension was freeze-

dried and stored until use. 

For reference, standard drug-free nanoparticles were prepared in the same way. 

Size and surface morphology of the FFA NP were determined using photon 

correlation spectroscopy (PCS) and atomic force microscopy (AFM). For the AFM 

measurements, a drop of the nanoparticles suspension and hydrogel, respectively, were 

air-dried on a silica wafer. Imaging was done using a silicon cantilever with a spring 

constant of approximately 40 N/m and a resonance frequency of about 170 kHz. The 

scan speed applied was 0.2 Hz. The resolution was 512 × 512 pixels. In order to avoid 

generating sample artefacts the tip loading force was minimized. 

The content of FFA in the particles was determined using the following equation: 

 Whereas FFA Free was determined in the supernatant obtained from a 

centrifuged suspension (23147×g), FFA Total was obtained after a proper extraction of 

the NP suspension using 0.05 M sodium hydroxide solution. The obtained drug 

entrapment was 63.6 % w/w that was calculated using the following equation: 
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Equation 5: Entrapment percentage of drug into nanoparticles 

 

Where mid is the mass of the initial drug used and mfd the mass of the free drug 

detected in the supernatant after centrifugation of the nanoparticle suspension. 

 

2.3.4.  Gel preparation 

Flufenamic acid Natrosol® hydrogel (FFA HG) was prepared with flufenamic acid 

dissolved in water under vigorous stirring. Afterwards, Natrosol® was added in a 

proportion equivalent to 1.5 % (w/w) and stirred overnight until the polymer was 

completely swollen. The absence of crystals was determined by microscopic inspection 

of the gels.  

To prepare a flufenamic acid nanoparticles hydrogel (FFA NP HG) a Natrosol® 

gel (3% w/w) was mixed with an aqueous suspension of the nanoparticles in a 1:1 ratio 

to obtain the same concentration as in FFA HG. The presence and integrity of the 

particles in the gel was confirmed by AFM (see figure 1). In addition, the FFA 

concentration in each gel was verified by HPLC. 

In the same way, a hydrogel containing drug-free nanoparticles was prepared. 

Penetration and permeation experiments were carried out using FFA HG and 

FFA NP HG, each with a drug concentration of 0.12 mg/g. 

 



PLGA nanoparticles as transdermal carriers 

 

43

2.3.5.  Skin preparation  

Excised human skin from Caucasian female patients, who had undergone 

abdominal plastic surgery, was used. The Ethical Committee of the Caritas- 

Traegergesellschaft (6th July 1998), Trier, Germany, approved the procedure used. 

Adequate health and no medical history of dermatological disease were required. After 

excision, the skin was cut into 10 × 10 cm2 pieces and the subcutaneous fatty tissue was 

removed from the skin specimen using a scalpel. Afterwards the surface of each 

specimen was cleaned with water, wrapped in aluminium foil and stored in polyethylene 

bags at –26°C until use. Previous investigations have shown that no change in the 

penetration characteristics occurs during the storage time of 6 months [77, 84]. 

Disks of 25 mm in diameter were punched out from frozen skin, thawed, cleaned 

with Ringer solution, and either transferred directly into the Saarbrücken model or used 

to prepare heat separated epidermis sheets for the Franz diffusion cell experiment. 

 

2.3.6.  Heat separated epidermis preparation 

The epidermis was separated placing the thawed and cleaned skin disk in water 

at 60°C for 90 seconds. After that, the skin was removed from the water and placed, 

dermal side down, on a filter paper. The epidermal layer was peeled off from the skin 

using forceps. Before use in the FD-C, the epidermal membrane was pre-hydrated for 1 

h. 

 

2.3.7.  Permeation experiments 

Using a FD-C, experiments were carried out using heat-separated epidermis 

mounted on a cellulose membrane disk. The membrane was positioned between the 

donor and acceptor compartment. As donor 750 µl of preparation and as receptor 12.1 

ml of Soerensen phosphate buffer (pH 7.4) were used. The donor compartment was 
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sealed with aluminium foil and the system was maintained at (32 ± 1) °C in a water bath. 

The acceptor fluid was stirred using magnetic bars at 500 rpm. At predetermined time 

intervals, samples of 1.0 ml were collected from the acceptor medium and replaced 

immediately with fresh buffer solution. Samples were collected until 29 h and analysed 

by HPLC. 

Release experiments were done in the same way but using a cellulose 

membrane to separate donor and receptor compartment. 

 

2.3.8.  Penetration experiments 

Using a SB-M apparatus, a full thickness skin disk was transferred into the cavity 

of a Teflon block on filter paper soaked with Ringer solution to prevent any change in the 

hydration state of the skin. The cavity of the upper Teflon punch was filled with the drug 

preparation and fixed in position. The gap between the two Teflon parts was sealed with 

Plastibase® to avoid water loss from the skin. The whole apparatus was transferred into 

an oven at (32 ± 1) °C for a predetermined incubation time. For details see [54]. 

 

2.3.9.  Skin segmentation  

After the incubation time all the skin specimens investigated with SB-M were 

segmented using tape stripping and cryosectioning method. 

Tape stripping method: At the end of the experiment, the formulation was wiped 

off from the skin surface using cotton. Then the skin piece was transferred to a special 

apparatus where it was mounted using small pins to stretch the tissue. After, the skin 

was covered with a Teflon mask with a central hole of 15 mm in diameter and 

successively stripped with 20 pieces of adhesive tape placed on the central hole. Each 

tape was charged with a weight of 2 kg per 10 seconds and rapidly removed. The 



PLGA nanoparticles as transdermal carriers 

 

45

samples obtained were pooled according to the following scheme: #1= 1 strip, #2= 1 strip 

#3= 3 strips and #4-6= 5 strips.  

Cryosectioning: After tape stripping, the skin was rapidly frozen in a stream of 

expanding carbon dioxide. A specimen of 13 mm in diameter was punched out from the 

stripped area and transferred into a cryomicrotome. The sections were pooled using the 

following scheme: #1= incomplete cuts, #2-5= 2*25 µm, #6-10= 4*25 µm, #11-15= 6*25 

µm, #16= 8*25 µm, #17= Rest of skin.  

 

2.3.10.  Sample extraction 

The pooled samples were extracted with 0.05 M sodium hydroxide solution and 

shaken during 2 h at room temperature. After that, tape-stripping samples were 

separated from the solid content and directly transferred to the HPLC system. The 

samples of cryosectioning were centrifuged at 456×g for 30 min; afterwards the 

supernatant was separated and transferred to the HPLC system. 

 

2.3.11.  HPLC method 

All the samples were analyzed using the following HPLC conditions: Column 

LiChrospher 100 RP-18, 5 µm, 125*4 mm (Merck, Darmstadt, D); Mobile Phase: 

McIlvaine buffer pH 2.2: Methanol (20:80); Flow rate: 1.2 ml/min; Wavelength: 284 nm; 

Injection volume: 20 µl; Retention time: (3.5 ± 0.2) min. This method has been previously 

validated by Wagner et al [54].   
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2.3.12.  Area under the penetration curve (AUPC) 

 The AUPC was calculated from the curves of penetrated amount per 

cubic centimetre of skin (C = µg/cm3) versus depth (d = µm) obtained from the SB-M 

experiments, using the following equation:  

∑
=

−−=
n

i
iiii ddCdAUPC

1
1)()(  

Equation 6: Area under the permeation curve calculation 

 

2.3.13.  Statistical evaluation analysis 

For statistical evaluation, SigmaStat 3.0.1 was used. 

 

2.3.14.  Multiphoton fluorescence imaging 

Skin samples were punched out, thawed and cleaned before gel application and 

image acquisition. Plain Natrosol® hydrogel, hydrogel containing not loaded 

nanoparticles or containing flufenamic acid loaded nanoparticles respectively, were 

applied to the skin and imaged using multiphoton fluorescence imaging with an 40×/ NA 

1.3 (oil) objective, at excitation wavelength of λ = 720 nm (pulse length 170 fs, repetition 

rate 90 MHz) and an average power of 13 mW. Images were acquired in a time less than 

30 minutes after application of the gel onto the skin. Acquisition time was chosen to be 

25s for a 512×512 pixel image. Starting at the skin surface (z = 0 µm) every 2.3 µm an 

image was recorded to finally obtain a 200×200×46 µm3 stack. The focal plane was 

varied by a piezo driven objective, allowing to survey the entire epidermis down to the 

stratum basale. 
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2.4. RESULTS  

To avoid any inter-individual variability of human skin, all penetration and 

permeation experiments were carried out with skin from the same donor and repeated 6 

times. Only for visualization studies skin from a different donor was used. 

As shown by atomic force microscopy (AFM) in figure 12, the incorporation of NP 

(mean size 328.2 nm, PI 0.16) into a hydroxyethyl cellulose gel has no influence on 

shape and size distribution of the particles, confirming that the hydrogel contained 

undamaged nanoparticles. 

 

 

Figure 12: Atomic force microscopy images of flufenamic acid containing nanoparticles: A) 
aqueous suspension; B) incorporated into Natrosol® a hydrogel 
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2.4.1.  Release experiments 

Release experiments have shown very similar profiles for free and 

nanoencapsulated drug. At approximately 6 hours all the drug content in each 

formulation have been released See figure 13. 

 

Figure 13: Percentage of flufenamic acid released from FFA HG and FFA NP HG. 

 

2.4.2.  Human skin penetration experiments using Saarbrücken model 

Stratum corneum: Between the free and the nanoencapsulated drug no 

statistical significant difference in the amount of flufenamic acid accumulated in the SC, 

expressed as AUPC, was detected at any incubation time. Furthermore, it is remarkable 

that there was a slight decrease of the AUPC for both formulations with increasing 

incubation time (figure 14a). 

Deeper skin layers (viable epidermis and dermis): For these layers statistical 

significant differences in the flufenamic acid amounts between the 2 formulations (t-test, 

P < 0.05) were observed at 3 h and 24 h of incubation time respectively. Interestingly, 

after 3h higher levels were found for the preparation containing the free drug than for the 

NP formulation. In contrast, after 24 h this relation was inverted, i.e. a considerably 
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higher amount of drug has penetrated from nanoparticles compared to the free drug 

(figure 14b). In addition, a decrease compared with the 6 h values for both preparations 

was observed, although the same preparations were used. The reason for these results 

may be addressed to a radial diffusion in the SB-M. Considering that the drug was 

extracted only from samples obtained from a disk of 13 mm (in diameter) of the stripped 

area, not all the drug can be detected. For both preparations FFA was detected in the 

filter paper under the skin, indicative that the sink conditions, which favour the vertical 

diffusion of the drug, were not maintained completely and therefore could influence the 

obtained results. However, one can assume that for both experimental series the effect 

occurs in the same magnitude. Therefore, direct comparison of the nanoencapsulated 

drug preparation and the free drug preparation at this incubation time is still justified.  

