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Abstract

The study of genetic factors in human diseases has become a central part of medical

research. Non-synonymous single nucleotide variants (nsSNVs) in coding regions of the

human genome alter a protein’s amino acid sequence and thus, are frequently associated

with pathogenic phenotypes. For Mendelian disorders, where a variation in one single

gene is causative, various disease-causing genes with corresponding nsSNVs have been

identified already. Common or complex diseases such as diabetes or cancer, however,

are caused by a varying number of genetic variants modulating a disease’s severity and

type. Furthermore, a human individual inheres more than one nsSNV. Especially the

individual combination of nsSNVs may play a fundamental role in clinical diagnostics to

tailor patient-specific treatment. Methods to study these, though, are currently limited.

In this thesis, we present bioinformatic approaches to analyze putative synergetic effects

of nsSNV sets and identify candidates for disease relevance. First, we performed a

preliminary inventory of current analysis methods, their capabilities as well as their

contribution to medical research, and in particular, their shortcomings. Based on

these findings and additional next-generation sequencing (NGS) studies, we developed

approaches covering the two main scenarios: multiple nsSNVs in one gene and nsSNVs in

multiple genes, respectively. With the presented software tool BALL-SNP, we combine

genetic and structural information in a three-dimensional visualization to enable the

assessment of nsSNV sets in a single gene for diagnostic candidate identification. To

study the functional impact of nsSNVs in multiple genes, we constructed a multi-scale

pipeline comprising 3D content, interaction information and functional cascades of

nsSNV-inherited genes and their encoded proteins.

The developed approaches have been used to analyze a high-quality, clinical data set of

dilated cardiomyopathy (DCM) patients. In consequence, we have been able to identify

nsSNV sets putatively contributing to DCM and consequently demonstrate the ability

of the thesis to promote nsSNV analysis towards computational diagnostics.





German Abstract

Das Studium genetischer Faktoren bei humanen Erkrankungen hat sich zu einem zentra-

len Punkt in der medizinischen Forschung entwickelt. Nicht-synonyme Einzelnukleotid-

Varianten (kurz nsSNVs) in kodierenden Bereichen des menschlichen Genoms verändern

die Aminosäuresequenz eines Proteins und stehen somit häufig in Zusammenhang mit

pathogenen Phänotypen. Bei Mendelschen Erkrankungen, die auf dem Defekt eines

einzelnen Gens beruhen, konnten bereits einige kausative Gene identifiziert werden.

Komplexe Erkrankungen wie Diabetes oder Krebs allerdings werden von einer Vielzahl

genetischer Varianten, die Schweregrad und Art einer Erkrankung beeinflussen, verur-

sacht. Zudem trägt ein Mensch mehrere nsSNVs in seinem Genom. Aus medizinischer

Sicht könnte gerade diese individuelle Kombination von nsSNVs eine fundamentelle

Rolle hinsichtlich patientenspezifischer Therapien spielen. Methoden, um diese Kombi-

nationen zu analysieren, sind zur Zeit allerdings limitiert.

In der vorliegenden Arbeit stellen wir Ansätze der Bioinformatik vor, um nsSNV

Kombinationen zu untersuchen, synergetische Effekte zu detektieren und Kandidaten

zu identifizieren, die möglicherweise krankheitsrelevant sind. In einem ersten Schritt

wurden bestehende Methoden zur Pathogenitätsvorhersage einzelner nsSNVs bezüglich

ihrer Stärken und Schwächen sowie ihrer medizinischen Relevanz untersucht. Basierend

auf diesen Ergebnissen und weiteren Next-Generation Sequencing (NGS) Studien wur-

den Methoden entwickelt, deren Fokus auf der Analyse der folgenden beiden Szenarien

liegt: Mehrere nsSNVs in einem einzelnen Gen sowie nsSNVs in mehreren Genen. Die

entwickelte Software BALL-SNP kombiniert genetische und strukturelle Informationen

in einer drei-dimensionalen (3D) Darstellung und ermöglicht somit die Bewertung

von Kombinationen aus nsSNVs in einem einzelnen Gen bzw. dem kodierten Protein

hinsichtlich ihrer krankheitsassoziierten Relevanz. Um auch den pathogenen Einfluss

von nsSNVs in mehreren Genen untersuchen zu können, wurde ein Mehrskalenansatz

entwickelt, der 3D Inhalte, Interaktionsinformationen und funktionelle Kaskaden von

Genen mit nsSNVs sowie den kodierten Proteinen umfasst.

Die in dieser Arbeit vorgestellten Methoden wurden verwendet, um einen hochqualitati-

ven klinischen Datensatz an Dilatativer Kardiomyopathie (DCM) erkrankter Patienten

zu analysieren. Dadurch war es möglich nsSNV Kombinationen zu identifizieren, die

möglicherweise kausativ zur Erkrankung an DCM beitragen. Insbesondere konnte damit

gezeigt werden, dass die vorliegende Arbeit einen wichtigen Teil zur Analyse von nsSNVs

bezüglich computergestützter Diagnostikverfahren beiträgt.
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1 Introduction

In the last decade, rapid development and advances in experimental high-throughput

techniques like next-generation sequencing (NGS) have enabled the reliable detection

of individual sequence variants in the human genome [1]. Along with computational

methods, NGS allows the discovery and genotyping of hundreds to thousands of genetic

variants in different species, while becoming less expensive. Figure 1.1 illustrates the

course of this trend.

Abbildung 1.1: In the last decade, genome-wide sequencing techniques achieved both,

higher throughput and significant cost reduction [based on the National

Institutes of Health (NIH)].

Since the sequencing of an individual’s whole genome becomes affordable and less

time-consuming, clinicians can get more and more access to genetic data to customize

medical treatment. In particular, understanding the genotype-phenotype relationship is

expected to promote diagnosis, treatment, and prevention in health care [2]. Knowing

the genetic basis of a disease may permit the early detection of patients with a high

risk of developing this particular disease.

An extensive number of genetic variations can be identified in whole genome sequen-

cing studies. Genetic alterations such as non-synonymous variants, for example, are

known to play a critical role in human diseases [3]. Although only a small fraction of

genetic variations are non-synonymous single nucleotide variants (nsSNVs), over 85%

of such mutations are associated with a specific disease [4]. NsSNVs refer to single base

changes in DNA coding regions altering a protein’s amino acid sequence. A pathogenic

1



1 Introduction

phenotype may arise when an amino acid substitution affects structurally important

residues and sites relevant for function, such as residues in catalytic sites of enzymes.

Experimentally gained knowledge about genetic variations is deposited and curated

in different databases, where the Single Nucleotide Polymorphism Database (dbSNP)

currently refers to the largest database concerning SNV annotation with 29,901,117 de-

posited SNVs (dbSNP build 138) [5]. The most popular database for known pathogenic

mutations denotes the Human Gene Mutation Database (HGMD), a comprehensi-

ve repository of mutations associated with human inherited diseases [6]. At present,

94,860 disease-associated nsSNVs are published in the HGMD [7]. Due to the advent of

high-throughput variant detection, though, the amount of identified nsSNVs is growing

rapidly.

To gain knowledge concerning the pathogenicity of nsSNVs via experimental analysis

is laborious and time-consuming, and often even not possible. Thus, computational

approaches have been developed to study the functional impact of nsSNVs in silico. To

date, genome-wide association studies (GWAS) are commonly performed to assess the

statistical association of genetic alterations with common diseases [8]. GWAS compare

regions of the genome between cohorts to identify common genetic variants, statistically

associated with a trait. Although hundreds of GWAS on particular genetic variations

and various diseases have been conducted today, GWAS is susceptible to many limitati-

ons. The application of GWAS, for example, requires large sample sizes, which are often

not available. Multi-marker approaches considering nsSNV combinations in GWAS are

of high complexity increasing the curse of dimensionality. Furthermore, GWAS ignore

known disease pathobiology and prior biological knowledge, however, the inclusion of

this information into data analysis may improve the results [9]. Most nsSNVs discovered

in GWAS have been recognized not to reveal the genetic basis of disease susceptibility

and etiology. In consequence, the majority of these nsSNVs are not suitable to improve

medical health care by genetic testing.

Due to these limitations, prior knowledge about the investigated disease is used to

concentrate on target genomic regions including genes previously associated with the

disease to identify causative variants. Methods to predict the pathogenicity of inherited

nsSNVs cover a wide range of ideas from evolutionary and sequence-based predictions

to detailed atomic energy-based methods [10]. In the following, we summarize the basic

ideas of available computational approaches using different algorithms and features to

predict whether an nsSNV is disease-associated or not.

The majority of the existing computational approaches predict the pathogenic effect

using statistical methods, machine learning techniques or protein evolution models,

based on derived features [11]. These features correspond in general to sequence ho-

mology, biochemical properties and structural information (hydrogen-bond network,

solvent accessibility, etc.). Besides, there are computational methods based on potential

energy functions, force fields and molecular dynamics, which analyze the change in a

protein’s stability, dynamics and interactions to consequently derive the impact of an

2



amino acid substitution [12][13]. These methods, however, can also be time-consuming

and are generally used for small-scale investigations [14].

Among others, the main problem of all these approaches refers to the ’one-SNV, one-

phenotype’-paradigm. For Mendelian disorders, where variation in a single gene is

responsible for the phenotypic consequence, thousand such causative genes have be-

en identified already [15]. Detecting the causative genes in common diseases such as

hypertension, diabetes or cancer, however, still remains a challenge. In general, these

diseases are caused by a varying number of genetic alterations and are influenced by

environmental factors that modulate the severity and type of disease-related pheno-

types [16]. Several nsSNVs in a single gene may exert a synergetic effect on a protein’s

function, whereas a phenotype can also result from combined action of nsSNVs in many

genes [17]. In consequence, the assumption of nsSNVs as single entities, independent

from each other, may not substantially contribute to the improvement of computational

diagnosis, especially for common diseases. Furthermore, from a medical point of view,

especially the individual combination of nsSNVs may play a crucial role in clinical

diagnostics regarding personalized medicine, since genetic variations have been identified

to influence selection, dosing and adverse events of medical drugs [18].

In this work, we focused on the development of approaches to assess the phenotypic

impact of multiple nsSNVs, so-called nsSNV sets, on disease phenotypes and propose

strategies to analyze putative synergetic effects. To the best of our knowledge, compu-

tational methods to predict disease association for nsSNV sets are currently limited.

Figure 1.2 gives an overview of the main analysis strategies developed in this thesis.

In order to analyze the current potential of single nsSNV pathogenicity prediction, we

first performed comprehensive evaluation studies on both, prediction concordance and

prediction quality of existing tools on a high quality clinical data set of cardiomyopathy

samples.

The choice and quality of test data plays a crucial role and since the coverage rate of

the cardiomyopathy data exceeds classical exome capture studies by several orders of

magnitude, these data were used for several analyses within this thesis. In consequence,

we also studied genetic factors putatively contributing to cardiovascular diseases.

The evaluation study of current single nsSNV pathogenicity prediction strategies revea-

led several drawbacks with respect to performance, congruency, applicability and clinical

relevance. However, we have been able to demonstrate the importance of structural

information when analyzing the functional impact of nsSNVs [11].

A protein’s structure, dynamics and interactions are interrelated. In addition, the

effects of genetic differences on protein function are various [19]. Hence, nsSNVs may

change several properties of a protein, simultaneously. The visual inspection of the

three dimensional (3D) structure of proteins affected by nsSNV-introduced amino acid

substitutions, thus, may reveal crucial insights in effects altering protein function.

Based on the gained information, we developed BALL-SNP - a tool to identify candidate

3



1 Introduction

Abbildung 1.2: In this thesis, we developed approaches to assess the functional impact

of nsSNV sets. The analysis of nsSNV sets comprises two parts: the

analysis of nsSNVs accumulating in one gene and the multi-scale analysis

of nsSNVs inhered in multiple genes.

4



nsSNVs for computational diagnostics. BALL-SNP combines genetic and structural

information, respectively, and in particular, offers a visualization of the generated

information as well as an intuitive user interface. Furthermore, we systematically incor-

porated information retrieval and sophisticated analysis methods, such as e.g. cluster

analysis, to collect and generate crucial information in one tool. BALL-SNP relies

on simple input formats: the output of standard SNP annotation software such as

ANNOVAR or a simple tab-separated input file, which prevents users from substantial

re-formatting.

Analyses of nsSNVs in the cardiomyopathy samples impressively demonstrated the

ability of BALL-SNP to uncover spatial relations and putative synergetic effects intro-

duced by genetic alterations.

Besides the analysis of nsSNV sets in one gene, the study of nsSNVs in multiple genes

may play an important role in computational diagnostics. The genetic basis of most com-

mon diseases refers to multiple genetic factors such as gene-gene and gene-environment

interactions [20]. To study nsSNVs in multiple genes, we furthermore developed a

multi-scale approach integrating 3D context, interaction information and functional

cascades from gene sets with nsSNVs. Since we used data from cardiomyopathy patients,

we were also able to study synergetic effects of nsSNVs related to cardiomyopathy. Our

multi-scale analysis of this data set revealed associated nsSNV combinations in seven

genes, putatively related to cardiomyopathy.

In summary, the impact of nsSNVs in coding genes on the cause and the severity of

a disease has become a key task in human health care. A pathogenic phenotype may

result from nsSNV sets clustering in one single gene as well as from the combination

of nsSNVs in many genes. In this thesis, we developed approaches to address both,

the study of nsSNVs sets in one gene and in multiple genes. BALL-SNP, a freely

available software tool, enables the assessment of the impact of nsSNV clusters on a

protein’s function and stability, and consequently assists the selection of candidate

nsSNVs for experimental validation. Though further improvement is needed to meet

requirements of the clinical application, BALL-SNP already decisively contributes

to existing instruments of candidate nsSNV analysis. The constructed multi-scale

analysis pipeline for nsSNV sets in multiple genes supports the computational study of

cumulative effects and their impact on pathogenicity. We have been able to demonstrate

this on the example of a cardiac phenotype, however, the analysis can be likewise

applied to other diseases such as cancer.

The outline of this thesis comprises: in the next chapter, a summary of important

concepts and methods used for this thesis. Next, we present in chapter 3-5 our findings

concerning the pathogenicity prediction of single nsSNVs, sets of nsSNVs within one

gene and nsSNV combinations in multiple genes. Finally, we discuss our contribution

to the analysis of nsSNVs towards the applicability of NGS data in clinical routine.
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2 Material and Methods

In this chapter, we briefly summarize important concepts as well as already available

information and software tools, applied or included within this work. Since this thesis

aims to represent a bridge between bioinformatic strategies and clinical application

scenarios, we focused on comprehensibility for both, bioinformaticians and clinicians.

2.1 Single Nucleotide Variants

The genome comprises an organism’s complete set of deoxyribonucleic acid (DNA)

[21]. The human DNA resides in the cell nucleus and is organized into chromosomes.

It consists of two strands made up by four types of bases: adenine (A), thymine (T),

guanine (G) and cytosine (C). These bases link into pairs, forming the double-helical

DNA structure. The genetic information is coded in the order of the bases in the strands.

The human genome is composed of about 3 billion base pairs including circa 23.000

genes. Interestingly, only approximately 2% of the genome code for proteins. Three

bases, so-called triplets or codons, code for one amino acid constituting a protein’s

primary sequence. Figure 2.1 schematically illustrates the architecture of the human

genome.

The genome sequences of two individuals are 99.9% identical, the remaining 0.1%

DNA accounts for natural genetic variation between and within populations [22], which

results in different traits or phenotypes. The most common type of genetic variation is

defined as a single nucleotide polymorphism (SNP), a position where two alternative

bases occur with > 1% in the human population [1]. More generally, we speak of single

nucleotide variants (SNVs), if no information about the 1% criterion fit is available.

Figure 2.2 illustrates a SNV.

SNVs may occur in gene coding regions as well as in non-coding or intergenic regions

of the DNA. SNVs not located in protein-coding regions may affect gene splicing,

transcription factor binding or messenger RNA degradation. In the coding region, we

discriminate between synonymous and non-synonymous SNVs (nsSNVs). Synonymous

SNVs do not change the amino acid sequence of the corresponding protein due to the

degeneracy of the genetic code, where several triplets can code for one amino acid (see

Figure 2.3). In contrast, nsSNVs alter the protein sequence. They, for example, can

introduce premature stop codons, consequently producing functionally incompetent

truncated proteins, and hence, may possibly be lethal. The more interesting variations

refer to the viable nsSNVs. They frequently result in a single amino acid substitution

within a protein sequence and thus, can alter protein function comprising folding,
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2 Material and Methods

Abbildung 2.1: The human genome comprises all genetic instructions of an organism.

Abbildung 2.2: A single nucleotide variant (SNV) refers to a single base change within

the DNA.
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2.2 Databases containing nsSNV information

stability and binding of other proteins or ligands. From a medical point of view, nsSNVs

in coding DNA can be neutral, associated with a disease by exerting a small effect on a

specific trait, or they can be the cause for a distinct disease [11] [7].

Abbildung 2.3: Due to the degeneracy of the genetic code, particular base changes may

introduce different amino acids, whereas others do not alter the protein

sequence.

2.2 Databases containing nsSNV information

Experimentally gained knowledge about nsSNVs is deposited and curated in different

databases. Table 2.1 lists the main available SNV databases. Due to the raising medical

importance, several databases already aim at annotating genetic variants with phenotype

association as well as structural and functional information on proteins. In the following

paragraphs, we shortly summarize the most important databases, which are also included

in the developed approaches presented in this work (see Chapter 4 and 5).

2.2.1 The Single Nucleotide Polymorphism Database (dbSNP)

The Single Nucleotide Polymorphism Database (dbSNP) is currently the largest database

concerning SNV annotations with 29,901,117 deposited SNVs (dbSNP build 138) [5].

It refers to a general catalog of genetic variations including sequence information

around the variant, descriptions of the population inhering the variant and frequency

information by population or individual genotype. Each record is assigned a reference

identifier, the so-called rs ID, allowing to map variants to external resources or databases.

DbSNP is available at http://www.ncbi.nlm.nih.gov/SNP.

ClinVar Tightly coupled with dbSNP, ClinVar accessions report human variations

and interpretations of the relationship of these variations to human health [23]. It is a
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2 Material and Methods

Tabelle 2.1: The table lists currently the most important SNV databases.

Database Description Current status

dbSNP Database of Single Nucleotide

Polymorphisms

29,901,117 SNVs

ClinVar Public archive of relationships

among sequence variation and

human phenotype

156,921 genetic variati-

ons

UniProtKB/SwissProt Protein sequence database in-

cluding experimental results,

computed features and scienti-

fic conclusions

548,872 proteins, inclu-

ding 90,378 variants

HGMD Human Gene Mutation Data-

base of mutations causing in-

herited disease

public: 67,439 nsSNVs,

commercial: 94,860

nsSNVs

freely accessible, public archive comprising genetic variants identified through clinical

testing, research and literature. Entries are labeled according to the variation and its

clinical significance. If information is available, ClinVar classifies genetic variants into

the following categories:

• unkown

• untested

• non-pathogenic

• probable-non-pathogenic

• probable-pathogenic

• pathogenic

• drug-response

• histocompatibility

• other.

ClinVar is available via dbSNP or at http://www.ncbi.nlm.nih.gov/clinvar/.

2.2.2 The UniProt Knowledgebase (UniProtKB)

The UniProt Knowledgebase (UniProtKB) is a very comprehensive data collection

of proteins and their functional information, available at http://www.uniprot.org

[24]. It distincts between manually annotated, reviewed data (Swiss-Prot [25]) and
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2.3 The Protein Data Bank (PDB)

computationally analyzed, unreviewed data (TrEMBL). Each record lists core informa-

tion such as amino acid sequence, protein name, etc as well as additional information

about biological ontologies, classifications and cross-references to other data sources. In

addition, the UniProtKB includes a collection of human polymorphisms and disease

mutations assigned according to literature reports on probable disease association,

called HUMSAVAR [26].

2.2.3 The Human Gene Mutation Database (HGMD)

The most popular database for known pathogenic mutations is the Human Gene Mu-

tation Database (HGMD) [6]. The HGMD refers to a comprehensive repository of

mutations associated with human inherited disease. Since its initiation, the HGMD has

become the central disease-associated mutation resource for the scientific communi-

ty. In contrast to other developed data sources collating variant-disease associations,

the HGMD is manually curated to avoid inconsistency as well as biased entries. The

HGMD is available at http://www.hgmd.cf.ac.uk/ in a public version for nonprofit

and academic users, and in a professional, commercial version (HGMD and BIOBASE

GmbH), respectively.

2.3 The Protein Data Bank (PDB)

The developed software BALL-SNP (Chapter 4) critically depends on 3D structures and

is consequently connected to the Protein Data Bank (PDB), the most comprehensive

archive for 3D structural data of biological macromolecules world-wide [27]. The publicly

available archive contains experimentally resolved structures ranging from small peptides

and nucleic acids to large complexes. It is available at http://www.rcsb.org/pdb/.

In addition, the PDB also defines the well-known PDB file format, which contains all

information required for a 3D structure and is used as input in molecular modelling

software as well as 3D visualization tools (see Section 2.8).

