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The eye as target for topical drug delivery – overcoming the problems 

 



2 
Introduction 

Anatomy 

 

Anatomy of the eye 

The eye is the organ for visual perception of the environment. In order to forming a 

picture, a perceptive and a refractive system is needed. The perceptive system is 

located in the rear part of the eye, while the refractive system is mainly located in the 

anterior part. 

Figure 1 gives an overview on the architecture of the eye. 

 

Figure 1: Anatomy of the eye [adapted from ref. 1] 

 

The shape of the eyeball is crucial for the proper function of the eye. Therefore, its 

shape sustained by a system composed of an outer shell that is build of various layers 

of tissue and an additional inner support, the vitreous body. The outmost tissue layer 

of the eye is the tunica externa oculi and it mainly consists of connective tissue, called 

Sclera 

Choroids 
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sclera. The sclera has a white appearance and is made of collagen. The front part of 

this outer shell is the cornea, which is incremented to the sclera in an hourglass-like 

fashion. The cornea is clearly distinguishable from the sclera and has different 

properties, of which the optical (refractive) and barrier function are the most 

important ones. 

 

The middle layer of the eye is called uvea and consists of choroids, iris and ciliary 

body. The choroid contains a big amount of blood vessels and is responsible for the 

nutrition (i.e., supply with oxygen, minerals and other nutrients) of the adjacent 

tissues. Connected to the choroids is the ciliary body, which is responsible for the 

accommodation of the lens. It also regulates the intraocular pressure by disposing the 

aqueous humor through the Schlemm’s channel. Third part of the uvea is the iris. It 

consists of two important smooth muscles, called musculus sphincter pupillae and 

musculus dilatator pupillae. These two muscles control the opening and closing of the 

pupilla, depending on light intensity on the retina. 

Furthermore, the iris has a pigmented epithelium that determines its color. The 

epithelium is visible from the outside and is a personal feature, commonly known as 

eye color. Besides the control of light intensity entering the eye and giving the eye 

color, the iris serves as a barrier between the anterior and the posterior part of the eye. 

Thus, it creates the anterior chamber and posterior chamber that contain the aqueous 

humor. 

 

The inner parts of the eye consist of anterior chamber, lens, vitreous body and retina. 

The retina is the innermost layer of the bulbus and is the perceptive system of the eye. 

Through photochemical processes in the light sensitive cells (i.e., rods and cones) 
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nervous impulses are generated that will be transformed to a picture in the brain. 

Through the high density on pigmented cells, the retina has a dark-brown to black 

appearance. 

The vitreous body mainly helps maintain the spherical shape of the eyeball. 

The lens is, besides cornea, the second part of the refractive system that directs light 

to the perceptive part of the retina. The curvature of the lens is controlled by the 

ciliary body. 

The anterior chamber is the liquid-filled part between cornea and iris. It is mainly 

responsible for the intraocular pressure of 10-21 mm Hg. 

 

Anatomy of the cornea 

 

Figure 2: The layers of the corneal epithelium [taken from ref. 2] 

 

The cornea has two main characteristics. On the one hand, it is part of the refractive 

system and directs, together with the lens, light towards the macula lutea on the retina. 
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To serve this property, it is necessary that the cornea has a clear appearance. This is 

achieved by a high degree of hydratization and the absence of blood vessels [5]. 

Nutrients are delivered to the cornea by diffusion only. On the other hand, it 

represents the barrier between the anterior chamber and the air in the outside 

environment. This makes the cornea an important part of the protective system of the 

body, because it prevents substances and microorganisms from entering the eye. 

Histologically, the structure of the cornea is rather simple. As shown in figure 2, it 

consists of a multi-layered epithelium, two membranes, a stroma and a single-layered 

endothelium. 

 

The human epithelium itself consists of 5-6 cell layers, but the thickness varies 

between species and can easily exceed the numbers found for humans. The innermost 

layer is the basal cell layer. This monolayer contains living cells with mitotic activity. 

Cells are produced continuously. During their life span of about 14 days, epithelial 

cells differentiate and travel to the surface of the epithelium, becoming first wing cells 

(2-3 cell layers) and then superficial cells with a very long and flat appearance. The 

superficial cells completely lack proliferative activity [6]. The surface of the cornea is 

highly increased by mircoplicae and microvilli. The epithelial layers also contain a 

high number of nervous endings that produce the feeling of major discomfort if the 

eye is rubbed or scratched. Tight junctions between neighboring cells of the 

epithelium are essential for the protective properties of the cornea and also for the 

maintenance of corneal transparency [3, 4] 

 

Basis for the epithelium is Bowman’s membrane. It mainly consists of type I and III 

collagenous fibers. The actual purpose of this membrane is still unclear, especially 
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because not all mammals have a Bowman’s membrane. But in humans, the 

importance of this layer for structural integrity of the epithelium has been shown. The 

body does not have self-repair mechanisms for the Bowman membrane [7]. 

 

Almost 90% of the cornea consists of stroma. This middle layer consists of water and 

collagen type I (90%), III (<10%), and V (traces) [8]. The collagen is produced by 

fibroblasts that are embedded in the stroma. The organization of the collagen fibrils is 

crucial for the transparency of the cornea. 

 

Descement’s membrane serves as basal layer for the endothelium. It consists of 

collagen type IV, fibronectin and laminin [8]. 

 

The endothelium is the innermost layer of the cornea and the barrier to the aqueous 

humor. It controls substance diffusion and nutrition of the upper layers. It is a tight 

layer through formation of cell-cell-contacts, but not the major barrier in the cornea. 

The normal density is about 3,500 endothelial cells/mm2. 

 

 

Targets for ocular drug delivery 

The treatment of ocular diseases is in general pursued by local, topical application of 

medical drugs. Carriers for the drugs are usually eye drops or eye ointments. 

For the drug, the hydrophilicity/lipophilicity ratio determines the penetration of the 

substance. Hydrophilic substances will stay on the surface of the eye, accumulating in 

the tear film. Highly lipophilic substances will penetrate the corneal epithelium but 

are unable to cross the hydrophilic stroma. For these substances, other routes of 
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penetration, like distribution through the local vasculature, are reserved [9]. 

Amphiphilic substances do have the properties to cross the various corneal 

compartments with different characteristics (i.e., lipophilic or hydrophilic 

corresponding to corneal epithelium and endothelium or stroma) and penetrate into 

the inner eye. 

 

In the eye, there are application possibilities for both, hydrophilic and lipophilic 

drugs. Pharmaceutical treatment of the eye surface includes (allergic) conjunctivitis, 

dry eye disease, bacterial infections of the eyelid limbus (i.e., hordeolum), local 

anesthesia and cornea ulcers. 

Pathological conditions of the inner eye are glaucoma, age-related macula 

degeneration (AMD), eye infections with bacteria, viruses and fungi, cataract and 

retinal detachment. 

This makes aqueous humor/ciliary body, lens and retina to major targets for ocular 

drug delivery in the inner eye. 

 

For an amphiphilic substance, there are 3 general ways of drug delivery. The first 

possibility is the general blood circulation that will distribute the substance in the 

systemic circulation and, following drug distribution in the body, also reach the eye 

locally. 

Another pathway is the penetration via the conjunctival-scleral pathway that includes 

distribution of the substance along the conjunctiva and re-entry of the compound into 

the eye through the sclera [9]. The conjunctival-scleral pathway is restricted to some 

compounds of high molecular weight. Even though it contributes highly to the drug 

delivery of these compounds, it is of minor interest for general ocular drug delivery. 
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The most common way of drug penetration is the direct pathway through the cornea, 

which makes this compartment of the eye a major barrier for ocular drug delivery. 

Drug penetration in the cornea has two possible pathways: crossing the cellular body 

(i.e., transcellular) or through the gaps between the cells (i.e., paracellular). For 

paracellular transport, tight junctions between the uppermost layers of the superficial 

cells form a major barrier for penetration [10]. More hydrophilic drugs can only cross 

the barrier by using pores in the cell layer. The tight junctions regulate the 6nm-sized 

openings. More lipophilic drugs have the properties for transcellular penetration. The 

lipophilicity ratio has been shown to be a crucial factor for transcellular transport by 

Schoenwald and others [11]. The different pathways through cellular layers are shown 

in Figure 3. The most important ways of drug penetration in corneal tissue are shown 

on the left hand side. 

 

 

 

 

 

 

 

Figure 3: Penetration pathways in (cultured) cell layers 

 

Besides the physico-chemical properties of the active ingredient, several other aspects 

affect the delivery of drugs to the eye. As an important factor, the short residence time 

for ocularly applied solutions has to be considered. This is caused by the small total 

volume of the cul-de-sac and rapid drainage of the liquid through the nasal duct. Thus, 

apical 
(luminal) 

basolateral 
(serosal) 

1 transcellular transport 
2 paracellular transport 
3 vesicular transport 
4 active absorption 
5 active sectretion 
6 active efflux systems 
   (e. g., P-gp) 

� � � � � � 
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for an ocular drug preparation, viscosity, mucoadhesive properties, applied volume 

and moistening are crucial factors. 

 

In vitro models to study drug absorption 

Drug delivery research has gained a new tool in the last decades: many 

pharmaceutical scientists use in vitro cell cultures as novel strategy to exploit drug 

delivery issues. The various advantages of in vitro cell cultures in pharmaceutical 

development and research include (1) rapid assessment of the potential permeability 

and metabolism of a drug, (2) the opportunity to elucidate the molecular mechanisms 

of drug transport or the pathways of drug degradation (or activation), (3) rapid 

evaluation of strategies for achieving drug targeting, enhancing drug transport, and 

minimizing drug metabolism, (4) the opportunity to use human rather than animal 

tissues, (5) the opportunity to minimize time consuming, expensive, and sometimes 

controversial animal studies. The reduction of animal experiments is in accordance 

with the 3 R principles, firstly introduced by Russell and Burch in 1959 [12]. The 3 

R’s stand for Replace, Reduce and Refine and are guidelines for the application of 

animal experiments in scientific research. In a sense of animal welfare, cost reduction 

and a wish for increased reproducibility of experiments, the replacement of animal 

experiments by suitable in vitro test systems has become important in the last decades. 

In an effort to pursue this scope, an array of cell culture models for epithelial barriers 

has been established, including models of the intestinal, rectal, buccal, sublingual, 

nasal, ocular epithelium and the epidermis of the skin [20]. Especially, the epidermal 

cell models (i.e., reconstituted epidermis) and the intestinal epithelium (i.e., Caco-2 

cell cultures) have gained major acknowledgement in scientific research. But also the 
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cell culture models of the ocular barriers provide powerful systems to investigate the 

barrier properties of the eye in vitro. 

Generally, two types of cell culture systems have to be distinguished: primary cell 

culture and continuous (immortalized) cell lines.  

Primary cultures are derived from cells, tissue or organs that were explanted directly 

from the donor organism. After purification and selection steps, the cells are seeded 

onto suitable supports and cultured throughout their lifecycle. No steps for extending 

the useful lifespan are undertaken. Generally, subculturing of primary cells is 

possible, but the number of passages is limited due to the limited lifespan. 

The limited viability of the cells is seen as a major disadvantage of the primary 

culture, along with limited availability of the original tissue. The high resemblance of 

the cells to the original tissue or organism is considered advantageous in return. 

Continuous cell lines, also often referred to as immortalized cell lines, have 

undergone a procedure to extend their useful lifespan beyond their physiological 

lifecycle. Immortalization often includes the insertion of additional genomic 

information to the cell and goes along with a decrease in the status of differentiation. 

The advantages of continuous cell lines include the uniform characteristics, almost 

unlimited self-reproduction of the cells and easy handling. Disadvantages of these 

models include the lower state of differentiation when compared to primary cells and 

resulting from this, the reduced resemblance to the original tissue or organism. Figure 

4 shows a general example of cells cultured on a suitable, permeable filter membrane. 

A selection of continuous cell lines representing the corneal epithelium has already 

been established [13, 14, 14, 16, 17]. Since all these cell lines have undergone a 

process to extend their lifespan and are partly of non-human origin, they often lack 

certain features that are only found in human primary cells. Among these features is 
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epithelial phenotype, state of differentiation, formation of tight junctions, 

morphological appearance, and presence or absence of membrane transporters. 

Primary cell cultures are expected to develop a tight barrier in culture and resemble 

the in vivo barrier best by a process of formation of a tight cell layer, differentiation, 

morphological and functional resemblance. Primary cultures are gained by isolation 

of the respective cells from the respective (here: corneal) tissue. The fresh cells are 

maintained in a suitable cell culture medium for a certain time. Since primary cells are 

in the regular cell cycle, their lifespan is not extended and these cells are mortal. 

Primary ocular cell cultures, suitable for drug transport studies, have already been 

established using rabbit corneal epithelial and conjunctival epithelial cells [18, 19]. 

Taking in account the principles and techniques mentioned above, a wide array of 

useful cell culture models of the corneal epithelium has been established. The ban of 

animal testing in the cosmetics industry by the European Union in 2003 contributed to 

the immense development and improvement of (ocular) cell cultures. Major target 

was to substitute animal experiments by suitable in vitro methods. Many of these cell 

culture models focus on toxicity testing and ocular irritation, but also cell layers for 

drug permeation studies are available. Indispensable for successful drug penetration 

testing is a cell layer that exhibits a tight epithelial barrier, which disqualifies some of 

the models of the corneal epithelium that were established as substitute for the Draize 

test. Still, at least two cell lines are available for pharmaceutical purposes (see later 

chapters). 
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Figure 4: macroscopic (A) and microscopic (B) images of in vitro cell models 

 

 

Bioelectrical parameters 

To evaluate the barrier properties of in vitro models, two parameters are generally 

monitored: The transepithelial electrical resistance (TEER) and the potential 

difference (PD). While the TEER value is an indicator for the tightness of the 

(epithelial) barrier, generated by the cells and their tight junctions, the PD represents 

the activity of ion-transporters. The TEER is usually expressed in Ω*cm², the PD in 

mV, which allows to standardize and transfer the measured values to various barrier 

and cell systems. Both values are corrected for a background, contributed by the filter 

membrane of in vitro cell culture systems (TEER value) or the conductance of the 

medium (PD). 

TEER and PD are measured best with an electrical voltohmmeter equipped with 

“chopstick” electrodes that suit the permeable cell culture inserts (e.g., Corning 

Transwell®, Greiner Thinserts®, NUNC CC Inserts®). A suitable device is provided 

by World Precision Instruments (EVOM with STX-2 electrodes). The device is shown 

in figure 5. TEER values are also assessed as standard procedure in the experiments 

described herein to control the integrity of the cell layers and tissues used. 

(A) (B) 
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Figure 5: Scheme of an EVOM device and its application [photo taken from the WPI 

web page] 
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Aim of this work 

This work focuses on several aspects of ocular drug delivery research. On the one 

hand, a new therapeutic compound, moxaverine-hydrochloride, should be examined 

for its penetration behavior into the eye and its various tissues, on the other hand, a 

suitable cell culture system should be established to facilitate drug delivery research 

and reduce the number of animal experiments. 

In this work, an attempt was made to establish a primary human corneal epithelial cell 

model as a tool for drug penetration studies. 

Since, as already mentioned, a human in vitro system resembles the in vivo situation 

best, the set-up of a human primary corneal epithelial cell model is highly interesting 

for scientific and biopharmaceutical research. 

To evaluate the available cell culture models, a comparison of the different properties 

of the various cell models is another scope of this work. So far, different cell culture 

systems for different applications are used side-by-side in research. To find the model 

most suitable for drug transport studies, we compared the different cell culture models 

for the first time using identical conditions. 

 

According to this scope, the presented thesis is subdivided in 5 chapters, each dealing 

with a different aspect of the evaluation of the cell culture system and our new drug 

compound, moxaverine-hydrochloride: 

1. The in vivo evaluation of moxaverine-hydrochloride, its ocular distribution 

and bioavailability are examined in Chapter 1. 

2. In Chapter 2, the studies undertaken to establish a human primary corneal cell 

culture model are summarized. 
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3. For the comparison and evaluation of different corneal cell models, drug 

transport studies, employing a portfolio of different marker substances, were 

performed. Chapter 3 discusses the findings of the study and scores the 

different systems under investigation. 

4. In Chapter 4, the commonly used HCE-T cell model is compared to our ex 

vivo system, generated using excised human cornea. Differences in the 

molecular-biological layout are pointed out. Main focus of this chapter is on 

the MDR-transporter spectrum. 

5. Further examinations and findings are summarized in Chapter 5. 
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Abstract 

 

Objective: The aim of this study was to determine the tissue distribution and epithelial 

penetration of moxaverine-hydrochloride (MOX) in the rabbit eye. 

Methods: For systemic application, a radioactively labeled MOX solution was 

injected into the ear vein of Dutch-belted pigmented male rabbits. For topical dosing, 

an identical solution was administered. At pre-determined time points, rabbits were 

sacrificed, the eye dissected, and the amount of MOX in the ocular tissues measured. 

