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1 Abstract 
 

The use of ionic liquids as matrices for matrix assisted laser desorption/ionization-mass 

spectrometry (MALDI-MS) was investigated. Traditionally used ionic liquids are unsuitable 

as matrices in MALDI analysis. A new class of ionic liquids was explored, the so-called ionic 

liquid matrices (ILMs) that show great promise as matrices. ILMs are equimolar mixtures of 

solid MALDI-matrices, 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid 

(CCA), sinapinic acid (SA) or indoleacrylic acid (InAA) with organic bases. These allowed 

the formation of a thin liquid layer on the target having negligible vapour pressure. The main 

advantage of using ILMs was found in remarkable enhancement in sample homogeneity 

leading to increase spot-to-spot and shot-to-shot reproducibility. 

The ILMs were used for the analysis of low molecular weight compounds such as amino 

acids, sugars and vitamins, and also large biomolecules like peptides and proteins. The high 

sample homogeneity achieved using ILMs facilitated the measurement by eliminating the 

laborious searching for the analyte on the target spot. In conjugation with the use of a proper 

internal standard, the relative quantification of amino acids was improved using ILM when 

compared to using crystallized matrixes. An additional advantage was the significantly 

reduced measurement time in an automated measurement. 

The ability of ILMs to perform quantification of peptides and proteins without using internal 

standards was also investigated. It was found that there is a linear correlation between the 

amount of analyte on the target and their signal intensities when increased molar matrix-to-

analyte ratios are used. The dynamic range of linearity was about one order of magnitude. 

The method was further applied successfully for screening of the trypsin-catalyzed reaction 

of single peptide. Moreover, semi-quantitative monitoring of multi-substrate (peptide 

mixtures) cleavage catalyzed by trypsin was shown. 

Pyridinuim-based ILM in substoichiometric amount of pyridine (Py) with CCA (molar ratio 

of CCA:Py = 2:1) improved the measurement of peptides compared to using CCA in terms of 

signal-to-noise ratios, reduction of chemical noise and reduced formation of alkali adducts 

and matrix-clusters. This optimized ILM was used for the measurement of tryptic in-solution 

as well as in-gel digests of the model proteins. As a result, the identification of proteins by 

peptide mass fingerprint (PMF) was facilitated compared to using CCA in database search 

engine, yielding higher scores and increased sequence coverage.  
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In the second part of work, MALDI-MS was applied for the characterization of five different 

ionic liquids and the analysis of amino acids, peptides and proteins dissolved in ionic liquids. 

The ionic liquids were characterized both by laser desorption/ionization (LDI) and by 

MALDI-MS. The signals of both cations and anions of ionic liquids could be observed in 

both methods. In the latter case, adduct formations between cations and anions of ionic 

liquids were identified. Analysis of the amino acids, peptides and proteins dissolved in ionic 

liquids could be performed after addition of matrix molecules. Interestingly, no sodium or 

potassium adducts could be observed for any analyte tested here. Typically, low molecular 

weight compounds and peptides could be analyzed better in water-immiscible ionic liquids 

whereas proteins gave the better results in water-miscible ionic liquids. The homogeneity of 

samples was reduced in the presence of ionic liquids when compared to classical MALDI 

preparations. However relative quantification of amino acids using isotope-labeled internal 

standard was possible. Thus D-amino acid oxidative reaction catalyzed by D-amino acid 

oxidase which was carried out in ionic liquids could be monitored by MALDI-MS.  

In the last part of work basic MALDI mechanistic principles by the use of ILMs was 

investigated and theoretical aspects of ion formation in the presence of ionic liquids both in 

LDI and MALDI analysis are discussed.  
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1         Zusammenfassung 
 

In der vorliegenden Arbeit wurde die Anwendung von ionischen Lösungen als Matrix für die 

Matrix unterstützte Laser-Desorption/Ionisation (Matrix Assisted Laser 

Desorption/Ionization-Mass Spectrometry; MALDI-MS) untersucht. Da die traditionellen 

ionischen Lösungen als Matrix für MALDI Analysen unbrauchbar sind, wurde hier eine neue 

Klasse von Ionischen Lösungen untersucht, die so genannten Ionic Liquid Matrices (ILMs). 

ILMs sind equimolare Mixturen von festen MALDI Matrizes, wie etwa 2,5-

Dihydroxybenzoesäure (DHB), α-Cyano-4-hydroxyzimtsäure (CCA), 3-Hydroxy-4-

methoxyzimtsäure (Sinapinic Acid; SA) oder 3-(1-H-Indol-3-yl)-2-propionsäure 

(Indoleacrylic Acid; InAA), mit organischen Basen. Diese Anwendung ermöglichte die 

Ausbildung von dünnen Schichten der Lösungen auf der Probenplatte mit 

vernachlässigbarem Dampfdruck. Der hauptsächliche Vorteil in der Nutzung von ILMs 

verdeutlichte sich in der bemerkenswerten Verbesserung der Probenhomogenität und in einer 

erhöhten spot-to-spot und shot-to-shot  Reproduzierbarkeit. 

Die ILMs wurden für die Analyse von Komponenten mit niedrigen molekularen Massen, wie 

etwa Aminosäuren, Zuckern und Vitaminen, aber auch von grossen Biomolekülen, wie 

Peptide und Proteine benutzt. Die durch die Anwendung von ILMs erhaltene hohe 

Probenhomogenität erleichterte die Messungen durch die Eliminierung der mühsamen Suche 

nach den Analyten auf den Spots der Probenplatte. Im Vergleich zu kristallisierten Matrizes 

konnte durch die Anwendung von ionischen Lösungen mit geeigneten internen Standards die 

relative Quantifizierung von Aminosäuren verbessert werden. Ein zusätzlicher Vorteil in 

dieser Methodik war die signifikante Reduzierung der Messdauer bei automatisierten 

Messungen.  

Des Weiteren wurde die Eignung von ILMs untersucht um Peptide und Proteine ohne interne 

Standards zu quantifizieren. Hierbei zeigte sich dass die Menge des Analyts auf der 

Probenplatte mit den Signalintensitäten linear korreliert, nachdem erhöhte molare 

Matrix:Analyt Verhältnisse benutzt wurden. Der dynamische Bereich der Linearität betrug 

hierbei eine Zehnerpotenz. Diese Methode wurde des Weiteren erfolgreich zum Screening 

von Trypsin katalysierten Reaktionen von einzelnen Peptiden benutzt und darüber hinaus 

ebenfalls zur semi-quantitativen Kontrolle von Multi-Substrat (Peptid Mixturen) Verdau 

durch Trypsin. 
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Auf Pyridinium basierte ILMs mit substöchiometrischen Mengen von Pyridin (Py) und CAA 

(CCA:Py=2:1) verbesserten die Messungen von Peptiden bezüglich des Signal- Rausch 

Verhältnisses, der Reduktion des chemischen Rauschen und der Reduktion von Alkali 

Addukt-Bildung und Matrix-Clustern im Vergleich zu Messungen nur mit CCA. Diese 

optimierten ILMs wurden für die Messung von tryptischen Spaltungen in Lösung wie auch 

In-Gel-Trypsinisierungen von Modell-Proteinen benutzt. Es konnte gezeigt werden, dass im 

Vergleich zu CCA die Identifikation der Proteine durch Peptide Mass Fingerprint (PMF) per 

Datenbanksuche deutlich verbessert wurde. Im Detail konnten höhere Score's in der 

Datenbanksuche und eine erhöhte Sequenzabdeckung erreicht werden.   

Im zweiten Teil der Arbeit wurde MALDI-MS zur Charakterisierung von fünf 

unterschiedlichen ionischen Lösungsmitteln und der Analyse von in ionischen 

Lösungsmitteln gelösten Aminosäuren, Peptiden und Proteinen untersucht. Die ionischen 

Lösungsmitteln wurde sowohl durch Laser Desorbtion/Ionisation (LDI) als auch per MALDI-

MS charakterisiert. Die Signale der Kationen und Anionen der ionischen Lösungsmittel 

konnten durch beide Methoden verfolgt werden. Im letzteren Fall konnte die Bildung von 

Addukten zwischen den Kationen und Anionen der ionischen Lösungsmittel beobachtet 

werden. Die Zugabe von Matrix-Molekülen erlaubte die Analyse von in ionischen 

Lösungsmittel gelösten Aminosäuren, Peptiden und Proteinen. Bei keinem der getesteten 

Analyten konnten interessanterweise Natrium- oder Kalium-Addukte nachgewiesen werden. 

Typischerweise konnten Komponenten mit niedrigen molekularen Massen und Peptide in 

Wasser abweisenden ionischen Lösungsmittel analysiert werden. Im Vergleich zur 

klassischen MALDI Probenpräparation war die Homogenität der Proben in der Anwesenheit 

von ionischen Lösungsmittel verringert. Nichtsdestotrotz war eine relative Quantifizierung 

von Aminosäuren mit Hilfe von isotopisch markierten internen Standards möglich. Folglich 

konnten durch D-Aminosäureoxidase katalysierte oxidative Reaktionen von D-Aminosäuren 

mit MALDI-MS verfolgt werden.  

Im letzten Teil dieser Arbeit wurden grundsätzliche mechanistische Prinzipien der MALDI in 

der Anwendung von ILMs untersucht und theoretische Aspekte der Ionenbildung in 

Anwesenheit von ionischen Lösungsmitteln sowohl in der LDI als auch MALDI diskutiert. 
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2 Introduction 
 

Ionic liquids are salts having melting points below 100 °C. In fact, an ionic liquid is a liquid 

containing exclusively ions. Thus it theoretically includes all molten salts, for e.g. sodium 

chloride at temperatures higher than 800 °C. However, the term is now generally associated 

with salts in which the ions are poorly coordinated and thus have relatively low melting 

points, less than 100 °C. At least one ion has a delocalized charge and one component is 

organic, which prevents the formation of a stable crystal lattice (Holbrey and Rogers, 2003). 

Due to their potential to replace hazardous, flammable and environmentally damaging 

volatile organic solvents in many fields, they have attracted much attention in the recent years 

(Figure 2.1). Ionic liquids have been called designer solvents (Freemantle, 1998) as their 

physical properties such as melting point, viscosity, density, hydrophobicity and water 

miscibility can be modified according to the desired applications by tuning their component 

cation and anion (Hagiwara and Ito, 2000). Frequently used cations are pyridinium- or 

imidazolium derivatives, ammonia-compounds or phosphonium ions. Inorganic or organic 

anions like nitrate, tetrafluoroborate, hexafluorophosphate, tosylate and triflate are frequently 

used as counterions (Figure 2.2). A variety of features make them attractive alternatives for 

the currently used solvents: 

i) They have negligible or no vapour pressure. Thus, they do not emit hazardous volatile 

organic compounds. 

ii) They possess good thermal stability and do not decompose over a wide range of 

temperature (0-250 °C) making it possible to perform reactions at high temperatures if 

required. 

iii) They are non-flammable, non-explosive and can be stored without decomposition for an 

extended period of time. 

 

Figure 2.1: Number of journal 
articles dealing with ionic liquids 
appearing annually during the last 
decade. The figure was taken from 
reference (Baker et al., 2005). 
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Figure 2.2: Typical cation-anion combinations for ionic liquids 

 

iiii) They can be synthesized from relatively inexpensive precursor materials. However, the 

synthesis of very pure ionic liquid is still expensive. 

 

2.1 Application of ionic liquids 
 

The applications of ionic liquids can be divided in three major groups: 

i) Analytical applications 

ii) As solvents for chemical reactions 

iii) As solvents for biocatalytic processes 

 

2.1.1 Analytical application of ionic liquids 

 

Ionic liquids have been used in a variety of chromatographic methods. Examples of these 

include their use as stationary phase in gas chromatography (GC) (Anderson and Armstrong, 

2003; Armstrong et al., 1999), as additives for the mobile phase in high performance liquid 

chromatography (HPLC) (Xiaohua et al., 2004; Zhang et al., 2003) and as running 

electrolytes in capillary electrophoresis (CE) (Jiang et al., 2003; Yanes et al., 2001). 

They have been also reported as suitable candidates for the replacement of volatile organic 

solvents in liquid-liquid extraction processes (Fadeev and Meagher, 2001; Huddleston and 
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Rogers, 1998; Visser et al., 2000). Ionic liquids are comprised of ions, which makes them to 

be potential solvents for electroanalytical applications (McEwen et al., 1999). Their potential 

as electrolytes in rechargeable cells, in electrodeposition of metals and their use in 

photochemical solar cells as well as double-layer capacitors have been described (Buzzeo et 

al., 2004). The use of ionic liquid for matrix-assisted laser desorption/ionization mass 

spectrometry (MALDI-MS) was first reported shortly by Armstrong et al. (2001). 

In this work, the application of ionic liquids as matrices for MALDI-MS is intensively 

investigated. 

 

2.1.2 Ionic liquids as solvent for chemical reaction 

 

The application of ionic liquids as solvents for organic chemical synthesis and chemical 

reactions involving either catalysis or biocatalysis has been intensively studied (Jain et al., 

2005). Diels-Alder reaction (Fischer et al., 1999), Friedel-Crafts reaction (Earle et al., 1998; 

Surette et al., 1996) and esterification of alcohols (Deng et al., 2001) are some of the 

examples of organic chemical reactions performed in ionic liquids. The transition metal-

catalyzed reactions, e.g. hydrogenations (Chauvin et al., 1996), Heck reaction (Kaufmann et 

al., 1996) and oxidations (Song and Roh, 2000), are the major class of catalytic chemical 

reactions carried out in ionic liquids (Wasserscheid and Keim, 2000).  

 

2.1.3 Biocatalysis in ionic liquids 

 

In recent years, ionic liquids gained increasing attention in the field of enzyme-catalyzed 

reaction (Kragl et al., 2002). For this purpose, ionic liquids are used in three different 

methods in the enzyme systems, i) as a co-solvent in the aqueous phase, ii) as a pure solvent 

and iii) as two-phase system in combination with other solvents. 

The formation of Z-aspartame by thermolysin (Erbeldinger et al., 2000), conversions using 

lipases and esterases (Kim et al., 2001; Madeira Lau et al., 2000; Park and Kazlauskas, 2001; 

Schöfer et al., 2001), transesterifications of short peptides and protected amino acids 

catalyzed by chymotrypsin (Laszlo and Compton, 2001), hydrolysis of N-acylamino esters by 

the protease subtilisin (Zhao and Malhotra, 2002), galactosidase catalyzed conversions of 

sugars and derivatives (Kaftzik et al., 2002) and oxidative reactions using glucose oxidase 

and peroxidase (Okrasa et al., 2003) are some examples of enzymatic reactions performed in 
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ionic liquids. Additionally, biocatalysis using whole cells in ionic liquids have been also 

reported (Cull et al., 2000; Pfründer et al., 2004). 

For the analysis of compounds dissolved in ionic liquids, either the analytes can be separated 

from the ionic liquids and investigated by suited methods or they are investigated directly in 

the ionic liquids. A number of articles have been published in recent years reporting the 

analysis of reactants in these solvents. Most common methods are based on separation by 

HPLC (Cull et al., 2000), analysis of UV/VIS-absorption or fluorescence or NMR (Durazo 

and Abu-Omar, 2002). These methods can be subject to several restrictions. The separation of 

mixtures involving ionic liquids by HPLC is time consuming and is in many cases still a 

challenge. Spectroscopic techniques can suffer from background absorption/fluorescence of 

the ionic liquids and are difficult to perform in more complex reaction mixtures. Moreover, 

another problem is the need of substrates carrying chromophoric or fluorophoric groups, 

which are not readily available for each kind of biocatalytic conversion (Tholey and Heinzle, 

2002). 

The techniques used for characterization of ionic liquids include electrochemical methods, 

ion chromatography, reversed phase-liquid chromatography (Stepnowski et al., 2003), water 

determination, thermal analysis, rheology (Bonhote et al., 1996), NMR (Oxley et al., 2003) 

and methods for the determination of linear free energy characterizing the interactions with 

dissolved analytes (Anderson et al., 2002). Fast atom bombardment (FAB) (Abdul-Sada et 

al., 1992) and electrospray ionization (ESI) mass spectrometry (Alfassi et al., 2003) have also 

been used for characterization of ionic liquids and the determination of water solubility of 

these solvents.  

Mass spectrometry is one possible alternative method for analysis of compounds dissolved in 

ionic liquids. The method does not need pre-purification of sample in many cases, thus, can 

offer direct analysis of substrates and products of enzyme-catalyzed reactions carried out in 

ionic liquids. Additionally, it can be used for characterization of ionic liquids. Therefore, 

application of mass spectrometry for these purposes is the subject of the investigations here. 

 

2.2 Mass Spectrometry 
 

The application of mass spectrometry (MS) for the analysis of compounds of biological 

relevance has been accelerated by introduction of two major ionization techniques, the matrix 

assisted laser desorption ionization (MALDI) (Karas and Hillenkamp, 1988; Tanaka et al., 
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1988) and the electrospray ionization (ESI) (Fenn et al., 1989). These two methods have been 

primarily applied for the accurate determination of the molecular mass of biomolecules. 

Subsequent applications have been also oriented towards quantitative analysis in the field of 

biochemistry and biotechnology. The broad mass range of analysis (1 Da to 1000 kDa), high 

sensitivity (femtomole or atomole quantities) and high throughput capability have made these 

methods attractive alternative to the more traditional bioanalytical methods. The tolerance of 

MALDI against non-volatile salts is higher than ESI. Additionally, the ESI spectra include 

many signals of multiply charged ions, which complicate their interpretation in the case of 

complex samples whereas the singly or doubly charged ions (for compounds above ~10,000 

Da) obtained in MALDI spectra are easier to interpret. 

 

2.2.1 MALDI-TOF-MS 

 

MALDI-mass spectrometry has now become the most popular method in the analysis of 

biomolecules such as peptides, proteins, oligonucleotides (Hillenkamp et al., 1991; Karas et 

al., 1987) and low molecular weight compounds of biological interest (Cohen and Gusev, 

2002). Figure 2.3 illustrates the principle of MALDI-TOF-MS. The general strategy for 

sample preparation and analysis involves the mixing of matrix solution with the analyte 

solution and then depositing the matrix/analyte mixture on the target (dried droplet method). 

After evaporation of the solvent, the co-crystallized matrix/analyte mixture is introduced into 

the high vacuum of the mass spectrometer. The matrix is an organic molecule, which absorbs 

the laser light and then promotes desorption and ionization of the analyte. The ionized 

analytes are then accelerated in a high voltage region (acceleration region) and further ion 

separation based on the mass-to-charge ratio occurs in a field-free tube (mass analyzer). This 

analyzer is called Time of Flight (TOF). Since all ions receive the same energy, the lighter 

ions arrive earlier at the detector than heavier ones. 
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Figure 2.3: The schematic of a MALDI-TOF-MS.   

 

2.2.2 Sample homogeneity, a rate limiting step in application of MALDI for 

qualitative and quantitative analysis 

 

Sample homogeneity is one of the major concerns in MALDI analysis. The efficiency of 

MALDI has been shown to be highly sensitive to the sample preparation procedure. The 

oldest sample preparation method used in MALDI analysis is the dried-droplet method 

(Karas and Hillenkamp, 1988) in which the formation of analyte/matrix crystals takes place 

throughout the droplet as the solvent evaporates. The crystals formed upon evaporation of the 

solvent are usually inhomogeneous and irregularly dispersed. Hence, this inhomogeneous 

distribution of analyte/matrix co-crystals leads to the formations of hot spots. This means that 

not at all positions over a spot sufficient analyte signal can be found, whereas at other 

positions strong signals of analyte can be detected. This sample inhomogeneity forces the 

MALDI users to search for these hot spots to get a better analyte signal. It is also often 

observed the points on the sample spot with no crystals and thus no signal. This hot spot 

formation causes a poor shot-to-shot reproducibility and sample-to-sample reproducibility 

(Garden and Sweedler, 2000). Dai and coworkers applied confocal fluorescence microscope 

imaging to investigate the analyte distribution in the matrix crystals after the crystallization 
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process (Dai et al., 1996). In a similar study, more detailed investigations in this regard were 

reported by Horneffer and coworkers (Horneffer et al., 2001). They compared analyte 

localization in the matrix crystals in different sample preparation methods such as dried-

droplet and thin-layer preparations. The heterogeneity within MALDI samples in two 

different crystallized MALDI-matrices have also been shown using mass spectrometric 

imaging (Garden and Sweedler, 2000). The phenomenon leading to hot spot formations is 

still not fully understood. However, a potential explanation can be that during co-

crystallization of analyte/matrix, the analyte would be entrained in the bulk of the crystal, 

where it is not accessible for laser desorption. Also, the variation of the analyte signal 

intensity can potentially be due to the difference in the relative orientation of the matrix-

analyte crystals to the spectrometric axis. 

Inhomogeneity of the sample is the most serious problem hampering the use of MALDI-MS 

for quantitative measurements. Nevertheless, a number of publications describe the use of 

MALDI-MS for quantitative measurements (Nelson et al., 1994; Tang et al., 1996; Yan et al., 

2002) for example for the measurement of enzyme activities (Bungert et al., 2004b; Kang et 

al., 2001). The hot-spot formation leads to a large variation of signal intensities from shot to 

shot as well as from spot to spot. As a consequence, there is little correlation of signal 

intensity with the amount of sample analyzed. In this regard, the use of an isotope labeled 

internal standard can reduce these problems. It has molecular properties similar to that of the 

analytes thus ensuring comparable crystallization behaviour on the target as well as similar 

ionization efficiency. Whereas for low molecular weight substrates and products, e.g. amino 

acids and sugars, the corresponding internal standards are available in many cases, this 

situation changes when peptides or proteins are the substrates of the enzymes. In the latter 

case, an internal standard must be created by stable isotope tagging of amino acids of 

peptides or proteins (Gygi et al., 1999; Munchbach et al., 2000; Niwayama et al., 2003; Ross 

et al., 2004). Another strategy is the use of non-isotope-labelled internal standards applying 

structurally modified compounds (Bungert et al., 2004b; Duncan et al., 1993). For example, 

single amino acid exchanges (Wang et al., 2004) or peptides with high molecular similarity 

(Helmke et al., 2004; Muddiman et al., 1994) were successfully used as internal standards for 

the relative quantitation of peptides.  

However, despite of using an internal standard making the quantification possible, the 

problem of sample inhomogeneity still remains critical. That is especially true for high 

throughput quantitative screening process using an automated measurement, where hot spot 

formation leads to significant increase of measurement time. The inhomogeneities can be 
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partially overcome by integral measurement over the preparation with an averaging of the 

collected signals (Kang et al., 2001) but this procedure is also time consuming even in 

automated form. 

Improved sample homogeneity can circumvent some of these problems. As a result, higher 

sensitivity can be achieved for qualitative MALDI analyses and better measurement accuracy 

within a shorter time is obtained in quantitative MALDI analyses. Several techniques have 

been developed to improve sample homogeneity in crystalline sample preparations, e.g., 

adding of co-matrices like fucose to form a binary matrix (Gusev et al., 1995), fast 

evaporation methods using highly volatile solvents (Vorm et al., 1994; Xiang and Beavis, 

1994), deposition of droplets (Miliotis et al., 2002; Onnerfjord et al., 1999), by electrospray 

based sample deposition processes (Hensel et al., 1997), sol-gel based systems (Lin and 

Chen, 2002a), aerospray sample deposition using CCA-thin layer preparation (Dally et al., 

2003) or the use of solvent-free sample preparations (Trimpin et al., 2001). 

 

2.2.2.1 Liquid Matrices 

 

Another alternative to improve the sample homogeneity is the employment of liquid matrices. 

