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Abstract 

 

Ca
2+

 uptake as well as PS exposure in RBCs has been activated with different substances: 

lysophosphatidic acid (LPA), phorbol-12 myristate-13 acetate (PMA, activator of the 

PKC), and A23187 (Ca
2+

 ionophore, used as positive control). Measurement techniques 

included flow cytometry and live cell imaging (fluorescence or confocal microscopy). 

PS exposure is not solely based on the increased intracellular Ca
2+

 content. Ca
2+

 activates 

the scramblase. In addition, we were able to show that the PKC as well as Ca
2+

-activated 

K
+
 channel play substantial role in the process of PS exposure. 

Ca
2+

 uptake and PS exposure do not depend on the cell age. Quantitative discrepancies 

with respect to results obtained by different investigators and also with respect to the 

LPA batches used have been observed. In addition, we realized differences comparing the 

results of single and double labelling experiments (for Ca
2+

 and PS). The results are also 

affected by the fluorescent dye used. 

The reason for existing RBCs showing PS exposure but without increased Ca
2+

 content is 

do to cell membrane damage and loss of Ca
2+

 and/or Ca
2+

 with fluorescent dye shortly 

before eryptosis. RBCs with increased Ca
2+

 content but without PS exposure is probably 

depending on the cell shape (echinocytes show significantly less PS exposure than 

discocytes or stomatocytes). This result suggests that the shape of the RBCs plays a 

substantial role for the PS exposure. 
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Zusammenfassung 

 

Die Ca
2+

-Aufnahme und die PS-Exposition in humanen roten Blutzellen (RBCs) wurde 

durch verschiedene Substanzen aktiviert: Lysophosphatidsäure (LPA), Phorbol-12 

myristat-13 acetat (PMA, Aktivator der PKC) und A23187 (Ca
2+

-Ionophor, 

Positivkontrolle). Die Messmethoden beinhalteten Durchflusszytometrie und 

Fluoreszenz- bzw. Konfokal-Mikroskopie. 

Die PS-Exposition basiert nicht nur auf einer erhöhten intrazellulären Ca
2+

-

Konzentration. Ca
2+

 aktiviert die Scramblase. Zusätzlich konnten wir zeigen, dass sowohl 

die PKC als auch der Ca
2+

-aktivierte K
+
 Kanal eine substanzielle Rolle im Prozess der 

PS-Exposition spielen. Die Ca
2+

-Aufnahme und die PS-Exposition hängen nicht vom 

Zellalter ab. 

Quantitative Unterschiede von Messdaten, die von unterschiedlichen Experimentatoren 

und mit unterschiedlichen LPA-Chargen erzielt wurden, konnten erklärt werden. 

Zusätzlich konnten Unterschiede der Ergebnisse, die auf der Basis von Einzelfärbungs- 

und Doppelfärbungs-Experimenten (für Ca
2+

 und PS) erzielt wurden, aufgeklärt werden. 

Die Resultate werden auch durch die verwendeten Fluoreszenzfarbstoffe beeinflusst. Der 

Grund dafür, dass es einige RBCs gibt, die eine PS-Exposition aber keinen erhöhten 

Ca
2+

-Gehalt aufweisen, basiert wahrscheinlich auf einer beginnenden Schädigung der 

Membran unmittelbar vor der Eryptose, was zu einem Verlust an Ca
2+

 und/oder Ca
2+

 mit 

Fluoreszenzfarbstoff führt. Die Existenz von RBCs mit erhöhtem Ca
2+

-Gehalt, aber ohne 

PS-Exposition, basiert wahrscheinlich auf der Zellform (Echinozyten haben eine 

geringere PS-Exposition als Discozyten oder Stomatozyten). Dieses Ergebnis deutet 

darauf hin, dass die Form der RBCs eine substanzielle Rolle für die PS-Exposition spielt. 
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Abbreviations 

 

APTL  Amino phospholipid translocase (flippase) 

ATP  Adenosine triphosphate 

DAG  Diacylglycerol 

DIDS  4,4’-diisothiocyano-2,2’-stilbenedisulfonic acid  

DMSO  Dimethyl sulfoxide 

DNA   Deoxyribonucleic acid 

EDTA  Ethylenediaminetetraacetic acid 

EPO  Erythropoietin 

EVs  Extracellular vesicles 

FITC  Fluorescein isothiocyanate 

G6PD  Glucose-6-phosphate dehydrogenase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

LPA  Lysophosphatidic acid 

MRP1  Multidrug resistance protein 1 

MVs  Microvesicles 

NMDA N-Methyl-D-Aspartat 

NSVDC Non selective voltage dependent cation channel 

PC  Phosphatidylcholine 

PE  Phosphatidylethanolamine 

PGE2  Prostaglandin E2 

PI  Phosphatidylinositol 

PKC  Protein kinase C 

PMA  Phorbol 12-myristate 13-acetate 

PS  Phosphatidylserine 

RBC  Red blood cell 

SCA  Sickle cell anaemia 

SM  Sphingomyelin 
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1. Introduction 

 

1.1 Red blood cells 

 

Erythrocytes, also called red blood cells (RBCs), are by far the main component of 

human blood cells, with 25 % of the cells [1]. Humans have about 5-6 million RBCs per 

microliter (µl) of blood [2]. They have a diameter of about 7.5 µm and a thickness of 1.5 

to 2 µm and have neither a nucleus nor organelles (mammals mature RBCs) and are 

unable therefore to synthesize proteins or gain energy from processes in mitochondria. 

Therefore, the energy demand is met by anaerobic glycolysis. They perform important 

tasks, such as various transport and regulatory mechanisms. The transport of oxygen (and 

thus also the CO2 removal) is one of the main function of RBCs because the oxygen 

cannot be consumed from the RBCs by themselves. For oxygen transport the RBCs travel 

large distances, therefore they need to be very flexible and assume different shapes (Fig. 

1) [3]. The oxygen is taken to the lungs by binding to haemoglobin, and in turn CO2 is 

released [4]. In addition, the RBCs are important for wound healing. The consequent 

wear requires the degradation of the old, useless cells that achieve a maximum life. This 

is associated with a permanent new production of young cells [5]. 

        

Figure 1: Typical Mammalian RBCs: (a) Seen from surface (b) In profile, forming rouleaux (c) rendered 

spherical by water (d) rendered crenate by salt. (c) and (d) do not normally occur in the body. Not all cell 

shapes are shown [3]. 
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The RBC development (erythropoiesis) takes about seven days [6]. It takes place before 

birth in the yolk sac, liver, spleen and bone marrow, after birth only in the red marrow of 

the plates and short bone [7]. Initially, by lack of oxygen in the tissues (hypoxia) the 

kidney stimulates, by the hormone erythropoietin (EPO), the formation of new blood 

cells in the bone marrow [8]. A disorder of erythropoiesis leads to anaemia. From 

multipotent stem cells first emerge erythroblasts, which still have a nucleus. They already 

produce haemoglobin and store this on. After erythroblasts have reduced their nucleus 

and other organelles with the aid of enzymes, they are called reticulocytes. Reticulocytes 

migrate into the blood and mingle with the RBCs different cell ages, so that there is an 

approximate average age of 40 days. Once formed sets with them the aging process that 

will be affected only by a few factors, such as post-translational modification or 

mechanical stress. From the age of 7 days they can start carrying oxygen as mature 

RBCs. The lifespan of the RBCs is about 120 days [5]. 

 

1.2 Red blood cell membrane 

 

The membrane of RBCs consists of a lipid bilayer (41 % of lipids) with embedded and 

superimposed proteins (52 %) and a small carbohydrate moiety (7%) [9]. In healthy cells, 

the distribution of the phospholipids is asymmetrical between the inner and outer leaflet 

of the cell membrane. In the inner membrane side are particularly phosphatidylserine 

(PS) and phosphatidylethanolamine (PE), whereas in the outside are predominantly 

sphingomyelin (SM) and phosphatidylcholine (PC) (Fig. 2) [10]. 

 

 

 

Figure 2: Distribution of the main membrane lipids between the outer and inner membrane leaflet of 

human RBCs [10]. 
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This asymmetry is maintained by ATP-dependent lipid transporters [11, 12], the flippase 

also named aminophospholipid translocase (APLT) (transports very quickly PS to the 

membrane inside, against the concentration gradient and under ATP consumption) and 

the floppase (transports choline-containing and aminophospholipids of the membrane 

inside to the membrane outside) (Fig. 3) [13]. The structure and mechanism of the 

flippase has been published recently by Perez et al. [14]. The floppase belong to the 

family of ATP-binding cassette proteins (ABC transporters) and were identified as 

multidrug resistance protein 1 (MRP1) [15]. 

 

Figure 3: Transporter-controlled exchange of phospholipids between both lipid leaflets of the cell 

membrane. Unidirectional phospholipid transport by flippase is directed inward, whereas floppase 

promotes outward directed transport. Both transporters are ATP-dependent and frequently move 

phospholipids against their respective concentration gradients. Bidirectional phospholipid transport is 

catalyzed by a scramblase, activation of which may occur following Ca
2+

 influx or when cells go into 

apoptosis. Scramblase promotes collapse of membrane phospholipid asymmetry with appearance of PS at 

the cells’ outer surface [13]. 

 

The asymmetric organization is important for cell functions such as cell signalling. After 

about 120 days, RBCs undergo eryptosis, an apoptosis-like process (a term introduced by 

Lang [16]), defining the suicidal death of RBCs. By stimulating the eryptosis in RBCs by 

an increase in intracellular Ca
2+

 levels, the lipid asymmetry may collapse. The signal of 

eryptosis is the movement of PS from the inner to the outer membrane leaflet [16, 17]. 

The aforementioned lipid transporters (flippase, floppase) are inhibited by Ca
2+ 

[11]. 

Another consequence of the increased intracellular Ca
2+

 content is the outward-directed 
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transport of PS, realized by a protein termed “scramblase” [18-22]. This can lead to a 

stimulation of blood coagulation [23]. The identity of this protein has been identified only 

recently as a member of the TMEM16 or anoctamin family of proteins and the crystal 

structure was published [24]. The balance between lipid transporters and scramblase is 

crucial if a PS exposure at the outer membrane leaflet occurs [25]. 

 

1.3 Membrane transport 

 

Proteins are responsible for a large part of the dynamic processes that occur on 

membranes (solute and ion transport, signal transduction, cell-cell contact, anchoring the 

cytoskeleton etc.). Membrane proteins in RBCs are expressed in early stage of cell 

maturation. Later on, they can be modified only by posttranslational modifications. 

