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Abbreviations: 
 

Ab Antibody 

BSA bovine serum albumin 

CA 19-9 carbohydrate antigen 19-9 

CEA carcinoembryonic antigen 

Con. (or C) concentration of analyte in solution 

C (in the additive assay) Accumulated concentration 

Da Dalton 

DMSO Dimethyl sulfoxide 

DNA deoxyribonucleic acid 

EDAC 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

EDTA ethylenediaminetetraacetic acid 

ELISA enzyme-linked immunosorbent assay 

FIA flow injection analysis 

hA human albumin 

hCG human chorionic gonadotropin 

hHBV human hepatitis B virus 

HRP horse radish peroxidase 

IA biosensor immunoaffinity biosensor 

IA layer immunoaffinity layer 

IgG immunoglobulin 

K (in the additive assay) the accumulated concentration at the half of Rmax 

ka the association rate constant 

KA the associatioin constant 

KD the dissociatioin constant 

LB  Langmuir-Blodgett 

LLD lower limit of detection 

m  the mean signal  

millio  milli degree 

MEMS micro electro mechanical system 

min minute 

M.W. molecular weight 
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N number 

Neu-ProA NeutrAvidin-protein A comlex layer 

NHS N-hydroxysuccinimide 

NSB nonspecific binding 

OD optical density 

PAP  peroxidase-anti-peroxidase 

POC point-of-care 

r2  the square of the correlation coefficient (r) 

R the sensor signal 

R (in the additive assay) the accumulated signal 

Rt  the sensor response at time t 

Rmax  the maximal sensor response 

Rmax (in the additive assay) the maximal accumulated signal 

RI refractive index 

RIA radioisotope immunoassay 

RU response unit (Biacore) 

s  second 

SAM self assembled monolayer 

S-Chimeric NeutrAvidin-protein A chimeric complex 

immobilized on the biotinylated SAM layer 

sd the standard deviation of the signal 

SIA sequential injection analysis 

S-Neu-ProA NeutrAvidin-protein A complex layer on the 

biotinylated SAM layer  

SPR  surface plasmon resonance 

TMB tetramethybenzidine 

TSH thyroid stimulating hormone  
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Abstract 
 

(A) Zusammenfassung (German version) 
 

Biosensoren werden häufig verwendet um bestimmte Analyten aus komplexen Gemischen 

mittels ihrer hohen Selektivität zu anderen Biomolekülen zu detektieren. Üblicherweise sind 

Biosensoren aus zwei verschiedenen Komponenten aufgebaut: erstens einer aus 

Biomaterialien bestehenden Oberfläche, die in der Lage ist, selektiv mit den Zielmolekülen 

in einer Testlösung zu reagieren und zweitens aus einer Signalverstärkungseinheit, die die 

beobachtete biologische Wechselwirkung in ein elektrisches Signal konvertiert. 

Immunoaffinitäts (IA) Biosensoren machen sich die Eigenschaften von Antikörpern, hoch 

selektiv spezifische Antigene zu erkennen, zu Nutze. Eine solche IA-Oberfläche wurde in 

dieser Arbeit an einen Signalverstärker unter Verwendung von sich selbst generierenden 

Einzelschichten gekoppelt. Anschließend wurde ein Surface Plasmon Resonance (SPR) 

Sensorsystem (SpreetaTM) zur Echtzeit-Detektion von Molekül-Molekül-Wechselwirkugen 

verwendet. Das Hauptziel der vorliegenden Arbeit war es, eine kostengünstiges SPR 

Biosensor Diagnostik-Verfahren zu entwickeln, das eine geringe Analysezeit in Anspruch 

nimmt, eine simultane Detektion verschiedener Interaktionen erlaubt und darüber hinaus 

über eine hohe Sensitivität aufweist. 

 

1) Der erste Teil der Arbeit befasst sich mit der Entwicklung eines „Additiven Assays“. Ziel 

dieses Tests ist es, Sensorchips mit IA-Oberflächen ohne ein Austauschen des Chips oder 

den Einsatz von Regnerierungs-Chemikalien wiederverwenden zu können. Üblicherweise 

werden IA-Oberflächen, die mehrfach verwendet werden sollen, unter Entfernung des 

bereits gebundenen Analyts regeneriert. Diese Methode ist sehr zeitaufwendig und kann 

darüber hinaus zur teilweise oder gar vollständigen Denaturierung der Antikörper und/oder 

Antigene auf der Sensorchip-Oberfläche führen. Beim „Additiven Assay“ wird die Probe 

mehrfach über den Sensor gegeben, ohne dass bereits gebundene Analyten durch chemische 

Substanzen entfernt werden. Die Konzentration eines Analyts in der Probe wird ermittelt, 

indem das nach mehrmaliger Injektion der Probe aufgezeichnete akkumulierte SPR- Signal 

mit einer  Eichkurve verglichen wird, die aus der Wechselwirkung zwischen 

immobilisierten BSA und Anti-BSA gewonnen wurde. Die Anwendbarkeit dieser Methode 

in der medizinischen Diagnostik wurde anhand der Detektion des Tumor-Markers CA 19-9 
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gezeigt. Die ermittelte Detektiongrenze für diesen Marker lag bei 410,9 U/ml. Dieser Wert 

liegt zwar über dem angestrebten Wert von 37 U/ml, ist jedoch ausreichend, um Proben von 

Patienten, die möglicherweise an Pankreas-Krebs erkrankt sind, zu analysieren (zwischen 

400 – 192000 U/ml CA 19-9). Die Konzentrationsbestimmung von vier verschiedenen CA 

19-9 Proben bekannter Konzentration unter Verwendung der Eichkurve lieferte eine geringe 

Standardabweichung von 5.3 %. Dieses Ergebnis zeigt eindeutig, dass der „Additive 

Assay“ für die Analyse des Tumor-Markers CA 19-9 verwendet werden kann, ohne dass ein 

Chip-Austausch oder eine Regenerierung mit Chemikalien notwendig ist. 

 

2) Der zweite Schwerpunkt dieser Arbeit bestand in der Entwicklung eines Biosensors, mit 

dem verschiedene Analyten simultan aus einer einzelnen Probe detektiert werden können. In 

der simultanen Detektionsmethode werden mehrere Analyten durch die jeweiligen 

spezifischen Antikörper, die auf derselben Sensor-Oberfläche immobilisiert sind, detektiert. 

Dabei werden zur Unterscheidung zwischen den jeweiligen spezifischen Antikörper-

Antigen-Wechselwirkungen die Analyten nachträglich mit einem Massemarker versehen. 

Somit lassen sich ebenfalls spezifische Konzentrations-Eichkurven erzeugen, die 

anschließend unter Verwendung des ermittelten SPR-Signals zur Bestimmung der 

jeweiligen Analyt-Konzentration in den Proben verwendet werden können. In dieser Arbeit 

wurden zwei verschiedene Methoden zur simultanen Detektion angewendet. Modell 1: 

Verwendung einer Probe, die sowohl einen Analyt enthält, der aufgrund seiner 

Konzentration und Molekülgröße direkt mittels SPR detektiert werden kann als auch einen 

Analyt, der nachträglich mit einem Massemarker detektiert werden muss. Modell 2: beide 

Analyten müssen nachträglich und nacheinander mit verschiedenen Massemarkern 

detektiert werden. Die Anwendbarkeit dieser Modelle wurde anhand eines Testsystems 

bestehend aus einer IA-Oberfläche mit BSA und Anti-HRP sowie Proben, die Anti-BSA und 

HRP enthielten, untersucht. Die Ergebnisse zeigen, dass beide Modelle für die simultane 

Detektion von Analyten einsetzbar sind. Die klinische Relevanz von Modell 2 wurde für die 

Diagnose möglicher Frühgeburten von Diabetes-Patientinnen getestet, indem Urin-Proben 

auf das Vorhandensein von humanen Chorion-Gonadotropin (hCG) und humanen Albumin 

(hA) untersucht wurden. hCG ist ein Schwangerschaftsindikator, währenddessen hA für die 

Diagnose von Mikroalbuminurie (MA) verwendet wird. MA ist dabei ein Alarmsignal für 

schwangere Patientinnen mit Typ1 Diabetes, dass eine Frühgeburt bevorstehen könnte. Die 

hier ermittelten Detektionsgrenzen für hCG und hA betrugen 464 miU/ml bzw. 25 µg/ml mit 

einer Standardabweichung von 6,5% bzw. 5,9%. Diese Konzentrationen stellen die 
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minimale Detektionsgrenze da, um MA in der 4ten Schwangerschaftswoche zu bestimmen. 

Die gewonnenen Ergebnisse zeigen, dass Methode 2 für die simultane Detektion von 

verschiedenen Analyten erfolgreich eingesetzt worden ist. 

 

3) Der dritte Teil der Arbeit hatte als Zielsetzung die Verbesserung der Sensitivität und der 

Detektionsgrenze des Biosensors. Dies sollte zum einen durch die Verwendung von 

bestimmten Massenmarkern und zum anderen durch das Generieren von orientierten IA-

Oberflächen erreicht werden. Durch Massemarker wird die Molekülmasse des gebundenen 

Analyts vergrößert, was zu einer Verstärkung des SPR-Signals führt. Von den in dieser 

Arbeit getesteten Massemarkern gegen die jeweiligen Analyten wie z.B. sekundäre 

Antikörper, Avidin-biotinylierte-Antikörper und einen Peroxidase-anti-Peroxidase (PAP) 

Komplex war die Signalverstärkung durch den PAP-Komplex am effektivsten. Die 

Anwendbarkeit dieses Markers für diagnostische Verfahren wurde durch Analyse von 

humanen Antikörpern gegen Hepatitis B Viren (hHBV) getestet. Die Detektionsgrenzen für 

hHBV-Antikörper, die ohne Signalverstärker, unter Verwendung eines sekundären 

Antikörpers oder mittels des PAP-Komplexes ermittelt wurden, betrugen 9,2 nM, 4,39 nM 

bzw. 0,64 nM. Der mittels des PAP-Komplexes bestimmte Wert liegt nahe dem 

Detektionslimit des derzeit verwendeten kommerziell erhältlichen hHBV-Antikörper ELISA 

Tests (0,24 nM). 

Es ist bekannt, dass die Sensitivität von Immunosensoren durch die Kontrolle der 

Orientierung und Dichte des Rezeptors auf der IA-Oberfläche erhöht werden kann. An eine 

gerichtete IA-Oberfläche können mehr Analyten binden, was zu einer Signalverstärkung 

verglichen mit anderen ungerichteten IAs führt. In dieser Arbeit wurde der Einfluss der 

Rezeptor-Molekül-Dichte auf die Detektionseffizienz unter Verwendung verschiedener 

Oberflächen getestet (anti-hIgG-Antikörper-, Avidin-, NeutrAvidin-, Protein A-, 

NeutrAvidin-Protein A-Komplex- und blanke Gold-Oberfläche). Die NeutrAvidin-Protein 

A-Komplex-Oberfläche wies dabei die höchste Rezeptor-Dichte sowie die höchste Menge 

an gebundenen Analyten verglichen mit der unbehandelten Gold-Oberfläche auf (1,9 bzw. 

3,6 fach erhöht). Darüber hinaus führte die Generierung des NeutrAvidin-Protein A-

Komplexes auf einer biotinylierten Oberfläche zu einer 1,3fach erhöhten Analyten-

Bindungsrate verglichen mit der Bindungsrate an eine Oberfläche, an die der jeweilige 

Rezeptor direkt chemisch gekoppelt wurde. Die Anwendbarkeit des Systems auf 

medizinische Fragestellungen wurde untersucht, indem eine NeutrAvidin-Protein A-

Komplex-IA für die Bindung von Carcinoembryonales Antigen (CEA) Antikörpern 
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verwendet wurde. Der diagnostisch relevante Detektionsbereich für dieses Antigen muss 

dabei zwischen 0-100 ng/ml liegen. Mit der hier getesteten NeutrAvidin-Protein A-

Komplex-IA konnte die Bindungsrate verglichen mit der blanken Gold-Oberfläche 1,5fach 

erhöht werden. Die Detektionsgrenze lag bei  30 ng/ml CEA. Dieses Ergebnis zeigt, dass 

eine mittels des NeutrAvidin-Protein A-Komplex generierte gerichtete IA-Oberfläche zu 

einer Verbesserung der Sensitivität durch Erniedringung des Detektionslimits führt. 

 

Zusammenfassend konnte in dieser Arbeit mit dem „Additiven Assay“ ein kostengünstiger 

Biosensortest etabliert werden. Unter Verwendung einer simultanen Detektionsmethode 

wurde die Analysezeit für unterschiedliche Analyten entscheidend verringert und mit der 

angewendeten Signalamplifikationssmethode konnte die Sensitivität der Assays gesteigert 

werden. Die in dieser Arbeit gezeigten Methoden werden entscheidend zu der Entwicklung 

von SPR-basierten Biosensoren für medizinisch relevante Fragestellungen und Diagnosen 

beitragen. 
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(B) English version 
 

A biosensor is an analytical device to detect target analyte in a complex mixture by using 

high selectivity of biomolecules as the molecular recognition tool. Usually, the biosensor 

consists of two major parts; 1) molecular recognition layer of biomaterials which reacts 

selectively with the target analyte from other substances in a sample, and 2) transducer 

which converts the biological event occurred in the molecular recognition layer into 

quantitative electrical signal. Especially, the immunoaffinity (IA) biosensor exploits the 

highly specific and selective interaction between antigen and antibody for the detection of a 

target analyte. Such an IA layer was connected to the transducer surface by using the self 

assembled monolayers (SAMs) as a linker layer. The surface plasmon resonance (SPR) 

sensor was used for label-free detection and real-time monitoring, and SpreetaTM was used 

for this work. The major objective of this work is the development of SPR biosensor for 

medical diagnosis with the features of a cost-effective test by ‘additive assay’, short 

analysis time through ‘simultaneous detection’ and high sensitivity by ‘signal amplification’.  

 

[1] First topic is a reuse method of IA biosensor called ‘additive assay’ which enables the 

reuse of the IA layer without chip exchange and chemical treatment between measurements. 

For the reuse of IA biosensors, ‘regeneration’ method has been most frequently used for 

repeated measurements, which removes the already bound analyte from the IA layer. 

However, the regeneration method by chemical treatment usually requires additional 

analysis time and the regeneration procedures were reported to partially or completely 

denature the antigens or the antibodies on the IA layer. In the ‘addtive assay’ method, the 

sample is repeatedly injected to the IA layer without removing the already bound analytes 

by chemical treatment and then the concentration of sample is calculated from the actually 

measured signal by using previously prepared correlation curve between the accumulated 

concentration of additively injected sample and accumulated signal which represents the 

number of occupied binding sites. The application of additive assay for real medical 

diagnosis was demonstrated by using tumor marker (CA 19-9) as a target analyte. Though 

the detection limit by direct assay of SPR biosensor (410.9 U/ml) was higher than cut-off 

value (37 U/ml), however, it was enough for the general concentration range of CA 19-9 for 

most patient samples of pancreatic cancer (400 – 192,000 U/ml). When the concentrations 

of four samples were analyzed by using the correlation curve of CA 19-9, the average 
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deviation of the calculated concentrations from the real concentrations was estimated to be 

5.3 %. This result shows that the additive assay can be applicated for the repeated 

measurement of CA 19-9 without chip exchange and chemical treatment. 

 

[2] The second topic is the ‘simultaneous detection’ which enables the detection of multiple 

analytes on the single sensor element with single sample treatment. In the ‘simultaneous 

detection’, a sample with several analytes is treated to the single sensing region which has 

multiple receptors for each target analyte and then the concentrations of each analyte is 

analyzed sequentially with label antibodies by using the respective standard curves for the 

correlation between the concentration and signal. In this work, two simultaneous detection 

models (Model 1 and Model 2) were devised for the samples with the following 

composition: (1) one target analyte resulting in a sensor response without any label and the 

other analyte with only additional label (Model 1), (2) both target analytes requiring 

additional labels for detetion (Model 2). The feasibility of Model 1 and Model 2 was tested 

with two model antigen-antibody systems: IA layer with BSA and anti-HRP antibodies, 

Sample with anti-BSA antibodies and HRP. The result showed that the Model 1 and Model 

2 were acceptable for application. The real medical diagnosis based simultaneous detection 

(Model 2) was demonstrated by analysis of human chorionic gonadotropin (hCG) and 

human albumin (hA) in human urine for the diagnosis of preterm delivery of patients with 

diabetes. The hCG has been used for the qualitative pregnancy test. The hA can be used for 

diagnosis of microalbuminurea and this diagnosis can be used as an alarm for women with 

type I diabetes, who have the steeply increased prevalence of preterm delivery. The 

detection limits for hCG and hA were estimated as 464 mIU/ml and 25 µg/ml, respectively, 

which were the minimum detection range for the diagnosis at the 4th week of pregnancy and 

microalbuminuria. The average errors of analysis based on Model 2 were 6.5 and 5.9 % for 

hCG and hA, respectively. This result shows that Model 2 was suitable for the simultaneous 

detection of both analytes. 

 

[3] The third topic is the improvement of sensitivity and detection limit through two ‘signal 

amplification’ methods by using mass label (A) and by the orientation control of IA layer 

(B):  

(A) The mass label attached to the already bound target analyte increases the total mass 

attached to the sensor surface and then it induces the increase of SPR signal. In this work, 

the efficiencies of several labels were compared with direct assay to select most efficient 
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label for signal amplification. Among several labels such as secondary antibodies, avidin-

biotynylated antibodies and peroxidase-anti-peroxidase (PAP) complex, the amplification 

using the PAP complex was selected as the most efficient method. The feasibility of this 

signal amplification method was demonstrated by analysis of infectious disease marker, 

human hepatitis B virus (hHBV) antibody. The detection limits of SPR measurements by 

direct assay, sandwich assay and PAP complex method were calculated to be 9.20, 4.39 and 

0.64 nM, respectively. This result from PAP method shows that the detection limit of SPR 

biosensor (0.64 nM) approached closely to cut-off value for medical diagnosis (0.24 nM) 

by using the commercial ELISA kit.  

(B) The sensitivities of immunosensors are known to be improved by the control of IA layer 

(orientation & density). As more target analytes can be attached to this controlled IA layer, 

the signal at the same concentration of target analyte can be increased. In this work, among 

several controlled IA layers such as the layer of avidin, NeutrAvidin, protein A, 

NeutrAvidin-protein A complex, the NeutrAvidin-protein A complex on gold surface of 

SPR biosensor showed the highest surface density of receptor and ligand antibody, which 

were 1.9- and 3.6- fold higher than the bare gold surface, respectively. And the binding ratio 

of ligand per unit receptor antibody was also one of the highest values (1.9- fold higher 

than the bare gold surface). When the NeutrAvidin-protein A complex was prepared on 

biotin-labelled SAM, the binding ratio of ligand per unit receptor was found to be 

significantly improved (2.1- fold higher than the bare gold surface) in comparison to the IA 

layer prepared by chemical coupling of receptor antibody to the SAM layer (0.8- fold 

higher than the bare gold surface). For the feasibility test of orientation control, the 

NeutrAvidin-protein A complex was applied for the detection of a tumor marker, 

carcinoembryonic antigen (CEA), which has the detection range for diagnosis to be 

between 0 and 100 ng/ml. By using NeutrAvidin-protein A complex, sensitivity was 

improved to be 1.5-fold higher than bare gold surface and the detection limit of 30 ng/ml 

was achieved. This result shows that the control of IA layer (orientation & density) 

improved the sensitivity as well as the detection limit of IA biosensor. 

 

These results demonstrated the ‘additive assay’ for cost-effective test, ‘simultaneous 

detection’ for short analysis time and ‘signal amplification’ for high sensitivity. The 

presented three methods in this study will be applied for the development of a practical SPR 

biosensor for the various medical diagnosis. 
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1. Introduction    
 

A biosensor is an analytical device to detect a specific target analyte in a complex mixture 

by using the high selectivity of biomolecules for the molecular recognition. Usually, the 

biosensor consists of two major parts; 1) molecular recognition layer of biomaterials (e.q. 

enzyme, receptor-ligand, and antibody-antigen) which reacts selectively with the target 

analyte from other substances in a sample, and 2) transducer (e.q. optical, amperometic, 

potentiometric and acoustic) which converts the biological event occurring in the molecular 

recognition layer into quantitative electrical signal. 

The immunoaffinity (IA) biosensor exploits the highly specific and selective interaction 

between antigen and antibody for the detection of the target analyte. The detection of the 

target analyte by the IA biosensor is based on the selective binding of the target analyte by 

the molecular recognition layer called immunoaffinity (IA) layer produced by immobilizing 

antigens or antibodies to the transducer surface. The IA biosensor has been applied for 

clinical diagnosis, microbiological and environmental applications. Despite the progress of 

the IA biosensor in recent years, further improvement in technical specifications is still 

required for the medical diagnosis, such as sensitivity, detection limit, analysis time and 

instrumentation (Ekin, 1999; Luppa et al., 2001). 

 

1.1. Objective 

 

This work aims to develop an IA biosensor based on an SPR-transducer for the practical 

application to medical diagnosis. Three technical topics were investigated for the realization 

of the aimed biosensor.  

 

[1] The first topic is a reuse method of IA biosensor called ‘additive assay’ which enables 

the reuse of the IA layer without any chemical treatment. In this method, the sample is 

repeatedly injected to the IA layer without removing the already bound analytes by 

chemical treatment. The concentration of the sample is calculated from the actually 

measured signal by using the correlation curve between the accumulated concentration of 

additively injected sample and accumulated signal which represents the number of occupied 

binding sites (section 3.1). 
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[2] The second topic is the ‘simultaneous detection method’ which enables the detection of 

multiple analytes on the single sensor element with single sample treatment. In the 

‘simultaneous detection method’, a sample with multiple analytes is injected to the IA layer 

which has multiple receptors for each target analyte. The concentrations of each analyte are 

then analyzed sequentially by using the respective standard curves for the correlation 

between the concentration and signal. Two simultaneous detection models were defined by 

the response ratio of the target analytes in a sample (section 3.2). 

 

[3] The third topic is the improvement of sensitivity and detection limit through signal 

amplification by using mass label (A) and by the orientation control of the IA layer (B): A. 

The mass label was attached to the already bound target analyte and then the total mass 

attached to the sensor surface induced the increase of the SPR signal (section 3.3.1). B. The 

orientation of antibodies on the IA layer was controlled so that the surface density of 

receptor antibody and the binding amount of the ligand (analyte) to the IA layer could be 

increased (section 3.3.2).  

 

1.2 State of the art of IA biosensor development 

 

The IA biosensor uses immunoaffinity (IA) layer as the molecular recognition part for the 

selective binding of the target analyte, which is produced by immobilizing antigens or 

antibodies to the transducer surface. For the application of IA biosensor to the medical 

diagnosis, three core topics were selected: (1) reuse of IA biosensor, (2) simultaneous 

detection of more than two analytes in a sample, (3) signal amplification to improve the 

sensitivity of IA biosensors. In this section, the state of the art of the selected topics will be 

presented and the requirements for new technologies will be clearly specified. 

 

1.2.1 Regeneration method for repeated measurements 

 

The ‘regeneration’ method has been most frequently used for repeated measurements of IA 

biosensors, which removes the already bound analyte from the IA layer (see Figure 1-1). 

The interaction between antibody and antigen is known to be the combination of 

electrostatic force (E), polar force (L), van der Waals force and hydrogen bonding. Several 

reagents have been selected and optimized for rapid dissociation of antigen-antibody 

complexes as well as the stability of the IA layer with transducer. (Wijesuriya et al., 1994; 
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Anderson et al., 1999). 
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Figure 1-1: Conventional regeneration method for successive measurements using an 

IA biosensor. For the next measurement, the already bound analyte is removed by chemical 

reagents, such as acid, base and competitor. 

 

(1) High or low pH 

Acid (high pH) and base (low pH) solution can break the electrostatic bond between 

antibody and antigen. As a regeneration agent, the acidic solutions such as glycine-HCl (pH 

1.7-2.2, 10-100 mM) and HCl (10-100 mM) and the basic solutions such as 

thriethanolamine (TEA) buffer (pH 11.0, 50 mM) and NaOH have been used for IA 

biosensors (Wijesuriya et al., 1994; Anderson et al., 1999). For example, a flow cell of a 

SPR biosensor (BIACORE 1000) was regenerated by glycine-HCl (pH 2.0) in the real-time 

immunoassay of ferritin, and the regeneration could be repeated more than 50 cycles (Cui et 

al., 2003). The SPR biosensor (BIACORE 3000) for the analysis of morphine-3-

glucuronide was reported to be regenerated by base (10 mM NaOH) solution at least 30 

cycles (Dillon et al., 2003). In the purification procedure of antibodies with the protein A 

column, IgG was eluted by using the glycine-HCl (50 mM, pH 2.5) as an elution buffer 

(Nakanishi et al., 1996). 

 

(2) Ions at high concentration / Chaotropic agent 

An ion is an atom or a group of atoms with a net electric charge by gaining or losing one or 

more electrons. The electrostatic interaction is mainly composed by charged groups of 

antigen and antibodies and the effect of charged groups can be dispersed by adding ions at 

high concentration. A highly concentrated salt solution such as 2-4 M MgCl2 or 1M NaCl 

can decrease the electrostatic interaction between antigen and antibody through a high ionic 

strength. Therefore, such a salt solution has been used with chaotropic agents for 

regeneration of IA biosensors (Anderson et al., 1999).  
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Chaotropic agents such as urea or guanidine-HCl are denaturing salts which bind strongly 

to proteins and they decrease hydration. These agents can cause the disrupture of the 

molecular structure by weakening nonbonding forces such as hydrogen bonding, van der 

Waals interactions and the hydrophobic effect (Anderson et al., 1999). For example, 

trichloroacetic acid was reported to be very effective chaotropic agent in releasing cortisol 

from binding proteins in the use of a time-resolved fluoroimmunoassay (Eskola et al., 1985). 

The chaotropic agent can be used at acidic pH to improve the effect of regeneration. In the 

analysis of multiple mycotoxins such as DON, fumonisin B1, zearalenone and aflatoxin B1, 

chaotropic agent (6.0 M glycine chloride) at acidic pH (50 mM glycine, pH 2.0) was used 

to regenerate the SPR biosensor (BIACORE 2000) (van der Gaag et al., 2003). 

 

(3) Detergent 

Detergents have a general structure R-SO4
-Na+, where R is a long-chain alkyl group. 

Various detergents have been used for the regeneration of IA biosensors such as 0.3% 

Tween 20, 0.3% Tween 80, 0.3% Triton X-100 and 0.3% CHAPS (Anderson et al., 1999). 

