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1 ABSTRACT 

Alzheimer’s disease (AD) is characterized by extracellular amyloid- (A) deposits, intracellular 

accumulation of tau filaments and microglia-dominated inflammatory activation. Innate immune 

signaling controls microglial inflammatory activities and A clearance. However, studies 

examining innate immunity in A pathology and neuronal degeneration have produced 

conflicting results.  

In this thesis study, the pathogenic role of innate immunity in AD was investigated by ablating a 

key signaling molecule, IKK, specifically in the myeloid cells of TgCRND8 APP-transgenic 

mice. Firstly, deficiency of IKK in myeloid cells attenuated cognitive deficits and loss of 

synaptic structure proteins. Secondly, Microglial IKK deficiency simultaneously reduced 

inflammatory activation and A load in the brain. Thirdly, IKK deficiency enhanced microglial 

recruitment to A deposits and facilitated A internalization, perhaps by inhibiting TGF--

SMAD2/3 signaling, but did not affect A production and efflux. Therefore, inhibition of IKK 

signaling in myeloid cells improves cognitive functions in AD mice by reducing inflammatory 

activation and enhancing A clearance.  

These results contribute to a better understanding of AD pathogenesis and could offer a new 

therapeutic option for delaying AD progression. 
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2 ZUSAMMENFASSUNG 

Die Alzheimer-Krankheit (Alzheimer´s disease, AD) wird durch Tau-Filamente und Mikroglia 

vermittelte Aktivierung der Inflammation charakterisiert. Die angeborene Immunantwort 

kontrolliert die mikrogliale inflammatorische Aktivität und den A- Abbau. Allerdings liefern 

Studien, welche die angeborene Immunantwort im Zusammenhang mit der A-Pathologie sowie 

der neuronalen Degeneration untersuchen, widersprüchliche Resultate. 

In dieser Studie wurde durch eine spezifische Deletion eines Schlüssel-Signalmoleküls, dem 

IKK, in myeloiden Zellen von TgCRND8 APP-transgenen Mäusen die pathogene Rolle der 

angeborenen Immunreaktion in AD untersucht.Zunächst konnte gezeigt werden, dass eine IKK-

Defizienz in myeloiden Zellen kognitive Defizite sowie den Verlust von synaptischen 

Strukturproteinen mildert. Darüber hinaus wurde gezeigt, dass eine mikrogliale IKK-Defizienz 

sowohl die inflammatorische Aktivität als auch den zerebralen A-Gehalt reduziert. 

Abschließend wurde unter einer IKK-Defizienz eine gesteigerte Rekrutierung der 

Mikrogliazellen zu den A-Ablagerungen und eine erleichterte A-Internalisierung, womöglich 

durch Inhibition der TGF--SMAD2/3 Signalkaskade, jedoch ohne veränderte A-Produktion 

und Efflux nachgewiesen. Demzufolge verbessert eine Inhibition der IKK Signalkaskade in 

myeloiden Zellen kognitive Fähigkeiten in AD-Mäusen durch eine Reduktion der Inflammation 

und verstärkten A-Abbau. 

Diese erzielten Resultate tragen zu einem besseren Verständnis der AD-Pathogenese bei und 

können eine neue therapeutische Option darstellen um die AD-Progression hinauszuzögern. 

 (Thank Miss Laura Schnöder for translating the English abstract to German) 
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3 INTRODUCTION 

3.1 Alzheimer’s disease: overview 

Alzheimer's disease (AD) is a type of a neurodegenerative disorder that causes problems with 

memory, thinking and behavior. Symptoms usually develop slowly and get worse over time, 

becoming severe enough to interfere with daily tasks. On 4 November 1906, the German 

psychiatrist and neuropathologist Alois Alzheimer (1864-1915) reported his lecture "A peculiar 

disease of the cerebral cortex" at the 37th Conference of the South German psychiatrist in 

Tübingen (O’Brien, 1996), which is one milestone in the research of dementia. Dr. Alzheimer 

firstly reported a novel case of his patient Auguste Deter who suffered with the increasing 

weakness of memory, impaired cognition and hallucinations (Alzheimer, 1907). Four and a half 

years after the onset of these symptoms, the patient died in age of 55 years at the consequences 

of this condition. During the brain autopsy, Dr. Alzheimer found many abnormal clumps 

(amyloid plaques) and tangled bundles of fibers (neurofibrillar tangles) (Alzheimer, 1907; 

Alzheimer, 1911). Today, this degenerative brain disorder bears his name, and when found 

during an autopsy, these plaques and tangles mean a definite diagnosis of AD. 