2.4 DrugBank - Open Data Drug and Drug Target Database

DrugBank is a freely available bioinformatics and cheminformatics resource (http:

//www.drugbank.ca), which links chemical, pharmacological and pharmaceutical data

to comprehensive sequence, structure and pathway information of their corresponding

drug targets [28].

The current available version 4.2 contains 7,759 drug entries including 1,600 small

molecule drugs, 160 biotech (protein/peptide) drugs, 89 nutraceuticals and over 6000

experimental drugs [29]. Since we focus on the identification of candidate nsSNVs

for computational diagnostics, information about already specified drug targets can

critically contribute to this process.
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2 Material and Methods

2.5 Pathogenicity prediction

Due to the advent of high-throughput variant detection techniques, the amount of iden-

tified nsSNVs is growing rapidly [11]. To gain knowledge concerning the pathogenicity

of nsSNVs via experimental analysis is laborious and time-consuming, and often even

not possible. To solve this intricate problem, various computational methods have been

developed over the past decade using different algorithms and features to predict the

biological impact of nsSNVs on a protein’s function in silico and to assess whether an

nsSNV is associated with a specific disease.

Most of these prediction methods are based on evolutionary information and/or combine

functional and structural parameters as well as multiple sequence alignment derived

information. Conservation information usually is obtained from alignments of homolo-

gous or somehow related sequences, including position-specific profiles. Some prediction

methods also incorporate available annotations, e.g. Gene Ontology (GO) [30] or protein

family information (Pfam) [31]. Because protein structure encodes protein function,

information concerning the three-dimensional (3D) structural environment, such as

solvent accessibility, electrostatics and hydrophobicity, is also a crucial criterion to

assume a variant’s functional impact [11]. Finally, the in silico-derived information

about protein structure and function, including essential properties of both, the original

and the substituted residues, is combined into features. According to these features,

nsSNVs are classified into benign or pathogenic using different machine learning me-

thods such as neural networks, random forests, support vector machines (SVMs) or

Bayesian methods and mathematical operations. Figure 2.4 summarizes this general

scheme of pathogenicity prediction.

Abbildung 2.4: Overview of the general SNV pathogenicity prediction strategy.

Most techniques were trained on data deposited in databases such as dbSNP or

UniProtKB, and with artifically constructed test sets.

In the following, we shortly summarize the underlying principles of prediction approaches

selected for integration in the developed software tool BALL-SNP (see Chapter 4).
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2.5.1 PANTHER - Evolutionary analysis of coding SNVs

PANTHER computes substitution position-specific evolutionary conservation (sub-

PSEC) scores on alignments [32]. These alignments of evolutionarily related proteins

are generated by Hidden Markov Models (HMMs) and collected in the PANTHER

library. The subPSEC score defines amino acid probabilities for the occurrence at

certain positions among evolutionarily related sequences. Classification is done via

scoring a query protein against the entire built PANTHER library, currently comprising

over 38,000 HMMs [33].

The PANTHER library as well as the corresponding software tool is available at

http://pantherdb.org/tools/.

2.5.2 PhD-SNP

PhD-SNP can be divided into two SVM-based strategies: the single-sequence and

the sequence profile SVM [34]. The single-sequence SVM classifies the amino acid

substitution as neutral or disease-linked based on the nature of the substitution and

the properties of the neighboring sequence environment. In addition, the profile SVM

calculates sequence profile information derived from multiple sequence alignments

and classifies the functional impact according to the ratio of wild type and mutant

frequencies of amino acids. Both SVM strategies combined account for the PhD-SNP

prediction result.

The software tool is available at http://snps.biofold.org/phd-snp/phd-snp.html.

2.5.3 Polymorphism Phenotyping 2 - PolyPhen2

Polymorphism Phenotyping 2 (PolyPhen2) predicts the mutational effect by a naive

Bayesian classifier [35]. The used features include both, sequence information derived

from multiple sequence alignments and structure information such as, e.g., solvent

accessibility.

Moreover, PolyPhen2 computes position-specific independent counts (PSIC) profile

scores of two amino acid variants. The PSIC profile is a logarithmic ratio of the likelihood

that a given amino acid occurs at a particular site to the background probability of the

amino acid occurring at random at a given position within the protein sequence [36].

PolyPhen2 is available at http://genetics.bwh.harvard.edu/pph2/.

2.5.4 PROVEAN - Protein Variation Effect Analyzer

PROVEAN calculates a pairwise sequence alignment score based on homologous

sequences [37]. This score measures the sequence similarity change of a query sequence

to a homologous protein sequence before and after an amino acid substitution within

the query sequence. In contrast to most of the other available prediction approaches,

PROVEAN is able to predict the functional influence for all types of protein sequence
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2 Material and Methods

variations, such as insertions, deletions and substitutions.

Additionally, precomputed PROVEAN scores generated in November 2012 for all

possible single amino acid substitutions and single amino acid deletions of human

proteins from Ensembl 66 are freely available at http://provean.jcvi.org.

Figure 2.5 lists the main state-of-the-art pathogenicity prediction tools currently availa-

ble. Besides, there are computational methods based on potential energy functions,

force fields and molecular dynamics, which analyze the change in a proteins stability,

dynamics and interactions to consequently derive the impact of an amino acid substi-

tution [12][13]. These methods, however, can also be time-consuming, since they are

computationally expensive, and are generally used for small-scale investigations [14].

2.6 I-Mutant: Protein stability prediction

Since structural information such as protein stability is important for the assessment

of nsSNVs, we embedded I-Mutant within the BALL-SNP approach developed in this

thesis (Chapter 4) as well as applied this tool within our multi-scale analysis in Chapter

5.

I-Mutant 2.0 is an SVM-predictor based on protein sequence or structure for the

automatic assessment of protein stability [38]. It predicts both, the sign and the value

of a protein’s stability change upon an amino acid substitution.

The sign of the free energy difference, calculated by the substraction of the wild type

free energy from that of the mutant, specifies protein stabilization (negative sign) or

destabilization (positive sign). The main advantage of I-Mutant compared to other

existing protein stability methods is the ability to predict from protein sequence, not

requiring structural information.

2.7 The FASTA format

The FASTA format is a text-based format to represent either the sequence of nucleotides

or peptides, where nucleotides or amino acids are defined as single-letter codes, e.g. H

for Histidine [39]. The FASTA sequence consequently refers to the primary sequence of

the residues on a protein backbone.

The first line of a FASTA file corresponds to the so-called header with description

information such as the protein name and so on. This description line is labeled with a

”>” at the beginning and is optional. A simple example for a FASTA file refers to:
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2.7 The FASTA format

Abbildung 2.5: Overview of the main state-of-the-art pathogenicity prediction tools

[11].

15



2 Material and Methods

>sp|P08588|ADRB1 HUMAN Beta-1 adrenergic receptor

MGAGVLVLGASEPGNLSSAAPLPDGAATAARLLVPASPPASLLPPASESPEPLSQ

QWTAGMGLLMALIVLLIVAGNVLVIVAIAKTPRLQTLTNLFIMSLASADLVMGLL

VVPFGATIVVWGRWEYGSFFCELWTSVDVLCVTASIETLCVIALDRYLA ...

FASTA files are the standard format to represent a protein sequence and thus, are

generally the input for alignment tools and further methods dealing with protein

sequences. The approaches developed in this thesis also require protein sequences and

in consequence, rely on FASTA file information.

2.8 The Protein Data Bank (PDB) File

For the assessment of nsSNVs, 3D structural information of the corresponding protein

with amino acid substitutions introduced by these nsSNVs, is essential. In general, 3D

information derived from X-ray diffraction and Nuclear Magnetic Resonance (NMR)

studies is represented via the Protein Data Bank (PDB) file format [27], created in the

1970’s, and available at the PDB (Section 2.3).

The formatting is defined by the character positions in a line, where each line starts with

left-justified six characters, which denote an identifier for the line type, the so-called

record name. There are various record names specifying available information such as

SEQRES for the protein FASTA sequence (Section 2.7) or HELIX and SHEET for the

secondary structure elements, for example. We concentrate, however, on the ATOM

record, which is the most important one used in this thesis.

The ATOM record corresponds to the atomic coordinates for standard amino acids and

nucleotides. Additional information besides atom name and coordinates such as the

corresponding residue, the residue index and so on are also listed in ATOM lines.

The PDB is a collection of 3D information collected world-wide and although sustained

efforts to maintain high-quality data exist, there are unfortunately inconsistent and

informal PDB files, not fully checked for errors.

Above, we summarized important methods used in the majority of the developed

approaches presented in this thesis. In the following, we describe applied strategies

according to the corresponding approach, which incorporates these.
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2.9 Pathogenicity prediction of nsSNV sets: material and

methods

In Chapter 3, we present the results of an extensive evaluation study of current-state-

of-the-art pathogenicity prediction methods. To evaluate the prediction performance

of the selected tools on a created test set (see Section 2.12.1), we calculated standard

performance measures defined below.

2.9.1 Measures to evaluate statistical performance

Based on the prediction results for the annotated test set (Section 2.12.1), we studied

the prediction performance of the pathogenicity prediction methods by calculating

specificity, sensitivity and accuracy. Specificity measures the proportion of negatives,

that are correctly identified, whereas the sensitivity quantifies the proportion of actual

positives [40], that are correctly detected as such:

specificity = TN
TN + FP

sensitivity = TP
TP + FN

where TP = true positives, FP = false positives, FN = false negatives and TN = true

negatives.

Besides, the accuracy of a measurement system is the degree of closeness of a quantity

to its actual true value and can be seen as the degree of veracity. It identifies the

proportion of the true results [40]:

accuracy = TP + TN
TP + FP + TN + FN

where TP = true positives, FP = false positives, FN = false negatives and TN = true

negatives.

Handling unbalanced data Since the created test set is slightly unbalanced (192

neutral to 147 disease-annotated nsSNVs, details in Section 2.12.1), we also computed

the balanced accuracy and Matthews correlation coefficient (MCC), defined as:

balanced accuracy = specificity + sensitivity
2

MCC = (TP∗TN)−(FP∗FN)√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

where an MCC value of 1 corresponds to a perfect correlation.

Based on the evaluation study of current pathogenicity prediction tools, we depict

in Section 3.2 the attempt to adapt single pathogenicity prediction strategies to the

assessment of nsSNV sets. Important methods used for the definition of scoring methods

to measure the functional effect of nsSNV sets are summarized in the following.
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2.9.2 Amino acid distribution probabilities

The amino acid sequence of a protein is characteristic for a protein’s folding and

function. Minor changes within this sequence may alter or prevent function [41]. To be

able to assess the functional effect of amino acid substitutions introduced by nsSNVs,

we studied the amino acid spectrum as well as the combination of wild type and mutant

residues in neutral and disease-annotated DCM data (see Section 2.12.1). In particular,

we compared the observed frequencies with the expected values determined based on

the distribution of all amino acids in the test set. The expected values are also computed

with regard to codon diversity and the probability to generate a certain substitution

referring to all possibilities for a translation from a specific amino acid to another by

only one triplet base mutation of the wild type codon.

Single amino acid probabilities

In general, the expected and observed frequencies of an amino acid X within a query

protein of a given sequence seq are defined as:

fexp(X) = #codons(X)
all codons ∗ length(seq)

fobs(X) = #X

(2.1)

where ’#’ refers to ’number of’, #codons(X) denotes the number of available cod-

ons for amino acid X and all codons codes for all codons in the genetic code, namely 64.

Since we are mainly interested in the analysis of amino acid substitutions introduced

by nsSNVs, we explicitly studied the amino acid distributions at wild type and mutant

positions, respectively. At the wild type position of an amino acid sequence the calculated

frequencies are defined as:

fexp(X) = #codons(X)
all codons ∗#mutations

fobs(X) = #X

(2.2)

where ’#’ refers to ’number of’, #codons(X) denotes the number of available codons for

amino acid X, all codons codes for all codons in the genetic code (64) and #mutations

refers to the number of mutations detected within the particular amino acid sequence.

A nsSNV changes one base within a codon and hence, we calculated the amino acid

distributions at mutant positions in a protein’s sequence with regard to codon diversity

and the probability to generate a certain substitution referring to all possibilities for a

translation from a specific amino acid to another by only one triplet base mutation of

the wild type codon. For the distributions at mutant positions we define:
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fexp(X) = codonDiversity(X) ∗#mutations

codonDiversity(X) = #subs(Z∗−→X)
#subs(all)

fobs(X) = #X

(2.3)

where #subs(Z∗ −→ X) denotes the number of substitutions from any amino acid to

X by one base change and #subs(all) refers to the number of all possible amino acid

substitutions resulting from one base change in the wild type codon.

Amino acid substitution probabilities

Beyond the single amino acid distributions, we also studied the spectrum of combinations

of wild type and mutant residues. An amino acid substitution is defined as X −→ Y ,

meaning amino acid X is substituted by amino acid Y . Based on all mutant residues

MTi, which can result from the observed wild type WT by one base change within its

triplet, the probability to generate certain substitutions WT −→ MTi is calculated.

The expected and observed frequencies of amino acid substitutions in the used data set

are determined with respect to the codon diversity by:

fexp(X −→ Y ) = codonDiversity(X −→ Y ) ∗#mutations(X −→ Y )

codonDiversity(X −→ Y ) = #subs(X−→Y,by 1 base change)
#subs(X−→Z|Z 6=Y,by 1 base change)

fobs(X −→ Y ) = #subs(X −→ Y )

(2.4)

where #subs(X −→ Y, by 1 base change) defines the number of substitutions from

amino acid X to Y by only one base change in the triplet of X. In addition, #subs(X −→
Z|Z 6= Y, by 1 base change) denotes the number of all possible substitutions from X to

any other amino acid Z unequal Y by one base change in the triplet of X.

2.9.3 The BLOcks SUbstitution Matrix (BLOSUM)

Since evolutionarily related proteins are supposed to form protein families inhering

similar functions, the ability to measure the similarity of protein sequences is essential

in molecular biology. Typically, alignment methods for protein sequences are applied

to measure this similarity. The BLOcks SUbstitution Matrix (BLOSUM) refers to a

substitution matrix for local sequence alignments of proteins [42]. BLOSUM comprises

blocks of similar sequences and counts the relative frequencies of amino acids and their

substitution probabilities.

To date, several different BLOSUM matrices exist based on the underlying similarity

of the used protein sequences. Matrices labeled with higher values were built on closely
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related sequences, whereas low matrix numbers denote more divergent sequences within

the applied alignments. BLOSUM80, for example, was defined on more than 80%

identical protein sequences. In contrast, BLOSUM62 relies on sequences with more than

62% similarity. BLOSUM62 refers to the default matrix used in the protein BLAST

algorithm (see next subsection).

2.9.4 Position-Specific Iterated BLAST (PSI-BLAST)

The Basic Local Alignment Search Tool (BLAST) compares the biological query

sequence of proteins or DNA with a library or database of sequences to detect similar

sequences based on a specific threshold [43]. According to the query sequence, different

BLAST versions exist, collected in the BLAST package. Among these, the Position-

Specific Iterated BLAST (PSI-BLAST) identifies distant relatives of a protein [44].

PSI-BLAST first combines closely related proteins to a profile sequence based on a

position-specific scoring matrix (PSSM). Next it queries a protein database based on the

generated profile to determine relatives to the query protein with distant evolutionary

relationship.

PSI-BLAST is available within the BLAST package at http://blast.ncbi.nlm.nih.

gov/Blast.cgi?CMD=Web&PAGE=Proteins&PROGRAM=blastp&RUN_PSIBLAST=on.

2.9.5 Position-Specific Scoring Matrix (PSSM)

Sequence similarity search methods using profiles such as PSI-BLAST (Section 2.9.4)

have been recognized to more sensitively detect also weak relationships compared to

strategies based on simple sequence search queries [45]. An applied profile refers to

a so-called Position-Specific Scoring Matrix (PSSM) and encodes which residues are

observed at each position in a sequence alignment of evolutionary related sequences [44].

A PSSM measures the amino acid substitution frequencies amongst a protein family,

and in consequence, enables the assessment of probable amino acid substitutions at

each sequence position of each protein within the family. In addition, it allows the

identification of remote homologues of a protein.

The quality of a PSSM, however, relies on the availability of protein families and the

amount of available evolutionary related sequences.

2.9.6 PSIPRED

Protein structure encodes protein function and thus, the knowledge about 3D structure

elements such as the secondary structure building blocks essentially contributes to

the analysis of proteins, their interactions and putative dysfunctions. To date, the

prediction of secondary structure elements such as helices or beta sheets has become

highly accurate using, for example, the state-of-the-art prediction tool PSIPRED [46].

PSIPRED predicts the secondary structure of a protein via a two-stage neural network,

which is based on PSSMs (Section 2.9.5) generated by PSI-BLAST (Section 2.9.4).
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The prediction process comprises first a generation of a PSSM, next a prediction of an

initial secondary structure sequence and finally a filtering procedure.

PSIPRED is available at http://bioinf.cs.ucl.ac.uk/psipred/.

2.10 BALL-SNP: material and methods

In this thesis, we present the implemented tool BALL-SNP to identify candidate nsSNVs

for computational diagnostics. Details about BALL-SNP are explained in Chapter 4.

Important concepts used within BALL-SNP, are summarized below.

2.10.1 The Biochemical Algorithms Library - BALL

The developed software tool BALL-SNP, presented in Chapter 4, is based on the

Biochemical Algorithms Library (BALL), an application framework for rapid software

prototyping in molecular modelling research and drug design [47]. The overall structure

of BALL consists of several layers, each providing functionality for a well-defined field,

as can be seen in Figure 2.6. In this stratified architecture, top layers depend on lower

ones for their implementation.

Abbildung 2.6: Overview of the BALL framework structure [48].

The basis of all BALL classes is a comprehensive set of Foundation Classes providing

general implementations for advanced data structures (e.g. trees, hash maps), mathe-

matical objects (e.g. matrices, vectors), system classes (e.g. file I/O, networking), or

design patterns of the C++ standard template library [49]. The BALL Kernel contains

the data structures for the representation of molecular entities as for example atoms,

bonds, molecules and proteins. The third layer consists of several basic components,

including molecular mechanics methods, molecular editing, as well as calculation and

visualization of electrostatic properties.
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Besides this algorithmic fundament, BALL also incorporates a graphical front-end for

the visualization of molecular structures, called BALLView [50]. BALLView enables

the availability of BALL’s broad functionality via an integrated user-friendly graphical

user interface (GUI) based on the cross-platform application framework Qt.

In addition, BALL offers a Python scripting interface for rapid prototyping.

2.10.2 Input formats in BALL-SNP

To ensure straightforward usability, we currently offer two different input formats: an

ANNOVAR-based input [51], as well as a simple tab-separated format, the so-called

BALLformat. Hence, users are enabled to adopt the output obtained from standard

SNP annotation software such as ANNOVAR without substantial re-formatting, as

well as use SNV information from different sources compiled in a simple tab-separated

input file (BALLformat). Both input formats are below defined in detail.

BALL-SNP focuses on the analysis of the pathogenic relevance of amino acid substitu-

tions introduced by nsSNVs. The SNP calling and annotation process, however, may

have great influence on the results of the BALL-SNP analysis. In consequence, the user

should carefully adopt the SNP calling and annotation parameters to his application

purpose.

Since 3D structure information is essential for the analysis of amino acid substitutions

aggregating in one single protein and introduced by nsSNVs in the encoding gene, we

automatically extract the PDB identifier of the largest available 3D structure from the

UniProtKB [26]. The chosen PDB structure, then is automatically loaded from the

Protein Data Bank (PDB) [27].

To maintain flexibility, we also provide the possibility to state a preferred PDB identifier

within both input formats or to specify a file name with a user-built 3D model of the

query protein in the first line of the input file. The PDB identifier is marked via the

flag PDB:, whereas an available 3D model file is indicated with the flag FILE:.

ANNOVAR-based input

The used parameters for the ANNOVAR call should be carefully chosen by the user

based on his application purpose. BALL-SNP does not validate the ANNOVAR output.

The file name should end with annovar.txt. Gray-colored text lines in the example

are optional. A single point in columns refers to missing information.

PDB: 2LSQ

Line Effect Gene Chr Pos rs ID ...

13 nsSNV ADRB1:... :p.G389R, chr10 115805056 rs1801253 ...

...
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BALLformat input

This tab-separated format can be manually created by the user and may include

information gained from different annotation sources. The file name should contain

BALLformat.txt at the end. Gray-colored text lines in the example are optional. A

single point in columns refers to missing information.

PDB: 2LSQ

Gene Symbol Transcript SNV Chr Pos rs ID

ADRB1 NM 000684 G389R chr10 115805056 rs1801253

ADRB1 NM 000684 S475A chr10 . .

...

In addition, further input formats can easily be added.

2.10.3 3D molecular modelling

Since the gap between known protein sequences and available 3D protein structures is

still huge and the experimental determination of 3D structures is difficult, techniques

to model the missing 3D information of proteins via computational methods have

been developed. 3D molecular modelling refers to a template-based protein structure

modelling in silico [52].