Liquid matrices do not produce hot spots, refresh continuously their surfaces (Cramer and 

Burlingame, 2000), exhibit higher signal reproducibility and are miscible with polar and 

nonpolar analytes. Liquid matrices like glycerol have been frequently used in IR-MALDI-

MS. However, due to poor absorption efficiency of these liquid matrices in the wavelength 

employed in UV-MALDI-MS (337 nm), their use is restricted herein. To bring forth the 

advantage of liquid matrices to UV-MALDI, chemical doped-liquid matrices have been 

developed (Sze et al., 1998; Turney and Harrison, 2004). In these, an organic compound that 

is able to absorb the laser light of the applied wavelength (337 nm) is added to a liquid 

support. In this respect, the particle suspension in a liquid medium has also been shown to 

meet the advantages of liquid matrices for analysis (Schürenberg et al., 1999). Nevertheless, 

the use of these liquid matrices is still associated with low mass resolution, extensive adduct 

formation and high chemical background (Schürenberg et al., 1999; Turney and Harrison, 

2004). 
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2.2.2.2 Ionic Liquid Matrices (ILMs) 

 

Ionic liquids are potential matrices for MALDI-MS due to their previously mentioned 

specific properties. The first attempt of using ionic liquids as matrices for MALDI-MS 

analysis of peptides and proteins was done by Armstrong and co-workers (Armstrong et al., 

2001). It was shown that the class of ionic liquids described above is not suitable for the use 

as MALDI-matrices, possibly due to poor laser absorption capacity and the lack of 

transferable protons (Armstrong et al., 2001). In the same study they introduced a new class 

of ionic liquids, formed by the combination of commonly used solid MALDI-matrices with a 

variety of organic bases as counter ions. These substances were shown to hold the potential to 

be used as MALDI-matrices as they possess both, the outstanding properties of ionic liquids 

as well as the capability to perform the ionization and desorption process necessary for 

MALDI-MS. Additional to a higher signal intensity observed in some cases, the most 

important improvement was regarding sample homogeneity. Subsequently, the applications of 

ionic liquid matrices (ILMs) have been reported in number of publications. For example, they 

have been used for the improved analysis of DNA oligomers (Carda-Broch et al., 2003), 

oligosaccharides, peptides and proteins (Mank et al., 2004), phospholipids (Li et al., 2005), 

and fragmentation studies of peptides and oligonucleotides (Jones et al., 2005). They have 

also been employed for quantitative analysis of peptides and proteins (Li and Gross, 2004) 

and screening of enzymatic reactions (Bungert et al., 2004a). 
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2.3 Goals of the work 
 

The major part of this work deals with the analytical application of ionic liquids as matrices 

for the MALDI-MS. In second part of the work, the employment of MALDI-MS as a new 

analytical technique for the analysis of ionic liquids and the monitoring of enzymatic 

reactions performed in ionic liquids is discussed. A brief discussion regarding MALDI-

ionization mechanisms in ILMs as well as ionic liquids is presented in the last chapter. 

 

2.3.1 Ionic Liquid Matrices (ILMs) 

 

ILMs composed of solid MALDI-matrices with a variety of bases were tested with respect to 

their suitability for qualitative and quantitative analysis of different biologically interesting 

small molecules (< 500 Da) such as amino acids, sugars and vitamins. The homogeneity of 

samples using ILMs was compared with that achieved applying solid matrices. Additionally, 

the application of ILMs to achieve the goal of absolute quantification for peptides and 

proteins without the need for an internal standard was investigated. In this regard, parameters 

like matrix-to-analyte ratios necessary for the design of experiments, the dynamic range for 

linear correlation in the ion signal for model peptides and the limitations of the method were 

evaluated. ILMs were further applied for the determination of enzyme activities in protease-

catalyzed reactions without internal standard. ILMs were also tested for their ability in 

qualitative analysis of peptides. It is shown that the use of the ILMs composed of CCA and 

pyridine could facilitate the identification of proteins by improving the quality of spectra and 

increased signal-to-noise ratios of the peptides obtained from the protein digest. 

 

2.3.2 MALDI-MS for Analysis of Ionic Liquids Containing Samples 

 

The aim of the latter part of work was to examine whether MALDI mass spectrometry can be 

used as a tool for the characterization of ionic liquids and of different biologically interesting 

compounds dissolved in these solvent systems. Five ionic liquids were tested and analyzed 

either by laser desorption ionization (LDI) mass spectrometry or after addition of MALDI-

matrices. In case of analyses of compounds dissolved in ionic liquids, the method was first 

evaluated with amino acids as model analytes, which are interesting compounds for 

conversions in ionic liquids, and was then applied to the analysis of proteins and peptides. 
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Analysis conditions, molar matrix-to-analyte ratios, limits of detection as well as the sample 

homogeneity of the MALDI sample preparations were investigated and compared with 

preparations without ionic liquids.  

The quantitative analysis directly from ionic liquid-containing solutions is highly demanded, 

e.g. for enzyme kinetic studies. Using a proper internal standard, the quantification of amino 

acids was feasible in the presence of considerable amounts of ionic liquids. Moreover, the 

applicability of MALDI-MS for the monitoring of an enzymatic reaction carried out in the 

presence of ionic liquids was shown. 

 

2.3.3 Ion Formation in MALDI 

 

The high sample homogeneity achieved using ILMs can allow a reliable comparison of signal 

intensities of analytes in different ILMs. In this regard, experiments were performed to 

explain the potential of the ILMs to ionize analyte molecules.  

The investigations concerning the applicability of MALDI analysis to ionic liquid-containing 

solutions revealed some characteristic deviations compared to spectra obtained from classical 

MALDI preparations. These differences as well as their mechanistic implications are 

discussed, because they could cast some light on ion formation and adduct formation in 

MALDI, which is still only partially understood (Karas and Kruger, 2003). 
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3 Materials and Methods 
 
3.1 Materials 
 

All amino acids, fructose, pyridine (Py), ascorbic acid, β-D (+) glucose, α-ketoglutarate, 

adenosine 5-triphosphate (ATP), N, N-dimethylethylendiamine (DMED), 3-dimethylamino-

1-propylamine (DMAPA), trimethylamine (TEA); MALDI-matrices α-cyano-4-

hydroxycinnamic acid (CCA), 3,5-dimethoxy-4-hydroxycinnamic acid (sinapinic acid, SA), 

and 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-3-methoxycinnamic acid (ferulic acid, 

FA); peptides angiotensin II, substance P, neurotensin, ACTH (1-17), ACTH (18-39), Leu-

encephalin; proteins insulin, lysozyme (chicken egg white), cytochrome C (horse heart), 

bovine serum albumin (BSA), carbonic anhydrase (bovine erythrocytes), glucose oxidase 

(Aspergillus niger); buffers used for standard tryptic digestion and chemicals for 

polyacrylamide gel electrophoresis were provided from Sigma-Aldrich Chemical Co. 

(Taufkirchen, Germany). Trp11-Neurotensin was from Bachem (Weil a.R., Germany). 

Trifluoroacetic acid (TFA), 3-indoleacrylic acid (InAA), N-acetylglucosamine, sodium D-

gluconate, L-phenylglycine, 2-fluoro-DL-phenylglycine, D-phenylalanine, 1-

methylimidazole (MI), arabinose, biotin, thiamine, nicotinamide adenine dinucleotide 

(NAD), 2-mercaptoethanol, sodium dithionite, alcohol dehydrogenase (S. cerevisiae) and L-

lactate dehydrogenase (rabbit muscle) were purchased from Fluka (Neu-Ulm, Germany). 

Bradykinine was from Calbiochem (Bad Soden, Germany). Tributyl amine (TBA) was 

purchased from Acros Organics (Geel, Belgium). Fully 13C-labeled glutamine (98% L-5 13C-

glutamine, U13C-Gln), 1, 2, 3, 4, 5, 6-[ring]-13C-phenylalanine (6-13C-phenylalanine), 1-13C-

alanine were supplied by Euroisotop (Gif-sur-Yvette, France). D2O and NaOD were obtained 

from Deutero GmbH (Kastellaun, Germany). Immobilized D-amino acid oxidase enzyme 

(DAAO) was provided by Prof. Fischer, Institute for Food Technology, University of 

Hohenheim. 

Ionic liquids 1-butyl-3-methyl-imidazolium-hexafluorophosphate ([BMIM][PF6]), 1-butyl-3-

methyl-imidazolium-octylsulfate ([BMIM][OctSO4]), 1-butyl-3-methyl-imidazolium-

tetrafluoroborate ([BMIM][BF4]), 1-butyl-3-methyl-imidazolium-bis-trifluormethane-

sulfonimide ([BMIM][(CF3SO2)2N]) and 1,3-dimethyl-imidazolium-dimethylphosphate 

([MMIM][(CH3)2PO4]) were provided by Solvent Innovation GmbH (Köln, Germany).  
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Water was purified with a Millipore water purification system (Bedford, MA, USA). Organic 

solvents were all of HPLC grade. 

 

3.2 Methods 
 

3.2.1 MALDI instrumentation 

 

Analyses were performed using a Bruker Reflex III™ time-of-flight mass spectrometer 

(Bruker Daltonics, Bremen, Germany) equipped with a SCOUT 384™ probe ion source. The 

system was equipped with a pulsed nitrogen laser (337 nm, Model VSL-337ND; Laser 

Science Inc., Boston, MA) with an energy of 400 µJ/ pulse. The ions were accelerated under 

delayed extraction conditions with an acceleration voltage of 20 kV. A reflector voltage of 

22.5 kV was applied. A LeCroy 9384C, 4 GHz digital storage oscilloscope was used for data 

acquisition (LeCroy corp., Chestnut Ridge, NY, USA). Data were collected using either 

XACQ or FlexControl software (Bruker Daltonics, Bremen, Germany) and processed with 

the XMASS 5.1 program (Bruker Daltonics, Bremen, Germany). Alternatively, data were 

processed using FlexAnalysis software (Bruker Daltonics, Bremen, Germany). 

External mass calibration was achieved using SA, DHB and CCA (analysis of low molecular 

weight compounds), standard peptides (analysis of peptides) and BSA (analysis of proteins) 

in standard matrices. 

 

3.2.2 Protein digestion protocol 

 

Stock solutions of the standard proteins (0.2 mg/ml for lysozyme, carbonic anhydrase and 

bovine serum albumin (BSA), 1 mg/ml for lactate dehydrogenase, alcohol dehydrogenase and 

glucose oxidase) were prepared by dissolving in ammonium bicarbonate (NH4HCO3) buffer 

(25 mM, pH 8).  

Tryptic in-solution digest of the model proteins was performed by adding 10µl dithiothreitol 

(10 mM in 25 mM NH4HCO3, pH 8) to 20 µl of the protein stock solutions and incubated for 

5 minutes at 90°C. Cysteins were not alkylated. Modified trypsin was added to a final ratio of 

1:20 (g/g, protease: substrate), digestion was performed overnight at 37°C.  

Tryptic in gel-digestion of the model proteins was performed without prior alkylation of 

cysteine residues. 500 fmol of each model protein (reduction prior to electrophoresis) was 
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loaded onto the gel (one dimensional SDS-gel). To visualize the proteins, the gel was stained 

using coomassie staining. Tryptic in-gel digestion of a coomassie-stained two-dimensional 

SDS-gel sample (pI-range 4-7, alkylation by iodoacetamide) was done for a spot previously 

identified as the protein fructose-bisphosphate aldolase obtained from the cytosolic proteome 

fraction (100 µg total protein) of the bacterium Corynebacterium glutamicum (strain ATCC 

13032, exponential growth phase). The corresponding bands were excised and digested with 

modified trypsin in 40 mM NH4HCO3-buffer at 37°C overnight following standard protocols. 

 

3.2.3 Ionic Liquid Matrices (ILMs) 

 

Ionic liquid matrices were prepared by dissolving of the particular amount of acids (DHB, 

CCA….) in a mixture of acetonitrile and water (2:1, v/v, 0.1% TFA). The ILM of InAA was 

prepared in 80% of acetonitrile/water mixture. Then equimolar amount of organic base (TBA, 

Py….) was added and the mixture was sonicated for 5 minutes. The solutions were used 

directly as MALDI-matrices. The solvent was evaporated on the target during sample 

preparation process without the additional steps of removing the solvent in a vacuum oven 

and re-dissolving the ionic liquid afterwards (Armstrong et al., 2001). The corresponding 

solid matrices (DHB, CCA…) were prepared in the same solvents as the ILMs. 

 

3.2.3.1 MALDI sample preparation 

 

Stock solutions of low molecular weight compounds (amino acids, vitamins, ATP and NAD) 

were prepared in 50% acetonitrile. Matrix stock solutions of 50 mM were prepared for 

analysis of the above low molecular weight analytes. Samples were prepared by mixing of 

matrix solution with test analyte to obtain a molar matrix-to-analyte-ratio (M/A) between 1:1 

and 10:1. 

For the preparation of the pyridinium based ionic liquid matrices, an appropriate amount of 

pyridine (Py) was added to the stock solution (50 mM) of the solid matrices CCA or SA in 

acetonitrile:water (2:1, v/v, 0.1% TFA) to result in a final molar ratio of 5:1, 2.5:1, 1.6:1, 

1.25:1 and 1:1 (CCA:Py or SA:Py). These ILM mixtures were used for sample preparation 

without further treatment. 

A mixture of model peptides containing 1 µl of stock solutions of angiotensin II, substance P, 

neurotensin and ACTH (18-39) (all stocks: 0.4 mg/ml) and 2 µl of a stock solution of ACTH 

(1-17) (0.1 mg/ml) were prepared in water. 0.5 µl of this peptide mixture was mixed with 20 
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µl of matrix solutions. For the analysis of protein digests, 0.5 µl of the diluted digest was 

mixed with 20 µl of the matrix solution and placed on the stainless steel target to result in a 

final amount of digest on target of 30 fmol or 100 fmol, respectively. The samples were 

measured (i) without further treatment or (ii) after washing of the dried sample spots with 2 

µl 0.1% TFA (deposition of the washing solvent on the target-spot, removal after 30 seconds 

by blowing off from the target). Alternatively, the protein digests were desalted on ZipTip-

microcolumns (ZipTip-C18, Millipore, Schwalbach, Germany) according to supplier’s 

recommendations and eluted with matrix solution. 

 

3.2.3.2 Calibration curves with internal standard (for low molecular weight 

analytes) 

 

Calibration curves were obtained using DHB-Py as ILM and DHB as the corresponding solid 

matrix. Glutamine and U13C-glutamine were selected as analyte (A) and internal standard 

(IS), respectively. Stock solutions of DHB-Py and DHB (30 mM) were prepared as described 

earlier. 0.025 mmol/ml stock solutions of glutamine and U13C-glutamine were prepared in 

50% acetonitrile. From these stock solutions various final molar ratios of glutamine/U13C-

glutamine (0.25-2.5) were prepared. The molar ratio of the matrix to the total amount of 

analytes (analyte plus internal standard) was kept at 30 in order to allow comparison between 

solid matrices and ionic liquid matrices. For each A/IS-ratio, 5 spots were placed on the 

MALDI target. For both matrices, [M+H]+ signals were selected for data analysis. For each 

A/IS-ratio, the arithmetic mean and standard deviation was calculated. Outliers were 

identified using the equation 1,  

 

where Xm is the data point to be validated, n is the number of measurements,⎯X is the mean 

of the values X1, X2, X3 and X4, and rejected (Massart et al., 1997). 
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3.2.3.3 Calibration curves without internal standard (for peptides and proteins) 

 

Quantification of peptides and proteins without internal standard proceeded using CCA- 

DMAPA or InAA-DMAPA (for peptides) and SA-DMED (for proteins) as matrices. Stock 

solutions of each peptide (angiotensin II, substance P, neurotensin, ACTH (1-17)) were 

prepared in 70% acetonitrile with concentration of 0.5 mM. Calibration curves were obtained 

for both single peptide (neurotensin) and mixture of peptides. The mixture of peptides was 

prepared by solving the same volume of each peptide stock solution in order to get the same 

amount of each peptide in the mixture. 4 µL of different concentrations of the peptide 

solutions (0.02-0.002 mM) was mixed with 4 µL of matrix solution (500 mM) to obtain a 

ratio of matrix to analyte between 250000-25000 (mol/mol). 1 µL of this mixture was applied 

for measurement. For each concentration, 5 spots were prepared on the target.  

Protein stock solutions of 0.05 mM were prepared in water. The same procedure described 

above for peptides was used for proteins. For the large proteins (carbonic anhydrase and 

BSA) a higher concentration of matrix solution (800 mM) was applied.  

All the samples were dried in room temperature.  

 

3.2.3.4 Enzyme kinetic  

 

For the model protein, BSA was used as substrate. The stock solution of BSA was prepared at 

concentration of 4 mg/ml (25 mM NH4HCO3 buffer, pH = 8). 30 µL of BSA stock solution 

(30 µL = 120 µg) was mixed with 30 µL of NH4HCO3 buffer, and followed by 10 minutes 

incubation (100 ºC). No reduction and alkylation was carried out before the experiments. 

Modified trypsin was added to a final ratio of 1:120 (g/g, protease: substrate), and digestion 

was performed at 37°C. 3 µL sample was taken from the tryptic digest solution every 30 

seconds and directly mixed with 3 µL of matrix solution. SA- DMED was used as ILM with 

concentration of 800 mM. 

Tryptic digest of model peptide was performed using neurotensin as substrate. Three sets of 

experiments were performed with initial substrate concentration of 100, 200 and 300 µM (25 

mM NH4HCO3 buffer, pH=8) for the kinetic study. The reactions were initiated by adding 

130 ng of modified trypsin to 50 µL of substrate solution and incubated at 37°C. Tryptic 

digestion of a peptide mixture containing angiotensin II, substance P, neurotensin, ACTH (1-

17) and ACTH (18-39) was performed at initial concentration of 100 µM for each peptide in 
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the mixture. The reaction was carried out at a ratio of 200 [total peptides/trypsin (W/W)] in a 

solution containing 25 mM NH4HCO3 buffer, pH=8 and incubated at 37°C. 

For the analysis of the model peptide InAA-DMED was used. Analysis of the mixture of 

peptides was performed using CCA-DMAPA. 2 µL of tryptic digest solutions were taken 

after a certain intervals of time and diluted 20 times with 80% acetonitrile. 3 µL of diluted 

sample was mixed with 3 µL of matrix solutions and 1 µL of this mixture was placed on the 

target. Control experiments using internal standard (Trp11-Neurotensin) were performed as 

described earlier (Li and Gross, 2004). KM-value was determined using the Lineweaver-Burk-

plot. 

 

3.2.3.5 Derivatization of peptides  

 

Acetylation of model peptides  

Substance P was used as a model peptide for the acetylation. Stock solution of 0.1 mM of 

peptide was prepared in NH4HCO3 buffer (50 mM, pH=8). N-hydroxysuccinimid-acetate 

(D0) (NHS-acetate) and N-hydroxysuccinimid-acetate (D3) were synthesized as described 

before (Bungert, 2004). Stock solutions of NHS-acetate (D0) and deuterated NHS-acetate 

(D3) were prepared at concentrations of 10 mM (dissolved in 40% acetonitrile+60% NaHCO3 

buffer). Derivatization was achieved by mixing equal volumes of peptide stock solutions with 

stock solutions of derivatization reagents in order to get a final molar ratio of 100 (NHS-

acetate/peptide) (Figure 3.1). Peptides stock solutions were acetylated separately, one using 

D0-derivatization and the other D3-derivatization. Then the two samples were mixed in the 

desired ratios (1:10, 5:10, 1:1, 10:5, 10:2.5, 10:1.25, 10:1) and the resulting mixtures were 

combined with matrix solution (CCA-DMED or CCA-Py, 300 mM). 

 

 

Figure 3.1: Reaction schemes for derivatization of substance P with NHS-acetate. R: the peptide chain. 
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3.2.3.6 MALDI-TOF analysis 

 

Qualitative analysis of low molecular weight compounds was performed by operator driven 

analysis (manual measurement). For measurement of peak intensities, laser energies just 

above threshold of ion formation were applied and 100 shots were collected either in positive 

or negative mode. 

For quantitative analysis, an automated data acquisition protocol AutoXecute™ (Bruker 

Daltonics, Leipzig, Germany) with fixed laser energy just above threshold was used. The 

AutoXecute™ protocol was set as following: the maximum allowed number of positions on 

each sample spot was selected to be 9. These 9 positions were arranged in a cross starting 

from the sample centre. In case of low molecular weight compounds, fuzzy control 

parameters of AutoXecute™ were as follows: the weight of fuzzy control was 1.5 in order to 

collect peaks with intensity above 200. Only signals with a mass resolution higher than 1300 

(based on full width of half-maximum (FWHM)) and with a signal-to-noise ratio higher than 

4 were collected. Noise range was 100. Maximum allowed shot number at one position of a 

spot was 25, and the maximum number of consecutively rejected trials was restricted to 50. 

On each sample spot, 100 shots were accumulated. 

The fuzzy control parameters of AutoXecute™ for peptides were fixed as: Maximum allowed 

number of shots on one position was 30 and 150 shots were collected per spot. Only signals 

with a mass resolution higher than 1000 (based on full width of half-maximum (FWHM)) and 

with a signal-to-noise ratio higher than 5 were collected. For proteins, the maximum allowed 

number of positions on each sample spot was the same as in the measurement of the peptides. 

Maximum allowed shot number at one position of a spot was 50. On each sample spot, 300 

shots were collected. Mass resolution of higher than 200 was selected for signals collection, 

because the signals of proteins were more broadened. The rest of the parameters were the 

same as in peptides analysis. The mass range of detection was fixed at ±10 Da next to the 

analyte and internal standard (when present). 

For the measurement of synthetic peptides in CCA-Py and SA-Py, 200 shots were collected 

per spot from 20 positions following a spiral on the sample spot, 10 shots per position. Five 

independent sample preparations per matrix were measured. For the measurement of the 

protein digests, external mass calibration was achieved using a mixture of standard peptides 

in CCA as matrix. The calibrants were placed on target positions close to analyte positions 

(near sample calibration). For each analysis 200 shots were collected in positive ion mode (20 
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measurement points lying on a spiral, 10 shots per point collected). The detection mass range 

was limited to m/z 750-3000. Masses were assigned using the SNAP-algorithm (settings: 

signal-to-noise threshold: 5, relative intensity threshold: 0%, quality factor threshold: 30, 

fragment peak width: 0.75 m/z) implemented in the FlexAnalysis software; spectra were 

neither baseline-corrected nor smoothed. 

 

3.2.3.7 Database search 

 

Database search was performed using the MASCOT search engine (Matrix Science, London, 

UK). Search was performed against the MSDB database (taxonomy: all entries). Peptide 

mass tolerance was 200 ppm, one missed cleavage site was allowed. Deamidation, cysteine-

carbamidomethylation (only in case of protein excised from 2D-gels) and methionine 

oxidation were allowed as variable modifications. 

 

3.2.4 Ionic Liquid (IL) 

 

3.2.4.1 Sample preparation 

 

Stock solutions (50 mM) of solid matrices (DHB, CCA, SA) were prepared in 

acetonitrile:water (2:1, v/v, 0.1% TFA). Stock solutions of ionic liquids were prepared by 

mixing 20 µL of IL with 980 µL acetonitrile:water (2:1, v/v, 0.1% TFA). Stock solutions of 

amino acids with concentration of 0.6 mM were prepared in acetonitrile:water (2:1, v/v, 0.1% 

TFA).  

1µL of an amino acid stock solution was mixed with 1µL of an ionic liquid stock solution. 

The resulting mixture was mixed with 0.7 µL of matrix stock solution. Molar ratios of 

IL:analyte and of IL:matrix in the resulting mixtures are given in Table 3.1. 

For quantification, stock solutions of 1 mM of alanine and 1-13C-alanine were prepared in 

acetonitrile:water (2:1, v/v, 0.1% TFA). 980 µL of stock solution of alanine was directly 

mixed with 20 µL of ionic liquid. From the resulting solutions various final molar ratios of 

alanine/1-13C-alanine (0.25-2) were prepared. The molar ratio of matrix (CCA) to the total 

amount of analytes (analyte plus internal standard) was kept at 50. 

Aqueous stock solutions of peptides with concentrations of 0.4 mg/ml for angiotensin II, 

substance P, neurotensin and ACTH (18-39), 0.1 mg/ml for ACTH (1-17) and 1mg/ml for 

Leu-encephalin and bradykinine were prepared. 1 µL of angiotensin II, substance P,  
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neurotensin, ACTH (18-39) and 2µL of ACTH (1-17) stock solutions were combined. This 

peptide mixture was mixed with 10 µL of ionic liquid stock solution to a final molar ratio of 

ionic liquid to analyte of 5000. Bradykinine and Leu-encephalin were measured separately at 

the same molar ionic liquid to analyte ratio. In all cases, the peptide/IL- mixtures were mixed 

with 10 µL of CCA stock solution. 

Molar ratios of IL:analyte and of IL:matrix in the resulting mixtures are given in Table 3.1. 

Protein stock solutions were prepared with a concentration of 1mg/mL in water and were 

mixed with 10 µL of IL stock solution. These mixtures were mixed with 10 µL of SA stock 

solution. Molar ratios of IL:analyte and of IL:matrix in the resulting solutions are given in 

Table 3.1. 

 

Table 3.1: Molar ratios of ionic liquid:analyte (IL/A) and ionic liquid:matrix (IL/M) applied for the analysis of 
amino acids, peptides and proteins using matrices DHB, CCA and SA. 

 

 

To investigate the availability of proton in ionic liquids different sets of hydrogen/deuterium 

(H/D) exchange experiments were performed by incubation of the ionic liquids with (i) D2O, 

(ii) D2O/NaOD (pH/D 8) at room temperature. Incubations were performed for 1 or 12 hours 

either in the dark or by irradiation with an UV-lamp (λ = 254 nm). Molar extinction 

coefficients of the ionic liquids in methanol were determined at 337 nm (ε337) according to 

Lambert-Beers law using an UV-spectrometer (Unicam Helios Alpha, Spectronic Unicam, 

Cambridge, UK). 