Because the cell membrane is impermeable for big molecules (like glucose, sucrose) and 

charged ions and molecules (Na
+
, K

+
, Ca

2+
, Cl

-
), this substances must be transported 

through the membrane by special transporters. A distinction is made between simple 

electro-diffusion (residual or leak transport) and three different transport mechanisms. 

Possible transport mechanisms are: active transport (pumps), transport through channels, 

and carrier-mediated transport. A review on cation transport mechanisms in RBC 

membranes can be found in Bernhardt [26]. 

Important for the present work are ion channels, which are formed by protein subunits. In 

general, ion channels are more or less selective (they have a selectivity filter) and they 

posses a mechanism for opening and closing (gating mechanism). They allow the flow of 

ions along their electrochemical gradient. Their regulation (opening and closing) occur by 

one of four different possibilities: Regulation via (i) membrane potential, (ii) specific 

substances including Ca
2+

, (iii) mechanical forces or stress, and (iv) light [26]. In human 

RBCs the following cation channels have been detected so far: Ca
2+

-activated K
+
 channel 

(Gardos channel) [27], non-selective voltage-dependent cation (NSVDC) channel [28-

31], low conductance cation channel [32] (it is not even clear whether it is a substate of 

channels mentioned before, or if it has its own identity; no molecular date are available 

yet [33]), receptor-activated non-selective cation channel [34, 35], TRP C6 channel [36], 

NMDA-channel [37, 38], P-Type CaV2.1 [39, 40] channel. It has been speculated that the 

CaV2.1 is identical to the NSVDC channel [33]. From the electrophysiological 
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characterisation it is very hard to compare the data of the NSVDC channel in RBCs to the 

CaV2.1 channel since the channel properties are differentially affected by the co-

expression level of particular ß-subunits as well as by alternative splicing of the α1A-

subunit [33]. There are also several anion channels present in the human RBC membrane, 

like the small conductance chloride channel and the voltage-dependent anion channel 

(VDAC) [41]. However, anion channels are not in the focus of the present work. A 

summary is given in the paper of Thomas et al., [41]. 

1.4 Signal cascade to induce phosphatidylserine exposure and the active 

participation of red blood cells in thrombus formation 

 

Thrombus formation in consequence of an injury of the blood vessels is an essential and 

vital process, which can be found in all vertebrates. Formation and degradation of the 

thrombus constitute the protective mechanism which protects living beings against 

excessive blood loss. The process of wound healing by an injury in or on the body begins 

with the closure of the wound. Through an injury, blood flows out and the wound is 

closed by using the platelets, which release among other thrombin, which cleaves 

fibrinogen into fibrin and thus crucial contributes to the formation of a thrombus [42]. 

This process starts as soon as the surrounding tissue of the damaged blood vessel comes 

into contact with blood. On the other hand, the formation of blood clots may also be 

pathological. If it comes to the development of thrombosis (narrowing / blockage of a 

blood vessel by a thrombus), pulmonary embolism, heart attack and stroke may be the 

consequence [43-47]. For some time the role of RBCs in the thrombus formation has 

been discussed. In older literature, the RBCs were long considered only as passive 

oxygen transporters and also to serve as a buffering of the blood. The participation in 

thrombus formation has been described as a pure passive process which occurs 

coincidentally (RBCs attain into a thrombus only because of their large number) [48]. 

However, recent results suggested that RBCs not just adhere in the thrombus (in the 

fibrin network), but also play thereby an active role [42, 49] and certainly have a 

prothrombotic effect [50, 51]. 

In healthy cells, the distribution of the phospholipids is asymmetrical between the inner 

and outer side of the cell membrane (as explained in the previous section). Substances 

released from platelets, such as e.g. prostaglandin E2 (PGE2) and lysophosphatidic acid 
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(LPA) activate in RBCs a signalling cascade that leads to an increase in the intracellular 

Ca
2+

 concentration [34, 52]. The Ca
2+

-activated protein scramblase then causes 

redistribution of the membrane lipids whereby the PS is moved from the inner to the 

outer membrane leaflet [12, 13, 16-19]. The exposure of PS forms a catalytic surface that 

promotes the blood clotting [50-53]. This contributes to increased intercellular adhesion 

and also serves as recognition side for macrophages, which can remove the RBCs from 

the blood stream [54-56]. After a Ca
2+

 uptake, the Gardos channel is simultaneously 

activated [57], which leads to an efflux of K
+
 and Cl

-
, and osmotically obliged H2O loss, 

whereby the cells shrink. It has been assumed that possibly the interaction surface is 

increased for the adhesion process of the RBCs [9, 18, 52]. It has been demonstrated that 

PS exposure induced by LPA leads to cell-cell adhesion of human RBCs [52, 58]. Based 

on a correlation between decreased haematocrit and longer bleeding times [46] and 

experiments carried out by Andrews and Low [49], an active role of RBCs in thrombus 

formation has been proposed [49]. A detailed signalling cascade was published by 

Kaestner et al. [35]. A Ca
2+

-independent pathway for PS exposure has been proposed by 

Chung et al. [51]. They demonstrated that LPA-induced activation of protein kinase Cζ 

(PKCζ, a Ca
2+

-independent isoform of PKC present in human RBCs) leads to the 

exposure of PS even in the absence of Ca
2+

. 

Another possibility for the enhancement of the intracellular Ca
2+

 content is the activation 

of PKCα (a Ca
2+

-dependent isoform of PKC present in human RBCs) by phorbol-12 

myristate-13 acetate (PMA) leading to two independent Ca
2+

 entry processes [40]. The 

first is P-Type CaV2.1 channel independent and the second is associated with a likely 

indirect activation of CaV2.1 [40]. It leads to a secondary Ca
2+

 influx into RBCs. PMA is 

a powerful pharmacological tool that activates PKCα in terms of translocation from the 

cytosol to the plasma membrane. Once at the membrane, it can bind PS and moves to the 

outer membrane leaflet [19]. 

In addition, PS exposure in the outer membrane leaflet of the RBCs membrane is of 

importance for the adhesion of RBCs to the endothelium in certain diseases such as sickle 

cell disease, malaria, β-thalassemia, and diabetes (e.g. [59-63]). These diseases are either 

caused or complicated by the transition through Ca
2+

 induced, coupled with PS exposure, 

exchange between non-adherent to adherent state of RBCs [25, 64, 65]. It is of particular 

interest for thrombus formation. How exactly the complete process looks like, however, 

is not yet fully known. 
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1.5 Vesicle formation 

 

Under stimulating conditions (e.g. with LPA or PMA), together with the PS exposure 

also a formation and release of vesicles has been observed in human RBCs [66]. 

Extracellular vesicles (EVs) are spherical fragments of cell membrane released from 

various cell types under physiological as well as pathological conditions. Based on their 

size and origin, EVs are classified as exosome, microvesicles (MVs) and apoptotic bodies 

[67]. The formation of the vesicles increases with increasing Ca
2+

 content of the cells 

[68]. 

Exosomes are small enclosed membrane vesicles of nearly uniform size from 30 to 100 

nm already described by Johnstone during the in vitro culture of sheep reticulocytes [69]. 

They were also observed in a variety of cultured cells such as lymphocytes, dendritic 

cells, cytotoxic T cells, mast cells, neurons, oligodendrocytes, Schwann cells, and 

intestinal epithelial cells [70, 71]. In these cells, exosomes originate from the endosomal 

network that locates within large sacs in the cytoplasm. The release of exosomes to 

extracellular environment is carried out by the fusion of these sacs to the plasma 

membrane [70, 72, 73]. 

Recently, the release of MVs from human RBCs under different conditions has been 

reported [69]. Distinct from exosomes, the biogenesis of MVs arises through direct 

outward budding and fission of the plasma membrane following different kinds of cell 

activation or during early state of apoptosis [74]. Normally, MVs are larger compared to 

exosomes with size ranging from 50 to 1000 nm [74-76]. However, there is an 

overlapping of the size between exosomes and MVs. So far the mechanism of biogenesis 

is primarily used to distinguish MVs and exosomes [67, 75]. The formation and release of 

MVs is the result of dynamic processes of phospholipid redistribution and cytoskeletal 

protein breakdown [67].  

A vast amount of literature dealing with the release mechanism of MVs in RBCs and 

their properties in response to A23187, ATP depletion, oxidative stress and storage has 

been reported (e.g. [77-83]). In addition, an increase of the levels of RBC-derived MVs in 

the circulating blood of patients with sickle cell anemia (SCA), thalassemia and glucose- 

6-phosphate-deficiency (G6PD) has been observed [84, 85]. Morphological transitions of 

RBCs stimulated by exogenous compounds, according to the bilayer-couple hypothesis, 

also result in the formation of MVs [78, 81, 86]. Furthermore, the reorganization of the 
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cell membrane such as loss of asymmetrical membrane phospholipid distribution leads to 

membrane blebbing and formation of MVs [87-90]. Recently, several studies have shown 

that an increase of the intracellular Ca
2+

 concentration by opening Ca
2+

 channels or 

activation of PKC leads to PS exposure and formation of MVs in many different cell 

types including human RBCs [40, 52, 88, 89]. 

In contrast, apoptotic bodies have been characterized as largest EVs with the size varying 

from 1 to 5 μm. Nucleated cells undergoing apoptosis pass through several stages, 

beginning with condensation of the nuclear chromatin, followed by membrane blebbing, 

and finally releasing EVs and apoptotic bodies [67]. However apoptotic cells are also 

known to release smaller vesicles (MV) in response to apoptosis induction and these 

MVs are known to stimulate innate immune responses [91]. Although mature human 

RBCs have no nucleus and organelles, however, they are able to undergo an apoptosis-

like process (eryptosis, see above) with similar characteristics, e.g. membrane blebbing 

and formation of MVs [87, 88]. 

Although there is a number of reports about the formation of MVs in RBCs, 

investigations of the kinetics of this process as well the characterization of released MVs 

are still limited. By using different methods and techniques we investigated the kinetics 

of formation of MVs. In addition, the MVs released from human RBCs under different 

conditions were also isolated and characterized. 

 

1.6 Correlation between increased intracellular Ca
2+

 content and phosphatidylserine 

exposure in human red blood cells 

 

The Ca
2+

 influx in RBCs can be stimulated by various substances such as PGE2, LPA 

[52], or PMA [92], resulting in activation of the protein scramblase. This in turn leads to 

an increased PS exposure (see session 1.4). A further consequence of the Ca
2+

 influx is 

the activation of PKCα, which can phosphorylate other proteins [94]. Experiments show 

that Ca
2+

 influx and PS exposure are closely linked to protein phosphorylation and 

dephosphorylation [92]. The diacylglycerol (DAG), a PMA analogue, can activate the 

PKC in RBCs and cause its translocation from the cytosol to the cell membrane. Once at 

the membrane, it can bind DAG and PS and moves to the outer membrane leaflet [19]. 