First, a protein with an available 3D structure and a high sequence identity to the

query/target protein is searched to serve as scaffold on which the 3D model is built

on. In general, this search is performed via multiple alignments of homologous proteins

deposited in databases and also includes external data such as secondary structure

information, known motifs and conserved features.

The template selection usually relies on specific parameter such as sequence identity,

relative alignment length or resolution, while the resolution of an experimentally re-

solved structure implies the accuracy of atomic coordinates. The sequence identity is

calculated by the ratio of matching residues in the pairwise alignment of target and

template sequence. Generally, proteins with more than 35% sequence identity reveal

homology, while below 35% detailed investigations are required.

Next, based on the selected template, a 3D structural model for the target protein is

built. To evaluate the quality of a generated 3D model, various methods are applied,

among these the Discrete Optimized Protein Energy (DOPE) score is calculated [53].

DOPE is a pseudo-energetic score to assess the quality of a structure model. In par-

ticular, negative DOPE scores correlate with native-like models. The quality of the

constructed model, however, critically depends on the quality of the selected template.
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Figure 2.7 summarizes the schematic 3D molecular modelling workflow.

Abbildung 2.7: A schematic overview of 3D molecular modelling [54].

Currently, several software packages for 3D structural modelling are available. One of

the most used approaches is the license-restricted toolkit MODELLER [55].

2.10.4 A Database of Comparative Protein Structure Models (ModBase)

Along with computational methods for 3D molecular modelling (see Section 2.10.3),

databases to collect already generated 3D models have been built. The most prominent

representative refers to ModBase, a database comprising annotated comparative protein

structure models built with the automated modelling pipeling ModPipe [56]. ModPipe

primarily is based on the toolkit MODELLER [55] in terms of fold assignment, sequence-

structure alignment, model building and model assessment.

ModBase currently contains almost 30 million models for about 4.7 million unique

protein sequences and is available at http://salilab.org/modbase.

2.10.5 Hierarchical cluster analysis

To be able to detect nsSNV close to each other and thus, putative additive effects, we

implemented a cluster analysis strategy for nsSNVs.
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The goal of a cluster analysis is to partition an amount of objects into groups (cluster)

in a way, that the pairwise distances between those assigned into one cluster tend to be

smaller than those distributed in different clusters [40].

Hierarchical clustering can be divided into two main strategies: agglomerative (bottom-

up) and divisive (top-down). Divisive methods start at the top with one single cluster

including all data objects and at each level recursively split one of the existing clusters

at the current level into two new cluster. The split is chosen to produce two new groups

with the largest between-group distance.

Agglomerative clustering algorithms start with every object representing a singleton

cluster. At each step, the two clusters with the smallest distance are merged into one

single cluster, sequentially producing one less cluster at the next higher level until all

elements end up in one final cluster.

The criteria to link specific clusters are defined based on the pairwise distances between

the objects in the cluster. They can be divided into three main concepts (see also Figure

2.8):

• Single linkage, also known as nearest neighbor clustering, merges groups accor-

ding to the distance of the nearest members.

• Complete linkage refers to the opposite of the single linkage method, since

groups are merged based on the distance of the most remote pair of member

objects.

• Average linkage defines the distance between the groups as the average of the

distances between all pairs of individual objects in the two groups. It can be

interpreted as a compromise between single and complete linkage methods, and

tends to produce compact cluster.

To measure the distance of two objects a = (xa, ya, za) and b = (xb, yb, zb) in a 3D

space, several common measures have been defined:

• Euclidean distance: dE(a, b) =
√

(xa − xb)2 + (ya − yb)2 + (za − zb)2

• Euclidean squared distance: d2E(a, b) = (xa − xb)
2 + (ya − yb)

2 + (za − zb)
2

• Manhattan distance: dM (a, b) = |xa − xb|+ |ya − yb|+ |za − zb|

2.10.6 The Database of Protein interaction SITEs (PiSITE)

Since the biological functions of proteins are driven by their interactions, the knowledge

about these are fundamental for the analysis of dysfunctions introduced by genetic

variants. The Database of Protein interaction SITEs (PiSITE) collects information

concerning protein interaction sites, multiple binding states of a protein or different

interaction partner [57]. The identification of interaction sites is based on available PDB
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Abbildung 2.8: Example scenarios for the three linkage strategies.

(Section 2.3) protein structures of the same protein, whose binding sites are mapped. In

particular, the collected information is provided at the protein residue level, enabling

the analysis of functional changes caused by amino acid substitutions.

PiSITE offers a web-based interface as well as downloadable flat files. It is available at

http://pisite.hgc.jp.

2.10.7 The Exome Aggregation Consortium (ExAc)

These days, due to the advent of NGS, a lot of sequencing projects are performed to get

insights into the genotype-phenotype relationship. To be able to compare their results

despite of different used calling methods and parameters, a coalition of investigators

founded the Exome Aggregation Consortium (ExAC) [58]. Their goal is to curate and

harmonize exome sequencing data from large sequencing projects and to consequently

provide these data to the scientific community. The raw data of the included sequencing

projects has been preprocessed using the same pipeline, and in particular jointly variant-

called to increase consistency. We also include this information within BALL-SNP

(Chapter 4).

2.11 Multi-scale analysis pipeline: material and methods

In Chapter 5, we present a pipeline for the multi-scale analysis of nsSNV sets. Basic

concepts and databases included within this pipeline are summarized in this section.
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2.11.1 Association rule learning

To discover strong and/or hidden relations between variables in large data sources,

association rule learning is generally applied. Given a set I of n binary items or variables,

association rule learning aims to find joint values of items, that are most frequently in

the data source [40]. These joint values are defined as implications and are formulated

as so-called association rules. A rule ri comprises two different sets of items X and Y :

ri = X −→ Y, (2.5)

where X,Y ⊆ I and X ∩ Y = ∅.

Different measures of significance and interest are applied to quantify the quality of

the generated rules [59]. The most important measures are known as support and

confidence. Support refers to a frequency constraint determining the quantitative

applicability of a rule, while confidence measures its reliability. Support and confidence

are mathematically defined as:

support(X) = |{ri|X ⊆ ri, ri ∈ R}|, (2.6)

where |.| denotes the cardinality of a set and R refers to the set of all generated

association rules.

confidence(X −→ Y ) =
support(X ∪ Y )

support(X)
, (2.7)

where support(X ∪ Y ) denotes the support of the union of items in X and Y .

Many algorithms to mine association rules are available, where the methods typically

can be split into two parts:

1. Find all frequent item sets, that satisfy a minimum support threshold specified

by the user.

2. Define association rules based on the frequent item sets, that also fulfill a minimum

confidence constraint defined by the user.

Since association rule learning is a state-of-the-art method in market basket analysis,

we made use of this powerful strategy and transfered the method to genomic analysis

for the identification of associated nsSNV sets in one gene or related nsSNVs in multiple

genes (see Figure 2.9).

In the analysis pipeline presented in Chapter 5, we applied the R package arules [60]

using the implemented apriori algorithm [61]. The confidence threshold was set to 0.8

and different levels of support, starting with at least 0.5, were tested.
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Abbildung 2.9: We transfered the application of association rule learning from the mar-

ket basket analysis to genomic analysis to identify associated nsSNVs.

2.11.2 The STRING database

The STRING database is a comprehensive resource of known and predicted protein

interactions [62]. These interactions comprise direct (physical) and indirect (functional)

associations, and are derived from four sources:

• genomic context

• high-throughput experiments

• conserved coexpression

• previous knowledge (e.g. pubmed)

STRING currently covers 9,643,763 proteins [63]. The database is freely available at

http://string-db.org/.

2.11.3 The Gene Ontology Annotation (GOA) database

The Gene Ontology Annotation (GOA) database provides high-quality Gene Ontology

(GO) annotations for proteins deposited in the UniProtKB (Section 2.2.2). The annota-

tions are generated by automatic predictions and manual curation [64]. The applied

algorithms for automatic annotation are based on sequence similarity, orthology or

domain information as well as existing cross-references and keywords.
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Currently, GOA comprises 368 million GO annotations for almost 54 million proteins

[65].

It is available at http://www.ebi.ac.uk/GOA.

2.11.4 The KEGG database

The use of expert knowledge from e.g. metabolic pathways reveals essential information

for the analysis of gene-gene and gene-environment interactions. The Kyoto Encyclopedia

of Genes and Genomes (KEGG) database refers to a comprehensive resource of metabolic

and regulatory pathways. The KEGG PATHWAY database [66] is a collection of

manually created pathway maps, which represent knowledge on molecular interaction

and reaction networks for

• metabolism

• genetic information processing

• environmental information processing

• cellular processes

• organismal systems

• human diseases.

These informations promote the biological interpretation of higher-level systemic func-

tions. Currently, about 405,927 pathway maps are deposited.

The KEGG PATHWAY database is freely available at http://www.genome.jp/kegg/

pathway.html.

2.11.5 naccess

Solvent accessibilities provide an intuitive and quantitatively reasonable idea of the

complexity of the molecular interaction network an amino acid residue is involved

within a protein [67]. Thus, we also computed solvent accessibilities via naccess [68].

Naccess calculates the solvent accessible area of a protein in a PDB file by defining

a probe sphere rolled around the protein’s surface. The resulting path of the probe

sphere center refers to the solvent accessible surface of the protein. In general, the

probe sphere radius corresponds to the radius of the water molecule (1.4 Å), however,

naccess also allows user-defined sizes of atoms and the applied probe sphere.

It is freely available at http://www.bioinf.manchester.ac.uk/naccess/.
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2.11.6 LIGSITEcsc

The identification of binding pockets on protein surfaces is crucial for structure-based

drug design applications and protein-ligand docking studies [69]. The LIGSITEcsc is

an extended implementation of the well-known LIGSITE algorithm. Instead of using

atom coordinates, however, LIGSITEcsc relies on the Connolly surface of a protein to

capture surface-solvent-surface events. The identified pockets then are ranked according

to the conservation of the involved surface residues.

It is freely available at http://www.projects.biotec.tu-dresden.de/pocket.

2.11.7 CELLmicrocosmos

CELLmicrocosmos is an integrative cell modelling and stereoscopic 3D visualization

project [70]. To support and visualize the subcellular localization prediction of proteins,

CELLmicrocosmos incorporates a PathwayIntegration (CmPI) component (version:

CELLmicrocosmos 4.2 PathwayIntegration).

CmPI is connected to DAWIS-M.D., a data warehouse containing a number of databases

[71]. It applies a context-based localization prioritization, since each protein usually

can obtain different localization entries from databases.

The CELLmicrocosmos including the CmPI is available at

https://www.cellmicrocosmos.org.

2.12 Used data sets

To be able to analyze existing pathogenicity prediction approaches and develop new

strategies to assess disease susceptibility of nsSNV sets, a reliable data set is highly

required. The data sets used in this thesis split into patient samples diagnosed with

dilated cardiomyopathy (DCM)[72] and healthy control samples from the 1000 genomes

project [73]. Details are presented below.

2.12.1 Cardiomyopathy data set

Due to the valuable contribution of the INHERITANCE Project Group, we were able

to study a data set containing 842 nsSNVs in 76 genes that are clinically relevant

for DCM (known causes and likely candidate genes for DCM) found by studying the

genetics in 639 patients with DCM [72]. DCM refers to a frequent disease of the heart

muscle (myocardium) and as such belongs to the class of cardiomyopathies [74]. Briefly,

the heart’s main pumping chamber in DCM patients thins introducing an impaired

systolic pump function. Recently, genetic variations have been identified to substantially

contribute to DCM [75]. Despite already detected genetic mechanisms contributing
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to a DCM cause, there are still unexplained causes [76]. In particular, the observed

phenotypes vary with respect to severity and prognosis.

The sequencing of the DCM samples was performed on IlluminaHiSeq instruments [11].

Per patient, roughly 2 billion bases have been sequenced. To ensure diagnostic quality

for clinical application, circa 99.1% of the targeted genomic region is covered at least

50-fold. In average, each patient carried 32 nsSNVs in the investigated target region.

In consequence, the coverage rate of our data set exceeds those used in classical exome

capture studies by several orders of magnitude [11].

Next, we collected available information concerning the data set nsSNVs deposited in

available databases [11]. To avoid bias, we collected information available from three dif-

ferent databases: SwissProt/UniProtKB (especially using the HUMSAVAR collection),

dbSNP including ClinVar and the HGMD. Further details about the used databases

can be found in Section 2.2. When information from more than one of the sources was

available (only 5% have information in all three databases), we built a majority-vote-

based consensus. While circa 60% are deposited in dbSNP with an rs ID, only 45%

have pathogenicity information available [11]. Figure 2.10 represents the detected pa-

thogenicity annotations in ClinVar, HUMSAVAR and the HGMD for the DCM data set.

Abbildung 2.10: Detected pathogenicity annotations [11].

The neutral labeled set and the disease-associated set comprise 192 and 147 nsSNVs,

respectively [11]. This annotated cardio test set, however, refers to only circa 45%

of our whole data set. A total of 55% of the nsSNVs in the DCM data set have no

available clinical significance information, and circa 40% have neither an rs ID nor other

known identifiers and annotations. This impressively demonstrates the lack of currently

available annotation concerning clinical information and phenotypic association of

genetic variants deposited in freely accessible databases.
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2.12.2 Control data from the 1000 Genomes Project

To be able to evaluate detected putatively DCM-related nsSNV patterns, Dr. Jan Haas

from the INHERITANCE Project Group generated a control set based on the general

population of the 1000 Genomes Project [73] (1000 genomes). The 1000 Genomes

Project sequences multiple genomes to provide a comprehensive resource on human

genetic variation.

Jan Haas downloaded the binary files (BAM) including the sequence data from 445

samples and applied the same variant calling and filtering algorithms, as described

for the analyzed DCM cohort [72]. In order to match the European INHERITANCE

cohort, we only considered individuals with a European descent: Utah residents with

northern and western European ancestry (CEU), Finnish in Finland (FIN), British in

England and Scotland (GBR), Iberian populations in Spain (IBS) and Toscani in Italy

(TSI) [73].
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The invent of Next-Generation Sequencing (NGS) techniques led to a substantial

amount of detected genetic variations, still rapidly growing. The vast amount of genetic

variant data consequently requires development of automatic procedures to predict the

functional and phenotypic effects of nsSNVs [11]. In the previous Chapter, Section 2.5,

we listed and briefly described state-of-the-art prediction tools to assess the pathogenic

influence of nsSNVs. Since in recent years, a number of approaches dealing with the

functional impact of genetic variants on protein function have been developed, the

choice of the best performing predictor has become difficult.

In consequence, evaluation studies have been performed to compare the available patho-

genicity prediction methods [11]. In 2010, Thusberg et al. analyzed the performance of

nine prediction tools on neutral (from dbSNP) and disease-associated (from PhenCode

database [77] and IDbases [78]) variant data sets [79]. Castellana and Mazza further

studied the uniformity of the predictions of six methods for whole-exome sequencing da-

ta [80]. Moreover, Frousios et al. evaluated the prediction performance of nine methods

on data from the HGMD and the 1000 Genomes Project, and developed a consensus

tool integrating four available prediction methods [81].

In this chapter, we describe and present the results of our study focusing on compre-

hensive evaluation of prediction concordance and prediction quality of existing tools as

well as discuss novel approaches to predict sets of nsSNVs. The following evaluation

study of pathogenicity prediction tools for single nsSNVs refers to already published

work [11] and constitutes the starting point for our analyses on nsSNV sets.

3.1 Concordance and performance of current state-of-the-art

pathogenicity prediction approaches

We systematically explored both, the concordance and performance of existing state-of-

the-art nsSNV pathogenicity prediction tools on panel sequencing results of 639 DCM

samples [11]. This NGS data set was screened for the full sequence of 76 genes, clinically

relevant for DCM and involves 842 nsSNVs. Due to the high coverage rate of at least

50-fold for 99.1% of the target region, the used DCM data set is of high clinical quality

(details see Section 2.12.1).

In contrast to previous studies, we extended the number of tested tools and applied
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these to the mentioned data set of high-quality. This study was already published in

[11]. Figure 3.1 outlines the underlying workflow.

In the following, we state the results most important for the presented thesis.

Abbildung 3.1: Graphical overview of the applied test workflow [11].

The selection of the 13 tested tools depended on characteristics important for the

majority of pathogenicity analyses: We only considered tools suitable for large-scale

studies without prerequisites that are not generally available, such as a homologous

3D structure or a dbSNP ID for prediction. Furthermore, we concentrated on tools,

frequently used in the scientific community.

For the calculations, the default parameters proposed and preset by each tool were

applied.

The statistical analysis of the 13 state-of-the-art pathogenicity prediction tools comprised

two components, the prediction congruency analysis and the prediction quality analysis.
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3.1.1 Concordance of prediction methods

Since no pathogenicity information for the complete data set is available, we first

focused on the analysis of congruency and association of the state-of-the-art methods.

In a first step, we calculated for all 842 nsSNVs in our data set the pathogenicity

prediction of the selected 13 tools. There are a dozen of computational tools aiming

at functional prediction of nsSNVs, thus, there are also approaches trying to build

an unified consensus classification score from them [82][83]. To avoid adding to the

complexity, we evaluated the straightfoward majority vote to build a consensus: for

each nsSNV, we determined the most frequent prediction result among the single

predicted ones. To evaluate the concordance, we computed for each single nsSNV a

consensus prediction out of all 13 prediction results and compared the consensus with

the prediction of each method, respectively. In addition to overall concordance, we

also analyzed the mutual concordance of the tested prediction tools. For each pair

of prediction methods, we calculated the similarity of their results concerning all 842

nsSNVs. The similarity score is defined as:

ScoreSimilarity =
∑

n∈nsSNV s
comparison(n) (3.1)

comparison(n) =

{
1 if prediction of Tool A and B for n are equal

−1 otherwise

(3.2)

We studied both, the overall concordance of one prediction tool compared to the con-

sensus of all prediction methods and the mutual agreement among all methods.

To evaluate the concordance of the 13 prediction methods, we determined the distribu-

tion of obtained prediction results on the complete data set of 842 nsSNVs (Section

3.2).

Although SIFT [84] and MutationAssessor [85] predicted about 50% of the 842 nsSNVs

to be disease-associated, the other methods proposed the majority of the nsSNVs to

be neutral. SNPs3D [86] (90%), PANTHER [33] (35%), MutationAssessor (29%), and

PolyPhen2 [35] (23%) failed to predict all of the 842 nsSNVs. In contrast, MutPred

[87], SNPs&GO [88], PhD-SNP [34], SNAP [89], PMut [90], PredictSNP [83] and

PROVEAN [37] had a prediction failure rate of less than 4%. Figure 3.3 illustrates the

comparison of each prediction tool to the consensus prediction result built using all

methods. PredictSNP, PROVEAN, PhD-SNP, SNPs&GO, and Condel achieved the

best conformity to the overall consensus.

Next, we created a network via Cytoscape [91] based on pairwise comparison of similarity

scores of the prediction results to evaluate the mutual agreement among the tested
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Abbildung 3.2: Distribution of obtained prediction results for the complete data set of

842 nsSNVs [11].

Abbildung 3.3: Comparison of single prediction with consensus prediction results for

the complete data set of 842 nsSNVs [11].
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Abbildung 3.4: Network of prediction concordance. Nodes represent prediction tools,

while edges mark the pairwise prediction similarity for connected nodes.

The dashed edges refer to a similarity of about 70− 80% and the bold

line edges to a similarity of > 80%. For clarity, edges with less similarity

value are neglected, except if one method includes another (pointed

edges). Pink arrow edges point to included tools. The color of the nodes

codes for concordance: purple = high, turquoise = moderate and blue

= low [11].
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methods (see Figure 3.4). For clarity, only edges marking at least 70% pairwise similarity

or connecting methods that incorporate other tools were recognized.

SNPs3D, PANTHER, MutationAssessor, and PolyPhen2 revealed the worst conformity

with all other tested tools. In contrast, PredictSNP, PROVEAN, MutPred, SNAP,

PMut, SNPs&GO, and PhD-SNP obtained the best concordance values with more than

80%. Except PROVEAN, these tools use machine learning classifiers for pathogenicity

prediction, and at least four include structural annotations.

Condel and PredictSNP build consensus predictions based on the single predictions

of other methods. Interestingly, machine learning-based applications cluster very well,

indicating the chosen classifier method to be essential for the prediction outcome (see

Figure 3.5). The underlying classification method even reveals greater influence on

the overall concordance than methods incorporating others. Moreover, tools including

others show not necessarily equal performance. These findings agree with previous

studies [79].

3.1.2 Performance of prediction methods

For 45% of the DCM data set, we were able to extract available pathogenicity annotations

from SwissProt/UniProtKB (HUMSAVAR collection), dbSNP including ClinVar and

the HGMD to create test sets for the performance evaluation of the selected prediction

tools. The neutral labeled set and the disease-associated set comprise 192 and 147

nsSNVs, respectively (details see Section 2.12.1).

In consequence, we were able to measure the prediction quality of the tested 13 prediction

tools on the generated test set of 339 annotated nsSNVs. We calculated the confusion

matrices [true positives (TP), true negatives (TN), false positives (FP), false negatives

(FN)] and consequently accuracy, specificity and sensitivity for the results of each single

prediction tool (detail see Section 2.9.1). We also computed the balanced accuracy

and the Matthews correlation coefficient (MCC) because the distribution of available

annotations concerning neutral and disease-associated nsSNVs is slightly imbalanced

(192 to 147).