 Amino acids Peptides Proteins 

Ionic liquid (IL) IL/A IL/M IL/A IL/M IL/A IL/M 

[BMIM][OctSO4] 95 1.6 5000 1.1 50000 1.1 

[BMIM][BF4] 176 3.0 5000 2.1 50000 2.1 

[MMIM][(CH3)2PO4] 195 3.3 5000 2.3 50000 2.3 

[BMIM][PF6] 161 2.8 5000 1.9 50000 1.9 

[BMIM][(CF3SO2)2N] 113 1.9 5000 1.3 50000 1.4 
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For determination of the substrate concentration of the enzymatic reaction D-amino acid 

oxidase (Chapter 3.2.4.2) by MALDI-MS, stock solution of phenylalanine was prepared at a 

concentration of 0.688g/25ml of Tris HCL buffer (50 mM, pH 8). A stock solution of the 

MALDI-matrix FA was prepared at a concentration of 50 mM in mixture of acetonitrile and 

water (2:1, V/V, 0.1%TFA). Calibration curve was measured using FA as matrix. Stock 

solutions of phenylalanine and 6-13C-phenylalanine (concentration of 1 mM) were prepared 

in Tris HCL buffer (10 mM, pH 8). From stock solutions, appropriate molar ratios of 

phenylalanine/6-13C-phenylalanine (0.25-2) were prepared. The molar ratio of matrices to the 

total amount of analytes (analyte plus internal standard) was kept at 50.  

For the calibration curve in presence of IL, stock solutions of 1 mM of phenylalanine and 6-
13C-phenylalanine were prepared in Tris HCL buffer (10 mM, pH 8). 98 µL of stock solution 

of phenylalanine was directly mixed with 2 µL of ionic liquid [BMIM][PF6]. From the 

resulting solutions, appropriate final molar ratios of phenylalanine/6-13C-phenylalanine (0.25-

2) were prepared. The molar ratios of matrix (FA) to the total amount of analytes (analyte 

plus internal standard) were kept at 50. 1 µL of mixture of matrix and analyte was placed on 

the target and dried at room temperature. For each sample, 5 spots were placed on the target. 

 

3.2.4.2 Monitoring of D-amino acid oxidase activity 

 

Aqueous stock solution of phenylalanine (substrate) was prepared at a concentration of 0.688 

g/25 ml of Tris HCL buffer (50 mM, pH 8). Enzyme reaction was carried out with 40% IL in 

which 1.8 ml of substrate stock solution was added to 1.2 ml of water-immiscible IL 

([BMIM][PF6]) (final concentration of substrate=166 mM in the water phase). Reaction was 

initiated by adding 100 mg of immobilized-enzyme in mini-reactor, which was aerated by 

pure oxygen (6*100 Ncm3/min). 50 µL of samples were taken from enzyme reactions to 

quantify the substrate at different times. 2µL of diluted enzymatic reaction samples were 

mixed with 2µL of 6-13C-phenylalanine (concentration of 1 mM), followed by adding of 4 µL 

of matrix solution (FA in 70% acetonitrile, 0.1% TFA, concentration of 50 mM) for MALDI 

analysis.  

 

3.2.4.3 MALDI-ToF analysis 

 

External mass calibration was achieved using SA, DHB and CCA (analysis of low molecular 

weight compounds), standard peptides (analysis of peptides) and BSA (analysis of proteins) 
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in standard matrices. For qualitative analysis a manual analysis protocol was used. For each 

analysis 200 shots were collected in positive or negative ion mode. Limit of detection (LOD) 

was determined as described earlier (Tholey et al., 2002). 

A manual analysis protocol was used for quantitative analysis. For each spot 200 shots were 

collected. Signals with a mass resolution higher than 1300 (based on full width of half-

maximum (FWHM)) and a signal-to-noise ratio higher than 4 were accepted. Laser energies 

just above threshold were used. The detection mass range was ± 10 Da around analyte and 

internal standard.  
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4 Ionic Liquid Matrices (ILMs) 
 

The selection of matrix is a key step for a successful analysis by MALDI-MS. Though there 

is no universal matrix compound applicable to all kinds of analytes, some common and 

essential features for a compound to be suitable as a matrix for MALDI is required.  

The matrix must:  
1) be able to absorb the light at the wavelength used 

2) be able to transfer to or accept protons from analytes 

3) be stable in the high vacuum applied in MALDI-MS 

4) be chemically inert in terms of reactivity with analytes 

The ILMs used in this study are a combination of an acid and a base in which the anion is the 

solid MALDI-matrix.  

Most of the ILMs investigated here (Table 4.1) formed colourless to yellowish thin liquid 

layers on the target, after evaporation of the solvent, with the exception of CCA-Py and SA-

Py which formed crystals. This is in contrast to the traditional solid matrices, which 

crystallize after solvent evaporation on the target. The crystal size depends on the matrix. For 

example, DHB crystals are big enough to be seen with the naked eyes, whereas CCA 

produces smaller crystals on the target (Figure 4.1). Although the two ILMs, CCA-Py and 

SA-Py, crystallized after evaporation on the target, their crystals size was smaller compared 

to corresponding solid matrices, CCA and SA. Armstrong and co-workers (Armstrong et al., 

2001) reported a protocol for the synthesis of ILMs in which the solvent used for the 

synthesis is evaporated and the ionic liquid is then dissolved in the desired solvent prior to 

measurement. However, it was found in this study that this procedure is not necessary before 

measurement due to the fact that the solvent can be evaporated directly on the target at room 

temperature. Therefore the ionic liquid solutions could be directly mixed with the analyte 

solution and placed on the target. 

 

4.1 Qualitative analysis and stability of ILMs 
 

ILMs have been used as matrix for analysis of peptides and proteins and DNA oligomers 

(Armstrong et al., 2001; Carda-Broch et al., 2003), where the analyte signals are usually out 

of range of matrix signals. However, in the analysis of low molecular weight (LMW) 

compounds (below 500 Da), when the analyte signals are in the range of matrix signals and 
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Figure 4.1: Microscopic photographs of solid matrices, A) CCA, C) DHB, E) SA, and their corresponding 
ILMs, B) CCA-MI, D) DHB-Py, F) SA-DMED. The solid matrices clearly show crystalline shadows. The 
needle-shaped crystals in case of DHB appear larger than crystals of CCA and SA. In contrast, the 
corresponding ILMs show a transparent and thin film on the target. The diameter of one spot on the target is ~3 
mm. 

 

can therefore overlap, a proper selection of matrix is necessary. Hence, the ILMs were first 

analyzed singularly in order to check the ions aroused from ILMs themselves in positive and 

negative ion modes (Table 4.1). It was found in all cases that pyridine formed only [M+H]+-

ions. Tributylamine (TBA) in combination with DHB and CCA formed [M+H]+-signals  
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AA BB

CC DD
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Table 4.1: Properties of solid matrices and ionic liquids matrices (ILM) in MALDI-MS. Signals of the matrices 
were measured in preparations without analytes. 

 
ILM 
No. Acid Base State of 

Aggregation 
Positive Mode 

(acid) 
Positive Mode 

(base) 
Negative Mode 

(acid) 

 DHB - solid 137a, 154b, 155c, 
177d - 153i, 113t, 307i 

1 DHB Py liquid 155c, 177d, 193e, 
369*, 397* 80c 153i, 113t 

2 DHB MI liquid 177d, 193e, 369*, 
397* 83c, 105d, 121e 153i, 113t 

3 DHB TBA liquid 177d, 193e, 369*, 
397* 186c, 142* 153i, 113t 

4 DHB TEA liquid 155c 100*, 101b, 102c 153i, 113t 

 CCA - solid 164g, 172a, 190c, 
212d, 228e, 379h - 144f, 188i, 113t 

5 CCA Py solid 190c, 212d, 228e 80c 144f, 188i, 113t 

6 CCA MI liquid 212d, 228e 83c, 105d, 121e 144f, 188i, 113t 

7 CCA TBA liquid 212d, 228e 186c, 142* 144f, 188i, 113t 

8 CCA TEA liquid 172a, 190c 100*, 102c 144f, 188i, 113t 

 SA - solid 207a, 224b, 225c, 
247d, 263e - 223i, 447k, 113t 

9 SA Py solid 207a, 224b, 225c, 
247d, 263e 80c 223i, 447k, 113t 

10 SA MI liquid 207a, 224b, 225c, 
247d, 263e 83c, 105d, 121e 223i, 447k, 113t 

11 SA TBA liquid 207a, 224b, 225c, 
247d, 263e 

186c, 208d, 
224e, 142* 223i, 447k, 113t 

12 SA TEA liquid 207a, 224b, 225c, 
247d, 263e 100*, 101b, 102c 223i, 447k, 113t 

 
a : [M-H2O+H]+, b : [M]·+, c : [M+H]+, d : [M+Na]+, e : [M+K]+, f : [M-CO2H] -, g : [M-CN+H]+, h : [2M+H]+, i : 
[M-H]-, k : [2M-H]-, t : [TFA-H]-, *: not identified. No signals for the base compounds could be detected in the 
negative ion mode. 
 

whereas [M+Na]+and [M+K]+-ions were also observed in combination with sinapinic acid.  

1-Methylimidazole (MI) formed in all cases [M+H]+-ions, [M+Na]+ and [M+K]+-adducts 

(Table 4.1). Triethylamine (TEA) formed [M+H]+-ions in all the combinations (Figure 4.2). 

Moreover, weak [M]•+ could be identified for TEA in combination with DHB and SA. The 

[M-H2O+H]+ peak at m/z = 137 which commonly appears in solid matrix DHB could not be 

found in the case of DHB-based ILMs. Very weak [M+H]+ of DHB was only observed with 

pyridine and TEA as the counter ions. In the presence of the analytes this ion could no longer 

be observed. SA could be detected as [M]•+ and [M+H]+ in all cases, whereas CCA formed 

the protonized ion only with pyridine and TEA. DHB, CCA and SA showed signals for the 

[M-H]--ion in negative ion mode in all cases.  
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Figure 4.2: MALDI-spectra of DHB (top) and DHB-TEA (bottom) in positive ion mode. 200 shots were 
acquired for each spectrum. M: matrix molecule DHB. 

 

Some additional non-identified peaks could be found in the ILMs. Possibly they are caused 

by impurities from the bases.   

The analyses of ILMs by themselves described above showed that the spectra of ILMs differ 

in many cases from those of the solid matrices they are based on. The signals of the matrix 

were suppressed in many cases or even almost negligible. This reduced matrix signals 

background obtained by using ILMs resulted in a very clean spectrum suitable for 

measurement of LMW compounds. For example, as shown in Figure 4.2, the ILM of DHB-

TEA presented a clean spectrum producing a nearly exclusive signal of the ion m/z 102 

([TEA+H]+). In contrast, the spectrum of DHB consists of several intensive signals from 

matrix. 

ILMs showed remarkable stability in high vacuum. The spectra quality was not changed even 

after storage of plate in the high vacuum for more than 12h. This is important when large 

numbers of samples have to be analyzed. 
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4.2 Sample homogeneity 
 

The application of MALDI mass spectrometry for qualitative and quantitative analysis of 

small molecules, e.g. the substrates and products of enzyme catalyzed reactions (Bungert et 

al., 2004b; Hatsis et al., 2003; Ling et al., 1998), or peptides and proteins (Oda et al., 1999; 

Sechi, 2002) have been studied earlier. One of the main factors that hamper the application of 

MALDI for quantitative analysis is the inhomogeneity of samples in the crystallized matrices. 

This so-called hot spot formation causes a poor shot-to-shot and spot-to-spot reproducibility 

and is therefore a factor decreasing measurement accuracy and strongly increasing required 

measurement times. Hence, a number of studies has been published to present new sample 

preparation methods to promote sample homogeneity (Dai et al., 1999; Hensel et al., 1997; 

Nicola et al., 1995; Wittmann and Heinzle, 2001). This problem is more significant when 

large numbers of samples are analyzed in automated measurements. In this respect, the 

variations in laser power and increasing maximum allowed number of positions on each 

sample spot during the measurement have been shown to improve the quality of analysis 

(Kang et al., 2001). Nevertheless, this leads to remarkable prolongation of measurements 

time. 

The main advantage of using ILMs was the significant enhancement of sample homogeneity 

(Armstrong et al., 2001; Mank et al., 2004). We observed this considerable improvement in 

sample homogeneity by moving the laser throughout the spot. Herein, the protonated or 

cationized (Na, K) signals of analyte were observed at each position irradiated by the laser. 

The variations of analyte peak intensity (protonated and Na/K-adducts) collected from each 

position on one spot were found to be less than 20%. For instance, arginine as tested analyte 

was measured in DHB-Py and DHB as ILM and corresponding solid matrix, respectively. 

The MALDI-spectra were randomly collected at nine different positions of spot. As can be 

seen in Table 4.2, the huge diversity of analyte signal intensity in DHB at each position of the 

spot produced a high percentage of relative standard deviation (RSD%) of 70%. This RSD% 

was reduced to 16% in the more homogeneous sample system DHB-Py. The deviation of 

60% or more in peak intensity of peptides has also been reported earlier where common solid 

matrices were used for analysis (Armstrong et al., 2001). The random selection of points on a 

spot often delivers no signal in solid matrix systems. Hence, this leads to a higher RSD% in 

solid matrix compared to ILM. CCA preparations are generally more homogenous than those 



Ionic Liquid Matrices (ILMs) 

 32

of DHB and SA. However, when a mixture of peptides was analyzed using CCA-DMAPA 

and CCA as ILM and corresponding solid matrix, clear improvement in homogeneity could 

be seen in ILM (Table 4.2). 

 

Table 4.2: Comparison of sample homogeneity in solid matrices and the corresponding ILM systems. The 
signals of analytes were collected randomly at nine different points of spot in the positive ion mode. Points 
having no signals were not considered for the analysis. 20 shots were collected at each point, totally 180 shots 
per spot were accumulated. Fixed laser energy just above the threshold was applied for each measurement. 

 

 
4.3 Analysis of low molecular weight compounds in ILMs 
 

The ILMs were examined as MALDI-matrices for the qualitative analysis of all 20 naturally 

occurring amino acids. In addition, typical LMW compounds of biological interest such as 

sugars, vitamins, α-ketoacids, adenosine 5-triphosphate (ATP) and nicotinamide-adenosine 

dinucleotide (NAD+) were tested (Table 4.3). The ability of ILMs to ionize analytes depends 

both on the nature of the analyte as well as the ILM. Therefore, measurements were 

performed in both positive and negative ion mode (Figure 4.3). Signals of [M+H]+, [M+Na]+ 

and [M+K]+ could be identified for the analytes in the positive ion mode and [M-H]--signals 

were the dominant peaks in negative ion mode analysis. Some analytes such as vitamin B1 

(biotin) showed good peak intensities in positive ion mode whereas others as α-ketoglutarate,  

Matrix Analyte Range of signal 
intensity RSD% 

DHB Arginine 0-2303 70 

DHB-Py Arginine 1065-1867 16 

CCA Angiotensin II 779-2889 55 

CCA-DMAPA Angiotensin II 2962-3423 5 

CCA Substance P 1445-4026 39 

CCA-DMAPA Substance P 2343-3099 8.6 

CCA Neurotensin 1043-3110 33 

CCA-DMAPA Neurotensin 1433-1781 7.5 

CCA ACTH (18-39) 816-2989 41 

CCA-DMAPA ACTH (18-39) 945-1372 11.5 
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Figure 4.3: MALDI-MS spectra of (a) glutamine in DHB-Py in positive ion mode, and (b) glutamic acid in 
CCA-MI in negative ion mode. M is the corresponding analyte; * denotes peaks arising from the matrix 
systems. 
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ATP and NAD+ could only be detected in the negative ion mode. Additionally, NAD+ 

delivered only a signal for the [M-nicotinamide]--fragment in the negative ion mode. 

The mass resolution for the analytes was typically in the range between 3500-5000 and did 

not differ significantly between crystalline matrices and ILMs.  

Typically, higher laser intensities were necessary for measurement in ILMs. Potentially, this 

higher energy is required to overcome ionic interactions between acid/base compounds of 

ILMs. 

It was observed that not all amino acids could be measured in all matrix systems investigated 

here. There was no general correlation between the side chain properties of the amino acids 

(e.g. basic or acid side chains) and the matrix systems, which could be successfully applied 

for their measurement. Hence, for analysis of LMW compounds, preliminary experiments 

with a set of ILMs will be required to find out a ILM suited for the respective analyte, as it is 

necessary for solid matrices, too. Furthermore, potential overlap of matrix signals with the 

desired analyte has to be considered. 

An optimal matrix-to-analyte ratio (M/A-ratio) of 10:1 to 100:1 (mol:mol) has been reported 

for the measurement of LMW compounds (Kang et al., 2000), whereas higher ratios of 

1,000:1 to 100,000:1 (mol:mol) were found to be optimal for polymeric analytes (Karas and 

Hillenkamp, 1988). Using the ILM systems, the optimal ratios were between 1:1 to 10:1 

(mol:mol). Acid-base combination of ILM and M/A-ratios were found to affect the formation 

of protonated signals as well as Na/K adducts. Besides the protonated ions, strong signals for 

sodium and potassium adducts could be observed in the positive ion mode. At higher M/A-

ratios the intensities of [M+Na]+- and [M+K]+-signals were observed to be at least three times 

higher than those of the protonized ions. In some cases (e.g. for glycine and alanine), 

[M+H]+-signals could no longer be observed at ratios above 50:1, whereas for arginine and 

lysine the protonized ion-signal was still intensive.  

Na/K-adduct formation was dependent on the compositions of ILMs. For example, in 1-

methylimidazole containing ILM, Na/K-adducts were more intensive compared to pyridinium 

based ILMs. The effect of pyridinium based ILMs on adducts formation as well as analyte 

peak intensity will be discussed in more detail later (Chapter 4.7). The limits of detection for 

the analytes were determined as described before (Tholey et al., 2002). Amongst the amino 

acids, arginine (basic), glutamic acid (acidic) and alanine (uncharged) were chosen as 

analytes. Arabinose and biotin represented sugars and vitamins, respectively. ATP, NAD+ 

and α-ketoglutarate were tested in negative mode. For all the cases DHB-Py was selected as 

ILM except for ATP and NAD+ which were measured from CCA-Py. All other ILMs were 
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tested with arginine as a representing analyte. In all cases, LOD was found to be about 10-14 

mol, which is comparable to the corresponding solid matrices. Note that spots usually had a 

diameter of ~3 mm (Figure 4.1). 

 

Table 4.3: Analytes tested in ILMs. All analytes were measured at a molar matrix-to-analyte ratio of 1 with the 
exception of cysteine, lysine and arginine in matrix DHB-Py (ratio = 3). 

 
Analyte Positive Ion 

Mode Negative Ion Mode Ionic Liquid Matrix * 

Alanine a, b, c d 1, 2, 3, 5, 6, 7, 9, 10, 11 
Glycine a, b, c d 1 
Leucine a, b, c d 1 

Isoleucine a, b, c n.t. 1 
Valine a, b, c n.t. 1 
Proline a, b, c n.t. 1 

Phenylalanine a, b, c n.t. 1 
Tryptophan a, b, c n.t. 1 

Tyrosine a, b, c n.t. 1 
Serine a, b, c d 1, 5, 9 

Threonine a, b, c n.t. 1 
Methionine a, b, c n.t. 1 

Cysteine b, c n.t. 1 
Histidine a, b, c n.t. 1 
Arginine a, b, c n.d. 1, 2, 3, 5, 6, 7, 9, 10, 11 
Lysine a, b, c n.t. 1 

Glutamic acid a, b, c d 1, 2, 3np, 5np, 6np, 9, 10, 11 
Glutamine a, b, c d 1 

Aspartic acid a, b, c n.t. 1 
Asparagine a, b, c n.t. 1 

Fructose b, c [M-H]- (1) 1, 2, 5, 6, 7np, 11np 

Arabinose b, c n.d. 1, 2, 5, 6, 7np, 11np 

Thiamin a n.d. 1, 2, 5, 6, 7, 11 
Biotin a, b, c n.d. 1, 2, 5, 6, 7, 11 

Ascorbic Acid b, c d 1, 2, 5, 6, 7np, 11 
ATP n.d. d 1nn, 2nn, 5, 6, 7, 11 

NAD+ n.d. [M-nicotinamide] 1nn, 2nn, 5, 6, 7, 11 
α-ketoglutarate n.d. d, [M]- (1, 2) 1, 2, 5, 6, 7, 11 

 
* Annotation of the matrix systems according to Table 4.1. 
a : [M+H]+, b : [M+Na]+, c : [M+K]+, d : [M-H]-  
values in brackets: signal has been observed only in this matrix system 
n.d.: not detected 
n.t.: not tested 

np: no peak in positive ion mode 
nn: no peak in negative ion mode 
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4.3.1 Quantification of low molecular weight compounds applying internal 

standards 

 

Low molecular weight compounds like amino acids, sugars and vitamins are substrates or 

products of many enzymatic reactions. Therefore, introduction of fast and reliable technical 

methods for quantification of these substrates and products are highly desired for screening of 

new biocatalysts. MALDI mass spectrometry is a robust technique for enzyme screening 

which is not dependant on fluorogenic/chromophoric substrates or products as it is a 

restriction factor for application of optical methods (Tholey and Heinzle, 2002). The method 

is fast and applicable for low concentrations (µM) and low volumes (µL) of samples. 

Additionally, measurements can be automated which is desirable for medium- or high-

throughput enzyme screening process for a large number of analyses. Therefore, the 

optimization of automated analysis is one of the prerequisites. 

The parameters for the automated measurements have been optimized for solid matrices 

(Kang et al., 2001). Due to very inhomogeneous samples (hot spot formation), the laser 

power was adjusted variably to avoid formation of saturated peak intensities that lead to false 

results. 

Another problem using solid matrices was that a random selection of positions on one spot 

during the automated measurements often produced no signal. Hence, more number of 

positions on one spot sample is required. The quality of measurement improves by the 

accumulation of the more measurement points, but the measurement time will increase 

significantly.  

Higher sample homogeneity in ILMs can help overcoming problems observed with solid 

matrices. The parameters for the automated measurement using the program package 

AutoXecute™ were optimized for the ILMs. The goal was to gain the highest possible mass 

resolution with maximal peak intensities and to avoid at the same time saturated peaks. The 

protocol was adapted to the measurement in ILM in order to compare the automated 

quantification in solid matrices and ILMs. A molar matrix to analyte ratio of 30:1 was 

chosen. The calibration curves were obtained with exactly the same measurement conditions 

in DHB as solid matrix and DHB-Py as ILM using glutamine and fully 13C-labeled glutamine 

(U13C-Gln) as analyte and internal standard, respectively. In both matrices linear correlations 

in relative signal intensities could be observed (Figure 4.4).  

Glutamine showed higher intensities of sodium or potassium adducts compared to [M+H]+  
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at this molar matrix to analyte ratio in ILMs. Due to stronger variations in the intensities for 

the cationized (Na/K)-adducts the less intense protonized ions were used for quantification. 

The parameters for automated measurements were adjusted as follows: the number of 

positions on one sample spot was fixed to 9. 25 shots were collected per position and 100 

shots per spot for each matrix system (DHB and DHB-Py). In case of the ILM, the 

acquisition of 100 shots per spot was usually already achieved with 4 out of the 9 allowed 

positions on one target spot, whereas in case of solid matrix more positions were necessary, 

depending on the distribution of hot spots. This leads to a higher number of values to be 

rejected as outliers, higher standard deviations and to a prolonged measurement time. The 

total number of sample spots in our example was 45. 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 4.4: Relative quantitation of glutamine using U13C-glutamine as internal standard measured with the 
same automated measurement protocols in DHB (left) and DHB-Py (right). The molar matrix-to-analyte ratio 
was 30:1 in both cases. Error bars indicate the average of 5 independent measurements. 100 shots were collected 
for each spot. I: peak intensities of analyte/internal standard; C: concentrations of analyte/internal standard. 
Lines represent linear regression curves. 

 

In case of solid matrix, the values of 4 measured spots (out of 45 measured spots) had to be 

rejected in the experiment shown here with one of them delivering no signals at all. For ILM, 

the number of rejected values was only 2 (Table 4.4). The total measurement time was 57 

min for solid matrix and 46 minutes for ILM. This corresponds to a reduction of about 20%. 

In other studies, a reduction of measurement time up to 50% could be achieved for screening 

of sugar converting enzymes using ILMs (Bungert et al., 2004a). The coefficients of 

correlation were found to be r2 = 0.993 in ILM and r2 = 0.974 in solid DHB. It was mentioned 

earlier that hot spot formation leads frequently to the measurement of saturated signals which 

cannot be used for quantification. In order to avoid such signals it is often necessary to apply 
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dynamic laser intensities using fuzzy-logic algorithms (Jensen et al., 1997). In contrast to 

this, a constant laser power (or only small variations of it) can be applied in ILM systems due 

to the uniform signal intensities all over a sample spot. Thus the use of ILM allows a more 

accurate quantification in less time compared to solid matrices. 