 

2.4.3.  Human skin permeation experiments using Franz diffusion cell 
system 

For better comparison, the same time points as chosen in the penetration studies 

(SB-M) were used in the permeation experiments (FD-C). At shorter incubation times (< 

12 h) there were no significant differences in the permeated amount of drug. The levels 

of the free drug formulation tended to be slightly increased, but the differences were 

statistically not significant (figure 15). However, for longer incubation times (24 h and 

later) there was a statistically significant inversion of the drug amount permeated, i.e. 

more drug had permeated from the nanoencapsulated drug formulation compared to the 

free drug formulation. 
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Figure 14: Area under the penetration curve (AUPC) of flufenamic acid penetrated into 
human skin using a Saarbruecken model at different incubation time (n=6). 

 

Figure 15: Permeation of flufenamic acid amount through heat-separated human epidermis 
using Franz diffusion cell system (starred points indicate statistically significant difference). 
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2.4.4.  Visualisation experiments 

Multiphoton fluorescence imaging experiments were carried out using a particle-

free hydrogel, a hydrogel containing drug-free nanoparticles and a hydrogel with FFA 

nanoparticles. As expected, the skin shows an auto-fluorescence and structure 

corresponding to published data [85]. In preliminary studies, it was found that neither 

FFA in solution nor FFA crystals could be visualised in the hydrogel by this technique. 

However, nanoencapsulated FFA yielded a fluorescence signal probably due to the fact 

that the fluorescence of the drug is favoured by the non polar and acidic environment of 

the polymer (figure 5) [52]. The ostensive size of some of the nanoparticles in the 

multiphoton images on the order of a few microns is due to (1) the system resolution (dx 

= dy ≈ 0.4µm, dz ≈ 1µm), (2) partly aggregation and (3) the Brownian motion of the sub-

diffraction-limit-sized particles during image acquisition. Transversal drift of the particles 

led to stretched shapes of their fluorescence spots. 

The multiphoton sections taken at different relative depth to the surface (0 to 50 

µm) of the human epidermis after treatment with the flufenamic acid nanoparticles 

formulation showed a consistent lateral and normal uniform distribution of particles on the 

skin surface and within the dermatoglyphs. But no particles were detected within and 

between the corneocytes (figure 16 E and F). The particle distribution was not indicative 

of accumulation in any skin structure at least after 30 minutes of incubation. See figure 

16. 
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Figure 16: Multiphoton fluorescence imaging of A) plain hydrogel, B) FFA NP HG, C) skin 
with plain hydrogel, D) skin with drug-free nanoparticles hydrogel, E) skin with FFA NP HG 
distributed on the surface and F) skin with FFA NP HG in the dermatoglyphs at a depth of 

16 µm. 
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2.5. DISCUSSION 

Using the Saarbruecken penetration model no differences in drug transport into 

the stratum corneum could be detected for the nanoencapsulated compared to the free 

drug (figure 14). Normally for infinite dose experiments would be expected that the drug 

amount in the SC reaches a plateau while in the DSL the drug amount increases. In our 

experiments it is remarkable that a slight decrease of drug amounts for both preparations 

is visible for the SC. The reason might be a radial spreading of the preparation on the 

skin specimen surface.  

For the DSL the permeation of the drug appeared lower when delivered by 

nanoparticles in comparison to the free drug preparation in both test systems for 

relatively short incubation times (<12 h).  

In contrast to the results obtained at short incubation times, the proportion of drug 

transported into the DSL was inverted after longer incubation times (>12 h). A statistically 

significant higher level of drug was found for the nanoencapsulated drug compared to the 

free drug with both techniques, the FD-C and SB-M (figure 14 and 15). The mechanisms 

how nanoparticles increase the amount of FFA at longer incubation times in the DSL 

remains unclear. Since the overall concentration of the flufenamic acid in the FFA HG 

and in FFA NP HG is equal, this should not affect the drug transport. However, it may be 

speculated that the degradation of the particles leads to some release of acidic 

compounds (lactic and glycolic acid). This acidification of the particles and their 

surroundings favours the non-ionised form of FFA which penetrates the SC better. pH 

changes of the PLGA particles due to the degradation has been reported by Fu et al [86] 

earlier. Furthermore, if particles were able to cross the stratum corneum [80] after a 

certain incubation time, this could also increase the amount taken up. However, 

multiphoton fluorescence imaging does not give any hint to this mechanism at least not 

after short incubation time (30 min).  
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Our attempts to visualise drug transport into the skin by multiphoton fluorescence 

microscopy were restricted to the nanoencapsulated drug, while the free flufenamic acid 

did not yield any fluorescence signal. The distribution of nanoparticles applied to the skin 

appeared to be homogeneous within the hydrogel and followed the structure of the skin 

surface and the dermatoglyphs. No hair follicles or sweat glands were observed, so that 

possible transport of nanoparticles along these structures such as previously reported by 

others [40, 41, 79] could not be confirmed by this study. At least after the relatively short 

incubation time of 30 minutes, no particles were detected within or in between the 

corneocytes. The visualization of drug transport processes for nanoparticles after longer 

incubation times (>12 h) is still ongoing and subject of further investigations. 

In summary, while there were no differences in the SC between free and 

nanoencapsulated drug, such differences became visible at the level of the DSL. After 

shorter incubation times (< 12 h), a significantly higher penetration was obtained with the 

free drug preparation, suggesting that nanoencapsulation causes a slight delay of drug 

transport, whereas, for longer incubation times (> 12 h) the result was inverted and up to 

50% more of drug was transported into the DSL by the nanoparticles compared to the 

free drug formulation. 

 

2.6. CONCLUSIONS 

In this study the effect of the nanoencapsulated flufenamic acid on the skin 

transport was investigated at different incubation times using permeation and penetration 

systems (FD-C and SB-M, respectively). For shorter incubation time (< 12 h) a slight 

delay in the skin transport was observed. In contrast, for longer incubation times (> 12 h) 

the drug transport was enhanced for nanoencapsulated drug compared to the free drug. 

Although not yet fully understood, such observation underscores the potential of 

nanotechnology for transdermal drug delivery. 



 

 

 

 

 

 

 

 

 

 

CHAPTER 3: MECHANISM OF IMPROVEMENT OF TRANSDERMAL 
DELIVERY BY PLGA NANOPARTICLES 

 

 

 

 

 

 

Parts of this chapter have been submitted for publication in Journal of 

Controlled Release in the article entitled “Human skin permeation using PLGA 

nanoparticles is mediated by local pH changes” (Javiana Luengo, Marc 

Schneider, Karl-Heinz Kostka, Ana M. Schneider, Claus-Michael Lehr, Ulrich F. 

Schaefer) 
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3.1. ABSTRACT  

The aim of this chapter was to investigate the pH influence due to the presence of 

poly(lactide-co-glycolide) (PLGA) nanoparticles in semisolid as well as liquid formulations 

on the epidermal permeation of the anti-inflammatory drug flufenamic acid (FFA). For this 

purpose different vehicles, under non-buffered and buffered conditions, and different 

membranes (human heat separated epidermis and a commercially available 

reconstituted human epidermal model) were tested. Permeation experiments were 

performed using static Franz diffusion cells under occlusion. 

It was observed that the presence of nanoparticles increased drug permeation 

across the skin barrier. This effect was stronger applying drug-loaded nanoparticles. 

Under different temperature storage conditions it has been observed that 

suspensions and not gels containing nanoparticles shown a drop on the total pH of the 

preparations, being time and temperature dependent. The same preparations have 

shown physical evidence of degradation. 

The use of buffered vehicles with different pH values showed the influence of the 

pH on the permeation behaviour of the FFA. An increased permeated amount with lower 

pH was determined suggesting an impact on the environmental pH of the biodegradable 

nanoparticulate carrier system. This drop of pH on the nano-environment of the carrier 

system was demonstrated and visualized using pH sensitive fluorescent probes. 

Having tested the formulations under buffered and non-buffered conditions, it can 

be concluded that the drop of pH due to the presence of PLGA nanoparticles is the 

reason for the observed enhanced permeation of FFA through the epidermal barrier, 

even increasing it more than 10 folds. 
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3.2. INTRODUCTION  

The stratum corneum have been widely acknowledge as the main barrier to 

percutaneous absorption of substances, limiting the drug characteristics only to small, 

moderate lipophilic and highly potent molecules, it is also regarded as the main pathway 

for penetration through the skin. Although several strategies to improve the cutaneous 

delivery of active pharmacological ingredients have been investigated (e.g. ionto- and 

sonophoresis, electroporation, microneedles, supersaturated formulations, micro-

emulsions, liposomes, colloidal polymeric suspensions, penetration enhancers, etc.) the 

cutaneous penetration of highly lipo- and hydrophilic drugs remains a big issue.  

Biodegradable polymers have long been of interest in the controlled release 

technology because of their biocompatibility and bioresorbability by natural pathways, 

and without the need of the removal of the release device. Polymers derived from lactic 

and glycolic acid have the property that when degrading in the body their end-products 

take part in the Krebs cycle, generating atoxic compounds [87, 88]. For this reason they 

are products of high interest in the drug delivery field. Their degradability can be 

regulated according to the proportions of the units of lactic and glycolic acid present in 

every polymer chain, although by the isomers used, as well as, the molecular weight of 

the latter mentioned. The dissolution conditions of the polymeric device could accelerate 

or retard the degradation process. 

Nanoparticles for pharmaceutical use are in a size range between 10 to 1000 nm. 

Their small particle sizes determine a large interfacial area, increasing the number of 

molecules able to be exchanged. Polymeric nanoparticles consist of macromolecular 

materials and can be used as drug carriers [89]. In various applications nanoparticles 

have shown advantages over liposomes on their physical increased stability, drug 

loading capacity, and a controlled release of the active compound [16]. In these devices 

the drug can be entrapped, dissolved, encapsulated or simply attached to the matrix [80]. 

During the last years polymeric nanoparticles have attracted considerable attention as 



Mechanism of improvement of transdermal delivery by PLGA nanoparticles  

 

59

drug delivery devices but only limited biodegradable nanoparticulate systems have been 

investigated to be used on dermal and transdermal delivery.  

The aim of the present work was to elucidate the mechanism how poly(lactide-co-

glycolide) (PLGA) nanoparticles improve the permeation of the anti-inflammatory drug, 

flufenamic acid through the epidermal membrane, considering the results presented in 

the previous chapter which have shown this effect using PLGA nanoparticles. Following 

this objective, permeation experiments using loaded and not loaded nanoparticles were 

performed to examine if the drug must be incorporated into the particle to have the 

enhancing effect; also the influence of the particle size of loaded nanoparticles was 

studied. To investigate the effect of the nanoparticles-containing formulations under 

normal application conditions, finite dose regime was used. The influence of the 

presence of hair follicles was studied using human heat-separated epidermis and a hair 

follicle-free reconstituted human epidermal barrier. To investigate the pH effect of the 

nanoparticles on the permeation improvement through the epidermal barrier, 

formulations were tested under buffered or non-buffered conditions. 