The results of the prediction performance of the 13 tested tools in our study are shown

in Figure 3.6.

The best performance concerning balanced accuracy and sensitivity in combination

with prediction ability (NA ratio) was reached by MutPred with 66% accuracy, 96%

specificity, 28% sensitivity, 62% balanced accuracy and 0.32 MCC. Despite promising

balanced accuracy values, SNPs3D could classify only about 5% of our generated test

set. The remaining tools frequently showed a low hit ratio. In addition to SNPs3D and

MutationAssessor, most methods revealed much higher specificity values compared to

sensitivity. The mean values for accuracy (60%), specificity (69%), sensitivity (49%),

balanced accuracy (59%) and MCC (0.20) show the current limitations of nsSNV

pathogenicity prediction.

Furthermore, we determined the performance quality of the consensus prediction result,
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Abbildung 3.5: Heatmap of the prediction results obtained by the 13 state-of-the-art

prediction tools. Tools based on machine learning cluster well, indicating

that the chosen classifier method is essential for the prediction outcome

[11].
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Abbildung 3.6: Prediction results of the 13 tested state-of-the-art tools on 339 nsSNVs

with available pathogenicity annotations [11].

computed for each nsSNV during congruency analysis. Cases with balanced 50% vote

were excluded within calculation of prediction measures. Referring to the methods’

close correlations, we also clustered related methods to build a consensus prediction

of non-overlapping tools and calculated a kind of nested majority vote. First, we

determined the majority vote for related methods. Next, we determined the majority

vote over all these sub-majority votes. In particular, we compared structure-based and

sequence-based methods to try to improve the prediction results. We discriminated

between the structure-based group (MutPred, PMut, SNAP, SNPs3D, PolyPhen2)

and the sequence-based group (PROVEAN, SNPs&GO, SIFT, PANTHER, PhD-SNP,

MutationAssessor). We also clustered related methods, namely methods using the same

classification method or prediction features: machine learning-based group (MutPred,

SNPs&GO, SNPs3D, PhD-SNP, SNAP, PMut) and the non machine learning-based

group (PANTHER, PROVEAN, Condel, PolyPhen2, SIFT, MutationAssessor). Since

PredictSNP builds a consensus of sequence- and structure-based methods as well as

incorporates machine learning and non machine learning-based tools, we excluded this

method from our consensus calculation. The resulting quality measures are presented

in Table 3.1.

The consensus predictions of machine learning (ML) and structure information-including

methods reveal slightly improved accuracy values. We also built a consensus of the

results obtained by structure-based and sequence-based methods, which yielded the best

consensus prediction result with 65% accuracy (balanced accuracy 63%) and about 63%

sensitivity. In addition, the sequence structure consensus as well as the ML consensus
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Tabelle 3.1: Prediction results of clustered prediction methods. Sequence consensus: consensus predicti-

on of sequence-based group; structure-consensus: consensus prediction of structure-based

group; sequence structure consensus: consensus prediction from sequence and structure

consensus; Machine Learning (ML) consensus: consensus prediction of related methods

divided into the machine learning group and the non-machine learning group [11].

Accuracy Specificity Sensitivity Balanced

accuracy

MCC NA

Sequence con-

sensus

57.7 63.44 50.34 56.89 0.14 2.4

Structure con-

sensus

62.73 76.24 45.39 60.82 0.23 5.0

Sequence

structure

consensus

65.0 66.0 62.86 64.43 0.27 0

ML consensus 63.74 64.43 61.76 63.1 0.24 0

were able to return a result for each nsSNV in the data set.

3.1.3 Discussion

We analyzed the concordance and performance of current state-of-the-art pathogenicity

prediction tools to identify the best method to prioritize nsSNVs as disease cause. Du-

ring our extensive analysis, we identified several critical drawbacks within the current

state-of-the-art pathogenicity prediction strategies.

Many existing prediction methods are not well suited for large-scale studies with real-life

data. Often only server-based applications are available, and/or the input is restricted

to single sequence variants in one query.

In addition, a major problem concerning all computational methods and databases

is the maintenance of the developed software. Rare updates lead to obsolete anno-

tation linkages and can even negatively influence classification results. In fact, some

of the available supposedly neutral nsSNV data sets used in former studies contain

disease-associated mutations according to actual database entries. We identified, for

example, some variants in the neutral VariBench data set of Thusberg et al. [79], as

disease-associated, with entries in the HGMD [6]. The major problem in general refers

to the limited availability of suitable data and, particularly, high-quality data. Often

data sets are constructed from information contained in one particular database without

cross-checking these information in additional databases. Some information missing in

one database might be available in another. Sometimes, even annotations from different
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data sources disagree. In particular, the construction of a neutral labeled data set

is highly challenging. Hence, we constructed our positive and negative data sets as

consensus out of the three most popular databases for nsSNVs. Based on our findings,

we recommend using a consensus of different available data sources to avoid biased

data sets in future studies.

The choice of the data and the data quality play an essential role in performance and

evaluation studies. Especially the data quality in former studies often varies: Frousios et

al., for example, based their analysis partly on low-coverage whole-genome sequencing

data [81]. In contrast, our analysis focuses mainly on high-coverage data for targeted

sequencing with 99.1% of the targeted genomic region covered at least 50-fold.

Furthermore, none of the currently available approaches consider neighboring nsSNVs

or the influence of several nsSNVs. A human individual usually carries more than one

nsSNV, and from a medical point of view, especially, the individual combination of

nsSNVs plays a crucial role in clinical diagnostics concerning e.g. personalized medicine.

3.1.4 Familial study on glioblastoma multiforme (GBM)

In a familial exome sequencing study of unaffected parents and their two siblings

diagnosed with glioblastoma multiforme (GBM), we were able to identify genes with

accumulations of homozygous and heterozygous germline variants within both siblings

[92]. GBM is the most aggressive and malignant subtype of human brain tumors. The

identified accumulations of homozygous and heterozygous variants could not be detected

in the healthy parents and thus, might contribute additively to the siblings’ observed

phenotype. Figure 3.7 exemplarily illustrates the encoded protein structure of Chitinase-

3-like protein 1 (CHI3L1 ), one of the detected genes with variant accumulations.

CHI3L1 plays an important role in the regulation of malignant transformation and local

invasiveness in gliomas, since it is highly expressed in human glioma tissue. Within our

samples of the two siblings, CHI3L1 revealed several homozygous and heterozygous

mutations not present in the parents’ exome.

Unfortunately, computational methods to analyze putative synergetic effects of multiple

variants in one gene on the cause and severity of a disease are currently missing. In

consequence, we aimed to improve this unsatisfactory situation by developing novel

strategies to promote the assessment of nsSNV sets in one gene and its coding protein.
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Abbildung 3.7: 3D structure of chitinase-3-like protein 1 (CHI3L1 ) [92]. The four chains

of CHI3L1 are colored according to their secondary structure elements.

To highlight the distribution of the detected mutations within one chain,

chain C is colored in grey. We distinct between homozygous (pink) and

heterozygous (orange) mutations.
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3.2 From single nsSNV prediction to the assessment of

nsSNV sets

The major drawback of probably all currently available pathogenicity prediction tools

is their restriction to one single nsSNV per gene or one single mutation per protein,

respectively. This ’one-SNV, one-phenotype’-paradigm, however, is not able to cover

the whole range of nsSNV impact on a protein’s function regarding diseases such as

diabetes or GBM [8]. The computational features suitable for the detection of putative

synergetic effects of several nsSNVs in one gene, though, are limited.

In order to develop an approach to assess the effect of multiple nsSNVs, we first tried to

detect mutation patterns specific for disease enabling the formulation of classification

rules for the pathogenicity prediction of nsSNV sets on the example of the DCM data

set of 639 samples (see 2.12.1). To this end, we analyzed amino acid distributions at

wild type and mutant positions as well as patterns of amino acid substitutions specific

for DCM-linked nsSNVs for the 339 annotated nsSNVs within the DCM samples.

Next, we tried to implement computational scores discriminating between disease-

associated and neutral nsSNV sets by adaption of strategies used for the pathogenicity

prediction of single nsSNVs. In particular, we focused on features available for the

majority of NGS data, such as e.g. the protein sequence, instead of 3D structure

information, which is unfortunately often missing.

In the following, we refer to the wild type (WT) amino acid as the unmutated position

in the reference genome and the mutant (MT) amino acid as the position in the patient

data differing from the reference genome.

3.2.1 Analysis of amino acid distributions in DCM samples

Since we have been able to create a test set of neutral (192) and disease-associated

(147) nsSNVs within the DCM data based on annotations in SwissProt/UniProtKB

(HUMSAVAR collection), dbSNP including ClinVar and the HGMD, we calculated the

amino acid distribution in the neutral and disease labeled DCM test set (see Section

2.12.1) as well as frequencies for WT and MT residues. In particular, we compared the

observed frequencies with the expected values determined based on the distribution

of all amino acids in the test set. The expected values are also computed with regard

to codon diversity and the probability to generate a certain substitution referring to

all possibilities for a translation from a specific amino acid to another by only one

triplet base mutation of the WT codon. The applied formulas for expected and observed

frequencies are defined in Section 2.9.2.

To compare WT and MT residues within substitutions, we computed a BLOSUM62

matrix-based dissimilarity score [93], defined as:

Scorediss = |BLOSUM62(WT aa,MT aa)−BLOSUM62(WT aa,WT aa)|
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where aa abbreviates amino acid.

Since the identity of BLOSUM62 equals the maximum value and less similar substi-

tutions tend to receive negative values, the higher the score the less similar are the

substituted amino acids.

In general, the resulting amino acid distributions at WT and MT residues are quite

similar (see Figure 3.8). Except at MT positions in the disease-labeled DCM data,

arginine (R) is observed most often, even more frequently as expected (Figure 3.8, part

C). R, together with serine (S) and leucine (L), refers to the three amino acids with

the most coding triplets (6). Moreover, R was detected as the most frequently mutated

WT residue in the considered data set, however, it also reveals the highest occurrence

within the analyzed DCM data. Hence, the probability to mutate one of the R residues

compared to others is higher.

In contrast to the neutral-labeled DCM set, methionine (M) and tryptophan (W)

reveal higher observed frequencies in the disease-annotated DCM data as expected

(Figure 3.8, part D). Interestingly, M and W are encoded by only one single codon,

and thus, the probability to obtain a M or W residue by one single base mutation

is lower compared to the rest of the standard amino acids. Khan et al. analyzed the

mutational spectrum of amino acids within protein secondary structure elements such

as helices, beta strands and turns. According to their study, M is the only significant

MT residue concerning alpha helices [41]. Together with cysteine (C), M is one of two

sulfur-containing amino acids. Its thiol side chain also reveals high reactivity [21]. W is

the less most occuring amino acid among the 20 standard amino acids. Characteristic

for W is its bicyclic structure, consisting of a six-membered benzene ring fused to a

five-membered nitrogen-containing pyrrole ring [21]. A substitution resulting in an

inserted M or W residue may alter binding affinities within a protein because of the

higher reactivity of M or introduce steric clashes due to the size of W modifying a

protein’s folding. These effects may promote disease-associated dysfunctions of proteins.

Furthermore, we investigated the relationship of mutations correlated with their physico-

chemical properties. To this end, we distinguished five groups: non-polar (G, A, V, L,

M, I), polar (S, T, C, P, N, Q), aromatic (F, Y, W), positively charged (K, R, H) and

negatively charged (D, E) amino acids. Explanations for the amino acid abbreviations

can be found in 6.1. The results are illustrated in Figure 3.9. In general, non-polar

residues represent the majority of WT and MT residues, respectively. Besides these,

aromatic amino acids are most frequently detected at neutral-annotated MT positions

of the DCM set. In contrast, the majority of disease-associated MT positions in the

DCM data is composed of positive-charged residues.

Beyond the single amino acid distributions, we also studied whether the spectrum

of combination of WT and MT residues reveals substitutions specific for disease or

neutral-annotated DCM data. Based on all MT residues, which can result from the

observed WT by one base change within its triplet, we determined the most frequent

mutations and calculated the probability to generate certain substitutions (formula
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A B

DC

Abbildung 3.8: Distribution of amino acids at WT (wt) and MT (mt) residues in

neutral and disease set of the DCM samples. The axes are labeled

by the calculated expected versus the observed occurence of the WT

and MT residues, respectively. “Neutral info wt obs” e.g. refers to

the observed WT occurence within the neutral labeled data set, while

“disease info mt exp” denotes the expected occurence of the MT residue

within the disease-associated data, and so on.
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Abbildung 3.9: Distribution of amino acids with certain physico-chemical properties at

WT and MT residue positions. The red-colored lines denote the results

for disease-labeled DCM data, while the gray printed lines refer to the

neutral-annotated DCM set.

definitions see Section 2.9.2). To study WT and MT residues within substitutions, we

computed a BLOSUM62 based similarity score as described above. The obtained results

are displayed in Figure 3.10. Substitutions with low similarity of the involved WT and

MT amino acids in combination with the highest frequency values are R-C, P-L, R-W,

G-R, T-M, G-S, and T-I. Interestingly, only P-L and G-R among these substitutions

have with 16% and 25% the highest probability values based on codon diversity for a

transition from the WT to the detected MT residue by on base change within the WT

triplet. In the remaining cases with probability values from 1.2% to 8.3%, a subsitution

to a different MT residue would have been more probable according to the genetic code.

In general, no distinct differences in the amino acid substitutions could be determined

between the disease and neutral-labeled data sets according to observed and expected

frequencies, respectively. Except the substitution T-M could be observed noticeably

more often than expected in the disease-annotated data. This at least agrees with the

findings of single amino acid distributions, since a substitution to M reveals higher

observed frequencies in the disease-annotated DCM data as expected.

The definition of putative mutation rules specific for pathogenic relation of nsSNVs

based on the identified amino acid substitution patterns, however, was not possible.

The observed results did not allow a distinct classification of amino acid substitutions

in DCM patient samples into pathogenic or benign. The identified difference of amino
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Abbildung 3.10: Amino acid substitution frequencies in both, neutral and

disease data set.
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acid substitutions between these two groups are only marginal and thus, not significant

enough for a classification. Unfortunately, we were not able to determine an exceeding

subsitution pattern in one of the analyzed sets in the DCM cohort.

In fact, the distribution of the amino acid substitutions and the substitution pairs in

both, disease and neutral-labeled DCM samples are presumably not the major cause for

a detectable, functional impact and do not provide the capability to promote nsSNV

assessment.

Next, we tried to adapt existing features for single nsSNV prediction to computationally

predict the effect of nsSNV sets.

3.2.2 Definition of pathogenicity prediction scores for nsSNV sets

To measure the effect of nsSNV sets including putative additive effects and consequently

establish a prediction strategy, we require sophisticated scoring functions. Based on

systematic studies of applied scoring methods in single SNV prediction, we developed

the following measures:

• BLOSUM Score

• PSSM Score

• Secondary Structure Score

All defined scoring methods compare WT and MT sequence, while the MT sequence

includes all amino acid substitutions within a protein detected in one patient sample.

In the following, we first present the detailed score definitions and then, we describe

the corresponding performance tests and the analysis of the obtained results.

BLOSUM Score

Some of the established approaches for single SNV prediction are homology-based

methods and thus, perform nsSNV classification into disease-associated or benign

via substitution matrices such as BLOSUM62 to judge the similarity of amino acid

substitutions in interchanges between homologous proteins [93] (details in Section

2.9.3).

The formulated BLOSUM Score computes the similarity of WT and MT sequence using

the BLOSUM62 substitution matrix:

ScoreBLOSUM = 1−

|
∑

AAwt∈seqwt

BLOSUM62[AAwt]−
∑

AAmt∈seqmt

BLOSUM62[AAmt] |

length(seqwt)
(3.3)
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where AA refers to amino acid, wt codes for WT and mt for MT.

Since identical amino acids receive maximum values in the BLOSUM62 matrix, low

ScoreBLOSUM -values indicate the substitution of amino acids with completely different

properties and hence, may alter protein stability and/or function. A detailed threshold

for discrimination of disease and neutral mutations, however, requires systematic tests

on high-quality data (see Section 3.2.3).

PSSM Score

Amino acid residues that have been conserved within a protein family more likely

play an important role in protein function compared to unconserved ones, since they

frequently encode for functional important sites of the protein [94]. To translate the

evolutionary information profiles of single mutations to multiple substitutions, we built

a conservation-based PSSM score to compare WT and MT protein sequence.

We used the position-specific scoring matrix (PSSM) to create an evolutionary profile

score for the mutated amino acid positions (Section 2.9.5). The PSSM takes into account

which residues are observed at each position in a sequence alignment of evolutionary

related sequences [44]. It measures the amino acid substitution frequencies amongst

protein families identified and curated in databases. In consequence, the developed

PSSM Score describes the degree of conversation of substituted positions and the

evolutionary occurrence of the introduced amino acids at these positions (Section 2.9.5).

Amino acid substitutions, which do not comply with the substitution profile of a protein

family, indicate destructive influence on the corresponding protein and consequently

may contribute to the cause or severity of a disease.

The PSSM score is defined as:

ScorePSSM =

∑
#AA

PSSM [AAwt]− PSSM [AAmt]

length(seqwt)
, (3.4)

where ’#’ refers to ’number of’, AA refers to amino acid, wt codes for WT and mt for

MT. For the calculation of the PSSM matrices for WT and MT sequences, we applied

the available software tool PSI-BLAST from the BLAST package version 2.2.28 (see

Section 2.9.4).

Secondary Structure Score

Structural information is essential when discriminating nsSNVs affecting protein functi-

on from functionally neutral ones [11]. Since the arrangement of structural building

blocks plays an important role in specific protein folding and hence, modifications may

have a tremendous effect on protein stability and function, we compared the sequence

of secondary structure elements of WT and MT protein sequences.
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The determination of the secondary structure based on sequence information alone is by

now highly accurate using efficient computational methods such as the state-of-the-art

tool PSIPRED [46]. In consequence, we used the PSIPRED tool version 3.3 (see Section

2.9.6) to perform secondary structure prediction and on the basis of these results as

well as the properties of secondary structure elements, we developed the Secondary

Structure Score (ScoreSecStruct), defined as:

ScoreSecStruct = 1− #mismatches

length(seqwt)
, (3.5)

where ’#’ refers to ’number of’, wt codes for WT and a mismatch is valid if at least

the two preceding positions in the alignment of WT and MT secondary structure also

differ.

Figure 3.11 illustrates a simple example.

Abbildung 3.11: Example for the defined secondary structure score. The secondary

structure elements are denoted as: C = coil, H = helix and E = sheet.

A shift by one position may occur due to the prediction method. In

particular, we defined three consecutive mismatches as lower boundary

for a modified secondary structure sequence.

A shift by one position within the secondary structure may occur due to the prediction

method. Moreover, a helical turn comprises approximately four amino acids and the

disruption of a helix is supposed to critically influence protein stability [95]. Therefore

we account for mismatches only cases where three consecutive alignment positions

differ.

In fact, we were able to detect modifications in the secondary structure introduced by

amino acid substitutions. Interestingly, these changes not necessarily occurred exactly

at the substituted position or close to it indicating a potential influence of tertiary

interactions on the mutational impact.
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3.2.3 Analysis of the defined prediction scores for nsSNV sets

To test whether the designed scores are suitable to capture putative synergetic effects

of nsSNV sets, we selected 58 test samples including 8 genes from the DCM data set

(Section 2.12.1). These samples denote different nsSNV sets in one gene detected in

DCM patients. Furthermore, the selected test samples comprise minimal overlaps of

one or two nsSNVs within one gene. Due to these overlaps, we were also able to analyze

the influence of a particular nsSNV in combination of several others. An example for 3

selected test samples refers to:

Gene Symbol Transcript nsSNV sets

ADRB1 NM 000684 S49G, G389R, V5A

ADRB1 NM 000684 S49G, G389R

ADRB1 NM 000684 A187V, G389R

The small size of the data set and the selected samples allowed for a precise analysis of

the characteristics and strengths of each defined score in two aspects: the comparison

of the scores to each other as well as with respect to the detection capability of accu-

mulation effects.

Referring to this small test set, we calculated ScoreBLOSUM , ScorePSSM and

ScoreSecStruct values for the overlapping nsSNV sets. Unfortunately, we were not

able to detect significant differences between the related nsSNV sets. Though the most

promising of the scores refers to the Secondary Structure Score, its validation requires

extensive studies to analyze which modifications of the secondary building blocks in

fact have an impact on protein folding and function.

The validation of the calculated scores, however, emerged to be more difficult than

anticipated. To the best of our knowledge, currently no data on nsSNV sets and their

corresponding functional impact exist, and thus, neither reference scores nor scores for

comparisons enabling a threshold definition are available. The assessment whether a

certain value of a specific score indicates disease association or functional neutrality

without control data proved elusive.