Another, Ca
2+

-independent, activation mechanism of the scramblase has been discussed 
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[51]. However, activation by LPA or PMA does not lead to the reaction of all RBCs. Two 

subpopulations can be detected, a reactive (with increased intracellular Ca
2+

 content) and 

a non-reactive (with no significant change of the intracellular Ca
2+

 content) [40]. Another 

way to increase the intracellular Ca
2+

 content in RBCs is given by the Ca
2+

 ionophore 

A23187. The ionophore A23187 does not activate proteins directly [94], but generate 

pores in the cell membrane. Ca
2+

 can flow into the cells through the pores. Thereby 

almost all RBCs have an increase in the intracellular Ca
2+

 content and thus serve as a 

positive control. 

Inhibition of PKC by chelerythrine chloride results in a decreased Ca
2+

 influx after PMA 

stimulation [39]. Conversely, De Jong et al. [17] showed that the inhibition of PKC has 

no effect on the Ca
2+

 influx. Another way of increasing the intracellular Ca
2+

 

concentration in RBCs doesn’t exists since RBCs have no intracellular Ca
2+

 stores [39]. 

New results showed that the PS exposure on the outer side of the membrane and the Ca
2+

 

influx do not always correlate [90]. In fluorescence microscopy experiments RBCs with 

increased PS exposure and very low intracellular Ca
2+

 content and vice versa RBCs with 

high intracellular Ca
2+

 content but without PS exposure could be visualized (Fig. 4). 

 

 

Figure 4: Human RBCs with fluo-4 and annexin V-Alexa double staining 568 after stimulation of a 

Ca
2+

 influx with 2.5 µM LPA, 2 µM A23187 or 6 µM PMA. White arrows indicate cells with increased 

intracellular Ca
2+

 and PS exposure, green arrows cells with increased Ca
2+

 concentration without PS 

exposure and red arrows cells with only PS exposure [89]. 
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This finding raises the question of whether an increased Ca
2+

 content is essential for PS 

exposure, and/or whether a Ca
2+

 influx is the only factor responsible for the lipid 

redistribution (PS exposure). However, the kinetic of the two processes are unclear. The 

Ca
2+

-dependent signalling pathways, and the externalization of PS, play a crucial role in 

eryptosis, haemolysis, as well as the active participation of RBCs in the thrombus 

formation. The contributing mechanisms are only partly understood and further research 

may lead to improved therapies for many diseases and for more effective storage of 

blood. 

 

1.7 Red blood cell shape transformation 

 

RBCs are primarily responsible for the gas exchange in the body. They transport O2 from 

the lungs to the peripheral tissues and CO2 from there to the lungs. The RBCs have to 

pass through capillaries, whose diameter is smaller than that of the RBCs themselves (7.5 

µm) [3]. Therefore, the necessary deformability is ensured by the absence of organelles 

and a flexible plasma membrane. These properties allow the RBCs to take several 

different cell shapes. Starting from the classical biconcave discocyte shape, the RBCs are 

able to transform to either, echinocyte or stomatocyte shapes (see session 1.1), depending 

on a large variety of membrane and cytoplasmatic parameters [95-97]. The classical 

theory explaining the RBC shape is based on the bilayer-coupled hypothesis developed 

by Sheetz and Singer [86]. Changes of the membrane curvature (i.e. cell shape) are based 

on an expansion of the inner or outer membrane leaflet relative to the other one, since the 

two leaflets cannot separate from each other due to their coupling by hydrophobic 

interactions [86]. 

It has been demonstrated that an expansion of one of the leaflets can occur after the 

transversal redistribution of the membrane phospholipids or after an insertion of 

amphiphilic compounds intro the membrane. Both processes needs at least several 

minutes. On the other hand, a quickly transformation can occur due to conformational 

changes of integral membrane proteins. Such a process happens in a few seconds [97]. 

Echinocytosis can be induced by outer lipid leaflet expansion [97, 99] or inner leaflet 

contraction [97-100]. 
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1.8 Aims and scope  

 

In this work the influence of Ca
2+

 uptake with respect to the PS exposure of human RBCs 

has been investigated. Ca
2+

 uptake as well PS exposure in RBCs were activated with 

different stimulating substances (LPA, activator of the NSVDC channel), PMA (activator 

of the PKC) and A23187 (Ca
2+

 ionophore, used as a positive control). The experiments 

were carried out using a flow cytometer and a fluorescence microscope (in some cases 

also a confocal microscope). 

The first question of the present work was to investigate some methodological issues. 

This is based on the findings that quantitative discrepancies with respect to results 

obtained by different investigators and also with respect to the LPA batches used have 

been observed. In addition, we realized differences comparing the results of single and 

double labelling experiments (for Ca
2+

 and PS). For this reason, single and double 

labelling experiments using a verity of fluorescent dyes were carried out to understand 

the challenge and to be able to compare results obtained by different research groups. 

Another fundamental question was to study whether an increased Ca
2+

 content is solely 

the cause of PS exposure. It was also necessary to investigate the participation of the Ca
2+

 

activated K
+
 channel in the PS exposure. Furthermore, it has to be clarified why exist 

some RBCs with increased intracellular Ca
2+

 content but no PS exposure and vice versa 

some RBCs showing PS exposure but no increased intracellular Ca
2+

 content. 

To investigate this effect, RBCs separated by age were analyzed. In addition, the shape of 

the RBCs has to be taken into consideration. 
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Abstract 

Background/Aims: In previous publications we were able to demonstrate that 

there is no correlation between the intracellular Ca
2+

 content and the exposure of 

phosphatidylserine (PS) in the outer membrane leaflet after activation of red blood cells 

(RBCs) by lysophosphatidic acid (LPA), phorbol-12 myristate-13acetate (PMA), or 4-

bromo-A23187 (A23187). It has been concluded that three different mechanisms are 

responsible for the PS exposure in human RBCs: (i) Ca
2+

-stimulated scramblase 

activation (and flippase inhibition) by A23187, LPA, and PMA; (ii) PKC activation by 

LPA and PMA; and (iii) enhanced lipid flip flop caused by LPA. The aim of our further 

studies was to find out the relation between the increased Ca
2+

 content, scramblase- and 

PKC-activation, and PS exposure of RBCs. Another question was to investigate the role 

of the Ca
2+

-activated K
+
 channel activity in the process of PS exposure. In addition, cell 

volume changes have to be taken into consideration.  

Methods: The intracellular Ca
2+

 content and the PS exposure of RBCs have been 

investigated after treatment with LPA (2.5 µM), PMA (6 µM), or A23187 (2 µM). Fluo-4 

and annexin V-FITC has been used to detect intracellular Ca
2+

 content and PS exposure, 

respectively. Both parameters (Ca
2+

 content, PS exposure) were studied using flow 

cytometry. Conditions to inhibit the scramblase, the PKCα, and the Ca
2+

-activated K
+
 

channel have been applied. 

Results: The percentage of RBCs showing PS exposure after activation with LPA, PMA, 

or A23187 is significantly reduced after inhibition of the scramblase using the specific 

inhibitor R5421 as well as after the inhibition of the PKCα using chelerythrine chloride 

or calphostin C. The inhibitory effect is more pronounced when the scramblase and the 

PKCα are inhibited simultaneously or when both PKCα inhibitors are used 

simultaneously. In addition, the inhibition of the Ca
2+

-activated K
+
 channel using 

charybdotoxin resulted in a significant reduction of the perentage oof RBCs showing PS 

exposure. A simple change of the cell volume was without effect.  

Conclusion: It can be concluded that not only Ca
2+

 activating the scramblase but also the 

PKCα activated by LPA and PMA in a Ca
2+

-dependent and a Ca
2+

-independent manner 

play a substantial role in affecting the PS exposure. Furthermore, the activity of the Ca
2+

-

activated K
+
 channel seems to be of importance for the PS exposure.  
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Introduction 

When the endothelium of blood vessels is damaged, platelets become activated 

and transport phosphatidylserine (PS) to their external membrane surface [1]. The 

exposed PS provides a catalytic surface for the formation of active enzyme-substrate 

complexes of the coagulation cascade, especially for the tenase and prothrombinase 

complexes [2]. Under these circumstances exposed PS provides a pro-coagulant surface 

and is, in general, needed as a response to injury. So it is logical that the mechanism of 

PS exposure has to occur with a relative high transport rate of the lipids. Platelets treated 

with a Ca
2+

 ionophore show a scrambling rate of 87 × 10
-3

 per second [2]. Human red 

blood cells (RBCs) also show the mechanism of PS exposure after increased intracellular 

Ca
2+

 content [3-5] and are able to adhere to endothelial cells under pathophysiological 

conditions [6-9]. In addition, exposure of PS at the external membrane of RBCs is a 

typical sign of eryptosis (a term introduced by Lang et al. [10]), defining the suicidal 

death of RBCs. Exposed PS is sought to serve as a signaling component for macrophages 

to eliminate old or damaged RBCs from the circulation [11-14]. Since eryptotic RBCs 

can adhere to the vascular wall, which may lead to disturbance of the microcirculation 

[15], the elimination of these cells is a very important mechanism. Beyond that, it was 

also shown that RBCs with an increased Ca
2+

 content adhere towards each other under in 

vitro conditions [16]. However, compared to platelets, RBCs have a lower scrambling 

rate (0.45 × 10
-3

 per second) [2].  

The outward-directed transport of PS is realized by a protein stimulated by an 

increased intracellular Ca
2+

 content termed ‘scramblase’ [17-19]. The identity of this 

protein has been identified only recently as a member of the TMEM16 or anoctamin 

family of proteins and the crystal structure was published [20].   

Ca
2+

 uptake of RBCs through Ca
2+

-permeable channels [21-24] does not only 

activate the scramblase, it also leads to an activation of the Ca
2+

-activated K
+
 channel 

(Gardos channel) [24, 26]. The result is an efflux of KCl and osmotically obliged H2O, 

which causes shrinkage of the cells [26, 27].  

Another consequence of increased intracellular Ca
2+

 content is the activation of 

the protein kinase Cα (PKCα) [28]. Since mature RBCs lack nuclei and organelles, 
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cellular responses have to be modulated by post-translational modifications. Therefore, 

phosphorylation mediated by the PKCα is of great importance for intracellular signal 

transduction pathways [29]. In addition, it has been discussed that an activation of the 

PKCα results in an enhanced uptake of Ca
2+

 into the cells, i.e. acting as a positive 

feedback [30]. It has also been speculated that an activation of the PKC induces PS 

exposure via a Ca
2+

-independent mechanism [30].    