Mechanism of improvement of transdermal delivery by PLGA nanoparticles  

 

60 

3.3. MATERIALS AND METHODS 

 

3.3.1.  Materials 

Hydroxy ethyl cellulose (HEC) Natrosol® 250 M (Aqualon, Hercules Inc., DE, 

USA), Flufenamic acid, modification II (Kali-Chemie Pharma, Hannover, D), Poly(D,L-

lactide-co-glycolide) (50:50) with a molecular weight of 40000 to 75000 Da (Sigma 

Chemical Co., St. Louis, MO, USA), Polyvinyl alcohol (PVA) Mowiol® 4-88 (Kuraray 

Specialities Europe GmbH, Frankfurt, D), Ringer solution, McIlvaine citric acid phosphate 

buffer at different pH values, Phosphate buffer (pH 6) (all components from Merck, 

Darmstadt, D), Sodium hydroxide solution (0.1 M) , Hydrochloric acid (0.1M) (Grüssing 

GmbH, Filsum, D), Methanol Chromasolv® (Sigma-Aldrich GmbH, Seelze, D), Ethyl 

acetate (Fluka Chemie GmbH, Bucks, Switzerland), Cellulose membrane MWCO 12000 

– 14000 Da (Medicell International Ltd., London, LX, USA) were used as obtained from 

the suppliers, Arabic gum (Caeser & Lorentz, Hilden, D), Gelatine A (Dt. Gelatine 

Fabriken, Eberbach, D), n-Octanol and Propanol (Merck, Darmstadt, D), LysoSensor™ 

Green DND-189 (Invitrogen GmbH, Karlsruhe, D) were used as obtained from the 

suppliers. 

 

3.3.2.  Equipment 

HPLC System: ChromeleonTM Version 6,5 SP2, build 968; P580 Pump; ASI-100 

automated sample injector; STH 585 Column oven; UVD 170S Detector (Dionex Softro 

GmbH, Germering, D); Franz diffusion cell type 6G-01-00-15 (Perme Gear, Riegelsville, 

PA, USA); High-speed homogenizer Ultra-Turrax® T25 (Jahnke & Kunkel GmbH & Co. 

KG, Staufen, D); Rotavapor® R-205 (Büchi, Flawil,CH); Zetasizer® 3000 HS A (Malvern 

Instruments GmbH, Herrenberg, D), Confocal laser scanning microscope (CLSM) MRC 

1024 (BioRad/Carl Zeiss AG, Jena, D), Atomic Force Microscope Nanoscope IV 

Bioscope™ (Veeco Instruments, Santa Barbara, CA, USA). 
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3.3.3.  Nanoparticles preparation and characterization 

PLGA loaded and drug-free nanoparticles were prepared by solvent extraction 

method, and characterized using photon correlation spectroscopy (PCS) and atomic 

force microscopy (AFM), for further details please refer to Section 2.3.3.  

 

3.3.4.  Microparticles from PLGA and arabic gum/gelatine A 

The PLGA microparticles were prepared using the same composition like the 

nanoparticles but modifying the homogenization conditions (speed: 8000 rpm and time: 2 

minutes).  

In brief, the preparation of the arabic gum/gelatine A microparticles was done by 

dissolving homogenously gelatine A in distilled water. Then n-octanol (several drops) and 

the dissolved arabic gum were added. Afterwards, distilled water at 50°C was added and 

the pH adjusted to 4 using acetic acid. After a cooling step over night, the particles are 

re-dispersed in isopropanol for post-curing and dried. 

 

3.3.5.  Non-buffered gel preparations 

Flufenamic acid HEC hydrogel (FFA HG) was prepared with flufenamic acid 

dissolved in water and a minimal amount of sodium hydroxide solution to accelerate the 

dissolution (that was neutralized later on using hydrochloric acid solution) under vigorous 

stirring. Afterwards, HEC was added in a proportion equivalent to 1.5% (w/w) and stirred 

overnight until the polymer was completely swollen. The absence of crystals was 

determined by microscopic inspection of the gels.  

For the preparation of the NP containing gels, the original NP suspension was 

concentrated by centrifugation as follows: volumes of 20 ml of fresh prepared 

nanoparticles suspension were centrifuged at 2468xg per 5 min, 15 ml of the supernatant 
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were removed and the particles re-suspended, and the suspension drug content 

determined and adjusted. 

To prepare a flufenamic acid nanoparticles hydrogel (FFA NP HG) a HEC gel 

(3% w/w) was mixed with a concentrated aqueous suspension of the nanoparticles in a 

1:1 ratio to obtain the same concentration as in FFA HG.  

A hydrogel containing drug-free nanoparticles (FFA HG + DF-NP) was prepared 

using a doubled flufenamic acid and HEC concentration, prepared as described for FFA 

HG and mixed with a concentrated drug-free nanoparticles suspension in a proportion 

1:1.  

To the nanoparticles-containing-gels, the same amounts of NaOH and HCl 

solutions as in FFA HG were added. The presence and integrity of the particles in the gel 

was confirmed by AFM.  

Permeation experiments were carried out in quadruplicate using FFA HG, FFA 

NP HG and FFA HG + DF-NP, each with a drug concentration of 0.125 ± 0.006 mg/g. 

The pH of the preparations was 5.4 ± 0.1. 

 

3.3.6.  Flufenamic acid saturation concentration in different solutions 

 The studies regarding the concentration of saturation in varying vehicles 

were performed as follows: 500 mg of flufenamic acid were placed in a 500 ml volumetric 

flask and Soerensen phosphate buffer (pH 6.0) and McIlvaine buffer solutions at pH 

values between 3.4 and 7.4 (for composition, please refer to [90]) were added. Every 

mixture was stirred at 500 rpm during 48 h at 32 ± 1°C and left sediment during 12 h at 

the same temperature. Three samples of 10 ml each were taken from each flask and 

filtered through OptiFlow-PTFE filter (0.2 µm) at the same temperature. The first 7.5 ml 

were discarded and the last 2.5 ml collected in a separate flask. One millilitre of the 

filtrated solution was diluted to 100 ml with NaOH 0.05 M and analysed by HPLC. 
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3.3.7.  Buffered gels preparation  

Buffered gels were prepared as described above using HEC and buffer solution 

at different pH (Soerensen phosphate buffer pH 6.0) instead of water, and the respective 

flufenamic acid, additional drug-free nanoparticles or loaded nanoparticles. 

Permeation experiments were carried out by quadruplicate using FFA HG, FFA 

NP HG and FFA HG + DF-NP, each with a drug concentration of 0.125 ± 0.006 mg/g. 

The pH of the preparations was those of the respective buffer solution with an error of ± 

0.1 unit. 

 

3.3.8.  Flufenamic acid solutions and NP suspensions 
 
Non-buffered formulations 

A concentrated solution of flufenamic acid of 98.85 µg/ml was prepared in NaOH 

0.04 M.  

Flufenamic acid non buffered solution (FFA sol), loaded nanoparticles non 

buffered suspension (FFA NP), and solution containing drug-free nanoparticles non 

buffered suspension (FFA + DF-NP) were prepared mixing the components described in 

table 1: 

 

 FFA sol FFA NP 
suspension 

FFA solution 
+ DF-NP 

suspension 
FFA concentrated solution 40.464 ml -- 40.464 ml
HCl 0.1 M 1.480 ml 1.480 ml 1.480 ml
NaOH 0.04 M -- 40.464 ml --
FFA NP concentrated suspension9 -- 25.536 ml --
DF-NP concentrated suspension 9 --  25.536 ml
Deionised water to 100 ml 100 ml 100 ml

 
Table 1: Compositions of flufenamic acid non-buffered formulations. 

                                                 
 
9 Prepared as described in section 3.3.5 
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3.3.9.  Buffered formulations 

One hundred millilitres of McIlvaine concentrated buffers were prepared by the 

composition describe in table 2: 

 

 pH 5.4 pH 6.4 pH 7.4 
Citric acid monohydrate 0.2 M 44.7 31.4 9.8 
Disodium phosphate dihydrate 0.4 M 55.3 68.6 90.2 

 
Table 2: Composition of McIlvaine buffer solutions for flufenamic acid buffered preparations 

 

Flufenamic acid solution (FFA sol), loaded nanoparticles suspension (FFA NP) 

and containing drug free nanoparticles buffered formulations were prepared as follows: 

Buffer solution and water were mixed with the drug and stirred overnight to allow the drug 

to be dissolved, afterwards nanoparticles concentrated suspension was added to the 

mixture (when corresponds). See composition in table 3. 

 

 FFA sol FFA NP 
suspension 

FFA solution 
+ DF-NP 

suspension 
 FFA sol FFA NP FFA + DF-NP 

Concentrated buffer 50.000 ml 50.000 ml 50.000 ml
Flufenamic acid 4000 µg 4000 µg
FFA NP concentrated suspension10 25.536 ml
DF-NP concentrated suspension10 25.536 ml
Deionized water to 100.000 ml 100.000 ml 100.000 ml

 
Table 3: Composition of flufenamic acid buffered preparations. 

 

For determination of the drug concentration all preparations were extracted and 

diluted with NaOH 0.05 M and samples were analysed by HPLC.  The concentration of 

all liquid formulations was in the range of 37.6 ± 1.9 µg/ml. 

                                                 
 
10 Prepared as described in section 3.3.5 
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3.3.10.  Skin preparation 

See method described in section 2.3.5. 

 

3.3.11.  Heat separated epidermis preparation 

See method described in section 2.3.6. 

 

3.3.12.  Degradation of nanoparticles hydrogels and suspension 

Degradation of particles was studied in hydrogels and suspension by visualization 

using atomic force microscopy (AFM) and at the same time pH of the preparations was 

measured using an electrode pHmeter. The later mentioned formulations were stored at 

different conditions: 4°C, room temperature and 32°C, protected from the light.  Samples 

at different time points were collected during several weeks and analysed. 

 

3.3.13.  Permeation experiments 

Using static Franz diffusion cells (FD-C), experiments were carried out using 

heat-separated epidermis mounted on a cellulose membrane disk, or reconstituted 

epidermis, as membrane. The membrane was positioned between the donor and 

acceptor compartment. As donor 0.75 ml of the gel or 1 ml of solution or NP suspension 

for infinite dose experiments, and approx. 18 mg of gel for finite dose experiment (exact 

weight was noticed and used for the calculations). As receptor 12.1 ml of Soerensen 

phosphate buffer (pH 7.4) were used. The donor compartment was sealed with 

aluminium foil and the system was maintained at (32 ± 1) °C in a water bath. The 

acceptor fluid was stirred using a magnetic bar at 500 rpm. At predetermined time 

intervals, samples of 0.3 ml were collected from the acceptor medium and replaced 

immediately with fresh buffer solution. Samples were collected until 30 h and analysed 

by HPLC. 
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3.3.14.  HPLC method 

See method described in section 2.3.11.   