We computed ScoreBLOSUM , ScorePSSM and ScoreSecStruct for all 339 annotated nsS-

NVs from the DCM data set (Section 2.12.1) to define thresholds to distinct between

disease and neutral predicting scores. Based on the available pathogenicity annotations

for the 339 nsSNVs, we were able to rank the nsSNVs due to their calculated scores and

compare the distribution of neutral and disease annotated nsSNVs among the top scored

results, respectively. Unfortunately, besides disease-associated nsSNVs also neutral-

labeled mutations obtained worse scoring results. In addition, Wilcoxon-Mann-Withney

tests on the neutral and disease distribution of the nsSNVs and their corresponding

calculated scores revealed no statistically significant difference between both test sets

for all three scores.
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3.3 Conclusion

The comprehensive analysis of evaluation and prediction performance of 13 existing

tools, which aim to predict the functional impact of nsSNVs (see Section 3.1), revealed

major drawbacks concerning current state-of-the-art pathogenicity prediction.

The prediction of single nsSNVs is not able to substantially promote the improvement

of computational diagnostics, since common diseases such as diabetes and cancer are

caused and influenced by a varying number of genetic variants [96]. In particular,

previous studies revealed variants involved in common diseases do not occur at highly

conserved regions, however, current prediction methods often rely on conserved features

and hence, fail to assess their pathogenic influence [97].

In a familial study of healthy parents and their GBM diagnosed children, we could

identify variant accumulations detected in specific genes of the children but not present

in their parents [92]. Single variants revealed no pathogenic phenotype in the parents,

but their accumulations in the childrens’ genome might have additively contributed to

their observed disease. Computational methods to predict the disease association of

nsSNV sets or to analyze putative synergetic effects of several nsSNVs within one gene,

however, are currently missing.

In a simple approach, we tried to adapt existing measures to capture the functional

influence of single nsSNVs to the prediction of nsSNV sets. At present, the effects

triggering synergetic events introduced by nsSNV sets have not been deciphered so

far, and therefore, a definition of computational features for these events is highly

challenging. Furthermore, their validation is laborious and time-consuming or even

not possible. Our analysis, however, suggests the limitations of current state-of-the-art

prediction features for single nsSNV assessment to be adapted in prediction approaches

for multiple nsSNVs.

In particular, the presented studies on congruency and performance of available pa-

thogenicity prediction tools as well as the trial to adapt their prediction strategies

for multiple nsSNVs, revealed the importance of 3D structure information within the

process of detecting pathogenic nsSNVs. Though this information is often limited,

approaches to predict the functional impact of nsSNVs are proposed to include these

whenever possible. Furthermore, our analysis with respect to the secondary structure

score indicates a crucial influence of tertiary interactions, since the mutational effect

of nsSNVs not necessarily resides local at substituted positions within a 3D structure.

A putative synergetic effect of nsSNV sets underlies complex correlations and the

identification of these requires the integration of available information - regardless if

genetic or structural - within computational assessment.

Moreover, to improve clinical treatment, developed approaches have to be designed

to meet the requirements on clinical application. Experience has demonstrated the

importance of imaging techniques in clinics, such as e.g. magnetic resonance tomography.

Visual inspection of the effect introduced by several amino acid substitutions within

a 3D protein structure might reveal crucial insights in the mechanisms promoting
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dysfunction.

In conclusion, we consequently combined genetic and structural information to imple-

ment a software tool - BALL-SNP - to identify candidate nsSNVs for computational

diagnostics. BALL-SNP is presented in detail in the next chapter.
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The experimental analysis of the growing amount of detected genetic variations in NGS

studies is too cost- and time intensive, while current in silico nsSNV pathogenicity

prediction tools are not able to contribute to the improvement of clinical and treatment

prognoses.

To identify candidate nsSNVs and hence, to promote the application of NGS in

clinics, we developed the software tool BALL-SNP, freely available at http://www.

ccb.uni-saarland.de/BALL-SNP [98]. BALL-SNP serves as a new pipeline for the

assessment of multiple nsSNVs in NGS data. It is based on the Biochemical Algorithms

Library (BALL) [47] and integrated in BALL’s visualization front-end BALLView

[50]. BALL is a comprehensive application framework for rapid software prototyping,

which offers a large number of molecular data structures and algorithms allowing for

sophisticated development of new approaches [98]. Details about the framework are

summarized in Section 2.10.1.

Since we aim to combine genetic and structural information, while ensuring intuitive

usability, we take advantage of BALL’s rich functionality. We extended the versatile

C++ class library by adding functionality to import and process Variant Call Format

(VCF) based file formats used in DNA sequencing, SNP calling and SNP annotation. We

furthermore embedded the currently most important SNV annotation databases (see

Section 2.2) and corresponding parsing methods [98]. Since synergetic effects of several

mutations aggregating in a protein structure may additively contribute to an observed

dysfunction, we implemented a hierarchical bottom-up clustering for mutated residues.

In addition, we introduced a compute server and the associated request/response

functionality allowing for straightforward integration of available prediction tools [98].

Figure 4.1 outlines the BALL-SNP workflow along with all incorporated data sources.

Besides the 3D visualization, we display additional generated information in an acces-

sible HTML-based interface, facilitating a clearly arranged presentation [98]. Moreo-

ver, as BALL-SNP is implemented on top of the standard molecular modelling tool

BALLView, an intuitive and direct interaction of the user with the visualized 3D

structure representations is possible.

In the following, we point out the main functionality extensions and give an overview

about the implementation details developed within this thesis.
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Abbildung 4.1: General BALL-SNP workflow (adapted from [98]).
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4.1 Design and Implementation

The BALL implementation is structured into BALL core functionality and classes

responsible for the visualization front-end BALLView, the VIEW component. A major

part of the VIEW implementation refers to Qt derived classes creating and handling

widgets, dialogs and so on.

The required extensions for BALL-SNP reside in both, the core of BALL and the VIEW

component. Figure 4.2 gives an overview of the implemented classes and functionality

necessary for BALL-SNP.

Here, we briefly summarize the implemented C++ classes and their tasks within BALL-

SNP.

SNPFile incorporates all attributes and member functions necessary to read and process

the content of the allowed input format files (see Section 2.10.2). The SNPFileDialog

refers to a central class offering access to diverse functionality. Since we focus on the

development of a tool, which is easy to use, in particular to non-experts of molecular

modelling or further specialized software, such a class delegating the analysis pipeline

without extensive user interaction was necessary. The SNPFileDialog connects and

triggers certain instances to generate SNV specific information from e.g. annotation

databases, available prediction tools and from structural features (see workflow Figure

4.1).

We also constructed a compute server to allow out-sourced, cost-intensive calcula-

tions, such as for example SNV pathogenicity predictions. The interface classes to

communicate with the constructed compute server refer to DownloadModelFile and

DownloadPredictions. Both include QtNetwork functionality with QtNetworkReply

and QtNetworkAccessManager to process server requests and the corresponding server

responses.

Since experimentally gained knowledge about nsSNVs is curated in freely available

databases (Section 2.2), we implemented a class to parse and make use of these available

information, the DatabaseParser class.

Structural features such amino acid substitutions aggregating within subunits of a

protein can shed light on the mechanisms steering dysfunction. Hence, we introduced me-

thods to analyze the spatial relations of amino acid substitutions. The SNPClustering

class conducts SNV cluster analysis and stores required cluster properties in instances

of the SNPCluster class.

The DatabaseInterface class is responsible for the representation of the informa-

tion content prepared and generated by, for example, the DatabaseParser and the

SNPClustering, as well as for the intuitive visualization of these information on an

information page widget.

Besides, further add-ons had been necessary for e.g. notification purposes, and were

not specific for a certain functionality than rather crucial for all made extensions.
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4.1 Design and Implementation

Abbildung 4.2: UML diagram of the implemented extensions and the most important

components in BALL-SNP. Purple-colored classes refer to the BALL

core, while turquois ones belong to the VIEW component. The blue

dash-lined classes specify the interface to the constructed compute

server.
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4 BALL-SNP: A tool to identify candidate nsSNVs

BALL handles communication of all widgets and dialogs in the GUI of BALLView

through message posting to inform about modifications in a running BALLView instance.

To integrate also SNV-relevant messages and their handling, we added a new message

type called SNPdataMessage to inform notifying components about LOAD, RESET

and CLUSTER events concerning SNV data.

Since we generate a large amount of information, we introduced new coloring schemes

to enable information-based coloring of the 3D content:

• COLORING PATHOGENICITY: colors mutated residues according to their available

pathogenicity information

• COLORING INTERACTION: labels mutated residues with available interaction site

information

• COLORING CLUSTER: highlights mutated residues based on the determined cluster

affiliation

A molecular structure is partitioned into subcomponents such as e.g. atoms, residues

and proteins. To be able to create representations colored according to specific nsSNV

characteristics, we added new properties in the existing residue class to assign these:

• PROPERTY MUTATED: labels a mutated residue

• PROPERTY PATHOGENIC: assigned to a residue with pathogenic information

• PROPERTY BENIGN: assigned to a residue with benign information

• PROPERTY WITH INTERACTION: tags a residue with available interaction site infor-

mation

Furthermore, the additional attribute cluster id to maintain the cluster affiliation

and thus, enable the ad hoc selection of cluster distance thresholds, was required.

For the database parsing functionality, we included several python scripts in BALL-

SNP to preprocess the different formats of the available data sources and to enable a

straightforward update of these without intricately modifying C++ code.

In the following, we describe the functionality of the implemented classes in detail.

4.2 Adjustment of PDB residue information

BALL-SNP critically depends on 3D structures and is consequently connected to the

Protein Data Bank (PDB), the most comprehensive archive for 3D structural data

of biological macromolecules world-wide [27] (see Section 2.3 for details). Since the

standard BALL-SNP input file does neither contain any information about encoded

proteins nor information on available 3D content, we parse the required information from
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the UniProtKB, which also links available PDB ids. Unfortunately, the PDB information

concerning length as well as start and end indices deposited in the UniProtKB are

partially inconsistent with the correct information within the PDB file. Moreover,

one protein entry may have several PDB identifiers listed in the UniProtKB. To

automatically identify the largest structure with the best quality available, we first

adjusted the PDB residue information in the UniProtKB and then, compared length

and quality of each listed PDB structure. The index adjustment was performed by

pairwise alignments of the UniProtKB FASTA sequence (see Section 2.7) and the PDB

file ATOM entries within a PDB, since the FASTA sequence within the header of a

PDB file not necessarily matches the actual structure sequence of the protein given by

the ATOM entries in the PDB file (see Section 2.8 for more details). A Python script

preprocesses the parsed UniProtKB in the described form and returns a file mapping

UniProtKB identifier to the best available 3D structure in the PDB to allow fast access

and direct use in BALL-SNP.

Besides the index information deposited in the UniProtKB, the range of the residue

indices within the ATOM records of a PDB file additionally not necessarily corresponds

to the actual sequence indices. Since we have retrieved the correct residue indices during

the correction of the UniProtKB information, we are able to check whether the residue

index within the PDB file is correct or not and adjust it if necessary. The adjustment

is performed when the PDB file has been automatically downloaded by BALL-SNP

and a visualization is created.

4.3 3D modelling information to overcome missing PDB

information

Unfortunately, the gap between known protein sequences and available 3D protein

structures is still huge. Since BALL-SNP, however, relies on the 3D information of a

protein, we added the possibility to automatically search for templates in ModBase, a

well-established database of comparative protein structure models (details in Section

2.10.4).

Therefore, we setup a compute server including the required request and response

functionality. The request is created based on the UniProtKB identifier and a list of

introduced amino acid substitutions, where a substitution refers to wild type amino

acid + protein residue position + mutant amino acid, e.g. G65S for glycine is mutated

at position 65 to a serine. The built compute server is assigned different functionality

purposes of BALL-SNP and hence, the 3D model search pipeline requires the flag

“MODEL” to specify which implemented pipeline to trigger. The request syntax using

standard HTTP query strings matches:
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4 BALL-SNP: A tool to identify candidate nsSNVs

http://www.ccb.uni-saarland.de/ballsnp/cgi-bin/index.py?

seq= MODEL

&uid= UniProtKB id

&mut= mutation list separated with ‘‘ ’’

The python pipeline called by the constructed compute-server in BALL-SNP to auto-

matically search for a 3D model basically consists of the following steps:

• search ModBase file for the best available 3D model for the given UniProtKB

identifier

• check if at least one of the provided amino acid substitutions is comprised in the

selected 3D model

• download the coordinate file (PDB) for the identified best 3D model of the given

UniProtKB identifier from ModBase server

The quality of the available 3D models is scored based on sequence identity, e-value and

DOPE score. We only consider models with more than 60% sequence identity and low

values for e-value and DOPE score. These specifications refer to standard parameters

used in molecular modelling. The resulting 3D structure of the target sequence is

returned to the compute server and BALL-SNP, respectively.

4.4 Integration of available approaches on nsSNV assessment

In recent years, software tools to predict the impact of single nsSNVs on a protein’s

structure and function have been developed. Details about current state-of-the-art pre-

diction tools are outlined in Section 2.5. Since often experimentally gained information

deposited in databases is not available, we selected promising methods for integration

into BALL-SNP to make use of their functionality.

To be independent of the software maintenance by a third party and to guarantee stable

performance, we currently only focus on the integration of available stand-alone software

tools [98]. The underlying databases and resources of all these available approaches,

however, exceed the portable size of a downloadable, freely available software tool with

a comprehensive molecular modelling library, such as BALL-SNP. Furthermore, the

required input formats as well as the obtained output are often incompatible among the

tools and thus, a combination of different prediction tools requires additional analysis. In

consequence, a straightforward integration was achieved by out-sourcing the calculation

of source-expensive approaches on a compute server.

4.4.1 The compute server functionality

As already mentioned, we setup a compute server for the 3D model search in ModBase

when no 3D information is available in the PDB. This compute server was extended to
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conduct the prediction of pathogenicity and protein stability changes, respectively. The

stand-alone versions of the selected methods were installed on the created compute

server and accessed by an implemented server script. This script decides based on

specified flags (e.g. “MODEL”, see Section 4.3) which pipeline to trigger.

BALL-SNP offers the possibility to send a request to this server and to process the

corresponding response, accordingly. The BALL-SNP compute server interface corre-

sponds to the implemented classes DownloadModelFile and DownloadPredictions,

illustrated in Figure 4.2.

A general server request based on standard HTTP query strings currently refers to:

http://www.ccb.uni-saarland.de/ballsnp/cgi-bin/index.py?

seq= FASTA sequence

&uid= UniProtKB id

&mut= mutation list separated with ‘‘ ’’

where the seq parameter serves as flag in the 3D model construction pipeline (Section

4.3).

BALL-SNP waits and locks the remaining processes until it receives the response to

the made request. Since the computation time increases with the number of nsSNVs in

the input file, users can decide whether to generate and include this information or just

focus on the remaining information [98].

The subsections below elaborate on the integrated functionality.

4.4.2 Protein stability change

Proteins properly folded have minimal potential energy and are usually stable [98].

Amino acid substitutions introducing a change in the protein sequence can have a

significant impact on the potential energy of the protein structure, and thus its folding

and stability. Consequently, the analysis to which extent a mutation affects protein

stability with respect to the wild type, extends the understanding of the mutation

impact on protein function and the genotype-phenotype relationship, accordingly [98].

Several methods to predict the change of a protein’s binding free energy exist [12][99].

Among these, I-Mutant was shown to have better performance compared to the other

available tools [100]. The implemented compute server runs the freely accessible I-

Mutant 2.0 code. I-Mutant 2.0 [38] uses SVMs to automatically predict protein stability

changes caused by single point mutations in protein sequence (Section 2.6).

4.4.3 Pathogenicity prediction

Since the experimental analysis to gain knowledge concerning the pathogenicity of

nsSNVs is laborious and time-consuming, computational approaches have been de-

veloped to predict the impact of an amino acid substitution on protein function in
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4 BALL-SNP: A tool to identify candidate nsSNVs

silico. In Section 2.5, we list the available prediction tools integrated in BALL-SNP:

PANTHER [32], PhD-SNP [34], PolyPhen2 [35] and PROVEAN [37]. The tool selection

depended on stand-alone functionality and prediction strategy. We aimed to cover a

broad range of different strategies to assess the pathogenic effect of an nsSNV. Beyond

sequence-related features, structural features to analyze the genotype - phenotype

relationship are essential (PolyPhen2).

Additional to the PROVEAN prediction tool, we include precomputed PROVEAN

scores available at http://provean.jcvi.org, because PROVEAN emerged to be

generally too time-consuming for an interactive workflow in BALL-SNP (see Section

2.5.4).

In a recent study, we were able to show, that prediction accuracy and sensitivity can be

further improved by calculating a consensus score for each single nsSNV [11]. Hence, we

define an intuitive majority-based consensus score built on the single prediction results:

Scorem =
∑

t∈tools
Pt

{
1 if Pt = neutral

−1 if Pt = disease
(4.1)

where Pt refers to the prediction result of tool t.

consensus =


neutral if Scorem > 0

disease if Scorem < 0

none otherwise

(4.2)

The majority-based score treats every vote identically and selects a unique winner if

all included prediction tools are able to make a prediction. Since we also include the

I-Mutant2.0 prediction results, we obtain an odd number of tools. In cases, where tools

fail to return a prediction result and thus, no consensus decision is possible, we annotate

the amino acid substitution with no consensus.

Within the 3D structure visualization, the mutated residues can be colored according to

their pathogenicity consensus score via the defined coloring method

COLORING PATHOGENICITY (see Figure 4.3).

The update and maintenance of the installed prediction tools is straightforward, since

this only implies the installation of the newer software version on the compute server

as well as a potential server script adaption without substantial re-implementation

in BALL-SNP. In consequence, users are not forced to update their local BALL-SNP

versions to receive updated predictions.

Moreover, the constructed compute server as well as the implemented interfaces to
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request and to process the corresponding response in BALL-SNP, can easily be extended

to incorporate further available, stand-alone software tools for the disease-association

analysis of nsSNVs.

Abbildung 4.3: 3D structure of the protein encoded by SMYD2. The amino acid sub-

stitutions introduced by nsSNVs are visualized in ball-and-stick repre-

sentation and colored due to their calculated pathogenicity prediction

consensus.

4.5 Integration of available database information

Experimentally gained knowledge about nsSNVs is deposited and curated in different

databases [98]. Some of these databases provide additional information concerning the

pathogenicity and clinical significance of a nsSNV (details see Section 2.2 and the followi-

ng). To make use of this knowledge, we include information from SwissProt/UniProtKB

[26] and ClinVar (dbSNP) [23] within BALL-SNP. In particular, SwissProt/UniProtKB

collects human polymorphisms and disease mutations (annotated in the HUMSAVAR

document) assigned according to literature reports on probable disease association.

ClinVar is based on the dbSNP [5] and reports human variations while providing clinical

significance information.

Besides, we also incorporate data on drug targets curated in DrugBank [28]. The

knowledge whether the corresponding protein of a query gene is already a target for

medical treatment may provide users with helpful information concerning probable

effects of mutations within the target protein, such as e.g. the loss of drug binding.
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4 BALL-SNP: A tool to identify candidate nsSNVs

Information concerning protein interaction sites and in particular, residues participating

in these, additionally provide elementary information on protein functions and putati-

ve dysfunctions. We therefore integrated The Database of Protein interaction SITEs

(PiSITE) (Section 2.10.6). Since PiSITE assigns the interaction information on the

residue level, we are able to label mutated residues via COLORING INTERACTION, accor-

dingly. Since interaction residues close to substituted amino acids might be influenced by

these, we additionally offer the possibility to color the complete protein representation

according to the available interaction information (see Figure 4.4).

Moreover, the Exome Aggregation Consortium (ExAC) provides summary data of

exome sequencing projects, freely available for the scientific community [58] (details

in Section 2.10.7). We also include these summary data, since the comprised nsSNVs

may indicate common polymorphisms inherited in the human population or variations

called dependent on the SNP calling technique.

Figure 4.5 exemplarily displays the table representing the integrated information from

databases, I-Mutant2.0 (stability prediction) and pathogenicity prediction tools.

Abbildung 4.4: 3D representation of the protein encoded by MEF2A with residues

participating in interaction sites labeled in pink.

In cases where database information concerning pathogenicity and/or clinical relevance

is available for a given nsSNV, these information is also incorporated into the calculated

pathogenicity consensus score for this particular nsSNV (see Section 4.4.3). Since

experimentally gained knowledge on the functional impact of an nsSNV is usually more
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4.6 Predicting binding pockets

Abbildung 4.5: Table with generated information from different databases, I-Mutant2.0

and pathogenicity prediction tools for SMYD2.

reliable than the predicted impact, the pathogenicity consensus prioritizes pathogenic

database information. Benign annotated nsSNVs, however, are treated with equal

priority to generated prediction results. In the past, these nsSNVs particularly received

re-annotations with disease association in some cases, since experimental studies and

available expert knowledge increase. We identified, for example, some variants in the

neutral VariBench data set of Thusberg et al. [79] created in 2011, as disease-associated,

with entries in the HGMD [6] available in 2014.