Tween 20 and sodium dodecyl sulfate (SDS) have been reported to achieve rapid 

regeneration time and high numbers of reusable regenerations for the fiber-optic-based 

immunosensor (Betts et al., 1991).  

 

Nonpolar solvents or chelating agents have been also reported for the application of 

regeneration. The nonpolar solvent is a solvent which has no positive or negative electric 

charge, such as dimethyl sulfoxide (DMSO), formamide, ethanol and acetonitrile. DMSO at 

high or low pH is reported to break the antibody-antigen bonds (Anderson et al., 1999). 

Chelation is the process of reversible binding of a ligand to a metal ion, forming a metal 

complex. The capacitive biosensor based on synthetic proteins for sensitive detection of 

heavy metals such as Hg2+, Cd2+, Pb2+, Cu2+, and Zn2+ ions was regenerated with 10 mM 

ethylenediaminetetraacetic acid (EDTA) by removing the bound heavy metal ions 

(Bontidean et al., 2003). In the detection of herbicides with the SPR biosensor (BIACORE 

X), herbicides were injected onto the heavy-subunit-histidine-tagged Reaction Centers 

(HHisRCs)-immobilized chip. The HHisRCs were immobilized on the chip via nickel-

histidine chelation chemistries and EDTA was used as regeneration buffer to remove the 

nickel ions (Nakamura et al., 2003). 

 

As previously mentioned, several research groups have reported success in regenerating IA 
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layers for reuse in many cycles by treatment with acidic or basic solutions or competitor 

solutions. 

As the regeneration efficiency depends mainly on the stability of antigen or antibody in the 

IA layer, however, the optimization process should be selected case by case. For example, 

in the competitive assay for the detection of the pesticide 2,4-dichlorophenoxyacetic (2,4-

D) preincubated with antibody, the chip can not be regenerated by excess of 2,4-D and 

other attempts, e.g. using 0.1 M glycine of pH 2.5 were unsuccessful as well (Svitel et al., 

2000). Even more drastic strategies recommended for Biacore chip regeneration, such as 

using pH less than 2 or pH greater than 10 cleaved the chip surface only partially. 

Furthermore, such procedures were reported to partially or completely denature the antigens 

or the antibodies on the IA layer (Bright et al., 1990; Betts et al., 1991). For each IA layer, 

between 60% and 90% of the antigen binding activity remained after 10 cycles of 

regenerations, and the activity continued to decrease in a nearly linear fashion (Betts et al., 

1991). In most instances, after 10-20 regeneration cycles the sensor activity is significantly 

lowered. In the regeneration method, additional analysis time by the step of chemical 

treatment also make a disadvantage. 

 

1.2.2 Detection of multiple analytes 

 

To overcome the limitations of single analyte detection, simultaneous detection of multiple 

analytes have been reported, including flow injection analysis (FIA), sequential injection 

analysis (SIA), microsensor array and methods which uses different labels.  

 

(1) Flow injection analysis (FIA) system 

In the FIA type immunoassays, the sample passes through the sensing element by using a 

flowing carrier system. When several sensing elements are combined in the flow channel of 

the analysis system, multi-analyte detection can be done with one sample treatment. For 

example, glucose and L-lactic acid were simultaneously monitored during a fermentation 

process by on-line FIA with dual amperometric biosensors (Min et al., 1998). Four 

amperometric electrode biosensors were also simultaneously used to detect the insecticides 

paraoxon and carbofuran by using the FIA system (Bachmann et al., 1999).  

 

(2) Sequential injection analysis (SIA) system  

SIA is a variation of FIA. A selection valve is used to carry a stack of the sample to the 
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sensing zones sequentially and then to the detector. The SIA has enabled automated sample 

handling. When the sample is sequentially distributed to several sensing zones for different 

analytes, multi-analyte detection can be done. The SIA systems have been used for various 

analysis: the detection of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-

triazine (RDX) by a capillary-based flow immunosensor (Narang et al., 1998), the 

determination of S- and R-captopril by amperometric biosensors (Stefan et al., 2000) and 

the continuous monitoring of glucose and lactate by a dual electrochemical assay system 

(Jones et al., 2002).  

 

(3) Microsensor array 

The microsensor arrays based on Micro-Electro-Mechanical System (MEMS) technique 

have been applied for multi-analyte detection by fabricating an array of sensing areas into a 

single chip. 

A planar array immunosensor with a charge-coupled device (CCD) has been used for the 

simultaneous detection of several target analytes, such as 3 toxic analytes (staphylococcal 

enterotoxin B (SEB), ricin and Yersinia pestis) (Wadkins et al., 1998), six biohazardous 

agents (ricin, cholera toxin, F.tularensis LVS, B.abortus (killed), B.anthracis Sterne, SEB) 

(Rowe-Taitt et al., 2000) and both the tumor suppressor gene and protein (fragile histidine 

triad (FHIT) gene and protein) (Askari et al., 2002). The Bead Array Counter (BARC) 

biosensor containing a 64-element sensor array can be used to detect biological warfare 

agents such as Bacillus anthracis, Yersinia pestis, Brucella suis, Francisella tularensis, 

Vibrio cholerae, Clostridium botulinum, Campylobacter jejuni and Vaccinia virus by using 

DNA hybridization, magnetic microbeads and giant magnetroresistive (Edelstein et al., 

2000). However, these array type methods require the same number of independent sensing 

areas as the target analytes. 

 

(4) Different labels in the same assay zone 

The multi-analytes analysis method using a single sensing element was first reported 

involving the use of radioisotopes such as 125I and 131I (Morgan, 1966). This radioisotope 

immunoassay (RIA) was applied for the diagnostics of insulin and growth hormone in 

human serum. The immunoassay for dual analytes was also reported, involving 125I and 
57Co (Gutcho et al., 1977). However, the application of RIA is restricted by difficulties in 

handling and the waste treatment of radioisotopes.  

ELISA kits for the detection of more than two target analytes at a single well of microplate 
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were also reported using different reporting enzymes and substrates (Blake et al., 1982). 

However, there are also several problems in multi-analytes detection by ELISA. In the case 

of sequential enzyme reaction for each analyte, the first color signal by one label can 

interfere with the second color signal by the other label, and the distinguishment of signals 

from different labels is often not clear.  

 

Other types of assays have been also reported to use different fluorescent labels for the 

analysis of lutropin and follitropin in serum (Hemmilae et al., 1987), mixture of 

radioisotope labels and enzyme labels for the analysis of total and IgA-conjugated α1-

microglobulin (DeMars et al., 1989), different metal ion labels for the analysis of HSA and 

IgG (Hayes et al., 1994), particles of different sizes for the analysis of AFP and hCG 

(Frengen et al., 1995) and colored latex particles (Hadfield et al., 1987). 

 

1.2.3 Signal amplification to improve sensitivity and detection limit 

 

The SPR biosensor is reported to have a detection range affected by the detection method 

(for example, direct assay or sandwich assay) and molecular weight of the target analyte. In 

the case of single step assay, the detection ranges for the analytes at M.W. > 1000 Da are 

reported to be nM ~ µM (Lundstroem, 1994). In comparison to the conventional 

immunoassay such as ELISA, the sensitivity of the SPR biosensor should be improved for 

medical diagnosis. Signal amplifications by the attachment of mass label and the control of 

the IA layer (orientation & density) have been reported for the improvement of the 

sensitivity and detection limit. 

 

1.2.3.1 Signal amplification by mass label 

  

The multi-step (sandwich) assay, where various label proteins are added to the already 

bound analyte on the sensor surface for the signal amplification, has been applied for the 

signal amplification of IA biosensors. Especially in the SPR system, signal amplification by 

the following mass labels have improved the detection ranges of analytes to be pM ~ nM 

(Lundstroem, 1994; Mullett et al., 2000).   

 

(1) Secondary antibody  

The simplest label for the sandwich assay is an analyte-specific ‘secondary antibody’, 
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which is attached to the target analyte on the IA layer. However, the amplification effect is 

confined by molecular weight of antibodies (150 kDa) and usually the degree of 

amplification is not high. For example, the amplification ratio of ferritin detection was 

estimated to be only as much as 1.7-fold (Cui et al., 2003). Compared with the direct assay, 

the detection limit of thyroid stimulating hormone (TSH) detection in the sandwich assay 

was improved only from 12 ng/ml to 7 ng/ml (Kubitschko et al., 1997). 

 

(2) Latex particle  

Nanoparticles with heavy weight such as latex particle have been used for signal 

amplification of SPR IA biosensors. This latex particles can be coated with counterparts of 

the analyte by using EDAC/NHS technique (see Figure 1-6), and the effect of signal 

amplification is affected by the particle size, particle coating conditions and particle 

concentration. With hCG-coated latex (diameter 238 nm), the sensitivity for hCG detection 

was improved by a factor of 30 ~ 50 (Severs and Schasfoort, 1993). In the case of thyroid-

stimulating hormone (TSH) detection, anti-TSH IgG-coated latex enhanced the detection 

limit from 12 ng/ml to 3 pg/ml (Kubitschko et al., 1997). Because of the large size of latex 

particles, the possible number of binding to the analyte on the IA layer is not so high and 

the enhancement effect is rapidly reduced at high analyte concentration.  

 

(3) Gold colloid 

Other nanoparticles with high refractive index such as colloidal gold can be used for 

sensitivity enhancement of SPR biosensors (Leung et al., 1994). Colloidal gold can be 

coated with various proteins by charge adsorption (Lyon et al., 1998). For the detection of 

human complement factor 4 (C4), the analyte was conjugated with colloidal gold conjugate 

and the detection limit could be improved to be 10-fold lower than the direct assay (Liu et 

al., 2004). Moreover, when the secondary antibody was conjugated with the colloidal gold, 

the detection limit was improved by 40-fold compared with the direct assay. However, the 

enhancement effect was also similar to be sandwich assay (1.25-fold) at high analyte 

concentration. 

 

(4) Liposomes 

Liposomes are an artificial microscopic vesicles consisting of an aqueous core enclosed by 

one or more phospholipid layers. The liposome immunosorbent assay (LISA) has been 

developed for improving the detection limit and sensitivity of SPR. In this assay, liposomes 
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and the secondary antibodies are biotinylated to be used as a label. After injection of the 

analyte, a biotinylated second antibody is added, and then avidin is used as the bridging 

molecule between the biotinylated antibody and the biotinylated liposome. The liposome 

strategy was used for the detection of interferon-γ (IFN- γ) and both sensitivity and 

detection limit were improved by ~ 104 times. However, because liposomes are very large 

vesicles (100~1000 nm) (Wink et al., 1998), the possible number of binding events to the 

analyte on the IA layer is also small and the enhancement effect is decreased at high analyte 

concentration. 

 

1.2.3.2 Signal amplification by orientation & density control of IA layer 

 

The orientation control and the density control of the antibody on the IA layer were 

conceived for the signal amplification of IA biosensors. As shown in the Figure 1-2A, the 

orientation control of IA layer means that variable regions of receptors in the IA layer are 

arranged to face the sample fluid. In this case, more target analytes can bind to the oriented 

IA layer (the orientation control) (Lu et al., 1996; Muramatsu et al., 1989). As shown in the 

Figure 1-2B, the density control of IA layer aims to bind as many receptors as possible to 

the IA layer. Hence, more target analytes can be attached to the IA layer and the sensitivity 

of the IA biosensor can be improved (the density control). Several techniques have been 

used to achieve the signal amplification by the control of those properties of the IA layer. 
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Figure 1-2: Signal amplification by the control of the IA layer. (A) Control of the 

orientation of receptor antibodies of the IA layer. (B) Control of the density of receptor antibodies 

on the IA layer. 
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(1) Protein A method 

The most frequently used technique for the orientation control of the IA layer has been to 

apply protein A. Protein A is a cell wall protein deriving from Staphylococcus aureus which 

exhibits unique binding properties for IgG from a variety of mammalian species and for 

some IgM and IgA as well. As protein A binds to polysaccharides at the Fc region of the 

antibody, it has been applied to immunosensors for the orientation control of the antibody in 

the IA layer (Owaku and Goto, 1995; Kanno et al., 2000; Bae et al., 2005). For example, the 

effectiveness of protein A has been proved in the detection of Yersinia pestis Fraction 1 (F1) 

antigen by a fiber optic biosensor (Anderson et al., 1997) or red tide-causing plankton 

Chattonella marina by a piezoelectric immunosensor (Nakanishi et al., 1996).  

 

(2) Avidin - biotinylated protein interaction 

Avidin is a glycoprotein with a strong affinity for biotin (affinity constant > 1015 M-1). For 

the control of antibody orientation, the avidin is usually immobilized on the sensor surface, 

and then the biotin-labelled antibody against a target analyte is bound. As the biotin is 

known to be labelled at the Fc region of antibodies, the F(ab’) region is exposed to the 

analyte after binding to the immobilized avidin. The avidin bridging method, however, 

proved relatively inefficient in the enzyme immunoassay (ELISA) of prolactin showing 

three fold improvement of the non-specific binding (Ahluwalia et al., 1991). 

 

(3) The Langmuir-Blodgett (LB) film technique 

The Langmuir-Blodgett (LB) film means a film of organic material (often surfactant 

molecules) assembled at the liquid-gas interface and it can be transferred onto a solid 

substrate. The LB technique has been used to make a closely packed and highly oriented 

protein layer and it was used for many commercial sensors for glucose detection (Davis and 

Higson, 2005). However, this protein layer produced by LB technique is not stable. As the 

protein layer immobilized using the LB technique is easily denatured and desorbed from the 

substrate, the fabrication of an immunosensor using this method seems to be impractical 

(Preininger et al., 2000; Bae et al., 2005).  

 

(4) Self-assembly technique 

Well-oriented immunosurfaces can be prepared by the direct immobilization of F(ab’) 

fragments of IgG onto gold (Au) surfaces via the formation of a Au-thiolate bond (Brogan 

et al., 2003). The F(ab’) fragment can be made by using pepsin and 2-mercaptoethylamine 
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(2-MEA) (see Figure 1-3). Enzymatic fragmentation of IgG produces F(ab’) 2 fragment by 

pepsin and this fragment is further fragmented into two F(ab’) by 2-MEA by reduction of S-

S bonding. Each F(ab’) has one binding site and one thiol (-SH) group. This F(ab’) 

fragment can bind spontaneously to the gold surface of immunosensors through the specific 

interaction between thiol (-SH) group and the gold surface. Such a self-assembly technique 

was applied to detect insulin by using SPR sensor (Lee et al., 2005). 
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Figure 1-3: Scheme of the strategies used to prepare F(ab’) of whole molecule IgG. 

Enzymatic fragmentation of IgG produces F(ab’) 2 fragment by pepsin and this fragment is further 

cleaved into two F(ab’) by 2-mercaptoethylamine (2-MEA). 

 

(5) Charged substrate technique 

Charged substrates have been used for the orientation control of IA layer on the self 

assembled monolayer (SAM). The orientation of anti-hCG antibody was found to be better 

oriented on the primary amine–terminated SAM (positively charged) than on the 

carbohydrate-terminated SAM (negatively charged) (Chen et al., 2003). Because the 

immobilization of an antibody on the negatively charged or positively charged surfaces is 

based on a physical adsorption, this strategy has a limitation in stability.  

 

1.3 Principal elements for the construction of an immunoaffinity SPR biosensor 

 

Usually an IA biosensor system (see Figure 1-4) is composed of four functional parts: (1) 

sampling, (2) molecular recognition, (3) transducer and (4) data processing.  

(1) In the sampling part, a sample with the target analyte is prepared into a suitable format 

for the analysis by using the biosensor. For example, serum has many interrupting proteins 

for the specific detection of the target analyte and it is diluted for the effective detection. 

Sometimes, microfluidic sample handling system is used for the sample with restricted 
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volume, such as neonatal blood sample. 

(2) The molecular recognition part of the IA biosensor detects the target analyte in the 

sample by the highly specific interactions between antibody and antigen. Such an 

interaction changes the physical properties of the molecular recognition part, such as 

refractive index, mass or density.  

(3) The transducer converts these physical property changes into the electrical signal. For 

the detection of antigen-antibody interaction, several types of transducers have been applied 

for IA biosensors, such as electrochemical (potentiometric, amperometric or 

conductometric/capacitative), microgravimetric, optical, and thermometric. In this work, 

the surface plasmon resonance (SPR) sensor was used as transducer.  

(4) The data processing part calculates the concentration of the target analyte from the 

electrical signal obtained from the transducer part. 
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Figure 1-4: General structure of an IA biosensor. The target analyte (A) in a mixture is 

selectively bound to the molecular recognition part and the quantitative electrical signal 

corresponding to the amount of bound analyte is generated by the transducer. The IA biosensor 

displays the concentration of the target analyte in the sample. 

 

1.3.1 Properties of IA layer 

 

When the sample is applied onto the IA biosensor, the sensor response is produced by the 

occupancy of the free binding site of the IA layer by the analyte. As correlation between the 

concentration and signal is used for the calculation of analyte concentration, the 

reproducible preparation of the IA layer is very important for the precise calculation of the 

analyte concentration.  

Various techniques have been reported for the immobilization of antibodies (or antigens) to 

the metallic surface of the transducer. Such techniques can be classified into two categories: 

(1) physical adsorption to the metallic surface of the transducer, and (2) covalent coupling 
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of antibodies (or antigens) to the transducer, which is reported to have good reproducibility 

and coverage. Although the physical adsorption is simple to use, this technique is known to 

induce denaturation or conformational changes of the adsorption layer, poor reproducibility, 

elution by the detergent of the washing solution and so on (Bae et al., 2005). 

Usually, the IA layer is composed of the adsorption layer and linker layer as shown in the 

Figure 1-5. The adsorption layer specifically binds the target analytes and the linker layer 

connects the adsorption layer to the surface of the transducer. The linker layer is prepared 

by modifying the surface of the transducer to bind the antibodies (or the antigens) of the 

adsorption layer and it also influences the orientation of the antibodies (or the antigens). 

 

 
 

Figure 1-5: The functional structure of the IA layer. The layer is composed of an adsorption 

layer for the selective binding of target analyte and the linker layer for the stable binding of the 

adsorption layer to the transducer surface. 

 

The self assembled monolayers (SAMs) have been frequently used as the linker layers. The 

strong adsorptions of thiol (R-SH), disulfide (R-S-S-R) and sulfides (R-S-R) to gold surface 

have been used to make well-ordered SAM on the SPR biosensor surface (Wink et al., 

1997). The SAM can be easily prepared by immersion of the substrate into a solution 

containing an appropriate amphiphile (Ulman et al., 1996). The SAM has been reported to 

have many advantages for the application of IA biosensors. First of all, the non-specific 

binding can be reduced three to five times compared with conventional linker layers (Su et 

al., 1999). By using this well-ordered SAM, well-oriented immobilization of proteins could 

be prepared without altering the biological activities and the improvement of detection 

limits, reproducibility of the assay could be achieved.  

In this work, 11-mercaptoundecanoic acid was used to prepare an SAM on the gold surface 

of the SPR transducer (see Figure 1-6A). The inside chemistry of SAM formation on the 

gold surface is known to be a two-step mechanism: (1) First step is the oxidative addition of 
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the S-H bond and reductive elimination of the hydrogen (chemisorb): R-S-H + Au  R-S-

Au+•Au + 1/2H2. (2) After the fast formation of an S-Au bonding, the hydrocarbon chains 

are known to assemble together to form the well-ordered monolayer by Van-der-Waals 

forces between the hydrocarbon chains (Ulman et al., 1996; Davis and Higson, 2005). In 

the case of long alkyl chains such as 11-mercaptoundecanoic acid, strong intermolecular 

bonds can be formed to make well-ordered structures with amines, which are similar to the 

internal packing energies of crystalline hydrocarbon (Allara et al., 1995). After the 

preparation of SAM (linker layer) on the gold surface, the protein (adsorption layer) was 

covalently coupled to the SAM by the well-known chemistry, which uses 1-ethyl-3-(3-

dimethylaminopropyl) carbodiimide (EDAC) and N-hydroxysuccinimide (NHS) as 

coupling reagents (see Figure 1-6B). In this reaction, the carboxylic groups of SAM are 

activated by a mixture of EDAC and NHS, and then amine groups of ligand are covalently 

bonded to the carboxylic groups of SAM. The remaining esters are deactivated by addition 

of ethanolamine (Johnsson et al., 1991). 
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Figure 1-6: Self assembled monolayer (SAM) and it’s coupling chemistry.  

(A) Schematic view of the SAM on the gold surface. (B) The reaction of EDAC/NHS for coupling 

of protein to the carboxylate group of SAM. 
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1.3.2 Properties of SPR transducer 

 

In principle, the SPR biosensor can detect all kinds of analyte binding to the IA layer 

without any additional labels such as fluorescent, radioactive or scattering labels (Homola, 

2004). The surface plasmon resonance (SPR) effect occurs in the very close vicinity of a 

thin metal film surface at the interface of two transparent media of different refractive index 

(RI) (see Figure 1-7) (Kretschmann and Raether, 1968; Otto, 1968).  

When incident light goes from optically dense media (higher RI) to less dense media (lower 

RI), it is partly reflected and partly refracted. Above a special angle of incident light, all 

light is reflected back into the dense media (total internal reflection) and a component of 

this light (the evanescent wave) can propagate into the less dense media to a distance of one 

wavelength (Faegerstam et al., 1992). If a thin metal film is positioned at the interface 

between two media, the evanescent wave of incident light is able to interact with free 

electrons (plasmons) in the metal film at a narrow angle range of incident light (SPR angle). 

When this surface plasmon is resonantly excited, a longitudinal charge density wave 

propagates along the interface between two different media. In this situation, light energy is 

lost to the metal film and the intensity of reflected light decreases. As the refractive index of 

the media changes, the SPR angle is also shifted. This shift of the SPR angle is a signal for 

the SPR sensor. This phenomenon is usually observed with noble metals such as gold and 

silver (De Bruijn et al., 1992).  
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Figure 1-7: Structure of the surface plasmon resonance (SPR) transducer. A thin metal 

film is positioned at the interface between two media, and the evanescent wave of incident light is 

able to interact with free electrons (plasmons) in the metal film at a special angle (α) of incident 

light (SPR angle). As the binding of analyte to the sensor surface changes the SPR angle, the analyte 

concentration related to the amount of bound analyte can be measured by using the SPR transducer. 
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As the analyte binds to the the sensor surface, the refractive index and SPR angle changes 

according to the increase of the mass at the sensor surface (Sjoelander and Urbaniczky, 

1991). When the interaction between analyte and the immobilized receptor occurs at the 

sensor surface, a sensorgram can be obtained in real time by plotting the signal against time, 

as shown in the Figure 1-8 (Liedberg et al., 1983; Lundstroem, 1994). 

 

 
Figure 1-8: A typical sensorgram for the monitoring of analyte binding to the SPR 

biosensor. In the association step, analyte solution is injected to the biosensor for attachment. In 

the dissociation step, buffer solution replaces analyte solution and some analytes on the biosensor 

detached. For next experiment, all analytes on the biosensor are removed in the regeneration step. 

 

In this work, the SpreetaTM from Texas Instrument Inc. (TI) was used as a SPR transducer. 

SpreetaTM sensor contains whole optical components necessary to implement SPR sensing, 

such as an infrared LED (830 nm peak wavelength), a 128-pixel linear diode array detector 

and a non-volatile memory chip for recording identification and calibration information 

(see Figure 1-9A). SpreetaTM has the size of 4.1 cm ⅹ 2.9 cm ⅹ 1.3 cm and the active 

sensing region is located on the middle of the gold surface with the size of 0.45 mm ⅹ 0.1 

mm (see Figure 1-9B). The sensor surface is prepared on a glass chip by sputtering a 50 nm 

gold layer and it was fastend to the plastic prism with epoxy. The SPR effect occurs on the 

thin gold layer: at a certain angles of incidence, part of the energy of the transverse-

magnetic polarized incident light will be coupled into a surface plasmon wave traveling 

along the interface between the gold layer and the analyte. This device has the limit of 

detection of 1 pg/mm2. As the evanescent field decays exponentially from the surface, SPR 

technique is sensitive to refractive index variation within 300 nm from the surface 

(Chinowsky et al., 2003). 
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Figure 1-9: The SpreetaTM SPR sensor from Texas instrument Co. LTD. (A) Inside 

structure of the SpreetaTM. The light from the LED is reflected at the surface plasmon layer, and then 

it reflected to the photodiode array. (B) The SpreetaTM chip with the size of 4.1 ⅹ 2.9 ⅹ 1.3 (cm). 

 

In a view of medical diagnosis, the SPR sensor has several advantages, such as label-free 

detection, real-time monitoring and one-shot analysis. Especially, SpreetaTM requires 

relatively small instrumentation and it is suitable for point-of-care testing (POCT) (Homola, 

2004). As the POCT can supply laboratory test result without central laboratory, POC 

system has been developed for medical diagnosis in a small clinics as well as home-health 

care (Soper et al., 2006). Such a POCT have been used to detect several analytes such as 

glucose, hemoglobin, urine dipsticks, pregnancy and drug testing (Nichols, 2001). The 

development of POC technologies will be used for better screening of at-risk patients, 

tighter surveillance of disease recurrence and better monitoring of treatment. 

 

1.4 Biomarkers for medical diagnosis 

 

The biomarker is defined as a change in biological response ranging from molecular 

through cellular and physiological responses to behavioural changes (Allan et al., 2006), 

which includes several indicators of a biologic state, such as nucleic acids, proteins and 

low-molecular-weight metabolites. Especially, a biomarker can be used to examine organ 

function or other aspects of health in medicine. In the medical point of view, this biomarker 

must not only signal the presence of a disease such as cancer, but should also predict the 

state of disease such as the stage of tumorigenesis (Soper et al., 2006). However, this 

disease-indicating analyte is mixed with a lot of other materials in serum or urine. The 

BA BA
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biosensor can selectively detect biomarker as a target analyte to inform the presence of a 

disease and quantify the amount of biomarker to know the state of disease through the high 

“selectivity” and “sensitivity” of biosensor. 

In this work, the application of the SPR biosensor technology for medical diagnosis was 

demonstrated by using several biomarkers for medical diagnosis, such as tumor markers 

(CA 19-9, CEA), an infectious disease marker (hHBV Ab), a hormone (hCG) and a plasma 

protein (hA).  

 

(1) Tumor markers (CA 19-9, CEA) 

Tumor markers are substances developed in tumor cells and secreted into body fluids. As 

the concentration and the kind of tumor markers are related with the active tumor mass and 

site, the tumor markers can be used for the medical diagnosis of cancer.  