 

3.3.15.  Determination of apparent permeation coefficient  

Apparent permeation coefficient (Papp) values were calculated from an equation 

derived from the Fick’s first law assuming perfect sink conditions in the system (i.e. the 

FFA concentration does not exceed the 10% of its saturation concentration in the 

receptor compartment), see equation 1. The flux at steady state (Jss) was calculated from 

the slope of the linear portion of the cumulative amount per area unit versus time plots 

(for HSE the points between 3 and 9 hours and for SkinEthic® points between 2 and 6 

hours were considered). Cv parameter corresponds to the concentration of the donor. 

v

ss
app C

JP =
 

Equation 7: Apparent permeation coefficient of the epidermal barrier using infinite dose 
under steady state conditions 

 

3.3.16.  Enhancement factor calculation 

Enhancement factor (E) was calculated using the Papp values of the different 

preparations (n) respect to the dissolved drug containing formulation (FFA HG or FFA sol 

as reference (ref) when corresponds). 

ref
app

n
app

P
P

E =
 

Equation 8:  Enhancement factor calculation using the apparent permeation coefficient of 
the different formulations respect to that containing dissolved drug 
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3.3.17.  Local pH measurements using confocal laser scanning microscopy 
measurements 

For the measurement of the local pH the particle suspensions’ pH were adjusted 

roughly to pH = 7 using sodium hydroxide. Hereafter, 10 µl of the suspension were mixed 

with 10 µl of a 0.1 mM LysoSensor™ solution. The mixture was given on a microscope 

slide and sealed with a cover slip using nail polish. The fluorescence measurements 

were performed using the 488 nm line of the argon/krypton laser line and a band pass 

filter (522/35) for each of the particle suspensions. Transmission light images were taken 

using a conventional light bulb with the red channel of the CLSM. 

 

3.3.18.  Statistical evaluation 

For statistical evaluation, SigmaStat 3.0.1 was used. ANOVA test were run using 

“all pairwise comparison procedure” (Holm-Sidak method). Significance level p<0.05. 
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3.4. RESULTS AND DISCUSSION 
 
3.4.1.  Infinite dose permeation experiments using hydrogels and heat 
separated human epidermis  

Infinite dose permeation experiments using FFA hydrogels containing the drug as 

dissolved form, either in the presence or in the absence of drug-free NP, or as drug 

loaded NP, were performed to investigate the influence of nanoparticles on the dermal 

permeation of the highly lipophilic drug, flufenamic acid. The high lipophilicity of the drug 

(log P = 4.88) [52] and its ability to dissociate under dermal physiological conditions (pKa 

= 3.9) [53] makes it a good candidate to be absorbed through the skin.   

As shown in figure 17 an increase in the permeation of flufenamic acid from a 

hydrogel through the complete epidermis into an aqueous medium was observed when 

the drug was loaded into PLGA nanoparticles. When drug-free nanoparticles were co-

administered an intermediate effect, between dissolved drug and loaded nanoparticles, 

was observed. At the same time, the particle size seemed to have a minor influence in 

the permeation profile of the drug when loaded nanoparticles were used. 

 

Figure 17: Heat separated human epidermis permeation profiles of flufenamic acid using 
infinite dose regime of non buffered hydrogels containing: dissolved drug (FFA HG), loaded 

nanoparticles of different size (FFA NP HG), and dissolved drug with drug-free 
nanoparticles (FFA HG + DF-NP). 
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Several explanations for the increased permeation might be possible: (i) the 

nanoparticles are able to cross the epidermis through the hair follicles (27 ± 3 µm in 

diameter), inducing a higher permeated amount of FFA in the receptor medium. Hair 

follicle targeting using inorganic and polymeric nanoparticles, has been demonstrated by  

several authors, as Lademann and Toll [41, 44], as one of the mechanisms how 

nanoparticulate carriers could increase the drug delivery into the deeper skin layers. In 

the case of the drug-free nanoparticles, their more lipophilic nature compared with the 

hydrogel might lead to an adsorption of drug on the surface of the nanoparticles. In this 

form they could cross the epidermal barrier using the same pathway than the loaded 

ones; (ii) on the other hand, particles could release some degradation products (lactic 

and glycolic acid) to the hydrogel that could change the ionization state of the drug or 

modify the permeability characteristics of the stratum corneum, improving the permeation 

of FFA through the epidermal barrier. To evaluate those hypothesis further additional 

experiments were carried out. 

  

3.4.2.  Infinite dose permeation experiments using hydrogels and 
reconstituted human epidermis (Skinethic®)  

Trying to elucidate the mechanism how the PLGA nanoparticles increased the 

permeation through heat separated epidermis, experiments were carried out using a 

reconstituted human epidermal equivalent, SkinEthic®, as barrier and the same 

hydrogels containing different sized FFA NP, dissolved drug and the latter mentioned 

containing drug-free nanoparticles. SkinEthic® is a human reconstructed epidermal 

model, highly permeable [91-93] and devoid of hairs and hair follicles. If the penetration 

enhancement of FFA in the presence of NP as observed in natural human HSE involves 

hair follicles, lower or no differences among the formulations were expected for the 

reconstituted human epidermis. But in contrast to these considerations, FFA permeation 

differences were accentuated with respect to those observed using human HSE when 

nanoparticle-containing formulations were used (see figure 18). Now FFA permeation 
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reached almost 100% of the applied dose permeated. The described results suggested 

that the mechanism proposed by Lademann and Toll was not exclusively responsible for 

the increased permeation using nanoparticles. 

 

 

Figure 18: Reconstructed human epidermis (SkinEthic®) permeation profiles of flufenamic 
acid using infinite dose regime of: dissolved drug hydrogel (FFA HG), loaded nanoparticles 

hydrogel of different size (FFA NP HG), and dissolved drug with drug-free nanoparticles 
hydrogel (FFA HG + DF-NP) 

 

3.4.3.  Finite dose permeation experiments using hydrogels and heat 
separated human epidermis 

Finite dose permeation experiments were performed using different sized FFA 

NP HG compared with free drug containing HG. Again the same trend as in infinite dose 

experiments was found, i.e. a higher permeation for the nanoparticle-containing 

formulation. However, the differences failed to reach statistical significance (see figure 

19). 

Only weak differences might be a result of the rapid depletion of the donor phase 

due to the small amount applied. 



Mechanism of improvement of transdermal delivery by PLGA nanoparticles  

 

71

In view of the fact that some similar penetration enhancement was observed both 

for natural and reconstituted (i.e. follicle free) epidermis, as well as under infinite and 

finite dose conditions, led us to the following hypothesis. The degradation of the 

nanoparticles generates a lower pH microenvironment around the particles, favouring the 

non-ionized form of the drug, which is able to cross the barrier easier than the ionic form. 

This idea is supported by the results obtained by different research groups during the last 

years, detailed as follows: (i) PLGA microparticles develop a strongly acidic core when 

particles are incubated in a buffered medium over several days [86]; (ii) the smaller the 

size of the carrier is (e.g. 15 ↔ 40 nm), the faster the diffusion of degradation products 

(lactic and glycolic acid) to the medium become [94, 95]; (iii) PLGA 50:50 has a very fast 

degradation rate which can be influenced by the medium conditions (e.g. pH, 

temperature) [87, 88, 96]; (iv) the degradation products (lactic and glycolic acid) are able 

to modify the permeation characteristics of the epidermal barrier [97, 98]. To substantiate 

this hypothesis, the following experiments were carried out to elucidate if the pH 

generated by the nanoparticles has any influence on the permeation through the 

epidermal barrier. 

 

Figure 19: Human heat separated epidermis permeation profiles using finite dose regime of 
dissolved drug (FFA HG), different size loaded nanoparticles (FFA NP HG), and dissolved 

drug with drug-free nanoparticles (FFA HG + DF-NP) containing hydrogels. 
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3.4.4.  Flufenamic acid saturation concentration in different solutions 

 

Solvent Saturation concentration 
(µg/ml) 

Ionized percentage 
(%) 

Water 5.8 ± 0.8  
Soerensen buffer pH 6.0 29.4 ± 0.4 99.21 

pH 3.4 1.8 ± 0.2 24.00 
pH 4.4 5.6 ± 0.5 75.97 
pH 5.4 43.1 ± 1.8 96.93 
pH 6.4 383.4 ± 14.2 99.68 

Mc Ilvaine buffer 

pH 7.4 2896.1 ± 55.9 99.97 
Soerensen buffer  pH 7.411 2059.5 ± 21.6 99.97 

 

Table 4: Saturation concentration and ionized percentage of flufenamic acid in different 
solvents at 32 °C (mean ± SD) 

 

The saturation concentrations in different solutions at different pH values were 

determined, and the theoretical percentages of ionized drug at every pH were calculated. 

The results are described in table 4: 

It can be seen that at different pH values the solubility of the drug changes as well 

as its thermodynamic activity, a fact that will influence the drug transport through the 

epidermis. 

 

3.4.5.  Formulation pH and particle degradation 

The pH values were measured in non-buffered suspension and gel during two 

weeks after preparation to determine the influence of the storage temperature on the 

stability of the preparation.  It was noticed that in suspensions the pH values dropped of 

one unit when the formulation was stored at 32°C, an intermediate effect was observed 

                                                 
 
11 Data obtained from Henning, A. 2005 
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at room temperature, and only a slight drop of the pH of 0.1 units when stored at 4°C 

(see figure 20A) was found. 

When pH was measured in the gels, stored under the same conditions, it was 

noticed that the decrease on pH was not as evident as has been observed with the 

suspension (see figure 20B).This could be due to the reduced mobility of the hydrogen 

ions in the gel that cannot be detected by the electrode or that the degradation of the 

polymer is not so fast as in suspension. 

Visualization studies using AFM has shown that the degradation process in gels 

is not as fast as in the suspension at 32 °C (Figure 21)12. At 4 °C the rate of degradation 

is much slower and at the end of the experience particles have the same appearance 

than at week 1 (data not shown).  At week 4, also pore formation and fusion of the 

particles appeared as has been observed before by Panyam et al using protein loaded 

PLGA nanoparticles. Finally at week 6, no particles were found in the suspension, and in 

the gel there were still some particles in the last degradation stages. Panyam et al have 

demonstrated that an increase in the particle size results in a decrease in the 

degradation rate of the particles. Moreover, and a biphasic degradation profile with a 

higher initial degradation rate followed by a second slower phase, were pores and fusion 

of the particles was observed, probably due to the easier diffusion of the degradation 

products out of the particles [99]. It may be speculated that particularly the initial fast 

degradation could influence the permeation of flufenamic acid through the epidermal 

barrier. 