To enable a straightforward update and maintenance policy, the integrated data sources

are parsed and preprocessed via sophisticated Python scripts included in BALL-SNP’s

additional data directory. The generated, predefined data formats then are parsed in

the C++ implementation via the DatabaseParser class. In consequence, a change in a

data source will not affect the C++ implementation of BALL-SNP.

Currently, we are focusing on selected important databases that report nsSNV patho-

genicity. The embedded database module, however, can easily be extended to include

further databases and annotation sources.

4.6 Predicting binding pockets

In addition to data mining information on pathogenicity from databases and in silico

prediction, further information may provide clinicians essential input. Among these,

the proximity of nsSNVs to functional sites such as binding pockets for ligands plays

a crucial role. BALL-SNP predicts active sites, which often are located in the largest

surface cleft, based on the Putative Active Sites with Spheres (PASS) method [101], that

uses probe spheres to characterize regions of buried volume on a protein surface [98].

Based on size, shape, and burial extent of these volumes, positions, which putatively
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4 BALL-SNP: A tool to identify candidate nsSNVs

represent binding sites, are identified.

The basic algorithm was already implemented in BALL, however, not used in the

current version. We extended the existing code to visualize the predicted active sites as

spheres in BALL-SNP and consequently represent the center of the detected binding

pockets (see Figure 4.6).

Abbildung 4.6: The MAP2K3 protein in Solvent-Excluded-Surface (SES) representation

including the center of predicted active sites (purple spheres).

4.7 Cluster analysis of nsSNVs

Several mutated residues in one protein may have a synergetic effect on the cause

and severity of a disease phenotype [98]. The detection of putative quantitative effects

requires 3D structural information and visualization. To support the visual inspection

of spatial relations, we implemented a hierarchical bottom-up clustering performed on

the 3D structure of the encoded protein and the amino acid substitutions introduced by

nsSNVs. The applied distance metric refers to the Euclidean distance of the mutated

residues Cα-atoms. The linkage criterion to determine the distance between sets of

amino acid substitutions was defined according to the average linkage variant. Details

on hierarchical clustering and the linkage strategies are explained in Section 2.10.5.
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The cluster analysis is implemented in the SNPClustering class within the BALL core.

To store required cluster properties such as members or the distance at which two

clusters were merged into the current, we defined a SNPCluster class serving as a data

container for one single cluster.

Moreover, proteins comprise polypeptide chains, also known as protein subunits. These

subunits may be identical, homologous or dissimilar and dedicated to different tasks.

Amino acid substitutions in one subunit can also reside in identical subunits of the

protein. Since the naturally occuring form of some proteins not only consists of one

but several subunits, nsSNVs can introduce substitutions in several identical subunits,

simultaneously.

The spatial analysis of mutated residues within one subunit as well as among all subunits

of the protein might add critically to the understanding of synergetic effects introduced

by nsSNVs. To be able to differentiate between mutations in identical protein subunits,

we introduced the notation wild type amino acid + residue position + mutant amino

acid + subunit, e.g. G56S A for the substitution of glycine at position 56 in subunit A

to serine.

Since distance thresholds depend on the size of the protein and its folded 3D structure

and thus, are difficult to generalize, we provide the user with all possible distance

thresholds and offer the possibility to visualize the resulting clusters, respectively.

The results of the cluster analysis are represented in tabular format on BALL-SNP’s

information page (Figure 4.7).

Abbildung 4.7: The cluster analysis results with all possible distance thresholds are

presented in a tabular format on the information page.

Users can choose which threshold to visualize within the 3D structure and can print

the corresponding clustering mutated residues via links on the information page (see

Section 4.8). Figure 4.8 examplifies the printing of the cluster affiliation of specific

amino acid substitutions at a certain distance threshold.
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Abbildung 4.8: The members of the clusters at a specific threshold can be printed

via links on the information page. The notation of an amino acid

substitution is defined as wild type amino acid - residue position -

mutant amino acid - chain of the protein.

Within the 3D structure visualization, the clustering mutations can be labeled accor-

ding to their cluster affiliation via the defined coloring method COLORING CLUSTER,

exemplified in Figure 4.9.

Abbildung 4.9: Glycerol-3-phosphate dehydrogenase 1-like protein encoded by the

GPD1L gene in cartoon representation with highlighted results of the

cluster analysis at a distance threshold of 26Å.

69



4.8 Representation of generated information - the information page

4.8 Representation of generated information - the

information page

In the previous sections, we generated information critical for the assessment of nsSNVs

as candidates for clinical studies. To allow a user-friendly, well-structured representation

of all these generated information without extensive expert knowledge of the underlying

implementation, we use established web technology standards to provide a QtWebKit-

based HTML environment. This environment was adopted from PresentaBALL, a

package for presentations and lessons in structral biology, embedded as a plugin within

BALL/BALLView [102].

Though, we also aim at an intuitive interaction with information content and a clearly

arranged representation, the demands BALL-SNP poses on such an interface, differ

compared to those of PresentaBALL. In consequence, we implemented a novel interface

class called DatabaseInterface. This C++ interface is assigned two main tasks:

representation of the generated information via an HTML interface widget in BALLView

and intuitive techniques to interact with and visualize these information in the 3D

structure.

The content of the HTML interface widget is parsed, prepared and generated by

the DatabaseParser class and includes for example the information from different

embedded databases (see Section 4.5) and cluster analysis results (see Section 4.7).

Since the information page is already visualized at the start of a running BALL-SNP

instance, when no SNV data was loaded yet, the DatabaseParser has to generate an

updated instance of this HTML interface widget with the calculated information after

SNV input data was loaded.

Besides, the user is able to trigger visualization events via standard HTML hyperlinks

providing complete access to the Python interface of BALL. The link syntax based on

standard HTTP query strings refers to:

BALL-SNP/BALL/data/DatabaseInterface/database index.html?

action= Python function to call

&module=common functions

We restrict the user interaction, however, to modify the residue coloring according

(e.g. COLORING PATHOGENICITY) to specified properties (e.g. PROPERTY PATHOGENIC,

PROPERTY BENIGN), creating predefined visual representations such as Solvent-Excluded-

Surface (SES), and to the corresponding reset functionality. For this purpose, we

added corresponding functions to the collection of predefined Python functions (com-

mon functions), which are called from the HTML interface widget and provided from

PresentaBALL:

• colorDatabaseInfo(): color mutated residues according to generated database

info
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• resetDatabaseInfo(): reset coloring of mutated residues to standard

• setClusterThreshold(distance): set distance threshold to join two clusters

• colorClusterInfo(distance): color mutated residues according to their cluster

affiliation at a specific distance

• resetClusterInfo(): reset cluster coloring of mutated residues to standard

• colorInteractionInfo(): color mutated residues participating in interaction

sites

• resetInteractionInfo(): reset coloring of mutated residues to standard

• colorSystemInteractions(): color the complete 3D representation of a protein

based on available interaction site information

• resetSystemInteractions(): reset the protein coloring to standard

• createSESModelAndHighlightSNPs(): create SES model representation for pro-

tein and highlight mutated residues

• removeSESModel(): remove created representation of SES model from 3D view

In contrast to PresentaBALL, the HTML interface is fully integrated within BALL/

BALLView without plugin activation requirements and plugin dependent usage. To

avoid complexity, the allowed interactions are restricted to defined use-case scenarios

valid in the analysis of nsSNVs.

4.9 Application Scenarios

A valid and high-quality data set is essential when analyzing the phenotypic effect of

nsSNVs on human health. To avoid artifacts, that may arise from using artificially

generated data sets and to prove the benefits of the developed tool BALL-SNP, we

applied it to clinical, high-quality data of DCM patients (details in Section 2.12.1) as

well as cancer data from one patient diagnosed with breast cancer.

In general, there are two practical scenarios based on NGS data, which are, to the best

of our knowledge, not implemented in the previously existing methods: the assessment

of the effect of several nsSNVs within a single protein, and the contribution of nsSNV

sets to ligand binding or protein stability. BALL-SNP is able to support the user in

selecting candidate nsSNVs for further analysis and finding possible solutions in both

scenarios.

In the following, we outline BALL-SNP’s rich functionality and ability to assess the

effect of nsSNVs in different use-cases.
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Figure 4.10 demonstrates the general pipeline BALL-SNP processes when loading a

delivered input file.

4.9.1 Analysis of cardiomyopathy data

The results presented in this section have already been published in [98].

Within the high-quality NGS data set of 639 patients suffering from DCM [72], we

identified three cases exemplary for the previously mentioned practical scenarios in NGS

data analysis [98]. Genes JUP, VCL and SMYD2 revealed nsSNV cluster in potentially

interesting locations. In particular, the nsSNVs of the DCM data within these genes

reveal no pathogenic annotations in available databases.

Analysis of nsSNVs in JUP The gene JUP coding for junction plakoglobin is involved

in cell junction, which influence the arrangement and function of cells within a tissue.

In particular, JUP is involved in arrhythmogenic right ventricular dysplasia (ARVD),

a congenital heart disease [103].

For the example of JUP, we exemplarily process the pipeline of an input file within

BALL-SNP step by step.

An exemplary input file for BALL-SNP in BALLformat (see Section 2.10.2) is shown

below for the gene JUP :

PDB: 3IFQ

JUP NM 002230 T739A chr17 39912019 .

JUP NM 002230 N690S chr17 39912444 .

JUP NM 002230 V648I chr17 39913771 .

JUP NM 002230 M697L chr17 39912145 rs1126821

JUP NM 002230 R142H chr17 39925713 rs41283425

JUP NM 002230 I348T chr17 39921186 .

JUP NM 002230 L527I chr17 39915041 .

JUP NM 002230 R176W chr17 39925402 .

JUP NM 002230 R203C chr17 39925321 .

The gray-colored text line is optional.

Based on this input file, BALL-SNP first checks automatically for available 3D structures

of the protein encoded by gene JUP, if no PDB identifier was provided, and/or downloads

the PDB structure. Next, the 3D structure is visualized in the 3D view of BALL-SNP.

Since the calculation requires few minutes, the user can then decide whether to compute

the pathogenicity consensus and protein stability predictions for each nsSNV in the

input file or skip this step. In the case of JUP, 4 of the 9 inherited nsSNVs reveal a

disease-association in the consensus pathogenicity prediction (details see Section 4.4.3).

Table 4.1 lists the introduced amino acid substitutions and the calculated pathogenicity
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Abbildung 4.10: General pipeline processed in BALL-SNP for a given input file.
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consensus as well as the predicted protein stability change. The database info, generated

in the next step, however, contains only information for the amino acid substitution

M697L, namely a non-pathogenic clinical significance.

Tabelle 4.1: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in JUP.

amino acid substitution pathogenicity consensus protein stability

R142H pathogenic decrease

R176W pathogenic decrease

R203C pathogenic increase

I348T pathogenic decrease

V648I benign decrease

N690S benign decrease

M697L benign decrease

T739A benign decrease

In further steps, mutated residues are labeled, binding pockets predicted and a cluster

analysis on all amino acid substitutions is performed, simultaneously. Based on this

information, users can highlight the mutated residues in the visualization, accordingly.

Figure 4.11 illustrates the result of the cluster analysis at a threshold of 24Å. The

coloring of the amino acid substitutions is defined by their cluster affiliation.

The combination of both, the generated pathogenicity consensus and the cluster analysis,

indicate a synergetic influence on the protein’s function of several mutated residues.

Mutations with a pathogenic prediction are clustering and in particular, benign predicted

substitutions also show a close neighborhood.

In addition, the center of putative active sites were labeled with purple spheres within

the 3D visualization. Interestingly, the amino acid substitution L527I indicates proximity

to a predicted binding site (see Figure 4.12).

The nsSNVs in our data set, identified in the coding region of JUP obtained either no

annotation or a benign one. Based on the performed analysis with BALL-SNP, however,

putative synergetic effects of the introduced amino acid substitutions are uncovered,

identifying these nsSNVs as promising candidates for further clinical studies.

Analysis of nsSNVs in VCL VCL codes for vinculin, an actin filament-binding pro-

tein, involved in both, cell-matrix and cell-cell adhesion. VCL has been reported to

be associated with DCM, a congestive heart failure [99]. Database search yields no

annotations for the nsSNVs in VCL from our data set.

In contrast, the calculated pathogenicity consensus associates 6 of 9 nsSNVs as disease-

linked and I-Mutant predicts all except one to decrease protein stability (see Table

4.2).

Interestingly, BALL-SNP identifies, that amino acid substitutions corresponding to
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Abbildung 4.11: The wild type structure of the protein encoded by JUP is displayed

in the cartoon representation (gray), while the inherited amino acid

substitutions are colored according to their cluster affiliation.

Tabelle 4.2: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in VCL.

amino acid substitution pathogenicity consensus protein stability

R230H pathogenic decrease

H363R pathogenic decrease

A413T benign decrease

I519L pathogenic decrease

R586W pathogenic increase

V658A no consensus decrease

R759Q pathogenic decrease

A922V benign increase

N1010K pathogenic decrease
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Abbildung 4.12: Cutout of the solvent-excluded surface of JUP. The purple sphere

represents the center of a predicted binding site. The mutation L527I

(highlighted in yellow) is located within the detected, putative binding

pocket [98].

nsSNVs, cluster together in the protein structure at a threshold of 19Å(see Figure 4.13).

The mutations I519L, R586W and V658A cluster with Cα-atom distances between 15

to 19Å, respectively. Except V658A, the substitutions obtained a disease-association

in the pathogenicity consensus. H363R and R759Q are in close neighborhood with a

Cα-atom distance around 19Å. In addition, both mutations are predicted to decrease

protein stability and are linked to disease.

Since we are also able to detect clusters between the different subunits of a protein, we

identified R230H in chain B and A922V in chain A to be located close to each other

(Cα-atom distance of 19Å). Mutations at the interface of protein subunits may critically

influence the stability of the protein, since they can alter the binding affinity of the

subunits among each other.

The BALL-SNP analysis of the nsSNVs of VCL again contributed important information

not available in state-of-the-art approaches to assess the functional effect of nsSNVs.

Analysis of nsSNVs in SMYD2 SMYD2 codes for a N-lysine methyltransferase, which

methylates both, histones and non-histone proteins. While the database search only

returns either no or benign annotations, 2 of the 7 nsSNVs are consensually predicted

to be pathogenic (Table 4.3).

Furthermore, BALL-SNP impressively shows that several amino acid substitution pairs

introduced by nsSNVs are located next to each other, implying a cumulative effect. The

mutations Y370C and M384V (at a Cα-atom distance of 9Å) are adjacent in an opposite
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4 BALL-SNP: A tool to identify candidate nsSNVs

Abbildung 4.13: The 3D structure of the protein encoded by VCL. The wild type

structure of the protein is displayed in the cartoon representation

(gray), while the mutated residues are colored by their cluster affiliation

at a threshold of 19Å.

Tabelle 4.3: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in SMYD2.

amino acid substitution pathogenicity consensus protein stability

G165E benign increase

V301I benign decrease

V349A benign decrease

Y370C pathogenic decrease

M384V benign decrease

G394C pathogenic decrease

I430M benign decrease
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direction, and both are predicted to lead to decreased protein stability. Furthermore,

the substitutions G394C and I430M are located close to each other (12Å Cα-atom

distance) as well as V301I and V349A (16Å Cα-atom distance). Interestingly, both pairs

produce opposite predictions of I-Mutant concerning their impact on protein stability.

Abbildung 4.14: Cutouts of the 3D structure of the SMYD2 encoded protein. The

clustering pairs of amino acid substitutions are highlighted in different

colors. The color framed pictures are close-up views of the correspon-

dingly colored mutation pairs. All pairs are located next to each other,

indicating a cumulative effect [98].

Figure 4.14 illustrates these 3D spatial observations, in detail. The overall results of

the hierarchical cluster analysis based on average linkage are shown in Figure 4.15.

In conclusion, BALL-SNP was able to identify promising candidates for further clinical

studies and computational diagnostics in all of the three presented analyses. Based on

these findings, further analyses on the relation to disease traits of the detected nsSNVs

are possible.
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4 BALL-SNP: A tool to identify candidate nsSNVs

Abbildung 4.15: Cluster analysis of the amino acid substitutions in the SMYD2 en-

coded protein. The protein consists of two chains A and B. Hence,

the mutations are labeled accordingly. Part A: The amino acid sub-

stitutions are highlighted within the protein 3D structure according

to their cluster affiliation. Part B: The overall cluster analysis results

are shown in tabular format on the information page. The red marked

distance refers to the highlighted cluster of mutations in the structural

visualization [98].
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4.9.2 Analysis of breast cancer data

Circulating tumor cells (CTCs) are considered as a valuable liquid tumor biopsy. Espe-

cially for metastatic cancers, CTCs have demonstrated a substantial potential for

prognostic purposes. In an exome sequencing study of 3 CTCs captured from one breast

cancer patient and of the corresponding tumor tissue, we identified genes enriched with

mutations, that overlap in all four samples (study currently unpublished). Among these,

especially MAP2K3 and KCNJ12 revealed several nsSNVs and have been described in

the context of various cancers according to literature [104] [105].

For both, however, no 3D structure is available from the PDB. In such cases, BALL-SNP

offers an automated 3D model search of the corresponding protein via a compute server

and the database of comparative protein structure models, ModBase (Section 4.3).

BALL-SNP was able to detect 3D models in ModBase with target-template alignments

of about 84% (MAP2K3 to template 3ENM) and 90% (KCNJ12 to template 3SPC)

sequence identity as well as reliable e-values and DOPE scores, respectively. In conse-

quence, we were able to analyze the spatial relationship of the detected variants in the

corresponding proteins of MAP2K3 and KCNJ12 with BALL-SNP.

MAP2K3 In the encoded protein of MAP2K3, variant R264H resides close to a

predicted active site center and thus, probably has an influence on the binding affinity of

MAP2K3 protein (see Figure 4.16). Interestingly, both detected amino acid substitutions

additionally revealed a disease-associated pathogenicity prediction consensus (see Table

4.4). Further studies on putatively altered binding affinities due to these mutations are

required to guide drug target analyses.

Tabelle 4.4: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in MAP2K3.

amino acid substitution pathogenicity consensus protein stability

R67W pathogenic decrease

R264H pathogenic decrease

KCNJ12 Within the found 3D model of the ATP-sensitive inward rectifier potas-

sium channel 12, encoded by KCNJ12, the inherited nsSNV-introduced amino acid

substitutions cluster together, impressively (see Figure 4.17).

Variants D173N, A185V and M302I are located next to each other with pairwise

Cα-atom distances between 18Å and 16Å, respectively. Hence, these variants may

putatively add to a quantitative effect on a dysfunction of the corresponding protein.

Besides, D173N and I100V also cluster with a Cα-atom distance of 21Å. All mentioned

mutations are furthermore predicted to decrease protein stability. In addition, 4 of 6

amino acid substitutions are predicted to be pathogenic (see Table 4.5).
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Abbildung 4.16: SES representation of the found 3D model of MAP2K3 encoded protein.

The included amino acid substitution R264H is located close to a

putative active site. The purple sphere represents the center of a

predicted binding pocket.

Abbildung 4.17: 3D model of KCNJ12 encoded protein in cartoon representation. The

majority of the nsSNV-introduced amino acid substitutions cluster

within the 3D structure. The variants D173N, A185V and M302I are

located close to each other with pairwise Cα-atom distances of 18Å and

16Å, respectively. In addition, D173N and I100V are close neighbors

with a Cα-atom distance of 21Å. S343L and R43H at least reveal a

Cα-atom distance of 32Å.
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Tabelle 4.5: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in KCNJ12.

amino acid substitution pathogenicity consensus protein stability

R43H pathogenic decrease

I100V benign decrease

A185V pathogenic decrease

D173N pathogenic decrease

M302I pathogenic decrease

S343L benign increase

In conclusion, the results obtained in the BALL-SNP analyses hint to a disease-relation

of the studied nsSNVs. Although further validation studies are required, these results

may contribute to the selection of clinically relevant candidate nsSNVs.

4.9.3 Analysis of interaction sites

Unfortunately, annotations of genetic variants and in particular, their introduced amino

acid substitutions are often missing. In consequence, we consider multiple data sources

and calculate several properties of mutated residues within BALL-SNP. For the applied

clinical data sets, however, no interaction site information from PiSITE (Section 2.10.6)

was available. To be able to nevertheless demonstrate BALL-SNP’s capability to make

use of this information, we selected a representative protein with amino acid subsitu-

tions at residues with available PiSITE interaction information from the UniProtKB

(Section 2.2.2). The gene MEF2A encodes for the myocyte-specific enhancer factor 2A,

a transcriptional activator with specific binding to the MEF2 element [106]. It mediates

cellular functions in skeletal and cardiac muscle development as well as in neuronal

differentiation and survival.

We selected four amino acid substitutions annotated in the UniProtKB to demons-

trate BALL-SNP’s interaction labeling functionality. In addition, we computed the

pathogenicity and protein stability predictions (see Table 4.6).