In recently published papers of our research group we investigated the PS 

exposure of RBCs after stimulating the cells with different substances. Phorbol 12-

myristate 13-acetate (PMA) has been used to activate the PKCα. For comparison, 

lysophosphatidic acid (LPA) and the Ca
2+

 ionophore A23187 (as positive control) was 

used to stimulate the increase of the intracellular Ca
2+

 content of the RBCs [3, 21, 31, 

32]. 

From the results obtained it has been concluded that three different mechanisms 

are responsible for the PS exposure in human RBCs: (i) Ca
2+

-stimulated scramblase 

activation (and flippase inhibition) by A23187, LPA, and PMA; (ii) PKCα activation by 

LPA and PMA; and (iii) enhanced lipid flip flop caused by LPA [3]. 

Therefore, the aim of our further studies was to find out the relation between the 

increased Ca
2+

 content, PKCα activation, and PS exposure of RBCs. Another question 

was to investigate the role of the Ca
2+

-activated K
+
 channel activity in the process of PS 

exposure. In addition, cell volume changes and/or changes of the K
+
 concentration have 

to be taken into consideration. To solve the raised questions, conditions to inhibit the 

PKCα, the Ca
2+

-activated K
+
 channel, and the scramblase have been applied.  

  

Material and Methods 

Blood and solution  

Human venous blood from healthy human volunteers was obtained from the 

Institute of Clinical Haematology and Transfusion Medicine, Saarland University 

Hospital, Homburg, or from the Institute of Sports and Preventive Medicine, Saarland 

University, Saarbruecken. EDTA or heparin was used as anticoagulants. Freshly drawn 

blood samples were stored at 4°C and used within one day. Blood was centrifuged (2,000 

g, 5 min) at room temperature and the plasma and buffy coat was removed by aspiration. 

Subsequently, RBCs were washed 3 times in HEPES-buffered physiological solution 

(HPS) containing (mM): 145 NaCl, 7.5 KCl, 10 glucose, 10 HEPES, pH 7.4 under the 
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same conditions. Finally, RBCs were re-suspended in HPS and stored at 4°C until the 

beginning of the experiment. The experiment was started immediately after resuspension 

of the cells.  

RBC labelling 

The procedure to prepare RBCs for measurements of intracellular Ca
2+

 content as 

well as PS exposure is based on the protocols of Nguyen et al. [3] and Wesseling et al. 

[31, 32]. 

Measurement of intracellular Ca
2+

 content: RBCs were loaded with 1 µM fluo-4 

AM from a 1 mM stock solution in dimethyl sulfoxide (DMSO) in 2 ml HPS as described 

before [xx]. The extracellular Ca
2+

 concentration was 2 mM, i.e. CaCl2 was added to the 

HPS. Cells were incubated at a haematocrit of about 0.1 % in the dark for 30 min at 37°C 

with continuous shaking.  Then the cells were washed again (16,000 g, 10 s) with an ice-

cold HPS, re-suspended and used for measurements, i.e used for control measurements or 

for activation by different substances (A23187, LPA, PMA).  

Measurement of PS exposure: PS exposure was detected using annexin V-FITC at 

a concentration of 4.5 µM. The cells were prepared as for measurement of the Ca
2+

 

content. The RBCs were incubated with different substances (A23187, LPA, PMA) 

between 1 min and 30 min at 37°C. Then the cells were washed again (16,000 g, 10 s) 

with an ice-cold HPS and re-suspended.  Finally annexin V-FITC was added and the cells 

were incubated in HPS with the addition of 2 mM Ca
2+

 at a haematocrit of 0.1 % and 

room temperature for 10 min in the dark. The measurements were performed at room 

temperature.   

Treatment of RBCs with different substances / under different experimental conditions 

Cells in HPS containing additionally 2 mM CaCl2 (haematocrit 0.1 %) were 

activated with A23187 or PMA for 30 min and with LPA for 1 min in Eppendorf tubes 

under continuous shaking at 37°C. When chelerythrine chloride was used, the cells were 

pre-incubated for 20 min under the same conditions [xx]. In case of pre-incubation with 

calphostin C, charybdotoxin, or R5421 the incubation time was 30 min [xx]. Before 

substances to activate the RBCs were added (A23187, LPA, PMA), the cells were 

washed once in HPS containing additionally 2 mM CaCl2.  

To avoid KCl efflux and cell shrinkage, i.e. to block the Ca
2+

-dependent K
+
 

channel, RBCs were transferred into a high K
+
 HEPES-buffered solution containing 

(mM): 150 KCl, 2.5 NaCl, 10 glucose, 10 HEPES, pH 7.4. Again 2 mM CaCl2 was added 
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to the solutions before activating the RBCs with different substances. To change the 

volume of the RBCs, they were transferred into a sucrose-containing HPS containing 

(mM): 145 NaCl, 7.5 KCl, 2 CaCl2, 10 glucose, 30 sucrose, 10 HEPES, pH 7.4 (for 

shrinkage) or into HPS with reduced NaCl concentration containing (mM): 130 NaCl, 7.5 

KCl, 2 CaCl2, 10 glucose, 10 HEPES, pH 7.4 (for swelling).   

Flow cytometry and fluorescence microscopy 

To analyse the RBCs we used the flow cytometer ‘FACSCalibur’ and the software 

Cell Quest Pro (Becton Dickinson Biosciences, Franklin Lakes, USA) as described 

before [3, 31, 32]. The fluo-4 and annexin V-FITC fluorescence signals were measured in 

the FL-1 channel, with an excitation wavelength of 488 nm and an emission wavelength 

of 520/15 nm. Forward scatter (FSC) was analysed to determine cell volume changes. For 

each experiment 30,000 cells were collected. 

Fluorescence microscopy was carried out with the inverted fluorescence 

microscope Eclipse TE2000-E (Nikon, Tokyo, Japan) and the imaging software VisiView 

(Visitron Systems, Puchheim, Germany) as described before [3, 31, 32].. Images were 

taken with the camera CCD97 (Photometrics, Tucson, USA) using a 100×1.4 (NA) oil 

immersion lens with infinity corrected optics. Diluted RBC samples (haematocrit 0.1 %) 

were placed on a cover slip in the dark at room temperature. From each RBC sample 5 

images from different positions of the cover slip randomly chosen were taken.  

Reagents 

Ca
2+

 ionophore A23187, lysophosphatidic acid (LPA), phorbol 12-myristate 13-

acetate (PMA), chelerythrine chloride, calphostin C, and charybdotoxin were purchased 

from Sigma-Aldrich (Munich, Germany). All substances (except charybdotoxin, which 

was dissolved at 20 µM in HPS) were dissolved at 1 mM in DMSO and stored at -20°C. 

For each experiment a new aliquot was used.  R5421 was obtained from the company 

Endotherm (Saarbruecken, Germany) where it has been synthesized according to the 

structure published by Dekkers et al. [19] (see Fig. 3 therein), dissolved at 100 mM in 

DMSO, and stored at room temperature. The substance has not been patented. Fluo-4 AM 

and annexin V-FITC was obtained from Molecular Probes (Eugene, USA).  

Statistics 

Data are presented as mean values +/- S.D. of at least 3 independent experiments. 

The significance of differences was tested by ANOVA. Statistical significance of the data 

was defined as follows: (**): p ≤ 0.01, (*): p ≤ 0.05, not significant: p > 0.05. 
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Results 

It has been shown before that there is no correlation of the percentage of RBCs 

with increased Ca
2+

 content and the percentage of PS exposing cells after stimulating the 

cells with different substances [3, 32]. The highest amount of RBCs showing PS 

exposure was obtained after stimulating the cells with PMA (in comparison to LPA or 

A23187 (positive control)), although in this case the percentage of cells with increased 

intracellular Ca
2+

 content was lowest. This effect is due to a PMA-induced PS exposure 

in the absence of extracellular Ca
2+

, which was not seen in case of treatment with LPA or 

A23187 [3].   

To investigate the involvement of the scramblase, the PKCα and the Ca
2+

-

activated K
+
 channel in changes of the intracellular Ca

2+
 content and PS exposure in more 

detail, inhibitors for each pathway have been used.  

Inhibition of the scramblase 

A pre-incubation with 100 µM of the scramblase inhibitor R5421 ([19], for details 

see Reagents) leads to different results when the RBCs are activated with A23187, LPA, 

or PMA (Fig. 1A). For A23187, a pre-incubation with R5421 does not affect the 

percentage of cells with elevated intracellular Ca
2+

 content. In case of LPA, the number 

of cells with elevated intracellular Ca
2+

 is slightly increased after incubation with R5421 

compared to control. For PMA the opposite effect can be seen, i.e. the percentage of 

RBCs with increased intracellular Ca
2+

 content is significantly reduced after incubation 

with R5421. The control value for RBCs with elevated Ca
2+

 content in the absence of any 

activating substance was 0.80 ± 0.09 % in the absence of R5421 and 1.12 ± 0.20 %, in 

presence of R5421. For A23187 and LPA, the fluo-4 intensity was not influenced by a 

pre-incubation with R5421 (data not shown). However, for PMA the fluo-4 intensity was 

significantly reduced from 567.85 a.u. to 302.54 a.u. after treatment with R5421. 

The situation for PS exposure is different. As shown in Fig. 1B, pre-incubation 

with R5421 leads to a significant reduction of the percentage of RBCs showing PS 

exposure in all three cases of activation (A23187, LPA, PMA). The strongest effect of 

inhibition using R5421 can be seen for A23187 activation. Inhibition of LPA- and PMA-

activated PS exposure is less pronounced. The control value for RBC showing PS 

exposure in the absence of any activating substance was 0.98 ± 0.15 % in the absence of 

R5421 and 1.99 ± 0.80 % in the presence of R5421. Higher concentrations of R5421 (up 

to 1 mM) did not lead to significant higher reductions but caused strong haemolysis (data 
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not shown). As can be seen from the images presented in Fig. 2, the inhibitor R5421 

causes also shape changes of the RBCs.  

Inhibition of the PKCα 

Chelerythrine chloride and calphostin C have been used to inhibit the PKCα. 

Chelerythrine chloride is an inhibitor of the active site of PKCα, whereas calphostin C 

blocks the PMA- and diacylglycerol-binding site of the PKCα [33, 34]. 

The percentage of RBCs that show an increase in the intracellular Ca
2+

 content is 

not affected by an inhibition of the PKCα using chelerythrine chloride in case of A23187- 

and LPA-activation.  In contrast, a significant reduction can be seen after PMA activation 

(Fig. 3A). The control value for RBCs with elevated Ca
2+

 content in the absence of any 

activating substance was 1.15 ± 0.30 % in the absence and 1.50 ± 0.72 %, in presence of 

chelerythrine chloride, respectively. 