 

Carbohydrate antigen 19-9 (CA 19-9) used in the additive assay is one of the most widely 

used carbohydrate tumor markers for gastrointestinal malignancies. CA 19-9 has a subunit 

of 210 kDa glycoprotein and it’s aggregate has a molecular weight between 600 and 2,000 

kDa. Especially, it is reported to be found in patients of pancreatic cancer with a high score 

of over 79 % (Del Villano et al., 1983; Suresh, 2001). Conventionally, various kinds of 

immunoassays such as enzyme immunosorbent assay (Ohkura et al., 1985), 

Chemiluminescence immunoassay (Nishizono et al., 1991; Lin et al., 2004), 

electrochemical immunoassay (Du et al., 2003) and fluorescence immunoassay (Song et al., 

2004) have been applied for the medical diagnosis of CA 19-9. 

 

Carcinoembryonic antigen (CEA) is another widely used tumor marker in oncology, which 

is a glycoprotein with the molecular weight of 180 kDa. CEA is considered to be a broad 

spectrum cancer marker because various malignancies at the colorectal, lung, breast, 

stomach, ovary, pancreas and other organs can cause the elevated CEA concentrations. CEA 

assay is mainly used for the monitoring of the recurrence of cancer and it is most frequently 

used for recurrence tests of colorectal cancer (Suresh, 2001). Conventionally, various kinds 

of immunoassays such as enzyme immunoassay (Hurley et al., 1986), Chemiluminescence 

immunoassay (Nishizono et al., 1991) and so on have been applied for the medical 

diagnosis of CEA. 

 

(2) Infectious disease marker (hHBV Ab) 
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Human hepatitis B virus (hHBV) is a widespread cause of liver disease. There are several 

markers for this disease and the appearance of each marker has a characteristic sequence. 

As hHBV antibody appears several months after the disappearance of hHBV antigen, 

hHBV antibody tests can be used to confirm recovery and immunity in patients with acute 

hepatitis. And it is also used to check that vaccination has been effective (Mushahwar, 

2001). The conventional method of hHBV diagnosis has been ELISA. Several kinds of 

biosensors were reported using electrochemical (Erden et al., 1999), piezoelectric (Zhou et 

al., 2002) and optical (Ivanov et al., 2003) principles.  

 

(3) Hormone (hCG) and plasma protein (hA)  

The human chorionic gonadotropin (hCG) and plasma protein (hA) can be used for 

preliminary diagnosis for the abortion and the preterm delivery during early pregnancy.  

 

The concentration of human chorionic gonadotropin (hCG) in urine has been measured for 

the qualitative pregnancy determination (Wehmann et al., 1981). Usually, the doubling time 

of hCG in early pregnancy has been reported to be two days and the failure to increase over 

a period of four days or more is an unfavourable sign to threaten abortion (Chard, 2001). 

Thesedays, lateral-flow immunoassay called rapid test is widely used for the pregnancy test 

to measure the concentration of hCG (Wheeler, 2001). Several kinds of biosensors were 

also reported using electrochemical immunoassay (Lu et al., 2005), fluoroimmunometric 

assay (Neto et al., 2005) and radioimmunoassay (Vaitukaitis et al., 1972). 

 

In diabetes mellitus, the concentration of glucose in the blood is abnormally high. There are 

two main types of diabetes mellitus. Type I diabetes patients have a significantly reduced 

secretion of insulin and type II diabetes is associated with insulin resistance and obesity. 

The ‘microalbuminuria’ means the presence of low concentration of human albumin (hA) in 

urine and it is known to be related with the diabetes (Clark, 2001). Especially for women 

with type I diabetes, the prevalence of preterm delivery has been reported to increase 

steeply for those with microalbuminuria and diabetic nephropathy (Ekbom et al., 2001). To 

detect albumin concentration of microalbuminuria, sensitive immunoassay methods have 

been developed including RIA, immunoturbidometric assay, nephelometric assay and 

ELISA (Clark, 2001). 

 

1.5 Concept for the development of an improved biosensor 
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The overall goal of this work is the application of the SPR immuno-biosensor for medical 

diagnosis. Because the SPR biosensor still needs improvement in technical specifications 

for the medical diagnosis (such as sensitivity, detection limit, analysis time and 

instrumentation), three topics have been targeted to improve this type of biosensor. 

 

[1] The first topic is a reuse method for the IA biosensor called ‘additive assay’ which 

enables the reuse of the IA layer without chip exchange and chemical treatment between 

measurements. In this work, the binding of anti-BSA antibodies to the BSA layer will be 

used as a model of immunoaffinity interaction to prepare a correlation curve and 

demonstrate the additive assay. Before making the correlation curve, three requirements for 

the realization of the additive assay should be satisfied: (1) Reproducible preparation of IA 

layers to use the same correlation curve. (2) Stable IA layer. (3) Stable antigen-antibody 

interaction. The correlation curve will be made by relation between the accumulated 

concentration of additively injected sample and accumulated signal which represents the 

number of occupied binding sites. After making the correlation curve, the feasibility of 

additive assay will be tested by injection of samples at mixed concentrations. After defining 

the valid uncertainty of accumulated concentration as the detection limit, the valid range of 

accumulated concentration will be determined. In this valid range, several analytes with 

different concentration will be injected in arbitary sequence and the respective 

concentrations will be calculated from each signal by using the correlation curve. After 

comparing the calculated concentrations with those of real values, the average error of the 

additive assay will be evaluated to determine whether the additive assay is feasible for the 

immunosensors. The additive assay will be also demonstrated by using another SPR 

biosensor called Biacore 3000, which will be performed by cooperation with the group of 

Prof. Bernhardt at Saarland University (Germany). And then the result will be compared 

with that of SpreetaTM. The application of the additive assay for real medical diagnosis will 

be demonstrated by using the tumor marker (CA 19-9) as a target analyte.  

 

[2] The second topic is the ‘simultaneous detection’ which enables the detection of multiple 

analytes on a single sensor element with single sample treatment. In this work, two 

simultaneous detection models (Model 1 and Model 2) will be devised for the sample with 

the following composition: (1) one target analyte resulting in a sensor response without any 

label and the other analyte with additional label (Model 1), (2) both target analytes 

requiring additional labels for detetion (Model 2). The IA layer was prepared by 
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immobilizing BSA and anti-HRP antibodies together. And the sample was composed of 

anti-BSA antibodies and HRP. After making the respective standard curves for the 

correlation between the concentration and signal, the average errors of simultaneous 

detection based on Model 1 and Model 2 will be calculated for anti-BSA antibodies and 

HRP to determine whether each Model is acceptable for application. As requirements for 

the realization of the simultaneous detection, (1) cross-reaction arising from non-specific 

binding among the participating antigens and antibodies will be tested and (2) the binding 

capacity of the IA layer for each target analyte will be optimized by adjusting of the 

concentration ratio of the molecular recognition element at the immobilization step. The 

real medical diagnosis based simultaneous detection will be demonstrated by analysis of 

human chorionic gonadotropin (hCG) and human albumin (hA) in human urine for the 

diagnosis of preterm delivery of patients with diabetes.  

 

[3] The third topic is the improvement of the sensitivity and detection limit through two 

‘signal amplification’ methods by using mass label (A) and by the orientation control of the 

IA layer (B): (A) In comparison with the direct assay, the amplification ratio by using 

secondary antibodies, avidin-biotynylated antibodies and peroxidase-anti-peroxidase (PAP) 

complex will be estimated to select the most efficient label for signal amplification by 

considering the non-specific binding of label protein. The feasibility of this signal 

amplification method will be demonstrated by analysis of an infectious disease marker, 

human hepatitis B virus (hHBV) antibody. The detection limit of the SPR biosensor by 

using the selected method will be compared with the cut-off value for medical diagnosis 

(0.24 nM) by using the commercial ELISA kit. (B) In this work, the surface density of 

receptor antibody (anti-hIgG) will be compared by attachment of receptor antibody to the 

layer of avidin, NeutrAvidin, protein A, NeutrAvidin-protein A complex and bare gold 

surface of SPR biosensor. The ligand antibody (hIgG) will be injected to each IA layer and 

the binding ratio of ligand antibody per unit receptor will be estimated as a parameter of 

orientation control. By considering the surface density of (1) receptor and (2) ligand 

antibody and (3) the binding ratio of ligand per receptor antibody, the most efficient layer 

will be selected. With the selected layer, test will be also done on biotin-labelled SAM in 

comparison to the IA layer prepared by chemical coupling of receptor antibody to the SAM 

layer. For the feasibility test of orientation control, the selected layer will be applied to 

detect a cancer marker, carcinoembryonic antigen (CEA). 
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2. Materials and Methods 
 

2.1 Materials 

 

•  Chemicals 

11-mercaptoundecanoic acid, N-(3-dimethylamino-propyl)-N’-ethylcarbodiimide (EDAC), 

N-hydrosuccinimide (NHS), p-nitrophenyl phosphate, tetramethylbenzidine were purchased 

from Sigma-Aldrich Chemical Co. (Deisenhofen, Germany). All reagents for the Biacore 

3000 instrument such as amine coupling kit and HBS running buffer were purchased from 

Biacore International SA (Freiburg, Germany). EZ-LinkTM Biotin Hydrazide was bought 

from Pierce Biotechnology, Inc. (Rockford, IL, USA).  

 

•  Antigen - Antibodies 

Bovine serum albumin (BSA), rabbit anti-BSA antibody (polyclonal), human Chorionic 

Gonadotropin (hCG), human albumin (hA) and goat anti-human albumin antibody 

(polyclonal) were purchased from Sigma-Aldrich Chemical Co. (Deisenhofen, Germany). 

Carbohydrate antigen 19-9 (CA 19-9), mouse anti-CA 19-9 (monoclonal), rabbit anti-hHBV 

(polyclonal), carcinoembryonic antigen (CEA), mouse anti-CEA antibody (monoclonal) 

and goat anti-CEA antibody (polyclonal) were purchased from Fitzgerald Inc. (Concord 

MA, USA). Human hepatitis B virus (hHBV) antigen was purchased from Yashraj 

Biotechnology, Ltd. (Mumbai, India). Goat anti-hCG antibody (polyclonal) was obtained 

from Affinity BioReagent, Inc. (Hamburg, Germany). Goat anti-horseradish peroxidase, 

donkey anti-rabbit IgG, donkey alkaline phosphatase conjugated anti-rabbit IgG, human IgG, 

(hIgG) donkey anti-hIgG, rabbit Peroxidase-Anti-Peroxidase (PAP), and donkey biotin 

conjugated anti-rabbit IgG were purchased from Jackson immunochemical research 

laboratories, Inc. (West Grove, PA, USA).  

 

•  Others 

Newborn calf serum was bought from Biochrom AG (Berlin, Germany). The commercial 

ELISA kit for the diagnosis of hHBV (Monorisa® Anti-HBs 3.0, Ver. 3.0) and non-fat milk 

were purchased from BioRad Laboratories GmbH (Muenchen, Germany). Biotin labeled 

protein A, protein A and avidin were purchased from Calbiochem-Novabiochem GmbH 

(Schwalbach, Germany). NeutrAvidinTM was bought from Pierce Biotechnology, Inc. 
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(Rockford, IL, USA). Casein was bought from Merck, Inc. (Darmstadt, Germany). Water 

was purified by Milli-Q system (Millipore Co., MA, USA). 

 

2.2 Methods 

 

2.2.1 Preparation of IA layer 

 

The IA layer was prepared on the gold surface of the Spreeta™ chip at 37°C. First, the self-

assembled monolayer (SAM) was prepared on the gold surface by incubating 5 mM 11-

mercaptoundecanoic acid in ethanol for 2 hrs. For the coupling of biomolecules, the sensor 

surface was rinsed with ethanol and then with 10 mM PBS buffer (pH 4.5). The PBS buffer 

was prepared by mixing 10 mM di-sodium hydrogen phosphate (Na2HPO4) with 0.15 M 

KCl and 10 mM sodium dihydrogen phosphate (NaH2PO4) with 0.15 M KCl. Biomolecules 

were coupled to SAM by using the coupling reagents of EDAC (50mM) and NHS (50 mM) 

in 10 mM PBS (pH 4.5). The SAM was first treated with EDAC and NHS for 10 min and 

then the solution of biomolecules in 10 mM PBS (pH 4.5) was incubated. The concentration 

of the biomolecules and incubation time are summarized in Table 2-1. After immobilizing 

recognition parts, the other reactive sites of SAM were blocked by 1 M ethanolamine 

(Naimushin et al., 2002; Kim et al., 2005; Lee et al., 2005). 

 

Table 2-1. The concentration of biomolecule and incubation time for making IA layer. 

 The concentration of 

biomolecules 

Incubation time 

BSA (10 mg/ml) 10 min Additive assay  

(section 3.1) CA 19-9 (500 µg/ml) 1 hr 

BSA (0.1 mg/ml) and  

anti-HRP (2mg/ml)  

1 hr  

Simultaneous detection 

(section 3.2) Anti-hCG (500 µg/ml) and  

anti-hA (100 µg/ml) 

1 hr 

Signal amplification by using mass label 

(section 3.3.1) 

hHBV antigen (75 µg/ml) 2 hr 

Signal amplification by the orientation 

control of IA layer (section 3.3.2) 

Anti-CEA (0.5 mg/ml) 

 

1.5 hr 
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In the signal amplification with the control of IA layer, several modified surfaces were 

prepared on the bare gold surface or the SAM surface. After modification of sensor surface, 

the anti-hIgG solution at the concentration of 1 mg/ml in the 10 mM PBS (pH 7.4) was 

incubated as a receptor protein for 90 min. In order to prevent the non-specific binding, the 

protein bound sensor surface was treated with highly concentrated BSA solution (10 mg/ml). 

 

For the preparation of modified surfaces on the bare gold surface, several proteins such as 

avidin, protein A and NeutrAvidin were prepared on the bare gold surface by incubating the 

protein solution for 90 min. The concentration of protein was adjusted to be 1 mg/ml in 10 

mM PBS (pH 7.4).  

 

The NeutrAvidin-protein A complex layer on the bare gold surface was prepared by 

sequential treatment of NeutrAvidin (1 mg/ml) and biotin-labelled protein A (1 mg/ml) for 

90 min, respectively (see Figure 2-1A).  

 

For the preparation of NeutrAvidin-protein A complex layer on the SAM surface, 

NeutrAvidin (1 mg/ml for 90 min) was attached to the SAM surface by using EDAC/NHS 

and then biotin-labelled protein A (1 mg/ml for 90 min) was attached to the NeutrAvidin 

layer (see Figure 2-1B).  

 

For the preparation of NeutrAvidin-protein A complex layer on the biotin-labelled SAM 

surface, biotin hydrazide at the concentration of 1 mg/ml was attached to the SAM surface 

by using EDAC/NHS for 60 min, and then NeutrAvidin (1 mg/ml for 90 min) and biotin-

labelled protein A (1 mg/ml for 90 min) were also sequentially treated to prepare 

NeutrAvidin-protein A complex layer (see Figure 2-1C).  

 

The chimeric complex which was made by mixing equimolar biotin-labelled protein A and 

NeutrAvidin was incubated for 60 min after treatment of biotin hydrazide at 1 mg/ml on the 

SAM layer for 60 min (see Figure 2-1D).  
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Figure 2-1: Schematic of description for the preparation of modified surfaces. (A) 

NeutrAvidin-protein A complex layer on the bare gold surface. (B) NeutrAvidin-protein A complex 

layer on the SAM surface. (C) NeutrAvidin-protein A complex layer on the biotin-SAM surface. (D) 

Chimeric complex layer on the biotin-SAM surface. 
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2.2.2 Signal measurement of SPR biosensor. 

 

The typical sensorgram by SPR biosensor is shown in Figure 2-2. The signal detection was 

composed of three steps; washing step before sample injection, sample incubation step, 

washing step after sample injection. For the washing step, 0.5 % Tween 20 was flowed at 

the point of ‘1’ and incubated for 4 min at washing step, and then 20 µl of sample was 

flowed at the point of ‘2’ and incubated for 10 min in the sample injection step. In this work, 

we used stopped-flow measurement system which is similar to the cuvette based SPR 

systems. The measurement was performed at the stopped-flow condition after washing step 

to avoid wrong measurement of refractive index by the sample with high protein 

concentration, such as serum. As shown in Figure 2-2, the ‘Signal’ is calculated to be the 

difference between SPR angles at the washing step before sample injection and after sample 

injection.  
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Figure 2-2: A typical sensorgram of the SPR biosensor.  

The point ‘1’ indicates injection of washing buffer which flows for 2 min as indicated by ‘3’. The 

point ‘2’ indicates the sample injection. The ‘Signal’ is calculated to be the difference between SPR 

angles at the washing step before sample injection and after sample injection.  

 

(1) Sensor response at the equilibrium 

 

The sensor response of analyte binding was calculated by the following equation based on 

the binding kinetics of one-to-one interaction (O’Shannessy et al., 1993): 
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RCR  where Rt is the sensor response at time t, C is the 

concentration of analyte in solution, Rmax is the maximal sensor response, KD is the 

dissociation constant, ka is the association rate constant. The response of SPR sensor 

reaches a signal plateau after a certain incubation time. The equation can be simplified as 

follows: [ ]Kt
t eMR ⋅−−⋅= 1  where M and K are independent parameters to the sample 

concentration. For the calculation of parameters of M and K, the sample at the 

concentration C was injected and the sensor response had been recorded for enough 

incubation time (2 hour). The obtained sensorgram was fitted by using the non-linear fitting 

of Origin software (Microcal Software, MA) based on the above equation (see Figure 2-3A).  

 

A      B 

 

Figure 2-3: The sensor response at the equilibrium.  

The SPR sensor response of the reaction between anti-BSA antibody (analyte) and BSA (IA layer). 

(A) The SPR sensorgrams with several concentrations of analyte (anti-BSA antibody). After proper 

incubation time, the maximum signal value for each concentration (M) can be calculated as the 

signal at the equilibrium by using the non-linear fitting: [ ]Kt
t eMR ⋅−−⋅= 1  where M and K are 

independent parameters to the sample concentration. (B) The does-response curve at the equilibrium. 

To make does-response curve, the concentration and the signal at the equilibrium (M) for each 

concentration were plotted as X-axis and Y axis and the maximum signal value for all concentration 

(Rmax) and KD were calculated by using the non-linear fitting of ⎥
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The calculated M value was the maximum signal value for each concentration such as the 

signal at the equilibrium. When the calculated M values were plotted to the respective 

concentration, the maximum M value (Rmax) and KD were calculated by using the non-

linear fitting of ⎥
⎦

⎤
⎢
⎣

⎡
+
⋅

=
)(

max

DKC
RCM  (the Langmuir isotherm model), and then this equation 

could be used for the sensor response at the equilibrium (see Figure 2-3B). For this 

calculation, more than five concentrations were selected for each analyte within the 

concentration range used in this work. 

 

(2) Optimization of incubation time. 

 

Generally, the sensor response reaches the equilibrium after a long incubation time and it is 

not efficient for real application. For more efficient application, the incubation time should 

be shortened. In this case, the standard curve which is obtained by short incubation time has 

less similar physical meaning with Langmuir isotherm model. In this work, the optimum 

incubation time was selected to get a high enough fitting result (r2) to the fitting model, 

where “r2” is the the square of the correlation coefficient (r). Compared with the does-

response curve at the equilibrium of Figure 2-3B (r2=0.995), the “r2” value after the 

incubation time of 10 min was slightly changed from 0.995 to 0.993 (see Figure 2-4). From 

this result, the incubation for 10 min could be applied in this experiment. 

 

 

 

 

 

 

 

 

 

 

Figure 2-4: The sensor responses with different incubation times. Compared with the 

does-response curve at the equilibrium of Figure 2-3B (r2=0.995), the “r2” value with the incubation 

time of 10 min was slightly changed from 0.995 (▲) to 0.993 (■). From this result, the standard 

curve following incubation for 10 min was also observed to fit well to the same model. 
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The other factors were also considered for the selection of an optimum incubation time. For 

example, the incubation time is related to the sensitivity of the measurement, the baseline 

drift and the detection limit. For suitable measurements in this work, the optimum 

incubation time should be determined by considering these parameters along with the 

square of the correlation coefficient (r2). 

 

(3) Calculation of lower limit of detection (LLD) by using baseline drift.  

 

The sensitivity of an assay has been defined as the lower limit of detection (LLD), and it 

has been estimated from the slope of the dose-response curve. The LLD is the lowest 

analyte concentration that makes a positive signal significantly different from the negative 

signal in the absence of antigen. In a noncompetitive assay, the LLD is usually defined as 

three standard deviations from the mean of the zero analyte control. Accordingly, signal for 

LLD is m + 3sd, where “m” is the mean signal obtained in absence of antigen, “sd” is the 

standard deviation of the signal in absence of antigen. LLD is the concentration where 

signal of m + 3sd is positioned in the dose-response curve (Ezan and Grassi, 2000). The 

baseline drift was measured in absence of antigen by repeated injection of 10 mM PBS (pH 

7.4) which is used as a sample buffer and 0.5 % Tween 20 (see Figure 2-5).  

4000 6000 8000 10000
69.48

69.52

69.56

69.60

69.64

69.68
10 mM PBS

0.5% Tween 20 
(washing buffer)

SP
R

 A
ng

le
 (o )

Time (s)

 
Figure 2-5: SPR sensorgram by repeated injections of 0.5% Tween 20 and PBS by 

turns. The baseline drift was calculated by the repeated injection of 10 mM PBS (pH 7.4). The 

baseline drift was estimated to be 0.9 (m) ± 0.4 (sd) milli° (n = 50) and signal for LLD (m + 3sd) 

was calculated to be 2.1 milli° in this system. 
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The baseline drift was calculated by the difference of SPR angles by 0.5 % Tween 20 

solution measured before and after the injection of 10 mM PBS. The baseline drift was 

estimated to be 0.9 (m) ± 0.4 (sd) milli° (n = 50). From this result, signal for LLD (m + 3sd) 

was calculated to be 2.1 milli° in this system. 

 

As the baseline drift decreased to be stabilized, signal was kept less than ± 1 milli° for 30 

min and then the concentration of LLD was also decreased. As the refractive index is 

sensitive to temperature, the change of temperature is related to the baseline drift (Roos et 

al., 1998). The influence of the temperature on the responses of the transducer was 

investigated by variation of the temperature of the water bath, which was slowly cooled 

down in the ice box from 42 oC to 22 oC. As the temperature change of 1 oC caused a 

baseline drift of 8.7 milli o (see Figure 2-6), the temperature of SPR sensor system should 

be set to be ±0.5 oC for the drift of less than 5 milli o. 
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Figure 2.6: Influence of the temperature on the SPR signal.  

 

2.2.3 Instruments 

 

(1) Spreeta™ system 

 

The Spreeta™ chip from Texas Instrument Co. (Dallas, TX, USA) was used for SPR 

measurement. The response of SPR chip was transferred on-line to a PC by a 12-bit analog-

to-digital converter. Before the preparation of an IA layer, the SPR chip was first calibrated 

with the air and then with deionized water of refractive index (RI) of 1.33. The SPR chip 
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was equipped with an integrated flow cell with a capacity of 5 µl. The sample and the 

washing solution were injected to the flow cell of the SPR chip using an autosampler and an 

integrated peristaltic pump from EKF diagnostik GmbH (Magdeburg, Germany) (see Figure 

2-7). The pumping rate was set to be 1.0 ml/min. The peristaltic pump and the autosampler 

were controlled using a programmable microprocessor board. The flow of solution was 

programmed to stop during the incubation step and the measurement step. In the 

preparation of IA layer, the injection of reagents was performed by a peristaltic pump from 

Amersham-Pharmacia Biotech AB (Uppsala, Sweden). The whole instrument was kept in 

an incubator and the temperature was set to be 37 °C. 
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Figure 2-7: SPR system in KIST-Europe. 

The SPR chip was equipped with an integrated flow cell with a capacity of 5 µl. The sample and the 

washing solution were injected to the flow cell of the SPR chip using an autosampler and an 

integrated peristaltic pump which were controlled using a programmable microprocessor board. The 

whole instrument was kept in an incubator and the temperature was set to be 37 °C. 

 

(2) BiacoreTM system 

 

The additive assay was also demonstrated using another SPR biosensor called Biacore 3000. 

In previous work, the IA layer was prepared by immobilization of BSA to the SAM layer of 

SpreetaTM chip. In the Biacore system, modified cellulose layer (CM5 chip) was used for 

the preparation of the IA layer. Therefore, the number of binding sites on the CM5 chip was 
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expected to be different from SpreetaTM chip. The gold surface of the CM5 chip is 

covalently covered with a matrix of carboxymethylated dextran, a flexible unbranched 

carbohydrate polymer forming a thin surface layer approximately 100 nm thick. Coupling 

of protein to the CM5 chip was performed by activating the carboxyl groups on the chip 

with a solution containing 50 mM EDAC and 50 mM NHS. The pumping rate was set to be 

5 µl/min. After coupling of protein, remaining free ester groups were blocked by 1 M 

ethanolamine. All protein-containing solutions were prepared in Biacore HBS-EP buffer 

(0.01 M HEPES buffer pH 7.4, 0.15 M NaCl, 3 mM EDTA and 0.005% Surfactant P20). 

Analysis of the data was accomplished by using the Biacore evaluation software 3.1. 

 

(3) ELISA 

 

Enzyme-linked immunosorbent assay (ELISA) is widely used for a selective and sensitive 

analysis of biological samples. Typically, horseradish peroxidase (HRP) with high turnover 

rate is most commonly utilized in an ELISA protocol (Vo-Dinh et al., 2004). The 

immobilization of receptor antibody was performed in a 96-well microplate for 2 hr at 

37 °C, and then it was blocked by using 10 mg/ml BSA. After washing with 0.5 % Tween 

20, test sample (100 µl) was incubated for 1 hr. For the measurement of target analyte, HRP 

conjugated label was treated and the colorimetry was performed by treating 

tetramethybenzidine (TMB) (0.02 mg/ml in 0.2 M citrate buffer) with hydrogen peroxide. 

The concentration of the test sample was calculated using a standard curve for each analyte. 

The optical density was measured at 450 nm using a SPECTRA Rainbow Thermo (TECAN 

DEUTSCHLAND GmbH).

 

 

 

 

 

 

 

 

 

 

 



 
Results                                                                                 33 
  

 

3. Results 
 

The major objective of this work is the development of a SPR biosensor for medical 

diagnosis with the features of a cost-effective test by ‘additive assay’, short analysis time 

through ‘simultaneous detection’ and high sensitivity by ‘signal amplification’. For the 

realization of this major objective, the three topics were investigated as follows:  

 

•  Additive assay for the repeated measurements without regeneration step 

‘Additive assay’ enables reuse of the IA layer without chip exchange and chemical 

treatment between measurements. The concentration of each measurement is calculated by 

using a previously prepared correlation curve. This method was demonstrated to be feasible 

by measuring a cancer marker (CA 19-9). The result showed that the ‘additive assay’ could 

be applicated for the repeated measurement of CA 19-9 without chip exchange and 

chemical treatment (see Section 3.1). 