Tabelle 4.6: Pathogenicity consensus as well as prediction of the resulting protein stability for the

amino acid substitutions introduced by nsSNVs in MEF2A.

amino acid substitution pathogenicity consensus protein stability

R269A pathogenic decrease

K270A pathogenic decrease

L273A pathogenic decrease

V275A pathogenic decrease

The chosen nsSNVs are annotated in the UniProtKB to reduce trancriptional activity
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when pairwise associated with each other. Figure 4.6 represents the 3D structure of the

endcoded protein with residues participating in the protein’s interaction sites colored in

pink. The amino acid substitutions introduced by the selected nsSNVs are additionally

visualized with their SES and colored in blue. The mutated residues at position 273

and 275 participate in an interaction site of the protein and thus, are colored in pink

including their SES. In combination with the available annotations in UniProtKB, the

pathogenicity consensus and I-Mutant’s stability change predictions, the nsSNVs L273A

and V275A indicate disease-relevance, which should be further examined in clinical

studies.

Abbildung 4.18: 3D representation of the protein endoced by MEF2A. Residues with

available information concerning their participation in protein inter-

action sites are colored in pink. Mutated residues are colored in blue,

except they contribute to an interaction site (pink color).

4.10 Conclusion

The analysis of the genotype-phenotype relation and in particular, of the influence of

nsSNVs on protein stability and function, is essential in human health care. In spite of

the fact, that the majority of common diseases such as cardiomyopathy are caused by
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accumulation of several nsSNVs, computational methods to analyze cumulative nsSNVs

and their putative quantitative contribution to an observed pathogenic phenotype

are missing. In consequence, the validation of the clinical relevance of nsSNV spatial

interactions is limited.

Our tool BALL-SNP combines genetic and structural information to provide scientists

the possibility to get deeper insights on the potential effects of accumulated mutations in

proteins. BALL-SNP enables the assessment of the impact of nsSNV clusters on protein

stability, and consequently assists the selection of candidate nsSNVs for experimental

validation. It is based on a standard molecular modelling framework, allows the use of

standard NGS output, embeds important nsSNV annotation databases and performs

nsSNV cluster analysis.

Although further improvement is needed to meet requirements of the clinical application,

BALL-SNP already makes an important contribution to the existing instruments of

candidate nsSNV analysis.

Besides nsSNV sets inherited in one gene, nsSNVs in different genes can imply synergetic

events [107]. To be able to study these, we developed a multi-scale analysis approach,

presented in the next chapter.
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multiple genes

Traditional computational approaches predict the influence of nsSNVs on pathogenicity

for single variants. The impact of nsSNVs on a patient’s phenotype, however, can arise

from multiple factors such as e.g. gene-gene and gene-environment interactions [20].

In the previous chapter, we presented BALL-SNP, a tool to assess the functional impact

of nsSNV sets in one gene for the identification of candidate nsSNVs in NGS data. Since

the genetic basis of most common diseases refers to multiple genetic factors working in

aggregate [16], sets of genes inhering nsSNVs may also exhibit synergetic effects.

Previous studies analyzed the occurrence and characteristics of compensatory mutations

[108], though there might also be cumulative effects of mutations, packing single benign

effects together to an observable disease phenotype. More precisely, benign-annotated

nsSNVs in combination might be responsible for a pathological effect. Westphal et

al., for example, studied congenital disorders of glycosylation and identified a mild

polymorphism in ALG6 putatively exacerbating an already severe pathogenic phenotype

caused by PMM2 dysfunction [109]. This phenomena often is denoted by epistatis, in

essence defined as the interaction between genes. In available literature, however, this

term is confusingly and even conflictively used according to Heather J. Cordell [110].

In fact, a differentiation of genes and proteins in the context of interaction analysis

is exhausting. In this chapter, we refer to the analysis of nsSNVs in multiple genes

including the analysis of introduced amino acid substitutions in the encoded proteins

avoiding the term epistasis. We study the accumulations of nsSNVs on the genomic

level, while examining their interactions on the protein level.

Since biological systems are driven by complex biomolecular interactions [9], the study of

putative synergetic events affecting a patient’s phenotype requires a multi-scale analysis

comprising 3D context, interaction information and functional cascades. To address this

issue, we extended the traditional pathogenicity prediction approach by the analysis of

nsSNV-affected genes and their mutated proteins in terms of available 3D structures,

pathway analysis and subcellular localization on the example of a high-quality clinical

data set of cardiomyopathy patients. The conducted multi-scale pipeline is summarized

in Figure 5.1.

The work presented in this chapter will be published under [111].
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Abbildung 5.1: Schema for multi-scale analysis of nsSNVs. The traditional approach of

pathogenicity prediction of single nsSNVs is extended by more complex

levels such as rule mining to detect nsSNV sets in patients. On the top

level, pathway analysis as well as subcellular localization are applied to

study the pathogenic impact of multiple nsSNVs [111].
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5.1 Adaption of association rule learning to identify genes

with synergetic nsSNVs

Human individuals frequently carry more than one single nsSNV even within one gene.

Beyond this, genes and their encoded proteins interact with each other.

To discover strong relations between variables in large data sources, association rule

learning is generally applied. Association rule learning uncovers hidden relationships

within the tested data by formulating association rules, while using different measures

of interestingness to quantify the quality of the generated rules (details see Section

2.11.1).

Via association rule learning, we studied whether there are frequent combinations of

nsSNVs within our DCM data set (see Section 2.12.1) and a healthy control cohort

based on the general population of the 1000 Genomes Project (see Section 2.12.2).

The DCM data comprises 76 genes inhering 842 nsSNVs from 639 DCM patients. We

applied the R package arules [60] with confidence threshold 0.8 and different levels of

support, starting with at least 0.5.

In fact, we were able to identify associated combinations of nsSNVs with high support

and significant confidence values in both, single genes and multiple genes. In the DCM

data, we detected frequent combinations of nsSNVs within the single genes MYPN,

CACNA1C, DMD, ADRB2 and RBM20 with high support and significant confidence

values. Table 5.1 lists the detected nsSNVs significantly associated within one gene.

The nsSNV combinations in RBM20 and CACNA1C are even found in at least 90% of

all patients.

Tabelle 5.1: Significantly associated nsSNVs in single genes with confidence of at least 0.8.

Gene nsSNVs DCM patients with nsSNVs

ADRB2 G16R, E27Q 64%

CACNA1C M869V, K1893R, P1868L 96%

DMD D878G, R2933Q 72%

MYPN S691N, S707N 72%

MYPN F628L, S691N, S707N, P1135T 70%

MYPN F628L, S803R, S691N, S707N,

P1135T

67%

MYPN S803R, S691N, S707N, P1135T 67%

RBM20 E1223Q, W768S 98%

Since experimental validation is limited, we rely on experimental knowledge deposited

in available databases. According to database entries in the HGMD (Section 2.2.3)

and UniProtKB (Section 2.2.2), RBM20 is already related to DCM and CACNA1C

to the Timothy and Brugada Syndrome, which is a genetic disease characterized

by an abnormal electrocardiogram. MYPN, that incorporates the most identified
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associated nsSNV accumulations, is linked to different forms of cardiomyopathies

(familial, hypertrophic, dilated). ADRB2 participates in signal transduction and namely

in the adrenergic signaling in cardiomyocytes. DMD is involved in several pathways

relevant for cardiac diseases such as DCM, hypertrophic cardiomyopathy (HCM),

arrhythmogenic right ventricular cardiomyopathy (ARVC) and viral myocarditis. All

identified nsSNV associations, however, are annotated as benign nsSNVs.

Furthermore, we detected nsSNV combinations in different genes (CACNA1C, SMYD2,

PARVB, KCNE1, RBM20, KCNQ2 and JUP) significantly associated with each other

in the DCM patients. Table 5.2 lists the detailed nsSNV combinations. Using the

corresponding association rule setup, these specific nsSNV - gene combination is not

present in the control cohort. Just SMYD2, PARVB, KCNE1 and JUP revealed an

association in the healthy controls.

Tabelle 5.2: These associated nsSNV combinations in seven different genes are detected in more

than 70% of all patients with confidence of 0.8 and higher. Interestingly, the 26 patients

without identified disease nsSNVs share these combinations.

Gene Expression nsSNV set

CACNA1C Heart, brain, ovary, etc. M869V, K1893R, P1868L

SMYD2 Heart, brain, etc. G165E

PARVB Heart, skeletal muscle V6A

KCNE1 Heart, lung, etc. S38G

RBM20 Heart E1223Q, W768S

JUP Heart M697L

The nsSNVs in CACNA1C and RBM20, could even be detected in 90% of all DCM

samples. According to a large-scale analysis of the human transcriptome in 2004, all

of the associated genes revealed significant expression in heart [112]. The majority of

detected genes with associated combinations is already known in the context of diseases

such as Brugada Syndrome, Long QT Syndrome, Naxos Disease and different stages of

DCM. In contrast, all association rule detected single nsSNVs within these genes are

annotated as benign, except the N749T mutation in KCNQ2, which has currently no

available annotations. Figure 5.2 compares the information annotations of all genetic

variants within the DCM data set with the association rule detected.

Among the 639 DCM patients, we identified 26 without already known or annotated

disease-associated nsSNVs. The 26 DCM patients mainly inhere benign and not anno-

tated variants. Interestingly, the intersection of their inherited nsSNVs revealed exactly

the detected associated nsSNV combinations in CACNA1C, SMYD2, PARVB, KCNE1,

RBM20, KCNQ2 and JUP.

88



5 Multi-scale analysis of nsSNV sets in multiple genes

Abbildung 5.2: Comparison of all genetic variants within the DCM data set and the

association rule (AR) detected. Except one not annotated AR variant,

all other AR variants have neutral annotations available [111].

5.2 Network analysis of genes with associated nsSNVs

Due to the growing availability of high throughput biological data, the analysis of

molecular networks gained significant interest. In addition, the incorporation of expert

knowledge from gene ontology (GO) and biochemical pathways in e.g. genome-wide

association studies (GWAS) has been shown to provide more meaningful results [9].

In consequence, we used several information sources to determine the biological and

functional connections of the detected, associated genes with nsSNV combinations. The

databases queried are: The STRING database [62], the Gene Ontology Annotation

(GOA) database [65] and the KEGG PATHWAY database [66] (details see Section

2.11).

The network analysis splits into functional interaction and biological intersection of the

associated nsSNVs in different genes. Referring to the corresponding GO terms of the

genes with associated nsSNV combinations, the majority participates in protein binding,

voltage-gated ion channel activity and transport. A mutation of residues involved in

complex interaction networks can critically influence large interaction cascades by

spreading the implemented loss across the network.

Besides the biological connections among the associated nsSNVs, we also investigated

their topological characteristics within the human interaction network. To detect

putative interaction hubs, we determined betweenness and degree for each node in
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the human STRING network using the R package igraph [113]. The degree of a node

identifies the number of edges connected to the node, whereas the node betweenness is

an indicator of the nodes centrality in the network. The calculations were based on the

downloadable version of the human STRING network including scored links between

proteins and interaction types for protein links, available at http://string-db.org/

(version v9 05 and v9 1, November 2014).

To provide more insight into the biological intersection and functional interaction as

well as combine the corresponding findings, we visualized these genes with related genes

and highlighted GO overlaps within the resulting networks using Cytoscape [91] (see

Figure 5.3). The edges in the network refer to available interactions between their nodes.

CACNA1C, JUP, SMYD2, PARVB and KCNQ2 are directly connected to large hubs

within the STRING human network.

In addition, KCNE1, KCNQ2 and CACNA1C interact functionally with each other

[114]. KCNE1 attenuates the current amplitude of the KCNQ2 channel subunit and

slows its gating kinetics [115]. According to the KEGG PATHWAY database, KCNE1

is part of the adrenergic signaling in cardiomyocytes. A perturbation of its channel

function by inherited mutations results in increased susceptibility to cardiac arrhythmias.

KCNQ2 belongs to the cholinergic synapse and CACNA1C even takes part in both

pathways.

Interestingly, KCNE1, CACNA1C and KCNQ2 are already targets of drugs against

arrhythmia, atrial fibrillation, congestive heart failure, left ventricular hypertrophy and

isolated systolic hypertension according to DrugBank entries [116].

5.3 Structural location of amino acid substitutions

The protein structure reveals interactions between residues which are distant in primary

sequence but close in 3D space. The effect of an nsSNV critically depends on the

structural location of the mutated residue, especially if it is buried in the hydrophobic

core or exposed on the protein surface [117]. In particular, disease-associated variants

often affect intrinsic structural features of proteins [118].

First, we selected all proteins within our DCM data set, with a 3D structure available

in the PDB (see Section 2.3). Next, we calculated solvent accessibilities using naccess

(see Section 2.11.5) for the 8 proteins (comprising 46 amino acid substitutions) in our

data set with an available PDB structure to analyze whether disease-associated amino

acid substitutions cluster on the protein surface or at buried sites.

Solvent accessibility provides an intuitive and quantitatively reasonable idea of the

complexity of the molecular interaction network a residue is involved in [67]. The results

confirm the findings of Wang et al. for single nsSNVs [119]: The majority (89%) of

disease-linked mutations introduced by nsSNVs is located inside the protein probably

affecting stability, whereas benign-annotated substitutions mainly cluster on the protein

surface (67%).
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Abbildung 5.3: GO annotations and interactions of associated nsSNVs. The network is

based on the STRING human network. The associated nsSNV genes

reveal great overlap in their GO annotations. Some of them are also

connected to the top ranked hubs within the STRING human network

[111].
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Since previous studies identified the majority of pathogenic nsSNVs to destabilize a

protein’s structure [120], we also analyzed protein stability changes upon mutation

based on I-Mutant2.0 predictions (see Section 2.6). The majority (81%) of substitutions

are predicted to decrease protein stability, independent of their location in the 3D

protein structure (see Figure 5.4).

Abbildung 5.4: Information on nsSNV-introduced mutations in proteins of the DCM

data set with available 3D structure. We distinguish between amino

acid substitutions on the surface of a protein (outside) and buried in

the protein structure (inside) [111].

For five protein structures, we were also able to predict possible binding pockets using

LIGSITEcsc [69]. 8 of 10 mutations at the proteins surface are found close to a predicted

binding pocket using the default parameter settings of 1Å grid space and a probe radius

of 5Å. Interestingly, two of the detected significantly associated nsSNV combinations,

KCNE1 S38G and SMYD2 G165E, are also located close to a putative binding pocket

(see Figure 5.5) of the corresponding protein.

SMYD2 lysine-methylates the tumor suppressor TP53, leading to decreased DNA-

binding activity and subsequent transcriptional regulation activity of TP53 [121].

According to literature, the binding interface of TP53 and SMYD2 is located between

the catalytic SET domain (residue 1-282) and the C-terminal domain [122].

5.4 Subcellular localization of mutated proteins

For visualizing and analyzing the localization of the proteins encoded by genes with

nsSNVs, we used the CELLmicrocosmos 4.2 PathwayIntegration (CmPI) (see Section
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Abbildung 5.5: 3D structures of the encoded proteins of KCNE1 and SMYD2. KCNE1:

SES of KCNE1 encoded protein with the mutated S386G in ball-and-

stick representation, highlighted in yellow. The red sphere represents

the center of a predicted binding pocket. SMYD2: SES of the SMYD2

associated protein with the mutated G165E in ball-and-stick represen-

tation, highlighted in yellow. The red sphere represents the center of a

predicted binding pocket [111].
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2.11.7) [70]. In the context of this work, the following databases were queried: BRENDA

[123], GO [124], Reactome [125], and UniProtKB [26].

Based on the previously discussed methods, seven genes were identified showing specific

nsSNV combinations in more than 70% of all analyzed patients: CACNA1C, JUP,

KCNE1, KCNQ2, PARVB, RBM20, and SMYD2. In particular, all of the detected

genes have significant expression in heart. Using CmPI, Homo sapiens-related potential

localizations for these seven genes were acquired using cell component-gene association

data from the aforementioned databases. The associated proteins of these genes show five

potential localizations: nucleus, cytosol, cell membrane, lysosome, and the extracellular

matrix. Moreover, five of them provide multiple potential localizations. An overview

and distribution of these locations can be found in Figure 5.6.

Abbildung 5.6: Subcellular localization chart of all localizations for proteins of the

associated genes [111].

Based on the localization data, the hypothesis can be formulated that these proteins

are assembled in a potential cascade starting from the nucleus, through the cytosol,

entering the cell membrane and proceeding to the extracellular matrix, or vice versa.

This theory is supported by the fact that RBM20 is exclusively localized at the nucleus

and KCNQ2 at the cell membrane, whereas PARVB seems to travel between the

extracellular matrix, the cell membrane and the cytosol.

We visualized the connections of these proteins including the assigned subcellular

locations in Figure 5.7. For the purpose of clarity, Figure 5.7 condenses the detected

interactions to the identified potential cascade.
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Abbildung 5.7: Schematic visualization of the subcellular localization. The red gene

symbols represent the detected associated genes. Besides the subcellular

assignment, interactions between the listed genes are visualized (right

side). Red-labeled edges mark direct connections of associated genes. In

addition to links within one cell compartment, there are also multiple

edges crossing different compartments [111].
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5.5 Conclusion

In this study, we detected patients suffering from cardiomyopathy without identified

disease-associated nsSNVs, but inhering mainly benign-labeled variants. Via association

rule learning, we detected associated combinations of nsSNVs within at least 70% of

all cardiomyopathy patients in the data set. These specific combinations could not be

identified as associated in the control cohort of healthy humans, which hints to disease

relevance, however requires further analysis. Due to the lack of prediction tools able to

assess a cumulative effect of nsSNVs in multiple genes, a pathogenicity prediction for

the identified associated nsSNVs was not possible. Furthermore, only for two of the

identified associated nsSNV genes, KCNE1 and SMYD2, a 3D structure of the encoded

protein was available. For the remaining associated genes, even an adequate template

for structural modelling was missing. Interestingly, the associated nsSNVs in KCNE1

(S38G) and SMYD2 (G165E ) are located at the surface of the encoded protein close

to predicted binding pockets.

In addition, we studied available pathway information including GO annotations and

analyzed interaction networks. Proteins might act at different stages of the same pa-

thway contributing quantitatively to the progressive dysfunction of the pathway until

a disease phenotype is observed. Both genes in Westphal’s study [109], for example,

encode enzymes involved in a different part of the post-translational modification

process without a direct interaction. KCNE1 and CACNA1C as well as KCNQ2 and

CACNA1C participate in the same pathways and mainly contribute to voltage-gated

ion channel activity and transport. Ion channels are key components in a wide variety

of biological processes, such as muscle contraction (e.g. cardiac muscle contraction),

epithelial transport of nutrients and ions or T-cell activation. A number of genetic

disorders (e.g. Long QT syndrome, Brugada syndrome) are related to ion channel

dysfunctions.

Groh et al. [126] created a network based on the combination of diseases and asso-

ciated genes from the Online Mendelian Inheritance in Man (OMIM) database [114].

According to this network, disease genes not necessarily refer to hubs and are even

often non-essential. JUP and PARVB are involved in cell junction organization and

interact as well as SMYD2 directly with the top-ranked hubs within the STRING

human network. Cell junctions play a major role in communication between neighboring

cells and cell stress reduction.

Furthermore, the subcellular localization revealed the seven proteins to form a potential

cascade: RBM20 is only found in the nucleus, SMYD2 travels between the nucleus

and the cytosol, and the other five genes are mostly associated to the cell membrane,

where PARVB shows potential localizations between the extracellular matrix, the cell

membrane and the cytosol.

Finally, all systematic analyses point to a connection of the detected genes featuring

associated nsSNVs - in functionality as well as in their contribution to biological pa-

thways. Moreover, the specific nsSNV combinations identified as significantly associated
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5 Multi-scale analysis of nsSNV sets in multiple genes

in the DCM patients could not be detected associated within the healthy control

data. In a next step, further association studies on even larger patient cohorts with

cardiomyopathies are required to validate the identified nsSNVs. Additional studies

on patients with phenotypes different from cardiomyopathies, in particular, can assess

nsSNV specificity.

The constructed multi-scale analysis pipeline for nsSNV sets in multiple genes supports

the computational study of synergetic effects and their impact on pathogenicity. We

demonstrated this on the example of a cardiac phenotype, however, the analysis can be

likewise applied to other diseases such as cancer.
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6 Discussion and Conclusion

Advances in high-throughput DNA sequencing techniques have enabled the reliable

detection of individual sequence variants in the human genome [1]. Understanding the

role of genetics in disease has become a central part of medical research. The decryption

of the genotype-phenotype relation and in particular, the study of the pathological

effect of genetic variants such as nsSNVs, are increasingly important in human health

care. The analysis of NGS data, however, still remains a challenge. In particular, the

interpretation of pathogenicity of single variants or combinations of variants is crucial

to provide accurate diagnostic information or guide therapies.

Since the amount of identified nsSNVs is growing rapidly, while the experimental

analysis to gain knowledge concerning their disease association is laborious and time-

consuming, computational approaches have been developed to predict the functional

impact of nsSNVs in silico.

In a comprehensive evaluation study of available methods to computationally predict the

pathogenicity of nsSNVs, we uncovered several drawbacks of currently existing predic-

tion tools with respect to performance, congruency, applicability and clinical relevance.