The situation for PS exposure is slightly different. Although there is no significant 

change of the PS exposing RBCs after A23187 activation, a significant reduction of the 

cells showing PS exposure can be seen after activation with LPA or PMA (Fig. 3B). The 

control value for RBC showing PS exposure in the absence of any activating substance 

was 1.13 ± 0.13 % in the absence and 1.24 ± 0.40 % in the presence of chelerythrine 

chloride, respectively. 

Using the PKCα inhibitor calphostin C, the following results have been obtained: 

The percentage of cells showing an increased Ca
2+

 content does not change significantly 

after A23187 activation but is slightly (but not significantly) decreased after LPA 

activation. The decrease after PMA activation is much more pronounced and significant 

(Fig. 3A). The control value for RBCs with elevated Ca
2+

 content in the absence of any 

activating substance was 1.16 ± 0.16 % in the absence and 1.39 ± 0.68 %, in presence of 

calphostin C, respectively. The data for the PS exposure are comparable with the results 

obtained for the inhibition with chelerythrine chloride. No significant change of the PS 

exposing RBCs after A23187 activation has been observed but a significant reduction of 

the cells showing PS exposure can be seen after activation with LPA or PMA (Fig. 3B). 

The control value for RBC showing PS exposure in the absence of any activating 

substance was 1.08 ± 0.03 % in the absence and 1.02 ± 0.32 % in the presence of 

calphostin C, respectively. 

Inhibition of the scramblase and the PKCα using 2 inhibitors simultaneously 
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We carried out experiments where RBCs have been activated with LPA and the 

PKCα has been inhibited by using chelerythrine chloride and calphostin C 

simultaneously. In this case, the percentage of cells showing an increased Ca
2+

 content 

was significantly reduced (Fig. 4A, cp. with Fig. 3A). The reduction of the PS exposing 

cells was even more pronounced compared with the situation of the inhibition using one 

of the two PKCα inhibitors alone (Fig. 4B, cp. with Fig. 3B).  In addition, RBCs have 

been activated with PMA. The obtained data show that in this case a double inhibition 

using chelerythrine chloride and calphostin C does not lead to a larger inhibition of the 

percentage of RBCs with an elevated Ca
2+

 content compared with an inhibition using one 

of the substances alone (Fig. 4A, cp. with Fig. 3A). However the percentage of cells with 

PS exposure is much more pronounced compared with the data measured with one 

inhibitor only (Fig. 4B, cp. with Fig. 3B).  

In another set of experiments we inhibited the PKC and the scramblase 

simultaneously using one PKC inhibitor and the scramblase inhibitor R5421. In case of 

RBC activation with LPA, the simultaneous inhibition of the PKC using chelerythrine 

chloride and the scramblase using R5421 did not result in a decrease of the percentage of 

the cells with a higher Ca
2+

 content but resulted in a dramatic decrease of the cells 

showing PS exposure (Fig. 4A and B). When the PKC and the scramblase were inhibited 

simultaneously with calphostin C and R5421, respectively, a significant reduction of the 

percentage of cells with an enhanced intracellular Ca
2+

 content has been observed (Fig. 

4A). For the PS exposure again a dramatic (significant) decrease can be seen like in cases 

of  chelerythrine chloride and calphostin C or chelerythrine chloride and R5421 (Fig. 

4B). The control values in the absence of the activating substances for all combinations 

of inhibition presented in Fig. 4A and B are not significantly different from the values 

obtained for inhibition with one of the substances. 

Inhibition of the K
+
 efflux via the  Ca

2+
-activated K

+
 channel and change of cell volume 

To inhibit the Ca
2+

-activated K
+
 channel, the classical inhibitor charybdotoxin has 

been applied [26, 35]. The inhibitor did not affect the percentage of cells showing an 

increased intracellular Ca
2+

 content after stimulation with A23187, i.e. nearly all RBCs 

showed an evaluated Ca
2+

 level in the absence or presence of charybdotoxin (Fig. 5A). 

The PS exposure, however, was reduced to a very low level, i.e. close to values of the PS 

exposure obtained in the absence of any activating substance (Fig. 5B). Interestingly, in 

case of LPA activation, the percentage of cells with increased intracellular Ca
2+

 content 
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was significantly decreased and again PS exposure decreased to a very low level (Fig. 5A 

and B). This effect has been observed over a time period of 60 min (not shown). In case 

of PMA activation, again the percentage of cells with increased Ca
2+

 content was not 

affected by charybdotoxin (Fig. 5A). However, the PS exposure was significantly 

decreased in the presence of the inhibitor (Fig. 5B). 

In another set of experiments, we increased the extracellular K
+
 concentration of 

the HPS, compensating the osmolarity by reducing the Na
+
 concentration. Elevation of 

the extracellular K
+
 concentration reduces the efflux of K

+
 through the Ca

2+
-activated K

+
 

channel, resulting in a decreased loss of KCl and osmotically obliged H2O. This in turn 

leads to a diminished shrinkage of the cells. One can assume that an elevation of the 

extracellular KCl concentration to 150 mM (instead of 145 mM NaCl plus 7.5 mM KCl 

of the normal HPS the high K
+
 HPS contains 150 mM KCl plus 2.5 mM NaCl) 

completely blocks the K
+
 efflux via the Ca

2+
-activated K

+
 channel, i.e. the cell volume 

remains constant. The cell volume has been taken as the forward scatter (FSC) measured 

with flow cytometer (data obtained with A23187 activation are presented in Fig. 6, a 

similar change of the FSC was obtained for LPA- and PMA-activation (data not shown)). 

The percentage of RBCs showing an increased intracellular Ca
2+

 content does not change 

in solution of high extracellular K
+
 content (high K

+
 HPS) in all 3 cases of activation 

(LPA, PMA, A23187) compared to the normal HPS (data not shown). However, as 

shown in Fig. 7, an inhibition of the K
+ 

efflux in high K
+
 HPS is able to significantly 

reduce the A23187- as well as the LPA-induced PS exposure. In contrast, the PMA-

induced PS exposure is not affected by high K
+
 HPS (Fig. 7). The addition of 

charybdotoxin to the normal and high K
+
 HPS resulted in a significant reduction of the 

percentage of RBCs showing PS exposure after PMA activation from 63.79 ± 5.31 % to 

33.18 ± 8.87 % (n = 3) and from 57.55 ± 4.95 % to 32.27 ± 7.88 % (n = 3), respectively. 

The corresponding values in the absence and presence of charybdotoxin are not 

significantly different.  

To investigate a possible effect of the cell volume on the intracellular Ca
2+

 content 

as well as PS exposure of RBCs, the cells were shrunken by adding 30 mM sucrose to the 

HPS and swollen by using the HPS with reduced NaCl concentration (130 mM NaCl 

instead of 145 mM). Surprisingly, there is neither a significant change in the percentage 

of cells with elevated intracellular Ca
2+ 

content nor of the PS exposure compared to 

control (data not shown). Therefore, one can conclude that a simple change of the RBC 
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volume does not have a significant influence on the Ca
2+

 content as well as the PS 

exposure.   

 

Discussion 

From our findings one can conclude that the mechanism of PS exposure cannot be 

explained by a simple increase of the intracellular Ca
2+

 content alone. Treatment of RBCs 

with the ionophore A23187 leads to an artificial increase in the intracellular Ca
2+

 content 

of all cells. This in turn induces a number of mechanisms: (i) activation of the scramblase 

(and inhibition of the flippase), which results in an exposure of PS to the outer membrane 

leaflet [36], (ii) activation of the Ca
2+

-activated K
+
 channel resulting in an efflux of KCl 

and osmotically obliged H2O [25, 27, 37], (iii) activation of the PKCα [30] leading to an 

activation of calpain, which results in cytoskeleton destruction, microvesicle generation 

and membrane blebbing [10, 38, 39]. Our results also show that RBC activation with 

A23187 leads only in one third of the cells to PS exposure, although the intracellular Ca
2+ 

is increased in nearly all cells. Similar results can be seen also for the RBC activation 

with LPA. However, interestingly the situation is opposite for PMA activation. In this 

case a much higher fraction of cells showing PS exposure can be observed although only 

a small fraction of cells react with an elevated intracellular Ca
2+

 content. Therefore, one 

can conclude that the increase in the intracellular Ca
2+

 is not solely responsible for PS 

exposure. To gain further insight into the correlation of increased intracellular Ca
2+

 

content and PS exposure, we used the specific scramblase inhibitor R5421 [19, 40, 41]. 

Its mechanism of action is still unknown, but it seems to act as an irreversible inhibitor, 

since its inhibitory effect could not be reversed by washing the cells [40]. Inhibition of 

the scramblase leads to a significant reduction of PS exposure in all 3 cases of RBC 

activation, most pronounced with about 80% inhibition for A23187 activation (Fig. 1). It 

might be that a higher concentration of R5421 would reduce the amount of RBCs with PS 

exposure to lower values. However, higher concentrations led to haemolysis of the cells. 

It cannot be excluded that in case of LPA activation, based on an insertion of the 

molecule into the membrane, the flip-flop process is enhance leading to a higher amount 

of cells with PS exposure. In case of PMA activation it seems obvious that there is a 

Ca
2+

-independent pathway resulting in an enhanced PS exposure. Such a mechanism has 

already been discussed by Nguyen et al. [3] and Wagner-Britz el al. [21].
 



105 

 

We also used 2 conventional inhibitors of the PKC, chelerythrine chloride [33, 42, 

43] and calphostin C [30, 34], to gain further insight. Both inhibitors leading to the same 

result, reducing the amount of cells with evaluated Ca
2+

 content in case of PMA 

activated. Such an effect can be explained taking into consideration that PKCα 

phosphorylates the ω-agatoxin-TK-sensitive, Cav2.1-like (P/Q-type) Ca
2+

 channel [43]. 

This phosphorylation is reduced when the PKCα is inhibited. This is not the case when 

the RBCs are activated with LPA. In this case the NSVDC channel is activated, which is 

not affected by the PKCα. That the number of cells with PS exposure is significantly 

decreased using the PKCα inhibitors in both cases of activation (LPA, PMA) can be 

explained assuming that LPA and PMA activate the PKCα, which in turn activates the 

scramblase [30]. By comparing RBCs to other hematopoietic cells another possibility 

cannot be excluded. It seems likely that LPA acts over a G protein-coupled receptor. For 

other cell types it is known that this receptor activates a C-type phospholipase, producing 

diacylglycerol (DAG) and inostitol-3-phosphate (I3P). These second messengers activate 

the PKCα and trigger the Ca
2+

 influx into the cells [23].  