 

  

 

                                                 
 
12 Mrs. Noha Nafee (Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University) 

is thanked for the atomic force microscopy pictures 
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Figure 20: pH variation according to the storage temperature versus time of FFA NP 
suspension (A) and FFA NP containing hydrogel (B) 
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Figure 21: Atomic force microscopic pictures of nanoparticles degradation in suspension (S) 
and hydrogel (G) media at different time and temperature conditions 
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3.4.6.  Infinite dose permeation studies using buffered hydrogels and heat 
separated human epidermis 

 

To examine the influence of the pH and buffered systems, permeation 

experiments were carried out using buffered gels containing the same amount of drug 

but with adjusted pH values. When hydrogels containing Soerensen phosphate buffer at 

pH 6.0 were investigated an extremely high increase in the permeation, especially using 

the formulation containing the dissolved drug (see figure 22) was found. Two possibilities 

could be responsible for those results: the buffer compensated the effect of the 

nanoparticles on the skin or the buffer system influenced the barrier properties of the 

skin, inducing a higher permeation of the dissolved drug. 

Under steady state conditions apparent permeation coefficient values (Papp) were 

calculated from the above mentioned infinite dose experiments (see table 5). Comparing 

the Papp values it was possible to observe that: non-buffered conditions, the use of HSE 

and the application of loaded nanoparticles increased the permeation approximately 8 

fold compared to the administration of dissolved drug while the application of non loaded 

nanoparticles increased it only 3 fold. When reconstituted human epidermis was used 

the increase in flux was approximately 50 fold with loaded nanoparticles and almost 30 

fold with non-loaded ones. When a buffered system and HSE was used an unclear 

tendency (pH 6) of the effect of the particles presence was observed. These results 

suggest that buffer systems are able to compensate the effect of the nanoparticles on the 

skin permeation of the drug. 
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Figure 22: Human heat separated epidermis permeation profiles of a pH 6.0 buffered 
hydrogel using infinite dose regime of preparations containing flufenamic acid as dissolved 

drug (FFA HG), loaded nanoparticles (FFA NP HG), and dissolved drug with drug-free 
nanoparticles (FFA HG + DF-NP) 

 

 

 

FFA HG FFA NP HG 
(286 nm) 

FFA NP HG 
(486 nm) 

FFA HG + 
DF-NP  

Papp Papp E Papp E Papp E 

HSE 0.6 ± 0.3 4.7 ± 0.9* 8 7.6 ± 3.0* 13 1.8 ± 0.6 3 

SE 

Non 
buffered
pH 5.4 1.1 ± 1.2 48.5± 1.8* 44 77.0 ± 3.7* 70 31.2 ± 1.6* 28 

HSE Buffered
pH 6.0 24.4 ± 2.7 18.3 ± 6.0 0.8 ---- --- 14.7 ± 3.1* 0.6

 

Table 5: Apparent permeation coefficient (Papp) of flufenamic acid through human heat 
separated epidermis (HSE) and reconstituted human epidermal model, SkinEthic® (SE), and 

enhancement factor (E) respect to the dissolved drug containing formulation (FFA HG), 
using hydrogels in infinite dose regime. Papp values are expressed as 10-6 cm/s (mean ± 

SD). Statistical significant difference is marked with a star. 
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3.4.7.  Permeation studies using non-buffered and buffered solutions and 
nanoparticles suspensions 

To rule out the influence of the gel forming agent over the skin permeation it was 

decided to apply a solution and/or nanoparticles in suspension in a non-buffered and 

buffered form at different pH values. 

Similar results to those observed using non-buffered hydrogels where obtained 

when non-buffered solution or NP suspension were tested (see figure 23 NB): a higher 

permeation using loaded nanoparticles, an intermediate effect when non-loaded particles 

were added to a drug solution and the lowest permeation was obtained with the drug in 

dissolved form. These results confirmed that the gel forming agent has no influence on 

the permeation of FFA through the epidermal barrier. 

 

Figure 23: Human heat separated epidermis permeation profiles using flufenamic acid 
solution (FFA sol), FFA solution containing drug-free nanoparticles suspension (FFA sol + 

DF-NP susp) and loaded nanoparticles suspension (FFA NP susp) as non-buffered 
preparations (NB) and buffered at different pH values 
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The summarized results were compared with those obtained using the same 

above mentioned preparations at different pH values (see figure 23). In all cases, a 

decrease of the permeation in combination with an increase of the pH value was 

observed. Additionally it was found that when non-buffered preparations were used, 

permeation of the flufenamic acid solution show a similar permeation to the higher pH 

value (pH 7.4), the solution containing drug-free nanoparticles to the intermediate pH 

value (pH 6.4) and the loaded nanoparticles to those with the lower pH value (pH 5.4). 

Considering that the measured pH of the non-buffered preparations was in the 

range of 5.8 ± 0.2 these results confirmed the hypothesis that the nanoparticles have an 

influence on the pH and hence modify/influence the permeation behaviour of the drug. 

As proved by Fu et al, PLGA particles suspended in a buffered medium are able to 

create an inner acidic environment due to the polymer degradation which is more 

pronounced for smaller than larger particles [86]. Additionally, a change of the acidity 

was demonstrated for non-buffered systems over a time period of several days. 

Therefore, these carriers might be able to create an external micro-surrounding acidic 

environment that could increase the amount of non-ionized drug available for the 

permeation through the epidermal membrane when the nanoparticles are in contact with 

it. 

The Papp of flufenamic acid through the HSE using non buffered solutions and 

suspensions have approximately the same magnitude than with the hydrogel 

preparations (see table 6), increasing approx. 8 and 3 folds, respectively, when loaded 

nanoparticles and drug-free nanoparticles were used (values relative to the flux obtained 

with flufenamic acid solution). When buffered preparations were used no differences 

among them at one determined pH were observed. When the same preparation at 

different pH values was compared in all cases, i.e. flufenamic acid solutions, loaded 

nanoparticles suspensions and solutions containing drug-free nanoparticles, an increase 

of approx. 4 and 10 or more folds was observed when pH decrease around 1 or 2 pH 
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units. These findings indicate that the pH which was generated by the presence of the 

particles in the non-buffered systems induces a low pH region only in the interior of the 

particle or the close surrounding. 

Some authors investigated the mechanism how α-hydroxy acids can reduce the 

stratum corneum cohesion, favouring the increase of permeation of drugs across the 

skin. E.g. Sebastiani et al have studied the effects of lactic acid on the skin permeation 

using rabbit skin. Three drugs with different physicochemical characteristics were 

examined proving that only the passive permeation of ibuprofen, an anionic drug 

(characteristic present also in flufenamic acid), was affected by the presence of lactic 

acid, increasing its permeation by several-fold, suggesting an increase in the partitioning 

from the formulation to the skin, and assuming that the diffusion pathway remained 

unchanged [98].  

 

 FFA solution FFA NP suspension FFA solution + 
DF-NP suspension 

 Papp Papp E Papp E 

Non 
Buffered 

pH 
5.8  1.1 ± 0.2 10.0 ± 0.7* 9 2.4± 1.1* 2 

pH 
5.4 11.2 ± 2.0 7.4 ± 0.5* 0.7 6.6 ± 1.3* 0.6 

pH 
6.4 2.9 ± 0.5 2.2 ±  0.3 0.8 2.0 ± 0.4* 0.7 Buffered 

pH 
7.4 0.7 ± 0.2 0.6 ± 0.8 0.9 0.3 ± 0.1 0.4 

 

Table 6: Apparent permeability coefficient (Papp) of flufenamic acid through human heat 
separated epidermis using a solution, a suspension of loaded NP or a solution containing 

drug-free NP, and enhancement factor (E) respect to the dissolved drug containing 
formulation (FFA solution). Papp values are expressed as 10-6 cm/s (mean ± SD). Statistical 

significant difference is marked with a star. 
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3.4.8.  Investigation of the nanoparticles surface pH changes 

To investigate the possible micro-surrounding acidic environment experiments 

using confocal scanning microscopy were performed. The pH change might take place 

only in the very close (nano-) environment of the particles. However, the resolution is 

limited because the optical transfer function will depict objects smaller than the resolution 

at a dimension which equals the so-called “Airy disc”. For the application of fluorescence-

based methods such as pH-sensitive dyes the local resolution is therefore also limited 

and will exceed the extension of the area where the pH change might take place. To 

overcome these problems regarding the particles, we used PLGA microparticles in the 

range of several micrometers. This facilitated the investigation of the pH on the surface 

only. As a negative control arabic gum/gelatine A microparticles were deployed. The use 

of a dye like the LysoSensor® enables one at least to visualize if different pH values are 

established even though the precise local determination is not accessible. The 

LysoSensor® dyes are known as acidotropic compounds. For pH-values above the pKa 

the dye is unprotonated and the fluorescence is quenched. Therefore, the dye chosen 

exhibits practically no fluorescence in neutral surrounding. In acidic environment the 

molecules are protonated and the fluorescence quenching is relieved; light emission is 

strongly increased. The images depicted in figure 6 reveal a strong fluorescence around 

the microparticles and indicate that our assumption regarding the particles’ pH is correct. 

Image 24A) reveals the presence of the arabic gum/gelatine A particles in transmission 

light whereas in 24B) no fluorescence can be seen e.g. the particles do not change the 

pH of the dye solution. For the PLGA micro- and nanoparticles testing the background 

fluorescence was reduced, pre-setting the pH to approximately 7 (The situation is 

sketched in fig. 24C: particles in a slightly fluorescent solvent). The result changes 

completely exposing the PLGA particles to the same surrounding and measuring 

conditions as described before. An intense fluorescent signal (fig. 24 D and E) was 

observed. Due to the resolution limits, PLGA microparticles were used to demonstrate 

the location where the fluorescence is originated from. The microparticle fluorescence 
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discloses that the light is emitted from/or close to the surface of the particles. The inner 

particle shows fading fluorescence indicating the absence of fluorescent molecules and 

due the optical transfer function of the microscope. For the PLGA nanoparticles used 

throughout the other experiments the fluorescence is observed as well but due to their 

size only fluorescent spots are visible (fig. 24E). The results indicate clearly the different 

pH values at the particles’ surface or close environment compared to other particles13. 

 

 

Figure 24: Fluorescence images obtained immersing different particle fractions into the pH 
sensor solution. Transmission light image to detect the presence of the arabic gut/gelatine A 

paricles (A) and the corresponding fluorescence image (B). PLGA microparticles show 
green fluorescence localized at the surface of the particles or the close surrounding (D). In 

the case of nanoparticles fluorescent spots were observed (E). To highlight the particles the 
color coding was changed so that the particles appear as black spots on a pink background. 