The major limitation, however, denotes to the underlying ’one-SNV, one-phenotype’-

paradigm. Contrary to Mendelian disorders, common diseases such as diabetes or cancer,

are caused by a varying number of genetic alterations and environmental factors. Typi-

cally, a human individual inheres more than one nsSNV, and beyond single variations,

these individual combinations of nsSNVs may add to pathogenic processes.

In a familial study of healthy parents and their children diagnosed with glioblastoma

multiforme, for example, we could identify variant accumulations detected in specific

genes of the children, not present in their parents [92]. Single variants revealed no

pathogenic phenotype in the parents, their accumulations in the childrens’ genome,

though, might have additively contributed to the observed disease. To the best of

our knowledge, approaches to assess the functional effect of nsSNV sets are currently

limited.

In this thesis, we developed strategies to study both, nsSNVs accumulating in one gene

and nsSNV combinations in multiple genes. The developed approaches have been tested

on high-quality NGS data from 639 DCM patients inhering 842 nsSNVs in 67 genes [72].

In a first step, we implemented a straight-forward approach to discriminate between

disease-associated and neutral nsSNV sets by adaption of existing strategies for single

nsSNV pathogenicity prediction. Our analysis, however, revealed the limitations of

single nsSNV prediction strategies for the application on nsSNV sets.

In the evaluation study of single pathogenicity prediction approaches, we have been able
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to demonstrate the importance of structural information when analyzing the functional

impact of nsSNVs [11]. Hence, we combined genetic and structural information to imple-

ment a software tool - BALL-SNP - to assess the functional impact of multiple nsSNVs

in one protein [98]. BALL-SNP is based on the molecular modelling framework BALL

and its visualization front-end BALLView. It promotes genetic variant interpretation

and identification of candidate nsSNVs for computational diagnostics via nsSNV cluster

and 3D spatial analysis. The input refers to the output of standard SNP annotation

software preventing substantial re-formatting efforts. In addition, we offer a simple

tab-separated format to allow the inclusion of information from several sources.

Since studies on the positive and negative aspects of GWAS revealed the importance

of the integration of already available biological knowledge [9], BALL-SNP incorpora-

tes pathogenicity and clinical significance information available in databases such as

UniProtKB (HUMSAVAR), HGMD and dbSNP (ClinVar). In fact, the information

deposited in different databases or the existing cross-links from one database to others

incorporates inconsistencies complicating information retrieval. The PDB indices for

start and end residues in the UniProtKB, for example, not necessarily correspond to

the actual PDB sequence coverage. But the correct index information is critical to

select the best available 3D structure needed for BALL-SNP analyses. In consequence,

required strategies to uncover and correct these inconsistencies had to be implemented.

Further existing discrepancies in information sources have to be identified and corrected

in future studies to improve current information curation and thus, permit a real gain

of knowledge.

To make use of available pathogenicity prediction tools for single nsSNV, we compute

a pathogenicity consensus score based on the single prediction results for each nsSNV.

Although this majority-vote based consensus score is intuitive and machine learning

methods may perform better, its dependency on the underlying training data is from

our point of view less restrictive in contrast to built models from machine learning

techniques. However, some of the prediction tools base their predictions on models

trained on database data, which may also explain some of their detected limitations.

The applied consensus score particularly improved the statistical performance of single

pathogenicity prediction approaches in the evaluation study. While there are numerous

pathogenicity prediction methods for single nsSNVs available, however, we currently

focus on the integration of available stand-alone software tools to guarantee stable

performance and to be independent of the software maintenance by a third party.

Since we aimed to develop a software tool, which is also usable for non-experts, the

general pipeline processed in BALL-SNP for a given input file with nsSNV information

is designed to automatically delegate the required operations and calculations without

extensive user interaction. The generated information and the 3D structural content are

visualized in a clearly arranged representation including an intuitive user interface. The

availability of a 3D structure, however, represents a critical requirement for an nsSNV

analysis with BALL-SNP. If no PDB structure is available, we offer an automatic
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6 Discussion and Conclusion

search for available 3D models. A pipeline for automated 3D modelling requires toolkits,

which are often restricted to non-profit users or even claim a license key for each

modelling process. This contradicts the philosophy of BALL-SNP to be open-source

and usable for both, non-experts and professionals. In consequence, we decided to make

use of databases comprising available 3D models. In fact, the quality of the BALL-SNP

analysis depends on the quality of the 3D model whose quality relies on the availability

of adequate templates. Hence, different 3D models may receive different analysis results.

Experienced users, though, are able to compare different models in BALL-SNP by

root-mean-square deviation (RMSD) calculations and select the most appropriate one

for their studies. Unfortunately, there are cases where no 3D structure and even no

valid 3D model or only small fractions of a protein structure are available. Structural

information proved its significant importance when assessing the effects of nsSNVs on

a protein’s function and stability. In consequence, we prioritize quality results instead

of being able to return any result and accept this limitation. In addition, the PDB is

a collection of 3D information collected world-wide and though sustained efforts to

maintain high-quality data exist, there are unfortunately inconsistent and informal

PDB files, not fully checked for errors. Hence, BALL-SNP might not be able to return

analysis results for each PDB file deposited in the PDB. We, however, implemented

strategies to overcome common inconsistencies such as the correction of the residue

index within the ATOM records in PDB files. Whenever further inconsistencies are

identified, corresponding correction methods will have to be implemented in the future

to avoid failures.

Since BALL-SNP is an open source project and due to its modular architecture, it is

easily extendable and adaptable to include further third party tools or retieve addi-

tional information from data resources. In future versions of BALL-SNP, additional

expert knowledge provided by professional users concerning detected disease-relation of

particular nsSNVs may be incorporated to enable user-defined application scenarios. In

addition, genetic variations have been recognized to affect drug selection, dosing and

adverse events [18]. NsSNV-introduced amino acid substitutions may change existing

binding affinities of a protein or a potential drug target. Hence, the integration of

a workflow for therapeutic use in BALL-SNP to also study interactions of putative

medical substrates and drug targets represents an important extension for furture work.

A database with small ligands and known drugs should be included to test whether

mutations alter known binding affinities by comparing the binding to the unmodified

protein against the binding to the mutated protein. To this end, BALL-SNP may also

assist drug development with respect to individual genetic variations.

Besides nsSNV sets in one gene, we also studied nsSNV combinations in multiple

genes. According to Yue et al., about 25% of nsSNVs are deleterious but not disease-

related [127]. Since proteins with redundant function exist, no noticeable phenotypic

change may be detected when only one involved gene inheres an nsSNV introducing a

dysfunction of the encoded protein [128]. Several in silico prediction tools, however,
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penalize deleterious effects of nsSNVs as disease-associated without considering the

network environment. Due to overlapping protein functions, produced dysfunctions may

be buffered by the environment [129]. In consequence, the analysis of the pathogenic

influence of nsSNV sets in multiple genes requires a multi-scale pipeline to capture

gene-gene environment effects.

In this thesis, we developed an integrative approach based on state-of-the-art patho-

genicity prediction of single nsSNVs, association rule mining, pathway analysis and

subcellular localization of the involved genes. We demonstrated its strength on the

analysis of the DCM data set and a healthy control cohort based on the general

population of the 1000 Genomes Project. Via association rule learning, we detected

associated nsSNV sets in seven genes present in at least 70% of all 639 patient samp-

les, but not in the control cohort. Structural analyses of these revealed primarily an

influence on the protein stability, which agrees with previous studies on nsSNVs [119].

For amino acid substitutions located at the protein surface, we generally observed a

proximity to putative binding pockets. Considering the subcellular localization of the

proteins encoded by the genes harboring the associated nsSNVs, we observed a cascade,

starting from the nucleus, proceeding through the inner cell body to the extracellular

matrix. The performed systematic analysis point to a connection of the identified

genes featuring associated nsSNVs - in functionality as well as in their contribution

to biological pathways. In conclusion, the detected associated nsSNVs may putatively

influence cardiovascular phenotypes. Since statistical relevance not necessarily indicates

clinical relevance, further analyses and experimental validation are required. Despite

cardiovascular diseases, the developed pipeline can likewise be applied to other diseases

such as cancer.

Currently, the data suitable for such multi-scale studies, though, is limited. The majority

of the available classical exome capture studies reveal lower coverage rates compared to

the DCM data. In addition, control cohorts of healthy humans are limited, particularly

in high quality. The interpretation of results obtained by a comparison of data differing

in quality consequently poses a great challenge on the scientific community. Furthermore,

the lack of experimental information often prevents the detection of clinical significance

as well as its validation. Future studies critically rely on advances in high-quality data

generation.

In this thesis, we concentrated on genetic variants in coding regions, in particular

nsSNVs. Beyond these, intronic SNVs in promoter regions and splicing sites as well

as genetic variants in regulatory regions may have an influence on human phenotypes,

since they may affect gene splicing, transcription factor binding and messenger RNA

degradation. In fact, about 88% of genetic variants with weak trait-association from

GWAS represent non-coding variants [130]. The prediction of their pathogenic impact

in silico, however, is even more complex. Their effect, though, is expected to be weaker

compared to coding nsSNVs [131].
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6 Discussion and Conclusion

Due to missing computational methods to analyze cumulative nsSNVs and to assess

their impact on pathogenicity, the validation of their clinical relevance is limited. In

fact, genetic testing enables predictive diagnosis and can enhance pre-symptomatic

intervention. Future studies, however, focusing on translation of computational findings

to applicable mechanisms in clinical routine and capturing diagnostic demands, are

highly required.

To improve medical treatment, computational approaches should be designed to address

the requirements in clinical application. An intuitive and, in particular, visual inspection

of genomic data and genetic information might have a greater chance to reach clinical

acceptance, since imaging techniques such as e.g. magnetic resonance tomography

(MRT) have demonstrated their great importance in clinics over the last years. In

addition, the knowledge of individual nsSNV combinations and their functional impact

may pave the way to tailor medical care for patient-specific treatment [132].

In summary, we developed approaches to cover these requirements of computatio-

nal diagnostics within this thesis. We implemented a non-commercial software tool -

BALL-SNP - to promote nsSNV candidate selection by inspection and visualization of

combined genetic and structural information. Although further extensions are required

to assist clinical use of NGS data, BALL-SNP already decisively contributes to existing

instruments of candidate nsSNV analysis. Furthermore, the developed multi-scale ana-

lysis pipeline revealed promising results for the study of DCM patients and may serve

as template for future approaches to identify complex interactions of genes harboring

nsSNVs.
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Appendix: Table of Abbreviations

AA Amino Acid

ATP Adenosine Triphosphate

BALL Biochemical Algorithms Library

BLAST Basic Local Alignment Search Tool

CmPI CELLmicrocosmos 4.2 PathwayIntegration

CTC Circulating Tumor Cell

DCM Dilated Cardiomyopathy

DOPE Discrete Optimized Protein Energy

ExAC Exome Aggregation Consortium

FN False Negatives

FP False Positives

GO Gene Ontology

GUI Graphical User Interface

GWAS Genome-Wide Association Studies

HGMD Human Mutation Database

HMM Hidden Markov Models

KEGG Kyoto Encyclopedia of Genes and Genomes

MT Mutant Type (amino acid)

NMR Nuclear Magnetic Resonance

NIH National Institutes of Health

nsSNV non-synonymous Single Nucleotide Variant

PDB Protein Data Bank

PSIC Position-Specific Independent Counts

PSSM Position-Specific Substitution Matrix

RMSD Root-Mean Square Deviation

SES Solvent-Excluded Surface

SNP Single Nucleotide Polymorphism

SNV Single Nucleotide Variant

subPSEC substitution Position-Specific Evolutionary Conservation

SVM Support Vector Machines

SW Smith-Waterman

TM Transmembrane

TN True Negatives

TP True Positives

UML Unified Modeling Language

VCF Variant Call Format

WT Wild Type (amino acid)

119



Appendix

Abbreviations for amino acids [21].

120



Publication List

Journal Publications

• 2015

– Christina Backes, Petra Leidinger, Gabriela Altmann, Maximilian Wuerstle,

Benjamin Meder, Valentina Galata, Sabine C Mueller, Daniel Sickert, Cord

Sthler, Eckart Meese, Andreas Keller: The influence of Next-Generation

Sequencing and storage conditions on miRNA patterns generated from

PAXgene blood. Analytical Chemistry 07/2015.

– Nicole Ludwig, Yoo-Jin Kim, Sabine C. Mueller, Christina Backes, Tamara V.

Werner, Valentina Galata, Elke Sartorius, Rainer M. Bohle, Andreas Keller,

Eckart Meese: Posttranscriptional deregulation of signaling pathways in

meningioma subtypes by differential expression of miRNAs. Neuro-Oncology

02/2015.

– Sabine C. Mueller, Christina Backes, Jan Haas, Hugo A. Katus, Benjamin

Meder, Eckart Meese, Andreas Keller: Pathogenicity prediction of non-

synonymous single nucleotide variants in dilated cardiomyopathy. Briefings

in Bioinformatics 01/2015.

– Sabine C. Mueller, Christina Backes, Olga V. Kalinina, Benjamin Meder,

Daniel Stoeckel, Hans-Peter Lenhof, Eckart Meese, Andreas Keller: BALL-

SNP: combining genetic and structural information to identify candidate non-

synonymous single nucleotide polymorphisms. Genome Medicine 01/2015;

7(1):65.

• 2015 - submitted

– Sabine C. Mueller, Bjoern Sommer, Christina Backes, Jan Haas, Benja-

min Meder, Eckart Meese, Andreas Keller: From single variants to protein

cascades: Multi-scale modeling of SNV sets in genetic disorders.

– Sabine C. Mueller, Christina Backes, Alexander Gress, Nina Baumgarten,

Olga V. Kalinina, Andreas Moll, Oliver Kohlbacher, Eckart Meese, An-

dreas Keller: BALL-SNPgp - from genetic variants towards computational

diagnostics.

121



Publications

• 2014

– Christina Backes, Christian Harz, Ulrike Fischer, Jana Schmitt, Nicole

Ludwig, Britt-Sabina Petersen, Sabine C. Mueller, Yoo-Jin Kim, Nadine

M. Wolf, Hugo A. Katus, Benjamin Meder, Rhoikos Furtwaengler, Andre

Franke, Rainer Bohle, Wolfram Henn, Norbert Graf, Andreas Keller, Eckart

Meese: New insights into the genetics of glioblastoma multiforme by familial

exome sequencing.Oncotarget 12/2014.

– Andreas Keller, Petra Leidinger, Britta Vogel, Christina Backes, Abdou

ElSharawy, Valentina Galata, Sabine C. Mueller, Sabine Marquart, Michael

G. Schrauder, Reiner Strick, Andrea Bauer, Joerg Wischhusen, Markus Beier,

Jochen Kohlhaas, Hugo A. Katus, Joerg Hoheisel, Andre Franke, Benjamin

Meder, Eckart Meese: miRNAs can be generally associated with human

pathologies as exemplified for miR-144*. BMC Medicine 12/2014; 12(1):224.

– Jan Haas, Karen S. Frese, Barbara Peil, Wanda Kloos, Andreas Keller,

Rouven Nietsch, Zhu Feng, Sabine Mueller, Elham Kayvanpour, Britta Vo-

gel, Farbod Sedaghat-Hamedani, Wei-Keat Lim, Xiaohong Zhao, Dmitriy

Fradkin, Doreen Koehler, Simon Fischer, Jennifer Franke, Sabine Marquart,

Ioana Barb, Daniel Tian Li, Ali Amr, Philipp Ehlermann, Derliz Mereles,

Tanja Weis, Sarah Hassel, Andreas Kremer, Vanessa King, Emil Wirsz,

Richard Isnard, Michel Komajda, Alessandra Serio, Maurizia Grasso, Petros

Syrris, Eleanor Wicks, Vincent Plagnol, Luis Lopes, Tenna Gadgaard, Hans

Eiskjr, Mads Jrgensen, Diego Garcia-Giustiniani, Martin Ortiz-Genga, Maria

G. Crespo-Leiro, Rondal H. Lekanne Dit Deprez, Imke Christiaans, Ingrid A.

van Rijsingen, Arthur A. Wilde, Anders Waldenstrom, Martino Bolognesi,

Riccardo Bellazzi, Stellan Moerner, Justo Lorenzo Bermejo, Lorenzo Monser-

rat, Eric Villard, Jens Mogensen, Yigal M. Pinto, Philippe Charron, Perry

Elliott, Eloisa Arbustini, Hugo A. Katus, Benjamin Meder: Atlas of the

clinical genetics of human dilated cardiomyopathy. European Heart Journal

08/2014; 36(18).

– Tim Seifert, Andreas Lund, Benny Kneissl, Sabine C. Mueller, Christofer S.

Tautermann, Andreas Hildebrandt: SKINK: a web server for string kernel

based kink prediction in -helices. Bioinformatics 02/2014; 30(12).

• 2013

– Petra Leidinger, Christina Backes, Stephanie Deutscher, Katja Schmitt, Sabi-

ne C. Mueller, Karen Frese, Jan Haas, Klemens Ruprecht, Friedemann Paul,

Cord Stahler, Christoph Jg Lang, Benjamin Meder, Tamas Bartfai, Eckart

Meese, Andreas Keller: A blood based 12-miRNA signature of Alzheimer

disease patients. Genome biology 07/2013; 14(7):R78.

– Ina Meiser, Sabine C. Mueller, Friederike Ehrhart, Stephen G. Shirley,

122



Publications

Heiko Zimmermann: A new validation method for clinical grade micro-

encapsulation: quantitative high speed video analysis of alginate capsule.

Microsystem Technologies 01/2013; 21(1).

• 2011

– Benny Kneissl, Sabine C. Mueller, Christofer S. Tautermann, Andreas Hilde-

brandt: String Kernels and High-Quality Data Set for Improved Prediction

of Kinked Helices in -Helical Membrane Proteins. Journal of Chemical Infor-

mation and Modeling 11/2011; 51(11):3017-25.

• 2010

– Andreas Hildebrandt, Anna Katharina Dehof, Alexander Rurainski, Andreas

Bertsch, Marcel Schumann, Nora C. Toussaint, Andreas Moll, Daniel Stoeckel,

Stefan Nickels, Sabine C. Mueller, Hans-Peter Lenhof, Oliver Kohlbacher:

BALL - biochemical algorithms library 1.3. BMC Bioinformatics 10/2010;

11:531.

Book Chapters

• 2012

– I. Meiser, S. C. Mueller, H. Zimmermann, F. Ehrhart: Quantitative 3D High

Speed Video Analysis of Capsule Formation during Encapsulation Processes.

03/2010: pages 204-207.

• 2010

– I. Meiser, S. C. Mueller, M. M. Gepp, H. Zimmermann, F. Ehrhart: Quanti-

tative High Speed Video Analysis of Biopolymer Encapsulated Cells while

Capsule Formation. 12/2008: pages 2255-2258.

Conference Proceedings

• 2013

– S. Nickels, D. Stoeckel, S.C. Mueller, H.-P. Lenhof, A. Hildebrandt, A.K.

Dehof: PresentaBALL A powerful package for presentations and lessons

in structural biology. Biological Data Visualization (BioVis), 2013 IEEE

Symposium on; 01/2013.

• 2012

– S. Nickels, H. Sminia, S.C. Mueller, B Kools, A. K. Dehof, H. Lenhof, A. Hil-

debrandt: ProteinScanAR - An Augmented Reality Web Application for High

School Education in Biomolecular Life Sciences. Information Visualisation

(IV), 2012 16th International Conference on; 01/2012.

123



Publications

Conference Poster

• 2012

– S.C. Mueller, S. Nickels, D.Stoeckel, A.K. Dehof, H.P. Lenhof, A. Hildebrandt:

PresentaBALL - A Web Technology based Presentation Extension of BALL,

Visualizing Biological Data (VIZBI), 2011.

• 2011

– S.C. Mueller, S. Nickels, K. Sons, B. Friedrich, D. Stoeckel, A.K. Dehof, H.P.

Lenhof, P. Slusallek, A. Hildebrandt: Distributed Collaborative Molecular

Modelling. Molecular Modelling Workshop, 2011.

– Sabine C. Mueller, Benny Kneissl, Christofer S. Tautermann, Andreas Hil-

debrandt: Kinks in alpha-helical membrane proteins: Manually annotation,

extensive analysis and successful prediction, European Conference on Bioin-

formatics (ECCB), 2011

– S.C. Mueller, S. Nickels, D.Stoeckel, A.K. Dehof, H.P. Lenhof, A. Hildebrandt:

PresentaBALL - A Web Technology based Presentation Extension of BALL,

Visualizing Biological Data (VIZBI), 2011.

124



Acknowledgement

Mein ganz besonderer Dank gilt meinem Doktorvater Prof. Dr. Andreas Keller für

die Vergabe des interessanten Themas, für seine Unterstützung und der Betreuung
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hinsichtlich der Entwicklung des multiskalen Ansatzes, insbesondere für die Loka-

lisierungskomponente, danken. Des Weiteren gilt mein Dank Dr. Olga Kalinina

und Alexander Gress für hilfreiche Diskussionen und die Zusammenarbeit bei

der Entwicklung von BALL-SNP. In diesem Zusammenhang bedanke ich mich

auch bei Nina Baumgarten für ihren Beitrag an der Integration einer Pathoge-
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