A double inhibition of the PKCα using chelerythrine chloride and calphostin C 

has a significant effect on the PS exposure (Fig. 4B). The values obtained are smaller 

compared to the results for PKCα inhibition using one inhibitor alone. Therefore, one can 

assume that both sides of inhibitor – PKCα interaction are of importance. That there is 

also a clear reduction of the percentage of RBCs showing PS exposure in case one 

inhibitor of the PKCα and the scramblase inhibitor R5421 is applied together (compared 

to the results where they have been used separately) shows that at least two different 

pathways exist, which are involved in the process of PS exposure. 

We carried out 2 different sets of experiments to block the Ca
2+

-activated K
+
 

channel. In one series of experiment we used the inhibitor charybdotoxin [35], in another 

series we enhanced the extracellular KCl concentration up to 150 mM. Charybdotoxin 

does not affect the amount of cells with elevated Ca
2+

 content in case of RBC activation 

with A23187 or PMA (Fig. 5A). That there is a significant reduction in case of LPA 

activation can be explained assuming that charybdotoxin inhibits not only the Ca
2+

-

activated K
+
 channel but also channels permeable for cations like the NSVDC channel. 

This channel is opened by LPA and responsible for the Ca
2+

 uptake as has been described 

before [5, 44]. It cannot be excluded that charybdotoxin blocks the ω-agatoxin-TK-

sensitive, Cav2.1-like (P/Q-type) Ca
2+

 channel. Interestingly, the PS exposure was 
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significantly reduced by charybdotoxin in all 3 cases of RBC activation (A23187, LPA, 

PMA). Although the effect observed after LPA activation seems due to the fact that the 

percentage of cells with increased intracellular Ca
2+

 content is reduced, the data for 

A23187- and PMA-activation clearly show that the  Ca
2+

-activated K
+
 channel is 

involved in the process of PS exposure. Such an assumption is supported by the findings 

that an enhancement of the extracellular KCl leads also to a reduction of the PS exposure, 

at least in case of RBC activation with A23187 or LPA. The only discrepancy we found 

for PMA activation where an increase of the KCl concentration was without significant 

effect. Interestingly, charybdotoxin reduced the percentage of RBCs showing PS 

exposure in normal HPS as well as in solution containing 150 mM KCl. Therefore, it 

might be that charybotoxin in addition to the inhibition of the Ca
2+

-activated K
+
 channel 

and Ca
2+

-permeable channels affects also the Ca
2+

-independent pathway relevant for PS 

exposure. The percentage of RBCs with PS exposure is smaller in case of PMA 

activation compared to A23187- or LPA-activation. One could speculate that in case of 

PMA activation the effect on the Ca
2+

-activated K
+
 channel is less pronounced compared 

to the activation with A23187 or LPA when the KCl concentration of the extracellular 

solution is changed. 

For A23187 one can see from the forward scatter measurements (Fig. 6) that the 

RBCs do not change the cell volume when there is no K
+ 

efflux via the Ca
2+

-activated K
+
 

channel, i.e. in high K
+
 HPS.  A simple effect of the cell volume on PS exposure can be 

ruled  out since shrinkage or swelling of the RBCs by using solutions with a lower NaCl 

concentration compared to the normal HPS (for shrinkage) or with the addition of sucrose 

to the normal HPS (for swelling) was without effect. 
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Figure legends 

 

Figure 1 

Percentage of RBCs (A) responding with increased intracellular Ca
2+

 content (elevated 

fluo-4 intensity) and (B) responding with increased PS exposure (annexin V-positive 

cells) after activation with A23187 (2 µM) for 30 min, LPA (2.5 µM) for 1 min, or PMA 

(6 µM) for 30 min in the absence or presence of the scramblase inhibitor R5421 (100 

µM) using flow cytometry. Mean values of at least 5 different blood samples (150.000 

cells), error bars = S.D. (only have error bars are shown for convenience). Significant 

differences, ANOVA (0.01 < p ≤ 0.05 (*); 0.001 < p ≤ 0.01 (**)) are shown in the figure.  

 

Figure 2 

Fluorescence microscopy images of RBCs after activation with A23187 (2 µM) for 30 

min, LPA (2.5 µM) for 1 min, and PMA (6 µM) for 30 min as well as control (absence of 

any activating substance) in the absence or presence of the scramblase inhibitor R5421 

(100 µM). Upper rows – transmitted light, lower rows – fluorescence images to detect PS 

exposure using annexin V-FITC. RBCs in HPS with additional CaCl2 (2 mM). 

Representative images out of 4 independent experiments.  

 

Figure 3 

Percentage of RBCs (A) responding with increased intracellular Ca
2+

 content (elevated 

fluo-4 intensity) and (B) responding with increased PS exposure (annexin V-positive 

cells) after activation with A23187 (2 µM) for 30 min, LPA (2.5 µM) for 1 min, or PMA 

(6 µM) for 30 min in the presence of the PKCα inhibitors chelerythrine chloride (Chel., 

10 µM) or calphostin C (Cal. C, 1 µM) compared to control (absence of PKCα inhibitors) 

using flow cytometry. Mean values of at least 3 different blood samples (90.000 cells), 

error bars = S.D. (only have error bars are shown for convenience). Significant 

differences, ANOVA (0.01 < p ≤ 0.05 (*); 0.001 < p ≤ 0.01 (**); p ≤ 0.001 (***)) are 

shown in the figure.  

 

Figure 4 

Percentage of RBCs (A) responding with increased intracellular Ca
2+

 content (elevated 

fluo-4 intensity) and (B) responding with increased PS exposure (annexin V-positive 
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cells) after activation with A23187 (2 µM) for 30 min, LPA (2.5 µM) for 1 min, or PMA 

(6 µM) for 30 min in the presence of the PKCα inhibitors chelerythrine chloride (Chel., 

10 µM) plus calphostin C (Cal. C, 1 µM), the PKCα inhibitor chelerythrine chloride 

(Chel., 10 µM) plus the scrambles inhibitor R5421 (100 µM), or the PKCα inhibitor 

calphostin C (Cal. C, 1 µM) plus the scrambles inhibitor R5421 (100 µM), compared to 

control (absence of inhibitors) using flow cytometry. Mean values of at least 3 different 

blood samples (90.000 cells), error bars = S.D. (only have error bars are shown for 

convenience). Significant differences, ANOVA (0.01 < p ≤ 0.05 (*); 0.001 < p ≤ 0.01 

(**); p ≤ 0.001 (***)) are shown in the figure.  

 

Figure 5 

Percentage of RBCs (A) responding with increased intracellular Ca
2+

 content (elevated 

fluo-4 intensity) and (B) responding with increased PS exposure (annexin V-positive 

cells) after activation with A23187 (2 µM) for 30 min, LPA (2.5 µM) for 1 min, or PMA 

(6 µM) for 30 min in the absence or presence of Ca
2+

-activated K
+
 channel inhibitor 

charybdotoxin (CTX, 20 nM) using flow cytometry. Mean values of at least 3 different 

blood samples (90.000 cells), error bars = S.D. (only have error bars are shown for 

convenience). Significant differences, ANOVA (0.001 < p ≤ 0.01 (**); p ≤ 0.001 (***)) 

are shown in the figure.  

 

Figure 6 

Flow cytometry analysis (forward scatter, FSC) of RBCs after activation with A23187 (2 

µM) for 30 min in normal physiological solution (HPS) containing 7.5 mM KCl, and 

solutions with higher KCl concentrations (compensated by a reduction of the NaCl 

concentration to keep the osmolarity constant) in comparison to control (absence of 

A23187). To all solutions 2 mM CaCl2 were added. Mean values of at least 4 different 

blood samples (120.000 cells), error bars = S.D. (only have error bars are shown for 

convenience). Significant differences, ANOVA (0.01 < p ≤ 0.05 (*); 0.001 < p ≤ 0.01 

(**)) are shown in the figure.  

 

Figure 7 

Percentage of RBCs (A) responding with increased PS exposure (annexin V-positive 

cells) after activation with A23187 (2 µM) for 30 min, LPA (2.5 µM) for 1 min, or PMA 
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(6 µM) for 30 min in normal physiological solution (HPS) containing 7.5 mM KCl and a 

solution containing 150 mM KCl (compensated by a reduction of the NaCl concentration 

to keep the osmolarity constant, for detailed composition see Material and Methods) 

using flow cytometry. Mean values of at least 6 different blood samples (180.000 cells), 

error bars = S.D. (only have error bars are shown for convenience). Significant 

differences, ANOVA (0.001 < p ≤ 0.01 (**)) are shown in the figure.  
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3. Discussion and conclusions 

 

The aim of this work was to investigate the relationship between increased intracellular 

Ca
2+

 content and PS exposure in human RBCs. Hence, two substances, LPA and PMA, 

have been used to induce Ca
2+

 uptake of RBCs. Another substance, A23187, served as 

positive control. First of all, some methodological issues have been taken into 

consideration. In our experiments we realised that RBC stimulation with LPA from 

different batches led to significant different results of the intracellular Ca
2+

 content as 

well as the PS exposure. The investigator and the experimental conditions as well as 

successive re-frozen/thawing processes of the substance batches (in our publication only 

LPA has been tested, however, the other substances could also have a similar behaviour) 

can also have an influence on the obtained results (see below). In addition, we realized 

differences comparing the results of single and double labelling experiments (for Ca
2+

 

and PS). For this reason, single and double labelling experiments using a verity of 

fluorescent dyes were carried out to understand the challenge and to be able to compare 

results obtained by different research groups. It was also necessary to investigate the 

participation of the Ca
2+

-activated K
+
 channel in the process of PS exposure. 

Furthermore, it has to be clarified why do exist some RBCs with increased intracellular 

Ca
2+

 content but no PS exposure and vice versa some RBCs showing PS exposure but no 

increased intracellular Ca
2+

 content. To investigate this effect, RBCs separated by age 

were analyzed. In addition, the shape of the RBCs was taken into consideration. 

 

3.1 Methodological issues by measurements of intracellular Ca
2+

 content and 

phosphatidylserine exposure in human red blood cells 

 

To investigate in more detail why different LPA batches lead to different response in the 

increasing intracellular Ca
2+

 content as well as PS exposure of RBCs, we performed 

experiments with LPA from 4 different batches, obtained from three different companies. 

All 4 LPA probes were freshly used, re-frozen only once and were applied to the same 

blood on the same day and using the same physiological solution. In addition, all 

experiments were carried out by the same investigator under identical experimental 

conditions. The obtained results are published in the paper of Wesseling et al. [101]. In 
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all cases of LPA activation there is a significant increase in the percentage of RBCs 

showing increased intracellular Ca
2+

 content and PS exposure compared to control. 