 

Table 4.4: Automated acquisition of quantitative data of glutamine in DHB and DHB-Py. 

 

* Amount of analyte sums analyte and internal standard. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 DHB DHB-Py 

Molar matrix-to-analyte ratio* 30 30 

Measured spots 45 45 

Number of outliers 4 (8.8 %) 2 (4.4 %) 

Measurement time per spot 76 sec 61 sec 

Slope/ intercept of regression 0.91 / 0.26 1.07 / 0.007 

r2 0.974 0.993 

Mean of standard deviation 13% 8% 
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4.4 Qualitative analysis of peptides and proteins in ILMs 
 

MALDI is a soft ionization based technique which has proven to be one of prime ionization 

method for mass spectrometric analysis and investigation of macro-biomolecules, e.g. 

peptides and proteins (Karas et al., 1987; Tanaka et al., 1988). Not only does the method give 

information about the mass and sequence of these polymers, but it is also able to carry out 

analysis at high throughput and at high speed (few seconds per sample) in the field of 

proteomics (Cramer and Corless, 2005). However, inhomogeneity of sample with the use of 

solid matrices remains one of the major obstacles using MALDI in proteomics studies. The 

previous chapter described the use of ILMs for the analyses of LMW compounds. In this 

chapter, applications of ILMs for the measurement of peptides and proteins are discussed. For 

analysis of peptides, a mixture of five-peptides was used as analyte (Table 4.5). 

 

Table 4.5: The mixture of five-peptides which was used as analyte in ILMs. 

 

 

 

 

 

 

 

 

 

The mixture of five-peptides was analyzed in different ILMs formed by the combination of 

CCA and InAA as acids with one of the two aliphatic amines, DMED and DMAPA, or the 

heteroaromatic pyridine as bases. Similar to the observation during analysis of LMW 

compounds, the signal intensities of Na/K-adducts were increased in ILMs compared to solid 

matrices (Figure 4.5). This increase of the alkali adducts signals was also reported earlier 

when ILMs were used as matrix (Mank et al., 2004). Besides the signals for Na/K-adducts, 

lower intensity signals of ions of the form [M+2Na-H]+and [M+Na+K-H]+ could be 

observed. This enhancement of adduct formation was strongly influenced by the acid-base 

combination of ILM used for analysis. For example, CCA- DMAPA produced stronger 

Na/K- adducts compared CCA-Py. 

Peptides Sequence [M+H]+ 

Angiotensin II DRVYIHPF 1046.54 

Substance P RPKPQQFFGLM-NH2 1347.74 

Neurotensin pGlu-LYENKPRRPYIL 1672.92 

ACTH (1-17) SYSMEHFRWGKPVGKKR 2093.08 

ACTH (18-39) RPVKVYPNGAEDESAEAFPLGF 2465.2 
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Figure 4.5: Mixture of the peptides angiotensin II (m/z = 1046.5), substance P (m/z = 1347.7), neurotensin (m/z 
= 1672.9), ACTH (1-17) (m/z = 2093.08) and ACTH (18-39) (m/z = 2465.2) measured in CCA (top) and CCA-
DMAPA (bottom). a: [M+Na]+, b: [M+K]+, c: [M+2Na-H]+, d: [M+Na+K-H]+, e: DMAPA-adducts. k: [M-
14+H]+. Resolution of peptides peaks varied between ~7900-10200 (top) and ~4600-5900 (bottom). *: non-
identified impurity. 

 

Nevertheless, [M+H]+ signals of peptides were in all cases more intensive than Na/K-adducts 

in all ILMs studied in this work. Peptides (substance P, neurotensin, ACTH (1-17), ACTH 

(18-39)) showed the signal [M-14+H]+ in CCA as matrix. The identity of this signal is not 

clear up to now. The mass loss of 14 Da seems to be the mass of one methylene group (CH2). 

It should be mentioned here that the mass loss of 14 Da (CH2) of methylated aspartic acid or 

glutamic acid containing peptide could be observed in MALDI-MS/MS spectrum (Schmidt et 

al., 2006). The methylation of aspartic acid or glutamic acid can occur during the staining 

procedure of gels in acidic methanol (Haebel et al., 1998). However, in case of the standard 

peptides in which no methylation is expected, loss of such a group (CH2) to produce the 

signal of [M-14+H]+ is quite unlikely. Further investigation using MS/MS techniques could 

help to find out the reasons for potential changes in the peptides mass. However, this signal 

was not observed in ILM. The resolution of the signals did not differ significantly in ILMs 
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compared to the corresponding solid matrices. Similar to the observation in analysis of small 

molecules (Chapter 4.3), it was found that higher laser energies are also required to ionize the 

peptides in ILM compared to corresponding solid matrix (e.g. in CCA: 32% (arbitrary laser 

energy units), in ILM CCA-DMAPA: 40%). 

In general, the peptides did not form any adducts with the components of ILM. An exception 

was the ILM of CCA-DMAPA in which weak adduct formation with the base could be 

observed (Figure 4.5). Further analyses using InAA-based ILM showed comparable results to 

those found in CCA-based ILMs. 

The proteins insulin, lysozyme, carbonic anhydrase and BSA were measured in ILM SA-

DMED. The mass range of proteins studied was between m/z 5700 to 66000 Da. In MALDI 

analysis using solid matrices, peaks of proteins are generally broadened when compared to 

peptides, resulting in lower resolution. This is mainly because of the use of linear rather than 

reflector mode for analysis. In case of the ILM, SA-DMED, the peaks of proteins were even 

more broadened in comparison to corresponding solid matrix SA (Figure 4.6). The 

broadening of signal was more pronounced with increasing protein mass.  

 

 

Figure 4.6: MALDI-spectrum of BSA (m/z= 66 kDa) in SA (black line) as solid matrix and SA-DMED (dashed 
line) as ILM. 200 shots were collected for both cases. 
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Though difficult to pinpoint the actual factors which cause this more broadening in ILM, one 

of the possible reasons can be because of the use of higher laser energy for ILM to obtain a 

comparable result to the corresponding solid matrix. This elevated laser energy can cause 

more fragmentation in protein, and since these fragment peaks cannot be very well resolved, 

they can induce more peaks broadening. On the other hand, increased metal-adducts induced 

by using ILMs can be another explanations for broadening of the proteins peak.  

Adduct formation with the base DMED could be clearly observed for the smallest protein 

studied here, insulin. For all other proteins tested no adduct formation was observed. The 

adduct peaks with bigger proteins could be hidden by the broad peaks of proteins in ILM 

which may not allow the detection of these adducts. The signals corresponding to the protein-

SA adducts can be detected, especially with smaller proteins similar to the earlier observation 

(Galvani et al., 2001). These SA-adducts with proteins could not be identified for any tested 

proteins in SA-DMED. Together with the broadening of protein peaks in ILM and the 

operation of linear mode for protein analysis – resulting in lower resolution- the SA- adducts 

could not be probably resolved in the protein peaks. The double or triple intensive protonated 

signals that appear in analysis of proteins in SA were either very weak or not observed in 

ILM (Figure 4.6). It can be speculated that the presence of a base, which has a high proton 

affinity, in the composition of ILM can decrease the proton availability to produce doubly or 

triply protonized protein peak in ILM. 

 

4.5 Quantification of peptides using isotopically labeled internal 

standard  
 

The application of stable isotopes as internal standard (IS) in mass spectrometry has brought 

forwards a new era for quantitative proteomics. In recent years, a number of stable isotope 

labelling techniques have been introduced. Examples are isotope-coded affinity tag (ICAT) 

method (Gygi et al., 1999), 18O labelling during enzymatic reaction (Bantscheff et al., 2004), 

isobaric multiplexing tagging (iTRAQ) reagents (Ross et al., 2004), isotope-coded protein 

label (ICPL) method (Schmidt et al., 2005). These methods employ the principle of tagging 

of the peptides and proteins to be quantified with chemical reagents. One of the samples is 

tagged with an isotopically heavier chemical reagent and the other with natural labelled 

chemical reagent. The quantification is achieved based on the ratio of heavy and light 

isotopes analyte in which the concentration of one of the isotopomers is known.  
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Herein, the model peptide, substance P, was labelled using NHS-acetate (D3) and (D0) as 

heavy and light isotope, respectively, as described in material and methods section. Two 

different ILMs (CCA-DMED and CCA-Py) were used for the quantification. The calibration 

curves were obtained in a molar D3/D0 range of 1-10. A mean standard deviation of 7% in 

CCA-DMED and 8.5% in CCA-Py with r2 of 0.994 (for CCA-DMED) and of 0.997 (for 

CCA-Py) was achieved. It was demonstrated earlier (Chapter 4.3 and 4.4) that the use of solid 

matrices led to the higher standard deviation and increasing of measurement time in case of 

quantitative analysis by automated measurement. Therefore, further comparison of this 

experiment with corresponding solid matrix CCA was not carried out. 

 

4.6 Influence of the molar matrix-to-analyte ratio on the ion 

response in ILM 
 

The co-crystallizations of matrix and analyte cause the inhomogeneous sample preparation 

using solid matrices. Hence, little or no correlation between the peak intensity and amount of 

analyte on the target could be obtained, making the quantitative characterization by MALDI-

MS a method depending on the application of IS. The use of isotopically labelled analogue of 

the analyte rather than structural analogue as IS has been proven to improve significantly the 

reliability of result (Horak et al., 2001; Kang et al., 2001). Potentially, the differences in the 

size, structure, crystallization behavior and ionization efficiency of structural analogue 

compared to the tested analyte are responsible for this phenomenon. Unfortunately, 

isotopically labeled standards are more difficult to be obtained for large biomolecules. 

One obvious advantage of using ILMs for MALDI analysis is the significant improvement of 

sample homogeneity. ILMs were already shown to diminish the problems raised by 

inhomogeneity of the sample as well as hot spot-formation (Armstrong et al., 2001; Mank et 

al., 2004). The first attempt to evaluate the peptide quantification using ILMs was by Gross 

and co-workers (Li and Gross, 2004). They obtained good calibration curves with high 

linearity and reproducibility over a wide range of concentration. As revealed, the high sample 

homogeneity achieved using ILMs eliminated the need of isotopically labeled IS for 

quantitative analysis. Moreover, applicability of an IS with structure and molecular weight 

different from those of the analytes was shown for quantification of oligodeoxynucleotides 

(ODNs), peptides and small proteins (Li and Gross, 2004).  
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In this work, ILMs were examined for their potential for quantitative analysis of peptides 

without using IS. In other words, it was evaluated whether a direct correlation between peak 

intensity and the amount of analyte on the target can be observed. Neurotensin was used as 

analyte in ILM CCA-DMAPA. A dilution series of the peptide neurotensin in a constant 

amount of the ILM was prepared. Since the same amount of matrix was used for all the 

measurements, the M/A-ratios of the samples decreased by increasing the amount of analyte 

in the M/A-range of 25,000 (lowest amount of analyte) and 50 (highest amount of analyte) 

(Figure 4.7 (a)). The measurement was performed automatically and the laser energy was 

kept constant throughout the analysis. As shown in Figure 4.7 (a), the signal intensities 

increased nonlinearly with increasing analyte amounts up to about ~100 pmol. Above 100 

pmol the intensities reached a maximum level, and further a decrease of the signal intensities 

was observed. 

 It is a well-known fact, that the molar matrix-to-analyte ratios has a strong influence on the 

detectability and intensity of analyte signals in MALDI-MS (Dreisewerd, 2003). Typically 

molar M/A-ratios between 10 and 100 were found to be optimal for LMW compounds (Kang 

et al., 2000). For peptides and proteins typically ratios in the order of 103-105 are applied 

(Karas and Hillenkamp, 1988). At higher sample amounts (corresponding to lower M/A-

values) the amount of matrix may not be anymore sufficient for fulfilling its role in soft 

ionization and desorption of the analyte in MALDI-MS, leading to the decrease of signal 

intensities. The increase at low sample amounts with the corresponding higher M/A-ratios 

was nonlinear, but the deviation from linearity was not pronounced (Figure 4.7). Hence, this 

led to the working theory, that elevated M/A-ratios could favour a linear relation between 

intensity and sample amount.  

Therefore, a second set of experiment was performed, in which the M/A-ratios were 

increased from 25,000 and 500,000. As shown in Figure 4.7 (b), under these conditions a 

linear relation (r2 = 0.995, mean standard deviation = 8%) could be observed in the range 

between 500 fmol to 7 pmol. Above 7 pmol, the curve reached a plateau. This dynamic range 

is slightly lower than that found for relative quantifications (Li and Gross, 2004). The 

limitation of the dynamic range is mainly caused by three factors, which interfere with each 

other: (i) the laser energy applied, (ii) the amount of matrix which can be placed on the target, 

and (iii) the LOD and the ionization behaviour of the analyte. From practical reasons, for a 

quantification of an unknown sample, the laser energy has to be kept constant for the 

calibration curve as well as for the measurement itself. On the other hand, the laser energy 

has an influence on the detectability of low amounts of analytes and on the peak saturation at 
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Figure 4.7: Peak intensities of neurotensin in dependence of the sample amount and the molar matrix-to-analyte 
(M/A) ratio applied. (a) M/A of 25,000 (2 pmol peptide) to 50 (1000 pmol peptide), matrix: CCA-DMAPA. (b) 
M/A between 500,000 (500 fmol peptide) to 35,700 (7 pmol peptide), r2 = 0.995, mean standard deviation: 8%, 
matrix: CCA-DMAPA. All measurement points represent averages of 5 independent measurements; constant 
laser energy was applied throughout the measurement. 
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higher sample amounts. Therefore, laser energy has to be optimized and adapted to the 

analytical problem to be solved prior to the measurement of the calibration curve. 

The use of different laser energies allows for a shift of the dynamic range either to higher or 

lower sample amounts, but this does not extend the dynamic range itself. In order to achieve 

the increased M/A-ratios resulting in the linear relation between sample amount and signal 

intensities, it is possible either to increase the matrix amount on the target or to decrease 

sample amount. The first factor is limited by practical reasons: it is not possible to increase 

the matrix amount unlimited on the target. In this study, typically 250 nmol of the ILM were 

spotted on the target. The second factor is limited by the LOD of the analyte. The LOD for 

peptides in ILM were reported earlier to be slightly increased compared to the corresponding 

crystalline matrices (Mank et al., 2004) but this effect depends strongly both on the nature of 

the analyte and the composition of the ILM. 

The optimal M/A-ratios applied in ILMs were also examined in the pure crystallized matrix, 

CCA. Due to practical reasons regarding the solubility of CCA, the amount of analyte was 

reduced between 100-1000 fmol on the target to achieve same M/A-ratios applied in ILM. A 

roughly linear correlation (r2 = 0.65, slope 16.32) could be observed between sample amount 

and signal intensity up to 700 fmol on target, however, the errors and deviations were 

remarkably increased (mean standard deviation=51%) compared to the results obtained using 

ILM (Figure 4.8). This is mainly caused by the inhomogeneous distribution of the analyte in 

the crystallized matrix. 
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Figure 4.8: Calibration curve obtained for 
neurotensin using CCA as solid matrix. The 
same measurement condition applied for ILM 
shown in Figure 4.7 (b) was used. The M/A 
was varied between 500,000 (for 100 fmol 
analyte) to 71,400 (for 700 fmole analyte). 
Laser energy was constant just above the 
threshold level. r2= 0.65, mean standard 
deviation was 51%. 
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4.6.1 Quantification of a mixture of peptides without IS 

 

The optimized M/A-ratio found for quantification of single peptide without IS was applied to 

quantify a mixture of peptides. The quantification of a mixture of angiotensin II, substance P, 

neurotensin and ACTH (1-17) was performed using matrix CCA-DMAPA. A linear 

correlation could be observed in the range of 250 fmol to 2.25 pmol between peak intensities 

of peptides and the amounts of peptides on target (Figure 4.9). In contrast to the situation 

observed for the single peptide, the obtained curves were not perfectly linear. The r2-values 

were 0.966 (ACTH (1-17)), 0.978 (neurotensin), 0.988 (angiotensin II), and 0.989 (substance 

P). One explanation for this non-ideal behaviour could be that the presence of one given 

peptide can influence the desorption/ionization response of another. This effect can be also 

observed in the slope of the calibration curve achieved for the isolated peptide neurotensin 

(9.46), which was altered to 8.49 in the mixture of peptides. Hence, due to this complex 

phenomenon, only single analyte can be quantified with high accuracy. However, the 

accuracy reached in this experiment is sufficient for the determination of relative enzyme 

activities in analyte mixtures as described later.  
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Figure 4.9: Calibration curves for a mixture of the peptides angiotensin II (r2= 0.988), substance P (r2=0.989), 
neurotensin (r2=0.979) and ACTH (1-17) (r2=0.966) measured in CCA-DMAPA. Data points represent the 
average of 5 independent measurements. Fixed laser energy was applied. 
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Having different slopes of calibration curves for the four analytes (6.43 (angiotensin II), 

10.43 (substance P), 8.49 (neurotensin), 5.57 (ACTH (1-17)) indicates that peptides have 

different efficiency concerning to their protonization in MALDI. It is known that peptide 

properties such as the amino acid sequence, hydrophobicity, and even size can influence their 

MALDI behaviour (Baumgart et al., 2004; Olumee et al., 1995; Wenschuh et al., 1998). 

However, no obvious correlation between peptide length, composition of the peptides and the 

corresponding slopes were found in the limited set of analytes investigated here, but a closer 

investigation of this could be a further potential application for the method presented. 

 

4.6.2  Monitoring of enzyme catalyzed reactions without IS 

 

Enzymes are known as highly specific catalysts, which are involved in all the metabolic 

pathways in biological systems. The determination enzyme kinetic is always necessary to 

gain more information about a new enzyme or new substrates/inhibitors for the given 

enzyme. MALDI-MS has been applied for enzyme screening when suitable IS was available 

(Bothner et al., 2000; Schluter et al., 2003). Herein, the feasibility of absolute quantification 

by MALDI-MS using ILMs for determination of enzyme activities was investigated in two 

sets of experiments: i) monitoring of the enzymatic conversion of a single peptide (enzyme 

screening) and determination of kinetic data, ii) observation of the enzymatic conversion of a 

peptide mixture (substrate/inhibitor screening). 

 

4.6.2.1 Monitoring of the tryptic digest of single peptide 

 

The tryptic digestion of the peptide neurotensin was investigated as a model reaction. 

Samples were taken after certain time intervals and mixed with the ILM InAA-DMED 

without any prepurification (e.g. desalting). It should be mentioned here that [M+H]+-signals 

have been used for all the analyses, since the protonated signals of peptides were quite 

stronger than Na/K-adducts signals. Digestion of neurotensin by trypsin created two products 

with m/z 661.4 and m/z 1030.5 corresponding to the peptides RPYIL and pGlu-LYENKPR, 

respectively. In addition to substrate signals, the signals of these two products could be also 

observed. According to the sequence of neurotensin given in Table 4.6, this peptide carries 

three potential cleavage sites for the trypsin-catalyzed reaction. Trypsin preferentially cleaves 

on the carboxyl side of arginine and lysine residues (Keil, 1992). Two arginine residues in the 

amino acid sequence of neurotensin are followed by proline residues, which are known to 
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prevent a cleavage at these residues (Keil, 1992; Thiede et al., 2000). Figure 4.10 (a) shows 

the evolution of the concentrations of the substrate and the two products. Substrate 

concentrations were calculated using the calibration curve shown in Figure 4.10 (b), which 

was measured in the range of between 1 and 9 pmol on the target. The product concentrations 

could also be calculated using their calibration curves shown in Figure 4.10 (c).  

The calibration curve of products was achieved based on their signal intensities which were 

obtained in enzyme reactions performed with three different initial substrate concentrations 

(see Chapter 4.6.2.1.1). It was assumed, that from each molecule of the substrate peptide two 

product peptides are formed in equimolar amounts. As can be seen in Figure 4.10 (c), a linear 

correlation could be found between signal intensities and the calculated amounts of the 

products. 

Small deviations could be observed between the two products concentrations (Figure 4.10 

(a)). This can be mainly caused by the fact that the calibration curves consisted only three 

measurement points, which were generated by three product concentrations. As a further 

control, the calculated sum of substrates with the mean of the amounts of the products was 

constant over the complete reaction (Figure 4.10 (a)).  

To compare the results of the substrate quantifications obtained without using IS, further 

control experiments were carried out by two established methods: (i) relative quantification 

by MALDI-MS in ILM using a homologous peptide (Trp11-Neurotensin) as IS and (ii) 

quantification of the substrate by HPLC-UV-measurements with 214 nm detection (Figure 

4.11). The average deviation between the three methods was 6%. The highest deviations were 

observed at the lowest concentrations (12%, 10 and 15 min.) whereas at high concentrations 

deviations were below 3%. 
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(a)  

 

 

(b) (c) 

 

 

 
Figure 4.10: Tryptic digestion of neurotensin monitored in the matrix InAA-DMED. (a) Time dependent 
development of substrate and product concentrations, (b) Calibration curve for substarte measured in InAA-
DMED, molar matrix-to-analyte ratios from 250,000 to 25,000, matrix amount: 250 nmol, each data point 
represents the average of 5 independent measurements, (c) Calibration curve obtained for two products (m/z 661 
and m/z 1030). Substrate concentrations (a) were calculated using the calibration curve (b) and taking into 
account the dilution steps prior to sample preparation. Product concentrations (a) were calculated from 
calibration curves (c). Product amounts were calculated assuming equimolar product formation from the 
substrate. The dashed line (---▼---) in (a) represents the calculated sum of substrate and the mean of the two 
product concentrations. 
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Figure 4.11: Comparison of substrate concentrations determined by quantitative MALDI-MS (five independent 
measurements) using the ILM (InAA-DMED) (i) with an internal standard (Trp11-Neurotensin), or (ii) without 
internal standard and by HPLC-UV (214 nm, single measurement). 

 

4.6.2.1.1 Enzyme kinetic study 

 

In order to determine kinetic data, enzyme reactions were performed with three different 

initial concentrations of the substrate (Figure 4.12). The measurements were done in ILM 

InAA-DMED as described above. The substrate concentrations were obtained using the 

calibration curve presented in Figure 4.10 (b). The KM value for the substrate neurotensin was 

calculated to be 520 µM using initial velocities of enzymatic reactions. This value lies in the 

range of comparable substrates found in the literature (Hill and Tomalin, 1982; Palm and 

Novotny, 2004). For more precise determination of kinetic parameters by Lineweaver-Burk-

plot, more sampling points in the early phase of the reaction would be beneficial in order to 

cover a wider linear range. 
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Figure 4.12: Substrate (neurotensin) consumption vs. time for three different initial substrate concentrations. 
Concentrations of substrate were calculated using the calibration curve shown in Figure 4.10 (b). Error bars 
indicate the average of 5 independent measurements. Applied matrix: InAA-DMED, amount of matrix on the 
target: 250 nmol. 

 

4.6.2.2 Semi-quantitative monitoring of multi-substrate conversions 

 

In a second set of experiments, tryptic digestion of five peptides mixture containing 

angiotensin II, substance P, neurotensin, ACTH (1-17) and ACTH (18-39)), by trypsin was 

monitored. The peptides responded differently in this enzymatic reaction. Figure 4.13 shows 

the signal intensities of the five peptides in their responses to tryptic digestion by trypsin. 

Though, all the peptides were combined in equimolar amount, ACTH (1-17) was the fastest 

digested amongst the peptides, followed by neurotensin. This order in digestion can be 

explained by the sequence of each individual peptide. Neutrotensin has one, ACTH (1-17) 

three cleavage sites for trypsin (Table 4.6). The cleavage products described earlier for 

neurotensin as well as further product peptides originating from the cleavage of ACTH (1-17) 

could be identified in the spectra (Table 4.6).  

A direct interpretation of the kinetic parameters of a peptide with more than one cleavage site 

is hampered by the fact that different cleavage sites may have different kinetic parameters. 

Additionally, the cleavage products may also be substrates for further cleavages. For 

example, in the case of the digestion of ACTH (1-17) which has three potential cleavage sites 

for trypsin, three products with m/z of 1055.6, 1056.5 and 1808.8 could be initially observed, 
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Table 4.6: Products of tryptic digestion of a five-peptide mixture measured in CCA-DMAPA.  