 

•  The simultaneous detection of multiple analytes  

‘Simultaneous detection’ enables the analysis of multiple analytes in the same sample. The 

molecular recognition part of SPR IA-biosensor was prepared by immobilizing two kinds 

of receptor antibodies. Each concentration of analyte was measured by treatment of labelled 

antibodies and by using standard curves. The feasibility of this method was demonstrated 

by the analysis of hCG and hA in urine for the diagnosis of preterm delivery. The result 

showed that ‘simultaneous detectioin’ of both analytes with single sample treatment could 

be applicated for the short analysis time (see Section 3.2). 

 

•  Signal amplification of SPR biosensor 

Two ‘Signal amplification’ methods were developed to improve the sensitivity and 

detection limit of SPR IA-biosensor. 

(1) The mass label attached to the already bound target analyte increases the total mass 

attached to the sensor surface and then it induces the increase of SPR signal. Among several 

kinds of mass labels, PAP method was selected for the efficient signal amplification. With 

this mass label, the feasibility of this signal amplification method was demonstrated by the 

detection of hHBV antibody. The result showed that the detection limit of SPR biosensor 

approached closely to cut-off value for medical diagnosis by using the commercial ELISA 



 
Results                                                                                 34 
  

 

kit (see Section 3.3.1). 

(2) The control of IA layer (orientation & density) could improve the sensitivity and 

detection limit of IA biosensor. For this work, several kinds of proteins were tested. As an 

efficient controlled IA layer, NeutrAvidin-protein A complex layer was selected. With this 

layer, the feasibility of this signal amplification method was demonstrated by analysis of a 

cancer marker (CEA). The result showed that control of IA layer (orientation & density) 

improved the sensitivity and detection limit of IA biosensor (see Section 3.3.2). 

 

These results demonstrated the ‘additive assay’ for cost-effective test, ‘simultaneous 

detection’ for short analysis time and ‘signal amplification’ for high sensitivity. The 

presented three methods in this study will be applied to develop a practical SPR biosensor 

for the various medical diagnoses. 

 

3.1 Additive assay for the repeated measurements without regeneration step 

 

The ‘additive assay’ aims to use SPR immunosensor for repeated analysis without chemical 

treatment between measurements. In the additive assay, the concentration of sample is 

calculated from the actually measured signal by using a correlation curve. In this work, the 

accumulated concentration of additively injected sample was correlated to the accumulated 

signal. By using a this way prepared correlation curve, the feasibility of the additive assay 

was tested by injection of samples at mixed concentrations and the real medical diagnosis 

was demonstrated by using the tumor marker (CA 19-9) as a target analyte. 

 

3.1.1 The comparison of the conventional methods   

 

The ‘regeneration’ method has been conventionally used for the repeated measurements by 

immunosensors. In this method, the already bound analytes are removed from the IA layer 

by chemical treatment such as high or low pH agents for each measurement. As shown in 

Figure 3.1, the IA layer is regenerated by removing the already bound analytes before each 

measurement. In this case, the signal (S1) is expected to have constant relation to the 

concentration (C1) of the analyte. After several times of regeneration steps, the damage of 

the IA layer is known to occurr so that the relation between signal and concentration is 

changed. In this case, new calibration of the IA biosensor is required. For example, when 

the anti-BSA antibody (327 nM) was injected to the BSA layer on the CM5 chip and NaOH 
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was repeatedly treated for regeneration, the SPR signal at 1st injection was measured to be 

794 RU and the SPR signal at 7th injection was changed to be 619.6 RU. This result shows 

that there was a 22 % reduction of binding activity after only six regeneration treatments. 

As the regeneration is repeated, the signal to the same concentration is expected to be 

decreased gradually. In the additive assay, measurements are performed without the 

regeneration step. The analytes are additively injected to the IA layer without removing the 

already bound analytes as shown in Figure 3-1. As the number of binding sites is confined 

in the IA layer, the number of free binding sites is reduced as the analytes are additively 

bound to the IA layer. After a certain amount of binding sites are occupied by repeated 

treatment of samples, the IA layer becomes saturated and the sensor no longer responds to 

the injection of sample. 

 

 
 

Figure 3-1: The schematic diagram of the additive assay in comparison to the 

conventional regeneration method. 

 

3.1.2 Requirements for additive assay 

 

The additive assay is based on the correlation between the accumulated concentration of 

additively injected sample and accumulated signal. For the realization of the additive assay, 

the following requirements should be satisfied: (1) The layer-to-layer homogeneity should 

be achieved to use the same correlation curve. (2) The IA layer on the sensor surface should 

be stable enough during the whole measurement steps. (3) The binding of analytes should 

be maintained during the whole measurement steps.  

 

(1) Reproducible preparation of IA layers 
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The IA layer of a SPR biosensor has a constant number of binding sites for analytes. 

Usually, the signal of the IA biosensor is generated by the occupancy of the free binding 

sites of the IA layer. If the number of the free binding sites is different, the biosensor signals 

from the sample at the same concentration are also different. Therefore, the IA layer to IA 

layer homogeneity should be achieved for the realization of an additive assay to use the 

same correlation curve. The reproducibility of IA layers can be investigated by comparing 

the number of free binding sites. Four IA layers were prepared and each IA layer was 

treated with a standard sample (108.7 nM) and then five samples were sequentially injected 

(54.7  65.3  108.7  163.3  326.7 nM) (see Table 3.1). As the biosensor signal is 

proportional to the number of free binding sites in each IA layer, the signal from standard 

sample and the accumulated signal by sequentially injected samples can be used to compare 

the number of free binding sites of different IA layers. The standard signal and accumulated 

signal from four IA layers was estimated to be 28.9 ± 0.5 milli° and 215.9 ± 6.2 milli°, 

respectively. The deviation was calculated to be 1.7 % and 2.9 %, respectively. These 

deviations were used for the calculation of measurement errors and the limit of detection. 

 

Table 3.1: Reproducibility of the response of IA layers (chip-to-chip difference)  

No. of Chips Standard Signal2 (milli°) Accumulated Signal3 (milli°) 

1 29.5 212.6 

2 28.4 221.7 

3 29.1 220.5 

4 28.8 208.8 

Mean ± sd 28.9 ± 0.5 (1.7%)1 215.9 ± 6.2 (2.9%)1 

1: Deviation is defined as (100ⅹstandard deviation (sd) / mean).  

2: A standard signal was measured by injecting standard sample at the concentration of 108.7 nM. 

3: Accumulated signal is the sum of signals which were made by five sequentially injected samples. 

 

(2) Stability of the IA layer 

 

The IA layer should be stable enough to be maintained during the whole additive assay 

steps. If the IA layer is not stable, a part of IA layer can be detached from the sensor surface 

during washing steps required for signal measusrement. In this case, the total number of 

free binding sites is changed and the standard correlation curve can not be used for the 

additive assay as mentioned previously.  
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The stability of the IA layer was estimated by measuring the baseline drift by repeated 

injection of blank sample (10mM PBS) as shown in Figure 3-2. The sensor signal from the 

BSA binding to SAM layer was 151 ± 11.1 milli°. If this BSA-layer (IA layer) is detached 

from the sensor surface, the signal would be decreased from this value after blank sample 

treatment. Baseline drift after repeated blank sample injection was estimated to be -0.1 ± 

0.9 milli° (n = 16). This value is also similar to the baseline drift on the bare gold sensor 

surface without IA layer (0.9 ± 0.4 mili°). This result indicates that there was no significant 

detach of the IA layer and the IA layer can be maintained stable for long enough time 

required for additive assay. 
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Figure 3-2: Baseline drift at the injection of blank samples (10 mM PBS) to the BSA 

layer (n=16). The stability of the IA layer (BSA layer) was estimated by measuring the baseline 

drift by repeated injection of blank sample (10mM PBS). Baseline drift after repeated blank sample 

injection was estimated to be -0.1 ± 0.9 milli° (n = 16). This value is also similar to the baseline drift 

on the bare gold sensor surface without IA layer (0.9 ± 0.4 mili°).  

 

(3) Stability of antigen-antibody interaction. 

 

As previously mentioned, the additive assay is based on the correlation between the 

accumulated signal and the accumulated concentration. This means that the analytes bound 

to the IA layer should be maintained during additive assay. If analytes are dissociated from 

IA layer, the accumulated signal is decreased. In this case, the correlation between the 

accumulated concentration of additively injected sample and accumulated signal will be 

changed and the correlation curve can not be used for measurement. The stability between 
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the IA layer and analytes is in proportion to the value of affinity constant (KA) representing 

the final ratio between bound and unbound analytes to the IA layer. Therefore, the valid 

range of KA can be used to select a suitable pair of IA layer and analytes. In this experiment, 

BSA (IA layer) and anti-BSA antibodies (analytes) were estimated to be a suitable antigen-

antibody pair for the additive assay. By using several sensorgrams of different 

concentrations, KD can be calculated (see section 2.2.2(1)) and KA is an inverse number of 

KD. From the four sensorgrams (54.8, 65.4, 109 and 326 nM of anti-BSA antibodies), the 

KA value for BSA and anti-BSA antibodies was calculated to be 1.17 ⅹ 106 [1/M] by using 

the Biacore evaluation software 3.1 with a 1:1 binding model (see Figure 3-3). Therefore, 

the additive assay can be applied for a pair of antigen and antibody which has higher KA 

value than 106 [1/M]. 
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Figure 3-3: The sensorgram for calculation of affinity constant (KA). BSA and anti-BSA 

antibodies were used as IA layer and analytes, respectively. From the four sensorgrams (54.8, 65.4, 

109 and 326 nM of anti-BSA antibodies), the KA value for BSA and anti-BSA antibodies was 

calculated to be 1.17 ⅹ 106 [1/M] by using the Biacore evaluation software 3.1 with a 1:1 binding 

model. 

 

3.1.3 Correlation curve for the additive assay 

 

In the additive assay, measurements are performed without regeneration step to remove the 

already bound analytes. As the number of free binding sites is reduced by the binding of 

analytes to the IA layer, the sensor response of next measurement is different from that of a 

freshly prepared sensor. Even if the sample at the same concentration is injected repeatedly, 
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the number of free binding sites decreases and the corresponding sensor response also 

decreases as shown in Figure 3-4. To indicate accumulation of analyte by repeated injection, 

the X-axis was represented to be the addition of concentrations of injected samples from the 

first injection (accumulated concentration) and signal responses for each measurement were 

plotted as Y-axis. When the first sample at the concentration of x nM obtains the sensor 

signal of y1 milli° and the second sample at the same concentration obtains the sensor signal 

of y2 milli°, the first sample and the second sample are plotted to be (x, y1) and (2x, y2), 

respectively. The physical meaning of accumulated concentration is directly related to the 

amount of adsorbed analyte to the IA layer. 
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Figure 3-4: Signal decrease by additive injection of samples at the same concentration. 
For each curve, the samples at the same concentration were repeatedly injected to one sensor chip 

and these experiments were carried out with several concentrations of anti-BSA antibodies (81.7, 

163.3, 245, 326.7 nM). The X-axis was calculated by simply adding the concentrations of injected 

samples from the first injection (accumulated concentration) and signal responses for each 

measurement were plotted as Y-axis. When the first sample at the concentration of x nM obtains the 

sensor signal of y1 milli° and the second sample at the same concentration obtains the sensor signal 

of y2 milli°, the first sample and the second sample are plotted to be (x, y1) and (2x, y2), respectively. 

Even if the samples at the same concentration are repeatedly injected, the number of free binding 

sites decreases and the corresponding sensor response also decreases. 

 

For the calculation of sample concentration from the actually measured sensor response by 

using the correlation curve, the accumulated signal is required, which is recorded from the 
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first sample measurement. As the history of measurement indicates the number of occupied 

binding sites on the IA layer, the accumulated signal can be used to correlate the actual 

signal to the actual concentration. If the Y-axis is assigned to be the accumulated signal, the 

curves approach into a single curve, even if each curve was obtained by the repeated 

injections of respective concentrations (see Figure 3-5A). Each point of Figure 3-5A was 

obtained by accumulated addition of injected concentration and measured signal. When the 

first sample at the concentration of x1 nM obtains the sensor signal of y1 milli° and the 

second sample at the concentration of x2 nM obtains the sensor signal of y2 milli°, the 

positions of the first sample and the second sample are (x1, y1) and (x1 + x2, y1 + y2), 

respectively.  

 

A           B 

 

Figure 3-5: Correlation curve for the additive assay. For the calculation of sample 

concentration from the actually measured sensor response, the calculation curve is required. For 

preparion of the correlation curve, the accumulated signal (Y-axis) and the accumulated 

concentration (X-axis) were calculated by simply adding the measured signals and the 

concentrations of injected analytes from the first injection. (A) Repeated injections of samples at the 

same concentration. From the data of Figure 3-4, signals of each plot were changed as accumulated 

signals (Y-axis). (B) Non-linear curve fit of the plot of repeated injections. After calculating mean 

values of accumulated signals from all points in Figure 3-5A, non-linear curve fit of the plot was 

applied with a binding model: R = [Rmax · C / (K + C)] (r2=0.995). In our model, “R” and “Rmax” 

(664.3 milli°) represent accumulated signal and maximum accumulated signal, respectively. “C” 

represents accumulated concentration and “K” (2369.1 nM) represents the accumulated 

concentration at the half of Rmax.  
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For the non-linear curve fitting of the repeated injection of Figure 3-5B, the equation of 

Langmuir isotherm (O’Shannessy et al., 1993; Morton et al., 1995; Karlsson and Faelt, 

1997) was applied as a binding model: R = [Rmax · C / (K + C)]. In our model, “R” and 

“Rmax” (664.3 milli°) represent accumulated signal and maximum accumulated signal, 

respectively. “C” represents accumulated concentration and “K” (2369.1 nM) represents the 

accumulated concentration at the half of Rmax. Although the result of repeated injection has 

no concrete relation to the model of Langmuir isotherm, the plot of accumulated 

concentration and the accumulated signal of Figure 3-5A closely fits to the calculated curve 

(r2=0.995) as shown in Figure 3-5B.  

 

The availability of this correlation curve was tested by the injection of samples at mixed 

concentrations. When the several analytes with different concentrations were injected in 

arbitary sequence, the respective concentrations were calculated from each signal by using 

the obtained correlation curve and compared with those of real values to evaluate the 

average error of the additive assay (see Figure 3-6).  

As shown in Figure 3-6, the signals by samples at mixed concentration were found to be 

plotted closely on the correlation curve. Twelve samples of anti-BSA antibodies were 

injected according to the following sequence: 163.3  65.3  98.0  130.7  130.7  

98.0  65.3  163.3  65.3  98.0  130.7  165.3 nM. When the accumulated 

signals and the accumulated concentrations for each sample were plotted together with the 

correlation curve, each point closely plotted to the correlation curve. The deviation of each 

point from the correlation curve was calculated to be 2.6 % (n=12). This means that the 

correlation curve by repeated injection of sample at the same concentration can be used to 

calculate the concentration of an unknown sample.  
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Figure 3-6: The signals by injection of samples at mixed concentrations plotted on the 

correlation curve. For the availability test of the correlation curve from Figure 3-5B, several 

analytes with different concentrations were injected in arbitary sequence. The respective 

concentrations were calculated from each signal by using the correlation curve and compared with 

those of real values to evaluate the average error of the additive assay. The signals by samples at 

mixed concentration were found to be plotted closely on the correlation curve. Twelve samples of 

anti-BSA antibodies were injected according to the following sequence: 163.3  65.3  98.0  

130.7  130.7  98.0  65.3  163.3  65.3  98.0  130.7  165.3 nM. The deviation of 

each point from the correlation curve was calculated to be 2.6 % (n=12). This low value of deviation 

means the correlation curve made by repeated injection of sample at the same concentration can be 

used to calculate the concentration of an unknown sample. 

 

Calculation of analyte concentration by using correlation curve  

 

When several samples at different concentrations were additively injected to the IA layer, 

the concentration of each sample can be calculated from the actually measured sensor 

response by using the correlation curve. In details, if the sensor response from the first 

injection is S1, the concentration of the first sample is estimated to be C1 which matches to 

the sensor signal of S1 on the correlation curve. And the accumulated signal is recorded to 

be S1 as shown in Figure 3-7. If the second sample produces the sensor response of S2, the 

accumulated concentration is estimated on the correlation curve, which matches to the 

accumulated signal of S1 + S2. As this accumulated sensor signal corresponds to the 

accumulation concentration of C1 + C2 on the correlation curve, the concentration of second 

sample was calculated as C2 by subtracting the concentration of C1 which actually 
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corresponds to the accumulated concentration before second sample injection. For the next 

measurement, the accumulated signal is updated to be S1 + S2. 

 

 
Figure 3-7: Calculation of sample concentration by using the correlation curve. If the 

sensor response from the first injection is S1, the concentration of the first sample is estimated to be 

C1 and the accumulated signal is recorded to be S1. If the second sample produces the sensor 

response of S2, the accumulated concentration is estimated on the correlation curve, which matches 

to the accumulated signal of S1 + S2. As this accumulated sensor signal corresponds to the 

accumulation concentration of C1 + C2 on the correlation curve, the concentration of second sample 

was calculated as C2 by subtracting the concentration of C1 which actually corresponds to the 

accumulated concentration before second sample injection. 

 

Feasibility test of additive assay  

 

The applicable range of accumulated concentration of the correlation curve was determined 

by using the uncertainty of signal measurement as a boundary condition. The data at the 

valid range of accumulated concentration was selected by considering the restrictions of 

correlation curve. The deviation (sd) of baseline stability was calculated to be ± 0.6 milli°. 

According to the accumulated signal point (R, Y-axis), this baseline uncertainty (α) of ± 0.6 

milli° makes a different uncertainty of concentration (∆C1 < ∆C2) at the accumulated 

concentration (C, X-axis) (see Figure 3-8). After the preparation of BSA layer, the lower 

limit of detection (LLD) was calculated to be 2.3 milli° by using m + 3sd of baseline 

stability, where “m” is mean signal (0.5 milli°) and “sd” is standard deviation (± 0.6 milli°) 
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in absensce of anti-BSA. The detection limit of concentration corresponding to the signal 

(2.3 milli°) was 8.3 nM in the correlation curve. Generally, the uncertainty of measurement 

is specified to be the gray zone of measurement. If the valid uncertainty of accumulated 

concentration is defined to be the detection limit (8.3 nM), the applicable range of 

accumulated concentration is determined by solving the following equations: 

 

∆C = C2 - C1 ≤ 8.3 nM 

R - α= Rmax ⅹ C1 / (K + C1) 

 R + α = Rmax ⅹ C2 / (K + C2) 

R = Rmax ⅹ C / (K + C) 

 

With the Rmax and K in Figure 3-5B, the accumulated concentration (C) was determined to 

be lower than 930.2 nM by solving the above equations, so the valid range of accumulated 

concentration was determined to be 8.3 – 930.2 nM by considering the detection limit. 
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Figure 3-8: The uncertainty of the calculated concentration by using the correlation 

curve. According to the level of accumulated signal, the baseline uncertainty (α) of signal (± 0.6 

m°) makes a different uncertainty of concentration (∆C1 < ∆C2) at the accumulated concentration.  

 

In the valid range of accumulated concentration (8.3 – 930.2 nM), the calculated analyte 

concentrations ([αBSA] M) in Figure 3-6 were compared with those of real values 

([αBSA]R) and the average error of additive assay was determined to be 5.4 % (n = 8) (see 

Table 3-2). This result shows that the additive assay is feasible for the immunosensors. 
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Table 3-2: Deviation of the analyte concentration from the additive assay method.  

Nr. SignalA  

(milli°) 

SignalM  

(milli°) 

[αBSA]A  

(nM) 

[αBSA]M 

(nM) 

[αBSA]R 

(nM) 

Error  

(%) 

1 40.2 40.2 152.6 152.6 163.3 -6.6 

2 54 13.8 209.6 57 65.3 -12.7 

3 76.5 22.5 308.3 98.7 98.0 0.7 

4 103.3 26.8 436.2 127.9 130.7 -2.1 

5 127.9 24.6 564.9 128.7 130.7 -1.5 

6 145.9 18 666.8 101.9 98.0 4.0 

7 157.2 11.3 734.5 67.7 65.3 3.5 

8 185.4 28.2 917.2 182.7 163.4 11.8 

                                                   The average error (%) = 5.4 

* Abbreviations: ‘SignalA’and ‘SignalM’ mean accumulated signal and signal from measured data, 

respectively. ‘[αBSA]A’ and ‘[αBSA]M’ represent the accumulated concentration and concentration 

from measured data, respectively. ‘[αBSA]R’ is a real concentration of anti-BSA antibodies. Error 

(%) was calculated by ([αBSA] M - [αBSA] R)⋅100/ [αBSA]R. The average error is calculated from 

the absolute errors. 

 

Additive assay by using BiacoreTM system 

 

The additive assay was also evaluated by using another SPR biosensor called Biacore 3000. 

In previous work, the IA layer was prepared by immobilization of BSA to the SAM layer of 

SpreetaTM chip. In the case of Biacore, the modified cellulose layer of CM5 chip was used 

for the preparation of the IA layer. As shown in Figure 3-9, the correlation curve of the 

Biacore shows a different correlation curve with different fitting parameters of Rmax (177.7 

milli°) and K (543.8 nM) compared with the additive assay by SpreetaTM system. The 

accuracy of the additive assay using Biacore was also calculated with the detection limit of 

0.3 nM, which was calculated by using m+3sd of baseline uncertainty (0.1 milli°) according 

to the former procedure. If valid uncertainty of measurement is set to be 8.3 nM (detection 

limit of spreetaTM), the valid range of accumulated concentration was calculated to be 0.3 – 

1156 nM. In this concentration range, the average error was calculated to be far more than 

5 %. With the detection limit of 0.3 nM, the valid range of accumulated concentration was 

calculated to be less than zero. When the uncertainty is set to be 1 nM, the valid range was 
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calculated to be 0.3 – 435.5 nM and the average error was calculated to be 4.4 %. This 

result shows that the additive assay is feasible for Biacore as well as SpreetaTM with the 

average of error less than 5 %. Although the valid range of accumulation concentration was 

narrower than that of SpreetaTM, the Biacore was determined to achieve a far higher 

accuracy of measurement than that of SpreetaTM.  
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Figure 3-9: Correlation curve for additive assay by using BiacoreTM (▲) and 

SpreetaTM (■). Although the valid range of accumulation concentration was narrower than that of 

SpreetaTM, the Biacore was determined to achieve a far higher accuracy of measurement than that of 

SpreetaTM.  

 

3.1.4 The medical application of additive assay with the serum sample. 

 

The serum samples in the medical diagnosis include the target analytes as well as other 

components which can interrupt effective detection of the target analyte by non-specific 

binding or interference to decrease analyte binding. Such non-specific binding makes some 

deviation in correlation curve by changing the signal to concentration ratio. For the 

feasibility test of the additive assay with the serum sample, HRP and anti-HRP antibodies 

were used as a model Ag-Ab pair and the concentration of total protein was set to be upto ~ 

50 mg/ml by mixing calf serum. When the relation between accumulated concentration and 

accumulated signal were plotted with three concentrations (28.96, 14.48 and 7.24 µg/ml), 

the sample with 50 % serum showed larger deviation among the other correlation curves 

than the sample without serum (see Figure 3-10). At the serum concentration of 50 %, 
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standard correlation curve with small deviation could not be calculated from several 

concentrations of samples and the additive assay was not suitable for medical diagnosis. 

The non-specific binding of serum was regarded to be the major reason. 

 

A      B 

 

Figure 3-10: Deviation among each correlation curve from several concentrations with 

the sample in the 0 % and 50 % serum. The IA layer was made by HRP and target analytes 

were anti-HRP antibodies (■: 28.96 µg/ml, ▲: 14.48 µg/ml, ◆: 7.24 µg/ml). (A) Sample in the 0 % 

serum. (B) Sample in the 50 % serum. The sample with 50 % serum showed larger deviation among 

individual correlation curves than the sample with no serum. With the 50 % serum concentration, 

the additive assay was not suitable for medical diagnosis and the non-specific binding of serum was 

regarded to be the major reason. 

 

The effect of non-specific binding by serum is shown in Table 3.3. The absolute signal of 

the sample in 50 % serum was higher than the signal of the sample without serum (sample 

in PBS). Furthermore, the signal to concentration ratio calculated according to the formula: 

(signal of high concentration) / (signal of low concentration) was not uniform for different 

analyte concentration. This increase seemed to be made from non-specific binding of the 

proteins in the serum. As the changes of absolute signal value and signal ratio were major 

reasons for dispersion of individual correlation curves, the minimization of non-specific 

binding was required for the realization of the additive assay. 
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Table 3.3: The effect of serum concentration to the SPR signal. 

with 0% serum with 50% serum Analyte 

(µg/ml) Signal (millio) Signal ratio Signal (millio) Signal ratio 

7.24 27.8 1 51.5 1 

14.48 44.4 1.6 88.5 1.7 

28.96 81.2 2.9 173 3.4 

  

For the application of additive assay, all individual correlation curves from several 

concentrations should be fit into a single standard correlation curve. Without decreasing 

non-specific binding, the ‘gray zone’ of correlation curve was too broad to ensure the 

acceptable error range (below 5%) for medical diagnosis. This minimization of deviation 

can be realized by the minimization of non-specific binding of serum to the IA layer. The 

dilution of sample can be one solution to decrease the non-specific binding for the medical 

application of additive assay with the serum sample. 

 

The additive assay was tested by using serum samples at several dilution factors. The 

accuracy of the additive assay was influenced by the dilution factor of the serum. With the 

three concentrations of 7.24, 14.48, 28.96 µg/ml, samples at the same concentration were 

repeatedly injected to a SPR biosensor and all points of individual response curves of 

respective concentrations were summated statistically with mean value of signal to obtain a 

standard correlation curve as shown in Figure 3-11. The fitting result for correlation 

coefficient (r2) of 0 %, 5 %, 10 % and 50 % serum were calculated to be 0.999, 0.996, 0.971 

and 0.945, respectively. As the concentration of serum was increased, the square of the 

correlation coefficient (r2) was decreased. Moreover, the standard deviation of each point in 

the correlation curve was also increased according to the increase of serum concentration, 

which made large error in the real application of additive assay. 
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Figure 3-11: The correlation curve of additive assay according to the dilution factor of 

serum sample. (A) 0 % serum (r2 = 0.999). (B) 5 % serum (r2 = 0.996). (C) 10 % serum (r2 = 

0.971). (D) 50 % serum (r2 = 0.945). 