To examine the MOX permeability across the corneal epithelium, transport studies 

using rabbit corneal epithelial cell culture were conducted and the respective apparent 

permeability coefficient in absorptive (a to b) or secretive (b to a) direction was 

calculated. 

Results: Topical delivery resulted in high concentrations of MOX in cornea and 

conjunctiva, while other tissues of the anterior part yielded lower MOX 

concentrations. In the tissues of the posterior part, high amounts were detected in the 

retina. Plasma levels were low. The apparent permeability coefficient across corneal 

epithelial cell layers was in the range of 10-5 cm/s, exhibiting no apparent 

directionality. 

Conclusions: A topical dosing of MOX to posterior regions of the eye seems feasible. 

MOX levels in the posterior part of the eye were remarkably high, without causing 

stringent plasma levels. The high apparent permeability coefficient of MOX across 

the corneal epithelial cell layers might be due to the lipophilic nature of the drug and 

was in the range of other compounds with comparable physicochemical properties. 
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Introduction 

 

Targeting drugs to the posterior part of the mammalian eye via topical application 

remains a formidable task and is of major interest for ophthalmic research, because of 

the easy application for the patient and considerably low systemic availability, which 

might alleviate unwanted side effects. 

In addition, to opt for the ocular route of drug delivery might avoid drug 

degradation caused by the first pass effect occurring in the liver. Moreover, it is 

possible to target drugs to several sites or tissues of interest [1]. 

Potential disadvantages of ocular drug delivery may include the rather low 

applicable volume and the rapid drainage of the drug solution through the naso-

lacrimal duct. The comparison of advantages and disadvantages of topical (ocular) 

dosing and systemic application is a rewarding field of research, as is the evaluation 

of the distributional profiles of old and new drug entities. 

Moxaverine-hydrochloride (MOX) is a derivative of papaverine-hydrochloride, a 

component of the chyle of the poppy (papaver somniferum) used as muscle relaxant, 

but its efficacy in the ophthalmic clinic is unknown. Compared to papaverine-

hydrochloride, MOX offers enhanced solubility in hydrophilic or aqueous solvents 

and a lower toxicity [2,3]. The chemical structure of MOX is shown in Figure 1.  

 

N

MeO

MeO
ClH

MW: 343.85

 

Figure 1: Chemical structure of moxaverine-hydrochloride 
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The synthesis of MOX (1-benzyl-3-ethyl-6, 7-dimethoxy-isoquinoline) was first 

described in 1962 [4]. 

Physicochemical properties of interest for MOX include a high lipophilicity (log 

PpH 7.4= 4.017), a pKA-value of 6.75 for the nitrogen-atom and a high amount of 

protein binding.  

In the clinic, the hydrochloride-salt is used instead of the free, lipophilic base, due to 

its increased solubility. The pharmacodynamic effects of MOX include: increased 

rheology of erythrocytes; blood vessel relaxation in the brain as well as in the 

peripheral organs (e.g., arms and legs); and spasmolysis of the vessel musculature 

[5,6]. The vessel relaxation and spasmolytic properties of MOX seem to be of major 

interest in ocular application, in addition to the decreased viscosity of the blood, 

which is useful in therapy of circulatory disorders. Other mechanisms of action 

include an inhibition of the enzyme phosphodiesterase (PDE) [6 - 11] and coupling 

with calmodulin resulting in a stronger inhibition of the calmodulin dependant PDE 

[12, 13].  

In recent years, considerable efforts have been made to develop in vitro models 

that allow reliable mechanistic examinations of cellular and molecular processes 

involved in the absorption of xenobiotics. The gastrointestinal tract has been 

examined for that purpose very intensively, whereas ocular cell culture models have 

also been used as a tool to examine drug transport mechanisms. In this context, 

protocols have been developed for the isolation and cultivation of primary corneal and 

conjunctival epithelial cells [14, 15] and continuous cell lines have been established 

[16, 17]. Because cells in primary culture resemble the native tissue closer than cell 

lines, we also conducted our studies using primary cultured corneal epithelial cells 

isolated from male, Dutch-belted pigmented rabbits. Culture conditions are known to 
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be highly relevant for proliferation and differentiation of various epithelial cells. 

Adapting from the culture techniques for airway epithelial cells [18, 19], air-interface 

culture (AIC) of ocular epithelial cell models yielding a very tight and well-

differentiated cell layer [14, 15], has been developed and utilized in our laboratories. 

In this study, we determined whether MOX, a drug of potential interest for 

ophthalmic treatment/research, could be delivered to tissues of interest by topical 

application to the eye and also estimated the apparent permeability coefficients across 

the primary cultured corneal epithelial cell layers. 
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Materials and methods 

 

Materials 

Moxaverine-hydrochloride (MOX) was a gift from Ursapharm Arzneimittel 

GmbH & Co. KG (Saarbrücken, Germany). 14[C]-Radiolabeled MOX (specific 

activity 30 mCi/mmol) was synthesized by BIOTREND (Cologne, Germany). All 

other materials were of the highest grade available commercially. Eutha-6 CII sodium 

pentobarbital solution was purchased from Western Medical Supply (Arcadia, CA). 

Triton X-100, anhydrous citric acid, protease type XIV and DNase I were from Sigma 

(St. Louis, MO). Sodium hydroxide was from Curtin Matheson Scientific (Houston, 

TX) and PBS (10x) from Gibco (Grand Island, NY). Scintillation cocktail (Econo-

Safe) was purchased from Research Products Intl. (Mount Prospect, IL) and heparin 

5000 IU/mL from Elkins-Sinn (Cherry Hill, NJ). Transwell filter inserts (catalog 

number 3460) were from Costar (San Francisco, CA). Male, Dutch-belted pigmented 

rabbits, weighing ~ 2.2 kg, were purchased from Irish Farms (Los Angeles, CA). The 

animals were utilized according the ARVO Statement for the Use of Animals in 

Ophthalmic and Vision Research. 

 

Methods 

 

In vivo administration: 

For the in vivo studies, 10 mL of a citrate buffer (44.06 mM citric acid, 80.6 mM 

NaOH, pH = 3; 280 mOsm) were spiked with 11 µL MOX-radiotracer. The total 

concentration of MOX in the eye drop preparation was 1.28x10-3 M. The 

concentration was chosen to make the achievement of significant concentrations in 

the aqueous humor most likely. The iso-osmotic pressure mainly limited the 
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concentration of MOX in the eye drop preparation. However, 10-7 M has been found 

to be a minimal active concentration by Berndt et al. [8] using a porcine ateria 

femoralis preparation. A modification of the protocol of Schoenwald and Steward 

[20] was used for ocular administration. Briefly, the rabbits were placed in restrainers 

and 50 µL of the isotonic drug solution, spiked with a radioactive tracer as described 

above, was topically applied to each eye. For the determination of the drugs 

bioavailability after intravenous administration, an identical solution was injected to 

the marginal ear vein of the animal. At predetermined time points up to 120 min, 

blood samples were taken from the artery in the central region of the rabbit ear. Blood 

coagulation was prevented with heparin and the blood cells were separated from 

plasma by centrifugation. Subsequently, rabbits were sacrificed by an overdose of 

Eutha-6 CII given intravenously. From one eye, samples of aqueous humor and 

vitreous body were taken; the other eye was excised as a whole from which various 

ocular tissues (e.g., cornea, conjunctiva, lens, iris/ciliary body, retina, sclera) were 

dissected. For the isolation of retina and sclera, the vitreous body was removed from 

the eye using a pair of forceps. Subsequently, the outer tissues were flattened by eight 

incisions along the sclera-iris-rim. The retina, containing the choroids, was scraped 

off using a scalpel blade. 

 

Individual tissues were then lysed with 1 mL solubilizer mixture (comprised of Triton 

X-100 (15% v/v) and 0.5 N NaOH) for 12 hours. Scintillation cocktail was added to 

the vials containing the individual tissue lysates and the radioactivity of each lysed 

tissue sample was determined in a scintillation counter (LS 1801, Beckman, Fullerton, 

CA). 
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In vitro permeability studies: 

A primary culture of rabbit corneal epithelial cell layers (rbCrECL) was used. This in 

vitro model has been described previously by Chang et al. [14] and has been slightly 

adapted for our purposes. Briefly, pigmented male Dutch-belted rabbits were 

sacrificed by an intravenous overdose of Eutha-6 CII solution (120 mg pentobarbital-

sodium/kg body weight) via the marginal vein of the left rabbit ear. The entire eye 

was carefully removed by an aseptic method. The corneal epithelial cell layers were 

exposed to a 0.2% solution of protease type XIV for 45 min at 37°C before being 

gently scraped off. Protease activity was stopped by adding supplemented minimum 

essential medium (S-MEM) containing 10% fetal bovine serum (FBS). The addition 

of excess proteins caused a quenching of enzymatic activity. The following removal 

of the medium completely disposed of the protease. 

Cell aggregation was reduced by including 0.75 mg/mL DNase I in the same 

solution. Isolated cells were washed and purified further by passing them through a 

40-µm cell strainer. The resulting corneal epithelial cells (viability >95%, tested by 

trypan blue exclusion assay) were then plated onto 1.13 cm2 polyester Transwell filter 

inserts (12 mm in diameter, pore size 0.4 µm), precoated with a mixture of rat-tail 

collagen (type I, 1.8 µg/cm2) and human fibronectin (0.6 µg/cm2). DMEM/F12, 

supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), gentamicin (50 

µg/mL), insulin-transferrin-selenium premix (10 µL/mL ITS+, BD Biosciences, San 

Jose, CA), bovine pituitary extract (30 µg/mL), epidermal growth factor (EGF, 1 

ng/mL) and hydrocortisone (0.36 µg/mL), was used as culture medium. Cells were 

maintained in a humidified incubator at 37°C in 5% CO2 atmosphere. Air-interfaced 

culture (AIC) conditions were created by removing media from the apical 

compartment and keeping 700 µL of media in the basolateral compartment starting 
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one day after cell plating. Culture media were changed on a daily basis after 

bioelectrical parameters were assessed. The bioelectric parameters of transepithelial 

electrical resistance (TEER) and potential difference (PD) were measured with an 

epithelial voltohmmeter (EVOM), equipped with STX-2 chopstick electrodes (World 

Precision Instruments, Sarasota, FL). TEER and PD were corrected for the 

background values contributed by the empty filter and culture medium.  

 

Transport studies: 

In vitro transport experiments were performed on day 7 to 10 in culture. All 

solutions were used prewarmed to 37°C. The cell layers were washed with a modified 

Krebs-Ringer solution with bicarbonate buffer (KRB, 1.5 mM K2HPO4, 3 mM KCl, 4 

mM glucose, 142 mM NaCl, 10.07 mM 4-(2-Hydroxyethyl)-piperazine-1-

ethansulfonic acid (HEPES), 1.4 mM CaCl2, 2.56 mM MgCl2, pH = 7.4). The 

transport experiments were initiated by exchanging the KRB of the respective donor 

side with a same volume of isotonic radiolabeled MOX solution (1mCi 14C-MOX / 

L). The volumes in the apical and basolateral chamber were, respectively, 500 µL and 

1500 µL. 

Samples (100 µL) were drawn from the corresponding receiver compartment 

every 30 minutes up to 3 hours. Sampled volumes were replaced by the same amount 

of fresh pre-warmed KRB solution. Samples were mixed with scintillation cocktail 

and assayed for their radioactivity using a scintillation counter. To determine the 

initial concentration, 20-µL samples of the test solution were assayed for 

radioactivity. 

All transport experiments were performed with and without addition of 

benzalkonium chloride/EDTA, a potential preservative. Concentrations for the 
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preservatives were chosen according to recommendations given in the German Drug 

Codex (DAC) [23], that is, 0.01 % (w/v) for benzalkonium chloride and 0.2% (w/v) 

for EDTA.  

Experiments were performed in triplicate. Both TEER and PD values were 

assessed before and after the drug permeation experiments to assess the integrity of 

the cell layers. 

The apparent permeability was calculated as flux of MOX versus time, using the 

relation,  

Ac

J
Papp

*0

=    (Eq. 1) 

where, J = MOX flux (mol/s), c0 = initial MOX concentration in the donor solution 

(mol/cm3) and A = surface area of the cultured corneal epithelial cell layer (cm2). 
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Results 

 

In vivo experiments: 

The results of the in vivo study of MOX accumulation in the anterior (i.e., 

conjunctiva, cornea, aqueous humor, iris and ciliary body, lens) and posterior parts 

(i.e., sclera, retina) of the eye are respectively shown in Figures 2 and 3. Drug 

amounts found in the plasma (representing systemic bioavailability) are also given in 

Figure 3.  
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Figure 2: Tissue distribution of moxaverine-hydrochloride in the anterior parts of 

the eye following systemic vs. ocular delivery. Experiments were performed on 3 

rabbits for each time point, except for systemic application 30 min (n=2).  

The error bars reflect standard deviations. 
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Target structure
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Figure 3: Tissue distribution of moxaverine-hydrochloride in the posterior parts of 

the eye and plasma. Experiments were performed on 3 rabbits for each time point, 

except for systemic application 30 min (n=2). 

The error bars reflect standard deviations 

 

After topical administration, the highest levels of MOX were found in the anterior 

parts of the eye, i.e., conjunctiva, cornea and iris/ciliary body. The lens and aqueous 

humor contained no measurable amounts of drug. 

For the posterior parts of the eye, the MOX concentration within the retina at 30 

min after topical administration was slightly lower than those attained via systemic 

application. After 2 hours, drug content of the retina decreased after systemic 

application, whereas drug content increased in the same tissue after ocular dosing. It 
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should be noted that the plasma values after topical dosing are significantly lower 

compared to those observed with systemic dosing. 

Amounts of MOX in the sclera at both 30 and 120 min in after intravenous 

application, were lower than those found with ocular administration.  

 

In vitro experiments: 

The results of the in vitro transport studies conducted with primary rabbit corneal 

epithelial cell layers are shown in Table 1. The Papp values for both absorptive and 

secretive directions were in the same range (i.e., ~ 1.4x 10-5 cm/sec), indicating that 

no active transport mechanism in the corneal epithelium seems to be involved in the 

absorption of MOX. The observed Papp values were in the same order of magnitude 

compared to other substances with similar physicochemical properties (Table 2). 

 

Table 1: Papp values of moxaverine-hydrochloride across primary rabbit corneal 

epithelial cell layers (mean ± SD, n = 9) 

Papp (x10
-5

 cm/sec) + TEER (after experiment) Direction of drug 

transport + benzalkonium chloride/EDTA - benzalkonium chloride/EDTA 

Absorptive 

(a to b) 

1.28 ± 0.41 

TEER: 2203 ± 202 Ω * cm2 

1.38 ± 0.41 

TEER: 2288 ± 358 Ω * cm2 

Secretive 

(b to a) 

1.33 ± 0.22 

TEER: 2137 ± 311 Ω * cm2 

1.43 ± 0.94 

TEER: 1939 ± 640 Ω * cm2 
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Table 2: Comparison of Papp values (for details, see [27]) 

All Papp were examined for absorption (i.e., a to b direction) across rabbit cornea. 

Substance MW Log P pH Papp(x 10
-5

 cm/sec) 

Corynanthine 354 3.01 7.70 1.10 

4, 6-dichloroethoxzolamide 283 3.70 7.65 3.90 

Flurbiprofen 244 3.75 7.40 2.10 

Progesterone 314 3.78 7.65 2.00 

Progesterone 314 3.78 7.50 1.80 

Propranolol 259 2.75 7.50 3.10 

Penbutolol 291 4.04 7.00 2.20 

Moxaverine-HCl 344 4.02 7.40 1.38 

 

The preservative benzalkonium chloride/EDTA does not appear to alter MOX 

transport across primary cultured rabbit corneal epithelial cell layers. We note, 

however, that a decrease of ~23% in TEER values of the cell layers during the 

experiment was observed in the experiments carried out using the preservative 

containing buffer. This lowering of TEER may have occurred because of 

complexation of Ca2+ with EDTA, subsequently loosening tight junctions. It appears 

that such decrease in TEER does not result in an increased Papp of MOX, which is 

already high at baseline. 
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Discussion 

 

This study provides first evidence of the feasibility of a targeted delivery of 

moxaverine-hydrochloride to the posterior parts of the eye after topical instillation. 

Except for the cornea and conjunctiva, which were in close and direct contact with the 

applied drug solution, only low drug levels could be found in the anterior part, 

because of either low affinity to the tissue or the high turnover rate of 0.21 to 0.34 

ml/min/mm Hg for the aqueous humor [24]. This is indicative for low local side 

effects during topical dosing in clinical treatment of diseases of the posterior part of 

the eye. 

For the posterior part, comparably high amounts of MOX could be detected. 