Interestingly, there are significant differences in the percentages of RBCs responding 

with increased intracellular Ca
2+

 content as well as PS exposure depending on the LPA 

batch used. In addition, we found that the LPA activation efficiency within a single batch 

decreased with the number of times the LPA stock solution was frozen and thawed. 

To study a possible effect of the experimenter on the results obtained, we performed 

experiments with two different ways of mixing the RBC suspensions after LPA 

activation. Double labelling experiments for Ca
2+

 content (using x-rhod-1) and PS 

exposure (using annexin V-FITC) after activation of RBCs with LPA were compared 

following simple shaking by hand and with vortexing  the RBC suspensions (both in 

Eppendorf tubes, 5 s each). One can observe a significant higher percentage of RBCs 

responding with increased intracellular Ca
2+

 content as well as PS exposure when the 

suspension has been vortexed after addition of LPA compared with simple shaking by 

hand. These results suggest that a mechanosensitve channel, like the recently reported 

Piezo1, may contribute to the LPA-induced Ca
2+

 entry ([102] and references therein). 

The intracellular Ca
2+

 content and the PS exposure of RBCs can be measured on the basis 

of single as well as double labelling experiments. Furthermore, different fluorescent dyes 

are available for the detection of both parameters. For intracellular Ca
2+

 content there is 

no significant difference between single and double labelling experiments. In addition, 

the results do not depend on the fluorescent dye (or the combination of the fluorescent 

dyes) used. However, the values for PS exposure of double labelling experiments are 

significantly lower for both fluorescent dyes (annexin V-FITC and annexin V alexa 

fluor® 647 (for PS), in combination with x-rhod-1 and fluo-4 (for Ca
2+

), respectively) 

compared to single labelling experiments (annexin V-FITC or annexin V alexa fluor® 

647 alone (for PS)). In addition,  the amount of RBCs showing PS exposure is also 

significantly different in single labelling experiments  when the cells  were stained with 

annexin V-FITC in comparison to annexin V alexa fluor® 647 as well as compared to the 

corresponding double labelling experiments. 

The reasons for the differences in single labelling versus double labelling experiments are 

multifactorial and can be explained by three major effects: (i) the Ca
2+

 buffering 

capacities of the Ca
2+

 fluorophores, (ii) the properties of the fluorescent dyes, and (iii) the 

temporal development of the Ca
2+

 signals (as discussed in [101]). 
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(i) Fluo-4 and x-rhod-1 have in vitro dissociation constants Kd for Ca
2+

 of 345 nM and 

700 nM, respectively [103].  In living cells these Kd’s are, dependent on their cellular 

localisation, and are usually increased [104]. Especially when taking the low resting Ca
2+

 

concentration in RBCs of around 60 nM [60] into account, the buffering capacity of the 

Ca
2+

 fluorophors loaded into the cells is high. The variety of the cellular responses [105] 

may add to the observed effects. Although the EC50 of the scramblase (30-70 µM) 

compared to the in vivo Kd of Fluo-4 (1 µM) [107] is several fold higher, there are 

observations suggesting that scrambling may actually require much less Ca
2+

 [107], and 

therefore the buffering of the Ca
2+

 is the most likely explanation for a lower PS exposure 

in the double labelled cells as depicted in Figs. 3B and 4B. The relative decrease in PS 

exposure of the double labelling compared the single labelling is much higher for fluo-4 

compared to x-rhod-1 (Fig. 3B). This observation is also in agreement with the Kd´s of 

the two fluorophors (see above) and hence their buffering properties. 

(ii) Other aspects that may contribute to the differences between FITC and alexa fluor® 

647 results are the photophysical properties of the dyes. Assuming that the fluorescence 

quantum yield of a cyanine dye (alexa fluor® 647) may change when the surrounding 

conditions are changed, e.g. in RBC haemoglobin close to the plasma membrane could be 

a factor influencing alexa fluor® 647. Isomerisation of double bonds of cyanine dyes is 

well known [108, 109]. Such changes in combination with wavelength dependencies of 

the detectors may account, at least partly, for the differences observed for PS detection 

based on FITC and alexa fluor® 647. Differences in incubation times for single and 

double labelling experiments as well as the solvent DMSO can be ruled out as sources for 

different results (we tested this by incubating the RBCs for 30 min in DMSO but without 

fluo-4, data not shown). 

(iii) Apart from the different LPA batches, measurements between Fig. 3 and Fig. 4 differ 

in their measurement time after LPA stimulation (1 min versus 30 min, respectively). 

After 30 min LPA stimulation, the PS exposure, which is a cumulative process, reaches 

in the presence of x-rhod-1 the same value as that in the absence of x-rhod-1. As 

mentioned before, due to its Kd, x-rhod-1 buffers the Ca
2+

 at a higher level compared to 

fluo-4. This Ca
2+

 level allows a basal scramblase activity, which in combination with the 

temporal aspects explains the differences observed between Fig. 3B and Fig. 4B. 
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Furthermore it is worthwhile to mention that de-esterification of the Ca
2+

 fluorophores 

may generate formaldehyde and thus affect RBC behaviour, namely by ATP-depletion 

[111], which can be prevented by the addition of pyruvate [111]. 

 

3.2 Automated image analysis of red blood cells 

 

To analyse fluorescent images taken from RBCs in fluorescence microscope we 

developed an automated image analysis system. Manual analysis of fluorescence images 

of RBCs requires the experimenter to count all cells in the images and to classify them 

according to their activation state. To classify the cells strongly depends on the 

experience of the investigator. A combination of well established image analysis 

techniques allows us to automate this task. With this technique we yield robust results, 

while saving valuable time. The automated system detects cells with high reliability and 

classifications are comparable to manual classifications. The manuscript containing the 

data of this paragraph has been submitted for publication [112]. 

 

3.3 Influence of cell age on the intracellular Ca
2+

 content and phosphatidylserine 

exposure 

 

In a population of human RBCs one can find cells with different age. They have a life 

span of about 120 days [5]. Depending on age, their density is different. Young cells have 

a lower density in comparison to old cells [113]. This makes it possible to separate them 

into fractions with different ages by density gradient centrifugation using Percoll [114]. 

Which factors are crucial for the aging process and the mechanisms for the removal of 

damaged or old RBCs from the blood stream is not yet fully understood. Assuming a 

higher intracellular Ca
2+

 concentration in old RBCs one could assume a higher amount of 

PS in the outer membrane leaflet of old RBCs compared to young once. On this basis it 

has been speculated that macrophages recognise old and senescent RBCs with a certain 

amount of PS in the outer membrane leaflet and remove them from the blood stream [54-

56]. It has been described that older RBCs have a higher intracellular Ca
2+

 content [115, 

116]. However, Makhro et al. [38] and de Haro et al. [117] reported that rat and human 

reticulocytes, respectively, have a higher Ca
2+

 content than the mature RBCs. 
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Furthermore, other authors have shown recently that PS exposure of human RBCs is 

independent of cell age [118]. Only after long-time incubation for 48 h in Ringer solution 

a significant increase in the intracellular Ca
2+

 content as well as PS exposure with cell 

age could be detected [119]. To solve the mentioned discrepancies as well as to 

understand why not all RBCs after stimulation do not react equally with an increased 

intracellular Ca
2+ 

content as wells as PS exposure, we performed short-time incubation 

experiments. The RBCs were separated in 5 fractions with different cell age. The results 

can be seen in Wesseling et al. [120]. 

Our data at time zero, i.e. before the stimulation show also a slightly higher percentage of 

older RBCs showing increased intracellular Ca
2+

 content and PS exposure compared to 

young ones. However, this effect is not significant and probably also not pronounced 

enough to explain the clearance of old RBCs from the blood stream on the basis of such 

mechanism. We could demonstrate that there are no significant differences in the 

intracellular Ca
2+

 content as well as PS exposure of RBCs of different age after 

stimulation of Ca
2+

 uptake and after short-time incubation. In addition, the findings of 

Nguyen et al. [89], showing that some RBCs have an increased intracellular Ca
2+

 content 

but no enhanced PS exposure and that some other cells have an elevated PS exposure but 

no significant increase of the intracellular Ca
2+

 content cannot be explained assuming that 

this effect is depending on the age of the RBCs. Our results also clearly show that only a 

relative small amount of the cells show PS exposure, although the intracellular Ca
2+ 

is 

increased in all cells by activation with the Ca
2+

 ionophore A23187. There is also no clear 

correlation between Ca
2+

 increase and PS exposure in case of LPA or PMA activation. 

Therefore one can conclude that the increase in the intracellular Ca
2+

 is not solely 

responsible for PS exposure in human RBCs. 

 

3.4 Participation of the scramblase, protein kinase C and Ca
2+

-activated K
+
 channel 

in the phosphatidylserine exposure in human RBCs 

 

To gain further insight into the correlation of increased intracellular Ca
2+

 content and PS 

exposure, we used specific inhibitors for some pathways that are correlated with PS 

exposure in human RBCs. Inhibition of the scramblase (using the scramblase inhibitor 

R5421) leads to a reduction of PS exposure of the cells. It seems obvious that the small 
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remaining population, reacting with PS exposure, does so upon the increase in the 

intracellular Ca
2+

 content, which is a trigger for the scramblase. The inhibition of the 

PKC with either, chelerythrine chloride (that inhibits the active site of the PKC [121]), or 

calphostin C (a blocker of the DAG and PMA binding site of the PKC [122]) also reduces 

the number of cells with PS exposure after stimulation with LPA or PMA. It was reported 

that it has no effect on Ca
2+

 uptake [17]. 

An elevated extracellular K
+
 concentration up to 150 mM (NaCl was replaced by KCl to 

have a constant osmolarity) leads to an inhibition of the Ca
2+

-induced K
+
 efflux through 

the Ca
2+

-activated K
+
 channel. Since activation of the Ca

2+
-activated K

+
 channel leads to 

a hyperpolarisation of the membrane, accompanied by a shrinkage of the cells due to a 

loss of KCl and osmotically obliged H2O [57], the cell shrinkage can be prevented by 

inhibition of the K
+
 efflux. If the K

+ 
efflux blocked, PS exposure is reduced. So, the 

activity of the Ca
2+

-activated K
+
 channel seems to be of importance for the PS exposure. 

Since we found out that the shrinkage of the cells alone has no influence on intracellular 

Ca
2+

 content or PS exposure, the K
+
 efflux via the Ca

2+
-activated K

+
 channel could 

somehow be a trigger for PS exposure or possibly for the scramblase itself. The data 

presented in this section are parts of a manuscript to be submitted (see publication of the 

results, section 2.5). 