 

Figure 1.1. History of Alzheimer's disease. Above from left to right: Portrait of Alois Alzheimer, Auguste Deter 
and Emil Kraepelin. (The images come from Alzheimer's Disease International, International Kraepelin Society and 
the Frankfurter Allgemeine Zeitung). Below: pictures from the original article "On strange illness of later ages" by 
Alois Alzheimer, 1911. 

Since its discovery more than a century ago, AD has been the most common form of dementia, 
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accounting for an estimated 50%-75% of cases and leading to death within 3-9 years after 

diagnosis (Xie et al., 2008; James et al., 2014; Querfurth and LaFerla, 2010). More than 36 

million people worldwide -1.2 million in Germany- suffer this disease (Wimo et al., 2013). The 

principle risk factor for AD is advancing age. Most people with AD are diagnosed at age 65 or 

older (Ferri et al., 2005). In 2014, the 65-years-and-older population includes about 5 million 

people with AD, in whom 2 million people are 85-years-and-older in USA. By 2025, the number 

of AD patients at age 65 and older is estimated to reach 7.1 million. By 2050, the number of 

people age 65 and older with AD may nearly triple, from 5 million to a projected 13.8 million 

(Figure 1.2) (Alzheimer's association, 2014). Moreover, the cost for AD patients is huge. AD is 

estimated to have costed the world 604 billion in 2010 alone and more in future (Wimo et al., 

2013; Alzheimer's association, 2014). Although research has revealed a great deal about AD, 

more should be discovered about how the disease can be prevented, slowed or stopped. 

 

Figure 1.2. The projected number of people aged 65 years and older (total and by age group) in the U.S. 
population with Alzheimer’s disease, 2010 to 2050 (Alzheimer's association, 2014). 

3.2 Pathology 

3.2.1 Amyloid 

Cerebral senile plaques with β-amyloid peptide (Aβ) and dystrophic neurites as well as 

prominent neurofibrillary tangles formed by accumulation of abnormal filament tau are crucial 
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pathological features of AD. Loss of neurons, prominent neuroinflammation, and oxidative 

damage are also observed. 

3.2.1.1 APP and Production of Amyloid β  

Amyloid precursor protein (APP) belongs to the family of type 1 transmembrane glycoproteins 

(Halim et al., 2011). Human APP mRNA undergoes alternatively splicing of exon 7 and 8, 

arising three main isoforms with 695, 751, and 770 residues. Their molecule weights are between 

110 and 135kDa additionally due to post-translational modifications including N- and O-

glycosylation, phosphorylation, and sulfation (Selkoe, 2008). 751 and 770-residue isoforms are 

widely expressed in cells throughout the body, whereas the 695-residue form is expressed more 

highly in neurons and occurs at very low abundance in other cells. The 751 and 770 isoforms 

contain a KPI (Kunitz-type protease inhibitor) domain (Figure 1.3) and are thus able to inhibit 

serine proteases such as trypsin and -hymotrypsin (Hook et al., 1999). APP exists lots of 

mutations that are named according to the geographic locations from which the affected family 

originated (Figure 1.3) (Hall and Roberson, 2012).  

Aβ is produced from APP via sequential cleavage by the secretases. α-secretase is first identified 

as an important secretase which can proteolyticly cleave APP. The APP is subjected to α- 

secretase cleavage between amino acids toward the N-terminus from the transmembrane domain 

and produces a large soluble α-APP peptide into the extracellular space, along with release of the 

83-residue C-terminal fragment (CTF) in the membrane. Some APP molecules can be cleaved by 

β-secretase releasing the slightly smaller β-APP ectodomain derivative and retaining a 99-residue 