The situation was sketched to illustrate the experimental condition (C, F) 

 

                                                 
 
13 Dr. Marc Schneider and Ms. Ana M. Schneider (Department of Biopharmaceutics and Pharmaceutical 

Technology, Saarland University) are thanked for the confocal laser microscopy pictures. 
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3.5. CONCLUSIONS 

The increased permeation of flufenamic acid through the epidermal layer under 

different conditions indicated that PLGA nanoparticles improve its transdermal delivery. 

The results suggest that these carriers have a pH effect that influence the ionization state 

of the drug and could improve the concentration gradient from the stratum corneum to 

the dermal side of the barrier as well as have a penetration enhancing effect due to the 

degradation products. 
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CHAPTER 4: IN VIVO ABSORPTION OF FLUFENAMIC ACID USING 
DERMAL MICRODIALYSIS: THE EFFECT OF PLGA NANOPARTICLES - 
PRELIMINARY STUDY 

 

 

 

 

 

 

The experiments presented on this chapter were made in collaboration with Prof. 

Dr. Carlos von Plessing (Departamento de Farmacia) and Prof. Dr. Jacqueline 

Sepúlveda (Departamento de Farmacología) from Universidad de Concepción, Chile.  
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4.1. ABSTRACT 

It has been demonstrated in vitro that PLGA nanoparticles are able to improve 

the permeation and penetration of drug through the skin. In order to obtain a first insight 

in the pharmacokinetic profile in vivo, skin microdialysis experiments were carried out. 

Rats were chosen as model to get a first approach of the absorption of flufenamic acid 

using non-buffered hydrogel containing: dissolved drug, loaded nanoparticles or a 

mixture of dissolved drug and drug-free nanoparticles.  

Unfortunately, no concluding results were obtained from the experiments 

performed, indicating that many of the experimental parameters must be adjusted to get 

more information about the flufenamic acid pharmacokinetic  using PLGA nanoparticles 

as transdermal carrier.  
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4.2. INTRODUCTION 

As shown in chapters 2 and 3, in vitro experiments the permeation through heat 

separated epidermis, using two-compartment static Franz-type diffusion cells (FD-C), 

and the penetration into full thickness skin, using Saarbruecken model (SB-M), of the 

model drug flufenamic acid, a highly lipophilic drug, was improved by the use of loaded 

and drug free nanoparticles. Therefore, arises the question to what extent this effects will 

persist under in vivo conditions. 

Among the most critical limitations of the last mentioned in vitro methods is the 

lack of elimination routes in terms of vascular system and viable metabolising enzymes, 

alterations of the stratum corneum (SC) due to the water uptake and the determination of 

permeation instead of penetration, last two apply in case of FD-C. 

In another hand, to obtain clinically relevant information about the 

pharmacokinetics profiles in the skin, in vivo techniques must be applied. One of the 

most used techniques has been tape stripping, technique which removes the SC cell 

layers by consecutive adhesion of tape peaces. Another techniques such as, suction 

blisters, tissue biopsy and dermal imaging techniques such as confocal laser scanning 

microscopy have been also used. Their main disadvantages are that only assesses the 

penetration of the drug into the SC, which normally is not the target of dermal drug 

delivery, and only determine a single concentration-time point. Additionally they need a 

large number of sampling sites on a particular subject, therefore increasing the 

invasiveness involved [67, 100].  

During the last decade microdialysis has been successfully applied to assess 

cutaneous drug delivery of numerous substances. This technique has been shown to be 

minimally invasive and supply pharmacokinetic information directly in the target organ for 

cutaneous drug delivery with high temporal resolution without further intervention with the 

tissue after implantation. This technique uniquely enables the assessment of drug levels 

directly in the dermis and appears as a very sensitive method to investigate minor 
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differences in cutaneous drug delivery. It has been indicated that cutaneous microdialysis 

in rats may be useful for prediction of dermal pharmacokinetic properties of novel 

drugs/topical formulations in man. In the assessment of bioequivalence in terms of 

absorption rate by in vivo microdialysis appears to correlate well with the established in 

vitro FD-C assessment of permeation rates for formulations with the same drug. 

Assessment of systemic levels has been demonstrated to not always adequately 

estimate relative dermal absorption rates, and in vivo microdialysis is currently the only 

technique to assess directly unbound drug levels in the dermis [67]. 
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4.3. MATERIALS AND METHODS 

 

4.3.1.  Materials 

Natrosol® 250 M (Aqualon, Hercules Inc., DE, USA), Flufenamic acid, 

modification II (Kali-Chemie Pharma, Hannover, D), Poly(D,L-lactide-co-glycolide) 

(50:50) with a molecular weight of 40000 to 75000 Da (Sigma Chemical Co., St. Louis, 

MO, USA), Polyvinyl alcohol (PVA) Mowiol® 4-88 (Kuraray Specialities Europe GmbH, 

Frankfurt, D), Soerensen phosphate buffer (pH 7.4), McIlvaine citric acid phosphate 

buffer (pH 2.2), Sodium hydroxide (all components from Merck, Darmstadt, D), 

Hypodermic stainless steel tubes type 304W, Stay-Clean soldering flux and  Super 

Solder Wire (Small Parts Inc. Miami Lakes, FL), Cuprophan® membrane (type RC 55 

8/200) of MWCO 10000 Da, approx. o.d. 200 µm, Loctite® Quick setTM Epoxy (Henkel 

Consumer Adhesives, Inc, Avon, OH), silica capilar tube with plastic cover (Polymicro 

Technologies Inc, Phoenix, AZ), Flo-texx® (Lerner Laboratories, Pittsburgh, PA), Veet 

depilatory cream (Reckitt Benckiser Inc., Berks, UK), Ketamin hydrochloride Ketamil® 

(Agrovet Ltda., Chile), chloral hydrate (Sigma- Aldrich Co., St. Louis, MO, USA), 

Introcan® 22G 1” (B. Braun Melsungen AG, Melsungen, D), Hematoxylin and Eosin Y 

(Sigma- Aldrich Co., St. Louis, MO, USA), Micro Test Tube 3810X (Eppendorf AG, 

Hamburg, D) 

4.3.2.  Equipment 

HPLC system: Autosampler LaChrom L-7200, Pump LaChrom L-7100, Diode 

array detector LaChrom L-7450, Interface D-7000 and Multi HPLC System Manager 

Software LaChrom D-7000 (Merck Hitachi, Japan); 74900-15 Infusion pump Cole Palmer 

Instrument Company (Vernon Hills, IL, USA); Probes for dermal microdialysis were 

manufactured and provided by Departmento de Farmacología, Facultad de Ciencias 

Biológicas, Universidad de Concepción – Chile. Leica TP1020 and Leica EG1150 H 

(Leica Microsystems GmbH, Wetzlar, D); Reichert-Jung microtome (Reichert-Jung, D) 
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4.3.3.  Microdialysis probes 

The probes were assembled using of cellulose tubing (12.000 MWCO) of 200 µm 

outer diameter and 10 µm wall thickness, sealed at one end with an epoxy plug. The 

open end was attached to the probe body composed by 26 Ga, 21 Ga and 30 Ga 

stainless steel hypodermic tubes as described in figure 25. A silica capillary tube with 

polyimide cover (150 µm o.d. and 75 µm i.d) was inserted into a stainless steel and 

cellulose tube. The efficient dialysis length was 30 mm. 

 

Figure 25: Diagram of concentric microdialysis probe. 

 

4.3.4.  Specimens 

Sprague-Dawley strain female rats, weighing 250–350 g, were obtained from the 

animal facility of Departmento de Farmacología, Facultad de Ciencias Biológicas, 

Universidad de Concepción – Chile. All the animal used were individually housed and 

maintained on a 12/12-h light–dark cycle at constant room temperature (22°C) with food 

and water ad libitum. 

All experiments were performed in accordance with the institutional guidelines 

and with the National Institutes of Health Guide for the Care and Use of Laboratory 

Animals. 

The abdominal skin of the rats was prepared 18 h before the experiment under 

anesthesia. The abdominal hair was cut using a electrical machine. Subsequently, 

depilatory cream was applied (3 min) and gently washed off using cotton wipes and 

distilled water. The rat was returned to the animal facility overnight. 
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4.3.5.  Anaesthesia 

Previous to the microdialysis probe implantation, the animals were pre-

anesthetized using ketamine hydrochloride (100 mg/kg) administered intraperitoneally. 

After this the animals were anesthetized using chloral hydrate (300 mg/kg) administered 

intraperitoneally. This dose that was re-administered as required every 2 -3 h [101].  

 

4.3.6.  Probe implantation 

The microdialysis probes were implanted into the abdominal region of the rat 

under anaesthesia, as shown by the arrows in figure 26. The arrows indicate the flow 

direction of the perfusate. Dashed circles indicate the delimited application area of the 

formulation. 

 

Figure 26: Microdialysis probe implantation diagram and formulation application area in the 
rat abdominal region. 

 

4.3.7.  Retrodialysis probes recovery 

In vivo retrodialysis experiments were carried out using as perfusate solutions of 

2.5, 4 and 8 µg/ml flufenamic acid dissolved in Soerensen buffer pH 7.4. Ten samples 

were collected every 30 minutes (n = 8).  The percentage of relative recovery was 
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calculated using equation 4 (Chapter 1) . In all cases the relative recovery was > 90% 

and therefore in an acceptable range. 

 

4.3.8.  In vivo transdermal absorption experiments 

The non-buffered formulations (FFA HG, FFA NP HG and FFA HG + DF-NP), 

prepared as described in section 3.3.5 were used. 

The microdialysis probes have a perfusion flow of 1 µl/min. After the probe 

implantation, Teflon chambers (see figure 27) to delimit a circular application area of 15 

mm in diameter were stuck on the skin using a double side tape ring.  

 

Figure 27: Teflon chamber for in vivo applications. 

 

After 90 min (equilibrium time) the blank sample was collected. Subsequently, the 

Teflon piece was filled with approximately 1 ml of the corresponding formulation using a 

syringe, and samples of dialysate were collected every 30 min over a period of 6 hours 

after the formulation application. To avoid inter-individual differences, the three 

preparation were tested simultaneously in each rat. To exclude differences due to the 

application site, each formulation was alternated among the positions A, B and C for 

consecutive animals (see figure 26).  
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4.3.9.  Tape-stripping 

After 6 h of dialysate sample collection the animal was sacrificed and the skin 

from the application site, including the Teflon chamber and implanted section of the 

microdialysis probe, was removed and fixed over cork plates using pins. Subsequently, 

the Teflon chamber was take out from its place and the preparation wiped off from the 

surface using cotton swabs. A Teflon mask with a hole of 15 mm in diameter was placed 

over the application area. The tape stripping procedure and sample pooling was made as 

described in section 2.3.9. The remaining skin (15 mm in diameter) was punched out 

with the same diameter and collected in a separate flask. 