 

The feasibilities of each correlation curve were tested by repeated injections of target 

analyte (14.48 µg/ml, n=4), which compared the calculated concentrations with the real 

values to calculate the error values (see Table 3.4). The mean error values of 0 %, 5 %, 

10 % and 50 % serum were calculated to be 6.4, 9.9, 29.4 and 29.3 %, respectively. In the 

high concentration of serum (10 % and 50 % serum), the mean error values were calculated 

to be as high as 30 % and the additive assay could not be performed with these error values 

by using the correlation curve. The result showed that the serum content of less than 5 % is 

adequate for the additive assay to have a mean error value less than 10 %. However, the 

blocking method of IA layer instead of dilution should be improved to minimize the non-

0 20 40 60 80 100
0

30

60

90

120

150

180

A

µ

0 % serum

Ac
cu

m
ul

at
ed

 s
ig

na
l (

m
illi

o )

Accumulated concentration (  g/ml)
0 20 40 60 80 100

0

30

60

90

120

150

180

B

5 % serum

µ

Ac
cu

m
ul

at
ed

 s
ig

na
l (

m
illi

o )

Accumulated concentration (  g/ml)

0 20 40 60 80 100
0

30

60

90

120

150

180

210

240

270

C

µ

10 % serum

Ac
cu

m
ul

at
ed

 s
ig

na
l (

m
illi

o )

Accumulated concentration (  g/ml)
0 20 40 60 80 100

0

80

160

240

320

400

D
50 % serum

µ

Ac
cu

m
ul

at
ed

 s
ig

na
l (

m
illi

o )

Accumulated concentration (  g/ml)



 
Results                                                                                 50 
  

 

specific binding because dilution of sample also decreases the positive signal of sample.  

 

Table 3.4: The feasibility of correlation curve according to the dilution factor of serum 

sample. 

0 % serum 5 % serum 10 % serum 50 % serum  

No. of 

injection 

*[C]cal 

(µg/ml) 

**Error 

(%) 

[C]cal 

(µg/ml)

Error 

(%) 

[C]cal 

(µg/ml)

Error 

(%) 

[C]cal 

(µg/ml) 

Error 

(%) 

1 13.6 -6.1 13.3 -8.1 11.3 -22.0 16.5 14.0 

2 13.9 -4.0 13.5 -6.8 10.6 -26.8 12.3 -15.1 

3 13.6 -6.1 12.8 -11.6 9.3 -35.8 9.3 -35.8 

4 13.1 -9.5 12.6 -13.0 9.7 -33.0 6.9 -52.3 

Mean   6.4  9.9  29.4  29.3 

*[C]cal is a calculated concentration. 

**Error is a deviation between real concentration and calculated concentration. 

 

3.1.5 Additive assay of a tumor marker, carbohydrate antigen 19-9 (CA 19-9)  

 

The application of the additive assay was demonstrated by the detection of a cancer marker 

called CA 19-9. The CA 19-9 is a tumor marker from patients with gastrointestinal 

malignancies and it is reported to be frequently found in the patients with pancreatic cancer 

with a high score of over 79 % (see section 1.4). In this work, the SPR biochip of Texas 

Instrument (TI, Dallas, USA) was used for the detection of CA 19-9 by using an IA layer 

prepared on the gold surface of the SPR biochip. For the improvement of detection limit, a 

signal amplification method was also tested by additional treatment of anti-CA 19-9 

antibodies after the sample injection.  

 

Detection time for the CA 19-9 

 

For the detection of CA 19-9, the IA layer of anti-CA 19-9 antibodies was prepared on the 

SPR biosensor. The SPR sensor responses in Figure 3.12 were obtained by the injection of 

CA 19-9 samples in 10 mM PBS (pH 7.4) to a freshly prepared IA layer. As shown in 

Figure 3-12A, the SPR sensor response reaches a signal plateau after a certain incubation 

time and the signal at 30 min was estimated to be over 85 % of the value at signal plateau. 

From this result, the incubation time was determined to be 30 min. Figure 3-12B shows the 
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response curve prepared by injection of CA 19-9 samples at different concentrations when 

the incubation time was set to be 30 min. The response curve was fit well (r2=0.993) to the 

model response curve based on the simple binding model: R = [Rmax·C / (KD+C)]. Here, ‘R’ 

and ‘C’ represent the sensor response and concentration of CA 19-9, respectively. KD is the 

dissociation constant and Rmax is the maximal sensor response. The detection limit was 

calculated to be 410.9 U/ml at the baseline drift of ± 0.8 milli° according to the 

conventional calculation method for immunoassay (Ezan and Grassi, 2000). 

 

A          B 

 

Figure 3-12. SPR sensor response by the injection of CA 19-9 sample. The SPR sensor 

responses were obtained by the injection of CA 19-9 samples in 10 mM PBS (pH 7.4) to a freshly 

prepared IA layer. (A) Dependence of SPR sensor response on the incubation time. The SPR sensor 

response reaches a signal plateau after a certain incubation time (~60 min). The signal at 30 min was 

estimated to be over 85 % of the value at signal plateau. From this result, the incubation time was 

determined to be 30 min. (B) Does-response curve for CA 19-9. The response curve was prepared 

by injection of CA 19-9 samples at different concentrations when the incubation time was set to be 

30 min. The detection limit was calculated to be 410.9 U/ml at the baseline drift of ± 0.8 milli°. 

 

Feasibility test of additive assay for the CA 19-9 

 

The correlation curve for the detection of CA 19-9 was prepared according to the previously 

discribed method (section 3.1.3). As shown in Figure 3-13A, several samples of different 

concentrations at the target analysis range were prepared, and then the sample at each 

concentration was repeatedly injected. The sensor responses were plotted on the graph with 

the X axis of accumulated concentration and the Y axis of accumulated signal. As shown in 
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Figure 3-13B, the correlation curve could be obtained by averaging the responses in Figure 

3-13A and it was fit by using simple binding model: R = [Rmax·C / (K+C)]. Here, ‘R’ and 

‘Rmax’ (92.7 millio) represent ‘accumulated signal’ and ‘maximal accumulated signal’, 

respectively. ‘C’ and ‘K’ (14.3 kU/ml) represent ‘accumulated concentration’ and 

‘accumulated concentration at the half of Rmax’, respectively. Although any concrete 

physical relation was not in this fitting model, the obtained correlation curve was apparently 

fit well to the simple binding model (r2=0.993). 

 

A         B 

 

Figure 3-13: Correlation curve for the dectection of CA 19-9. (A) The accumulated sensor 

response by repeated injection of CA 19-9. The accumulated signal (Y-axis) and the accumulated 

concentration (X-axis) were calculated by simply adding the measured signals and the 

concentrations of injected analytes from the first injection. (B) Correlation curve for the additive 

assay of CA 19-9. After getting mean values of accumulated signals from all points in Figure 3.13A, 

non-linear curve fit of the plot was applied with a binding model: R = [Rmax · C / (K + C)]. In our 

model, the obtained correlation curve was apparently fit well to the simple binding model (r2=0.993). 

 

To demonstrate the feasibility of the correlation curve for the additive assay of CA 19-9, 

four CA 19-9 samples in PBS at different concentrations were sequentially injected as 

follows: 1.3  2.5  5.0  6.7 kU/ml. Then, the concentration of each sample was 

calculated from the measured sensor response by using the correlation curve of Figure 3-13. 

When the measured accumulated signals and the real accumulated concentrations of four 

samples were plotted together with the correlation curve of CA19-9, each point closely 

matched to the correlation curve as shown in Figure 3-14.  
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Figure 3-14: The SPR signals of four samples at the mixed concentration plotted on 

the correlation curve. Four CA 19-9 samples in PBS at different concentrations were 

sequentially injected as follows: 1.3  2.5  5.0  6.7 kU/ml. When the measured accumulated 

signals and the real accumulated concentrations of four samples were plotted together with the 

correlation curve of CA 19-9, each point closely matched to the correlation curve. 

 

When the concentrations of the four samples were analyzed by using the correlation curve 

of CA 19-9, the average deviation of the calculated concentrations from the real 

concentrations was estimated to be 5.3 % as summarized in Table 3-5. 

 

Table 3-5: The deviation of additive assay for the analysis of CA 19-9. 

No. SignalM (milli°) [CA19-9]C (kU/ml) [CA19-9]R (kU/ml) Error (%) 

1 7.2 1.2 1.3 -3.9 

2 12.2 2.6 2.5 3.0 

3 14.8 4.6 5.0 -8.6 

4 13.1 6.5 6.7 -3.5 

The average error (%) = 5.3

*Abbreviations: ‘SignalM’ represents the measured signal. ‘[CA 19-9]R’ and ‘[CA 19-9]C’ represent 

the real and the calculated concentration, respectively. Error (%) was calculated by ([CA 19-9]C − 

[CA 19-9]R)·100/[CA 19-9]R. 

 

Signal amplification by sandwich assay 
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Usually in medical diagnosis of CA 19-9 based on the immunoassay, the positiveness of 

sample is determined by establishing the cut-off value which is reported to be 37 U/ml for 

CA 19-9. The concentration range of CA 19-9 is known to be in the range of 400 – 192,000 

U/ml for most patient samples with pancreatic cancer (Del Villano et al., 1983). As the 

detection limit of CA 19-9 was estimated to be 410.9 U/ml, further improvement of 

sensitivity is required for the medical diagnosis of CA 19-9.  

Usually for the amplification of SPR response, the formation of complex is performed by 

using antibodies (Goh et al., 2003), latex particle (Severs and Schasfoort, 1993), gold 

colloid (Leung et al, 1994), liposome (Wink et al, 1998), peroxidase-anti-peroxidase (PAP) 

complex (Chung et al., 2005) and so on which produce an increased refractive index change 

by binding to the already bound analytes to the IA layer.  

 

In this work, the additional injection of antibodies against CA 19-9 was tested to achieve 

the signal amplification through the sandwich formation to the already bound CA 19-9 of 

IA layer. As shown in Figure 3-15, the sensor responses were amplified as much as six-fold 

in the range of 600-2500 U/ml and the detection limit by the sandwich assay was calculated 

to be 66.7 U/ml with the baseline drift of 1.3 ± 0.3 milli°. This value is quite close to the 

cut-off value for positive determination of CA 19-9 in medical diagnosis.  
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Figure 3-15: Signal amplification by sandwich assay. The sandwich labels of anti-CA 19-9 

antibodies were treated to the already bound CA 19-9 for signal amplification. The sensor responses 

were amplified as much as six-fold in the range of 600-2500 U/ml and the detection limit by the 

sandwich assay was calculated to be 66.7 U/ml with the baseline drift of 1.3 ± 0.3 milli°. This value 

is quite close to the cut-off value for positive determination of CA 19-9 in medical diagnosis. 
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In the case of sandwich assay, analytes on the IA layer were not totally saturated by one 

treatment of sandwich labels, and it caused relatively higher error for additive assay. 

Moreover, many interrupting materials in blood usually make a non-specific binding to 

increase detection limit in the real medical application. For the real medical application of 

additive assay to medical diagnosis of CA19-9, the selection of an effective amplification 

method as well as the studies to prevent the non-specific binding are required.  

 

3.2 The simultaneous detection of multiple analytes in a single sensing element 

 

‘Simultaneous detection’ aims to the analysis of multiple analytes by using a single sensor 

element. In the ‘simultaneous detection’, the sample with several analytes is injected to a 

single sensing region which has multiple receptors for each target analyte. By using the 

respective standard curves correlating the signal to concentration, the feasibility of 

‘simultaneous detection’ was tested by using two model antigen-antibody pairs. The real 

medical diagnosis of simultaneous detection was demonstrated by analysis of human 

chorionic gonadotropin (hCG) and human albumin (hA) in human urine, which is known to 

be related to the abortion and the preterm delivery of patients with diabetes. 

 

In this work, two simultaneous detection models were suggested according to the 

responding signal ratio of the target analytes in a sample.  

Model 1 is applicable for the sample with two analytes at the far different signal range. In 

this case, analyte 1 produces a detectable signal and analyte 2 makes no signal to be 

detected without the treatment of additional label. As shown in Figure 3-16A, the sample 

with two analytes was injected and the signal was measured. As analyte 2 in sample does 

not make a detectable signal, the first measured signal (Signal 1) is correlated to the 

concentration of analyte 1. Then, a label for analyte 2 is injected and the measured signal is 

correlated to the concentration of analyte 2.  

Model 2 can be applied for the sample with two analytes which produce signals only with 

additional labels. Therefore, the signal of each analyte is measured separately by injection 

of corresponding labels as shown in Figure 3-16B. After the sample injection, the label for 

analyte 1 makes a signal (Signal 1) which is correlated to the concentration of analyte 1. 

Then, additional label for the analyte 2 is injected to make a signal (Signal 2) which is 

correlated to the concentration of analyte 2.  
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Figure 3-16: Schematic diagram of simultaneous detection models. (A) Model 1. The 

sample with two analytes was injected and the signal was measured. As analyte 2 in sample does not 

make a detectable signal, the first measured signal (Signal 1) is correlated to the concentration of 

analyte 1. Then, a label for analyte 2 is injected and the measured signal is correlated to the 

concentration of analyte 2. (B) Model 2. After the sample injection, the label for analyte 1 makes a 

signal (Signal 1) which is correlated to the concentration of analyte 1. Then, additional label for the 

analyte 2 is injected to make a signal (Signal 2) which is correlated to the concentration of analyte 2. 

 

3.2.1 Standard curves for simultaneous detection using Model 1 and Model 2 

 

The standard curves for analysis were prepared for Model 1 and 2 by using two antigen-

antibody pairs: (1) BSA and anti-BSA antibodies, (2) HRP and anti-HRP antibodies. The IA 

layer for each model was prepared by immobilization of anti-HRP antibodies and BSA 

together. The samples were prepared by mixing HRP (42 kDa) and anti-BSA antibodies 

(150 kDa) at appropriate concentrations in 10 mM PBS (pH 7.0). The measurements for 

standard curves were made by injection of each analyte at the known concentration, which 

was adjusted for the application of Model 1 and Model 2.  
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The standard curve for Model 1 

 

The sample concentration for Model 1 was adjusted for one analyte (anti-BSA antibodies) 

to make detectible signals without additional label and for the other analyte (HRP) to make 

detectible signal only with additional label (anti-HRP). Schematic diagram of Model 1 is 

shown in Figure 3-17A and the standard curve for Model 1 is shown in Figure 3-17B where 

two analytes have significantly different concentration ranges.  

The standard curves for anti-BSA antibodies and HRP were separatetly made by the 

injection of single analyte. Each curve was made with several concentrations and the signal 

value for one concentarion was calculated from the mean value (n=3). The curve fit was 

performed by using the Langmuir isotherm as a fitting model: R =[C⋅Rmax/ (C+K)], where R 

is the sensor response, C is the concentration of analyte in solution, Rmax and K are 

constants which mean the maximal sensor response and the concentration which make a 

half size of Rmax, respectively (Faegerstam et al., 1992; O’Shannessy et al., 1993). In this 

work, the sensor response (R) was measured at the incubation time of 10 min. For the 

concentration range used in this work, this signal value was estimated to be 80 % of the 

signal at equilibrium. Although K is related to the dissociation constant, it does not exactly 

mean the dissociation constant. The simple binding model was used only to get an empirical 

curve which apparently fits well to the experimental data. The standard curves for anti-BSA 

antibodies and HRP have the parameters of Rmax=455.8 (millio), K=5365.9 (nM) and 

Rmax=176.3 (millio), K=107.7 (nM), respectively. The non-linear fitting based on the simple 

binding model was performed using Origin™ software (Microcal Software, Inc., MA, 

USA). From the baseline drift by blank samples, the limit of detections for anti-BSA 

antibodies and HRP were determined to be 21.3 and 1.1 nM (n=8), respectively (Ezan and 

Grassi, 2000). The standard curves of anti-BSA antibodies (r2=0.997) and HRP (r2=0.991) 

fit well to the fitting model. This result shows that two curves by Model 1 could be used as 

standard curves of correlation between the signal and the concentration. 
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Figure 3-17: Standard curve for Model 1. (A) Schematic diagram of simultaneous detection 

Model 1. The sample concentration for Model 1 was adjusted for one analyte (anti-BSA antibodies) 

to make detectible signals without additional label and for the other analyte (HRP) to make 

detectible signal only with additional label (anti-HRP antibodies). (B) Standard curve for Model 1. 

The standard curves for anti-BSA antibodies and HRP were separatetly made by the injection of 

single analyte. Each curve was made with several concentrations and the signal value for one 

concentarion was calculated from the mean value (n=3). As the curve fits were performed by using 

the Langmuir isotherm as a fitting model, the does-response curves of anti-BSA antibodies 

(r2=0.997) and HRP (r2=0.991) fit well to the fitting model. This result shows that two curves by 

Model 1 could be used as standard curves of correlation between the signal and the concentration. 
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The standard curve for Model 2 

 

The same IA layer of Model 1 was used for the preparation of the standard curve of Model 

2. A schematic diagram of Model 2 is shown in Figure 3-18A. Each analyte was injected 

and the signal was measured after the injection of additional label. As the label for analytes 

(anti-BSA antibodies and HRP), anti-rabbit IgG and anti-HRP antibodies were used at the 

concentrations of 173 and 320 nM, respectively. The standard curve for Model 2 was 

prepared for the analytes at similar concentration ranges as shown in Figure 3-18B.  

The standard curves for anti-BSA antibodies and HRP were separatetly made by the 

injection of single analyte. Each curve was made with several concentrations and the signal 

value for one concentarion was calculated from the mean value (n=3). The curve fit was 

performed by using the Langmuir isotherm as a fitting model: R =[C⋅Rmax/ (C+K)]. The 

fitting parameters of the standard curve for anti-BSA antibodies was calculated to be Rmax= 

106.8 (millio), K=152.2 (nM), and the standard curve for HRP has the parameters of 

Rmax=84.6 (millio), K=21.0 (nM). The limit of detections for anti-BSA antibodies and HRP 

were determined to be 2.6 and 0.5 nM (n=8), respectively. The does-response curves of 

anti-BSA antibodies (r2=0.993) and HRP (r2=0.997) fit well to the fitting model. This result 

shows that two curves by Model 2 could be used as standard curves of correlation between 

the signal and the concentration. 
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Figure 3-18: Standard curve for Model 2. (A) Schematic diagram of simultaneous detection 

Model 2. Each analyte was injected and the signal was measured after the injection of additional 

label. As the label for analytes (anti-BSA antibodies and HRP), anti-rabbit IgG and anti-HRP 

antibodies were respectively used. (B) Standard curve for Model 2. The standard curves for anti-

BSA antibodies and HRP were separatetly made by the injection of single analyte. Each curve was 

made with several concentrations and the signal value for one concentarion was calculated from the 

mean value (n=3). As the curve fits were performed by using the Langmuir isotherm as a fitting 

model, the does-response curves of anti-BSA antibodies (r2=0.993) and HRP (r2=0.997) fit well to 

the fitting model. This result shows that two curves by Model 2 could be used as standard curves of 

correlation between the signal and the concentration. 
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The feasibility test using Model 1 

 

The standard curve for each analyte was independently prepared by injection of only one 

kind of analyte. When two analytes are simultaneously injected into the same IA layer, the 

cross-reaction with another receptor in the IA layer can occurr and a false positive signal or 

interference can be made by the other proteins.  

The samples were prepared by mixing anti-BSA antibodies and HRP at known 

concentrations and the signal was measured before and after injection of additional label 

(anti-HRP antibodies at the concentration of 320 nM). The concentrations of anti-BSA 

antibodies and HRP in test sample were prepared to be 81.7 – 490 nM, 9.5 – 38.1 nM, 

respectively. Additionally, samples at three random pairs of concentrations were measured. 

As shown in Table 3-6, Model 1 was feasible for the detection of both analytes at the 

described concentration ranges. The concentration of each analyte was calculated by using 

the standard curve and compared to actual concentration. Errors between the two values 

were calculated. As summarized in Table 3-6, the average error of simultaneous detection 

based on Model 1 was calculated to be 3.3 and 3.1 % for anti-BSA antibodies and HRP, 

respectively.  

 

Table 3-6: The deviation of simultaneous detection method (Model 1. n=3). 

Injected concentration (nM) Calculated concentration (nM) Error (%) 

Anti-BSA HRP Anti-BSA HRP Anti-BSA HRP 

490.0 9.5 486.6 ± 48.4 8.7 ± 1.7 -0.7 -8.4 

490.0 38.1 501.2 ± 60.8 36.2 ± 3.3 2.3 -5.0 

81.7 9.5 86.3 ± 8.1 9.8 ± 1.2 5.6 3.2 

81.7 38.1 83.4 ± 13.4 39.1 ± 5.3 2.1 2.6 

326.7 38.1 335.3 ± 42.6 38.1 ± 2.2 2.6 -0.1 

108.9 19.0 110.6 ± 14.6 19.1 ± 3.1 1.6 0.3 

81.7 14.3 75.3 ± 23.2 14.6 ± 1.8 -7.9 2.4 

 3.3* 3.1* 
* Mean of the absolute values of the error 

 

The feasibility test using Model 2 
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The simultaneous detection Model 2 was also tested using a standard curve. The 

measurement was made for the sample containing anti-BSA antibodies and HRP by 

adjusting the concentrations of these analytes and their labels to the range which is used for 

the preparation of the standard curve. The concentrations of anti-BSA antibodies and HRP 

in test sample were prepared to be 8.2 – 490 nM, 3.1 – 71.4 nM, respectively. Additionally, 

samples at four random pairs of concentrations were measured. As shown in Table 3-7, 

Model 2 was feasible for the detection of both analytes at the described concentration 

ranges and the average error of analysis based on Model 2 was calculated to be 4.5 and 

6.0 % for anti-BSA antibodies and HRP, respectively.  

 

Table 3-7: The deviation of simultaneous detection method (Model 2. n=3). 

Injected concentration (nM) Calculated concentration (nM) Error (%) 

Anti-BSA HRP Anti-BSA HRP Anti-BSA HRP 

490.0 3.1 456.5 ± 29.4 3.5 ± 0.5 -6.8 12.9 

490.0 71.4 465.1 ± 33.3 71.9 ± 11.9 -5.1 0.7 

8.2 3.1 7.6 ± 0.9 2.9 ± 0.4 -7.3 -6.5 

8.2 71.4 8.3 ± 2.0 63.4 ± 8.0 1.2 -11.2 

32.7 6.0 34.6 ± 5.7 5.9 ± 1.2 6.0 -1.3 

82.0 71.4 83.7 ± 7.2 76.1 ± 14.5 2.1 6.5 

98.0 23.8 96.4 ± 2.9 24.8 ± 3.8 -1.7 4.1 

490.0 9.0 463.5 ± 27.8 9.2 ± 0.1 -5.4 1.3 

 4.5* 6.0* 
* Mean of the absolute values of the error 

 

3.2.2 Optimization of the IA layer for simultaneous detection 

 

3.2.2.1 Minimization of cross-reactions  

 

As the simultaneous detections of Model 1 and Model 2 use several antigens and antibodies 

on the same IA layer, a cross-reaction among the participating antigens and antibodies can 

result in a false positive signal.  

 

The cross reaction in Model 1 should be tested as shown in Figure 3-19. The concentrations 

of target analytes (anti-BSA antibodies and HRP) were adjusted to be high enough to 
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achieve saturated signals (1633 and 909 nM, respectively). The cross-reactions of anti-BSA 

antibodies (analyte) with HRP (co-injected analyte) and anti-HRP antibodies (IA layer for 

HRP) were measured as shown in Figure 3-19A. The IA layer was prepared by 

immobilizing anti-HRP antibodies. When HRP was injected, a signal of 11.9 milli° was 

observed. Then, the anti-BSA antibodies were injected and the signal was found to be less 

than zero. This result shows that the anti-BSA antibodies (analyte 1) for Signal 1 do not 

cross-react with HRP (analyte 2) and anti-HRP antibodies (IA layer for analyte 2). In a 

separated test, the IA layer was prepared by immobilizing BSA and anti-HRP antibodies as 

shown in Figure 3-19B. Then, anti-BSA antibodies (analyte 1) were injected and signal was 

found to be 49.1 milli°. When anti-HRP antibodies (label for analyte 2) were injected, the 

signal was estimated to be as small as 0.8 milli°. This result shows that anti-HRP antibodies 

(the label for analyte 2) for Signal 2 do not cross-react with anti-BSA antibodies (analyte 1) 

and the IA layer (IA layer for analyte 1 and analyte 2). From these results, the participating 

antigens and antibodies were determined to make no significant cross-reaction and no false 

positive signal was measured for the simultaneous detection based on Model 1. 