CTF (C99) in the residue of the membrane. The β-secretase cleavage can be followed by γ-

secretase activity to produce Aβ, or alternatively sequential action of α- and γ- secretases (the 

latter acting on C83) produces the p3 peptide fragment. More specially, the presenilin/γ-secretase 

complex can cut the C-terminal end of Aβ at other sites ε and ζ in the transmembrane domain to 

generate Aβ38, Aβ40, or Aβ42 (Hamley, 2012).  
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Figure 1.3. APP processing and APP mutations (Hall and Roberson, 2012). Aβ 42 is encoded by amino acids 
672-713 of APP (numbered according to the longest isoform, APP770). Aβ is produced through sequential cleavage 
by β-secretase, then γ-secretase. γ-Secretase can cleave at alternate sites to produce Aβ40 or Aβ42. Alternative APP 
processing by α-secretase prevents Aβ production. Common APP mutations include the Swedish mutation at the β--
secretase cleavage site and multiple named and unnamed mutations at the γ-secretase cleavage site. Intra-Aβ 
mutations are also shown. 

3.2.1.2 Degradation of Amyloid β 

Aβ is degraded by lots of proteases with different characteristics. The most frequently 

investigated and best characterized Aβ degradation proteases are neprilysin (NEP) (Grimm et al., 

2013) and insulin-degrading enzyme (IDE) (Haque and Nazir, 2014). Neprilysin, a member of 

M13 clan of zinc-metalloprotease, is capable of clearing Aβ monomers and oligomers (Turner et 

al., 2001). But mutated Aβ peptides show significantly resistance to neprilysin related proteolysis 

(Tsubuki et al., 2003). The importance of NEP for the degradation of Aβ is particularly proved 

by the fact that overexpression of NEP in neurons by eightfold result in dramatic decreases in 

monomeric Aβ levels and prevented all plaque formation and NEP deficiency causes to 

accumulation of Aβ in AD mouse model (Leissring et al., 2003; Iwata et al., 2001). In addition, 

in a study of post-mortem brain samples of AD patients demonstrated that the amount of NEP 

decreases with increasing age and that the NEP protein content with the Aβ level is negative 

correlation (Hellström-Lindahl et al., 2008). 
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IDE, a 110 kDa zinc-metalloprotease, is another well established Aβ-degrading enzyme (Authier 

et al., 1996). Although the major part of this protein is present in the cytosol (Falkevall et al., 

2006) and mitochondria (Leissring et al., 2004), IDE is also present in the extracellular spaces, 

both in secreted (Qiu et al., 1998) and cell-associated (Vekrellis et al., 2000) forms. In vitro 

study, genetic deletion of ide in primary culture neurons significantly decreases the degradation 

rate of physiological levels of exogenous monomer Aβ (Farris et al., 2003). Using an ide-ko 

mouse model, Farris and Colleagues demonstrate that the degradation of Aβ reduces more than 

50% in the absence of the IDE (Farris et al., 2003). Conversely, overexpression of IDE inhibits 

formation of amyloid deposits (Leissring et al., 2003). 

Other enzymes that can cleave in vitro Aβ include endothelin-converting enzyme (ECE) -1 and 2, 

angiotensin-converting enzyme (ACE), plasmin and matrix metalloproteinases (MMPs), β-site 

APP-cleaving enzyme 1 and 2 gene (BACE1 and 2) and so on. Overexpression of intracellular 

zinc-metalloprotease ECE-1 and -2 in Chinese hamster ovary (CHO) cells decrease extracellular 

Aβ by up to 90% (Eckman et al., 2001). ACE can cleave Aβ 40 and Aβ 42 in vitro; however, 

oral administration of ACE inhibitor to APP transgenic mice has no significant effect on Aβ load 

in brains (Hu et al., 2001; Hemming et al., 2007). The serine protease plasmin can lead to Aβ 

degradation and inhibit the aggregation of the Aβ 42 in vitro (Tucker et al., 2000; Exley et al., 

2001). Multiple MMPs have involved in the degradation of Aβ, including MMP2 (Roher et al., 

1994), MMP9 (Yan et al., 2006) and MMP14 (Liao and Van Nostrand, 2010). However, 

compared with other Aβ degrading proteases, MMPs are weaker in Aβ degradation. For example, 

MMP2 or MMP9 deficiency in mice results in modest but statically significant increases of 

endogenous Aβ in cortex and hippocampus (Yin et al., 2006). 