 

3.5 Role of cell shape in the intracellular Ca
2+

 content and phosphatidylserine 

exposure 

 

Starting from the classical biconcave discocyte shape, the RBCs are able to transform to 

either, echinocyte or stomatocyte shapes [95]. Furthermore, another large variety of 

abnormal cell shapes can be observed in human RBCs [123]. Cell shape transformations 

have been investigated for many years and there are hundreds of publications about this 

topic [95-100]. The crucial point for the explanation of cell shape transformations is the 

bilayer-couple hypothesis developed by Sheetz and Singer [86]. Changes of the 

membrane curvature are based on an expansion of the inner or outer membrane leaflet 

relative to the other one, since the two leaflets cannot separate from each other due to 

their coupling by hydrophobic interactions [86]. The change of the membrane curvature 

leads to a shape change of the cells. An expansion of the outer membrane leaflet leads to 
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a formation of echinocytes, whereas an expansion of the inner membrane leaflet leads to 

a formation of stomatocytes [97-100]. 

The expansion of the membrane depends on a large variety of membrane and 

cytoplasmatic parameters [95-97]. An expansion of one of the leaflets can occur after 

transversal redistribution of the membrane phospholipids or an insertion of amphiphilic 

compounds intro the membrane (some amphiphils are staying in the outer membrane 

leaflet, some other compounds are moving to the inner membrane leaflet). Both processes 

need at least several minutes. On the other hand, a quickly transformation can occur due 

to conformational changes of integral membrane proteins. Such a process happens in a 

few seconds [97]. Since RBCs contain a protein, existing in 1,000,000 copies per cell 

(and occupying about 50 % of the cell surface), a conformational change of this protein 

can lead to a sudden shape change, which has been demonstrated by Betz et al. [124]. 

Using the protocol of Betz et al., [124] to induce RBC shape changes by applying 

different solutions we were able to transform RBCs predominantly into stomatocytes or 

echinocytes. Control experiments with discocytes in physiological solution have been 

carried out. After stimulating the Ca
2+

 influx in RBCs (with substances previously 

mentioned like A23187, LPA or PMA) of different cell shapes no significant differences 

has been observed in the percentage of RBCs with increased intracellular Ca
2+

 content. 

Interestingly, for the PS exposure the situation was different: echinocytes showed 

significantly less PS exposure while discocytes or stomatocytes showed higher values of 

the percentage of RBCs with PS exposure. The results of the experiments investigating 

the role of cell shape transformation for Ca
2+

 uptake and PS exposure can be seen in the 

appendix. 

Since the observed effect of existing some RBCs with PS exposure but no elevated Ca
2+

 

content is not depending on the age of the cells [120], we propose that the reason is due 

to the beginning of cell damage. This is probably accompanied by a loss of the Ca
2+

-

sensitive fluorescent dye (see Figure 5 in the appendix). On the other side, cells which 

have an increased intracellular Ca
2+

 content but no PS exposure are due to the fact that PS 

exposure depends on the cell shape (echinocytes do show PS exposure to a much lower 

extent compared to dicocytes or stomatocytes, see above and Figures 6 and 7 in the 

appendix). However, it cannot be excluded completely that in some of these cells PS 

exposure occurs at a time later than the measuring time and therefore these cells show 

only elevated intracellular Ca
2+

 content. 
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3.6 Conclusions 

 

The most raised questions (see aims and scope, 1.8) have been answered. Not completely 

answered is the question of existing RBCs with an increased Ca
2+

 content but no PS 

exposure. Although there is some evidence that this effect is due to different shapes of the 

RBCs, more effort is needed to be completely convinced. It would be interesting to see a 

change of the PS exposure in a single RBC during the process of the shape change. Such 

study could be possible to see under a fluorescence microscope applying amphiphilic 

substances. 

 

3.7 Outlook 

 

It has been demonstrated that Ca
2+

 uptake of RBCs activates the Ca
2+

-activated K
+
 

channel. In the present work it has been shown that the Ca
2+

-activated K
+
 channel 

participate in the PS exposure of RBCs. However, further experiments under 

activating/inhibiting conditions should be performed to investigate the correlation 

between the Ca
2+

-activated K
+
 channel, cell size and fluorescence intensity of RBCs 

using fluorescence microscopy. 

The existence of a Ca
2+

-independent pathway of PS exposure has not been investigated in 

this work in detail. Further experiments using Lactadherin (a Ca
2+

-free PS binding 

fluorescent dye) could help to get more insight. 

Furthermore, experiments using amphiphilic substances to induce cell shape 

transformations, could solve the remaining open questions about the effect of RBC shape 

for PS exposure.  
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4. Appendix 

The results of the experiments investigating the reason of existing some RBCs with 

increased intracellular Ca
2+

 content but no PS exposure and vice versa some RBCs 

showing PS exposure but no increased intracellular Ca
2+

 content as well as the role of cell 

shape transformation for Ca
2+

 uptake and PS exposure are presented here, since the 

manuscript has not been submitted for publication yet. 

 

4.1 Why some RBCs show only PS exposure without an elevated Ca
2+

 content? 

 

To investigate the kinetics of Ca
2+

 uptake and PS exposure (and how both parameters 

affect each other), RBCs have been stimulated with LPA. Images were taken under a 

fluorescence microscope. A randomly position has been chosen and several images of the 

same position on the cover slip (to study the same RBCs) were taken over a certain time 

period. In Figure 5 one can see at the left images that all five RBCs show an increased 

intracellular Ca
2+

 content (detected using x-rhod-1, in orange). Four of them also show 

PS exposure (detected using annexin V-FITC, in green). Surprisingly, a RBC (indicated 

with the white arrow) shows increased intracellular Ca
2+

 content but the cell suddenly 

disappeared from the transmitted light image (upper right picture). 

 

Figure 5: Fluorescence microscope images of RBCs with measurements of Ca
2+

 uptake (x-rhod-1, 

orange) and PS exposure (annexin V-FITC, green), after LPA stimulation. 
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However, PS exposure of this cell still can be seen (right middle picture). Therefore, it 

can be assumed that this cell undergoes eryptosis. This means that the cell is already 

damaged (although existing as a structure with holes) and Ca
2+

 and/or Ca
2+

 with the Ca
2+

-

sensitive fluorescent dye leave the cell. 

 

4.2 Why some RBCs show only an elevated Ca
2+

 content without PS exposure? 

 

Taken the RBC shape into consideration in the measurement of intracellular Ca
2+

 content 

and PS exposure an interesting observation was made in experiments using a 

fluorescence microscope. After stimulating the Ca
2+

 influx in RBCs (with substances 

previously mentioned like LPA, PMA, or A23187), single labelling experiments using 

fluo-4 (to detect Ca
2+

) and annexin V-FITC (to detect PS) have been performed. Several 

pictures of RBCs in randomly chosen positions on the cover slip have been taken under 

fluorescence microscope. The obtained results are depicted in Figure 6. Figure 6 A shows 

transmitted light and fluorescence images of RBCs for detection of the intracellular Ca
2+

 

content. Different cell shapes can be observed in the transmitted light pictures in case of 

all three activators. However, the fluorescence images reveal no differences or 

preferences of the cell shape for the increase of the Ca
2+

 content. However, the situation 

changes when analysing the PS exposure of the cells with different shape (Figure 6 B). In 

this Figure the transmitted light and fluorescence images of RBCs for the detection of the 

PS exposure is shown. Again different cell shapes can be observed, but in case of PS 

exposure the cell shape seems to play a decisive role. Indicated with white arrows some 

echinocytes can be seen in the transmitted light images. Almost all of them do not show 

PS exposure (see the corresponding fluorescence image). Only one echinocyte (indicated 

with the black arrow) can be observed showing PS exposure. 

To investigate this phenomenon in more detail shape changes of RBCs by applying 

different solutions/substances have been carried out according to the protocol of Betz et 

al. [124]. The following solutions have been used: Normal HEPES-buffered 

physiological solution (HPS) containing, in mM: 145 NaCl, 7.5 KCl, 10 glucose, 10 

HEPES, pH 7.4 (mostly discocytes); Low ionic strength solution (containing, in mM: 

sucrose 250, KCl 7.5, glucose 10, HEPES 10, pH 7.4)  + 10 µM DIDS (predominantly 
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echinocytes); HPS + 10 µM DIDS; predominantly stomatocytes or discocytes: Low ionic 

strength solution (blue); HPS pH 5.6 (violett). 

 

 

 

Figure 6: Transmitted light (up) and the corresponding fluorescence (down) images of RBCs showing 

intracellular Ca
2+

 content (detected using fluo-4) (A) and PS exposure (detected using annexin V-

FITC) (B). In A can be observed that the shape of the RBCs seems not to play a role in the Ca
2+

 uptake of 

the RBCs. Contrarily, in B can be observed that the shape of the RBCs are important for the PS exposure. 

Most of the cells showing PS exposure are discocytes or stomatocytes. Most echynocytes (indicated with 

arrows) are not showing PS exposure. 
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Using these solutions we were able to transform RBCs predominantly into stomatocytes 

or echinocytes. Transmitted light images of these RBCs on the microscope confirmed the 

RBC shape transformation (data not shown). Control experiments have been carried out 

to show that mostly discocytes exist in HPS solution. The Ca
2+

 uptake and the PS 

exposure of the RBCs were then stimulated with LPA and detected with double labelling 

(x-rhod-1 was used for Ca
2+

 and annexin V-FITC was used for PS). Kinetic 

measurements have been performed using flow cytometry. The obtained results are 

shown in Figure 7. 

 

     

Figure 7: Double labelling measurements of intracellular Ca
2+

 content (A) and PS exposure (B) 

detected with x-rhod-1 and annexin V-FITC, respectively, of human RBCs using flow cytometry. 

Different solutions to induce cell shape transformation have been used. Normal HPS solution with 

predominantly discocytes (black); predominantly echinocytes: Low ionic strength solution + 10 µM DIDS, 

(red); HPS + 10 µM DIDS (orange); predominantly stomatocytes or discocytes: Low ionic strength solution 

(blue); HPS pH 5.6 (violett). Composition of the solutions: see text. 

 

It can be seen in Figure 7 A that there is no clear correlation between cells shape and 

increased intracellular Ca
2+

 content. There is a slight, but not significant difference in the 

percentage of RBCs with increased intracellular Ca
2+

 content after 30 min activation with 

LPA in the solution with predominantly echinocytes (red curve). Interestingly, for the PS 

exposure the situation is different (Figure 7 B): echinocytes show significantly less PS 

exposure while discocytes or stomatocytes show higher values of the percentage of RBCs 

with PS exposure. This result suggests that the shape of the RBCs plays a substantial role 

in the PS exposure and maybe even of importance for the clearance of the RBCs from the 

blood stream. This is in accordance with results discussed by Sosale et al. [125]. 
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