 

The simultaneous detection based on Model 2 uses labels for each analyte. The test for the 

cross-reactivity of each label was made as follows. The IA layer was prepared by 

immobilizing the BSA (receptor 1 of analyte 1) and anti-HRP antibodies (receptor 2 of 

analyte 2) together. As shown in Figure 3-20A, HRP (analyte 2) was injected and the signal 

was found to be 5.1 milli°. Then, the anti-rabbit IgG (label 1 for analyte 1) for Signal 1 was 

injected and no significant signal (0.1 milli°) was measured. This result shows that anti-

rabbit IgG (label 1 for analyte 1) does not cross-react with the other analyte (analyte 2) and 

the IA layer. When anti-HRP antibodies (label 2 for analyte 2) were injected, a signal of 59 

milli° was measured. This result shows that the HRP injected first was still bound to the IA 

layer. In a separated test, anti-BSA antibodies (analyte 1) were injected and the signal was 

found to be 48.7 milli° as shown in Figure 3-20B. Then, the anti-rabbit IgG (label 1 for 

analyte 1) was injected and a signal of 118 m° was measured. When anti-HRP antibodies 

(label 2 for analyte 2) for Signal 2 were injected, no significant signal (1.6 milli°) was 

measured. This result indicates that anti-HRP antibodies (label 2 for analyte 2) also do not 

cross-react with the other analyte (analyte 1), the other label (label 1 for analyte 1) and the 

IA layer. From these results, the participating antigens and antibodies were determined to 

make no significant cross-reaction and no false positive signal was measured for the 

simultaneous detection based on Model 2. 
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Figure 3-19: Test of cross-reaction in the Model 1. (A) The reaction scheme for the cross 

reaction of anti-BSA antibodies (analyte 1) and the SPR sensorgram of the reaction. The IA layer 

was prepared by immobilizing anti-HRP antibodies (IA layer for HRP). The cross-reactions of anti-

BSA antibodies (analyte 1) with HRP (analyte 2) and anti-HRP antibodies (IA layer for analyte 2) 

were measured. When HRP was injected, a signal of 11.9 milli° was observed. Then, the anti-BSA 

antibodies were injected and the signal was found to be less than zero. This result shows that the 

anti-BSA antibodies (analyte 1) for Signal 1 do not cross-react with HRP (analyte 2) and anti-HRP 

antibodies (IA layer for the analyte 2) (B) The reaction scheme for the cross reaction of HRP 

antibodies (label for HRP) and the SPR sensorgram of the reaction. The IA layer was prepared by 

immobilizing BSA and anti-HRP antibodies. Then, anti-BSA antibodies (analyte 1) were injected 

and signal was found to be 49.1 milli°. When anti-HRP antibodies (label for HRP) for Signal 2 were 

injected, the signal was estimated to be as small as 0.8 milli°. This result shows that the anti-HRP 

antibodies (label for analyte 2) do not cross-react with anti-BSA antibodies (analyte 1) and the IA 

layer (IA layer for the analyte 1 and analyte 2). From the results of (A) and (B), the participating 

antigens and antibodies were determined to make no significant cross-reaction and no false positive 

signal was measured for the simultaneous detection based on Model 1. 
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Figure 3-20: Test of cross-reaction in the Model 2. (A) The reaction scheme for the cross reaction 

of label 1 and the SPR sensorgram of the reaction. The analyte 2 was injected and the signal was 

found to be 5.1 milli°, and the label 1 generated no significant signal (0.1 milli°). This result shows 

that label 1 does not cross-react with the analyte 2 and the IA layer. When label 2 was injected, a 

signal of 59 milli° was measured, which shows that the analyte 2 injected first was still bound to the 

IA layer. (B) The reaction scheme for the cross reaction of label 2 and the SPR sensorgram of the 

reaction. Analyte 1 was injected and the signal was found to be 48.7 milli°. Then, the label 1 

generated a signal of 118 milli°. When label 2 was injected, no significant signal (1.6 milli°) was 

measured. This result indicates that label 2 also do not cross-react with the analyte 1, the label 1 and 

the IA layer. From these results, the participating antigens and antibodies made no significant cross-

reaction and no false positive signal was measured for the simultaneous detection based on Model 2. 
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3.2.2.2 Optimal division of the IA layer  

 

The simultaneous detection based on Model 1 and Model 2 was performed by two 

molecular recognition elements on the same IA layer. In order to make each molecular 

recognition part to produce a detectable signal, the restricted area of IA layer should be 

effectively divided for the binding of each analyte. In this work, the surface area of IA layer 

was divided by controlling the concentration ratio of the molecular recognition elements 

(BSA and anti-HRP antibodies) at the immobilization step. The correlation between the 

concentration ratio and the analyte binding capacity was estimated by the comparison of 

maximum response (Rmax) of the IA layer. As shown in Figure 3-21, the concentration ratio 

([anti-HRP antibodies] / [BSA]) was changed from 0.002 to 10000 (0.002, 0.24, 0.48, 2.40, 

20, 200 and 10000), and each maximum response (Rmax) was calculated from the standard 

curves. This result shows that the optimal IA layer should be prepared by controlling the 

concentration ratio of analyte binding molecules according to certain detection ranges of the 

analytes in a specific test.  
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Figure 3-21: Correaltion between analyte binding capacity and the concentration ratio of 

molecular recognition elements at the immobilization step. The surface area of IA layer was 

divided by controlling the concentration ratio of the molecular recognition elements ([anti-HRP 

antibodies]/[BSA]) at the immobilization step. The correlation between the concentration ratio and 

the analyte binding capacity was estimated by the comparison of maximum response (Rmax) of the 

IA layer. Each Rmax was calculated from the standard curves. This result shows that the optimal IA 

layer should be prepared by controlling the concentration ratio of analyte binding molecules 

according to certain detection ranges of the analytes in a specific test. 



 
Results                                                                                 67 
  

 

3.2.3 Simultaneous detection of human chorionic gonadotropin (hCG) and human 

albumin (hA) in urine 

 

The level of human chorionic gonadotropin (hCG) and human albumin (hA) in urine was 

determined by using the simultaneous detection method. These two proteins can be used for 

preliminary diagnosis for the abortion and the preterm delivery during early pregnancy (see 

section 1.4).  

With the concentration ranges for medical application, signal differences were not distinct 

to use Model 1. Accordingly, Model 2 was applied for the analysis of hCG and hA. The IA 

layer was prepared by immobilizing polyclonal anti-hCG antibodies (500 µg/ml) and 

polyclonal anti-hA antibodies (100 µg/ml) together, which was controlled to make each 

detection limit to be similar with the cut-off value for diagnosis. The known concentrations 

of both analytes were dissolved in 10-fold diluted urine which was from healthy male 

volunteers without diabetes (random capillary blood glucose level ≤ 200 mg/dL (Clark, 

2001)). When the urine sample without analyte was injected, no significant signal was 

detected. The concentration range of hCG for the standard curve was adjusted according to 

the concentration level of hCG at the 4-12 weeks of pregnancy (415 – 46,100 mIU/ml) 

(Chard, 2001). The concentration range of hA for standard curve was adjusted according to 

the concentration level of microalbuminuria (20 – 200 µg/ml) (Clark, 2001). Polyclonal 

anti-hCG antibodies (100 µg/ml) and polyclonal anti-hA antibodies (100 µg/ml) were used 

as labels for hCG and hA, respectively.  

 

After adjusting optimal sharing of the IA layer by controlling concentrations of both 

antibodies at the immobilization step, standard curves of the two analytes were obtained for 

the detectable concentration ranges of each analyte (see Figure 3-22). The fitting parameters 

of standard curves for hCG and hA were calculated to be r2 = 0.964 and r2 = 0.954, 

respectively. For the estimation of non-specific binding of labels, label 1 (anti-hCG 

antibodies for signal 1) was injected after injection of analyte 2 (hA) to the IA layer, and 

label 2 (anti-hA antibodies for signal 2) was injected after injection of analyte 1 (hCG) and 

label 1 to the IA layer. The non-specific binding of labels (anti-hCG antibodies and anti-hA 

antibodies) were measured to be 3.0 ± 0.2 millio and 1.6 ± 0.9 millio (n=3), respectively. 

From these data, the non-specific bindings of labels were determined to be insignificant. By 

using respective standard curves and baseline drift, the detection limits for hCG and hA of 

10-fold diluted samples were determined to be 46.4 mIU/ml (464 mIU/ml in undiluted 
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sample) and 2.5 µg/ml (25 µg/ml in undiluted sample), respectively. In comparison with the 

cut-off levels of 4th weeks of pregnancy and microalbuminuria, the simultaneous detection 

seemed to be feasible to determine pregnancy and to alarm preterm delivery for pregnant 

woman with type I diabetes. 
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Figure 3-22: Simultaneous detection of hCG (■) and hA (▲) using Model 2. Two curves 

were made by using 10-fold diluted samples and the fitting parameters of standard curves for hCG 

and hA were calculated to be r2 = 0.964 and r2 = 0.954, respectively. By using respective standard 

curves and baseline drift, the detection limits for hCG and hA of 10-fold diluted samples were 

determined to be 46.4 mIU/ml (464 mIU/ml in undiluted sample) and 2.5 µg/ml (25 µg/ml in 

undiluted sample), respectively. These values correspond to the cut-off levels of 4th weeks of 

pregnancy and microalbuminuria, respectively. From this result, the simultaneous detection seemed 

to be feasible to determine early pregnancy and to alarm preterm delivery for pregnant woman with 

type I diabetes. 

 

The concentrations of hCG and hA in the test sample were prepared to be 500 – 5000 

mIU/ml, 20 – 100 µg/ml, respectively. Additionally, samples at three random pairs of 

concentrations were measured. As shown in Table 3-8, Model 2 was feasible for the 

detection of both analytes at the described concentration ranges and the average error of 

analysis based on Model 2 was calculated to be 6.5 and 5.9 % for hCG and hA, respectively.  
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Table 3-8: Results of simultaneous detection of hCG and hA based on Model 2 (n=3). 

Injected concentration  Calculated concentration  Error (%) 

hCG (mIU/ml) hA (µg/ml) hCG (mIU/ml) hA (µg/ml) hCG hA 

5000 20 4635.5 ± 399.2 17.1 ± 3.5 -7.3 -14.5 

5000 100 4711.4 ± 416.4 103.1 ± 3.9 -5.8 3.1 

500 20 463.2 ± 45.3 18.6 ± 1.6 -7.4 -7 

500 100 478.4 ± 35.7 97.2 ± 7.4 -4.3 -2.8 

500 50 438.2 ± 50.8 49.9 ± 3.6 -12.4 -0.3 

1000 100 966.3 ± 94.5 104.3 ± 4.0 -3.4 4.0 

1500 75 1575.1 ± 17.7 67.6 ± 8.1 5.0 -9.9 

 6.5* 5.9* 
* Mean of the absolute values of the error. 

 

3.3 Signal amplification of SPR biosensor 

 

The mass change caused by the binding of analyte to the sensor surface affects the amount 

of plasmons to change the SPR angle, which is converted to the binding amount of analyte 

in the SPR-immunosensor. Generally, the sensitivity of immunosensors can be improved by 

the mass label and the control of the IA layer (orientation & density). Because the 

sensitivity of the SPR biosensor is usually not high enough for medical diagnosis, signal 

amplification is required. In this work, two amplification methods were tested.  

As described in introduction (section 1.2.3), the first method is to increase the signal by 

using label proteins. Various label proteins have been added to the already bound analyte on 

the sensor surface to increase the sensitivity of the biosensor (Mullett et al., 2000). When 

labels are attached to target analytes, the mass on the surface of the SPR biosensor is 

increased and the SPR signal relative to the amount of target analytes is also increased. 

Especially for the SPR biosensor, several methods using various kinds of label proteins 

have been reported, such as secondary antibody (Goh et al., 2003), latex particle (Severs 

and Schasfoort, 1993) and avidin-biotinylated liposome (Wink et al.,1998).  

The second method is to control the orientation of the IA layer composed of antibodies. The 

antibody is well known to have a ‘Y’ shaped structure with two binding sites at two variable 

regions called F(ab’)s. For the effective detection of analyte by using immunosensors, the 

variable region (F(ab’)) of the antibody should be exposed to the analyte (Liddell, 2001). 

For the control of orientation, avidin, LB film, self-assembly and protein A have been 
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widely used and the surface density and orientation of antibodies could be improved. 

 

3.3.1 Signal amplification by using mass label  

 

The signal amplification by using mass label proteins was tested and the improvement of 

the sensitivity of the IA biosensor was measured. In order to select the most efficient signal 

amplification method, the efficiencies of several amplification methods were compared 

with a direct assay by using secondary antibodies, avidin-biotynylated antibodies and 

peroxidase-anti-peroxidase (PAP) complex. By applying the selected amplification method, 

the medical diagnosis of human hepatitis B virus (hHBV) requiring of very high detection 

limit was demonstrated to approach closely the cut-off value for the diagnosis of hHBV 

from a commercial ELISA kit. 

 

3.3.1.1 Comparison of the standard curves for the hHBV antibodies using ELISA and 

SPR biosensor 

 

For the application of the signal amplification method, the SPR biosensor was applied to 

detect the anti-hHBV antibody which is used to confirm recovery and immunity in patients 

with acute hepatitis or to check the effectiveness of vaccination (see section 1.4). By using 

the SPR biosensor, a standard curve as shown in Figure 3-23 was obtained by injection of 

samples at known concentrations of hHBV antibodies in 5 % calf serum (in 10 mM PBS). 

The detection range of the standard curve was determined by comparing with the cut-off 

line of the commercial medical diagnosis. Each point in the Figure 3-23 indicates a mean 

value of SPR signals from the repeated measurements (n=3) of a sample at the specified 

concentration. The parabolic curve in Figure 3-23 was obtained by non-linear fit function of 

a statistical software, Origin™ (USA) and Langmuir isotherm was used as a fitting model: R 

= Rmaxⅹ[Ab] / (KD + [Ab]) (Faegerstam et al., 1992), where R represents the response by 

analyte, Rmax represents the maximum response, [Ab] represents the concentration of hHBV 

antibodies, and KD means the dissociation constant of hHBV antibodies from the IA layer. 

From this fitting, the maximum SPR response was estimated to be 387.6 milli° with a 

standard deviation of 55.0 milli° where the SPR biosensor signal is saturated and the KD 

value was calculated as 2614.6 nM. This standard curve of anti-hHBV antibodies showed 

high correlation coefficient (r2 = 0.974). Based on this result, the detection range of hHBV 
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antibodies was estimated to be from 10 nM to 2 µM hHBV antibodies. This detection range 

was determined to be similar to the result for hIgG antibodies (Huber et al., 1992). 
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Figure 3-23: SPR sensor response to the concentration of the hHBV antibodies. A 

standard curve between SPR signal and concentration was obtained by injection of samples at 

known concentrations of hHBV antibodies in 5 % calf serum (in 10mM PBS) (r2 = 0.974). 

 

For the medical application, the detection range of the SPR biosensor was compared with 

that of a commercial ELISA kit as shown in Figure 3-24. The ELISA method determines 

the positiveness of hHBV antibodies using a cut-off value. With the commercial ELISA kit, 

the optical density (OD) of mean negative control value was detected as 0.03 (OD) and the 

cut-off value was determined to be around 0.10 (OD) corresponding to the 0.24 nM of 

hHBV antibodies. By using the standard curve of Figure 3-23, the SPR signal of hHBV 

antibodies at the concentration of 0.24 nM was estimated to be 0.03 milli°, which was far 

less than the detection limit of SPR IA biosensor and the cut-off value can not be detected 

by SPR signal by this direct detection method. From this result, signal amplification method 

should be used for detection limit of SPR signal to be improved as the cut-off value. 
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Figure 3-24: Comparison of the detection range of hHBV antibodies by SPR 

measurement with ELISA (n=3). The ELISA method determines the positiveness of hHBV 

antibodies using a cut-off value. With the commercial ELISA kit, the optical density (OD) of mean 

negative control value was detected as 0.03 (OD) and the cut-off value was determined to be around 

0.10 (OD) corresponding to the 0.24 nM of hHBV antibodies. By using the standard curve of the 

SPR signal, hHBV antibodies at the concentration of 0.24 nM was estimated to be 0.03 milli°, 

which was far less than the detection limit of SPR IA biosensor. This result shows that signal 

amplification method is required to reach the cut-off value. 

 

3.3.1.2 Selection of optimal label  

 

In this work, three kinds of amplification methods were tested to improve the sensitivity of 

the SPR biosensor. The direct assay without label is shown in Figure 3-25A. The standard 

curve between SPR signal and the concentration of hHBV antibodies was explained in the 

previous section. Because the signal amplification was achieved by increasing the effective 

mass of the already bound analyte using label proteins, the amplified signal is expected by 

using heavy label proteins. 

 

The amplification method based on a sandwich assay is shown in Figure 3-25B. In the 

sandwich assay, additional antibodies (secondary antibodies) as labels are attached to the 

target analyte after attachment of the target analyte to the IA layer and the signal is 

increased in proportion to the mass of labels. This sandwich assay has been reported to 

improve the sensitivity of the diffraction-based immunoassay as much as 3.5-fold (Goh et 
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al., 2003). 

 

To further improve the efficiency of the signal amplification, the avidin-biotin interaction 

(Jordan et al., 1997) was applied as shown in Figure 3-25C. This method aims to bind more 

than one secondary antibody to each bound analyte by using the avidin protein.  

 

Conventionally, the peroxidase-anti-peroxidase (PAP) complex has been used in ELISA to 

increase the sensitivity by using several peroxidases against one target analyte. The PAP 

complex was prepared by the method of Sternberger et al. (Sternberger et al., 1970). 

Theoretically, the PAP complex consists predominantly of two anti-horseradish peroxidase 

antibodies with three molecules of horseradish peroxidase with a heavy molecular weight 

(> 430 kDa). After attachment of secondary antibodies (anti-Rabbit IgG) to the target 

analyte (rabbit anti-hHBV antibodies), the PAP complex composed of antibodies from 

rabbit could be attached to the secondary antibodies and then additional secondary 

antibodies were injected to maximize the effect of amplification as shown in Figure 3-25D. 

 

 
Figure 3-25: Schematic view of three amplification methods: (A) Direct assay. (B) 

Amplification using sandwich assay. (C) Avidin- biotinylated antibodies. (D) Peroxidase-anti-

peroxidase (PAP) complex. 

 

To compare the efficiency of the amplification methods (see Figure 3-26), a sample at a 

concentration of 30 nM of hHBV antibodies was injected and it resulted in a SPR signal of 

4.9 milli° (n=3) by direct assay. The label proteins were also prepared in 5 % calf serum (in 

10 mM PBS). The negative signal by non-specific binding of label proteins was determined 

by the treatment of blank buffer as an analyte and it was subtracted from the positive signal 

(Signal of sample – Signal of blank) and this value was compared with the result of the 
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direct assay. From the calculation, the sandwich assay by the application of secondary 

antibodies was determined to achieve a signal amplification of 7-fold compared with the 

direct assay. The amplification ratio using the avidin-biotin-label was estimated to be as 

much as 14-fold and the effective amplification ratio using the PAP complex was calculated 

to be 17-fold higher than the direct assay by considering the non-specific binding of label 

proteins. From these results, the amplification using the PAP complex was selected as the 

most efficient method among the three described amplification methods. 
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Figure 3-26: Comparison of the efficiencies of three amplification methods: (A) Direct 

assay. (B) Amplification using sandwich assay. (C) Avidin-biotinylated antibodies. (D) Peroxidase-

anti-peroxidase (PAP) complex.  

 

The typical sensorgram of the signal amplification by the PAP complex is shown in Figure 

3-27 and this method consists of four steps: (1) injection of sample, (2) injection of 

secondary antibodies, (3) injection of PAP complex and (4) injection of secondary 

antibodies against PAP complex. The non-specific binding of the label proteins in each 

amplification method was estimated by injection of a blank sample (a sample without 

hHBV antibodies) followed by an injection of the corresponding label proteins. As shown 

in Figure 3-27A, the non-specific bindings at the injection step of sample and label proteins 

were represented as ‘NS 1’ and ‘NS 2’, respectively. The signal of the blank sample was 

first measured (NS 1), and then the signals by the label proteins were measured (NS 2). The 

‘NS 1’ and ‘NS 2’ were regarded as the background of the signal before and after signal 

amplification step, respectively. The signals before and after the signal amplification were 
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indicated as ‘Signal 1’ and ‘Signal 2’, respectively (see Figure 3-27B). The signal of the 30 

nM hHBV antibodies was first measured (Signal 1), and then the signals by the label 

proteins were measured (Signal 2).  

 

A          B 

 

Figure 3-27: The sensorgram of the signal amplification using the PAP complex: (A) 

Signal amplification after blank sample injection. (B) Signal amplification after a sample (with 30 

nM hHBV antibodies) injection. ‘A’ indicated the sample injection, ‘B’ indicates the injection of 

secondary antibodies, ‘C’ indicates the injection of the PAP complex, ‘D’ indicates the injection of 

secondary antibodies against the PAP complex. ‘NS 1’ and ‘NS 2’ indicate the non-specific bindings 

at the injection step of sample and label proteins, respectively. ‘Signal 1’ represents the signal 

without amplification, and the ‘Signal 2’ represents the signal after amplification. 

 

In the real application, the signal was calculated by the difference between the signal by the 

sample treatment and negative signal by the blank treatment (Signal of sample – Signal of 

blank). The efficiency of the PAP method for the signal amplification was calculated at 

several analyte concentrations by comparing the net signals of the direct assay and the PAP 

method and it was defined to be the ratio of amplification. Net signal (Signal – NSB) was 

determined by the difference between signal of sample (positive signal) and signal of non-

specific binding (NSB) (negative signal). Net signals of direct assay and PAP method were 

calculated as (SignalDirect assay - NSBDirect assay) and (SignalPAP - NSB PAP) by considering the 

non-specific binding (NSB) of the direct assay and the PAP method as 0.6 and 4.4 milli°, 

respectively. The ratio of amplification was calculated as comparing these net signals 

(SignalPAP - NSB PAP) / (SignalDirect assay - NSBDirect assay). 
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As shown in Table 3-9, the signal from injection of hHBV antibodies at the concentration of 

3.3 nM was 2.6 milli° and the signal after amplification was 29.3 milli°. By considering 

non-specific binding, the net signals (signal – noise) were calculated to be 2 and 24.9 milli°, 

respectively. The ratio of amplification was calculated to be 12.5 by using these two values. 

For the other concentrations of 6.7, 30 and 66.7 nM, the ratio of amplification was 

calculated as 28.1, 23.4 and 17.1. This result shows that the PAP method is feasible for 

signal amplification. 

 

Table 3-9: Signal amplification by the PAP method. 

Direct assay PAP method 
Concentration 

(nM) Signal  

(millio) 

* (Signal - NSB) 

(millio) 

Signal 

(millio) 

* (Signal - NSB)  

(millio) 

** Ratio of 

amplification

3.3 2.6 2 29.3 24.9 12.5 

6.7 2.3 1.7 51.9 47.5 28.1 

30.0 4.9 4.3 104.9 100.5 23.4 

66.7 9.8 9.2 161.5 157.5 17.1 

* Net signal was the difference between signal of sample and signal of nonspecific binding (Signal - 

NSB). Net signal of direct assay and PAP method were calculated as (SignalDirect assay - NSBDirect assay) 

and (SignalPAP - NSB PAP) by considering the non-specific binding (NSB) of direct assay and PAP 

method as 0.6 and 4.4 milli°, respectively. 

** Ratio of amplification = (SignalPAP - NSB PAP) / (SignalDirect assay - NSBDirect assay). 

  

3.3.1.3 Application of signal amplification by the PAP complex for medical diagnostics 

of hHBV antibodies.  

 

For the practical application of the SPR biosensor to the medical diagnosis of hHBV 

antibodies, the sensitivity of the SPR biosensor should be considerably improved as 

discussed in the previous section. Here, the selected amplification methods (PAP complex 

method) were applied for the detection of hHBV antibodies. As shown in Figure 3-28, the 

sensitivity of the SPR biosensor was increased by using the PAP complex method in 

comparison to the sandwich assay and the direct assay method. Especially, the sensitivity of 

the SPR measurement with PAP complex approached closely to the commercial ELISA kit. 

 



 
Results                                                                                 77 
  

 

1 10 100
0

40

80

120

160

200

0

1

2

3

4

O
D

 (A
U

)

Si
gn

al
 (m

illi
 o )

Concentration of HBV antibody
(nM)

 
Figure 3-28: Comparison of the detection range for the detection of HBV antibodies. 
The sensitivity of the SPR biosensor was increased by using the PAP complex method (▲) in 

comparison to the sandwich assay (▲) and the direct assay method (□). Especially, the sensitivity of 

the SPR measurement with PAP complex approached closely to the commercial ELISA kit (◇). The 

(+) dots represent the fitting result using Langmuir isotherm model. 

 

As shown in Table 3-10, the detection limit of the SPR biosensor was also significantly 

improved in comparison to the direct assay. The detection limits of SPR measurements by 

direct assay, sandwich assay and PAP complex method were calculated to be 9.20, 4.39 and 

0.64 nM, respectively. In comparison to the detection limit of the direct assay, those of the 

sandwich assay and PAP method were determined to be improved by 2- and 14-fold, 

respectively. The result from the PAP method shows that the detection limit of the SPR 

biosensor (0.64 nM) approached closely the cut-off value for medical diagnosis (0.24 nM) 

by using the commercial ELISA kit. 

 

Table 3-10. The comparison of the detection limits by the signal amplification methods.  

Method Detection limit  (nM) 

Direct assay 9.20 

Sandwich assay  4.39 

PAP method  0.64 

Cut-off value (ELISA) = 0.24 nM 
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3.3.2 Signal amplification by orientation control of the IA layer 

 

3.3.2.1 Introduction 

 

The sensitivities of immunosensors are known to be improved by the control of the IA layer 

(orientation & density). As more target analytes can be attached to this controlled IA layer, 

the signal at the same concentration of target analyte can be increased. For the selection of 

most effective orientation control and the density control of antibodies, several methods 

were compared by using avidin, NeutrAvidin, protein A, NeutrAvidin-protein A complex 

layer and the biotin-labelled SAM. For the feasibility test of orientation control by using 

selected layer, the SPR biosensor was applied for the detection of a cancer marker called 

carcinoembryonic antigen (CEA).  

 

3.3.2.2 Orientation control of the IA layer on gold surface of SPR biosensor 

 

In order to compare the effect of orientation, several kinds of IA layers such as NeutrAvidin 

layer, Protein A layer and NeutrAvidn-protein A complex layer were prepared on the 

differently modified gold surface (see Figure 3-29A). First, receptor (anti-hIgG) was added 

to the differently modified gold surface to compare the surface density of receptors and then, 

the ligand (hIgG) was added to the receptor (anti-hIgG) bound gold surface in order to 

compare the effect of orientation control of IA layer (see Figure 3-29B).  

The amount of bound IgG was estimated by the corresponding SPR signal. The higher the 

SPR signal means the larger amount of the bound receptor IgG to the surface. Then, the 

ligand IgG was added to the receptor IgG bound surface which could selectively bind the 

ligand IgG and then the SPR signal was additionally measured. As two binding sites at two 

variable regions called F(ab’)s are localized, the binding sites should be oriented to bind the 

ligand IgG.. This means that the bound amount of the ligand IgG is related to the amount of 

well-oriented receptor IgG and not to the total amount of the receptor IgG. And the ratio of 

two signal (Signal ligand IgG / Signal receptor IgG) can be used to compare the binding ratio of 

ligand IgG per receptor IgG indicating the effect of orientation control of receptor layer (IA 

layer). 
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A          B 

 

Figure 3-29: Comparison of three differently modified gold surface. The receptor IgG 

(anti-hIgG) was added to the differently modified gold surface to make IA layer and then, the ligand 

IgG (hIgG) was added to the receptor (anti-hIgG) as an analyte. (A) Schematic view of three 

differently modified gold surface. (B) Comparison of the binding amount of the receptor and ligand 

on the differently modified gold surface. ‘A and Gold’ represents the bare gold surface. ‘B and 

NeutrAvidin’, ‘C and Protein A’ and ‘D and Neu-ProA’ represent NeutrAvidin layer, Protein A layer 

and NeutrAvidin-protein A complex layer on the gold surface, respectively. The ratio of two signal 

(Signal ligand IgG / Signal receptor IgG) can be used to compare the binding ratio of ligand IgG 

per receptor IgG indicating the effect of orientation control of receptor layer (IA layer). 