3.2.1.3 Neurotoxicity of Amyloid β 

The accumulation of Aβ pathology appears to be related to impairment of synaptic activity and 

neuronal network. Aβ is believed to disrupt neuronal Ca2+ homeostasis via altering the 

permeability of membrane Ca2+. There are three potential mechanisms involved in (Demuro et 

al., 2010). First of all, the correlation between Aβ and endogenous plasmalemmal Ca2+-

permeable ion channels, such as voltage-gated Ca2+ channels (N, P, and Q-VGCC), nicotinic 

acetylcholine channels (α7 and α4β2 nAChRs), glutamate receptors (AMPA and NMDA), 

dopamine receptors, serotonin receptors (5-hydroxytryptamine type 3), and intracellular inositol 
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trisphosphate receptors (IP3Rs), are observed. Secondly, the interaction of A with membrane 

lipids such as phosphoinositides (Decout et al., 1998), phosphatidylglycerol (Terzi et al., 1995), 

phosphatidylcholine (Avdulov et al., 1997), and gangliosides (McLaurin et al., 1998) damages 

membrane integrity. Third, the formation of Aβ pores causes membrane leakage (Arispe et al., 

1993; Quist et al., 2005; Inoue, 2008; Demuro et al., 2010). In synaptic plasticity, pathological 

Aβ levels may indirectly lead to a partial block of NMDARs and shift long-term potentiation  

(LTP) to long-term depression (LTD) and synaptic loss (Kamenetz et al., 2003; Hsieh et al., 

2006; Shankar et al., 2007). Receptor internalization (Snyder et al., 2005; Hsieh et al., 2006) or 

desensitization (Liu et al., 2004) and subsequent collapse of dendritic spines (Snyder et al., 2005; 

Hsieh et al., 2006) may involve in this process. In another way, soluble Aβ oligomers may block 

neuronal glutamate uptake at synapses and lead to glutamate increase at the synaptic cleft (Li et 

al., 2009). The increased glutamate levels would initially activate synaptic NMDARs followed 

by desensitization of the receptors and enhancement of LTD, ultimately, synaptic depression. 

Aβ is also known to activate glial cells in the brain to release neurotoxic species, pro-

inflammatory cytockines and reactive oxygen species. These mediators trigger neuronal 

apoptosis or necrosis (Akiyama et al., 2000; Glass et al., 2010; Meunier et al., 2014), as well as 

synaptic deficits (Medeiros et al., 2007; Schwalm et al., 2014). Although astrocytes were 

reported to release some neurotoxic mediators, such as TNF-α, IL-1β, ROS and NO (Schubert et 

al., 2009; Gong et al., 2014), microglia are responsible for most of Aβ-induced inflammation in 

the central nervous system (CNS).  

3.2.2 Microglia 

Microglia are the principal innate immune cells in the central nervous system (CNS) (Hickman 

and El Khoury, 2013). They constitute about 10% of all brain cells and distribute in all major 

brain regions (Lawson et al., 1990). For decades, microglia were reckoned as the same group 

with other neuroglia under the term mesoglia. They were described as “capable of acting as 

phagocytes” but were not considered as “taking part in the formative processes of repair in the 

central nervous system” (Hickman and El Khoury, 2013). It was amended that microglia was 

different special from other neuroglia after 1919, because Del Rio-Hortega found their 

phagocytic role “related to the elimination of substances resulting from metabolism of neuronal 

breakdown” and established their role in inflammatory and necrotizing processes, therefore 
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providing the foundation for modern studies of these cells (Rezaie and Male, 2002). The origin 

of resident microglia remains further investigation. Although it is clear that microglia are of 

myeloid origin and migrate into the CNS during early embryogenesis (Saijo and Glass, 2011), a 

major question has been whether peripheral monocytes contribute the population of microglia in 

CNS. Bone marrow transplantation (BMT) experiments done in the past two decades suggested 

that circulating peripheral blood monocytes can migrate into CNS and give rise to microglia 

(Priller et al., 2006). However, whether migration of monocytes into the brain in the absence of 

brain pathology is still under discussion, because body irradiation which is a required step for 

bone marrow ablation before transplantation of new marrow is observed to influence the extent 

to which these cells entered the CNS in chimeric mice (Mildner et al., 2007). Whether derived 

from monocytes or not, microglia perform almost the same functions in CNS as macrophage in 

periphery. They can express all known phagocytic receptors, such as scavenger receptor A 