Particularly for the compartment of interest, the retina, detectable drug amounts are a 

promising observation. Ocular dosing shows a fast accumulation of the drug, even 

increasing values throughout the experimental period. By contrast, systemic dosing 

leads to a decrease in the drug level during the same time period, resulting in part to 

high clearance rates of MOX from the systemic circulation [25]. For the human body, 

a high rate of metabolism was found (iphar 87/253 study). MOX is degraded to an 

aldehyde and an alcohol structure. The pharmacologic activity of these metabolites is 

unknown. The presence of metabolites in our study is most likely, but was not 

examined. 

For drug penetration, the following ways of distribution have been reported [26]: 

The direct corneal pathway, the conjunctival-scleral pathway, distribution by the local 

vasculature and the re-entry from general circulation after drug absorption. The 

contribution of the general circulation to the drugs penetration to posterior 

compartments in this case is very low, reflected by the low concentration values in the 
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plasma. The effect of the local vasculature has not been examined. Very likely is the 

diffusion by the conjunctival-scleral pathway, because it has been shown to be a way 

of diffusion for substances with high molecular weight. We have also shown that 

cornea is not a permeability barrier for the absorption of MOX into the eye. It is most 

likely that the drug is absorbed in this direct way. 

The significantly lower drug levels in plasma are worthy of particular note. 

Further studies are required to determine whether the detected drug levels can achieve 

the desired pharmacodynamic effect. 

 

The permeability data of MOX across the primary corneal epithelial cell model 

did not reveal any directionality, indicating that MOX has no affinity to transport 

proteins such as P-glycoprotein. Moreover, the Papp for MOX is in the range of 10-5 

cm/sec. Thus, the corneal epithelium may not be a critical barrier for the delivery of 

MOX. Addition of benzalkonium chloride/EDTA may have led to loosening of tight 

junctions of the cell layer, indicated by a decrease of the TEER values by the 

inclusion of benzalkonium. Despite the observed decrease in TEER, Papp of MOX 

across the cell layer was not affected significantly. Thus, we may conclude that 

absorption of MOX across the corneal epithelial barrier occurs mainly via 

transcellular passive diffusion. An enhancing effect of preservatives on absorption of 

hydrophilic drugs due to complexation of Ca2+ with EDTA by opening of tight 

junctions has been reported earlier [21,22]. 

In conclusion, we showed herein that a potentially new drug in ophthalmology, 

moxaverine-hydrochloride, reaches significant drug concentrations in posterior 

compartments of the eye after topical application and that absorption of this 

compound is not mediated by active transport processes. 
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Set-up of a primary human corneal epithelial cell culture system 
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Introduction 

Because animal testing is evaluated controversionally, other more accepted and easier 

methods have been established since cell culture started in the early 20th century [1, 2]. 

Major drawbacks for animal testing are the high maintenance costs and efforts. Scientifically, 

the complexity of the “test” system and the high variation of the outcomes are major points 

for criticism. Last, but not least does animal testing have a bad reputation and low acceptance 

in the modern Western society. Therefore, lots of efforts have been put into the development 

of cell culture systems that replace laboratory animals in scientific studies. 

For ocular tissues, two major aspects are of importance: ocular irritation and ocular drug 

penetration and delivery. 

A major tool for ocular irritation testing is the Draize test, developed in the 1940s by Draize et 

al. [3]. Briefly, in this test, laboratory rabbits are dosed ocularly with the test substance and 

changes on the dosed eye are observed and compared with the untreated rabbit eye over a 

predetermined time. 

For ocular drug delivery, in vivo studies on various animals have been a standard tool and are 

still performed today [4, 5, 6, 7]. 

To get an easier to handle tool, various ex vivo and in vitro cell models have been developed. 

Main advantages of these models are  

(1) Fixed conditions for the examination of cell growth, differentiation, and response to 

(chemical) agents 

(2) Easy access to the apical (i.e., front part) and basolateral (i.e., rear part) side of the 

cells or tissue 

(3) Absence of foreign cells from unwanted tissue 

(4) Quick and easy determination of data on drug transport processes on ocular irritation 

or damage 

(5) Reduction of animal experiments 
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A variety of corneal epithelial cell cultures have been established in recent years. Besides the 

immortalized cell culture models that have an extended life span, improved cell growth 

characteristics and are easy to handle [8], various attempts have been made to establish 

primary corneal epithelial cell cultures that better resemble the in vivo situation and have 

other than immortalized cell models not lost original cell properties [9]. 

Different techniques have been applied to generate these cell models: explantation techniques 

[10, 11], enzymatic treatments [12, 13] and mechanical processing [14, 15]. Successful 

primary cultures of the corneal epithelium have been generated for following species: rabbit 

[10, 12], cow [16], guinea pig [17], rat [18], mouse [31] and pig [30].  

In the explantation technique, corneal epithelial cells are gained by outgrowth from tissue 

pieces, which are placed epithelial side down in a tissue culture treated petri dish. By 

culturing these pieces in an appropriate medium in an incubator, epithelial cells will grow 

from the tissue onto the cell culture dish. Ebato et al. [11] found that the limbal cells show a 

better proliferation than cells from the central cornea since the limbus between cornea and 

sclera is the origin of corneal stem cells [19, 20]. The overgrowth of the epithelial cell layers 

by fibroblasts from the stroma is considered as a major drawback of this technique. Schneider 

has developed a method to avoid this overgrowth [21]. 

For the enzymatic method, a gamut of different proteolytic enzymes [12, 13, 22] has been 

used to dissociate the cells. Basis of this method is the lysis of the intercellular proteins and to 

loosen the cell connections, so that single cells of a specific type are yielded. 

The mechanical processing uses sheer forces and mincing steps to separate corneal cells. A 

variety of scissors, scalpels and microtomes have been used for this purpose [14, 23].  

 

Even tough several attempts have been undertaken; so far a successful set up of a human 

corneal epithelial cell model was not achieved. 
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In this study, we tried to set up such a model by modifying the techniques described so far and 

merging these with new findings made in recent years. 
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Materials and Methods 

Materials 

Collagenase type II, pronase, protease type XIV, trypsin, ethanol and DNase I were purchased 

from Sigma (Steinheim, Germany). Dispase II was from Roche Applied Sciences (Mannheim, 

Germany), MACS MicroBeads (coated with monoclonal mouse anti-human epithelial antigen 

antibody HEA-125/CD326)were from Miltenyi Biotec (Bergisch Gladbach, Germany). 

Scalpel blades (Bayha, model No. 1), surgical scissors and forceps were purchased from Stoss 

Medica (Saarbrücken, Germany). 

Rat tail collagen type I was from Cohesion (Palo Alto, CA, USA) and fibronectin was from 

BD Bioscience (Heidelberg, Germany). McIlwain tissue chopper was from The Mickle 

Laboratory Engineering Co. Ltd. (Gomshall, Surrey, Great Britain), Ultra Turrax rotor-stator 

homogenizer was from IKA (Staufen, Germany). 

Corneal rings were left-overs from successful transplantations and a generous gift from the 

Lions Corneabank, Homburg, Germany. Minimal Essential Medium (MEM) and Dulbecco’s 

Modified Eagle’s Medium (DMEM) were from Invitrogen (Niederaula, Germany). 

Pattex Blitz Matic cyanoacrylate glue was from Henkel, Düsseldorf, Germany. 

All other chemicals were of highest grade available commercially. 

 

Methods 

Protease/DNase technique 

A technique previously described by Chang et al. [12] has been slightly adapted for our 

purposes. Briefly, the corneal rings exposed to a 0.2% solution of protease type XIV for 45 

min at 37°C before gently scraping them off. Protease activity was stopped by adding 

supplemented minimum essential medium (S-MEM) containing 10% fetal bovine serum 

(FBS). The addition of excess proteins caused a quenching of enzymatic activity. The 

following removal of the medium completely disposed of the protease. 
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Cell aggregation was reduced by including 0.75 mg/mL DNase I in the same solution. 

Isolated cells were washed and purified further by passing them through a 40-µm cell strainer. 

The resulting corneal epithelial cells were seeded into 25 cm2 cell culture flasks precoated 

with a mixture of rat tail (type I) collagen (1.8 mg/cm2) and human fibronectin (0.6 mg/cm2). 

DMEM/F12, supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), 

gentamicin (50 µg/mL), insulin-transferrin-selenium premix (10 µg/mL ITS+, BD 

Biosciences, San Jose, CA), bovine pituitary extract (30 µg/mL), epidermal growth factor 

(EGF, 1 ng/mL) and hydrocortisone (0.36 µg/mL), was used as culture medium. Cells were 

maintained in a humidified incubator at 37°C in 5% CO2 atmosphere. Culture medium was 

changed every other day. Cell yield and growth were monitored microscopically 

 

 

Other enzymatic techniques 

All dissociation techniques were tested at 37°C and 4°C for 45 min. 

For enzymatic treatment of tissues the following enzymes have been described in literature: 

collagenase II [29], dispase II [30], pronase [22], and trypsin [22]. 

Tested concentrations were 1.2 U/mL dispase II, 167 U/mL collagenase II, 167 U/mL 

collagenase II with 9563 U/mL trypsin, 334 U/mL collagenase II with 19130 U/mL trypsin, in 

balanced salt solution (BSS; 137 mM NaCl, 5 mM KCl, 0.7 mM Na2HPO4, 10 mM HEPES, 

5.5 mM glucose, 1.8 mM CaCl2, 1.2 mM MgSO4, pH = 7.4), respectively. 

For cell isolation, the corneal rings were treated with the respective enzyme for 45 min either 

at 37°C or 4°C. After incubation corneal rings were attached to the outer bottom surface of 

glass centrifuge tubes with cyanoacrylate glue. Epithelial cells were then removed from the 

corneal surface by gentle scraping with a scalpel blade. Harvested cells were washed and 

purified by passing the solution through a 40-µm cell strainer. For pronase, collagenase II and 

collagenase II/trypsin, cell clotting was avoided by the use of 0.75 mg/mL DNase I in the first 
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washing step. Cells were seeded into 25 cm2 cell culture flasks and maintained with 

DMEM/F12, supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), 

gentamicin (50 µg/mL), ITS+ (10 µL/mL), bovine pituitary extract (30 µg/mL), EGF (1 

ng/mL) and hydrocortisone (0.36 µg/mL). Cell growth was monitored microscopically. 

For dispase II, the most commonly used enzyme for human tissue in literature, incubation 

times were altered from 45 min to 12 h, 16 h, and 24 h to increase cell yield. 

With dispase II also an alternative method was developed: after treatment of the corneal rings 

with the enzyme for 16 h at 4°C, corneal rings were washed twice with cold PBS and 

epithelial cell sheets were further loosened by a 1 min treatment with ethanol 20% at 37°C 

and subsequent scraping in PBS with a scalpel blade. Scraping and washing liquids were 

collected and centrifuged for 7 minutes at 1200 rpm (= g). Cells were washed with MEM with 

10% FCS and then seeded in cell culture flasks with supplemented DMEM/F12 (1:1) mix. 

For collagenase/trypsin different enzyme concentrations were tested to optimize the cell yield. 

 

 

Explantation technique 

The explanation technique was performed as previously described [11]. Briefly, sclera was 

removed from the corneal rings and 9 mm2 cornea pieces were cultured in fibronectin 

/collagen-coated Petri dishes with the epithelial side down. As cell culture medium served 3.5 

mL of DMEM/F12, supplemented with penicillin (100 U/mL), streptomycin (100 µg/mL), 

gentamicin (50 µg/mL), ITS+(10 µL/mL), bovine pituitary extract (30 µg/mL), EGF (1 

ng/mL) and hydrocortisone (0.36 µg/mL). 

After 3 weeks, the sprouted corneal epithelial cells were removed from the Petri dish by 

gentle scraping with forceps and scalpel blades. The harvested cell sheets were subcultured in 

collagen/fibronectin coated chamber slides to form confluent cell layers. 
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Mechanical methods 

Two mechanical isolation protocols were developed and combined with enzymatic treatment 

to increase cell yield: 

For the first method, the tissue was cut on a McIlwain tissue chopper and then the 5 µm slices 

were treated with trypsin/collagenase solution for 1 h at 37°C. Single cells were gained by 

washing and passing the cell/tissue pellet through a cell strainer. Cells were seeded and 

monitored as previously described. 

 

In a second protocol, tissues were grinded with an Ultra Turrax rotor-stator homogenizer after 

removal of scleral tissue, followed by either a 2 h treatment with dispase II at 37°C or an 18 h 

dispase II treatment at 4°C. Cells were then washed, passed through a cell strainer and seeded 

as already described. 

 

MACS MicroBead technique 

The target of the MicroBead technique was to improve the cell yield by means of a positive 

selection of epithelial cells. The theoretical procedure is shown in figure 1 and the 

experimental set-up for cell sorting in figure 2. 

Briefly, the tissue was cut on the McIlwain tissue chopper and treated enzymatically with a 

collagenase II/trypsin mixture at 37°C for 1 h or grinded with the UltraTurrax homogenizer 

and then treated with dispase II at 4°C for 18 h or at 37°C for 2 h, respectively. The cell 

suspension was washed with a solution of DNase I (0.75 mg/mL) in MEM with 10% FCS and 

then with MEM with 10% FCS alone. The suspension was passed through a 40-µm cell 

strainer. Cells were centrifuged and resuspended in 1.4 mL MEM with 10% FCS and 100 µL 

MACS MicroBead solution was added. The mixture was kept on an orbital shaker for 30 

minutes at 8 – 11°C. The magnetic beads are coated with specific epithelial antibodies  and 

bind to the human epithelial cells. Positive selection of epithelial cells on the supplied 
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magnetic column followed according to the manufacturer’s instructions. Selection was 

achieved by reconstitution of the column with 3 mL washing buffer (PBS supplemented with 

0.5% bovine serum albumin and 146 mM EDTA), followed by passing the cell/MicroBead 

solution through the column attached to its magnetic holder. The column was washed four 

times with BSS and the positively selected cells were removed from the detached column 

with 5 mL S-MEM with 10% FBS. The purification process was repeated with a second, 

unused magnetic column. Positively selected cells were washed from the column with 2 mL 

of supplemented DMEM/F12 medium per corneal ring used. 

 

 

 

 

 

 

 

Figure 1: Isolation steps for the positive selection of corneal epithelial cells. 
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Figure 2: MACS MicroBead column and magnetic holder 
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Results 

For all applied techniques, the outcome of experiments was very unsatisfactory. While the 

protease/DNase and the pronase treatment showed no effect on the corneal cell layers, results 

could be improved with an appropriate collagenase II/trypsin or dispase II treatment. The 

evaluation of the enzymatic treatments is summarized in table 1. 

 

Table 1: Summary of the results of the enzymatic treatment of human cornea 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 shows a representative microscopical image after enzymatic isolation of the 

epithelial cells. Cell number was in general very low. Seeding density was insufficient for the 

25 cm2 cell culture flasks as well as the smaller chamber slides. 

Attempts to further increase the cell yield by specific selection of epithelial cell species with 

magnetic beads did not alter the cell amount in the desired fashion. 

Explant techniques showed a higher success and yielded intact cell sheets. However, 

subcultivated cell sheets lacked sufficient proliferation activity and were unable to grow to 

confluent cell layers 

 

� 

Used with rabbit cornea, but not suitable for human 
cornea (no cell yield)   

Cell gain unsatisfactory � PPrroonnaassee  

Advantage: no cell clotting, very gentle 
BUT: small cell amount, alteration of incubation time up 
to 24 h did not increase efficacy  

(�) 
DDiissppaassee  

187.5 µL/62.5 µL: too much cell damage 
93.75 µL/31.25 µL: good results, but small cell amount  

TTrryyppssiinn//  
CCoollllaaggeennaassee  

Only little amount of cells is gained  (�) CCoollllaaggeennaassee  

� 
PPrrootteeaassee  

CCoommmmeenntt  RReessuulltt  EEnnzzyymmee  
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Figure 3: Light micrograph of isolated cells from corneal epithelial cells 
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Discussion 

Even though enormous developments have been made in our understanding of cell culture and 

isolation procedures in recent years, we still encountered major problems while isolating cells 

from corneal tissue. 

Some of these problems are surely to be found in the physiology of the corneal tissue. In 

addition, the storage time of about 21 days, might contribute to the low activity of the 

epithelium. Albeit the transplantation efficacy stays unaffected, the corneal epithelium might 

be critically suppressed in its viability. 

As already mentioned in the introduction, the corneal epithelium consists of 9 layers that 

show different states of differentiation and keratinozation, with only the lowest, first layer 

consisting of basal cells with mitotic activity. This results in only 1/9th of the harvested cells 

having proliferating activity. So the number of useful cells is per se low. 

Secondly, the number of cell layers present in the corneal epithelium is highly variable and 

alters from specimen to specimen. We were able to show the high variance and a possible 

reduction of cell layers during storage by light micrographs using a standard hematoxyline 

staining (Figure 4). 