 

analyte / sequence a, b 
theoretical products of tryptic cleavage 

m/z / sequence / identification c 

Angiotensin II 

DRVYI HPF 

m/z = 290 / DR / (-) 

m/z = 775 / VYIHPFG / (-) 

Neurotensin 

pGlu-LYEN KPR RP YIL 

m/z = 661.4 / RP YIL / (+) 

m/z = 1030.5 / pGlu-LYEN KPR / (+) 

Substance P 

RPKPQ QFFGL M-NH2 
- 

ACTH (1-17) 

SYSME HFRWG KPVGK KR 

m/z = 1056.5 / SYSMEHFR / (+) 

m/z = 1055.6 / WGKPVGKKR / (+) 

m/z = 1808.8 / SYSMEHFRWGKPVGK (+) 

m/z = 771.5 / WGKPVGK / (+) 

ACTH (18-39) 

RPVKVYPNGAEDESAEAFPLEF 

m/z = 499.3 / RPVK / (-) 

m/z = 1984.8 / VYPNGAEDESAEAFPLEF / (+) 

 
a bold residues: cleavage site. b underlined residues: masked cleavage site. csignal detected: (+), not detected: (-)  

 

followed by the disappearance of the two products peptides m/z 1055.6 and m/z 1808.8 

(Figure 4.14). These two product peptides (m/z 1055.6 and m/z 1808.8 corresponding to the 

sequences WGKPVGKKR and SYSMEHFRWGKPVGK, respectively) also have cleavage 

sites for trypsin; hence they can be the further substrates for tryptic digest. The conversion of 

these two products resulted in the appearance of two more peptides with m/z of 1056.6 and 

m/z 771.5 corresponding to two fragments SYSMEHFR and WGKPVGK, respectively 

(Table 4.6). Herein, only the cleavage product of the C-terminal arginine residue could not be 

detected in these sequential cleavages of ACTH (1-17).  

It was shown earlier (Chapter 4.6.1) that peptides could influence the signal intensities of one 

another in the mixture, which is known to be the consequence of peak suppression event in 

MALDI. Possibly, the slight drop in signal intensity of the cleavage product peak of m/z 

1056.5 shown in Figure 4.14 could be the result of such an event in MALDI. 
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Figure 4.13: Tryptic digestion of a mixture of angiotensin II, substance P, neurotensin, ACTH (1-17) and 
ACTH (18-39) monitored in the matrix CCA-DMAPA. Initial on target-amount of each peptide was 2.5 pmol.  

 

The signal intensities of the other three peptides in the mixture (angiotensin II, substance P 

and ACTH (18-39)) were also slightly reduced during the whole reaction time (Figure 4.13). 

The tryptic digestion of ACTH (18-39) was very slow compared to ACTH (1-17) and 

neurotensin, and its signal intensity was reduced by about 40% during the entire reaction. It 

consists of one possible cleavage site, forming a larger peptide fragment of m/z 1984.8 and a 

smaller one of m/z 499.3. The bigger cleavage product with m/z 1984.8 could be identified in 

the spectra; the second product with m/z 499.3 was not detected. The blank spectrum 

measured with the analyte free ILM did not show any signal at this m/z-value, thus signal 

overlap can be excluded as a reason for the non-detectability of the latter peptide. Potentially, 

the slower conversion of this peptide is caused by the neighboring sequence. The signal 

intensities of the peptides angiotensin II and substance P showed only a small loss of 

intensity of about 20% in the beginning of the reaction; afterwards, signal intensities were 

mainly constant. Substance P cannot be cleaved efficiently since both of the two tryptic 

cleavage sites of this peptide are neighboured by proline residues (Keil, 1992). No cleavage 

products were identified for this peptide. Although angiotensin II has one tryptic cleavage 

site, no cleavage products of this peptide could be detected in the spectrum.  

To confirm results obtained from digestion of peptides in the mixture, tryptic digestion of 
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Figure 4.14: Time dependence of the production and disappearance of the peptides obtained from tryptic 
digestion of ACTH (1-17) in the mixture of peptides shown in Figure 4.13. Digestion was first begun with 
appearance of the peptide fragments formed by first-cleavage events, accompanied by the disappearance of the 
signals of these precursors. ILM: CCA-DMAPA. 

 

these two peptides angiotensin II and substance P was performed individually. Similar 

behaviour as in digestion of peptide mixture could be observed for the digestion of single 

peptide in terms of reduction of peak intensity at the beginning of the reaction and to be 

nearly constant throughout the reaction (data not shown). Moreover, no product peaks could 

be identified in the digestion of the single peptide. The neighbouring amino acids of the 

cleavage site, an acidic N-terminal aspartic acid residue and a bulky hydrophobic C-terminal 

valine residue, could be a potential reason inhibiting the tryptic cleavage of angiotensin II 

(Table 4.6). Despite of non-detectability of any cleavage products of these two peptides, 

however, the reasons for the decrease of signal intensities at the beginning of the reaction still 

remain unexplainable. 

To evaluate the validity of the experiment of multi-substrates digestion, parallel experiments 

using the established method using IS was performed. Using an IS with structure and 

molecular weight different from those of the analytes has been already shown for quantitative 

MALDI-analysis (Li and Gross, 2004). Therefore, Trp11-Neurotensin was used as IS for all 

five-peptides to monitor the enzymatic conversion of the peptide mixture. The peptides 
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followed a similar time-dependent tryptic digest as reported above without IS (Figure 4.15). 

The two peptides, ACTH (1-17) and neurotensin, were first cleaved and further slow 

reduction of the signal intensity of the peptide ACTH (18-39) could be observed. The signal 

intensities of angiotensin II as well as substance P were fairly constant throughout the entire 

reaction, which indicates again that these two peptides were obviously not cleaved by trypsin. 

However, the initial drop in the signal intensities for two peptides could be also observed in 

this experiment. Moreover, the fluctuation of the signals of these two peptides was even more 

pronounced compared to the situation without IS which is probably caused by the presence of 

an additional analyte (IS) that induces even more peak suppression. Hence this also 

contributes to the advantages of IS-free quantification. The same behaviour was also 

observed for the cleavage product peaks described in the absence of IS. 

As shown in Chapter 4.6.1, the slopes of the different peptides in the mixture depended on 

the molecular properties of the analytes and on the presence of other analytes. Further, caused 

by the formation of cleavage peptides as well as by different velocities of the reduction of the 

substrate amounts, the composition of the analyte mixture – and thus the problems related to 

peak suppression (Knochenmuss and Zenobi, 2003)- varies in an unpredictable way during 

enzymatic conversion. Therefore, for the monitoring of the enzymatic conversion of the 

peptide mixture, signal intensities rather than concentrations calculated from calibration 

curves are presented here. This hampers the determination of kinetic parameters, for example 

vmax or KM values, and therefore limits the method to semi-quantitative approach. 

Nevertheless, the differences in the evolution of the signal intensities are sufficient to identify 

good and bad substrates for an enzymatic conversion.  
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Figure 4.15: Monitoring of the tryptic digestion of five-peptides mixture using Trp11-Neurotensin as IS in the 
matrix CCA-DMAPA.  

 

4.6.3 Quantification of proteins without IS 

 

Quantification of proteins is an important aspect in proteomics studies. Mass spectrometric 

approaches based both on MALDI as well as on ESI, have been successfully used for the 

analysis of proteins in the complex biological mixtures. The main focus was on the 

identification of proteins or the investigation of their structural modifications. In recent years, 

the combination of MS with stable isotope labelling as IS has enhanced remarkably the 

application of mass spectrometry for quantification of proteins. Labelling of proteins by 

stable isotopes can be achieved either by introduction of the labels to specific amino acid 

using chemical derivatization (Munchbach et al., 2000; Sechi, 2002), or by in-vivo labeling 

using 15N-isotope enrichment incorporated into the protein during cell growth (Wang et al., 

2002). Therefore, to overcome the laborious job for labelling of the target protein, the 

capability of ILM for absolute quantification of proteins was examined at optimal M/A-ratios 

discussed earlier (Chapter 4.6). SA-DMED was applied as ILM for quantification of proteins. 

Individual calibration curves were obtained for four proteins, insulin (m/z 5720 Da), 

lysozyme (m/z 14300 Da), carbonic anhydrase (m/z 29000 Da) and BSA (m/z 66000 Da).  
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Figure 4.16: The calibration curves obtained for lysozyme (left, r2= 0.987) and BSA (right, r2=0.994). 250000 
pmol (on target) of matrix was applied with M/A-ratios of 250000-25000 for the measurement of lysozyme 
whereas the matrix amount was increased to 400000 (on target) for BSA measurement with M/A-ratios of 
200000-25000. The error bars represent the average measurements of 5 independent sample spots. Applied 
matrix: SA-DMED. 

 

As can be seen in Figure 4.16, a good linear correlation between the amount of the protein on 

the target and the peak intensity could be found at optimal M/A-ratio in ILM, indicated by r2-

values in the range of 0.974 (for carbonic anhydrase) to 0.994 (for BSA) (Table 4.7). The 

linear range was similar as elucidated for peptides, spanning a range between 1-8 pmol on 

target. For larger proteins (carbonic anhydrase, BSA) this range of linearity could be 

extended more up to 16 pmol on target when matrix amount was increased (400000 pmol on 

target). Additionally, the mean value of standard deviation (%) obtained from measurement 

of each individual protein was very low (e.g. 2.5 % for BSA) which expressed again the high 

sample homogeneity achievable using ILM (Table 4.7). 

 

Table 4.7: Detail features of calibration curves achieved for the four model proteins using SA-DMED as ILM. 

 
 

 
 
 

Protein R2 value Mean standard deviation (%) 
Insulin 0.98723 6% 

Lysozyme 0.98796 7% 
Carbonic anhydrase 0.97466 3% 

BSA 0.99473 2.5% 
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4.6.3.1  Monitoring of tryptic digest of BSA as model protein 

 

Quantification of proteins without the need for IS could be a valuable tool for the monitoring 

of enzymatic reactions using proteins as substrates. In this respect, the digestion of BSA by 

trypsin as a model enzymatic reaction was performed. The reduction of BSA concentration 

could be monitored versus time using ILM, SA-DMED (Figure 4.17). The concentration of 

the protein was calculated using the calibration curve depicted in Figure 4.16. As can be seen 

in Figure 4.17, no more protein was detected after seven minutes. It should be mentioned that 

the longer time for digestion is necessary because the kinetic data of Figure 4.17 does only 

show the disappearance of the BSA but not complete digestion.  

 

 

 

Figure 4.17: Tryptic digest of BSA (m/z 66000 Da) monitored versus time without using IS. The concentration 
of protein was calculated using the calibration curve shown in Figure 4.16. All measurement points represent 
averages of 5 independent measurements. Applied matrix: SA-DMED. 

 

The method presented here, therefore, can be used for fast screening of new proteases, or 

investigations on effect of new inhibitors on different proteolytic enzymes. Additionally, it 

can be used as a fast method for selection of proper substrate amongst of the mixture of 

substrates for a new proteolytic enzyme. In this regard, the problem of peak suppressions 

mentioned earlier (Chapter 4.6.2.2) for the mixture of substrates should be considered.  
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4.7 Pyridinium-based ionic liquid matrices for proteome analysis 
 

In recent years, MALDI-MS has drawn many attentions as a rapid analytical tool for the 

identification of proteins. Herein, a typical approach consists of tryptic digestion of protein 

and then measurements of peptide fragments (peptide mass fingerprint) obtained from 

digestion by MALDI-MS. Subsequently, the protein can be identified by comparing the 

observed mass fingerprint to the in-silico mass fingerprint of known proteins present in the 

databases. The key for successful protein identification is the improvement of measurement 

quality. The main criteria in this respect are high sensitivity and thus a low limit of detection, 

also expressed by high signal intensities or signal-to-noise ratios (S/N-ratios). 

The enhancement in signal intensities of peptides could be achieved by structural 

modifications of the peptides to increase the protonization efficiency, e.g. guanidination of 

lysine containing peptides (Brancia et al., 2000); or by alkylation of cysteine residues (Sechi 

and Chait, 1998). Another factor that can improve the sensitivity is the reduction of formation 

of metal ion adducts and matrix clusters. These signals and impurities can also contribute to a 

loss of sensitivity both by dispersion of signal intensities to several peaks as well as by peak 

suppression effects. Additionally, the interpretation of the spectra in the presence of these 

adducts are more complicated. In this respect, the sample preparation methods and the matrix 

applied for the measurement have been proven to have a great impact on spectra quality and 

in sensitivity. The desalting methods such as desalting and reconcentration on reversed-phase 

microcolumns (Courchesne and Patterson, 1997; Gobom et al., 1999), on-target washing 

procedures (Smirnov et al., 2004; Vorm et al., 1994), addition of nitrocellulose (Landry et al., 

2000) and macroporous polystyrene beads (Doucette et al., 2000) have been reported. The 

approaches based on addition of a co-matrix have been shown to be beneficial to the analysis 

of oligonucleotides, e.g. addition of sugars (Shahgholi et al., 2001), amines (Vandell and 

Limbach, 1999), and peptides, e.g. addition of monoammonium phosphate (Zhu and 

Papayannopoulos, 2003) or nitrocellulose (Kussmann et al., 1997). 

The goal of this part of work is to test the ability of ILMs for the improved analysis of protein 

digests. As described earlier (Chapter 4.4 and 4.3), ILMs induce the formation of Na/K-

adducts. However, ILM of pyridine (CCA-Py) showed comparable results to CCA 

concerning analyte signal intensity and adduct formation. Hence, in the present work 

measurement in the classical solid matrix CCA was compared with pyridinium based-CCA 

matrices.  
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4.7.1 Properties of the pyridinium-based ionic liquid matrices, analysis of 

model peptides and optimization of molar acid-base ratios 

 

Here, we compared the spectra of peptides measured in the classical solid matrix CCA with 

those measured in the ILM CCA-pyridine (CCA-Py). Furthermore, non-stoichiometric 

mixtures of CCA with pyridine were tested. Pyridine was used as matrix additive, with molar 

ratios of CCA-Py of 5:1, 2.5:1, 1.6:1, 1.25:1. A mixture of 5 synthetic peptides covering a 

mass range of 1000 m/z to 2500 m/z was used as analyte for the comparison of these matrix 

systems. All matrices tested here, CCA-Py (ILM) and non-stoichiometric CCA-Py mixtures, 

were stable under high vacuum conditions applied in MALDI-MS shown by leaving a 

MALDI target in the vacuum chamber of the mass spectrometer for 12 h. No significant 

changes in spectral quality were found. 

It was mentioned before (Chapter 4) that most of the ILMs formed a viscous layer on the 

target. An exception was the ionic liquid of pyridine, which tends to crystallize after 

evaporation of the solvent. This tendency in crystallization was observed in all non-

stoichiometric of CCA-Py mixtures as well. 

The mean standard deviations of 12%-21% obtained from signal intensities of the single 

peptides in an automated measurement of 5 independent sample spots indicated that the 

homogeneity of samples in pyridinium-based ILMs is not significantly improved in 

comparison to pure CCA. Nevertheless, the homogeneity of the samples was sufficient to 

allow a reliable comparison of S/N-ratios. The threshold laser energies necessary for the 

detection of the peptides did not vary significantly between pure CCA and the ILMs. 

 

The combination of CCA and Py in different molar ratios showed a strong influence on the 

S/N-ratios of the five peptides tested here (Figure 4.18). At ratios CCA-Py-2.5:1 and 1.6:1, 

the S/N-ratios of four peptides were increased up to 1.9 fold for substance P, 1.25 fold for 

neurotensin, 2.5 fold for ACTH (1-17) and 1.7 fold for ACTH (18-39) compared to CCA. In 

contrast to other peptides, angiotensin II showed a reduction S/N-ratio of 30% at CCA-Py-

1.6:1. At a ratio of CCA-Py-1:1 the S/N-ratios for the peptides angiotensin II, neurotensin 

and ACTH (18-39) were more decreased compared to CCA but were not significantly 

changed for substance P and ACTH (1-17). It should be mentioned that signal intensities of 

the peptides showed similar behaviour as shown for their S/N-ratios (Figure 4.18). 

Another influence of the presence of pyridine was observed on the formation of alkali 

adducts. As described earlier (Chapter 4.4), more intensive Na/K-adducts were observed in  
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Figure 4.18: S/N-ratios (left) and signal intensities (right) of 5 synthetic peptides in dependence on the 
composition of the matrix. Molar ratios are given for the pyridinium-based matrices (CCA:Py). Each data point 
represents an average value of 5 independent measurements. Amount of peptides on the target: (a): ACTH(18-
39) (0.7 pmol), (b) ACTH(1-17) (0.4 pmol), (c) neurotensin (1 pmol), (d) substance P (1.2 pmol), (e) 
angiotensin II (1.6 pmol). 

 

ILMs compared to corresponding solid matrices. However, the intensities of adducts depend 

on the acid/base combination of ILMs (Chapter 4.4). The alkali adduct formation in CCA-Py-

1:1 was not as strong as observed in other ILMs, yet it was more intense than in pure 

crystallized matrix CCA. Alkali-adduct formation was reduced or disappeared for all peptides 

at CCA-Py-2.5: 1 and 1.6:1 ratios. Adducts between the peptides and components of the ILM, 

e.g. CCA or Py, could not be detected. 

Improved sensitivity is important in achieving lower limits of detection. The presence of non-

stoichiometric amount of pyridine not only could increase the S/N-ratios of peptides, but also 

reduce the level of chemical noise in the spectra compared to measurement in pure CCA 

(Figure 4.19). Therefore, the enhancement of signal intensity along with lower chemical 
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noise background and the reduction or absence of the alkali adducts signals obtained using 

non-stoichiometric of CCA-Py can clearly improve the sensitivity of analysis (Figure 4.19). 

As a result, LOD is reduced in the non-stoichiometric pyridinium-based ILM compared to 

pure CCA. Since the highest S/N-ratios for the model peptides was obtained in the 

stoichiometric range of CCA-Py-2.5:1 and 1.6:1, therefore, CCA-Py-2:1 was chosen for 

further experiments. 

As shown in Figure 4.19, clear signals were identified for on-target amount of 2.5 fmol of 

substance P (S/N of 12) and for 1.4 fmol of ACTH (18-39) (S/N of 5) in the five peptide 

mixture using CCA-Py-2:1, whereas at this amount, no signal for these two peptides could be 

identified in CCA. These two peptides could be detected in CCA when 3.8 fmol and 2 fmol 

were applied for substance P and ACTH (18-39), respectively. Thus, a reduction of about 

35% could be achieved in the LOD for these two peptides. The peptide ACTH (1-17) could 

not be detected in CCA, whereas a well-resolved peak with a S/N-ratio of 8 could be obtained 

at on-target amount of 1.2 fmol in CCA-Py-2:1. The other two peptides, angiotensin II and 

neurotensin, were found in both matrix systems, however, their S/N-ratios were increased in 

CCA-Py-2:1 compared to CCA (Figure 4.19). 

For both matrices a gain in sensitivity by a factor of 2 was reached by the use of Anchor-

chip-targets. Note that the limits of detection reported in this study are relatively high, which 

is potentially caused by a significant loss of detection power due to aging of the detector used 

in this study. Nevertheless, in comparison with the S/N-ratio values obtained in pure CCA a 

significant improvement in the LOD can clearly be assigned for the non-stoichiometric 

pyridinium-based ILMs.  

All experiments performed at optimal CCA-Py-ratio of 2:1 were carried out in the positive 

ion mode where protonized ions could be detected. Further, the capability of this optimal 

matrix system (CCA-Py-2:1) was compared with CCA for the measurement of the five-

peptide mixture in the negative ion mode. The results were similar to those presented in the 

analysis of positive ion mode. Compared to CCA, the S/N-ratios of four peptides were 

increased in CCA-Py-2:1 in the range of 1.1-fold (for ACTH (18-39)) to 6-fold (for ACTH 

(1-17)). For the peptide angiotensin II a reduction of 10% was observed. 

Similar experiments as explained above for CCA were performed using SA, SA-Py (ILM) 

and non-stoichiometric amounts of pyridine with SA (pyridine as matrix additive, with molar 

ratios of SA-Py of 5:1, 2.5:1, 1.6:1, 1.25:1) for the analysis of the same five-peptides mixture 

as analyte. All matrix systems were stable in the high vacuum applied. The homogeneity of 

the samples was slightly reduced compared to CCA and did not differ much between the 
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Figure 4.19: MALDI-ToF spectra of a mixture of 5 synthetic peptides measured in CCA and CCA-Py-2:1 
(mol:mol).  
(a) Sample amounts: angiotensin II (1): 3.2 fmol, substance P (2): 2.5 fmol, neurotensin (3): 2 fmol, ACTH(1-
17) (4): 0.8 fmol, ACTH(18-39)(5): 1.4 fmol.  
(b) Sample amounts: angiotensin II (1): 4.8 fmol, substance P (2): 3.8 fmol, neurotensin (3): 3 fmol, ACTH(1-
17) (4): 1.2 fmol, ACTH(18-39)(5): 2 fmol.  
200 shots measured in positive ion mode were accumulated. Numbers in brackets denote the S/N-ratios. 
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SA and SA-Py-mixtures. However, it was enough for comparison of S/N-ratios of the 

analytes in different matrix systems of SA.  

When SA was used as matrix for the measurement, only ACTH (18-39) could be detected 

strongly followed by substance P. Other peptides in the mixture did not deliver considerable 

signal (Figure 4.20). However, all peptides showed significant enhancement in their S/N-

ratios in the presence of pyridine. For example, the S/N-ratios were increased, 3-fold for 

angiotensin II, 4-fold for substance P, 4.8-fold for neurotensin, 8.7-fold for ACTH (1-17) and 

1.9-fold for ACTH (18-39) in SA-Py-5:1 compared to SA. 

 

                   

                                                  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: S/N-ratios of 5 synthetic peptides in dependence on molar ratio of SA:Py as matrix. Each data 
point represents an average value of 5 independent measurements. Amount of the peptides on the target: (a): 
ACTH(18-39) (0.7 pmol), (b): ACTH(1-17) (0.4 pmol), (c): neurotensin (1 pmol), (d): substance P (1.2 pmol), 
(e): angiotensin II (1.6 pmol). 
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The S/N-ratio of ACTH (1-17) was even increased up to 30-fold at SA-Py-1.6:1 compared to 

SA (Figure 4.20). Thus, in contrast to CCA, no optimal SA-Py-ratio was found. Note that SA 

was introduced as a suitable matrix for analysis of proteins (Beavis and Chait, 1989) but is 

not recommended for peptide analysis. Nevertheless, the combination of SA with Py in this 

experiment indicated the clear influence of pyridine as a matrix additive on S/N-ratios of 

peptides as well. Potential applications could be measurements of peptides in the presence of 

proteins, e.g. for monitoring of protein digestion both on the level of the substrate (protein) as 

well as on the peptidic products. 

 

The reasons for the improved S/N-ratios and reduced alkali adduct formation in non-

stoichiometric amounts of pyridine are not yet clear. Pyridine does not absorb in the 

wavelength applied for this study (λ=337 nm), therefore, the presence of pyridine can not 

directly influence the efficiency of light absorption of these matrix systems. However, as also 

explained for the analysis of oligonucleotides with ammonium salts (Nordhoff et al., 1992; 

Zhu et al., 1996), it can be speculated that the presence of a non-stoichiometric amount of the 

base may lead to substitution of Na+/K+ ion by proton transfer mediated by the base. 

Additionally, the reduction of noise clearly contributes to explanation for the increase in S/N-

ratios of the peptides.  

 

4.7.2 Analysis of tryptic protein digests in pyridinium-based ILM 

 

The optimized molar CCA:Py-ratio of 2:1 found for the model peptides was applied for the 

analysis of the protein digests. Tryptic in-solution digests of 6 standard proteins in the range 

of 12 to 75 kDa were used (Table 4.8). Sample amounts of 30 or 100-fmol on-target were 

measured in two matrix systems, CCA as pure solid matrix and CCA-Py-2:1. The comparison 

of the measurement in these two matrix systems was performed in terms of identification of 

proteins in Mascot database-search, the number of peptides matched, the sequence coverage, 

the rank and the probability based MOWSE-score achieved (Padliya and Wood, 2004). 

Proteins were assigned as identified, if the MOWSE-score was above the significance level 

(75) provided by the MASCOT-search algorithm. For the analysis of data, monoisotopic 

peaks with S/N-ratios equal or higher than 5 were chosen. Note that the LOD was defined for 

the amount of analyte delivering signal with S/N-ratio higher than 3 (Tholey et al., 2002), but 
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it is common practice to take into account more intense signals especially in automated 

proteome analysis. 

Figure 4.21 shows the MALDI spectra of a tryptic digest of 30 fmol BSA measured in both 

matrices. The measurement in CCA delivered five signals. Although all these five signals 

were imputed to the protein in database search with sequence coverage of 7% (Table 4.8), but  

the MOWSE-score was 57, which is below the significance level (75). Thus the protein was 

clearly not identified by this experiment. However, when CCA-Py-2:1 was used for the 

measurement, three additional signals (m/z 1193.68, 1305.80, 2045.19) were also identified, 

which could all be matched to the target protein in the database search. The sequence 

coverage was 15%, which is satisfactory for a protein of this size (66 kDa).  