(SRA), CD36, receptor for advanced glycation endproducts (RAGE) and CD47, and serve as the 

professional phagocytes for invading microorganisms and apoptotic cells in the CNS (Ribes et al., 

2009; Takahashi et al., 2005). Microglia are antigen presenting cells (Beauvillain et al., 2008), 

and they respond to usual macrophage stimuli much as macrophages do with chemokine and 

cytokine production (El Khoury et al., 2003).  In the physiological conditions, microglial 

processes are constantly scanning the microenvironment of CNS (Davalos et al., 2005; 

Nimmerjahn et al., 2005). Under pathological situations, such as neurodegenerative diseases, 

strokes, traumatic injuries and tumour invasions, microglia become activated, migrate to and 

surround damaged or dead cells, and subsequently clear cellular debris from the area, similarly to 

the phagocytic macrophages of the peripheral immune system (Fetler and Amigorena, 2005). 

Furthermore, microglial cells are capable of proliferating in response to several stimuli. Most 

immune receptors including the pattern recognition receptors, major histocompatibility complex 

molecules, and chemokine receptors, which are essential to the initiation and propagation of 

immune responses, are constitutively expressed at low levels in microglia. During microglial 

activation, the immunologically relevant molecules are upregulated and inflammatory mediators 

are produced (Walter et al., 2009). 
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3.2.3 Microglia and Aβ Pathogenesis 

Growing evidence suggests that inflammatory processes driven by microglia contribute to the 

AD pathogenesis (Wyss-Coray and Rogers, 2012). Increased expression of inflammatory 

mediators has been observed in postmortem AD brains (Eikelenboom and Stam, 1982; McGeer 

et al., 1988) and positron emission tomography studies have shown an association between 

microglial activation and disease progression in AD patients (Cagnin et al., 2001; Edison et al., 

2008;). Moreover, epidemiological studies consistently link the use of non-steroidal anti-

inflammatory drugs (NSAIDs) with reduced risk for later AD (in t' Veld et al., 2001) and there is 

evidence that the protective benefit of NSAIDs arises from their anti-inflammatory effects 

(Szekely et al., 2008), apart from their possible inhibitory effects on the A processing (Weggen 

et al., 2001). In the animal model of AD that over-expresses A precursor protein (APP), 

activation and recruitment of microglia can be visualized around A deposits even before 

neuronal damage occurs (Bolmont et al., 2008; Meyer-Luehmann et al., 2008), further arguing 

for a role of neuroinflammation in progressive neurodegeneration in AD.  

Recent studies, however, challenge the view that microglia play a solely detrimental role in AD. 

Paradoxically, microglia also exert beneficial effects in AD pathophysiology. Microglia, 

especially the bone marrow-derived microglia, can clear A plaques via phagocytosis (Simard et 

al., 2006; Prokop et al., 2013; Matsumura et al., 2014). In APP transgenic mice, deficiency of 

chemokine receptor CCR2 reduces accumulation of microglia in the brain, which leads to 

development of early visible A deposits (El Khoury et al., 2007). On the contrary, enhancement 

of microglial recruitment from the blood into the brain by blocking transforming growth factor-β 

signaling decreased A deposition in the AD mice (Town et al., 2008). Moreover, increased 

microglial activation by over-expressing IL-1 or IL-6 in the brain, or by vaccinating mice with 

Th2 immunity-driven antigens, such as glatiramer acetate, can also ameliorate AD-like plaque 

pathology (Frenkel et al., 2005; Butovsky et al., 2006; Shaftel et al., 2007; Chakrabarty et al., 

2010). However, it should be noted that the pro-inflammatory activation itself could damage 

neuronal function and impair cognitive activity (Patterson, 2014).  

Thus, microglia act as a double-edged sword in AD pathogenesis. The relationship between these 

two controversial behaviors is under debate. Although inflammatory activation reduced cerebral 
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A plaques (Shaftel et al., 2007; Chakrabarty et al., 2010), it is yet considered that A clearance 

is decreased in both AD patients and aged APP transgenic mice in correlation with higher 

cytokine production (Fiala et al., 2005 and 2007; Hickman et al., 2008). Pro-inflammatory 

activation was reported to inhibit phagocytosis in mononuclear phagocytes (Koenigsknecht-

Talboo and Landreth, 2005; Zelcer et al., 2007; Hickman et al., 2008). In our group study, we 

observed that creating a pool of MyD88-deficient bone marrow-derived brain macrophages (Hao 

et al., 2011) or genetically blocking of NF-B activation, downstream to MyD88 signaling in 

microglia (Liu et al., 2014), reduces both inflammatory activation and A load in the brain. Thus, 

our study supported the anti-inflammatory therapy for AD patients.  