 

Normal human corneal epithelium Human corneal epithelium stored for 21 days 

  

 

Figure 4: Different thickness and reduction of cell layer number in human corneal rings 

(magnification 400x) 
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Many of the applied enzymes have been used with corneal tissue of different species. The 

spectrum ranges from amphibian (frog) to rodents (rabbits, rats) and mammals (pigs). Since 

inter-species differences are natural we can expect a diverse composition of the intercellular 

matrices, which results in different resistance levels to proteolytic enzymes. So it is not 

surprising to find that protease XIV works well with rabbit cornea [12] but does not affect 

human tissue. 

Even though the magnetic selection of epithelial cells proved very helpful in the isolation of 

other primary epithelial cells [24], this method did not improve the outcome in our 

experiments. Since a non-successful binding of the antibody-labeled beads to the epithelial 

cells can be ruled out, the low cell yield may be based on the following issues: 

The amount of available tissue is very low. The number of corneal rings per isolation is 

generally limited to about 4 tissues. The tissues consist of a corneal ring of about 5 mm 

diameter, which reduces the number of available cells quite significantly. 

The isolation procedure consists of a respectable amount of washing and purification steps 

that bear the risk of high cell losses. These losses are likely to have occurred in our protocol 

despite careful preparation. 

For the explantation techniques, it is known that corneal cells have a limited capacity of 

proliferation. The number of possible passages in culture is limited to 2 to 7, depending on the 

origin of the cells [13]. As separated epithelial sheets do not adhere very well to artificial cell 

culture surfaces, further obstacles have to be considered and offer a possible explanation for 

the unsuccessful cultivation activities. 

Another point is the selection of cell culture medium. A variety of cell culture media and 

supplements have been described in literature. Most of these media were tested on cell 

systems of animal origin. Many media contained fetal bovine serum as supplement [21, 25, 

26, 27], which is a standard additive and generally provides all nutrients and hormones 
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needed. A major drawback in this context is that serum is not present in, at or around corneal 

tissue under physiological conditions. 

Serum-free media was firstly described by Hackworth et al. [28] for the culture of porcine 

corneal epithelium and rabbit corneal epithelium. Chang et al. used a refined and very useful 

serum-free medium on primary rabbit corneal epithelial cell layers [12]. 

Since this medium proved very successful on these cells and did not contain unphysiological 

serum, it was chosen for our research. Unfortunately, due to our low cell yields, we were not 

able to control and optimize the composition of the chosen medium. 
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Abstract 

Purpose: To evaluate different corneal epithelial cell culture systems for ocular drug 

permeability in vitro studies. 

Methods: Transformed human corneal epithelial cells (HCE-T) and Statens Serum Institut 

rabbit cornea cells (SIRC) were cultured on permeable filters. Skinethic human corneal 

epithelium (S-HCE) and Clonetics human corneal epithelium (C-HCE) were received as 

ready-to-use systems. Excised rabbit (ERC) and human cornea (EHC), mounted in Ussing 

chambers, were used as references. Barrier properties were assessed by measurement of 

transepithelial electrical resistance and apparent permeability (Papp) of markers with different 

physico-chemical properties: fluoresceine-sodium, propranolol-hydrochloride, moxaverine-

hydrochloride, timolol-hydrogenmaleate, and rhodamine123. 

Results: SIRC cells and the S-HCE failed to develop barrier properties and hence, were 

unable to distinguish between the markers. Barrier function and power to differentiate 

permeabilities were found in HCE-T and even more pronounced in C-HCE. The latter 

corresponded very well with EHC and ERC. Net secretion of rhodamine123 was not observed 

in any model, suggesting that P-glycoprotein or similar efflux systems are unlikely to affect 

corneal permeability.  

Conclusion: Currently available corneal epithelial cell culture systems show differences in 

epithelial barrier function. Those systems lacking functional cell-cell contacts are of limited 

value for assessing corneal permeability, but may be useful for other purposes, such as 

irritancy tests. 
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Introduction 

The assessment of corneal penetration is crucial both for the development of ophthalmic 

medicines as for the safety evaluation of new materials. Until recently animal testing [1, 2, 3] 

has been the main option for such purposes, but an increasing number of in vitro models have 

already been suggested as potential alternatives[4-10]. Moreover, corneal constructs have 

been set-up, containing epithelial, stroma- and endothelial equivalents to mimic the whole 

cornea [11, 12]. However, a comparative evaluation of the currently available models has not 

yet been performed.  

The reduction of animal experiments by such in vitro models is in accordance with the 3 R 

principles, firstly introduced by Russell and Burch in 1959 [13]. The 3 R’s stand for Replace, 

Reduce and Refine and are guidelines for the application of animal experiments in scientific 

research. For the sake of animal welfare, cost reduction and a wish for enhanced 

reproducibility of experimental data, replacement of animal experiments by suitable in vitro 

test systems has become important issue. 

 

Skinethic reconstituted human coreal epithelium (S.HCE, Skinethic), transformed human 

corneal epithelial cells from Araki-Sasaki’s lab (HCE-T) [5], Statens Serum Institut rabbit 

cornea (SIRC) [9], and Clonetics human corneal epithelium (C-HCE, Cambrex) were selected 

for testing and comparison versus excised (native) human and rabbit cornea. The already 

mentioned corneal constructs represent very complex systems, truly mimicking the in vivo 

situation. A drawback of these systems is the complexity. Due to their three-layer-setup they 

are difficult to produce and take quite a long time to grow, which makes them only frequently 

available. Thus, we did not include these models. Still, the epithelial cell line used by Zorn-

Kruppa et al [12] was the HCE-T cell line, which is included in our portfolio. The CEPI 17 

CL4 cell line used by Reichl et al [11] is tightly regulated by its manufacturer and so 

unavailable for broad usage. 
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To evaluate the potential of these models to distinguish between drugs with respect to their 

corneal permeability, the transepithelial electrical resistance (TEER) was routinely measured 

to obtain an estimate of epithelial barrier function. Complementary histological data at light 

microscopy level were also obtained for all in vitro model tested. Subsequently, the following 

compounds with different physico-chemical properties were selected for transport 

experiments: fluorescein-sodium as a hydrophilic low permeability marker; propranolol-HCl 

as a lipophilic high permeability marker, rhodamine 123 as a substrate of P-glycoprotein to 

detect the possible activity of such efflux transporters. Additionally, we examined timolol-

hydrogenmaleate and moxaverine-HCl as two drugs of ophthalmologic relevance [14]. 
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Materials and Methods 

Chemicals 

Fluorescein-sodium (FluNa), rhodamine 123 (Rh123), formaldehyde and ethanol were 

obtained from Sigma (Seelze, Germany). Cyclosporine A (CyA) and penicillin/streptomycin 

were purchased from Calbiochem (Darmstadt, Germany). Propranolol-hydrochloride (Prop) 

was from Synopharm (Barsbüttel, Germany). Timolol-hydrogenmaleate (Tim) was a generous 

gift from Ursapharm Arzneimittel (Saarbrücken, Germany). 14C-moxaverine-hydrochloride 

(Mox) was purchased from Biotrend (Cologne, Germany). Permeable filter inserts (Transwell 

3460) were from Corning (Bodenheim, Germany). Eosin G 0.5% solution, Mayer’s 

hematoxylin solution, xylene, Paraplast paraffin beads and Roti-Histokitt mounting reagent 

were from Carl Roth (Karlsruhe, Germany). All other chemicals were of highest 

commercially available grade. 

 

Cell culture systems and tissues 

Statens Serum Institut rabbit corneal (SIRC) epithelial cells: The SIRC cell line (ATCC CCl-

60) was derived from the cornea of a normal rabbit in 1957 by Volkert at the Statens Serum 

Institut (Copenhagen, Denmark). Little is recorded relating to the history of this cell line for 

approximately the first 400 passages. It was originally used for the cultivation of rubella 

viruses. In 1990, the cells were morphologically characterized by Niederkorn and co-workers 

[15]. The cells do not exhibit an epithelial, cobblestone-like morphology, but a fibroblast 

phenotype. Cells were cultured in minimum essential medium (MEM) with 10% FBS, 100 

µg/ml streptomycin and 100 U/ml penicillin G. To stimulate growth, the cell culture medium 

was altered according to Hutak et al [9]. 

 

HCE-T cells (HCE-T): The HCE-T cell line was established in 1995 by Araki-Sasaki and co-

workers [5]. It was gained by transfection of human corneal epithelial cells from a 47-year old 
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female donor with a recombinant SV40-adenovirus.HCE-T cells were purchased from Riken 

Cell Bank (RCB1384, Ibaraki, Japan) and cultured on Transwell filter inserts at a seeding 

density of 60,000 cells/cm2 in DMEM/Ham’s F12 1:1 mixture supplemented with 5% FBS, 5 

µg/mL insulin, 0.1 mg/mL cholera toxin, 10 ng/mL EGF, 0.5% DMSO, 100 µg/ml 

streptomycin and 100 U/ml penicillin G. Cells of passage numbers 75 to 84 were used. A 

modified protocol according to Toropainen and co-workers [16] was used. In brief, cells were 

maintained for 1 week under liquid covered conditions and were then switched to air-

interfaced condition in the second week. Medium was changed every other day during the 

first week and daily in the second week.  

 

Skinethic reconstituted human corneal epithelium (S-HCE): Reconstituted human corneal 

epithelium was purchased from Skinethic (RHC/S/5, Nice, France). The model consists of 

human corneal epithelial cells immortalized by Beuerman at the Louisiana State University 

Eye Center (New Orleans, USA). S-HCE cells are routinely cultured by the manufacturer on 

NUNC filter inserts (CC-Inserts, 137052) and shipped to the end user at day 5 after seeding. 

Upon arrival, cells were transferred from the transport medium to the culture medium 

supplied by Skinethic. S-HCE were used within 24 hours of their arrival. 

 

Clonetics cultured corneal epithelium (C-HCE): C-HCE were purchased from Cambrex 

(CMS-2015, Vervier, Belgium). The model is made from normal human corneal tissue. 

Epithelial cells were isolated and infected with an amphotropic recombinant retrovirus 

containing HPV-16 E6/E7 genes to extend the lifespan. The cells (age: day 20) arrived in 

Transwell filter inserts (3470) and were transferred to the provided medium upon arrival. C-

HCE were used within 24 hours of their arrival. 
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Excised rabbit cornea: Rabbit corneas from animals to be slaughtered for food produce were 

bought from local breeders. No animals were sacrificed exclusively for our experiments. Eyes 

from pigmented purebred rabbits were enucleated directly after slaughtering. After removing 

adhering tissue, the cornea was obtained by cutting the scleral tissue in about 2 mm distance 

to the limbus between cornea and sclera. The cornea was cleaned by washing with PBS and 

then stored in cell culture medium (DMEM/F12 Ham 1:1 mix with 100 µg/ml streptomycin , 

100 U/mL penicillin G, 100 µg/mL, insulin-transferrin-selenium premix, 30 µg/mL bovine 

pituitary extract , 1 ng/mL epidermal growth factor, 0.36 µg/mL hydrocortisone) until use.  

 

Excised human cornea: Corneas considered not suitable for transplantation due to their low 

density of endothelial cells were donated by the Lions Cornea Bank (Homburg, Germany) and 

served as reference. Since the main permeability barrier of the cornea is represented by the 

corneal epithelium and the contribution of stroma and endothelium to the barrier properties of 

the cornea is neglectable [17, 18], this appeared to be acceptable for our purposes.  

 

All cells and tissues were kept in an incubator at 37°C, 5% CO2, 90% rH until use. 

 

Histology 

Filter-grown tissue samples were fixed in a formaldehyde solution (4% in PBS) at room 

temperature for 30 min. HCE-T and C-HCE samples were stained with hematoxylin for about 

20 min. Four to 5 steps of washing with water stopped the staining process. Samples were 

then dehydrated through a graded series of ethanol at 70%, 96%, and 100% at room 

temperature and kept in xylene until embedding. For mounting, samples were soaked in 

paraffin wax at 60°C overnight and embedded the next day. Embedded samples were cut in 

four-micrometer thin sections with a microtome (Leica Microsystems, Nussloch, Germany) 

and mounted on glass slides at room temperature. Samples of human cornea and rabbit cornea 
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were counter-stained with Eosin G for 30 s and washed with ethanol of 96% and 100%. 

Samples were dewaxed with xylene and were rehydrated by a graded series of ethanol at 

100%, 96%, and 70%, for 10 min each, at room temperature. The sections were washed with 

de-ionized water and staining was intensified by a 5 min treatment with Mayer’s hematoxylin 

solution. Sections were stored in xylene until mounting using Roti-Histokitt. The sections 

were examined with an Axiovert 40 light microscope (Carl Zeiss, Jena, Germany) at 400x 

magnification. 

For immunofluorescence staining of the nucleus, specimens were fixed with 2% 

paraformaldehyde (10 min) and subsequently blocked for 10 min in NH4Cl solution (50 mM), 

followed by permeabilization for 15 min with 0.1% Triton X-100. Propidium iodide (1 µg/ml) 

was used to stain cell nuclei. After 30 min of incubation, the specimens were washed three 

times with PBS and embedded in FluorSafe anti-fade medium. Images were obtained by a 

confocal laser scanning microscope (MRC-1024, Bio-Rad, Hemel Hempstead, UK) with the 

instrument settings adjusted so that no positive signal was observed in the channel 

corresponding to green fluorescence of the isotypic control and the focus pane at the level of 

the nuclei of the topmost cell layer. 

 

Transepithelial electrical resistance 

To monitor the formation and functional integrity of cell layers the transepithelial electrical 

resistance (TEER) was measured with and epithelial voltohmmeter equipped with STX-2 

“chopstick” electrodes (EVOM, World Precision Instruments, Berlin, Germany) and corrected 

for the background provided by the blank filter. Only cell layers with TEER values >400 

Ω·cm2 were used for the transport experiments. This value is generally accepted as the 

minimum requirement for tight barrier properties [19].  
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Transport studies 

Transport of marker compounds was studied at the following concentrations: FluNa: 50 µM; 

Prop: 50 µM; Rh123; 13 µM; Tim 200 µM; Mox 33 µM = 1µCi/mL). Data are presented as 

mean ± standard deviation (n), where n is the number of observations.  

 

For transport studies the cell layers were equilibrated for 1 h in modified Krebs Ringer buffer 

(KRB, 1.5 mM K2HPO4, 3 mM KCl, 4 mM glucose, 142 mM NaCl, 10.07 mM HEPES, 1.4 

mM CaCl2, and 2.56 mM MgCl2, pH 7.4). The transport experiments were initiated by 

exchanging KRB of the respective donor side with the same volume of KRB containing the 

respective drug. The apical and basolateral volumes were 520 µL and 1520 µL (HCE-T) and 

210 µL and 810 µL (S-HCE and C-HCE), respectively. To determine the initial concentration, 

10 µL (S-HCE, C-HCE) and 20 µL (HCE-T) samples of the donor solution were assayed. 

Samples were drawn from the corresponding receiver compartment every 30 min for up to 4 

h. Sampled volumes, i.e.,200 µL,(HCE-T) and 100 µL (S-HCE and C-HCE) were replaced by 

the same amount of fresh pre-warmed KRB. Transport of Rh123 was also determined in the 

presence of 10 µM CyA to determine the possible inhibitory efficacy on Rh123 transport. 

 

Corneal tissues, either human or rabbit, were mounted in a modified Ussing chamber (round 

opening, 10 mm diameter) [20] and equilibrated with KRB for 1 h prior to the transport 

experiments. Flux studies were initiated by exchanging the KRB of the respective donor side 

with a same volume of marker solution. The volumes in the mucosal and serosal chamber 

were 2.5 mL each. Samples (200 µL) were drawn from the receiver compartment every 30 

min for up to 4 h. Sampled volumes were replaced by the same amount of fresh pre-warmed 

KRB. To determine the initial donor concentration, 20 µL samples of the donor solution were 

assayed.  
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Sample analysis 

For FluNa and Rh123, fluorescence activity of samples was analyzed in 96-well plates using a 

plate reader (Cytofluor II, PerSeptive Biosystems, Wiesbaden, Germany) at excitation and 

emission wavelengths of 485 and 530 nm, respectively.  

For Prop and Tim, concentrations were determined by HPLC on a Summit system comprised 

of a P580 pump, ASI100 automated sampler, and UVD170S UV/VIS detector (Dionex, 

Idstein, Germany). A LiChroCART 125-4 LiChrosphere 100 RP-18 (5 µm) column was used 

and the samples were analyzed at 215 nm (Prop) or 297 nm (Tim), respectively. A mixture of 

acetonitile:methanol:water 22:33:45 with 330 µL triethylamine and 440 µL phosphoric acid 

served as mobile phase at a flow rate of 1.2 mL/min. Chromatograms were analyzed by 

estimating the area under the peak employing a computerized data integration program 

(Chromeleon 6.50, Dionex). Samples were diluted with KRB, where appropriate. 