 

The NeutrAvidin layer (see Figure 3-29A(B)) 

 

The NeutrAvidin layer was prepared on the gold surface of the SPR biochip by physical 

adsorption. In comparison with the sensor responses at the bare gold surface (receptor IgG: 

186.9 millio, ligand IgG: 68.0 millio), the sensor responses at the NeutrAvidin layer by the 

attachment of the receptor (223.6 millio) and the ligand IgG (118.7 millio) were increased to 

120 % (186.9  223.6 millio) and 175 % (68.0  118.7 millio), respectively (see Figure 3-

29A(B)). The binding ratio of ligand antibody per receptor antibody was calculated by the 

ratio of the two signals (Signal ligand IgG / Signal receptor IgG) to be 1.5-fold higher than that of 

the bare gold surface. This result shows that the density of the receptor in the IA layer as 

well as the binding capacity per unit receptor was slightly increased.  

 

The Protein A layer (see Figure 3-29A(C)) 

 

Protein A is the surface protein of Staphylococcus aureus and it is well known to bind the 
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Fc region of antibodies (Hjelm et al., 1972). Such a property of protein A has been used for 

the orientation control of antibodies in immunoassays (Goding, 1978). In order to estimate 

the orientation of antibodies by protein A, the receptor and the ligand antibodies were added 

sequentially to the protein A bound SPR biosensor. In comparison to the bare gold surface 

of SPR biosensor, the binding of the receptor and the ligand antibodies were increased to be 

130 % (186.9  242.6 millio) and 241 % (68  164.2 millio), respectively. The binding 

ratio of ligand antibody per receptor antibody is thus improved to be 1.9-fold compared 

with bare gold surface. This result shows that the binding capacity per unit receptor was 

significantly increased. 

 

The NeutrAvidin-protein A complex layer (see Figure 3-29A(D)) 

 

NeutrAvidin-protein A complex layer was prepared as follows: After the preparation of 

NeutrAvidin layer on gold surface, the protein A layer was prepared above the layer of 

NeutrAvidin by treatment of biotin-labelled protein A molecules. The typical SPR 

sensorgram of Figure 3-30 shows the binding of receptor antibodies to the layer of protein A 

attached to the immobilized NeutrAvidin molecules on the bare gold surface.  

 

 

 

Figure 3-30: SPR responses during the preparation of NeutrAvidn-protein A complex 

layer. The NeutrAvidin layer was made on gold surface by treatment of NeutrAvidin molecules (1 

mg/ml for 90 min), and then the protein A layer was prepared above the layer of NeutrAvidin by 

treatment of biotin-labelled protein A molecules (1 mg/ml for 90 min). Receptor antibodies (anti-

hIgG antibodies; 1 mg/ml for 90 min) were attached to the NeutrAvidin-protein A complex layer. 
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By using the known correlation between the SPR signal and the absolute amount of protein 

(120 milli° = protein binding of 1 ng/mm2) (Stenberg et al., 1991), the saturating amount of 

NeutrAvidin molecules (60kDa), biotin-labelled protein A molecules (50kDa) and receptor 

antibodies (150kDa) was calculated as shown in Table 3-11. The ratio of biotin-labelled 

protein A per NeutrAvidin and the ratio of receptor antibodies per biotin-labelled protein A 

were estimated to be 0.4 and 1.1, respectively. 

 

Table 3-11: Surface density of the between-layers of Neutravidin-protein A complex 

layer.  

 Surface density Ratio 

 (ng/mm2) (moles/mm2)  

NeutrAvidin 2.7 4.6 * 10-14  

Biotin-labelled Protein A 0.9 1.8 * 10-14 0.4* 

Receptor antibodies 2.9 2.0 * 10-14 1.1** 

*Ratio of biotin-labelled protein A per NeutrAvidin  

**Ratio of receptor antibodies per biotin-labelled protein A 

 

The receptor and ligand antibodies were sequentially added to the NeutrAvidin-protein A 

complex. As shown in Figure 3-29B (‘Neu-ProA’), the absolute binding amount as well as 

the binding capacity per unit receptor molecule was significantly increased in comparison 

to the other layers. In comparison to the bare gold surface of the SPR biosensor, the amount 

of the receptor and the ligand antibodies were increased to be 189 % (186.9  352.9 millio) 

and 359 % (68  243.8 millio), respectively. The signal ratio by the binding of ligand 

antibody per receptor antibody is improved to be 1.9-fold compared with bare gold surface. 

 

For the binding capacity per unit receptor (orientation control effect of receptor), the 

NeutrAvidin-protein A complex layer (1.9-fold higher than the bare gold surface) showed 

similar result with the protein A layer (1.9-fold higher than the bare gold surface). In the 

both of the protein A layer and the NeutrAvidin-protein A complex layer, the receptor 

antibody was immobilized on the same factor of orientation control for protein A. This 

means that both layers had similar orientation control effect for antibodies, which has 

higher value of orientation control effect than the NeutrAvidin layer (1.5-fold higher than 

the bare gold surface) or bare gold surface. 

However, the orientation of protein A could be also controlled by interaction of biotin-
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labelled protein A and NeutrAvidin in the NeutrAvidin-protein A layer, and NeutrAvidin 

could always show similar orientation of binding sites for biotin because of four same 

domains for binding sites. From this result, binding sites of protein A in the NeutrAvidin-

protein A layer could be uniform for the receptor antibody to bind. On the contrary, protein 

A in the protein A layer bound to the gold surface without any orientation control. In this 

case, some binding sites of protein A could not be bind with the receptor antibody. As the 

protein A of NeutrAvidin-protein A layer seemed to have more controlled binding sites for 

receptor IgG than the protein A-only layer, the binding amount of receptor IgG (352.9 

millio) or ligand IgG (243.8 millio) on the NeutrAvidin-protein A complex layer were 

significantly increased in comparison to the protein A layer (receptor IgG: 242.6 millio, 

ligand IgG: 164.2 millio). Compared with the protein A layer, the NeutrAvidin-protein A 

complex improved the surface density of the receptor antibody. 

 

3.3.2.3 Orientation control of the IA layer on SAM surface of SPR biosensor 

 

The orientation control effect of NeutrAvidin-protein A complex was also tested by using 

the self-assembled monolayer (SAM) of the SPR biosensor. Because of the easy preparation 

and the high quality of the monolayered structure as well as low non-specific binding of 

biomolecules (Silin et al., 1997), SAM based on the thiolated carbohydrate molecules have 

been widely used for the surface functionalization of the SPR biosensor.  

In order to compare the signal amplification by orientation control on the SAM layer, 

NeutrAvidin-protein A layer on the biotinylated SAM layer and Chimeric complex layer 

were prepared on the biotinylated SAM layer (see Figure 3-31A) and the binding amount of 

the receptor (anti-hIgG) and ligand (hIgG) antibody on the differently modified SAM 

surfaces were measured (see Figure3-31B). And the ratio of two signal (Signal ligand IgG / 

Signal receptor IgG) were calculated to compare the binding ratio of ligand IgG per receptor 

IgG indicating the effect of orientation control of receptor layer (IA layer). 
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A           B 

 

 

Figure 3-31: Comparison of three differently modified SAM layers. The receptor IgG 

(anti-hIgG) was added to the differently modified gold surface to make IA layer and then, the ligand 

IgG (hIgG) was added to the receptor (anti-hIgG) as an analyte. (A) Schematic view of three 

differently modified SAM layers. (B) Comparison of the receptor and ligand antibody binding on 

the differently prepared SAM surface. ‘A and Gold’ means the bare gold surface of SPR biochip. ‘B 

and SAM’ and ‘C and S-Neu-ProA’ represent the SAM layer on the bare gold surface and 

NeutrAvidin-protein A complex layer on the biotinylated SAM layer, respectively. ‘D and S-

Chimeric’ means the purified NeutrAvidin-protein A chimeric complex immobilized on the biotin 

labelled SAM layer. The binding ratio of ligand IgG per receptor IgG can be used to indicate 

the effect of orientation control of receptor layer (IA layer). 

 

The SAM layer (see Figure 3-31A(B)) 

 

The SAM layer was prepared on the gold surface of the SPR biosensor by using 11-

mercaptoundecanoic acid. The receptor IgG was immobilized to the SAM by using 

coupling reagents (EDAC/NHS). As shown in Figure 3-31B (‘SAM’), the amount of the 

receptor and the ligand binding was increased to be 163 % (186.9  305.3 millio) and 

128 % (68  87 millio), respectively in comparison to that of bare gold surface (‘Gold’). 

The binding ratio per unit receptor was estimated to be as low as 0.8-fold of bare gold 

surface. This low binding ratio per unit receptor (0.8-fold) means that the orientation of the 

receptor layer should be controlled for the suitable binding of ligand IgG. If the receptor 

layer is well-oriented, the amount of the ligand binding can be increased even if the amount 

of the receptor does not increase significantly.  
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The NeutrAvidin-protein A complex on the biotinylated SAM layer (see Figure 3-

31A(C)) 

 

The NeutrAvidin-protein A complex was prepared on the biotinylated SAM layer by 

sequential treatment of NeutrAvidin and biotin-labelled protein A (‘S-Neu-ProA’ in Figure 

3-31B). When the receptor and the ligand antibodies were reacted to the layer, the amounts 

of binding were estimated to be increased as much as 133 % (186.9  248.3 millio) and 

282 % (68  191.9 millio), respectively in comparison to that of bare gold surface. 

Especially, the binding ratio of ligand per unit receptor was increased 2.1-fold compared 

with the bare gold layer. In comparison to the SAM layer, the binding ratio was improved 

as much as 2.7-fold, which clearly shows the effect of orientation control by Neutravidin-

protein A complex.  

 

The chimeric protein of NeutrAvidin-protein A complex on the biotin-labelled SAM 

surface (see Figure 3-31A(D)) 

 

The chimeric protein of NeutrAvidin-protein A complex was prepared by mixing equimolar 

biotin-labelled protein A and NeutrAvidin, and then the chimeric complex was purified by 

centrifugal filtration. When the chimeric protein was added to the biotin-labelled SAM 

surface (‘S-Chimeric’ in Figure 3-31B), the binding amount of the receptor and the ligand 

was estimated to be 45 % (186.9  85 millio) and 40 % (68  27 millio), respectively in 

comparison to the bare gold surface. The binding ratio per receptor was calculated to be 

90 % in comparison to the bare gold surface. This result shows that the orientation of the 

receptor was randomly controlled as in the case of the immobilization of receptor IgG to 

SAM layer or bare gold surface.  

 

As summarized in Table 3-12, NeutrAvidin-protein A layer on gold surface showed the 

highest binding amount of ligand antibodies. In the case of NeutrAvidin-protein A complex 

on the biotin-labelled SAM layer, the binding ratio per receptor antibody was estimated to 

be the highest among other layers.  
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Table 3-12: Comparison of binding amount of receptor and ligand antibodies to the 

differently modified SPR biosensor surface. 

Amount of binding* 
Surface 

Receptor Ab Lignad Ab 

Ratio of 

   Orientation** 

Bare gold 1 1 1 

NeutrAvidin 1.2 1.8 1.5 

Protein A 1.3 2.4 1.9 

NeutrAvidin-protein A 1.9 3.6 1.9 

SAM 1.6 1.3 0.8 

SAM-Biotin-NeutrAvidin-Protien A 1.3 2.8 2.1 

SAM-Biotin-Chimeric complex 0.5 0.4 0.9 

* Amount of binding was calculated in comparison to bare gold surface, which was (SPR Signalat 

each surface / SPR Signalat bare gold surface).  

**The ratio of orientation means the relative number of lignand Ab bound to unit receptor Ab in 

comparison to bare gold surface, which is calculated to be (Amount of bindingligand Ab / Amount of 

bindingreceptor Ab). 

 

3.3.2.4 Signal amplification for carcinoembryonic antigen (CEA) detection by using 

NeutrAvidin-protein A layer 

 

The NeutrAvidin-protein A complex was applied for the detection of a cancer marker called 

carcinoembryonic antigen (CEA) by using the SPR biosensor. CEA is considered one of the 

broad spectrum cancer markers (see section 1.4). The cut-off level of CEA is reported to be 

5 ~ 10 ng/ml and the detection range for diagnosis of CEA is reported to be between 0 and 

100 ng/ml (Nishizono et al., 1991; Suresh, 2001).  

For the detection of CEA, the IA layer of monoclonal anti-CEA antibodies was prepared on 

(1) bare gold surface of SPR biosensor and (2) the Neutravidin-protein A layer on bare gold 

surface. The injection of samples at the target concentration range for the diagnosis of CEA 

did not induce the sensor response higher than the level of baseline drift (0.8 milli°) by 

using both IA layers. In this work, the polyclonal anti-CEA antibodies were additionally 

injected for the formation of sandwich complex to the already bound CEA. For the 

improvement of sensitivity in the detection of CEA, NeutrAvidin-protein A layer was used 

and it was compared with the bare gold surface to measure the degree of “signal 
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amplification” (see Figure 3-32). The standard curves were fit by using the simple binding 

model: R = [C·Rmax / (C+KD)]. Here, ‘R’ and ‘C’ represent the sensor response and 

concentration of CEA, respectively. KD is dissociation constant and Rmax is the maximal 

sensor response (O’Shannessy et al., 1993). As shown in Figure 3-32, the experimental 

results seem to fit well (r2 > 0.99). By using the curve fit, the IA layer on the NeutrAvidin-

protein A complex layer showed higher sensitivity than the bare gold surface. The Rmax 

value was evaluated for NeutrAvidin-protein A layer and bare gold surface to be 85.8 milli° 

and 52.8 milli°, respectively. From the comparison of signals, the sensitivity with 

NeutrAvidin-protein A layer was determined to be improved 1.5-fold higher compared with 

the bare gold surface. The detection limit was also estimated for NeutrAvidin-protein A 

layer and bare gold surface to be 30 ng/ml and 36 ng/ml, respectively. This result shows 

that the NeurtAvidin-protein A complex can improve the sensitivity for the detection of 

CEA through the orientation control of antibodies in IA layer. 
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Figure 3-32. Standard curve for the detection of CEA in 10 mM PBS (pH 7.4). For the 

improvement of sensitivity in the detection of CEA, NeutrAvidin-protein A layer (■) was used and it 

was compared with the bare gold surface (▲) to measure the degree of “signal amplification”. Each 

signal was obtained by additional injection of anti-CEA antibodies (label proteins) to the already 

bound CEA for the formation of the sandwich complex. The standard curves were fit by using the 

simple binding model: R = [C·Rmax / (C+KD)]. The Rmax value was evaluated for NeutrAvidin-

protein A layer and bare gold surface to be 85.8 milli° and 52.8 milli°, respectively. This result 

shows that the sensitivity with NeutrAvidin-protein A layer was improved 1.5-fold higher compared 

with the bare gold surface for the detection of CEA through the orientation control of 

antibodies in IA layer. 
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4. Discussion 
 

4.1 Application of biosensor in medical diagnosis 

  

4.1.1 Introduction 

 

The biosensor has been proposed as a tool to improve the “sensitivity”, “selectivity” and 

“analysis time” by using biological materials, and this is composed of “biomaterial” and 

“transducer” (see introduction). According to the biomaterials for the molecular recognition, 

biosensor is classified into catalytic biosensors and affinity biosensors (Scheller and 

Schubert, 1992; Ramanavieius et al., 2005). In the catalytic biosensors, the recognition 

element (enzyme, cell and tissue) converts substrate molecules into product molecules, 

thereby making amplification of the signal possible. In the affinity biosensors, the 

recognition molecule (antibody, nucleic acid, peptide, cell receptor and protein) binds the 

analyte molecule. These two kinds of biosensors can be used with several transducers such 

as electrode, transistor, thermistor and optical device. 

 

Body fluids (humors) such as blood, urine, sweat, saliva, etc. includes various kinds of bio-

chemical materials and these bio-chemical materials related to any specific diseases are 

called biomarkers (see section 1.4). The biosensors have been used to detect the biomarkers 

in the body fluids for the medical diagnosis. Rapid and accurate detection of the biomarkers 

is one of the most important topics of modern medicine because it has a definite influence 

on the successful treatment of the patient.  

 

The representative catalytic biosensors using the electro-chemical sensors have been 

generally used for the medical diagnosis, detecting biomolecules such as insulin, glucose, 

hCG, theophylline, α1-glycoprotein, apolipoprotein E, FSH and LH in serum or urine 

(Morgan et al., 1996). Such electro-chemical sensors have several advantages such as 

simplicity and high sensitivity. The electro-chemical sensors have been reported to have 

several problems under the existence of the interferences in the body fluids, such as proteins 

in serum (low selectivity). However, the most successful type of biosensors until now is the 

enzyme-based amperometric type and they are commercially used for the detection of 

glucose, lactate, urea etc. as disposable sensors (Scheller and Schubert, 1992).  
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Conventional IA-based bioassays such as radioimmunoassay (RIA), enzyme-linked 

immunosorbent assay (ELISA), immunoagglutination assays (IAA) and fluorescent 

immunoassays (FIA) have been generally used for the medical diagnosis and this bioassay 

has several advantages such as high sensitivity, low detection limit and broad detection 

range (Ngo, 2000). For example, ELISA showed the detection limit of 2 nM for the 

detection anti-AChR antibody (Franciotta et al., 1999). Although the development of 

immunoassays during the last three decades revolutionized medical diagnosis, these 

classical affinity assays such as ELISA takes more than one hour to achieve, and modern 

alternative tests are being examined as rapid screens. Moreover, assay system can not be 

used as continuous monitoring mode. The modern biosensor technology enables the label-

free detection, quantification and continuously working immunoassay system. The most 

representative affinity biosensor is the immunosensor where antibodies or antibody 

fragments are applied as biological element and this sensor can be categorized based on the 

detection principle applied (see section 4.1.3). The immunosensor has been used for the 

detection of high-molecular weight compound such as protein, antigen and hormone, which 

is necessary for the medical diagnosis. In this work, major parts of the immunosensor 

(molecular recognition part and transducer) will be discussed for the practical application to 

medical diagnostics. 

 

4.1.2. Molecular recognition part 

 

4.1.2.1 Antibodies as molecular recognition tool 

 

In the immunosensor, the biological component such as antibody or antigen is used as 

molecular recognition part and this part conveys selectivity and sensitivity to the sensor by 

the formation of complex between antigen-antibody.  

Two kinds of antibodies can be used for the immnosensor: polyclonal antibodies and 

monoclonal antibodies (Kane and Banks, 2000; Liddell, 2001). Polyclonal antibodies are 

still widely used as primary antibodies, particularly in competitive immunoassays, and the 

great majority of polyclonal antibodies are used as label antibodies. Its great advantage is 

the relative simplicity and low cost of the procedures used for raising them. Double-

antibody sandwich immunoassays can be set up with one kind of polyclonal antibodies and 

this is more simple system compared with the system with two kinds of monoclonal 

antibodies or a combination of polyclonal and monoclonal antibody. They are often 
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sufficiently specific for the purposes of their users and the long-term continuity of supply is 

possible by immunizing a large animal. However, polyclonal antibodies are a heterogeneous 

mixture of antibodies arising from a variety of constantly evolving B-lymphocytes, which 

have a varying binding affinities, isotype, and different specificities. As a consequence, even 

successive bleeds from one animal are always unique. In this case, uniform ratio of signal to 

concentration can be made by antibodies from only one bleed and mixture of polyclonal 

antibodies from several bleeds seems to change the ratio of signal in the immunoassay. This 

set limits to the quantity of antibodies to be used for uniform experiment by immunosensor. 

Moreover, polyclonal antibodies recognize epitopes both on the immunogen and any 

impurities injected with it. This can make a nonspecific binding to increase the detection 

limit of the immunosensor in the medical diagnosis. 

Although early immunoassay used polyclonal antibodies prepared from the sera of animals, 

the monoclonal antibodies produced by fusion technology (Kohler and Milstien, 1975) are 

preferred for the immunoassay industry. The hybridoma cell lines can secrete only one 

particular type of antibody (monoclonal antibodies).  

 

The production of new antibodies, whether polyclonal or monoclonal, always depends on 

new immunizations, which are lengthy and tedious procedures and do not always guarantee 

success. The genetic approach to antibody production has gained momentum due to the 

failure of the hybridoma method to produce human monoclonal antibodies reliably for 

therapeutic purposes. The production of recombinant antibodies (rAbs) will provide 

significant changes for antibody generation and diversification, which will provide a vast 

repertoire of new antibody types. New antibodies can be generated by selection from 

suitable antibody libraries, which can be constructed within shorter time. The main 

bottleneck is the handling and screening of large libraries for antibody genes (Hock, 1997). 

Antibodies in the immunosensors have been often used as conjugates with a variety of 

labels such as colorimetric enzymes, fluorescent and luminescent molecules and radiolabels. 

Genetically, recombinant antibody technology can be used to form antibody fusion proteins 

and this has potential to improve homogeneous production of conjugates in which antigen-

binding site should be unaffected. Several useful fusion proteins for immunoassay have 

been described as shown in the Table 4-1 (Liddell, 2001).  
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Table 4-1. Recombinant antibody fusion proteins of use in diagnostics 

Fusion partner Antibody fragment Use 

Alkaline phosphatase ScFv, F(ab’)2 Produces colorimetric product 

Avidin Fab, F(ab’)2, IgG Binds biotin conjugated proteins 

Biotin-carboxyl carrier 

protein 

Fab Biotin attached during secretion 

Protein A fragment ScFv Fc binding 

Metallothionein F(ab’)2 Allows subsequent binding of 99MTc 

Peptide ScFv Peptide chelates metal then binds to 99MTc 

Peptide ScFv Peptide can be enzymetically labeled with 32P

Amino terminal of E.coli 

major lipoprotein 

ScFv Attaches lipid during expression 

Streptavidin ScFv Binds biotin conjugated proteins. Also useful 

for producing tetramers. 

 

However, no fusion proteins are yet widely available. It has sometimes been difficult to 

express fully functional fusion proteins, and the capacity to vary the stability of the linkage 

as with chemical conjugation is lost. 

 

4.1.2.2 Alternative analyte-binding compounds for immunosensor  

 

Although immunosensors have generally used polyclonal or monoclonal antibodies, there 

are several limitations of these proteins for immuno-reaction as follows: (1) If working 

condition is different from body property, the structure of molecule can be changed to be 

unstable for immuno-reaction. (2) The treatment of regeneration can damage the 

immobilized antibodies or detach the immobilized antibodies from IA layer. An adequate 

analytical sensitivity can only be achieved if antibodies with increased affinity (>1010 M-1) 

(Hock, 1997). Therefore, a high-affinity constant and a labile immobilized antibody make 

regeneration of the surface difficult to realize in practice, limiting practical application of 

immunosensors to single-use devices (Morgan et al., 1996). (3) The reaction time between 

antibody and antigen is slower than the detection time by transducer, and all analysis time is 

extended. The following new tools as the molecular recognition part have been successively 

developed to solve above problems. 
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(1) Aptamers  

 

Aptamers are synthetic single-stranded DNA or RNA oligonucleotide sequences with the 

ability to recognize various target molecules such as nucleotides, drugs, proteins with high 

affinity and specificity (Luppa et al., 2001). Aptamers are identified by an in vitro selection 

process known as systematic evolution of ligands by exponential enrichment (SELEX), 

which allows the simultaneous screening of more than 1015 individual nucleic acid 

molecules for different functionalities (Tuerk and Gold, 1990). Aptamers may have 

advantages over antibodies in the ease of depositing them on sensing surface of 

immunosensor and the highly reproducible synthetic approach in any quantities. In the 

detection of thrombin, a fiber-optic microarray biosensor using aptamers as receptors was 

reusable and did not show any sensitivity change during the experiment (Lee and Walt, 

2000). However, the disadvantage of aptamer such as high cost and unstableness should be 

solved for the application of this in the IA biosensor. 

 

(2) Molecularly imprinted polymers (MIPs) 

 

Molecularly imprinted polymers (MIPs) is produced by polymerization of functional and 

cross-linking monomers in the presence of a molecular template (Boonpangrak et al., 2006). 

After polymerization and template removal, specific binding sites are left in the polymer 

material. Although natural receptors, enzymes and antibody have limitation of chemical and 

thermal instabilities limit, MIPs can withstand environments that would destroy natural 

antibodies, are easy to prepare at low cost, and can be prepared for compounds (e.g., 

immunosuppressive agents) against which it is difficult to produce natural antibodies (Li 

and Husson, 2006). In the detection of domoic acid (DA), MIP, comprising 2-(diethylamino) 

ethyl methacrylate as functional monomer and ethylene glycol dimethacrylate as cross-

linker, outperform monoclonal antibody natural receptors with a wide detection range and 

long stability (Lotierzo et al., 2004). However, the high detection limit owing to low affinity 

between antigen and MIPs should be improved for the application of MIPs to the IA 

biosensor (Boonpangrak et al., 2006). 

 

(3) Anticalin 

 

As a promising alternative to recombinant antibody fragments, lipocalin scaffold can be 
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employed for the construction of “anticalins”, which is made by subjecting various amino 

acid residues, distributed across the four loops, to targeted random mutagenesis. Lipocalins 

such as retinol-binding protein constitute a family of proteins for storage or transport of 

hydrophobic and/or chemically sensitive organic compounds (Luppa et al., 2001). These 

binding proteins share a conserved β–barrel, which is made of eight antiparallel β–strands, 

winding around a central core. For example, bilin-binding protein can be structurally 

reshaped in order to specifically complex potential antigens, such as digoxigenin 

(Schlehuber et al., 2000) However, there are several problems to be solved, such as the 

synthesis and stability of the anticalins, the magnitude of the affinity constants, and the 

versatility for being crafted against the large variety of ligands.   

 

4.1.2.3 Immobilization technique 

 

For the successful application of molecular recognition tools, immobilization technique for 

the connection of molecular recognition tools to the sensor surface should be developed. 

This technique is very important in the construction of molecular recognition part in order to 

avoid nonspecific binding and to improve sensitivity of IA biosensors. Immobilization can 

be achieved in several different ways: direct adsorption to the transducer surface, physical 

entrapment near the transducer surface (e.g. in a polymer layer or by use of a membrane), 

direct covalent coupling to the transducer surface, covalent coupling to a polymer layer on 

the transducer surface and use of ‘capture system’.  