3.3 IB kinases  

NF-B represents a family of transcription factors that exists in a latent form in the cytoplasm 

bound by its inhibitors of NF-B (IB) molecules (Tong et al., 2015). Upon activation, IBs are 

phosphrylated by the IB kinase (IKK) complex, which consists of three core units- two related 

catalytic subunits IKK and IKK (also known as IKK1 and IKK2) (Chen et al., 1996; Didonato 

et al., 1997) and several copies of a regulatory subunit called the NF-B essential modulator 

(NEMO, also known as IKK) (Yamaoka et al., 1998). Phosphrylation of IBs triggers a cascade 

of events, involving the polyubiquitination and proteasome-mediated degradation of IB proteins, 

resulting in the exposure of the DNA-binding domain and nuclear localization sequence on NF-

B, which permits stable translocation of NF-B to the nucleus and initiates the downstream 

transcription of target genes (Perkins, 2007). Without two IKKs or NEMO in mouse embryonic 

fibroblasts (MEFs), NF-κB activation is completely blocked after induction with various stimuli 

(Li et al., 2000; Rudolph et al., 2000). Therefore, the 700–900 kDa IKK complex is converging 

point for the activation for NF-κB signal pathways. In recent years, many NF-κB -independent 

functions of IKK complex members have been identified, some of which require the kinase 

activities, while others do not. These functions encompass tumor suppression, immune functions, 

cell proliferation, and chromatin remodeling and so on. They provide a bridge for crosstalk 

between NF-κB pathways with other important pathways such as p53 and mitogen-activated 

protein kinase (MAPK) (Perkins, 2007). 
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3.3.1 NF-B-dependent pathway 

A series of studies suggest that IKK is involved in three classical NF-B signaling pathways 

(Figure 1.4) (Li and Verma, 2002; Vallabhapurapu and Karin, 2009). First of all, ligand binding 

by toll like receptors (TLRs) results in the recruitment of receptor-specific adapters and induces 

activation of NF-κB. In the case of TLR4, lipopolysaccharide (LPS) binding results in NF-κB 

activation via both TRIF- and MyD88-dependent pathways. MyD88 and TRIF are recruited via 

two bridge protein TIRAP (also known as MAL) and TRAM, respectively (Kawai and Akira, 

2007). MyD88 recruits TRAF6 and IL-1R associated kinase (IRAK) family members, leading to 

oligomerization and self-ubiquitination of TRAF6. In addition, TRAF6 recruits TAK binding 

protein 2/3 (TAB2/3), which in turn activate TAK1 (Cao et al., 1996; Takatsuna et al., 2003; 

Takaesu et al., 2000; Qian et al., 2001). Activated TAK1 may then directly phosphorylate IKKβ 

to activate the IKK complex (Wang et al., 2001), resulting in IκBα degradation and NF-κB 

activation. Similar to MyD88-dependent pathway, TRIF also recruits TRAF6 by direct 

interaction (Kawai and Akira, 2007). TRAF6 then activates TAK1, culminating in IKK and NF-

κB activation. In addition to recruiting TRAF6, RIP1 is also recruited by TRIF and associate 

with TRAF6 to facilitate TAK1 activation (Kopp and Medzhitov, 2003). Secondly, activation of 

classical NF-κB signaling is triggered by TNF-α. Ligation of TNFR1 results in TRADD-

dependent TRAF2/TRAF5 and RIP1 recruitment. TRAF2 leads to K63-linked ubiquitination of 

RIP1 and also recruits IKK to the receptor complex (Wu et al., 2006; Ea et al., 2006). Binding of 

IKKγ to ubiquitinated RIP1 stabilizes IKK complex interaction with the receptor complex, which 

causes a conformational change of the IKK complex and results in its activation by 

autophosphorylation (Rothwarf and Karin, 1999). Alternatively, MEKK3 and TAK1, which are 

brought near the receptor complex presumably by RIP1 may also phosphorylate and activate 