Mox was assayed with a liquid scintillation counter (Perkin Elmer, Rodgau, Germany) after 

mixing the samples with 4 mL Ultima Gold scintillation cocktail (Perkin Elmer). 

 

The apparent permeability of the marker substances was calculated as  

Ac

J
Papp

*0

=   (Eq. 1) 

where J = marker flux (mol/s), c0 = initial marker concentration in the donor solution 

(mol/cm3) and A = surface area of the corneal tissue and cell layers. The latter was 1.27 cm2 

for intact tissues, 1.13 cm² for HCE-T cell layers, 0.5 cm² for S-HCE, and 0.33 cm² for the C-

HCE. 

To quantify the power of the different models to distinguish between high and low 

permeability compounds, we calculated the high-low (h/l)-ratio, 

)(

)(Pr
/

FluNaP
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ratiolh

app

app
=  (Eq. 2) 
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Moreover, the permeability of all markers was compared for each model by calculating 

relative Papp values as a percentage of the high permeability marker propranolol. 



72 
Chapter 3: Comparison of corneal epithelial cell culture models 

Results 

Histology  

While excised human cornea and excised rabbit cornea are composed of all corneal cell 

layers, i.e., epithelium, stroma, and endothelium (Figure 1 A&B), the cell lines obviously 

consist only of epithelial cells (Figure 1 C-F). Apart from some differences in the size and 

shape of individual cells, most striking differences were found in the number and total 

thickness of the epithelial cell layers of the investgated models. Human cornea shows 4 to 5 

epithelial layers, while we found a thicker epithelium for the rabbit cornea and a denser 

stroma. 

 

While a progress in differentiation from basal cells to superficial cells can be clearly seen in 

excised human cornea, HCE-T cells (on day 14) maintain their cobblestone like appearance 

across all layers of a multilayer of 4-6 cells in thickness (Figure 1 C). CLSM images of 

propidium iodide-stained human cornea and HCE-T specimens underpin the difference in cell 

density and morphology when focused at the topmost cell layer (Figure 2 A&B). HCE-T cells 

grow to cuboidal-shaped cells at a very high density (Figure 2 B), while epithelial cells of the 

human cornea appear wider spread in shape (Figure 2 A). 

 

The SIRC cell line has formed 4 cell layers on day 21. The fibroblast-like phenotype can be 

recognized in Figure 1 D. The difference in morphology is in accordance with the missing 

barrier properties, as shown by TEER measurements(see below).  

 

The C-HCE model resembles the morphology of the rabbit tissue with a higher number of cell 

layers than the human counterpart (Figure 1 E). The epithelial cells exhibit various states of 

differentiation with cuboidal cells in the lower layers and cells of flattened appearance at the 

topmost aspect.  
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A) Excised human cornea B) Excised rabbit cornea 
 

  
C) HCE-T cells D) SIRC cells 

 

 

 

E) Clonetics human corneal 

epithelium  

F) Skinethic human corneal epithelium * 

 

 

 
 

 

 

Figure 1. Histological examination of the different in vitro models by hemotoxylin-eosin 

staining. A) Excised human cornea; B) excised rabbit cornea; C) HCE-T cells; D) SIRC cells; 

E) Clonetics human corneal epithelium (C-CHE); F) Skinethic human corneal epithelium (S-

CHE). Magnification 400x. * = Picture provided by Skinethic, France. 
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A) Human corneal tissue B) HCE-T cell layers 

  
 

Figure 2. Confocal laser scanning microscopy of A) and human corneal tissue and B) HCE-T 

cell layers. Images were obtained by focusing on the topmost cell layer  Scale bars represent 

micrometers. 

 

Multiple cell layers can also be observed in the S-HCE model (Figure 1 F). Seven to 10 layers 

in thickness, the S-HCE cells are of cuboidal shape and only the most apical layer contains a 

number of cells with flattened morphology. Nevertheless, the S-HCE cell model does not 

show a clear differentiation of the cells with progressing layer number. Compared to the other 

cell systems, the number of layers is the highest, however the cells do not form tight 

junctions, as found by TEER measurements (see below). 

 

TEER and permeability of transport markers  

Formation of electrically tight cell layers is probably most important feature of an in vitro 

model of drug absorption. Therefore, TEER values were recorded for all models under 

investigation. In case of the in house grown cell lines, TEER was measured every time the 

medium was changed. The excised tissues and commercially available models were assessed 
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upon their arrival. The permeability of all marker compounds as well as typically observed 

TEER values for each of the tested models are summarized in Table 1. 

 

Table 1: Permeability values (Papp) of marker compounds across in vitro models of corneal 

epithelium and transepithelial resistance (TEER) of those models. All values are mean ± SD 

with n≥3 

 

Papp (××××10
-6

 cm/s) 

FluNa Prop Tim Mox Model 

AB BA AB BA AB BA AB BA 

TEER  

± SD 

(ΩΩΩΩ*cm
2
) 

EHC 0.37 
± 0.26 

0.57 
± 0.19 

12.40 
± 2.65 

8.24 
± 1.13 

3.15 
± 1.03 

2.50 
± 1.02 

5.42 
± 1.97 

3.76 
± 1.54 

478 
± 355 

ERC 0.12 
± 0.03 

0.14 
± 0.04 

5.63 
± 2.81 

3.25 
± 1.01 

3.52 
± 0.71 

2.06 
± 0.50 

5.16 
± 0.11 

2.39 
± 0.71 

848 
± 553 

HCE-T 2.37 
± 0.29 

2.29 
± 0.09 

22.88 
± 5.33 

14.99 
± 1.59 

10.85 
± 1.91 

9.03 
± 0.17 

13.42 
± 0.83 

17.49 
± 2.36 

474 
± 120 

S-HCE 6.96 
± 0.55 

7.70 
± 0.53 

14.78 
± 1.72 

28.32 
± 3.19 

9.10 
± 1.07 

12.63 
± 0.32 

15.49 
± 1.33 

26.28 
± 3.10 

106 
± 15 

C-HCE 0.25 
± 0.10 

0.32 
± 0.10 

8.29 
± 0.20 

7.36 
± 0.85 

2.81 
± 0.40 

1.65 
± 0.36 

5.84 
± 0.27 

6.82 
± 2.24 

832 
± 365 

 

Intact cornea, either human (EHC) or rabbit (ERC), which may be supposed to represent the 

most complete barrier showed clear differences in Papp values for the marker compounds. The 

lipophilic high permeability marker Prop showed Papp values in the range of 10-5 cm/s. Such 

values were reported earlier for other cell systems [19, 21, 22] and are thus in the range that is 

expected. In contrast, the hydrophilic marker FluNa showed low permeability, as indicated by 

a low Papp value in the range of 0.3x10-6 cm/s. Such values have also been reported earlier [6, 

16]. A higher permeability than for FluNa was found for Tim and an almost equally high 

permeability as for Prop was found for Mox, corroborating the excellent ocular penetration of 

this compound in vivo, as was reported earlier14. Compared to EHC, ERC yielded the same 

ranking for the different Papp values which, however, were still approximately one magnitude 

lower than for EHC. 
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While SIRC cells did proliferate when cultured on permeable Transwell filters, the TEER 

remained at a level of the blank filter inserts (data not shown), suggesting that the cells did not 

develop tight junctions. As this could not be achieved by various alterations of the cell culture 

conditions, SIRC cells were not further considered for transport experiments 

 

A low TEER of 100 Ω*cm2 was measured for the pre-grown cell layers of the Skinethic 

model. Nevertheless performed transport experiments yielded comparatively high Papp values 

even for the low permeability marker FluNa. 

 

HCE-T cells formed tight cell layers, as indicated by a TEER of 500 Ω*cm2 and thus proved 

suitable for drug transport studies. Papp values were in the same magnitude as for EHC, but 

yielding results approximately twice as high as for EHC. Especially for the lipophilic markers, 

the power of differentiation was less than in EHC. Nevertheless, ranking of the substances 

with HCE-T was in accordance with the ranking found in EHC. 

 

C-HCE cell layers were received as tight epithelium and correlated well to the values found 

for EHC. Not only the hydrophilic markers were found at identical Papp values of about 2x10-7 

cm/s, but also the lipophilic markers were ranked identically in the range of 10-5 cm/s. Thus, 

correlation of this cell culture system to the intact human tissue (ex vivo) in terms of marker 

transport was very good. 

 

P-glycoprotein-mediated efflux 

Permeability of Rh123, a known substrate of P-glycoprotein, was assessed in both apical-to-

basolateral (AB) and basolateral-to-apical (BA) direction. A BA/AB ratio of 2 or was not 
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observed in any of the in vitro models (Table 2). Moreover, addition of the P-gp inhibitor 

cyclosporine A (CyA) did not alter fluxes.  

 

Table 2: Bi-directional transport of the P-glycoprotein substrate rhodamine 123 (Rh123) 

across various in vitro models od corneal epithelium. Experiments were conducted with or 

without presence of the P-glycoprotein inhibitor cyclosporine A (CyA). Values are mean ± SD 

with n≥3 

 

Papp (××××10
-6

 cm/s) 

Rh123 Rh123 + CyA Model 

AB BA AB BA 

EHC 0.48 ± 0.48 0.59 ± 0.55 1.93 ± 1.37 1.16 ± 0.91 
ERC 0.15 ± 0.09 0.26 ± 0.24 0.03 ± 0.02 0.06 ± 0.02 
HCE-T 1.46 ± 0.42 2.25 ± 0.29 2.88 ± 0.11 4.39 ± 0.66 
S-HCE 4.84 ± 0.37 6.42 ± 0.12 4.76 ± 0.24 5.70 ± 0.19 
C-HCE 0.13 ± 0.01 0.26 ± 0.03 0.29 ± 0.05 0.22 ± 0.10 

 

Power of differentiation 

To compare the power of the various in vitro systems to differentiate between drug 

candidates, the ratio of Papp values for high and low permeability markers was calculated 

(Figure 3). In addition, the Papp values of the four permeability markers were normalized for 

each model as percentage of the permeability of the most permeable compound, Prop (Figure 

4). The rank order of fluxes was Prop>Mox>Tim>FluNa, which is in agreement with 

decreasing lipophilicity. Significant difference between the models can be observed in the 

standard deviations of the normalized permeability ratios, as well as in the range between the 

highest (Papp (Prop) = 100% by definition) and lowest relative permeability (Papp (FluNa) 

between >60% and <5% of Papp (Prop)).  

 

With an h/l ratio of nearly 40, EHC showed a good power of differentiation between the low 

and high permeability markers (Figure 3). The range of relative permeabilities spans from 
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100% to <5% with mostly non-overlapping standard deviations (Figure 4). For ERC, the h/l-

ratio even exceeded the value for EHC. With an h/l-ratio of about 10, as well as a range of 

relative permeabilities between 100 and approx 15%, the HCE-T model clearly demonstrates 

a higher ability to differentiate compared to the S-CHE model. As can be seen from Figure 3, 

S-HCE had an h/l ratio of approx. 1, similar to cell-free filter membranes. The C-HCE model 

showed an h/l-ratio being the same as for the human cornea, but with by far the smallest 

standard deviations and broadest range for the relative Papp values.  
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Figure 3. Power of differentiation in marker permeability for the different in vitro models as 

expressed by calculating the respective high/low (h/l)-ratios (= PappProp/PappFluNa). Data 

repesents mean ± SD, n = 3 
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Figure 4. Relative permeabilities of passive diffusion markers across the different in vitro 

systems. Values are shown as percentage of Papp Prop for each model, respectively. Error 

bars reflect the standard deviation by taking into account error propagation (i.e., summation 

of relative SD for both markers.) 
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Discussion 

In the presented work, we compared the currently available cell culture systems of corneal 

epithelium in their performance to assess permeability of xenobiotics. These models may help 

to reduce and replace animal experiments, by keeping handling and costs at a minimum, while 

providing robustness and good reproducibility. Still, the question arises, if such simple 

systems have sufficient power to differentiate and can be used as replacement for more 

complex ex vivo tissue from animals. Major progress was made in the replacement of the 

Draize test, hence, most of the available models are geared at this purpose, and barrier 

properties are typically not an issue. In this study, we used histology, bi-directional transport 

studies of passively transported drugs as well as P-gp substrates and the power of 

differentiation as tools to evaluate the models examined herein. 

Due to inter-species differences excised rabbit cornea did not resemble the human cornea too 

closely. Morphological differences were obvious: the stroma seems to be of higher density 

and contains more keratinocytes and the epithelial cells grew to more layers than in the human 

tissue. These anatomical differences can be the cause for low fluxes of the low-permeability 

markers. 

 

Two of the systems, the SIRC cell line and the S-HCE model disqualified at an early stage of 

the testing. Major drawbacks of these systems were the absence of tight cell layers.  

Of the remaining models, the HCE-T cell line has been used in several published studies16, 23. 

HCE-T cells form a tight multi-layered epithelium with the ability to distinguish several 

marker substances, although the calculated Papp values were slightly higher than across human 

corneal tissue. However, drawbacks of the HCE-T model are found in histology; as HCE-T is 

an immortalized cell line, differentiation does not occur as completely as in human corneal 

epithelium. We noticed these differences by examining the cell lines by light microscopy / 

CLSM and comparing the pictures with EHC micrographs. HCE-T do not form completely 



82 
Chapter 3: Comparison of corneal epithelial cell culture models 

differentiated superficial cells, but maintains their cobblestone-like appearance to a certain 

degree. In addition, we previously reported on differences regarding efflux transporters which 

make this cell model rather unsuitable for drug permeation studies (Becker et al., J Ocul 

Pharmacol Ther, in submission).  

The C-HCE model provides tight cell layers with TEER values > 400 Ω·cm² and therefore 

appears as a useful model for permeation studies. The absolute Papp values of the marker 

compounds corresponded well with excised human cornea, while the reproducibility appeared 

to be even better. Together with the high power of differentiation these results make C-CHE a 

valuable model for in vitro permeability testing. 

 

For reduction and replacement of animal experiments and refinement of methods, several in 

vitro models are available. Many are suitable as replacements for the Draize test. Of the 

models investigated in our study, C-CHE could be able to (at least partly) replace animal 

experiments to assess tissue distribution and penetration behavior of drug candidates. 
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Abstract 

Purpose: To compare expression profiles of P-glycoprotein (P-gp/MDR1), multi-drug 

resistance-associated protein 1 (MRP1), multi-drug resistance-associated protein 2 

(MRP2), lung resistance-related protein (LRP), and breast cancer resistance protein 

(BCRP) in human cornea and the cell line, HCE-T. 

Methods: Functional evidence for transporter activity was gathered by bi-directional 

flux studies across excised human cornea and HCE-T cell layers using rhodamine 123 

(Rh123). Moreover, human cornea and HCE-T cells were examined for mRNA and 

protein expression of P-gp/MDR1, MRP1, MRP2, LRP, and BCRP, using RT-PCR 

and immunofluorescence microscopy.  

Results: Flux studies of Rh123 revealed a slight but not significant (p < 0.05) 

asymmetry in transport across human corneas and HCE-T layers. Addition of 

cyclosporine A did not alter fluxes. Of all ABC-transporters under investigation, only 

LRP was found in human cornea. HCE-T cells did not show any signal for LRP, 

while expression of MRP1, MRP2, and BCRP could be confirmed. P-glycoprotein 

was not detected in any specimen under examination. 

Conclusions: Human cornea expresses a very limited array of ABC-transporters. The 

expression pattern of HCE-T cells, however, differs from the native corneal tissue. 

Hence, this in vitro model should be used with caution to predict in vivo transport 

properties across the corneal epithelial barrier. 

 

Keywords 

Multi-drug resistance, ocular drug absorption, transport proteins, RT-PCR, in vitro 

models 
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Introduction 

Topical eye medications are applied to the cul-de-sac of the eye, thus major emphasis 

of drug distribution and penetration is on the conjunctival-scleral pathway and the 

cornea. While the conjunctival-scleral pathway seems to be reserved for certain 

molecules of high molecular weight [1], the main transport pathway for the majority 

of drugs is represented by the cornea. The cornea consists of 3 regions with different 

physico-chemical properties: the 9 layers of the epithelium, which reflect the main 

barrier for drug penetration; the stroma; and an endothelial barrier. It has been found 

that only the epithelial cells exhibit tight junctions and adhere to each other via 

desmosomes [2], giving them important barrier properties. Stroma and endothelium 

on the other hand offer very little resistance to transcorneal permeation [3, 4]. The 

main function of the endothelium is to mediate ion and fluid transport and preserve 

the corneal transparency. The importance of the cornea as a penetration barrier raises 

the question of the presence of efflux transporter proteins as defense mechanisms, as 

well as obstacles for lipophilic drug penetration.  