 

4.3.10.  Sample extraction and HPLC analysis 

The samples obtained from the tape stripping and deep skin layers were 

extracted by using 6 ml of 0.05 M NaOH, under stirring during 2 h at room temperature. 

One millilitre from this extract was transferred into Micro Test Tube (1.5 ml) and 

centrifugued at 12000 rpm for 1 min. The supernatant was analysed by HPLC using the 

method described in 2.3.11. 

 

4.3.11.  Histological sectioning 

This sample treatment was made under the standardized procedure at the 

Departamento de Anatomía Patológica (Universidad de Concepción). The skin samples 

were fixed in formalin (10% v/v) and afterwards treated using a Leica tissue processor 

using the following steps: 4 h in formalin, 1 h in ethanol 99% (3 times), 1 h in xylol (3 

times), and finally 1 h in paraffin at 60°C (2 times). After this process the tissue was 

transferred to a Leica embedding system where the tissue samples were embedded in a 

paraffin block (2 x 2 x 2 cm) to proceed with the histological transversal sectioning using 

a microtome.  The sections of the skin are placed in glass slides and dried on a forced air 

circulation oven at 60°C. The sections were stained as follows: the samples were 
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immersed 5 min in xylol (3 times), 1 min in ethanol 99%, 30 seconds in ethanol 70% and 

50% successively, and finally washed with water. Afterwards, the samples were 

immersed successively in a hematoxylin solution (1 - 5 min), in water (10 min), and eosin 

solution (30 sec – 2 min). The samples were passed through water, 30 seconds in 

alcohol 99% (6 times), and 30 seconds in xylol (3 times). After this process the samples 

were covered using a cover slide and sealed with Flo-texx®.  

 

 

4.4. RESULTS AND DISCUSSION 

 

4.4.1.  In vivo microdialysis 

In all experiments performed the dialysate samples analysed were under the 

detection limit (0.05 µg/ml) , n = 12 for each preparation. The high amount of hair follicles 

and close proximity of the capillary network to the probes [39] must be considered as  

important factors to explain the results obtained with the in vivo microdialysis 

experiments. The high clearance from the absorption site, considering that nanoparticles 

can also penetrate the hair follicle and act as on-site drug reservoir in deeper skin 

regions reduce the amount of drug able to reach the microdialysis probe, and therefore 

no drug could be detected in the dialysate. Another possible explanation of these results 

may be that flufenamic can bind in a high extent to plasma proteins [52], and it may bind 

also in a high extent to the proteins present in the epidermal and dermal environment 

(i.e. keratin, elastin, collagen), making the drug not available to be recovered in the 

dialysate.  
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4.4.2.  Microdialysis probe intradermal location 

Microscopic evaluation of the microdialysis probe location have shown the  

following distribution (Figure 28): 

 

Figure 28: Microdialysis probe intradermal location (n = 18) 

 

Its clear to see that most pf the probes were placed in the subcutaneous tissue 

and even in deeper tissue regions. However, to properly collect the drug permeated 

through the epidermis the optimal location would have been just beneath this layer. This 

non-optimal placement of the probe may explain the lack of drug detection in the 

dialysate due to tissue clearance, protein binding or enrichment of the highly lipophilic 

drug, flufenamic acid, in the subcutaneous fatty tissue.  

 

4.4.3.  Tape-stripping and deep skin layers 

The result obtained from the tape stripping and the deep skin layers are shown in 

figure 29. These results shown a high variability of the content of drug in the stratum 

corneum as well as in the deep skin layers.  
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Figure 29: Drug content per replicate found on stratum corneum and deep skin layers per 
replicate per formulation 
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One explanation for the stratum corneum may be that due to the presence of the 

microdialysis probe, the contact between the tape and the skin, even using the 2 kg 

weight, was not optimal and the removed stratum corneum layers were different in each 

tape application. In addition, the influence of the depilation cream could be not excluded. 

It can be speculated that in the deeper skin layer a strong binding to proteins and 

to the fatty tissue may occur. Moreover, a high clearance of the drug may occur in vivo  

due to the reach capillary network and the metabolic activity of the dermal tissue must be 

considered. Altogether, these different factors may influence the results and may be 

responsible for the high scattering of the data, making suitable conclusions impossible. 



In vivo flufenamic acid absorption using dermal microdialysis 

 

99

4.5. OVERVIEW 

There are many parameters that must be considered to optimize this in vivo 

microdialysis experimental work: 

1. Experiments performed between human and animal skin are difficult be 

representative from each other; 

2. Metabolic activity, clearance from the application site, and binding to 

different structures of the skin in vivo must be studied;  

3. A better placement of the microdialysis probe and study the different 

parameter which influence the drug recovery during the process are 

required. 
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CHAPTER 5: ADDITIONAL EXPERIMENTS 
 

 

 

 

 

Sections of this chapter have been published in the research article entitled 

“Nanoparticles - An efficient carrier for drug delivery into the hair follicles “ (Juergen 

Lademann, Heike Richter, Alexa Teichmann, Nina Otberg, Ulrike Blume-Peytavi, Javiana 

Luengo, Barbara Weiß, Ulrich F. Schaefer, Claus-Michael Lehr, Roger Wepf and 

Wolfram Sterry), European Journal of Pharmaceutics and Biopharmaceutics, 66 (2): 159-

164, 2007. 
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5.1. COLLABORATION WORK WITH OTHER RESEARCH GROUP 

 

The contribution to this work involved to establish a suitable semisolid preparation 

for nanoparticles and the preparation of the hydrogels containing sodium fluorescein or 

fluoresceinamine labelled PLGA nanoparticles. 

 

5.1.1.  Methods 
5.1.1.1 Preparation of the fluoresceinamine labelled nanoparticles 
containing hydrogel 

Biefly, a 1% suspension of fluorescein labeled nanoparticles (average diameter 

320 nm, PI 0.06) was prepared in water. A 3% hydroxyethylcellulose hydrogel (Natrosol® 

type 250 M pharma, Aqualon, Duesseldorf, D) was prepared separately. The polymer 

was dispersed in water under vigorous stirring (800 rpm) until it was homogeneously 

distributed; later on, the polymer was allowed to swell under low speed stirring (100 rpm) 

overnight. Both preparations were mixed at a proportion 1:1 and shaken until a 

homogeneous distribution of the particles in the gel was obtained, resulting in a 

nanoparticle content of 0.5% w/w. 

 

5.1.1.2  Preparation of sodium fluorescein containing hydrogel 

Briefly, a 0.003% sodium fluorescein-containing hydrogel (equivalent to the 

fluoresceinamine amount linked to the polymer) was prepared by dissolution of the dye in 

water and addition of the 1.5% hydroxyethylcellulose under stirring. Again, the 

preparation was stirred overnight at low speed (100 rpm) to allow swelling of the polymer. 

Both gels showed similar viscosities. 
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5.1.2.  Results 

The follicular penetration depth of the topically applied fluorescein in particle (A) 

and non-particle form (B), applied by massage of the skin, was determined by analyzing 

biopsies of porcine skin (Figure 30). Significant differences were observed: the particles 

penetrate much deeper into the hair follicles than the non-particle form if massage is 

applied. 

    

Figure 30: Examples of in vitro penetration of the dye-containing formulation into the hair 
follicles of porcine skin after application of a massage. (A) Dye in particle form. (B) Dye in 

non-particle form 14 

 

The same two formulations were gently applied to the skin without massage 

(Figure 31), resulting in penetration depth of the two formulations nearly identical. 

   

Figure 31: Examples of in vitro penetration of the dye-containing formulation into the hair 
follicles of porcine skin without massage. (A) Dye in particle form, (B) Dye in non-particle 

form 14. 

 

                                                 
 
14 Reprinted from European Journal of Pharmaceutics and Biopharmaceutics, 

doi:10.1016/j.ejpb.2006.10.019, Lademann J et al, Nanoparticles – An efficient carrier for drug delivery into 
the hair follicles, p4, Copyright 2006, with permission from Elsevier. 
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Penetration of particle-containing formulations was enhanced by mechanical 

massage, reaching significant deeper penetration depths than without massage. 

However, without any mechanical manipulation on the skin surface, no significant 

differences between the two formulations were observed. 

It may be expected that the small amounts of non-particle substances, with their 

relatively small size, penetrate better into the small hair follicles than the much larger 

particles. The results obtained show the opposite effect, but only in the case of a 

massage being applied. From the structure analysis of hair surface and hair follicles, it is 

known that the cuticle produced by keratinocyte desquamation forms a structured 

surface, which can be approximated by a zigzag relief [102]. This relief is determined by 

the thickness of the keratin cells, which is between 500 and 800 nm. If the hairs are 

moved by massage, the cuticle cells may act as a geared pump. Particles, comparable in 

size to the surface structure of the hairs and hair follicles, are probably pushed into the 

follicles by means of the pump movement of the hairs. These findings are in agreement 

with the results obtained by Toll et al. [41], the microparticles with a diameter of 750 nm 

penetrated better into the hair follicles of excised human skin than larger particles, when 

a massage had been applied. 
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5.2. INFLUENCE OF DIFFERENT PARAMETERS ON NANOPARTICLE 
PREPARATION 

 

5.2.1.  Variation of the polymer/quasi-emulsifier ratio  

Experiments were carrier out using the standard preparation method described in 

section 2.3.3. Additionally to the PLGA: PVA 6:2 ratio, also ratios of 6:1 and 6:4 were 

tested. 

Variations of the particle size of about 100 nm were obtained using different 

proportions of polymer and quasi emulsifier (see figure 32). Two different batches of 

each composition were prepared and measured three times each. Furthermore, it can be 

clearly seen that an increase in the PVA concentration results in a decrease in the 

particle size. Although the polydispersity index is influenced, the values lower than 0.1 

indicate a monodisperse size distribution. 

 

Figure 32: Effect of the ratio polymer/quasi-emulsifier used on the particle size 
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5.2.2.  Variation of the homogenization speed or time 

Changes on the homogenization speed using the same nanoparticles  

composition described in section 2.3.3 were tested. Instead of 13500 rpm, speeds of 

8500 and 20500 rpm were used while the homogenization time remain constant. 

Moreover, changes in the homogenization time using the formulation composition 

described in section 2.3.3 were tested. Instead of 10 min, 5 and 20 minutes were used. 

With an homogenization speed of 8500 rpm no nanoparticles could be obtained. 

No differences were observed with the further homogenization speed concerning the 

particle size. Only the polydispersity of the batches was altered, however the 

polydispersity index was in the same range indicating a monodisperse distribution 

(Figure 33). 