IKKcomplex (Blonska et al., 2004; Wang et al., 2001; Kanayama et al., 2004). Activated IKK 

phosphorylates IκBα at serine 32 and 36, leading to the proteasome-mediated degradation of the 

latter. Degradation of IκBα releases the NF-κB heterodimers, which then migrate to the nucleus 

and regulate gene expression. Thirdly, the T-cell receptor (TCR) recruits and activates the Src 

(Lck and Fyn) and Syk (ZAP70) family kinases after stimulation (Weil and Israel, 2006). ZAP70 

then phosphorylates adapter proteins LAT and SLP-76, resulting in formation of a 

multimolecular complex containing PLC1 and nucleotide exchange factor Vav1 (Weil and 
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Israel, 2006). Activation of PLC1 results in generation of IP3 and Ca2+, as well as DAG, which 

in turn stimulates PKC. Costimulatory signals from TCR and CD28 activate PI3K, which 

induces recruitment of PDK1 and AKT. PDK1 can phosphorylate PKCand mediate its 

translocation to the immunological synapse (IS) (Herndon et al., 2001; Villalba et al., 2002; Lee 

et al., 2005). Upon translocation to IS, PKCmight control the recruitment of IKK and 

CARMA1 into the signaling complex. Phosphorylation of CARMA1 by PKC results in the 

recruitment of BCL10 and MALT1, thus leading to formation of a stable CBM complex 

(Schulze-Luehrmann and Ghosh, 2006).  IKK activation is induced by CBM complex through an 

ill-defined mechanism, which may involve IKK trans-autophosphorylation (Schulze-Luehrmann 

and Ghosh, 2006). The activation of IKK complex, which phosphorylates IκBα, leads to its 

degradation and activation of NF-κB. 

In myeloid cells, IKK and IKK are essential for NF-B activation via the canonical pathway, 

which is induced by proinflammatory stimuli such as TNF-, IL-1 and lipopolysaccharide 

(Pasparakis et al., 2006). In AD, aggregated A has been clearly demonstrated to activate NF-B 

in microglia and astrocytes through CD14, TLR2 and TLR4 (Akama et al., 1998; Fassbender et 

al., 2004; Walter et al., 2007; Richard et al., 2008; Reed-Geaghan et al., 2009). Inhibition of NF-

B activation could reduce microglia-dependent A-induced neurotoxicity (Chen et al., 2005). 

NSAIDs are considered to target NF-B and suppress inflammatory activation (Yamamoto and 

Gaynor, 2001). Interestingly, IKK-mediated NF-B activation is reported to protect 

macrophages from TLR4 signaling-induced apoptosis, thus NF-B not only initiates 

inflammation, but also inhibits inflammatory resolution (Park et al., 2005).  
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Figure 1.4. IKKs-NF-κB activation pathways (Li and Verma, 2002). Nuclear factor-κB (NF-κB) activity is 
stimulated by many pathways, including toll like receptor (TLR), tumour-necrosis factor (TNF) and T-cell receptor 
(TCR) signalling. IKKβ (IKK2) is essential for NF-κB activation via the canonical pathways. 

Administrator
椭圆形
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3.3.2 NF-B-independent pathway 

In addition to their role in the NF-B signaling pathway, IKK has been reported to 

phosphorylate abundant substrates and programme the cellular response to a variety of stimuli 

(Figure 1.5) (Perkins, 2007).  

IKK has been shown to phosphorylate several tumor suppressor proteins, including the 

complex of p53, FOXO3a and TSC1/2 complex which is suppressor upstream of mTOR. IKK 

phosphorylates p53 at S362 and S366 resulting in -TrCP-mediated ubiquitination and 

proteasomal degradation (Xia et al., 2009). Phosphorylation of TSC1 by IKK at S487 and S511 

leads to the inhibition of TSC1/2 complex and induces tumorigenesis due to mTOR activation 