The proteins of the ABC (ATP-binding cassette) family have been recognized to limit 

the absorption of drugs across mucosal barriers and other tissues, such as the 

endothelium of the blood-brain barrier [5, 6]. The ABC-superfamily of transporter 

proteins represents mostly transmembranic moieties that promote efflux of 

xenobiotics and thus reduce their intracellular accumulation. Substrate binding is 

unspecific and covers a wide spectrum of substances [7]. Overexpression of these 

proteins has been found after continuous administration of substances to tumors, as 

well as healthy tissues, which earned these proteins the name “multi-drug resistance” 

(MDR) proteins. Since the cornea provides a major route for the drug penetration into 

the eye [8], it is likely that protective mechanisms are functionally expressed in the 
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cornea. However, information on the expression patterns of these ABC-transporters in 

human ocular tissues is scarce. 

A variety of in vitro models based on excised tissues and epithelial cell cultures have 

been developed and refined for drug absorption/disposition studies over the last two 

decades. In this context, considerable attention has been given not only to the gastro-

intestinal tract, but also to the development of in vitro models of ocular epithelial 

barriers [8 - 13, 26]. These efforts resulted in a number of continuous cell lines and 

cells in primary culture, which are now available to mechanistically study drug 

absorption across the ocular mucosa in a controlled environment. The human corneal 

epithelial cell line, HCE-T, is among these models. HCE-T cells were generated in 

1995 by Araki-Sasaki and co-workers by immortalization of normal corneal epithelial 

cells from a 47-year old female donor using the SV40 virus [9]. HCE-T cell layers 

have been previously used as in vitro models for drug absorption experiments and 

toxicity testing [14, 15]. However, no data has been published on the array of 

transport proteins expressed by HCE-T to date.  

In this study, transport experiments across whole excised human cornea and HCE-T 

cell layers were carried out to functionally confirm and compare the corneal 

expression of P-glycoprotein (P-gp/MDR1) using the substrate, rhodamine 123 

(Rh123), and the inhibitor, cyclosporine A. Furthermore, excised human cornea and 

HCE-T cells were compared regarding the expression pattern of P-gp/MDR1, multi-

drug resistance-associated protein 1 (MRP1), multi-drug resistance-associated protein 

2 (MRP2), lung resistance-related protein (LRP), and breast cancer resistance protein 

(BCRP) at mRNA and protein level, using reverse transcription-polymerase chain 

reaction (RT-PCR) and immunofluorescence microscopy (IFM), respectively. In 



 
Chapter 4: Expression of ABC-transporters in HC and HCE-T 

 

92 

addition, the morphology of the models in our hands was compared by light and 

confocal laser scanning microscopy (CLSM). 

 



 
Chapter 4: Expression of ABC-transporters in HC and HCE-T 

 

93 

Materials and Methods 

Materials 

Cyclosporine A and penicillin/streptomycin were purchased from Calbiochem 

(Darmstadt, Germany). Rhodamine 123, mouse anti-P-gp antibody (clone F4), cholera 

toxin, bovine insulin, dimethyl sulfoxide (DMSO), formaldehyde and ethanol were 

from Sigma (Steinheim, Germany). Mouse anti-MRP1 antibody (clone MRPm6), 

mouse anti-MRP2 antibody (clone M2 III-6), and mouse anti-BCRP antibody (clone 

BXP-21) were all purchased from Chemicon (Temecula, CA, USA). Rat anti-LRP 

antibody (clone LMR5) was from Alexis (San Diego, CA, USA), MDR primers were 

manufactured by MWG Biotech (Munich, Germany) with the sequences shown in 

Table 1. RNA isolation, reverse transcription and PCR were performed using an 

RNeasy Mini kit, Omniscript RT kit and Taq PCR Master Mix kit, all from Qiagen 

(Hilden, Germany). Permeable filter inserts (Transwell Clear, 12 mm diameter, pore 

size 0.4 µm) were from Corning (Bodenheim, Germany). Eosin G 0.5% solution, 

Mayer’s hematoxylin solution, xylole, Paraplast paraffin beads and Roti-Histokitt 

mounting reagent were from Carl Roth GmbH & Co KG (Karlsruhe, Germany). All 

other substances used were of highest commercially available grade. 

 

Tissue preparation and cell culture 

Excised human cornea: Human corneas, unsuitable for transplantation due to their 

low density of endothelial cells, and leftover corneal rings from successful 

transplantations were a gift from the Lions Corneabank (University Hospital, 

Homburg, Germany).  

HCE-T cells: HCE-T cells were purchased from Riken Cell Bank (Tsukuba, Japan). 

HCE-T cells (passage numbers 75 to 84) were cultured on Transwell Clear filter 
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inserts at a seeding density of 60,000 cells/cm2. The culture medium consisted of 

Dulbecco’s modified Eagle’s Medium (DMEM)/Ham’s F12 (1:1 mixture) 

supplemented with 5% fetal bovine serum (FBS), 5 µg/ml insulin, 0.1 mg/ml cholera 

toxin, 10 ng/ml epidermal growth factor, 0.5% DMSO, 100 µg/ml streptomycin and 

100 U/ml penicillin G. A protocol communicated by Toropainen and co-workers [16] 

was slightly modified for our purposes. Briefly, cells were maintained for 1 week 

under liquid-covered conditions and were switched to an air-interface in the second 

week. Medium was changed every other day during the first week and daily in the 

second week.  

Caco-2 cells: The Caco-2 cell line was used as a comparison for the expression of 

ABC-transporters. Cells were purchased from LGC Promochem (Wesel, Germany) 

and used at passage numbers 23 to 25. Caco-2 cells were cultured in flasks until they 

reached confluence on day 7 using DMEM supplemented with 10% FBS and 1% non-

essential amino acids. The medium was changed every other day. 

 

The development of cells into monolayers of epithelial morphology was monitored 

microscopically. In addition, cell growth and integrity of cell layers was monitored by 

measurement of the transepithelial electrical resistance (TEER). Only cell layers with 

TEER values >400 Ω·cm2 were used for the transport experiments. The TEER values 

were assessed with an EVOM device equipped with STX-2 “chopstick” electrodes 

(World Precision Instruments, Berlin, Germany) and corrected for the background 

value of the blank filter. 
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Transport studies 

Drug transport studies were performed with both HCE-T cell layers grown on 

Transwell Clear filter inserts for 14 days and excised human cornea mounted in 

modified Ussing chambers [17]. All solutions used were prewarmed to 37°C. Prior to 

transport studies, the cell layers/tissues were equilibrated for 1 h in modified Krebs 

Ringer buffer (KRB, 1.5 mM K2HPO4, 3 mM KCl, 4 mM glucose, 142 mM NaCl, 

10.07 mM 4-(2-hydroxyethyl)-piperazine-1-ethanesulfonic acid (HEPES), 1.4 mM 

CaCl2, and 2.56 mM MgCl2, pH 7.4). The transport experiments were initiated by 

exchanging the KRB of the respective donor side with the same volume of KRB 

containing rhodamine 123 (Rh123; 13 µM final concentration). The apical and 

basolateral volumes were 500 µL and 1500 µL in the Transwell system and 2.5 ml 

(both sides) in the Ussing chambers, respectively. Two hundred µL samples were 

drawn from the corresponding receiver compartment every 30 min for up to 4 h. 

Removed volumes were replaced by the same amount of fresh pre-warmed KRB. To 

determine the initial donor concentration, 20 µL samples of the donor solution, taken 

at t = 0, were assayed.  

 

Fluorescence activity of Rh123 containing samples was analyzed in a 96-well plate 

reader (Cytofluor II, PerSeptive Biosystems, Wiesbaden, Germany) at excitation and 

emission wavelengths of 485 and 530 nm, respectively. These samples were diluted 

with KRB, where appropriate. 

 

Unidirectional Rh123 fluxes were also determined in the presence of cyclosporin A 

(CyA), an inhibitor of P-gp, to determine the effect of CyA on Rh123 transport. In 

these inhibition studies, all solutions contained a final concentration of 10 µM CyA.  
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For human cornea, the identical experimental protocol was used. Human corneas were 

mounted in modified Ussing chambers, allowing access to front and rear side of the 

tissue. Donor and acceptor volumes were altered to 2.5 mL for both compartments 

according to the capacity of the respective sides. The defective endothelium and 

stroma were not considered a critical barrier in the transport experiments. Exposure to 

CyA to the basolateral side of the epithelium was achieved by a 1 h preincubation of 

the tissue with KRB containing 10 µM of CyA. 

 

All experiments were performed in triplicates. For HCE-T cells, the same passage was 

used for all experiments. TEER values were assessed before and after the drug 

permeation experiments to ascertain the integrity of the corneas and the HCE-T cell 

layers. 

 

The apparent permeability of Rh123 was calculated using the equation,  

 

Ac

J
Papp

*0

=    (Eq. 1) 

 

where J = Rh123 flux (mol/s), c0 = initial Rh123 concentration in the donor solution 

(mol/cm3) and A = surface area of the corneal tissue or HCE-T cell layers, which was 

1.27 cm2 or 1.13 cm2, respectively. 
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RNA isolation and RT-PCR 

Corneal rings were separated from the scleral rim, cut into 10 mm2 pieces and frozen 

in liquid nitrogen. Frozen tissues were then homogenized with an UltraTurrax 

homogenizer (IKA, Staufen, Germany). Subsequently, the nitrogen was evaporated 

and the residue was dissolved in lysis buffer (RNeasy kit). Further mincing of the 

corneal tissues was achieved by the use of a QiaShredder column (Qiagen). The lysate 

was purified for RNA according to manufacturer’s instructions. For extraction of 

cellular proteins and RNA from Caco-2 and HCE-T cells in culture, cells were 

washed twice with phosphate-buffered saline (PBS, 129 mM NaCl, 2.5 mM KCl, 7.4 

mM Na2HPO4•7 H2O, 1.3 mM KH2PO4, pH 7.4) and then treated with trypsin/EDTA 

(0.25%/1 mM) for 5 min. Isolated cells were then extracted for RNA using 

QiaShredder columns and the RNeasy kit. 

Reverse transcription was performed using the Omniscript kit in a Biometra Personal 

Cycler (Biotron GmbH, Göttingen, Germany) at 37ºC for 1 h followed by heating to 

95ºC for 5 min. Polymerase chain reaction was conducted for 35 cycles, using the 

primers listed in Table 1 and a temperature program of 94ºC for 10 min initially, 

followed by 94ºC for 30 sec, 55ºC for 30 sec, and 72ºC for 1 min. The final step 

consisted of 72ºC for 10 min and storage of the end product at 4ºC. The resultant 

DNA fragments were examined by agarose (2%) gel-electrophoresis. GAPDH was 

used as an internal “loading” control. 
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Table 1. Primer sequences for PCR (for = forward primer; rev = reverse primer) 

Primer Sequence 

P-gp (for) 5’-CCCATCATTGCAATAGCAGG-3’ 

P-gp (rev) 5’-GTTCAAACTTCTGCTCCTGA-3’ 

MRP1 (for) 5’-ATCAAGACCGCTGTCATTGG-3’ 

MRP1 (rev) 5’-AGAGCAAGGATGACTTGCAGG-3’ 

MRP2 (for) 5’-CAAACTCTATCTTGCTAAGCAGG-3’ 

MRP2 (rev) 5’-TGAGTACAAGGGCCAGCTCTA-3’ 

LRP (for) 5’-CCCCCATACCACTATATCCATGTG-3’ 

LRP (rev) 5’-TCGAAAAGCCACTGATCTCCTG-3’ 

BCRP (for) 5’-TGCCCAGGACTCAATGCAACAG-3’ 

BCRP (rev) 5’-ACAATTTCAGGTAGGCAATTGTG-3’ 

GAPDH (for) 5’-CCCCTGGCCAAGGTCATCCATGACAACTTT-3’ 

GAPDH (rev) 5’-GGCCATGAGGTCCACCACCCTGTTGCTGTA-3’ 

 

Immunofluorescence microscopy 

The respective antibodies were diluted 1:100 in PBS containing 1% (w/v) bovine 

serum albumin (BSA). For staining, corneal rings were cut into 10 mm2 pieces as 

described above. The specimens were fixed for 30 min with 2% paraformaldehyde 

and excess paraformaldehyde was then removed by a treatment for 10 min in 50 mM 

ammonium chloride solution, followed by permeabilization for 15 min with 0.1% 

(w/v) Triton X-100. After 60 min incubation with 100 µL of the diluted primary 

antibody at 37°C, the corneal pieces were washed three times before incubation with 

100 µL of a 1:100 dilution of a rabbit anti-rat IgG FITC-conjugate for LRP and a 

1:100 dilution of Alexa Fluor 488-labeled goat anti-mouse IgG for all other proteins 
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in PBS containing 1% (w/v) BSA. Propidium iodide (1 µg/ml) was used to 

counterstain cell nuclei. After 30 min incubation, the specimens were washed three 

times with PBS and embedded in FluorSafe anti-fade medium. A negative control 

included the use of a mouse IgG1,κ (Sigma, Steinheim, Germany) and the specimen 

treated according to the described procedure. Images were obtained with a confocal 

laser-scanning microscope (MRC-1024, Bio-Rad, Hemel Hempsted, UK) with the 

instrument settings adjusted so that no positive signal was obtained in the negative 

control. IFM for HCE-T cells grown on Transwell filter inserts was performed using 

the same protocol as described above. 

 

Statistical analysis 

Results are expressed as mean ± S.E.M. Significance (p < 0.05) of differences in the 

group mean values for TEER and Papp were determined by one-way analysis of 

variances (ANOVA), followed by Student-Newman-Keuls post-hoc tests. 
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Results 

Transport studies 

The apparent permeability coefficients (Papp) of Rh123 are shown in Figure 1. For 

both, human cornea and HCE-T cells, no significant net directionality of Rh123 fluxes 

could be observed. The presence of CyA did not alter the flux ratios, but CyA 

increased the absolute permeability values in both directions for the HCE-T cell 

layers. The respective Papp values (×10-7 cm/sec; mean ± S.E.M.; n = 3) for the 

different models/conditions were for human cornea, apical-to-basolateral (ab) 

2.23±1.50 and basolateral-to-apical (ba) 7.15±2.96. The addition of CyA changed the 

ab value to 4.87±0.78; and the ba value to 7.89±3.56. HCE-T cell layers showed an 

ab-Papp value of 11.90±3.00 and ba value of 17.00±2.80. The addition of CyA altered 

the ab-Papp to 32.20±5.53 and 39.10±2.60 (ba). 

 

RT-PCR 

RT-PCR studies were carried out to assess the mRNA expression profiles for P-gp, 

MRP1, MRP2, LRP, and BCRP. As shown in Figure 2, in excised human cornea only 

LRP produced a positive signal. No message for any other ABC-transporter under 

investigation could be detected. In comparison, the immortalized HCE-T cells did not 

show a signal for LRP mRNA, whereas signals for MRP1, MRP2, and BCRP could 

be detected. Caco-2 cells, which were used as control, expressed all mRNAs except 

for LRP.  
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Figure 1. Apparent permeability (Papp) of rhodamine (Rh123) across cultured layers 

of HCE-T human corneal epithelial cells (day 14) and excised human cornea. Excised 

human corneas were mounted in Ussing chambers and HCE-T cell layers were 

cultured on Transwell Clear filters for 14 days. Bi-directional transport studies 

(apical-to-basolateral (■) and basolateral-to-apical (□) directions) were carried out. 

No significant (p < 0.05) net directionality was found for Rh123 fluxes under all 

conditions tested. Presence of the P-glycoprotein inhibitor cyclosporine A (CyA) did 

not affect Rh123 flux ratios, but increased absolute fluxes across HCE-T cells. Data 

represent mean ± S.E.M. for n = 3 -4 
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Figure 2. Analysis of mRNA encoding for ABC-transporters by RT-PCR. The results 

for excised human cornea (lanes 2 to 6), HCE-T cells (lanes 7-12), and Caco-2 cells 

(lanes 14 to 19) are shown. GAPDH was used as an internal standard. Lane 1 shows 

the DNA ladder (ranging from 100 to 3000 bp). The bands for the amplicons are 

located on the gel at positions consistent with the expected sizes of 156 bp (P-

gp/MDR1), 181 bp (MRP1), 56 bp (MRP2), 405 bp (LRP), 171 bp (BCRP), and 518 

bp (GAPDH). In human cornea only the message for LRP was found, while HCE-T 

and Caco-2 cells contained mRNA encoding for MRP1, MRP2, and BCRP. Caco-2 

cells, in addition, contained mRNA for P-gp.  