 

 
 
Figure 4.21: MALDI-ToF spectra of a tryptic digest of BSA (30 fmol) measured in (a) CCA, and (b) CCA-Py-
2:1 (mol:mol). 200 shots measured in positive ion mode were accumulated. Only signals with S/N-ratios higher 
than 5 were assigned. Numbers in brackets denote the S/N-ratios.  
 

The target protein was found on rank one with a MOWSE-score of 91, which is clearly above 

the threshold of confidence. As can be seen in Figure 4.21, the noise in the spectrum was 

significantly reduced in CCA-Py-2:1 compared to pure CCA which is consistent with the 

earlier observation for model peptides. The S/N-ratios of four of the peptides found in both 
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measurements (m/z 927.43, 1249.57, 1479.76, 1567.70) could be increased by factors of 1.4 

to 2.2 in CCA-Py-2:1 compared to CCA. The fifth peptide (m/z 1640.00) was stronger in 

CCA (factor 1.8).  

The differences in ionization properties of peptides in MALDI make a definition of LOD for 

a protein digest difficult. The measurement of 2.5 fmol of the tryptic BSA-digest delivered 

only 3 peptides (m/z 1479.72, 1567.65, 1639.86) in CCA, whereas 3 additional signals (m/z 

1193.7, 1249.73, 1305.82) could be detected in CCA-Py-2:1. The protein could not be 

identified in database search at this amount in both matrices, but a MOWSE-score of 68 (first 

rank) and sequence coverage of 11% could be obtained in CCA-Py-2:1, whereas it was not 

 

Table 4.8: Identification of tryptic protein digests by peptide mass fingerprint analysis in CCA and CCA-Py-2:1 
(mol/mol). Samples: 30 fmol digest. Only signals with S/N-ratios higher than 5 were counted. Details for 
database search as given in the material and method section (chapter 3). The significance threshold for 
MASCOT search was 75 in all cases, proteins were denoted as identified (i.), when the MOWSE-score was 
bigger than the significance threshold and as not identified (n.i.) when the MOWSE-score was equal or below 
threshold. 

 

 

peptides 

matched / 

non-matched 

rank / identified 

/ 

MOWSE-score 

sequence 

coverage (%) 

mass accuracy 

matched 

peptides 

(RMS-

error)(ppm) 

no. unique 

matched 

peptides 

no. unique non-

matched signals 

 CCA 
CCA-

Py-2:1 
CCA 

CCA-

Py-

2:1 

CCA 
CCA-

Py-2:1 
CCA 

CCA-

Py-2:1 
CCA 

CCA-

Py- 

2:1 

CCA 

CCA-

Py- 

2:1 

Lysozyme 3/0 6/0 
5/n.i./ 

51 

1/i./ 

98 
23 40 93 57  0 3 0 0 

Carbonic 

Anhydrase 
3/2 6/3 

9/n.i./ 

47 

1/n.i./ 

68 
23 38 139  60  0 3 2 3 

Lactate 

Dehydrogenase 
8/0 7/1 

2/i./ 

110 

1/i./ 

87 
22 19 16  44  2 1 0 1 

Alcohol 

Dehydrogenase 
4/0 6/0 

2/n.i./ 

54 

1/i./ 

81 
17 25 114  74  0 2 0 0 

BSA 

(30 fmol) 
5/0 8/0 

15/n.i./ 

57 

1/i./ 

91 
7 15 42  66  0 3 0 0 

BSA 

(2.5 fmol) 
3/0 6/0 - /n.i./ - 

1/n.i./ 

68 
- 11 - 86  0 3 0 0 

Glucose 

Oxidase 
8/1 8/3 1/i./ 79 

2/n.i./ 

73 
23 23 24  43  0 0 1 3 
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even observed in the list of MASCOT database search when CCA was used as matrix (Table 

4.8). 

The proteins lysozyme, alcohol dehydrogenase and carbonic anhydrase delivered similar 

results for which 3, 2 and 3, respectively, peptides were found uniquely in CCA-Py-2:1 

(Table 4.8). Two proteins, lysozyme and alcohol dehydrogenase, could be unambiguously 

identified in database search when CCA-Py-2:1 was used, but not in CCA (MOWSE-score of 

51 and 54, respectively). Carbonic anhydrase could not be identified in any of the matrices 

despite of having 3 unique peptides in CCA-Py-2:1, nevertheless, the sequence coverage was 

increased in CCA-Py-2:1 (38%) compared to CCA (23%). For glucose oxidase, the same 

number of peptides was found in both matrices; however, it could be identified in CCA and 

not in CCA-Py-2:1 because of a MOWSE-score just below the significance threshold. In the 

digest of lactate dehydrogenase, two unique peptides were found in CCA, but only one 

unique peptide in CCA-Py-2:1. Even so, the protein could be identified in both matrix 

systems. In the measurement of 30 fmol protein digests, 12 matching peptides were uniquely 

found in CCAPy-2:1 whereas only 2 peptides could be uniquely found in CCA from analysis 

of all 6 proteins (Figure 4.22). Moreover, for the majority of the peptides found in both 

matrices, the S/N-ratios were increased in CCA-Py-2:1 (Figure 4.23). 

In case of glucose oxidase, carbonic anhydrase and lactate dehydrogenase, additional peaks 

were observed in the matrix CCA-Py-2:1, which could not be assigned to the proteins. Some 

of these signals (m/z 1218.65 in glucose oxidase, m/z 1496.98 and 2218.41 in carbonic 

anhydrase) were found in both matrices. Other signals with S/N-ratios just above the S/N-

threshold were found only in CCA-Py-2:1 (e.g. m/z 2112.19 in lactate dehydrogenase) but 

were also observable with smaller S/N-ratios in CCA. The appearance of such extra peaks 

can potentially cause wrong identification or non-identification of target protein in database 

search as can be seen here for the two proteins, carbonic anhydrase and glucose oxidase. 

In second series of the experiments, 100 fmol (on target) of the proteins digests were 

measured in CCA and CCA-Py-2:1 (data not shown). The analysis of proteins digests in this 

amount delivered higher numbers of matched peptides compared to 30 fmol measurements, 

thus leading to increased MOWSE-scores and facilitated protein identification in database 

search. Although all proteins could be identified in database search for both matrix systems, 

higher percentage of sequence coverage with increased numbers of unique peptides could be 

achieved in CCA-Py-2:1 compared to CCA.  

Figure 4.23 shows the comparison of the S/N-ratios of the peptides found in both matrices for 

both measurements of 30 as well as 100 fmol samples. In the measurement of 30 fmol 
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samples, two unique peptides found in CCA were in the lower mass range (m/z 929.58 and 

m/z 1118.6) and the unique peptides found in CCA-Py-2:1 were all at higher m/z values 

(Figure 4.22). However, no clear correlation could be found between m/z value and the 

tendency of the peptides to form stronger signals in CCA-Py-2:1. Further, the distribution of 

the peptides with higher S/N-ratios was uniformly distributed over the m/z range investigated 

(Figure 4.23). The S/N-ratios of 40% (in the measurement of 30 fmol protein) and 42 % (in 

the measurement of 100 fmol protein) of the peptides found in both matrices were increased 

up to 9-fold in the CCA-Py-2:1. For further 40 % of the peptides, the S/N-ratios were 

increased with factors up to 2, whereas about 20% of the peptides showed up to two fold 

higher S/N-ratios in CCA. 

 

 

Figure 4.22: S/N-ratios in dependence of m/z-values of peptides assigned to the proteins found only in CCA 
(down bars) or CCA-Py-2:1 (mol:mol) (up bars) in tryptic digests (30 fmol) of 6 model proteins. Only signals 
with S/N-ratios higher than 5 were assigned. 200 shots measured in positive ion mode were accumulated. 

Figure 4.23: Ratios of S/N-ratios (logarithmic scale) of peptides in dependence of m/z-values measured in 
CCA-Py-2:1 (mol/mol) and CCA in tryptic digests of 6 proteins. Squares: 30 fmol, circles: 100 fmol digests. 
Total number of peptides: 97. Only signals with S/N-ratios higher than 5 were assigned. 200 shots measured in 
positive ion mode were accumulated. Dashed lines: ratios differed by a factor of 2.  
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Only one out of 97 peptides measured in both concentrations showed a 2.5-fold higher S/N-

ratio in CCA compared to the measurement in the presence of pyridine.  

Similar to the analysis of 30 fmol protein digests, the number of non-assigned signals was 

also increased in measurement of 100 fmol sample especially in the pyridinium-based ILMs. 

Some of these additional signals were observed in more than one digest (e.g. m/z 1066.22, 

1084.77, 2093.16), others (e.g. m/z 1024.44, 1152.54, 1817.85, 1973.95, 2526.25) occurred 

only in single digest (here only the most intensive signals with S/N-ratios bigger than 10 were 

listed). It should be mentioned here that adducts between the analytes and compounds of the 

matrix (e.g. with pyridine) could not be observed. Therefore, the origin of these peaks is still 

unknown. However, one reason for the occurrence of these additional signals could be the 

presence of impurities or contaminations in the proteins. Furthermore, non-specific cleavage 

products (Konig et al., 2001) or transpeptidation products (Schaefer et al., 2005) can be also 

observed as by-products during tryptic cleavage of proteins. Potentially, small amounts of 

such impurities are detectable in CCA-Py-2:1 due to increased sensitivity of this matrix. For 

the elucidation of the origin of these additional signals, further experiments, e.g. MS/MS 

experiments, would be necessary. 

The matrix clusters of CCA often appear in the MALDI spectra. The composition of these 

clusters consists of a certain number of CCA molecules with Na/K ions. It was described 

earlier, that washing of the MALDI samples with ammonium salts strongly reduces the 

formation of matrix clusters, which are mainly formed on the surface of the crystals (Smirnov 

et al., 2004). This procedure, however, did not significantly influence the formation of Na/K-

adducts. By the addition of small amounts of ammonium salts to the matrix itself, a strong 

increase of S/N-ratios and thus of the spectrum quality could be reached (Smirnov et al., 

2004). In our study, adducts with m/z values of 833.09 ([4M+2K-H]+), 855.07 ([4M+Na+2K-

2H]+), 871.04 ([4M+3K-2H]+) and 1060.09 ([5M+3K-2H]+) have been observed especially in 

the measurement of the protein digests in CCA, whereas these matrix clusters were almost 

completely absent in CCA-Py-2:1. Therefore, the addition of non-stoichiometric amounts of 

pyridine leads to comparable effects without the need for additional washing steps. 

Nevertheless, the presence of the matrix additive cannot explain the reduction of matrix-

cluster formation. Further experiments for the elucidation of the theoretical background will 

be necessary but are beyond the scope of this work. It should be mentioned here that a strong 

cluster formation was shown for measurements applying a laser with a wavelength of 355 nm 

(Smirnov et al., 2004). The reduction of cluster formation in pyridinium-based ILMs 
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observed here, contributes to the improved spectral quality and hence further facilitated 

identification of proteins. 

The average errors of the m/z values of the matched peptides (expressed by the rms errors, 

Table 4.8) were influenced by the choice of the matrix. In three digests (lysozyme, carbonic 

anhydrase and alcohol dehydrogenase) this error was reduced by a factor up to 2 (Table 4.8). 

Thus, for the database search a mass tolerance of 100 ppm rather than the 200 ppm applied 

here for the comparison delivered the same results for protein identification in CCA-Py-2:1, 

whereas in CCA 4 of the 6 proteins could not be identified with this reduced mass tolerance. 

The errors in mass accuracy were particularly reduced for peptides with low S/N-ratios but 

were not significantly influenced for intensive signals. This is certainly caused by the fact 

that the peak shape of signals with low intensities frequently differs from the expected 

Gaussian-shape. Therefore the assignment of the (exact) mass of such peaks is more difficult 

than for ideally shaped peaks. Further, for small peaks the FWHM values determining the 

resolution of peaks were worse than for intensive peaks. On the other hand, the peak shapes, 

mass accuracy and resolution were not changed by the presence of pyridine, when higher 

concentrations of the analytes yielding intense signals were measured. As a consequence of 

the improved S/N-ratios and hence the more ideal peak forms in CCA-Py-2:1, the assignment 

of the masses and hence the mass accuracy and resolution achieved were improved, which 

clearly facilitates the analysis of spectra.  

The results described above were accompanied with dilution of the digest samples prior to 

measurement. This dilution step not only dilutes the analytes but also potential impurities 

(e.g. salts, detergents). Therefore, to investigate the performance of the pyridinium-based 

ILM for non-diluted samples containing e.g. buffers and denaturing reagents which are 

necessary for the digestion of the protein, the digest of diluted BSA (final on-target amount: 

30 fmol) was measured without any dilution or desalting steps. The results achieved were 

absolutely comparable to those obtained with the diluted samples. Only 6 peptides were 

observed in CCA, which did not allow the unambiguous identification of the protein 

(MOWSE-score 67). In CCA-Py-2:1, 7 peptides with a sequence coverage of 14% (MOWSE-

score 79) were found. In accordance to the results described for the diluted samples, alkali-

adducts signals, matrix clusters and chemical noise background were strongly reduced in the 

ILM. 

A general strategy for the identification of the proteins obtained from a complex proteome 

samples is the separation of proteins mixture by one- or two-dimensional (1D or 2D) gel 

electrophoresis followed by digestion of the protein bands excided from the gel. The digests 
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are then subject of mass spectrometry based fingerprint analysis. Thus, to verify the 

capability of pyridinium-based ILM in this respect, the tryptic in-gel digestions of two model 

proteins (BSA and lysozyme) separated by 1D- gel electrophoresis was analysed in CCA and 

CCA-Py-2:1. The results obtained in this experiment did not differ from the earlier results 

described for the in-solution digestions of the proteins (data not shown). Moreover, the 

applicability of this matrix system was examined in a real-life proteomic experiment. Herein, 

the tryptic in-gel digestion of the protein (fructose-bisphosphate aldolase) excised from a 

coomassie-stained 2D-gel of the cytosolic proteome of C. glutamicum was performed. Figure 

4.24 shows the corresponding MALDI-MS spectra measured in CCA and CCA-Py-2:1. 

Compared to measurement in CCA, the signal intensities and S/N-ratios of the peptides 

obtained from the tryptic cleavage were remarkably increased in CCA-Py-2:1 (e.g. S/N-ratio 

of the signal m/z 1607.76: 146 for CCA-Py-2:1, 50 for CCA). Sixteen signals could be 

identified in CCA, of which nine signals could be matched to the target protein with an 

average error of 148 ppm. Despite of gaining 44% sequence coverage in database search, the 

MOWSE-score (67) achieved was too low for unambiguous identification of the protein. In 

the measurement in CCA-Py-2:1, thirteen signals of the twenty five detected signals could be 

assigned to the target protein with an average rms error of 93 ppm. This led to a sequence 

coverage of 59% and a MOWSE-score of 89. Thus the protein could be identified 

unambiguously. In both measurements, a number of non-identified peaks could be also 

detected. All these signals (with the exception of a signal at m/z 1804.54 in CCA-Py-2:1) 

could be found in both matrices. Note that the four additionally non-identified peaks observed 

in CCA-Py-2:1 could be found in CCA, too, but were below the S/N-threshold of 5.  

To check the compatibility of the pyridinium-based ILM with frequently used sample 

preparation methods, the measurement of the sample washed with 0.1% TFA solution was 

compared with the measurement in CCA-Py-2:1. The resulted measurement spectra did not 

change significantly between the two matrix systems (data not shown).  

Moreover, solutions of ILMs in acetonitrile/water can be used for the elution of peptides from 

hydrophobic microcolumns used for desalting of the digest (Zip-Tip-preparation) and then 

directly applied for MALDI analysis. 
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Figure 4.24: MALDI-TOF spectra of a tryptic in-gel digest of the protein fructose-bisphosphate aldolase 
excised from a coomassie-stained 2D-gel of the cytosolic proteome of the bacterium C. glutamicum measured in 
(a) CCA, and (b) CCA-Py-2:1 (mol:mol). *: peaks assigned to the target protein. T: peptide derived from trypsin 
autoproteolysis. Signal at m/z 821.13 (CCA) 832.21 (CCA-Py-2:1): potential deamidation product of the peptide 
IDGEVGNK. The signal was not used for protein identification in database search, because the mass deviation 
to the theoretical value was above 200 ppm in both spectra. 
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5 MALDI-MS for Analysis of Ionic Liquids (ILs)                   

Containing Samples 
 

Despite of wide applications of mass spectrometric methods for structural determination, it 

has not been very intensively used for characterization of ILs. Use of FAB (fast atom 

bombardment) mass spectrometry was the earliest attempt for characterization and 

identification of ILs (Abdul-Sada et al., 1992). Recently, electrospray ionization (ESI) mass 

spectrometry has also been used for identification of ILs as well as determination of their 

solubility in water (Alfassi et al., 2003). 

In this report, the characterization of ILs was performed using MALDI-MS. The 

investigations were carried in two different modes i) laser desorption/ionizaion (LDI) mode 

to check whether diluted ILs can be analyzed directly and ii) MALDI mode after addition of 

solid matrices. However, simultaneous identification of both the cation [Cat]+ and anion [An]- 

was difficult, because only monomeric ions were produced. Hence, separate experiments in 

positive ion mode for cations and in negative ion mode for anions were performed for both 

LDI as well as MALDI modes.  

The analysis of LMW compounds (below 500 Da) is a prerequisite for the determination of 

enzyme activities or the analysis of chemical reactions in ILs. A number of methods are 

available for this purpose, but they suffer from several restrictions as described in the 

introduction (Chapter 2). Mass spectrometry may be an additional tool circumventing many 

of these problems. In this regard, application of MALDI-MS for the analysis LMW 

compounds dissolved in ILs is shown. Moreover, the analysis of peptides and proteins 

dissolved in ILs is discussed to investigate the possible chemical modifications of peptides 

and proteins in the presence of ILs. 

 

5.1 Characterization of ILs 
 

5.1.1 LDI-mode analysis   

 

All the ILs selected for this study (Table 5.1) consists an imidazole ring (1-butyl-3-methyl-

imidazolium (BMIM)). Therefore, they all show the same mass ions in the positive ion mode 

except 1,3-dimethyl-imidazolium (MMIM). In the positive ion mode, BMIM showed a strong 

signal at m/z=139 for [Cat]+ (Table 5.1). Additionally, the signal at m/z = 83 caused by loss 
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of the butyl group was also observed (Figure 5.1). IL of MMIM gave only a strong peak 

signal at m/z=97 for [Cat]+. Loss of methyl groups was not observed at both imidazolium 

cations. They did not show any [M+Na]+ and [M+K]+-adducts. Due to having different anion 

[An]- groups in the ILs, different mass ions could be observed in the negative ion mode 

analysis. IL of [OctSO4] gave a strong [An]--signal (m/z=209) and a weak fragment signal of 

[SO4]- at m/z=96. The [An]--peak of the [(CF3SO2)2N] IL was observed at m/z=280. 

Additionally, the fragments in the form of [M-CF3]- at m/z=211 and [M- CF3SO2]-at m/z=147 

were identified (Figure 5.1). IL of [PF6] showed the mass ion of [An]- at m/z=145 and [BF4] 

IL produced a [An]--peak at m/z=87. The weak [An]- of [(CH3)2PO4] appeared at m/z=125 

(Table 5.1). It was found that higher laser energy was necessary for the detection of ILs due 

to their comparably low absorption coefficient at the laser wavelength (337 nm) applied.  

 

Table 5.1: Properties of the ILs and signals in laser desorption ionization (LDI)-MS. 

 
a = [Cat-Butyl]+, b = [Cat]+, c = [An]-, d = [SO4]-, e = [An-CF3]-, f = [An-CF3SO2]-, *: not identified. [BF4]- 
shows two peaks for [An]-, caused by the isotope distribution of boron. Cat: cation of IL, An: anion of the IL. 
Only signals with S/N-ratios higher than 5 were accepted. Bold: most intensive signals. 

 

5.1.2 MALDI-mode analysis 

 

Analysis of ILs with assistance of solid matrices, DHB, CCA and SA was performed in both 

positive and negative ion mode at a final molar IL:matrix ratio of 1:10 (Table 5.2). The 

obtained MALDI-spectra either in positive or negative ion mode contained same signals of 

ILs and their fragments found in LDI analysis. Moreover, some additional signals originated  

Ionic Liquids 

state of 

aggregation at 

25°C 

water 

miscibility 

ε337 (methanol) 

[L*mol-1*cm-1] 

positive 

ion mode 

negative 

ion mode 

[BMIM][OctSO4] liquid miscible 0.71 83a, 139b, 209c, 96d 

[BMIM][BF4] liquid miscible 0.15 83a, 139b 
86/87c, 

280* 

[MMIM][(CH3)2PO4] liquid miscible 0.224 97b 125c 

[BMIM][PF6] liquid immiscible 0.315 83a, 139b 145c 

[BMIM][(CF3SO2)2N] liquid immiscible 0.5 83a, 139b 
280c, 211e, 

147f 
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Figure 5.1: (a) [BMIM][PF6] in positive ion mode measured by LDI- (top) and MALDI (bottom) using DHB as 
matrix. (b) [BMIM][(CF3SO2)2N] in negative ion mode measured by LDI- (top) and MALDI (bottom) using 
CCA as matrix. [Cat]+: signal of IL cation. [An]-: signal of the IL anion. For all spectra, 200 shots were 
accumulated. A molar IL/matrix-ratio of 1:10 was applied in case of MALDI measurements. *: peaks from 
DHB and CCA, respectively.  
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from or induced by matrix substances were also observed as following: 

Matrix molecules: The [M+H]+ and [M-H]- signals of matrix molecules could be detected in 

the presence of ILs (Figure 5.1). However, the signal intensities were not very strong 

compared to the signals of the [Cat]+ of IL in positive ion mode or the [An]- of IL in negative 

ion mode analyses, despite of 10-fold molar excess of matrix molecules to the ILs. Such 

suppression of matrix signals is typically observed at lower matrix-to-analyte ratios (Chan et 

al., 1992; Knochenmuss et al., 1996). Additionally, the Na/K-adducts typically found for pure 

matrix substances, disappeared in the presence of ILs in the positive ion mode (Table 5.2) 

(Figure 5.1). 

IL molecules: In addition to the [Cat]+-signals of ILs found in LDI mode, [Cat + H]•+-signals 

were also observed in the positive ion mode of MALDI analysis. This signal was more 

intensive in CCA or DHB and weak in the case of SA. 

Formation of aggregates: Another group of signals found only in MALDI-MS, were 

identified as aggregates between [Cat]+ and [An]- of the ILs (Table 5.2). In the positive ion 

mode, the signals of these aggregates were more intense when DHB or CCA were used as 

matrices compared to the analysis in SA. For the ILs investigated here, aggregate ions of two 

IL-cations and one IL-anion, e.g. [2BMIM+PF6]+ were detected (Figure 5.1). No aggregate 

ion was detected for the IL [BMIM][BF4] in SA. Moreover, some weak signals obtained from 

aggregates between IL-cations and the MALDI-matrices CCA and DHB, e.g. 

[2BMIM+CCA]+, could be observed, whereas no adducts were found between IL-cations and 

SA. In the negative ion mode, aggregate formation between two IL-anions and a single 

sodium ion were found, e.g. [2PF6+Na]-. In the case of the IL [BMIM][PF6], aggregates of 

two IL-anions and one IL-cation ([2PF6+BMIM]-) were observed either with high (DHB or 

CCA) or with low intensity (SA). The IL-anion [BF4]- formed only weak aggregates in DHB 

and CCA, whereas none were observed in SA. In case of the IL [MMIM][(CH3)2PO4], no 

aggregate formation could be observed in negative ion mode.  

 

5.2 Analysis of small molecules dissolved in ILs 
 

ILs have been already tested for their applicability as MALDI-matrices for the analysis of 

peptides and proteins (Armstrong et al., 2001). It was found that ILs are not suitable to be 

used as matrix. However, since ILs could be analysed without assistance of matrix molecules 

(previous chapter), therefore, they were tested for their potential use as MALDI-matrices for  
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Table 5.2: Signals of ILs and MALDI-matrices in MALDI-MS: positive ion mode (top) and negative ion mode 
(bottom) 

 

 
 

 
 
Table top: a = [BMIM-Butyl]+, b = [BMIM]+, c = [BMIM+H]•+, d = [M-CN+H]+, e = [M-H2O+H]+, f = 
[M+H]+, g = [2M+H]+, h = [2Cat+An]+, i = [2Cat+M]+, j = [M]+, k = [MMIM]+, l = [MMIM+H]•+, * Not 
identified. 
Table bottom:. a = [PF6]-, b = [M-COOH]-, c = [M-H]-, d = [M]-, e = [2An+Na]-, f = [2M-H]-, g = [OctSO4]-, h = 
[BF4]-, i = [(CF3SO2)2N]-, j = [(CH3)2PO4]-, k = [2An+Cat]-, * Not identified. 
 M denotes signals occurring from solid matrices. Cat: cation of IL, An: anion of IL. Only signals with S/N-
ratios higher than 5 were accepted. Bold: most intensive signals of the ILs. 
 