 

Figure 33: Effect of the homogenization speed on the particle size (homogenization time 10 
min) 
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Variations of the homogenization time between 5 and 20 minutes does not 

influence the particle size nor the polydispersity index. 

 

Figure 34: Effect of the homogenization time on the particle size (homogenization speed 
13500 rpm) 

 

In conclusion: The ratio PLGA:PVA does affect the particle size therefore this is 

crucial manufacturing parameter. However, if exceeding a critical homogenization speed 

and modifying the homogenization time do not seem to be crucial parameters. 
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5.3. NANOPARTICLE FREEZE-DRYING AND CRYOPROTECTION 

 

5.3.1.  Method 

Nanoparticles were prepared as described in section 2.3.3. Separately a 

saccharose [Saccharose (EU-Categorie)] saturated solution in water was prepared in a 

concentration of 64% w/w under vigorous stirring at room temperature. The amount of 

solution added was calculated according to the percentage in weight of saccharose per 

polymer weight present in the nanoparticles suspension. The amount of sugar used was 

in the range between 10 – 200 % related to the polymer content. One sample was 

collected from each concentration and the size measured by photon correlation 

spectroscopy. Afterwards, the nanoparticles were freeze-dried [Freeze-dryer Alpha 2-4 

LSC (Christ, Osterode, D)], re-suspended in water and the size of the particles 

measured. 

 

5.3.2.  Results 

A ratio 1:1 between polymer and saccharose was observed to be the lowest 

amount of cryoprotectant that produces no change on the particle diameter before and 

after the freeze drying process (see figure 35). 
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Figure 35: Effect of the cryoprotectant amount on particle size before and after freeze-drying 
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6.1. SUMMARY 

The skin, due to its structure, is considered a complex organ for drug 

delivery. Although composed by four main layers, only the stratum corneum is 

considered the most important barrier for the drug absorption through the skin.  

During the last years the transdermal drug delivery studies have been 

focused on overcoming the problems associated with the skin barrier properties. 

Following this objective, several physical and chemical enhancement methods have 

been studied to improve the drug transport through the skin, such as iontophoresis, 

electroporation, microneedles, chemical penetration enhancers, carriers as 

liposomes, solid lipid nanoparticles, among others.  

The use of polymeric nanoparticles has been extensively studied for peroral 

and parenteral applications however their use in the field of dermal application is rare 

and the mechanisms which affect skin absorption are almost unknown. Therefore, 

the interest of this research project was to study the potential of polymeric 

biodegradable nanocarriers on drug delivery to and through the skin. To prepare the 

nanoparticles, the well known biodegradable polymer PLGA 50:50 polymer was 

chosen, and to study the drug transport, flufenamic acid, an antiinflamatory, ionisable 

lipophilic drug was used. 

Using the solvent evaporation technique PLGA nanoparticles, with or without 

the incorporation of flufenamic acid, in the size range of 250 nm and a polydispersity 

index of less than 0.2 could be obtained. For these particles it has been shown, that, 

particularly for longer experimental times, PLGA nanoparticles improve the dermal 

drug permeation in vitro, using heat separated human epidermis in Franz diffusion 

cell systems. This result was confirmed by skin penetration studies with full-thickness 

human skin in the Saarbrücken model showing higher amounts of flufenamic acid in 

the viable epidermis and dermis when encapsulated flufenamic acid was applied. 

Moreover, for various incubation times constant concentrations in the stratum 
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corneum were found, indicating that the system has reached steady-state conditions. 

When permeation experiments were performed, the results have shown that 

enhancement effect is reached using loaded nanoparticles independent of particle 

size. Surprisingly the presence of drug-free nanoparticles in a preparation with 

flufenamic acid in solution has also increased the permeated amount of drug. 

Therefore the question arose which mechanistic effects are responsible for the 

enhancement effects of PLGA nanoparticles in combination with flufenamic acid. 

For the first time, it was demonstrated by confocal laser scanning microscopy 

and permeation experiments using buffered and non-buffered preparations that one 

of the mechanisms how PLGA nanoparticles increase the delivery of drug to the skin 

is due to an acidic nano-environment around the particles. This induces an 

increased concentration of the non-ionized form of the drug at the skin surface and 

therefore the concentration gradient between the stratum corneum surface and the 

dermal side of the epidermal membrane becomes steeped. Due to the local effect 

the total pH of the formulation is not affected.  

Other studies, developed in collaboration with Prof. Lademann’s research 

group, have shown that nanoparticles were able to penetrate into the hair follicles 

when massage was used. Such conditions must be considered for in vivo 

applications. 

In a preliminary in vivo study, using dermal microdialysis in rats, the effect of 

the nanoparticles could not be demonstrated due to methodological problems.  

The results presented in this thesis underscore the potential of polymeric 

biodegradable nanoparticles to be used as vehicles for transdermal drug delivery. 

Especially, the acidic pH of the nano-environment of the particles might be an 

advantage to develop special formulations designed for acidic drugs or might be 

used to re-establish the normal pH on the skin surface. 
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6.2. ZUSAMMENFASSUNG  

Auf Grund des strukturellen Aufbaus unserer Haut ist eine dermale 

Arneistoffinvasion als schwierig anzusehen. Obwohl die Haut aus vier 

verschiedenen Schichten aufgebaut ist, ist lediglich das Stratum corneum als 

Hauptbarriere für die Arzneistoffaufnahme durch die Haut anzusehen. 

Während der letzten Jahren wurden Studien zur transdermal 

Arzneistoffapplikation vor allem auf Problemstellungen fokussiert, die auf die 

Überwindung der Barriereeigenschaften der Haut ausgerichtet waren. So wurden 

verschiedene physikalische und chemische Methoden zur Erhöhung der 

Arzneistoffabsorption durch die Haut untersucht, wie zum Beispiel Iontophorese, 

Elektroporation, Microneedles, und chemische Penetrationsenhancer aber auch 

Trägersysteme wie Liposome und Solid Lipid Nanoparticles. 

Polymernanopartikel wurden sehr intensiv hinsichtlich ihrer Anwendung im 

peroralen und parenteralen Bereich untersucht. Zur dermalen Anwendung jedoch 

findet man für diese Präparate kaum Untersuchungen und der Mechanismus, wie 

die Hautabsorption beeinflußt wird, ist weitgehend unbekannt. Hieraus ergibt sich 

dann auch das Thema dieser Doktorarbeit in der das Potential bioabbaubarer 

Polymernanopartikel zur Erhöhung der dermalen Arzneistoffinvasion untersucht 

werden sollte. Zur Herstellung der Nanopartikel wurde das gut beschriebene 

Polymer PLGA 50:50 ausgewählt und Fufenaminsäure, eine antiinflamatorisch 

wirksame, ionisierbare, lipophile Substanz wurde benutzt um Effekte auf die dermale 

Arzneistoffinvasion aufzeigen zu können,. 

Durch Anwendung der sogenannten „Solvent-Evaporation-Technik“ konnten 

PLGA Nanopartikel sowohl mit als auch ohne Flufenaminsäure erhalten werden 

deren Partikelgröße bei etwa bei 250 nm lag und die einen Polydispersitätsindex 

unter 0.2 aufwiesen. Für diese Partikel konnte in Franz-Zellen Experimente mit 

humaner Epidermis gezeigt werden, daß vor allem bei längeren Anwendungszeiten 
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die Arzneistoffpermeation in vitro erhöht war. Dieses Ergebnis wurde durch 

Experimente mit humaner Vollhaut im Saarbrücker-Penetration-Modell bestätigt bei 

denen größere Mengen an Flufenaminsäure in der lebenden Epidermis und Dermis 

gefunden wurden, wenn Flufenaminsäure in der nanopartikulären Form eingesetzt 

wurde. Des weiteren wurden bei verschiedenen Versuchszeiten für das Stratum 

corneum konstante Flufenaminsäurekonzentrationen gefunden, die darauf 

hindeuten, daß sich ein sogenannter „steady state Zustand“ ausgebildet hat. Des 

weiteren konnte mittels Permeationsexperimente gezeigt werden, daß der 

penetrationsverstärkende Effekt unabhängig von der Partikelgröße durch mit 

Flufenaminsäure beladene Nanopartikel erreicht werden kann. Überrachenderweise 

führte jedoch die Anwesenheit von reinen PLGA-Nanopartikel in Präparationen, die 

Flufenaminsäure lediglich gelöst enthielten, ebenfalls zu einer erhöhten Permeation. 

Daher ergab sich die Frage welche Mechanismen für die penetrationsverstärkende 

Effekte von PLGA-Nanopartikel in Kombination mit Flufenaminsäure verantwortlich 

sind. 

Zum ersten Mal konnte mittels confokaler Laser Mikroskopie und 

Permeationsversuchen mit  gepufferten und nicht gepufferten Formulierung 

aufgezeigt werden, daß einer der Mechanismen, wie PLGA Nanopartikel die 

dermale Arzneistoffinvasion beeinflussen, durch das Ausbildend einer sauren 

Umgebung im Nanobereich um die Nanopartikel herum zu Stande kommt. Dies führt 

zu einer erhöhten Konzentration der undisoziierten Form des sauren Arzneistoffs an 

der Hautoberfläche was wiederum einen steileren Konzentrationsgradient zwischen 

der Oberfläche des Stratum corneum und der Grenzschicht Stratum corneum zu 

lebender Epidermis bedingt. Auf Grund des räumlich begrenzten Effektes wird der 

pH-Wert der Formulierung nicht beeinflußt.  

Weitere Versuche, die in Zusammenarbeit mit der Forschungsgruppe von 

Prof. J. Lademann, Charié Berlin, durchgeführt wurden haben gezeigt, daß 
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Nanopartikel bevorzugt dann in die Haarfollikel eindringen wenn sie mechanisch 

einmassiert werden. Dies entsprich durchaus den in vivo Anwendungsbedingungen. 

In einer ersten in vivo Studie, bei der das Verfahren der dermalen 

Mikrodialyse bei Ratten eingesetzt wurde, konnte auf Grund experimenteller 

Schwierigkeiten der Einfluß von  Nanopartikeln auf die dermale Invasion nicht 

aufgezeigt werden. 

Die Ergebnisse, die im Rahmen dieser Doktorarbeit ermittelt wurden, 

unterstreichen das Potential von biologisch abbaubaren Polymernanopartikel als 

Träger zur dermalen Arzneistoffinvasion. Besonders könnte der saure pH-Wert des 

Nanobereichs der Nanopartikel für saure Substanzen von Vorteil sein, um hier 

spezielle Formulierungen zu entwickeln, oder dieses Phänomen könnte dazu 

ausgenutzt werden den normalen leicht sauren pH-Wert auf der Hautoberfläche 

wieder herzustellen. 
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