 

Immunofluorescence microscopy 

The results of the IFM investigation are summarized in Figure 3. The presence of 

LRP in excised human cornea as a cytosolic vault protein was confirmed by IFM 

(Figure 3A). No signals for the other ABC–transporters under investigation could be 

observed by immunofluorescence (data not shown). IFM performed on Transwell-

grown HCE-T cell layers resulted in data, which are in support of the findings from 

the RT-PCR studies (Figure 3B, C, D). LRP was absent (data not shown), while 

strong signals could be obtained for MRP1 (Fig. 3B), MRP2 (Fig. 3C), and BCRP 
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(Fig. 3D). However, neither human cornea nor HCE-T cell layers showed expression 

of P-glycoprotein at the cellular membranes (data not shown). The negative control 

with a mouse IgG1, κ did not show any staining (data not shown) and thus verified 

successful immunofluorescence staining. 
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Figure 3. Immunolabelling of ABC transporter proteins in excised human cornea and 

Transwell-grown HCE-T cell layers. Staining for proteins (green) is shown using 

confocal laser scanning microscopy. Nuclei were counterstained with propidium 

iodide (red). A: LRP in human cornea; B: MRP1 in HCE-T; C: MRP2 in HCE-T; D: 

BCRP in HCE-T cells. 
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Discussion 

In this study, we investigated the presence of ABC-transporters in excised human 

cornea and HCE-T cell layers by means of bi-directional drug transport studies and 

methods of molecular cell biology. By choosing rhodamine 123 as substrate we 

mainly concentrated on the examination of P-gp. While the transport studies revealed 

no evidence for any such efflux system, we subsequently compared the expression 

profiles of other ABC-transporters in native human corneal tissue at mRNA and 

protein levels to those in the immortalized cell line, HCE-T. Our results show that in 

HCE-T cells, LRP was not found; instead MRP1, MRP2, and BCRP were expressed, 

as assessed by semi-quantitative RT-PCR and IFM studies. The process of 

immortalization is generally regarded as a critical step. During the process of 

immortalization, the life span of the cells is extended and the growth characteristics 

are enhanced. This procedure generally decreases the state of differentiation. 

Therefore, it may not be too surprising that new features can be introduced into the 

cells and possible features of earlier states of differentiation can be reactivated [18]. 

For example, BCRP has been reported to be present in corneal epithelial stem cells, 

but is absent in the differentiated corneal epithelial cells [19]. 

In contrast, LRP was found to be expressed in human cornea. LRP is considered a 

‘flag’ for the activation of an organic anion pump. LRP was also reported to be 

present in human tissues that are chronically exposed to xenobiotics, i.e., epithelial 

cells, supporting the assumtion that LRP is involved in the defense mechanisms of 

these cells [20]. It has been shown by Scherper and co-workers that LRP is a good 

drug-resistance-related predictor for the outcome of cancer treatments [21, 22], which 

makes these findings relevant for drug effect research. Due to its localization in the 

cytoplasm, effects of LRP on the Rh123 flux are not expected to affect the 
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directionality of transport across an epithelial cell layer, which is consistent with our 

findings.  

In the primary cultured cells of rabbit conjunctiva, the presence of P-gp has 

previously been reported [23]. The transporter protein was shown to be mainly 

located in the apical part of the epithelial cell layer and found to be an important 

impeding factor for the absorption behavior of lipophilic drugs [24]. Other 

compartments of the mammalian eye for which a P-gp expression was reported, 

include lens (rat) [25], conjunctiva (rabbit) [23] and cornea (rabbit) [26, 27]. MRP1 

has been reported for human retinal pigment epithelial cells [28], where it is 

functionally active.  

Our findings are in contrast to a previously published study conducted by Dey and co-

workers, who found evidence for the presence of P-gp/MDR1 mRNA in human 

corneal tissues [27]. While the difference in expression pattern between species is not 

entirely surprising, we have currently no explanation for the apparent discrepancy of 

their and our human data.  

So far, corneal cell models have not been compared to intact human cornea. The only 

system tested against human tissue is the human cornea construct (HCC) developed 

by Reichl and co-workers [29]. The HCC system is a multilayered, three-dimensional 

construct, composed of three different cell lines and aiming to mimic the entire 

cornea. Thus, it is not surprising that a close resemblance between the relatively 

complex human cornea construct and native cornea for the tested markers was found.  

In the present study, however, we compared human cornea with the HCE-T cell line. 

The results show that there are significant differences in the expression pattern of 

drug efflux transporters between the native tissue and such a reductionist corneal 

epithelial model. In summary, in spite of being relatively easy to use, the HCE-T cell 
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line might be only of high value as an in vitro model for the examination of passive 

transport processes, as the preliminary examinations presented in this study indicate 

differences in the ABC-transporter expression. 
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Introduction 

In addition to the experiments already evaluated in Chapter 1 to 4, further experiments were 

performed. These include the light microscopical examination of the used cell models and a 

comparison of the efflux protein expression in human cornea and the permanent HCE-T cell 

line using Western blotting. 

 

To evaluate the effect of the drug transport studies, the different in vitro models were 

evaluated microscopically after performance of transport experiments using a standard 

hematoxylin-eosin staining. 

Models under investigation were human cornea, rabbit cornea, HCE-T cells grown on 

Transwell filter inserts for 14 days as well as the Statens Serum Institute Rabbit Cornea 

(SIRC) in different stages of cell development and the Cambrex Clonetics human corneal 

epithelial cell model. 

The SIRC cell model was just examined for its growth behavior over 3 weeks because it does 

not exhibit tight junctions (shown by TEER measurements, values of ~ 90 Ω*cm² were 

recorded) and thus does not form a barrier significantly tight for drug transport. 

All other models were examined in their “native” state before the experiments and after 

performing the transport studies. An effect of the various compounds was tried to evaluate. 

 

To support the data on the gamut of ABC-transporter gamut in human cornea and HCE-T 

cells, immunoblotting experiments were performed. These experiments verified in part the 

data acquired through RT-PCR and immunofluorescence microscopy. Still, further 

experiments are needed to clarify the discrepancy between the immunoblotting data and the 

already shown data of chapter 4. 
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Materials and Methods 

Materials 

Sodium dodecylsulfate, mouse anti-P-gp antibody (clone F4), Quickdraw blotting paper, 

cholera toxin, bovine insulin, dimethyl sulfoxide (DMSO), formaldehyde and ethanol were 

from Sigma (Steinheim, Germany). Prestained wide-range protein markers were purchased 

from BioRad (Munich, Germany). Mouse anti-human MRP1 antibody (clone MRPm6), 

mouse anti-human MRP2 antibody (clone M2 III-6), and mouse anti-human BCRP antibody 

(clone BXP-21) were all purchased from Chemicon (Temecula, CA, USA). Rat anti-human 

LRP antibody (clone LMR5) was from Alexis (San Diego, CA, USA), anti-mouse IgG 

alkaline phosphatase (AP)-conjugate and anti-rat IgG AP-conjugate were from Promega 

(Madison, WI, USA). Protran BA-85 nitrocellulose transfer membranes were purchased from 

Schleicher & Schuell (Dassel, Germany). Eosin G 0.5% solution, Mayer’s hematoxylin 

solution, xylol, paraffin beads, Roti-Histokitt, Rotiphorese 30 acrylamide/bisacrylamide 

mixture, N, N. N’, N’ – tetramethylethylenediamine (TEMED), ammonium persulfate, 

glycine and tris-HCl were purchased from Roth (Karlsruhe, Germany). Complete mini 

protease inhibitor tablets and the AP substrate (NBT/BCIP) stock solution were from Roche 

Applied Sciences (Mannheim, Germany). Permeable filter inserts (Transwell Clear, 12 mm 

diameter, pore size 0.4 µm) were from Corning (Bodenheim, Germany). All other substances 

used were of highest grade available commercially. 

 

Tissue preparation and cell culture 

Excised human cornea: Non-transplantable human corneas, unsuitable for transplantation due 

to their low density of endothelial cells, and corneal rings were a gift from the Lions 

Corneabank (University Hospital, Homburg, Germany). Corneal rings were leftovers from 

successful cornea transplantations.  
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Caco-2 cells: The Caco-2 cell line was purchased from LGC Promochem (Wesel, Germany). 

Caco-2 cells (passages 23-25) were cultured in flasks using Dulbecco’s Modified Eagle’s 

Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), and 1% non-essential 

amino acids. The medium was changed every other day. The development of cells into 

monolayers of epithelial morphology was monitored microscopically. The cells were grown 

until they reached confluence, which was achieved after a 7-day period. 

HCE-T cells: HCE-T cells were purchased from Riken Cell Bank (Tsukuba, Japan). HCE-T 

cells (passage numbers 75 to 84) were cultured on Transwell Clear filter inserts at a seeding 

density of 60,000 cells/cm². The culture medium consisted of DMEM/Ham’s F12 (1:1 

mixture) supplemented with 5% FBS, 5 µg/mL insulin, 0.1 mg/mL cholera toxin, 10 ng/mL 

epidermal growth factor, 0.5% DMSO, 100 µg/ml streptomycin and 100 U/ml penicillin G. 

As described earlier, cells were maintained for 1 week under liquid covered conditions and 

were switched to an air-interface condition in the second week. Medium was changed every 

other day during the first week and daily in the second week to contribute to the cell’s high 

metabolic activity. 

Clonetics corneal epithelial cell models: Clonetics cell culture models (Cat. No.: CMS-2015) 

were purchased from Cambrex (Vervier, Belgium). Upon arrival, cells were removed from the 

transport gel and transferred into the supplied 24-well cell culture plate. Cells were 

maintained under air-interface conditions with the provided, freshly supplemented cell culture 

medium (CEBM, Cat.No: CC-3251, supplemented with Corneal Epithelial SingleQuot kit, 

CC-4443). Maximum incubation time before the experiments was twelve hours. 

 

Methods 

Western blotting 

For immunoblotting, three groups of cell lysates were generated. The human corneal rings 

(1.7 cm in diameter; n = 4) were transplantation leftovers and consisted of a scleral part of 3 
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mm width and a corneal part approximately 4 mm wide. The scleral rim was carefully 

removed using a pair of scissors and forceps. The remaining corneal tissue was cut in pieces 

of 13.5 mm2 and frozen in liquid nitrogen, followed by homogenization using an UltraTurrax 

rotor-stator homogenizer. After evaporation of the nitrogen, the homogenized tissue was 

resuspended in 1 mL modified radioimmunoprecipitation (RIPA)-buffer with protease 

inhibitors (150 mM NaCl, 50 mM tris-HCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl 

fluoride, 1% sodium deoxycholic acid, 0.1% sodium dodecylsulfate, 5 µg/mL aprotinin, and 5 

µg/mL leupeptin; pH 7.4). The solution containing tissue homogenates was kept on ice for 30 

min and sonicated for 30 s every 10 min. After lysis, the suspension was centrifuged at 14,000 

rpm (20,000×g) at 4ºC for 4 min. An aliquot of the supernatant was taken for determination of 

protein amount and the remainder frozen for storage until assay later. A BCA-assay (Uptima, 

St. Augustin, Germany) was used for protein quantification. 

For the preparation of lysates from Caco-2 and HCE-T, cells were removed from the cell 

culture flask with trypsin/EDTA and washed with DMEM medium. The suspension of 

isolated cells was centrifuged and the cell pellet was resuspended in 1 mL RIPA-Buffer with 

protease inhibitors. The solution containing cells was kept on ice for 30 min and sonicated for 

30 s every 10 min. The cell lysate was then centrifuged at 14,000 rpm at 4ºC for 4 min. An 

aliquot of the supernatants was taken for protein determination and the remainder frozen 

immediately until use. 

For immunoblotting analysis, 20 µg each of the various protein lysates were diluted with 

reducing Laemmli’s sample buffer (130 mM Tris-HCl, 6% sodium dodecylsulfate, 20% 

glycerol, 0.1% bromphenole blue, and 10% β-mercaptoethanol, pH 6.8) to make up 30 µL of 

loading volume in each lane. Samples were denatured at 56ºC for 10 min and pipetted into 

each lane of the gel pockets. Electrophoresis was performed using a Mini Protean II (BioRad) 

at 80 V for 10 min and then at 100 V for 80 min to fractionate the proteins by their molecular 

weights. 
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For detection of P-gp, MRP1, MRP2, and BCRP, a 6% polyacrylamide gel was used with the 

wide range marker cocktail loaded in one lane. For the detection of LRP and GAPDH 

(internal standard), a 10% gel was used with wide range protein markers. Fractionated 

proteins were then transferred onto nitrocellulose membranes at 48 V for 2 h. Successful 

protein transfer was checked by Ponceau staining. The membrane was achromatized and 

blocked over night with blocking buffer containing 10% low fat milk and 0.1% Tween 20. 

Blocked membranes were incubated with the respective primary antibody diluted in blocking 

buffer for 90 min at room temperature. The membrane was washed for 2 min with PBS, twice 

with PBS containing 0.05% Triton X-100 for 5 min and again with PBS for 2 min. An 

appropriate AP-conjugated secondary antibody diluted in the blocking buffer was incubated 

with the membrane for 90 min at room temperature. After washing the membrane again as 

described above, the antibody-antigen complexes were detected with NBT/BCIP solution 

(Roche Applied Science, Mannheim, Germany). 

 

Histological staining 

A standard hematoxylin & eosin staining protocol was used. Briefly, cells were fixed in a 

formaldehyde solution (4% in PBS) at room temperature for 30 min. Excess formaldehyde 

was removed by repeated washing with water. Samples were then dyed with hematoxylin for 

about 20 min. The staining process was stopped by 4 to 5 washing steps with water. Washing 

was ceased after the washing liquid remained colorless. Samples were then dehydrated over 

night through a graded series of ethanol at 70%, 96% and 100% at room temperature and kept 

in xylol afterwards. For embedding, samples were soaked in paraffin wax at 60°C over night 

and embedded the next day. 

Four micrometer sections were cut with a microtome (Leica Microsystems, Nussloch, 

Germany) and stored in xylol. Samples were rehydrated by a graded series of ethanol at 

100%, 96% and 70% for 10 min each at room temperature. The sections were washed with 
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water and staining was intensified by another 5 min treatment with Mayer’s hematoxylin 

solution. No further staining was performed with HCE-T cell layers. Tissue samples of human 

cornea and rabbit cornea were counter-stained with Eosin G for 30 s and washed with a series 

of ethanol 96% and 100%. Sections were stored in xylene until mounting on object slides with 

Roti-Histokitt. Paraffin wax embedded sections were examined with a Zeiss Axiovert light 

microscope. (Carl Zeiss, Jena, Germany) 
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Results 

Protein expression 

Expression patterns of ABC transporter proteins were investigated by means of Western 

blotting. The immunoblotting partly confirmed the results obtained at the mRNA level and by 

immunofluorescence microscopy (see Chapter 4). Excised human corneal tissue shows 

positive signals for LRP only (Figure 1), while HCE-T cell layers express MRP1 and BCRP, 

but not LRP (Figures 1 and 2). Caco-2 cells, as expected, express P-gp/MDR1, MRP1, MRP2, 

and BCRP. 

 

Light microscopy 

Micrographs of the intact tissues are shown in Figure 3. Thickness of the epithelial cell layer 

varies with the type of tissue. In human cornea (Figure 3A) only four to five epithelial cell 

layers are recognizable. The stroma shows its characteristically collagen structure with 

implemented fibroblasts. Rabbit cornea (Figure 3B) shows similar features to human cornea. 

The epithelial cell layer shows a higher number of cell sheets and a progression in 

differentiation. This progress is visible by the change in morphology. 

HCE-T cells are only epithelial cells and therefore miss the stroma and endothelial cells. 

HCE-T cells on day 14 do not show much differentiation even though they grow in multiple 

layers (Figure 4A). 
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Figure 1. Representative Western blots of P-gp, MRP1, MRP2, and LRP. Lane 2 shows 

protein lysate from the excised human cornea, lane 3 control cell lysate (from Caco-2 cells), 

and lane 4 contains HCE-T cell lysate. Western blots for each of the ABC-transporters are 

representative of at least 2 independent experiments. 

 

 

Figure 2. Representative Western blots of BCRP and GAPDH (internal control). Lane 2 

shows protein lysate from the excised human cornea, lane 3 contains HCE-T cell lysate, and 

lane 4 control cell lysate (from Caco-2 cells). Western blots are representative of at least 2 

independent experiments. 
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The Clonetics model is also a reductionist model and consists of epithelial cells only. The 

cells grow in multiple layers of about 6 cell layers. A progress in differentiation is clearly 

visible through changed morphology (Figure 4B). 

 

The changes in model composition are shown in Figure 3 and 4. Changes are variable 

depending on the model and on the substance used. In general, it is visible that drug transport 

studies across corneal epithelium do affect the cell layers. In many cases, a disaggregation of 

the cells is visible. Also a swelling of the stroma can be detected in case of the human and the 

rabbit cornea. 