 

 

Ionic Liquid CCA DHB SA 

[BMIM][OctSO4] 
83a, 139b, 140c, 164d, 172e, 

190f, 379g, 466i, 487h 
83a, 139b, 140c, 137e, 154j, 

155f, 431i, 487h 
83a, 139b, 140c, 207e, 

224j, 225f, 487h 

[BMIM][BF4] 
83a, 139b, 140c, 164d, 172e, 

190f, 379g, 365h, 466i 
83a, 139b, 140c, 154j, 155f, 

365h, 431i 
83a, 139b, 140c, 207e, 

224j, 225f 

[MMIM][(CH3)2PO4] 
97k, 98l, 111*, 164d, 172e, 

190f, 379g, 319h, 382i 
97k, 98l, 154j, 155f, 319h, 

347i 
97k, 98l, 207e, 224j, 

225f, 319h 

[BMIM][PF6] 
83a, 139b, 140c, 164d, 172e, 

190f, 379g, 423h, 466i 
83a, 139b, 140c, 137e, 154j, 

155f, 423h, 431i 
83a, 139b, 140c, 207e, 

224j, 225f, 423h 

[BMIM][(CF3SO2)2N] 83a, 139b, 140c, 164d, 172e, 
190f, 379g, 466i, 558h 

83a, 139b, 140c, 137e, 154j, 
155f, 431i, 558h 

83a, 139b, 140c, 207e, 
224j, 225f, 558h 

Ionic Liquid CCA DHB SA 

[BMIM][OctSO4] 
209g, 144b, 188c, 189d, 

441e 
209g, 153c, 154d, 307f, 

441e 209g, 223c, 224d, 447f, 441e 

[BMIM][BF4] 
86/87h, 144b, 188c, 189d, 

197e 
86/87h, 153c, 154d, 307f, 

197e 86/87h, 223c, 224d, 447f 

[MMIM][(CH3)2PO4] 
125j, 144b, 152*, 188c, 

189d 152*, 153c, 154d, 307f 125j, 152*, 223c, 224d, 447f 

[BMIM][PF6] 
145a, 144b, 188c, 189d, 

313e, 429k 
145a, 153c, 154d, 307f, 

313e, 429k 
145a, 223c, 224d, , 313e, 

429k, 447f 

[BMIM][(CF3SO2)2N] 280i, 144b, 188c, 189d, 
583e 

280i, 153c, 154d, 307f, 
583e 280i, 223c, 224d, 447f, 583e 
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the analysis of amino acids. Similar to proteins and peptides, ILs were not able to ionize 

amino acids. Even aromatic amino acids such as tryptophan, which can be analyzed in LDI-

MS (Karas et al., 1985), did not deliver signals in the presence of a molar excess of ILs 

(molar IL:tryptophan-ratio = 100). Weak [M+H]+- ions of the amino acid could be detected in 

a mixture with an excess of analyte compared to IL (molar IL:tryptophan ratio = 0.1). 

Since ILs were not suited to ionize amino acids, the analysis of amino acids in the presence of 

ILs was performed after addition of the solid matrices DHB, CCA and SA. Although amino 

acid signals could be observed in this condition, however, the appearance of the analyte 

signals depended on the nature of the ILs (Table 5.3). Amino acid signals could be observed 

only in the water-immiscible ILs [BMIM][PF6] and [BMIM][(CF3SO2)2N] and not in the 

presence of the water-miscible ILs [BMIM][OctSO4], [BMIM][BF4] and 

[MMIM][(CH3)2PO4]. The matrix-to-analyte (M/A)-ratio is important for MALDI analysis 

(Wang et al., 1993). Despite of applying different molar IL:matrix:analyte ratios, amino acids 

remained undetectable in water-miscible IL. Even changes in amount of analyte on the target 

could not improve the measurement of amino acids in the presence of water-miscible ILs. For 

the measurement of LMW analytes, an optimal molar M/A-ratio in the range 10:1-100:1 was 

found (Kang et al., 2000). Optimal molar M/A-ratios for the analysis of amino acids in the 

presence of IL were found to be about 55:1-60:1, but analysis was possible in a range 

between 30:1 and 125:1. Peak widths (FWHM) of LMW analytes were not significantly 

changed compared to classical MALDI measurements. 

ILs delivered a liquid film on the target when prepared for LDI analysis. Mixture of ILs with 

solid matrices followed the same crystallization behavior generally observed in pure solid 

matrixes on the target after evaporation of solvent. However, the crystal size of DHB was 

smaller in the mixture of IL-DHB compared to pure DHB. The presence of the ILs resulted in 

increased hot spot formation even when the otherwise relatively homogeneous matrix CCA 

was used and that is why more time and more number of shots was needed for analysis. The 

reasons for this behavior are not known.  

Typically, higher laser energy was required for the detection of analyte in the presence of IL 

compared to pure solid matrices (~10% based on laser attenuation values). Despite of using 

higher laser energy the relative analyte ion intensities were lower than without IL. The high 

laser energy leads to a broadening of the signals of the components of the IL in some cases 

(Figure 5.2). 

In accordance with the results observed for the matrix signals, Na/K-adducts were not 

observed for any of the LMW compounds tested here (Table 5.3) and they were only detected  
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as protonized ions. Hence, this hinders the analysis of sugars, since they are best detected as 

Na or K-adduct ions due to their low basicity. In fact, we could show that unmodified sugars 

cannot be analyzed under these conditions. In contrast, analysis of modified sugar derivatives 

like N-acetylglucosamine and D-gluconic acid, which can form protonated or deprotonated 

ions, was possible under the same conditions as applied for the amino acids (Table 5.3). The 

LOD for alanine in the system [BMIM][PF6]/CCA was found to be 10-14 mol which is 

comparable to the values found earlier for the analysis in solid matrices (Tholey et al., 2002). 

 

Table 5.3: Analysis of amino acids and sugars in ILs using solid matrices DHB, CCA and SA. Signal intensities 
(arbitrary units, measured at laser energies just above threshold) of [M+H]+ of the analytes after accumulation of 
200 shots: + : below 2000; + + : between 2000-5000; + + +: >5000; n.d.: not detected. *: measured in negative 
ion mode ([M-H]-).  

 

 

 

 

 

 
[BMIM] 

[OctSO4] 

[BMIM]

[BF4] 

[MMIM] 

[(CH3)2PO4] 

[BMIM]

[PF6] 

[BMIM] 

[(CF3SO2)2N] 
Matrix 

Glutamic acid n.d. n.d. n.d. + + + + + CCA 

Arginine n.d. n.d. n.d. + + + + + + CCA 

Serine n.d. n.d. n.d. + + + + + CCA 

Tyrosine n.d. n.d. n.d. + + CCA 

Phenylalanine n.d. n.d. n.d. + + + + CCA 

Alanine n.d. n.d. n.d. + + + + + CCA 

Phenylglycine n.d. n.d. n.d. + + CCA 

F-Phenylglycine n.d. n.d. n.d. + + CCA 

Fructose n.d. n.d. n.d. n.d. n.d. CCA, DHB 

N-Acetyl-D-glucoseamine n.d. n.d. n.d. + + DHB 

D-Gluconic acid* n.d. n.d. n.d. + + + + + + SA 
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Figure 5.2: The positive ion mode MALDI-spectrum for a mixture of alanine, 1-13C-alanine and IL 
[BMIM][PF6] with CCA as matrix at molar IL:analyte ratio of 100:1 for quantification of alanine shown in 
figure 5.2. 200 shots were collected. The peak broadening of the IL signal (m/z 139) can be seen clearly (the 
insert shows a detailed view of the broadened signal of IL [Cat]+). [Cat]+: signals of IL cation, A: alanine, A*: 1-
13C-alanine, *: peaks from matrix CCA. 

 

5.2.1 Quantification of low molecular weight compounds in IL 

 

Homogeneity of samples is a major issue in quantitative analysis by MALDI-MS. As was 

discussed before (Chapter 4.3.1), the sample inhomogeneity could induce prolongation of 

analysis times and unsatisfactory standard deviations. However, despite of the inhomogeneity 

of the samples in the presence of ILs described above, quantitative analysis of alanine using 

1-13C-alanine as labeled internal standard could be performed in the system 

[BMIM][PF6]/CCA. A linear calibration curve (r2= 0.987, mean standard deviation =11.5%) 

was obtained when a dilution series with different molar ratios of analyte to internal standard 

was applied (Figure 5.3). Due to inhomogeneous sample preparation in the presence of ILs 

quality of the calibration curve is not as good as that obtained using solid matrices (Kang et 

al., 2001). In contrast to an earlier report that automated analysis protocols could deliver most 

reliable results in the shortest time for quantitative MALDI analysis (Kang et al., 2001), it 

was not possible to use such a protocol for quantification in the presence of IL here. The 

reasons for this problem were peak broadening of the IL signals and increase of the baseline 

due to the need for elevated laser energy (Figure 5.2). This problem could not be overcome 
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by the data acquisition and analysis software used here. Therefore a manual analysis protocol 

was applied for the analysis. Despite of these limitations, quantitation of analytes dissolved in 

ILs can be performed relatively easy and fast if ISs are used. As will be shown later (Chapter 

5.4), quantitative monitoring of the enzyme-catalyzed reaction performed in ILs will be 

possible using this manual protocol. 

 

Figure 5.3: Relative quantitation of alanine using 1-13C-alanine as IS in the system [BMIM][PF6]/CCA at a 
molar IL:analyte (IL:A) ratio of 100:1. The molar M/(A+IS)-ratio was 50. Mean values of 5 spots per ratio were 
measured manually; 200 shots per spot were accumulated. I: peak intensities of analyte and internal standard; C: 
concentration of analyte and internal standard. r2: 0.987, mean standard deviation: 11.5%, intercept: 0.33. 

 

5.3 Analysis of peptides and proteins in IL 
 

The analysis of 5- to 22-mer peptides in the mass range between 556 and 2465 Da in the 

presence of ILs was tested after addition of CCA. The more intense signals of all peptides 

could be observed in the presence of water-immiscible ILs [BMIM][(CF3SO2)2N] and 

[BMIM][PF6] (Table 5.4). In the water-miscible ILs [BMIM][BF4] and [MMIM][(CH3)2PO4] 

only peaks with low intensities or even no signals (Leu-encephalin) were observed. Peptides 

did not deliver any signals in the presence of [BMIM][OctSO4]. Only [M+H]+ signals could 

be detected for all the peptides. Similar to the results observed for the analysis of amino 

acids, no Na/K-adducts could be found in the presence of ILs for the the peptides investigated 

here (Figure 5.4). Sample homogeneity was slightly reduced compared to classical MALDI 

preparations as described above for the amino acids. The LOD for peptides was about 9*10-14 

mol. Peak widths (FWHM) of the signals were again not changed 
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Figure 5.4: MALDI spectra of angiotensin II in CCA (a) in the presence of [BMIM][(CF3SO2)2N] (FWHM: 
0.15) and (b) without IL (FWHM: 0.13). 200 shots were accumulated in both cases. 

 

significantly compared to measurement without ILs (Figure 5.4). 

SA was used as matrix for the analysis of proteins dissolved in ILs. In contrast to amino acids 

and peptides, protein signals could be detected when dissolved both in water-miscible as well 

as water-immiscible ILs. However, their signals were more intensive in the water-miscible 

ILs. For all proteins, signals were observed in the water-miscible ILs [BMIM][BF4] and in 

[MMIM][(CH3)2PO4] (Table 5.4), whereas in [BMIM][OctSO4] only signals for insulin and 

cytochrome C could be detected. Amongst the water-immiscible ILs, [BMIM][PF6] gave 

signals for insulin and cytochrome C and a weak but still readily detectable signal for BSA, 

whereas in the presence of [BMIM][(CF3SO2)2N] only insulin gave a signal. In addition to 

singly charged signals doubly charged signals could be also detected for proteins. In the 

presence of IL, the signals of the bigger proteins (BSA) were broader and less intense 

compared to analysis without IL. In case of [BMIM][BF4], [BF4]-adducts could be observed 

for lysozyme (Figure 5.5). Anion-protein adducts have been observed before when anions of 

low basicity and high coordination affinity to protonated sites were present (Kruger and 

Karas, 2002; Salih and Zenobi, 1998). Adducts of cations or other anions of the ILs were not 

observed. The LOD for Cytochrome C in [BMIM][BF4]/SA was found to be 8*10-15 mol. The  
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Table 5.4: Analysis of peptides and proteins in ILs. Signal intensities (arbitrary units, measured at laser energies 
just above threshold) of [M+H]+ of the analytes after accumulation of 200 shots: +: below 2000; + +: 2000 – 
5000; + + +: 5000 -10000; + + + +: >10.000; n.d.: not detected. 

 
 

 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

results acquired from the analysis of amino acids, peptides and proteins dissolved in ILs 

showed a likely correlation between the molecular weight of the analyte and their ionization 

behaviour in different ILs. As a rough rule, water-immiscible ILs seem to be more adequate 

for the detection of LMW analytes whereas biopolymers with higher masses can be analyzed 

more easily when dissolved in water-miscible ILs. It has to be mentioned, that water 

miscibility of an IL is not equivalent to its polarity, which is almost identical for the ILs 

investigated here (VanRantwijk et al., 2003). Although ILs can be classified according to 

their miscibility with water, water-immiscible ILs such as [BMIM][PF6] can be dissolved in 

low amounts in water (up to 3%) (Anthony et al., 2001). This is also a prerequisite for 

dissolving analytes in these solvents as it was performed in the present work. 

 

 
[BMIM] 

[OctSO4] 

[BMIM]

[BF4] 

[MMIM] 

[(CH3)2PO4] 

[BMIM]

[PF6] 

[BMIM] 

[(CF3SO2)2N] 
Matrix 

Leu-encephalin n.d. n.d. n.d. + + CCA 

Bradykinin n.d. + + + + + + + CCA 

Angiotensin II n.d. + + + + + + CCA 

Substanz P n.d. + + + + + CCA 

Neurotensin n.d. + + + + + + + + CCA 

ACTH(1-17) n.d. n.d. + + + CCA 

ACTH(18-39) n.d. + + + + CCA 

Insulin + + + + + + + + + + + + + + + SA 

Cytochrome C + + + + + + + + + + + + + n.d. SA 

Lysozyme n.d. + + + + + + n.d. n.d. SA 

BSA n.d. + + + n.d. SA 
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Figure 5.5: (a) MALDI mass spectrum of lysozyme (MW~14300) in [BMIM][BF4] using SA as solid matrix 
(the insert shows a detailed view of the BF4-adduct region: A: [M+H]+, B-E: adducts of 1-4 [BF4]--ions). A 
molar IL:matrix ratio of 50.000 and molar matrix to analyte ratio of 23000 was applied, 200 shots were 
accumulated. (b) MALDI-MS spectrum of lysozyme in SA without IL, a molar matrix to analyte ratio of 23000 
was applied, 200 shots were accumulated. 

 

5.4 Monitoring of the enzymatic reaction of D-amino acid oxidase 

in the presence of IL 
 

The application of MALDI-MS for quantitative analysis of amino acids in the presence of ILs 

was described previously (Chapter 5.2.1). The applicability of the method was further 

examined for the monitoring of the enzymatic reaction of D-amino acid oxidase (DAAO) 

carried out in the presence of 40% IL, [BMIM][PF6]. The enzyme catalyzes the oxidation of a 

variety of D-amino acids to their respective α-keto acids. Phenylalanine was used as a 

substrate for the reaction (Figure 5.6). To quantify the substrate, a calibration curve was 

established for phenylalanine. An important issue for the analysis of LMW analytes by 

MALDI-MS is the use of a matrix that (i) does not overlap with the analytes and (ii) does 

most effectively ionize the analytes. The selection of a proper matrix is more critical here 

because of the problems, which arise from the peak broadening of IL signals and increase of 

the baseline, which in turn are due to the need for elevated laser energies. 
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Figure 5.6: Scheme of conversion of phenylalanine to phenylpyruvate catalyzed by the enzyme D-amino acid 
oxidase (DAAO). Only the D-enantiomer of the substrate is converted by this enzyme. 

 

For this study, the matrix ferulic acid (FA) was found to be better than CCA to achieve higher 

ionization efficiency of the analyte (phenylalanine) and avoiding overlap of matrix/IL/analyte 

signals. Additionally, [Cat]+-signal of IL was relatively less broadened in FA compared to 

measurement in CCA. 

A satisfactory calibration curve could be achieved for phenylalanine using the isotopically 

labelled internal standard (6-13C-phenylalanine) (Figure 5.7 (a)). This calibration curve 

allowed the quantification of substrate during the enzymatic reaction. It was mentioned 

earlier that the presence of the ILs resulted in very inhomogeneous sample preparations. 

Therefore, this leads to a higher standard deviation and possibly of prolonged measurement 

time. The sample inhomogeneity was also pronounced here for the calibration curve of 

substrate measured in presence of [BMIM][PF6] with a mean standard deviation of 13%. 

Nevertheless, the quantitation of the substrate of the enzyme-catalyzed reaction in the 

presence of IL could be performed (Figure 5.7 (b)). To find out the reliability of the method, 

the results of the determination of substrate concentration in the enzymatic conversion shown 

in Figure 5.7 were compared with an established method, e.g. HPLC. The results obtained by 

MALDI-MS were in good agreement with those obtained by HPLC for the time-points 

investigated here (Figure 5.7 (b)). 

Requirement of very short time of analysis using MALDI-MS compared to HPLC is 

considered as one of the advantages of using MALDI-MS (Bungert et al., 2004b). In this 

study, the measurement time was about 16 minutes per sample by HPLC, whereas the time 

was reduced to about 2 minutes per sample in the case of MALDI analysis. Note the 

measurement time using MALDI in the presence of IL is about 2-4 times longer than those 

achieved without ILs (Bungert et al., 2004a). This is mainly caused by the inhomogeneous 

sample preparation as mentioned before. 
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Figure 5.7: Calibration curve for quantification of phenylalanine in the presence of IL ([BMIM][PF6]) using 6-
13C-phenylalanine as IS. FA was used as matrix. The error bars indicate the average of 5 spots for each ratio. 
200 shots were collected in the positive ion mode. The measurement was performed manually. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: Monitoring of substrate consumption versus reaction time measured by MALDI and HPLC in 
enzyme-catalyzed reaction of DAAD in the presence of 40% IL ([BMIM][PF6]). The error bars indicate the 
average of 5 spots for each ratio for MALDI measurement and two fold measurements for HPLC analysis. 200 
shots were collected for MALDI measurement for each spot in the positive ion mode. The measurements were 
carried out manually for MALDI measurement. The HPLC results were kindly provided by Prof. Fischer’s 
group, Institue for Food Technology, University of Hohenheim. 
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Nevertheless, in comparison with HPLC measurements the MALDI-based quantification 

clearly allows a noticeable increase in sample throughput. 
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6 Ion Formation in MALDI 
 

Although MALDI mass spectrometry has been used for more than 10 years now, the 

mechanisms involved in ion generation and desorption are still not fully understood. All 

theories and models involve photoionization and chemical ionization which can be classified 

as primary and secondary ion formation processes, respectively (Karas and Kruger, 2003; 

Knochenmuss and Zenobi, 2003). According to these theories, primary ionization is related to 

generation of the first ions from neutral molecules in the sample by laser photons and can be 

correlated to the ionization potential (IP) of the molecules. These ions are often matrix-

derived species. It was shown with pH-dependent dyes embedded in matrices that analytes 

were in the same charge state in matrix crystals as they have been in solution (Kruger et al., 

2001). The primary process for these preformed ions is their desorption together with matrix 

clusters. 

Secondary processes are those that lead to ions that are not directly generated by primary 

processes, in particular analyte ions. After desorption of an analyte from the matrix, 

protonization and cationization of analyte molecules will take place, which can be different 

from one analyte to another and from one matrix to another. The proton, H+, is generally 

supposed to be provided by matrix molecules. Proton affinity (PA) of the analyte and matrix 

molecules could probably describe proton transfer between matrix and analyte molecules 

(Zenobi and Knochemuss, 1998). There is evidence that not only matrix serves as proton 

donor but also the solvent plays an active role in the cluster desorption process mentioned 

above. It was found that in matrix preparations a residual amount of the particular solvent, 

e.g. water and/or acetonitrile, could be found (Kruger et al., 2001). The residual solvent 

content (acetonitrile:water, 1:1/v:v) in matrix crystals was described to be between 0.3 to 3% 

in dried matrix preparations. It was also shown that in the best case a very weak [M+H]+ 

signal can be observed when analyte and matrix are physically mixed and applied under 

solvent-free condition (Gluckmann et al., 2001). On the other hand, a solvent-free preparation 

method was presented allowing a successful ionization of neutral polymers and insulin 

(Trimpin et al., 2001). We did not investigate the solvent content in the ILMs presented here, 

but it has to be expected that there is still solvent and TFA (when used) present even after 

several hours under vacuum conditions in the mass spectrometer.  

The sol-gel assisted laser desorption/ionization mass spectrometry with the matrix substance 

embedded in a sol-gel structure was introduced for the analysis of amino acids and peptides 
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(Lin and Chen, 2002b). The spectra measured from these systems are reported to be free of 

matrix signals. Further, the sodium and potassium adduct ions of the analytes commonly 

observed in conventional MALDI, were not observed in spectra generated from this matrix 

system. It was suggested that H3O+ and analyte may be simultaneously desorbed and the 

analyte molecules may be protonated in the gas phase via ion-molecule reactions, when the 

laser irradiated the sol-gel-derived DHB film. It can therefore be concluded that in ILMs as 

well as in solid matrices, both matrix and solvent molecules are involved in protonization 

mechanism thus affecting directly peak intensities.  

Good peak intensities are a prerequisite for satisfying spectra quality and for qualitative and 

quantitative measurements. They can be reached by using higher laser energies, which on the 

other hand can cause fragmentation of analytes (and matrices). The comparison of peak 

intensities in different classical solid preparations is nearly impossible due to the lack of 

homogeneity. The use of ILMs minimizes this problem and may therefore be helpful for the 

direct comparison of different matrix systems. We performed basic experiments to explain 

the effect of both the components of the ionic liquids (acid and base) and the analytes on their 

ionization behaviour. Comparison of peak intensities of different analytes in one matrix 

system is possible because the same laser energy was used. On the other hand, for the 

comparison of intensities of one analyte in different matrices the additional effect of different 

laser energies has to be taken into account in some cases. Therefore, for determination of the 

peak intensities, laser energy was chosen just above the point at which the signal of analyte 

starts to occur (threshold level). The peak intensities varied strongly depending on the 

combination of acid-base-analyte (Table 6.1). The addition of TFA also had an influence on 

the peak intensities. In some cases, where no signal without addition of TFA could be 

detected, its addition allowed detection of the analyte. 

Higher peak intensities compared to the solid matrix could be observed in some cases, in 

others suppression effects of one of the components could be found. Proton affinities as well 

as pKa values of matrices (acid and base component) and analytes have to be taken into 

account for the explanation of these observations. It is also important to keep in mind the fact 

that all amino acids share similar pKa-values for the α-amino- and the α-carboxylic groups, 

and the main differences are introduced by the side chains. The proton affinity of an amino 

acid is correlated to the whole molecule including both the α-amino- and α-carboxylic groups 

as well as the side chain function. In all experiments, proton affinities are thus more reliable 

for explanation of the ionization behaviour of the analyte compared to pKa values. 
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Table 6.1: Peak intensities ([M+H]+) of different analytes in solid or ILMs. The intensities were estimated at the 
optimal laser energy above threshold level. The values for bradykinin and human insulin were taken from 
reference (Armstrong et al., 2001), the values for the proton affinities (kJ/mol) from references (Hunter and 
Lias, 2003; Zenobi and Knochemuss, 1998), the pKa-values of cation (base compound of the ILM) and analyte 
(side chain functionality) were provided by the chemical suppliers. PAc: proton affinity of the cation, PAa: 
proton affinity of analyte, M/A. molar matrix-to-analyte ratio, n.d.: not detected.  