In this work, we focused on the improvement of molecular recognition layer in order (1) to 

increase the density of IA molecules and (2) to optimize the orientation of IA molecules. For 

the orientation control of IA molecules, NeutrAvidin-protein A complex layer and biotin 

labeled SAM were used in this experiment (see section 3.3.2) and this orientation control 

showed the enhancement of the sensitivity. In this work, NeutrAvidin-protein A complex 

layer were made on the sensor surface by sequential injection of NeutrAvidin and protein A. 

By the sequential attachment, some NeutrAvidin on the sensor surface could not bind with 

protein A.  

As described in section 1.3.1, self-assemble monolayer (SAM) was used in this work, as a 

linker layer between molecular recognition part and gold layer of SPR transducer. The 

application of mixed SAMs have been reported by co-adsorption of mixtures of two thiols 

with different chain lenghs, has been shown to prevent denaturation and thus improve the 

bioactivity of a protein immobilized on such layer in comparison with the protein 
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immobilized on a pure SAM (Briand et al., 2006). Mixed SAMs are generally constituted of 

one long thiolate with a functional headgroup (like a carboxylic acid) at a low mole fraction 

and of another short “diluting” thiolate at a high mole fraction to minimize steric hindrance, 

partial denaturation of the protein (Guiomar et al., 1999) and non-specific interactions (Ge 

and Lisdat, 2002; Frederix et al., 2003). 

The prevention of nonspecific binding is also an important topic of immobilization method. 

In this work, various trials were performed and it will be separately discussed at section 4.3. 

 

4.1.3 Transducer for immunosensors 

 

Transducers of IA-biosensor can be divided as four types according to the principle of signal 

generation: electrochemical transducers (amperometric, potentiometric, conductometric, 

capacitative), optical transducers (fluorescence, luminescence, refractive index, 

ellipsometric, surface plasmon resonance, waveguide) or mass-sensitive transducers 

(piezoelectric, acoustic wave) or a thermal transducer (calorimetric). The IA-biosensor can 

be classified according to the detection method: (1) direct detection (2) indirect detection 

whether label is used for the detection of antigen-antibody reaction or not. (1) In the direct 

sensor, the binding event can change different physical properties such as the change of 

refractive index (SPR trasducer), mass change (QCM or SAW transducer) and change of a 

dielectric constant (electrochemical transducer). (2) The indirect sensor requires a signal-

generating label on one of the biomolecules in the immune complex formation and this label 

needs a separate step to produce a change in the property. This sensor can use a great variety 

of different labels, which have been usually used in immunoassay (Morgan et al., 1996; 

Luppa et al. 2001; D’Orazio, 2003).  

The direct sensors can save the analysis time and allow direct detection of analyte binding in 

real time. Without labels, these sensors can be more cost-effective. With the progress of 

MEMS technique, the development of direct sensors has been improved and recently, these 

sensors have been main type of immunosensors for medical application.  

Optical immunosensors are most popular for bioanalysis thesedays, which has the advantage 

of rapid signal generation and reading. Among the several optical immunosensors, direct 

optical transducer such as SPR transducer is most popular one to monitor immunoreactions 

in clinical chemistry (Luppa et al., 2001). The major advantage of direct optical transducer 

is the lack of need of a label for the detection of analyte, avoiding a separation step to 

remove free from bound label. Further, there is no penetration of the sensing wave beyond 
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the immediate surface of the optical device being used, avoiding interference from 

substances present in the bulk sample (D’Orazio, 2003).  

Among the direct biosensors such as SPR biosensor of this work, quartz crystal 

microbalance (QCM) sensor is also generally used for transducer and it has a high 

sensitivity. Although a QCM technique detects not the change of optical property but the 

mass change, both SPR and QCM are wave-propagation phenomena and show resonance 

structure. The QCM has been widely used as direct immunosensors. The SPR technique 

measures changes in the refractive index adjacent to the surface, whereas QCM technique 

detects changes in the frequency, corresponding to changes in the amount of mass coupled 

to the surface. In the QCM sensor, the relationship of the frequency change and the mass 

loading on the surface of the crystal can be described by the Sauerbrey equation (Sauerbrey, 

1959):  

 

∆F=-2F0
2∆m/A(ρqµq)1/2 

 

Where ∆F is the measured frequency shift, F0 is the fundamental frequency of the Pz crystal, 

A is the area coated, ∆m is the mass change due to surface deposition, ρq is the density of the 

quartz crystal (2.684g cm-3) and µq is the shear modulus (2.947ⅹ1011g cm-1 s-2 for AT-cut 

quartz crystals). 

When the SPR biosensor was compared with QCM biosensor for protein adsorption and 

antigen-antibody recognition, they were comparable with respect to sensitivity and the 

detection limit for monoclonal antibody (mAb) and sera was nearly the same for both 

methods (Koesslinger et al., 1995) (see Table 4-2). 

 

Table 4-2 Overview of quantities that can be used for a comparison of the QCM and 

SPR 

Quantity QCM SPR 

Thickness sensitivity 184 Hz/nm 26.3 millio/nm 

Detection limit of mAb 20 nM 23 nM 

Detection limit of sera 1:1000 1:1000 

Immunological sensitivity for mAb 0.5 nM/Hz 3 nM/ millio 

Penetration depth 126 nm 150 nm 

Sensitive area 5 mm2 5ⅹ10-3 mm2 
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Even if the QCM machine is less expensive and easier to handle, the SPR sensor has several 

advantages compared with QCM. SPR responses occur at a faster time than the QCM 

responses and the SPR technique was also cost effective (Laricchia-Robbio and Revoltella, 

2004). Moreover, because the sensitive area of SPR is smaller than QCM sensor, fewer 

molecules are necessary for the same surface density and smaller flow-through cells with 

smaller sample volumes could be possible compared to the QCM (Koesslinger et al., 1995). 

Accordingly, SPR transducer can be more easily integrated with microfluidics to make total 

analysis system, so-called “lab on a chip”, which includes sample preparation and handling, 

chemical analysis and signal acquisition capabilities.  

 

There are two leading SPR systems on the market (Luppa et al., 2001); the BIAcoreTM 

systems and the IAsysTM. Other systems (with small market positions) are the IBISTM, the 

BIOS-1TM, the SPR-20TM, the DPXTM and SpreetaTM. However, the BIAcoreTM has the 

largest market share. Although first two commercial SPR systems are widespread in 

research laboratories due to the sophisticated apparatus and user friendly control software, 

they are composed of a disposable biochip and big SPR detection system and it is difficult 

to be remodeled as a point-of-care (field investigation) system. In the case of SpreetaTM 

system, which was used in this experiment, it is small enough to be used as a point-of-care 

system. However, even with the temperature control system of this experiment, there was a 

problem of unstable signal in this experiment and this problem makes a relatively big 

baseline drift (>0.5 millio) for the detection limit to be increased (see section 2.2.2(3)). If 

this background noise can be reduced by using several methods such as the incorporation 

the SpreetaTM transducer into a well-designed sensor system, the detection limit will be 

decreased for the SpreetaTM system to be sufficient for medical application even in the field 

investigation (Chinowsky et al., 2003).  

 

4.1.4 Future perspectives for clinical applications 

 

The disposable enzyme electrode intended for home monitoring of blood glucose is the most 

representative world market for biosensor (Newman et al., 2001). However, the medical 

application of biosensors with “real” clinical samples is still rare. As shown in the 

application of the detection for hHBV antibody (see section 3.3.1), all immunosensors are 

still one magnitude less sensitive than commercial immunoassays for determining analytes 

in human serum, particularly those with low molecular weight (Kubitschko et al., 1997). 
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The improvement of sensitivity can be accomplished by the detection chemistry, such as the 

high molecular mass label or nanoparticle, or increasing the sensitivity of the transducer. 

And reducing background noise is also important and it can be done with well-established 

system. However, the analytical potential of immunosensor technique such as ease of use or 

short analysis time is evident and in particular, the applications of optical immunosensor 

systems will most likely be of clinical interest (Luppa et al., 2001).   

 

4.2 Discussion on the limitations of biosensor for real application 

 

For the real medical application, the techniques in this work have been developed and the 

feasibility was demonstrated. Here, the limitations of each technique as well as the 

alternative solutions will be discussed.  

 

4.2.1 The number of repeated measurement by using in the additive assay  

 

The applicability of the additive assay was demonstrated by using CA 19-9 in 10 mM PBS 

as a model biomarker (see section 3.1.4). The detection limit of CA 19-9 was determined to 

cover the general detection range (400 – 192,000 U/ml) of most patient samples with 

pancreatic cancer (Del Villano et al., 1983). In this experiment, the feasibility was tested by 

four concentrations such as 1.3, 2.5, 5.0 and 6.7 kU/ml. Although those concentrations were 

relatively low part of the detection range, the uncertainty of measurement increased steeply 

only after the measurement of several analytes and the number of use seemed to be very 

limited. 

As the measured signal is saturated by repeated measurement, the uncertainty of 

concentration measurement increases steeply according to the increased accumulated 

concentration, even if the signal deviation (baseline uncertainty, ± 0.6 millio) is uniform (see 

Figure 3.7). In the saturated region of the correlation curve (the high accumulation 

concentration), only a small deviation in signal (baseline uncertainty) could result in the 

higher deviation of measured concentration in comparison to the low region of 

accumulation concentration. To maintain the accuracy of additive assay, the uncertainty of 

accumulated concentration by baseline uncertainty should be less than the detection limit 

(8.3 nM) (see section 3.1.3). In this case, the valid range of accumulated concentration 

should be within a limited range and it means that the applicable number of binding sites in 

the IA layer is strictly limited. When the number of additively attached analytes increases 
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the accumulated concentration, free binding sites of IA layer are also decreased. 

If the signal of same size can be obtained by the less number of binding between analytes 

and IA layer, the number of use can be increased in the additive assay. If several methods 

such as the orientation control of IA layer (see section 3.3.2) can be used to improve the 

sensitivity, the less number of binding sites is required for the same sensitivity and number 

of use can be increased because there is a constant number of binding sites in the IA layer. 

For the decrease of attachment by the same concentration of analyte, the reaction time 

should be decreased and the valid range of reaction time is until the sensitivity is still 

enough for the diagnosis. According to the above methods, the number of use can be 

increased in the additive assay of CA 19-9. 

 

4.2.2 Integration of simultaneous detection with additive assay 

 

Because simultaneous detection in this experiment should use a label with the sandwich 

assay format, there was a problem to integrate simultaneous detection with the additive 

assay. As the labels made sandwich complex with a part of the analyte on the IA layer, the 

rest of the analytes remained on the IA layer. These rest analytes on the IA layer made a 

significant influence on the next measurement by participating as analytes in the next 

measurement. Even if no more target analyte was treated to the IA layer, the rest analytes on 

the IA layer without label made a false positive signal. And, it resulted in a difficulty to get a 

uniform correlation curve for additive assay, and the additive assay was not possible for the 

simultaneous detection. The simultaneous detection has been disposable method until now. 

If label treatment can saturate the all binding sites corresponding to the analytes on the IA 

layer, additive assay can be used for the simultaneous detection. It can be possible by the 

treatment of a large amount of labels or several treatments of labels until the signal by next 

treatment of labels is disappeared.  

 

4.2.3 Signal amplification 

 

For the detection of analytes in serum, label-free assays with SPR biosensor has been with 

one order of magnitude lower sensitivity than commercial enzyme immunoassays 

(Lundstroem, 1994; Mullett et al., 2000; Goh et al., 2003; Kubitschko et al., 1997). Even 

with the signal amplification of this experiment such as usage of mass label or control of IA 

layer, the sensitivity of SPR biosensor should be improved for the medical application.  
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4.2.3.1 The improvement of label effect for the signal amplification  

 

In the detection of hHBV antibody (see section 3.3.1), several mass labels such as second 

antibody, avidin-biotin labeled antibody and PAP complex were compared and PAP complex 

was selected as efficient mass label. However, the detection limit of SPR detection with PAP 

complex label (0.64 nM) was still higher than the commercial ELISA kit (0.24 nM). 

Moreover, this experiment was done by 20-fold diluted serum sample (5 % serum) and the 

real detection limit by undiluted sample should be changed 20-times higher than 20-fold 

diluted sample from 0.64 nM to 12.8 nM. Accordingly, more effective label should be 

investigated. There are several factors such as mass, density and characteristic to influence 

the signal size of SPR biosensor as follows:  

 

(1) Mass label 

A large label with heavy mass such as liposome or latex particle could naturally make a 

higher signal than small label. By using liposome (100 ~ 1000 nm) as a label for the 

detection of interferon-γ, a liposome-enhanced sandwich SPR immunoassay improved the 

assay sensitivity 4 ⅹ 104 times and detection limit to a low picomolar level (Wink et al., 

1998). The sensor signal for hCG was also enhanced by using big latex particles (with a 

diameter of 238 nm) as a label (Severs and Schasfoort, 1993). Latex particles seemed to 

cause effect of signal amplification, compared to antibodies: at least twice at high 

concentration and 30 times at lower concentration of analyte. 

 

(2) Density label 

Label with a high density would be more efficient. High density means that mass is included 

in the smaller size. Because evanescent field for the SPR signal is inversely proportional to 

the distance from sensor surface (see Figure 4-1) (Ivarsson and Malmqvist, 2002), mass at 

the short distance can make high signal than mass at the long distance. Even if two different 

particles have same masses, label with high density will improve the effect of signal 

amplification. 

Even if label with heavy mass was used, the effect of signal enhancement was lower than 

the expected value (Severs and Schasfoort, 1993). Though a mass of hCG-coated latex was 

about as much as 2 ⅹ 104 antibodies, the signal by hCG-coated latex was far less than 2 

ⅹ 104-fold than antibodies because the size of hCG-coated latex was also as much as 400 
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antibodies. Evanescent field at a distance of 117 nM (the radius of the latex particle) should 

be less sensitive for refractive index changes than at a distance of about 10 nM (the 

dimension of an antibody). Considering the size and a mass between latex particle and 

antibody, theoretically expected signal of latex particle should be 50 times higher than 

antibodies. However, real efficiency for signal amplification was calculated to be less than 

50 times. The fact that latex bound less efficiently than free anti-antibody might be the main 

reason for the lower signal increase.  

 

 
Figure 4-1: Relative evanescent electric field amplitude (E) versus distance from 

solid/solution interface into sample (BIACORE instrument). Continuous line for SPR-

evanescent wave (gold film) and dashed line for non-absorbing TIR (no gold film). 

 

(3) Characterisitic label for SPR signal 

If label has good characteristic to make SPR signal, it would be better for signal 

amplification. Linkage with optically active particles has been proposed to enhance the 

sensitivity of SPR biosensor and among those particles, some particles such as colloidal 

gold with high optical refractive index lead to greater signal enhancement, while other 

particles such as polystyrene bead with smaller refractive index have less certain effect of 

the signal enhancement (Leung et al., 1994). When the colloidal gold was incorporated in 

analyte or label in the SPR boisensor, the sensitivities of ligand-protein and DNA-DNA 

interactions were increased and the change in SPR angle magnitude was particle-size 

dependent up to 45 nm in diameter (Lyon et al., 1998; He et al., 2000). 

 

In the future, the SPR signal amplification will be improved by developing efficient label, 

which simultaneously has several factors such as a heavy mass, high density and good 

characteristic to make SPR signal.  
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4.2.3.2 The optimal use of the NeutrAvidin-protein A complex 

 

In the detection of CEA tumor marker in the 10 mM PBS, NeutrAvidin-protein A complex 

layer was used as efficient layer to control IA layer (see section 3.3.2). Although the 

sensitivity with NeutrAvidin-protein A layer was improved 1.5-fold higher compared with 

the bare gold surface, the detection limit (30 ng/ml) was still higher than the cut-off value 

for medical diagnosis (5~10 ng/ml). In the real medical application, the detection limit will 

be increased by the nonspecific binding of serum. Accordingly, more efficient method to use 

the NeutrAvidin-protein A complex should be investigated to improve the detection limit. 

When NeutrAvidin-protein A complex was used in molecular recognition part, the 

orientation of receptor antibody in IA layer was controlled by protein A, which is a molecule 

for fixing receptor antibody. The degree of binding affinity between antibody and protein A 

is influenced by the species which makes antibody (Fulton, 1989). For the detection of CEA, 

anti-CEA antibody was used as receptor antibody of IA layer in this experiment and it was 

mouse IgG1. Because immunoglobulin binding property of protein A is known to be weak 

for mouse IgG1, the special ordering for the antibody from proper species such as rabbit, pig 

and human can improve the binding property between the receptor antibody and protein A to 

be strong (see Table 4-3). The improved binding property seems to have a potential to 

increase the amount of receptor antibody on the NeutrAvidin-protein A complex layer. In 

this case, more analytes can be also attached to the IA layer to increase the signal 

amplification. 

If change of animal species is difficult, the change of protein A can be an alternative method. 

Protein G also has a binding property for the Fc binding domains of antibody similar to the 

protein A and biotin-labelled protein can be used instead of protein A to make NeutrAvidin-

protein G layer. Although protein G has strong binding property for mouse IgG1, binding 

ability was not distinctly improved in comparison with the NeutrAvidin-protein A and signal 

ratio of protein G to protein A was just 1.1-fold in our experiment. This phenomenon 

seemed to be due to the difference of number of binding sites between protein A (four Fc 

binding domains) and protein G (one Fc binding domains) (Dubrovsky et al., 1996; 

Akerstrom et al., 1985): Though the protein G has better binding property for mouse IgG1 

than protein A, protein A has more binding sites than protein G. From this result, most 

proper situation is when the protein A has good binding property. 
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Table 4-3: Immunoglobulin binding properties of protein A and protein G.  

Antibody Protein A Protein G 

Rabbit ++ ++ 

Rat － + 

Goat + ++ 

Horse － ++ 

Pig ++ ++ 

Sheep － ++ 

Cow + ++ 

Dog ++ + 

Cat ++ － 

Guinea pig + ++ 

Chicken － － 

Mouse   

IgG1 － ++ 

 Others ++ ++ 

Human   

IgG1 ++ ++ 

IgG2 ++ ++ 

IgG3 － ++ 

IgG4 ++ ++ 

IgM ++ － 

IgA ++ － 

IgE ++ － 

IgD － － 

(Fulton, 1989) 

 

Molecular biology can also play an important role for the control of IA layer. If orientation 

control part such as avidin is attached to the molecular recognition part of antibody in the 

construction of recombinant antibody, this recombinant antibody can be well-oriented 

immobilized on the biotin-labeled SAM surface. 

 

 

 



 
Discussion                                                                           102 

 

 

4.3. The problems for the application to blood samples 

 

The real samples of medical diagnosis include blood, hair, milk, saliva, semen, sweat and 

urine. These samples include not only target analytes, but also other components which can 

interrupt effective detection of the target analyte. Serum is prepared by separating blood 

cells from the whole blood and it has a high concentration of protein which includes 

albumin and other globulins and so on. As proteins in serum can bind to the IA layer on the 

sensor surface (Matson, 2000; Wilde, 2001), the proteins influence to make a false positive 

or negative signal as follows; (1) The binding substances in the serum may cause 

interference in some immunoassay systems by decreasing analyte binding and by 

suppressing the antigen-antibody reaction (Hedenborg et al., 1979; Vladutiu et al., 1982; 

Schmidt, 1984). (2) The protein in serum may increase an assay response in sandwich assay 

(Boscato and Stuart, 1988). For example, the presence of rheumatoid factors or 

autoantibodies is known to be a common source of non-specific binding in serum and it 

bridges between the first and the second antibody in the immunoassay. The presence of 

these substances in serum that are capable of binding antibodies multivalently can lead to 

erroneous analyte quantification in sandwich assay. As these substances can attach to the 

immobilized antibodies and they also bind with label antibodies, the substances can link 

two kinds of antibodies to make false positive signal. In the real application of assay, these 

interferences were caused from 15 % of serum samples (Boscato and Stuart, 1986). 

Usually, the non-specific binding is one of the most serious problems for mass- or refractive 

index-sensitive detection systems such as SPR biosensor, especially when low-molecular-

weight or low-concentration analytes are examined (Vikinge, et al., 1998). As the biosensor 

such as QCM or SPR biosensor generate a signal by the binding of analytes, the non-

specific binding of other molecules can directly make a false positive signal. Various 

attempts to minimize the non-specific binding have been reported to detect target analytes 

in serum with SPR biosensors, and those methods were tried in our experiments. Several 

solutions to decrease the non-specific binding have been investigated, such as blocking of 

IA layer, dilution of blood sample and application of detergents.  

 

(1) Blocking of IA layer 

In solid-phase immunoassay, BSA and gelatin are commonly used as blocking agents after 

immobilization of antibody or antigen (Matson, 2000). For the polystyrene microtitre plates, 

many other proteins such as nonfat dry milk, casein, lipoprotein and BSA at high 
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concentration (120-3750 µg/ml) have been used (Vogt et al., 1987; Pratt and Roser, 1997). 

SAM was also used to block non-specific binding (Silin et al., 1997) and water-soluble-

hydrophilic organic macromolecule such as dextran was used as a coating to prevent non-

specific protein adsorption (Frazier et al., 2000). A number of polymers have been also used 

as blocking reagents such as polyvinyl alcohols, polyethylene glycols and polyvinyl 

pyrrolidone (Bangs laboratories, 1998). 

In this work, the NeutrAvidin-protein A complex layer had three layers such as NeutrAvidin 

layer, protein A layer and receptor antibody layer on the gold surface, sequentially and these 

three layers seems to block the gold surface more well than the one receptor layer. With the 

treatment of BSA (10 mg/ml) similar to the concentration of 20 % serum, non-specific 

binding at the IA layer on the NeutrAvidin-protein A complex layer (< 0 millio) was far less 

than the IA layer on the bare gold surface (44 millio) (see Figure 4-2).  

 

A          B 

 

Figure 4-2: The comparison of non-specific binding between the IA layer on the 

NeutrAvidin-protein A layer and on the bare gold surface.  
After the immobilization of the receptor antibody (anti-CEA) layer on (A) the bare gold surface and 

(B) the NeutrAvidin-protein A complex layer, non-specific bindings for each IA layer were measured 

by the treatment of BSA (10 mg/ml). Non-specific binding at the IA layer on the NeutrAvidin- 

protein A complex layer (< 0 millio) was far less than the IA layer on the bare gold surface (44 millio). 

The IA layer on the NeutrAvidin-protein A complex layer seemed to prevent the non-specific 

binding and real medical sample with high concentration of serum seems to be used with this layer. 
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(2) Dilution of serum sample 

The non-specific binding with serum sample is proportional to the serum concentration and 

the dilution of serum sample has been used as a general solution against non-specific 

binding in the immunoassay. For example, serum samples for monitoring of tumor antigen 

were reported to be diluted as much as 15- folds (Campagnolo et al., 2004). In the detection 

of serum antibodies against Salmonella enteritidis and Salmonella typhimurium, the serum 

sample was diluted to be 40- folds (Jongerius-Gortemaker et al., 2002). If the signal by the 

non-specific binding in the diluted sample is similar with the signal of detection limit (2.1 

millio), the interrupting effect by non-specific binding can be ignored. However, there is a 

limitation of dilution to minimize the non-specific binding. Even if serum samples were 

diluted upto 100- folds, the non-specific bindings by serum samples were still observed 

(Vikinge et al., 1998). Moreover, the diluted serum sample reduces the concentration of 

target analyte and it can be too low to obtain the required sensitivity. If high sensitivity is 

needed instead of accuracy and signal of target analyte can be distinguishable in the serum 

sample, low degree of dilution should be used. For the measurement of ferritin, the serum 

sample was only at a dilution of 1/2 (Cui et al., 2003). Generally, the serum is diluted to 

decrease erroneous signal in immunoassays and the dilution ratio should be around 1/500 ~ 

1/2000 in the ELISA application (Crowther, 2001). However, if the sample is diluted too 

much, the sensitivity is also decreased under the required detection range. In the general 

ELISA, serum is diluted to be 10 % ~ 50 % according to the required sensitivity of the 

assay (http://www.m.ehime-u.ac.jp/~yasuhito/ElisaS.html). Therefore, an appropriate 

dilution factor should be selected for each application.  

 

(3) Application of detergents 

The application of detergent components in wash and assay buffers is also generally used to 

minimize nonspecific binding in immunoassay (Matson, 2000). Detergents can remove 

nonspecifically bound biomolecules from the surface by disruption of hydrophobic bonds 

formed between the biomolecule and surface groups. Generally, these are used at relatively 

low concentration (0.01 ~ 0.1 %) in order to avoid potential interference with the assay, such 

as the displacement of antibody or antigen coatings from the surface. There are nonionic 

detergents such as Tween 20, or ionic detergents such as SDS or DTAB. Though nonionic 

detergent of 0.5% Tween 20 had been used for our experiments, however, it seems to be 

valuable to try other strong detergents. 
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(4) Others 

There were also other attempts to minimize nonspecific binding. For example, the proper 

selection of species which produces antibodies for IA layer can influence against the 

nonspecific binding (Vikinge et al., 1998). When chicken IgY and mouse IgG were 

immobilized to a sensor chip CM5 dextran matrix and compared their background signals 

with serum (negative signal by nonspecific binding), chicken antibodies and mouse 

antibodies bound low quantities and large quantities of human serum, respectively. Chicken 

IgY is known to have a much lower reactivity to human serum proteins than any known 

murine antibody (Weber et al., 1990; Larsson et al., 1991; Larsson et al., 1993). The 

immobilized chicken antibodies can improve the detection of serum antigens with surface 

plasmon resonance.  

 

Moreover, addition of EDTA to serum can also reduce the background signal modestly for 

both IgG and IgY (Vikinge et al., 1998). When diluted normal human serum samples (1% in 

HBS) were flown over IgG or IgY immobilized to the dextran matrices, serum protein 

binding was quantified. After addition of 3.4 nM EDTA, responses by non-specific binding 

were reduced from 924 to 347 RU (1 kRU = 1 ng/mm2) for the IgG matrices and from 606 

to 114 RU for the IgY matrices, respectively.  

 

In the making of IA layer, the use of Fab fragments instead of whole antibodies may also 

help to minimize non-specific binding (Matson, 2000). Moreover, since rheumatoid 

autoantibodies react mainly with the Fc region, the use of Fab fragments can also reduce this 

problem. In our experiments, antibodies for IA layer were not Fab fragments but whole 

antibodies. Accordingly, blocking property seems to be improved by using Fab fragments. 

 

The pH at which the assay operated was also evaluated to minimize interference by sera 

(Jongerius-Gortemaker et al., 2002). A pH-dependent non-specific and specific response 

was found in the tested pH range from 5.0 to 7.6. A pH of 7.4 was selected as the working 

pH for minimal interference stemming from the serum matrix. Our experiment was already 

done with a condition of pH 7.4.  
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