The proliferation of SIRC cell layers is shown in Figure 5. Pictures of the cell sheets were 

taken on day 7 (Fig. 5A), day 14 (Fig. 5B) and day 21 (Fig. 5C) 
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Figure 3: Ex vivo tissues before and after performance of transport experiments 
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Figure 4: In vitro cell layers before and after performance of transport experiments  
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Figure 5: Development of SIRC cell layers cultured on Transwell filter inserts for 21 days 
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Discussion 

Western blotting confirmed the data acquired by RT-PCR and immunofluorescence 

microscopy. Human cornea shows only a positive signal for LRP and BCRP, which has been 

reported to be a corneal stem cell marker [1]. HCE-T cells therefore show a broader spectrum 

of ABC-transporter proteins. MRP1 and BCRP were found by immunoblotting. LRP did not 

show any signal, which is in accordance to the data acquired earlier. Surprisingly, MRP2 was 

not found by western blotting, even though we clearly proved its presence by RT-PCR and 

immunofluorescence microscopy. This discrepancy might be due to instability of the 

antibody-antigen-complex or insufficient sensitivity of the detection method. Further 

experiments have to be carried out to clarify this matter. In any case, a successful blotting 

process was verified by the internal standard/loading control GAPDH. 

 

Differences in the morphology of the specimens have been detected by light microscopy. 

During drug transport studies, major changes occurred and were detected by post-transport 

light microscopy. In many cases, disaggregation of the cells and stroma were detected. In one 

case we also detected intensive signs of inflammation. If this inflammation was caused by the 

drug transport study or if the inflammation already existed prior to the experiment could not 

be determined in this experiment. Since ocular injuries often occur to breeded rabbits, it is 

reasonable to assume that the inflammation already existed at beginning of the experiment. 

Major disaggregation was also detected in the HCE-T cell model indicating that these cell 

layers have an integrity shift during transport experiments. These findings are in accordance 

to the recorded TEER values, that usually show a mean drop of about 200 Ω*cm². 

Since the TEER values were still in the range of about 300 Ω*cm² for all cell layers used in 

experiments, a lack of cell layer tightness is not probable. Still, changes in cell tightness and 

cell layer adherence are to be taken in account. 
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Conclusions 

The presented work gives a thorough overview on „state of the art“ in vitro cell cultures of the 

corneal epithelium. 

The initial aim of this study, setting-up a primary corneal epithelial cell culture model based 

on human tissue, however, was not achieved. As other researchers in the field, we found that 

major obstacles, such as too little tissue amounts and poor viability of the cells in the corneal 

epithelium, circumvent the successful continuous culturing of these cells to tight monolayers. 

Recent advantages in cell isolation techniques are still to inefficient to promote cell 

accumulation for this specific tissue. 

 

For the examination of the penetration behavior of moxaverine-hydrochloride (Mox), we 

found in different models (rabbit in vivo, primary rabbit corneal epithelial cell culture, human 

ex vivo, rabbit ex vivo, human in vitro corneal epithelial cell culture) unisonous data that 

cornea does not represent a critical barrier for the ocular delivery of this drug. However, the 

low solubility in aqueous solutions of physiological pH presents a major obstacle on the way 

to successfully market moxaverine-HCl as a topically-administered medicine. 

 

In this thesis, I was able to evaluate a number of different in vitro models of the corneal 

epithelium. I found that those models that were mainly established as substitutes for the 

Draize test disqualify for drug transport studies due to their lack of functional cell-cell 

contacts. Nevertheless, these models are of high value for eye irritation assays. Systems that 

were developed with the aim to provide tight cellular layers (i.e., HCE-T and the Clonetics 

corneal epithelium model) are useful tools to assess passive corneal transport. However, for 

active transport, the HCE-T model should be used with caution, since it was found in the 

cause of my studies that the spectrum of ABC-transporter proteins significantly differs from 

native human cornea. The Clonetics human corneal epithelium should also be used with care, 
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because its ABC-transporter spectrum has not been assessed so far. The SIRC cell line does 

neither form tight cell layers nor matches the human corneal morphology and should thus not 

be used for drug transport studies at all. 



131 
Conclusions, Summary and Outlook 

Summary  

The focus of my thesis was to find a simple test system to screen new therapeutic entities to 

regarding their ocular penetration. Using the model compound moxaverine-hydrochloride, the 

project was performed in 4 phases: 

 

In phase 1, the tissue distribution of moxaverine-hydrochloride in the rabbit eye was 

examined and evaluated. A distribution profile was generated by either dosing pigmented 

Dutch-belted rabbits topically on the eye or applying the drug solution intravenously. Results 

showed that high drug amounts in the posterior part of the eye can be achieved after pre-

corneal disposition of the moxaverine-solution. The fact that blood-plasma levels of 

moxaverine-hydrochloride did not exceed the levels found after systemic dosing makes local 

ocular administration of moxaverine-hydrochloride an interesting therapeutic approach. 

Parallel to the in vivo testing, the barrier that corneal epithelium exhibits towards moxaverine-

hydrochloride was examined using a primary rabbit corneal epithelial cell culture (rbCECL). 

These in vitro drug transport studies confirmed that the rabbit cornea does not represent a 

critical barrier for moxaverine-penetration into the eye. 

 

Phase 2 of the presented project dealt with the development of a primary human corneal 

epithelial cell model. Many attempts of creating such a model have been described frequently 

throughout the last decades. Even though scientists often succeeded in isolating cells and 

setting up primary cell cultures, cell isolation proved unreliable and cumbersome in all cases. 

Since significant progress has been made in recent years in our understanding of cell isolation 

and culture, applying these techniques to the human corneal epithelium seemed feasible. 

The methods mainly concentrated on various enzymatic digestions, using proteases and 

combination of these enzymatic techniques with a cell positive selection protocol using 

magnetic microbeads coated with human epithelial antigen (CD327, HEA-125). Even though 
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the experimental conditions were varied intensively and numerous combinations of enzymes 

were examined, the aim of the primary human corneal epithelial cell culture was not reached. 

The limited amount of available tissue and the long storage time of the corneal samples after 

excision might contribute to the failure of this part of the work. 

 

Since a primary human corneal epithelium was out of reach as an in vitro test system, existing 

models of human corneal epithelium were examined and compared to intact human and rabbit 

cornea (phase 3 of the thesis). The cell models under investigation were all of human origin 

and immortalized by either SV-40 large T antigen or a recombinant retrovirus containing 

HPV16 genes E6 and E7. The cell models were examined by a spectrum of marker-substances 

for their power to differentiate (high/low permeability markers), presence and activity of P-

glycoprotein efflux systems (using substrate molecules), and value for ophthalmic research 

(“ophthalmology marker”). The systems were also used to screen the substance of interest, 

moxaverine-hydrochloride. 

Using a set of marker substances, a ranking of the models was created. The commercially 

available reconstituted human corneal epithelium from Skinethic (Nice, France) showed a 

poor performance in this study, even though it serves as a valuable tool in toxicity and eye 

irritation testing. The likewise commercially available Clonetics system from Cambrex as 

well as the long established HCE-T cell line proved to be good simplified models of the 

cornea. Drawbacks for the HCE-T cell line, however, is the less pronounced power of 

differentiation and the findings made in stage 4 of the project (see below). 

 

In the final, fourth phase of the project, the HCE-T cell line was compared to the human 

cornea regarding its equipment with common efflux transporters. Since efflux systems of the 

ABC-transporter family are known to be a crucial factor in drug disposition and failure in 

cancer therapy, these proteins have gained major interest in biopharmaceutical research.  
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To clarify the situation in corneal epithelium that has not been extensively reviewed so far, we 

examined the presence of MDR1/P-gp, MRP1, MRP2, LRP, and BCRP in ex vivo human 

corneal samples and the commonly used HCE-T cell line. RT-PCR and immunofluorescence 

microscopy, as well as immunoblotting were used as tools to assess the spectrum of 

transporters. 

Human cornea proved to be a rather uncritical tissue concerning multi-drug resistance issues, 

showing only a little array of efflux proteins, namely only LRP, HCE-T, however, showed a 

broader spectrum of efflux proteins, not unexpected in a continuously growing cell line that 

highly differs from the situation found ex vivo. These finding somewhat reduce the value of 

the HCE-T model in drug transport research. 
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Zusammenfassung 

Die vorliegende Arbeit konzentrierte sich auf das Erforschen eines einfachen Testsystems, um 

das oculare Penetrationsverhalten neuer therapeutischer Substanzen vorhersagen zu können. 

Unter Verwendung der Modellsubstanz Moxaverin-Hydrochlorid wurde das Projekt in 4 

Abschnitten durchgeführt:  

 

In Phase 1 wurde die Gewebeverteilung von Moxaverin-Hydrochlorid im Kaninchenauge 

ermittelt und bewertet. Ein Verteilungsprofil wurde erstellt, indem pigmentierte Kaninchen 

der Rasse “dutch-belted” eine Wirkstofflösung entweder lokal am Auge oder intravenös 

verabreicht wurde. Die Resultate zeigten, daß hohe Substanzmengen im hinteren Teil des 

Auges nach precornealer Verabreichung der Moxaverinlösung erreicht werden können. Die 

Tatsache, daß die Blutplasma-Spiegel des Moxaverin-Hydrochlorids die der systemischen 

Gabe nicht überstiegen, macht die lokale, okulare Gabe von Moxaverin-Hydrochlorid zu einer 

interessanten Therapiemöglichkeit für die vom Koopertionspartner vorgesehene 

Anwendungsgebiete. Parallel zur in vivo Testung wurden die Barriereeigenschaften des 

Korneaepithels gegenüber Moxaverin-Hydrochlorids mit einer primären Epithelzellkultur der 

Kaninchenkornea (rbCECL) überprüft. In vitro Arzneistofftransportstudien zeigten, daß das 

Kaninchenhornhautepithel keine kritische Barriere für die Moxaverinpenetration in das Auge 

darstellt.  

 

Phase 2 der vorgelegten Arbeit beschäftigte sich mit der Entwicklung eines primären 

humanen Korneaepithelzellmodells. Versuche, ein derartiges Modells zu etablieren, sind 

bereits mehrmals während der letzten Jahrzehnte beschrieben worden. Obwohl die 

Wissenschaftler häufig erfolgreich Zellen isolieren und Primärzellkulturen etablieren konnten, 

stellte sich die Zellisolation bisher stets als unreproduzierbar und mühsam heraus. Da sich die 

Techniken in den letzten Jahren deutlich weiterentwickelt haben und zahlreiche Protokolle z. 
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B. für primäre menschliche alveolare Zellekulturen erstellt wurden, erschien die 

Übertragbarkeit dieser Methoden auf das menschliche Korneaepithel möglich. Die 

angewandten Techniken bestanden hauptsächlich aus enzymatischen Verdau mittels 

verschiedener Proteasen, die bereits in der Literatur beschrieben wurden. Diese wurden mit 

einem Zell-Aufreinigungsverfahren kombiniert, das sich magnetischer Microbeads bedient. 

Diese sind mit einem menschlichem Epithelantigen (CD326, HEA-125) beschichtet und 

besitzen die Möglichkeit, spezifisch an humane Epithelzellen zu binden. Obwohl die 

experimentellen Bedingungen immer wieder variiert wurden und verschiedene 

Isolationstechniken kombiniert wurden, konnte das gesetzte Ziel der primären menschlichen 

Korneaepithelzellkultur nicht erreicht werden. Die begrenzte Menge des vorhandenen 

Gewebes und die lange Kulturzeit der Korneaproben nach Entnahme aus dem Spender trugen 

hierbei massgeblich zum Misslingen dieses Teils der Arbeit bei.  

 

Da ein primäres menschliches Korneaepithel als in vitro Testsystem nicht verfügbar war, 

wurden bereits etablierte Modelle für das menschliche Korneaepithel mit intakter Menschen- 

und Kaninchenhornhaut verglichen (Abschnitt 3 des Projekts). Alle untersuchten Zellmodelle 

waren menschlichen Ursprungs und durch das SV-40 large T Antigen oder ein recombinantes 

Retrovirus, das die HPV16 Gene E6 und E7 enthielt, immortalisiert. Die Zellmodelle wurden 

mit einem Spektrum von Testsubstanzen auf ihre Differenzierungskapazität (hoher/niedriger 

Permeabilitätsmarker), das Vorhandensein von P-gp Effluxsystemen (mittels 

Substrattransportes) und Wert für die Augenforschung („Ophthalmologiemarker“) überprüft. 

Die Systeme wurden weiterhin als Screen für die Modellsubstanz, Moxaverin-Hydrochlorid, 

benutzt. Mittels dieser Markersubstanzen wurden die Zellmodelle klassifiziert. Das käuflich 

erhältliche rekonstituierte menschliche Korneaepithel von Skinethic (Nizza, Frankreich) 

zeigte nur eine niedrige Differenzierungsleistung, obwohl es ein wertvolles Testsystem im 

Bereich Augenreizung und Toxizitätsstudien darstellt. Das ebenfalls kommerziell erhältliche 
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Clonetics System von Cambrex und die etablierte HCE-T Zelllinie waren gute vereinfachende 

Modelle der Hornhaut. Die HCE-T Zelllinie zeigte allerdings weniger ausgeprägte 

Unterscheidungskraft als das Clonetics System und die Resultate die in Phase 4 des Projektes 

(siehe unten) gefunden wurden, führten zu einer weiteren Rückstufung des Modells. 

 

In der letzten, vierten Stufe dieser Arbeit wurde die HCE-T Zelllinie mit der menschlichen 

Hornhaut bezüglich der wichtigsten bekannten Effluxsysteme verglichen. Da die 

Effluxsysteme der ABC-Transporterfamilie sich als entscheidender Faktor in der 

Arzneistoffabsorption über biologische Barrieren herausgestellt haben und auch eine 

entscheidende Rolle in der Resistenzbildung von Tumoren in der Krebstherapie spielen 

(„mulit-drug resistance“), haben diese Proteine ein grosses Interesse in der 

biopharmazeutischen Forschung geweckt. Da es zum Expressionsmuster der ABC-

Transporter in der menschlichen Hornhaut nur wenige und zudem widersprüchlich Aussagen 

gibt, wurde das Vorhandensein und die Aktivität von MDR1/P-gp, MRP1, MRP2, LRP und 

von BCRP in Humankornea mit in der vielgenutzten HCE-T Zelllinie verglichen. RT-PCR 

und Immunofluoreszenzmikroskopie, sowie Immunoblotting wurden hierbei als Methoden 

benutzt. Menschliche Hornhaut stellte sich hierbei als ein ziemlich unkritisches Gewebe 

bezüglich multidrug-resistance Proteinen dar und zeigte ein sehr eingeschränktes Spektrum an 

Effluxproteinen (LRP). HCE-T Zellen, stattdessen besitzen ein breites Spektrum von 

Effluxtransportern, das sich in hohem Grade von der in vivo Situation unterscheidet. Dies 

mindert deutlich den Wert dieser Zelllinie als in vitro Modell für die Erforschung von 

(aktivem) Arzneistofftransport. 
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Outlook 

For the future, the picture on in vitro models of the human corneal epithelium still has to be 

refined. This work found good correlations for passive transport across some of the in vitro 

models which were able to give a clear rank order of the marker compounds under 

investigation, however, the question of active transport is still not completely elucidated. First 

examinations on human cornea and the HCE-T cell line have been performed, but do not 

cover the whole spectrum of efflux proteins.  Neither have the other model systems been 

investigated in this regard. 

Other topics that need to be addressed are the comparison of the cell culture models with the 

meanwhile available human corneal constructs  

Based on recently published date these cornea constructs systems might be promising tools 

for the testing of drug formulations, safety testing/risk assessment of formulations, and 

questions of penetration enhancement and enhanced drug retention on the ocular surface. 
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List of abbreviations 

 

AIC Air-interfaced culture 

BCRP breast cancer resistance protein 

BSS Balanced salt solution 

C-HCE Clonetics human corneal epithelium 

CLSM Confocal laser scanning microscopy 

CyA Cyclosporin A 

DMEM Dulbecco’s minimum essential medium 

DMEM/F12 1:1 mixture of DMEM and Ham’s F12 medium 

EDTA (Ethylenedinitrilo) tetraacetic acid, disodium salt 

EGF Epidermal growth factor 

EHC Excised human cornea 

ERC Excised rabbit cornea 

EVOM Epithelial volt-ohm meter 

FBS Fetal bovine serum 

FluNa Fluorescein-sodium 

HCE-T SV40-transfected human corneal epithelial cells 

HEPES 4-(2-Hydroxyethyl)-piperazine-1-ethansulfonic acid 

KRB Krebs-Ringer buffer 

LCC Liquid-covered culture 

LRP lung resistance-related protein 

MDR Multi-drug resistance 



140 
Appendices 

MEM Minimal essential medium 

Mox/MOX Moxaverine-hydrochloride 

MRP multi-drug resistance-associated protein 

NEAA Non-essential amino acids 

P-gp P-glycoprotein 

Papp Apparent permeability 

PBS Phosphate buffered saline 

PD Potential difference 

Prop Propranolol 

rbCrECL Rabbit corneal epithelial cell layers 

Rh123 Rhodamine 123 

RT-PCR Reverse transcription polymerase chain reaction 

S-HCE Reconstituted human corneal epithelium (Skinethic) 

S-MEM supplemented MEM 

TEER Transepithelial electrical resistance 

Tim Timolol-hydrogenmaleate 
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