 

Matrix Analyte Peak 
Intensity TFA M/A PAc/PAa 

(kJ/mol) 

pKa/pKa 

cation/analyte 

CCA Arginine 8200 - 1 850.5 / 1051 3 / 12.5 

CCA-TBA Arginine 20000 - 1 998.5 / 1051 10.89 / 12.5 

DHB Arginine 5200 - 3 856 / 1051 2.97 / 12.5 

DHB-Py Arginine n.d. - 1   

DHB-TBA Arginine 5000 - 1 998.5 / 1051 10.89 / 12.5 

DHB-Py Arginine 6500 - 3 930 / 1051 5.23 / 12.5 

CCA Glutamic acid 1000 - 1 850.5 / 913 3 / 4.25 

CCA-TBA Glutamic acid n.d. - 1 998.5 / 913 10.89 / 4.25 

CCA Alanine 4800 - 1 850.5 / 901.6 3 / - 

CCA-TBA Alanine n.d. - 1 998.5 / 901.6 10.89 / - 

DHB Alanine 5000 - 1 856 / 901.6 2.97 / - 

DHB-TBA Alanine n.d. - 1 998.5 / 901.6 10.89 / - 

DHB Glutamic acid 2200 - 1 856 / 913 2.97 / 4.25 

DHB-TBA Glutamic acid n.d. - 1 998.5 / 913 10.89 / 4.25 

DHB-Py Glutamic acid n.d. + 3 930 / 903.2 5.23 / 10.78 

DHB-Py Lysine 2200 + 3 930 / 996 5.23 / 10.53 

CCA-TBA Bradykinin 53000 + 50000 _ _ 

CCA Bradykinin 40000 + 50000 _ _ 

SA-TBA Bradykinin 50000 + 50000 _ _ 

SA Bradykinin 12000 + 50000 _ _ 

CCA-TBA Human insulin 11000 + 50000 _ _ 

CCA Human insulin 24000 + 50000 _ _ 

SA-TBA Human insulin n.d. + 50000 _ _ 

SA Human insulin 43000 + 50000 _ _ 
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For example, the [M+H]+-ion could be observed for lysine in DHB-PY, whereas that of 

cysteine could not be observed in this matrix. The pKa-values of both amino acid side chains 

are very similar (Lys = 10.53, Cys = 10.78), but the proton affinity of lysine (996.0) is higher 

than that of cysteine (903.2) (Table 6.1). 

Tributylamine in combination with DHB or CCA for example was found to have a positive 

effect on analytes like arginine, whereas neutral (in respect to the side chain) (alanine) and 

acidic analytes (glutamate) seemed to be suppressed. In contrast to arginine, for the second 

basic amino acid lysine the peak intensity for [M+H]+ was not very high in DHB-TBA or 

CCA-TBA. This reflects again the influence of the proton affinity, because the difference in 

the proton affinities between lysine (996.0) and TBA (998.5) is very small, thus reducing 

protonization of the analyte.  

The basic amino acids arginine and lysine did not show any peak in DHB-Py at a molar 

matrix-to-analyte ratio of one, in contrast to other amino acids. At a M/A of three, both amino 

acids could be detected in this matrix system. On the other hand, arginine showed a peak 

intensity of 5000 in DHB-TBA at a matrix-to-analyte ratio of one, which showed the 

complementary effect of TBA on a basic analyte (arginine) (Table 6.1). This may be caused 

by the fact that a strong base can facilitate the transfers of protons from the matrix to the 

analyte. On the other hand, the analyte must be able to accept protons from the matrix which 

corresponds to a higher proton affinity. CCA-TBA and SA-TBA were already used as matrix 

for the measurement of peptides and proteins (Armstrong et al., 2001). The nonapeptide 

Bradykinin showed higher peak intensities compared to both corresponding solid matrices. In 

contrast, insulin showed a lower peak intensity in CCA-TBA and no peak in SA-TBA. This 

could be referred to the reason mentioned above, because Bradykinine (Arg-Pro-Pro-Gly-

Phe-Ser-Pro-Phe-Arg) has two arginine residues out of nine amino acids, whereas in insulin 

there is just one arginine out of fifty one amino acids. Additionally, amino acids sequence of 

insulin consists of many amino acids with low proton affinity such as Cysteine (Nicol and 

Smith, 1960).  

 

6.1 Comparison of IL with ILM 
 

The application of UV-MALDI is limited to the use of matrices which are able to absorb light 

in the wavelength applied (Karas et al., 1985). At present, most MALDI instruments are 

operating with lasers in the UV-range, either of 337 or 335 nm. The ILs tested here are 
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imidazolium salts (Figure 6.1), which do not significantly absorb at 337 nm applied in this 

study. Their main absorption band in solution (methanol) is between 260-300 nm. The molar 

absorption coefficients at 337 nm (ε337) are below 1 L mol-1 cm-1 (Table 5.1). The absorption 

maximum of the highly viscous ILs without additional solvent is expected to be slightly red-

shifted compared to the situation in solution, but is still expected to be very low compared to 

classical solid MALDI-matrices (the ε337 for 2,5-DHB in EtOH/H2O 9:1 is about 3100 

L*mol-1*cm-1 (Horneffer et al., 1999). In spite of having relatively low absorption at 

wavelength 337 nm, however, ILs could be analyzed without addition of solid matrices in 

LDI-MS as shown earlier (Chapter 5.1). This lack of capability to absorb efficiently the laser 

light at this wavelength (337 nm) could be one of the reasons that make ILs unsuitable as 

MALDI-matrices in contrast to ILMs. Because ILMs are formed by combination of solid 

MALDI-matrices with different bases and, thus, the presence of solid MALDI-matrices 

guarantee an efficient absorption (Figure 6.1).  

Moreover, matrix molecules must provide protons to promote protonization of analyte (in 

positive ion mode analysis). It has been demonstrated earlier that ionic liquids having a 

cationic moiety with an acidic proton can produce the desired gas-phase ions. This led to the 

speculation that due to the lack of available protons in many ILs, the analyte cannot be 

protonized (Armstrong et al., 2001). In this context, the H/D-exchange experiment performed 

with ILs here (see Chapter 6.2.3) showed clear evidence for the exchange of a proton by 

deuterium. Therefore, the apparent lack of ability of ILs to protonize the analyte cannot be 

explained at this juncture.  

 

 

Figure 6.1: Typical structures of cation and anion of IL (top) and ILM (bottom). 
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6.2  Ion formation in LDI and MALDI analysis of ILs 
 

In contrast to ILMs, ILs are not suited as MALDI-matrices. However, both the components 

of the IL as well as the analytes dissolved in IL can be analyzed when classical MALDI-

matrices are added to the ILs. The presence of ILs in MALDI analysis leads to some 

characteristic observations with respect to ion formation and adduct formation, which deviate 

to a certain extent from standard MALDI analysis. These phenomena occur in dependence of 

the nature of the components of the ILs and only some general observations will be discussed 

here.  

The most obvious features of MALDI in the presence of IL concern (i) the extensive adduct 

formation between IL-cations and IL-anions (in contrast to LDI), (ii) the nearly complete 

absence of metal ion adducts (Na+, K+), (iii) the negligible adduct formation between analytes 

and IL-cations or IL-anions, respectively, (iv) the increased laser threshold resulting in peak 

broadening, which is most pronounced for IL signals, moderate for high-mass analytes 

(proteins), but absent in case of low-mass analytes, (v) the matrix-dependent detection of 

[Cat+H]•+ ions of the IL cations and (vi) the influence of the water miscibility of the IL on 

analyte response.  

 

6.2.1 Adduct formation between IL-cations and IL-anions 

 

Like all salts, ILs exhibit ionic interactions in solution. These ionic interactions could be 

partially preserved upon mixing with a matrix or matrix solutions. Depending on the 

existence of loose or tight ion pairs in the condensed phase, either single ions or aggregates of 

different composition can be liberated upon laser irradiation. Although a close ionic contact 

must be assumed in pure IL, aggregates are only preserved with MALDI and not with LDI. 

Similar aggregates ([nCat+(n-1)An]+) with n=1-3 were observed in electrospray ionization 

MS (Alfassi et al., 2003). Multi component clusters (n up to 22) as observed in FAB MS 

(Abdul-Sada et al., 1997) were not observed here. Liberation of adduct-free IL-cations from 

ionic adducts, e.g. of the form [2Cat+An]+, can occur by proton transfer neutralization and 

subsequent desolvation of the neutralized anion, if the energy barrier of the respective proton 

transfer neutralization can be overcome. The fact that no adducts are observed in LDI may 

reflect the destruction of noncovalent ionic adducts when too much energy is transferred to 

them. On the other hand, the detection of IL-aggregates shows that tight ionic interactions are 
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at least partially preserved upon matrix admixture and that these aggregates can survive the 

considerably softer MALDI process.  

 

6.2.2 Absence of metal ion adducts 

 

In the presence of ILs no sodium- or potassium adducts were observed in MALDI analysis, 

neither for the matrix components nor for the analytes. The most straightforward explanation 

for this phenomenon is the displacement of metal cations by IL-cations and formation of ion–

pairs where IL cations are attached to negatively charged groups. Vice versa, the displaced 

metal cations may form (tight) ion-pairs with IL-anions, which were indeed detected with 

MALDI. Cation exchange is a widely applied strategy to avoid metal ion adducts, particularly 

at acidic sites such as phosphate groups of oligonucleotides (Nordhoff et al., 1992; Zhu et al., 

1996). Small cations with acidic protons like ammonia or pyridinium compounds are 

frequently used, since they can evaporate easily after neutralization reactions with anionic 

sites, which occur during or after laser excitation.  

 

6.2.3 Absence of Adducts between IL-cations/anions and analytes 

 

The imidazolium cations of the IL are alkylated at both nitrogen atoms and have therefore no 

acidic NH or OH group capable of proton transfer. Thus, imidazolium adducts should appear 

in MALDI spectra if close ion-pairs exist in the matrix crystal. This absence of IL-cationic 

adducts may be the consequence of long ionic distances in the matrix crystals. However, 

another way of adduct decomposition may also exist. N,N-substituted imidazolium ions are 

known as precursors of relatively stable carbenes, which have attracted some attention as 

ligands for organometallic complexes used as catalysts (Herrmann, 2002). These carbenes are 

formed upon proton abstraction at C2. NMR experiments including hydrogen-deuterium 

exchange studies showed, that the protons at C2 position of N,N-dialkylated imidazolium 

salts are slightly acidic having pKa-values in the range of 20-23 (Amyes et al., 2004). 

We performed similar H/D-exchange experiments followed by MALDI mass spectrometry 

with the ILs [BMIM][BF4] and [MMIM][(CH3)2PO4]. The LDI spectra of both cations 

showed clear evidences for an exchange of a proton by deuterium after incubation of the IL 

with a basic D2O solution. For the [MMIM]-salt, the [Cat]+ signal observed at m/z 97 shifted 

almost completely to m/z 98 upon 12 hours incubation with D2O (Figure 6.2). For the 

[BMIM]-salt, additionally to the [Cat]+-signal at m/z = 139, further signals at m/z = 140 
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([Cat]+, one proton exchanged to deuterium) and m/z = 141 were detected. Interestingly, the 

formation of the ion at m/z = 141 was increased, when the H/D-exchange experiment was 

performed under UV-irradiation. The identity of the m/z 141 ion is still unknown. When a 

mixture of deuterium-exchanged [MMIM]-salt was mixed with DHB, the signals of DHB 

were not changed compared to the situation with non-exchanged [MMIM]-salt, thus 

reflecting, that the deuterium was not transferred to the matrix under these conditions.  

 

 

Figure 6.2: LDI mass spectra of [MMIM][(CH3)2PO4] after incubation with water (top) and D2O (bottom). 200 
shots were accumulated for each spectrum. 

 

6.2.4 Laser threshold and peak broadening in dependence of analyte size 

 

The results of the H/D-exchange experiments together with the low abundance of cationic 

adducts suggest that metal cations at anionic sites are exchanged against imidazolium ions, 

which then are lost upon proton transfer-induced decomposition. This liberation of analytes 

from ionic-adduct precursors is only possible if sufficient energy is supplied to overcome the 

respective energy barrier, which may explain the relatively high laser intensity threshold. 

Such proton transfer neutralization should in principle occur not only in case of cationic 

adducts but also in case of anionic adducts. The preservation of anion adducts and their 

energy-dependent decomposition has been shown before (Kruger and Karas, 2002). 

Fragmentation of ionic adducts occurs both in the ion source and in the field-free drift region, 

and decomposition can result in peak broadening in case of high energy barriers, e.g. if 
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anions with low gas phase basicity are involved. The relatively broad MALDI signals of 

proteins in the presence of ILs may thus be the consequence of IL-adduct decomposition.  

Matrix anions have considerably higher PA than IL-anions, because the latter are bases which 

correspond to strong acids. Consequently, proton transfer from an IL-cation to a matrix anion 

(ion-pair neutralization) should therefore have a much lower energy barrier than proton 

transfer neutralization between IL ion-pairs. Indeed, ionic adducts between IL-components 

are much more abundant than adducts between IL-cations and matrices. Moreover, the 

intensities of adducts between IL-cation and matrices correspond roughly to the PA of the 

corresponding matrix anion (Zenobi and Knochemuss, 1998), which may reflect an easier ion 

pair neutralization in case of DHB and CCA compared to SA. However, slightly different PA 

values were reported in the literature for the same matrix anion, and adduct generation may 

also reflect the tendency to form close-contact ion-pairs upon incorporation into the matrix 

crystal.  

 

6.2.5 Matrix dependent formation of [Cat+H]•+-ions 

 

In LDI analysis, IL cations formed only [Cat]+-ions, whereas [Cat+H]•+ IL ions beside the 

[Cat]+ were found after addition of solid MALDI-matrices. [Cat+H]•+ species could originate 

either from proton transfer followed by electron capture/transfer or directly via addition of 

hydrogen atoms. The existence of free H-radicals in the MALDI plume was verified by 

spectroscopic methods (Scott et al., 1994), and addition of hydrogen was observed before, 

e.g. at cytosine (Koomen and Russell, 2000) or azo-dyes (Kruger et al., 2001). Potentially, 

the not unambigeously identified signal at m/z = 141 in the H/D-exchange experiment 

mentioned above may be formed by such UV induced radical exchange reaction. 

 

6.2.6 Influence of IL water miscibility on analyte response  

 

The correlation of the water-miscibility of the IL with the response of amino acids, peptides 

and proteins in MALDI is quite remarkable. Whereas proteins give only minor MALDI 

signals in the presence of water-immiscible IL, small analytes like amino acids and peptides 

are easily detected. Vice versa, water-miscible ILs hinder the analysis of the latter. These 

observations suggest a mass-dependent influence of ILs on MALDI response. Alternatively, 

although there was no segregation observed during sample preparation, compound specific 
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enrichment in different zones of the samples or within crystals may nevertheless occur. Such 

segregation phenomena are common in MALDI (Chan et al., 1992; Dai et al., 1999), 

especially in case of hydrophobic analytes. Moreover, differences upon matrix crystallization 

and analyte incorporation can lead to similar discrimination effects (Cohen and Chait, 1996; 

Figueroa et al., 1998). An additional effect could be induced by the nature of the ILs, which 

are non- or only partly soluble in water. This may cause liquid phase separation and 

partitioning of analytes upon crystallization. However, this could not be observed during 

sample preparation. 
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7 Conclusions and Outlook 
 

7.1  ILMs 
 

ILMs showed a high potential to be applied as matrices, whereas ILs were not suited as 

matrices for MALDI-MS. The problems arising from the inhomogeniety of the sample 

preparation using solid matrices were significantly reduced by applying ILMs. ILMs allowed 

both qualitative and quantitative measurement of LMW molecules, peptides and proteins.  

ILMs were successfully applied for the analyses of a variety of LMW compounds, such as 

amino acids, vitamins and sugars. However, as in the case of classical solid matrices, the 

prediction of the suitability of the ILMs for the measurement of a particular analyte is still not 

possible. Incorporating an isotopically labeled internal standard for quantification, the quality 

of a calibration curve with respect to standard deviation and linearity (r2) improved in the 

case of amino acids when an ILM was used in comparison to the corresponding solid matrix. 

In this regard, the 20% reduction of measurement time could also contribute to the advantage 

of using ILM over solid matrices. Therefore, ILMs can be potentially used for screening of an 

enzyme-catalyzed reaction by MALDI-MS achieving better accuracy in analyses with shorter 

measurement time as compared to solid matrices.  

The benefits of high sample homogeneity using ILMs together with increased M/A-ratios 

allowed a direct quantification of peptides and proteins by MALDI mass spectrometry 

without the use of internal standards. Herein, the obtained calibration curve for the model 

peptide showed a very good accuracy (r2 = 0.997, mean standard deviation: 8%). The 

developed method was further applied for the screening of the protease activity. The 

reliability of the method for the quantitative analysis of protease screening was compared 

with two established methods, the relative quantification by MALDI-MS in ILM using a 

homologous peptide (Trp11-Neurotensin) as internal standard and by HPLC-UV-

measurements with 214 nm detection. An average deviation of 6% was obtained between 

these three methods.  

Due to the problems related to peak suppression, semi-quantitative rather than absolute 

quantitative measurement was shown for monitoring of multi-substrate conversions. 

Nevertheless, the results were sufficient to clearly differentiate good and bad substrates for 

the enzymatic reaction presented here.  
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The importance of the M/A-ratio complicates the application of the method in cases where 

the concentration for the analytes is not known, e.g. for the quantification of peptides in a 

proteomics environment. For these applications a relative quantification rather than the 

absolute quantification presented here is recommended.  

The application of pyridinium-based ILMs formed with α-cyano-4-hydroxycinnamic acid led 

to an improved spectral quality in terms of reduction of matrix clusters and chemical noise 

and the improvement of the signal-to-noise ratios of a number of peptides investigated in this 

study. Best results were obtained at a molar ratio of CCA:Py-2:1. The achievement of higher 

sequence coverage together with increased sensitivity thus allows a facilitated identification 

of proteins by peptide mass fingerprint analysis as well as an improved recognition of protein 

modifications. For a minority of the peptides investigated, the presence of pyridine led to a 

slight reduction of the S/N-ratios compared to CCA. Therefore, an optimal way for proteome 

analysis may be the use of both pure CCA as well as of the non-stoichiometric pyridinium-

based ILM in parallel experiments. 

 

The quantification method not using an IS is not restricted to proteolytic reactions. The 

method can principally be used for all kinds of enzymatic conversions, which go hand in 

hand with mass changes, e.g. transferase or oxidase/reductase catalyzed reactions as well as 

for non-enzymatic reactions. Therefore, IS-free quantitative MALDI-MS using ILMs is a 

suitable method for fast screening for new enzymes or for the search for substrates or 

inhibitors. This would have an ideal impact on the screening for new enzyme variants, either 

by obtaining quantitative data for a particular conversion or semi-quantitative data for the 

monitoring of the change of substrate or product amounts.  

LMW compounds, e.g. amino acids, sugars and vitamins are the substrates and products of 

many biocatalytic reactions. MALDI quantitative analysis without use of an isotope labeled 

IS will be very applicable for these enzyme-screening processes. Similar to the absolute 

quantification of peptides and proteins, a set of experiments can be performed to find out the 

optimal M/A-ratio in which quantification for LMW compounds would be possible without 

need for an IS. In cases where absolute quantification of LMW compounds is not successful, 

ILMs can potentially facilitate the quantification with an IS not necessarily similar to the 

analyte. The application of the ILMs for quantification of peptides using non-analogous 

internal standard have delivered a satisfactory result (Li and Gross, 2004). 
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ILMs showed very good stability in the high vacuum applied in mass spectrometry. This 

could have a potential for the application of ILMs to stabilize otherwise volatile matrices like 

4-nitroaniline or 3-aminoquinoline.  

There are numerous combinations possible for a tailor-made synthesis of new ILMs. 

Depending on the combination of acid and base used, the physicochemical properties of the 

matrix, e.g. pH-values and UV-absorption spectra, can be changed. Therefore, these 

combinations can be tuned according the desired analysis, for example for investigations of 

non-covalent interactions in proteins for which an optimal pH range is required to preserve 

their tertiary structure and thus retain non-covalent interactions. Additionally, the UV-

absorption modification of the matrix may allow improving analyte signal intensity. 

Moreover, the different acid/base combinations modify the ionization behaviour in MALDI, 

which may improve the signal intensity of a tested analyte. 

Although the use of ILMs has improved the sample homogeneity, it caused intensive Na/K-

adducts compared to corresponding solid matrices depending on the acid/base combination 

used in ILMs. This could be a great benefit to the analysis of sugars, which can be detected 

best as metal-adducts. This can thus facilitate the screening of sugar converting enzyme 

reactions. 

The preliminary experiments carried out in this study indicated that high sample homogeneity 

achieved using ILMs could make feasible the direct comparison of various analytes signal 

intensity in different matrices. Therefore, this may help to give new insight into the 

mechanisms related to the MALDI ionization, which is only partially understood. 

Additionally, the presence of both acidic and basic components in these matrix systems can 

contribute reaching this goal. 

Further applications of ILMs can be in LC-MALDI coupling or in the analyses in the 

negative ion mode. Recently, ILMs were applied for the direct investigation of tissues by 

MALDI imaging (Lemaire et al., 2006). Thus, application of ILMs as a valuable tool for 

improved direct tissue analysis by MALDI imaging is expected in the future. 

ILMs cannot replace classical known matrices, however, they do extend the field of MALDI-

MS applications.  
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7.2 ILs 
 

LDI and MALDI mass spectrometry are both methods, which allow investigation and 

characterization of ILs. The analysis is straightforward, and fragmentations can be used for a 

structural analysis of these solvents. 

ILs were not suitable as MALDI-matrices, but the addition of classical MALDI-matrices 

enabled the analysis of amino acids, peptides and proteins dissolved in the ILs without the 

need for extraction procedures. Further, using a proper internal standard, a relative 

quantification was successfully performed in the presence of ILs. The developed 

quantification protocol was applied for the monitoring of oxidase-catalyzed reaction in the 

presence of ILs. The measured concentrations of substrate in the enzyme reaction by MALDI 

were comparable to those determined by HPLC. These features make screening of enzyme 

activities in the presence of ILs possible. Hence, the direct analysis of substrates and products 

of chemical and enzyme catalyzed reactions in ILs can be done without the need for pre-

purification or separation steps. This allows in-process analysis of these reactions in ILs. 

It is reasonable to expect that other LMW compounds, for example educts or products of 

chemical reactions, can be also analyzed by MALDI-MS in the presence of ILs. Like in 

classical MALDI analysis, a prediction of the best matrix system suited for a particular 

analyte has still to be found out by trial-and-error experiments.  

Up to now it is still an unsolved question, whether proteins dissolved in ILs can undergo 

chemical modification. Direct investigation of proteins and tryptic peptides in ILs is a 

prerequisite to answer this question. In this regard, application of MALDI can reveal new 

insight for any potential modifications of proteins in the presence of ILs. These findings can 

improve designing of new ILs suitable for enzymes and thus, biocatalysis in ILs.  

MALDI analysis in the presence of IL revealed a number of interesting observations, which 

are mainly related to ionic interactions, solubility and other effects which are relevant during 

sample preparation. A closer look on these special features in comparison to other sample 

preparation procedures in the absence of IL may be valuable, since their understanding could 

lead to sample preparation procedures with enhanced sensitivity. 
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9 Appendix 
 
9.1 Abbreviations 
 

[BMIM][(CF3SO2)2N] 1-butyl-3-methyl-imidazolium-bis-trifluormethane-sulfonimide  

[BMIM][BF4]   1-butyl-3-methyl-imidazolium-tetrafluoroborate  

[BMIM][OctSO4]  1-butyl-3-methyl-imidazolium-octylsulfate  

[BMIM][PF6]   1-butyl-3-methyl-imidazolium-hexafluorophosphate  

[MMIM][(CH3)2PO4] 1,3-dimethyl-imidazolium-dimethylphosphate  

A    analyte 

ATP    adenosine 5-triphosphate  

BSA    bovine serum albumin  

CCA    α-cyano-4-hydroxycinnamic acid  

CE    capillary electrophoresis 

Da    dalton 

DAAO    D-amino acid oxidase  

DHB    2,5-dihydroxybenzoic acid  

DMAPA   3-dimethylamino-1-propylamine  

DMED   N, N-dimethylethylendiamine  

DNA    deoxyribonucleic acid 

ESI    electrospray ionization 

FA    4-hydroxy-3-methoxycinnamic acid, ferulic acid  

FAB    fast atom bombardment 

FWHM   full width of half-maximum  

GC    gas chromatography 

H/D exchange   hydrogen/deuterium exchange 

HPLC    high performance liquid chromatography 

IL    ionic liquid 

ILM    ionic liquid matrix 

InAA    3-indoleacrylic acid  

IR    infrared 

IS    internal standard 

LMW    low molecular weight 



Appendix 

 119

LOD    limit of detection 

M/A    matrix-to-analyte ratio 

MALDI   matrix assisted laser desorption/ionization 

MI    1-methylimidazole  

Na/K-adduct   sodium/potassium-adduct 

NAD    nicotinamide adenine dinucleotide  

NHS-acetate   N-hydroxysuccinimid-acetate 

NMR    nuclear magnetic resonance 

ODN    oligodeoxynucleotide 

PMF    peptide mass fingerprint 

Py    pyridine 

RSD    relative standard deviation 

SA    3,5-dimethoxy-4-hydroxycinnamic acid  

SDS    sodium dodecyl sulphate 

TBA    tributylamine  

TEA    triethylamine 

TFA    trifluoroacetic acid  

UV    ultraviolet 
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