(Lee et al., 2007). IKK might regulate another tumour suppressor FOXO3a to promote cell 

survival (Hu et al., 2004).  In some inactivated cells, IKKβ phosphorylates p105 NF-κB subunit 

that interacts with extracellular signal-regulated kinase (ERK) kinase TPL2 (also known as COT) 

as a complex and leads to its degradation. The damage of the complex releases TPL2 resulting in 

activation of the pro-proliferative ERK signaling pathway (Beinke et al., 2004).  By contrast, 

phosphorylation of the adaptor protein DOK1 by IKKβ has been shown to block MAP kinase 

signalling and cell proliferation (Lee, et al., 2004). IKKβ phosphorylates and inhibits the 14-3-3β 

protein when complexed with tristetraprolin (TPP), an AU-rich element (ARE) binding protein 

that regulates mRNA stability. IKKβ phosphorylation inhibits TPP–14-3-3β ARE binding and 

might therefore stabilize cytokine, chemokine and growth factor transcripts (Gringhuis et al., 

2005). Insulin signal is also controlled by IKKβ through phosphorylating insulin-receptor 

substrate-1 (IRS1) (Gao et al., 2002). Phosphorylation of BCL10 by IKKβ inhibits the BCL10–

MALT1 interaction as CMB complex, thereby decreasing T-cell signaling (Wegener et al., 2006). 

Thus, BCL10 phosphorylation can be considered as a negative feedback loop compared to TCR-

NF-κB pathway.  
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Figure 1.5. The consequences of IKKβ activation (Perkins, 2007). Activation of IKKβ stimulates anti-apoptotic, 
pro-inflammatory and proliferative pathways. 
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4 AIM OF THIS WORK 

Growing evidence has shown that microglia act as a double-edged sword in AD pathogenesis: on 

one side, they contribute to neuronal death by secreting inflammatory mediators; on the other 

side, they clear neurotoxic A to prevent AD progression. Thus, the net effect of microgilal 

activation in AD is still unclear. The mechanism switching between detrimental and beneficial 

effects need to be understood.  

Recently, our group and others have observed that innate immune receptors, e.g. CD14, toll-like 

receptor 2 (TLR2) and TLR4, mediate A-induced microglial inflammatory activation and 

neurotoxicity (Fassbender et al., 2004; Walter et al., 2007; Reed-Geaghan et al., 2009; Hao et al., 

2011; Liu et al., 2012). Genetic deletion of MyD88 or IRAK4, the common signaling molecules 

down-stream to TLRs, in brain macrophages or microglia reduces pro-inflammatory and cerebral 

A load and improved neural function (Hao et al., 2011; Cameron et al., 2012; Liu et al., 2012). 

Therefore, this study aims to investigate the pathogenic role of IKK, the key signaling 

molecules downstream of TLRs-MyD88-IRAK4, in the AD mouse model.  

In detail, the special aims of this study are:   

1. To investigate the role of microglial IKK in the neuroinflammatory activation, cerebral A 

load and neuronal function in APP-transgenic mice. 

2. To investigate effects of IKK on A-induced inflammatory activation and A endocytosis 

in primary microglia. 
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5 MATERIALS AND METHODS 

5.1 Materials 

5.1.1 Instruments 

Instruments Company 

7500 Fast Real-Time PCR System Applied Biosystems (Darmstadt, Germany) 

Accu jet Pipettes Control BrandTech Scientific (Essex, CT, USA) 

Autoclave 3870 ELV Systec (Wettenberg, Germany) 

Autoclave V-150 Systec (Wettenberg, Germany) 

Axiovert 25 invetiertes Microscope Carl Zeiss Microscopy (Jena, Germany) 

Axiovert 40 CFL Microscope Carl Zeiss Microscopy (Jena, Germany) 

Barnes Maze  Noldus Information Technology (Oberreifenberg, Germany) 

Biofuge 13 Centrifuge Heraeus (Hanau, Germany) 

Biowizard KR-200 Bench Kojair Tech Oy (Vilppula, Finland) 

Coolbox KB 1001 Liebherr (Lindau, Germany) 

Drying cabinet Heraeus (Hanau, Germany) 

Eclipse TS100  Invetiertes Microscop Nikon Instruments (Melville, NY, USA) 

Eclipse E600 Fluorescence Microscopy Nikon Instruments (Melville, NY, USA) 

FACSCanto II Flow Cytometer BD Biosciences (Heidelberg, Germany) 

Freezer Premium no frost Liebherr (Lindau, Germany) 

Freezer UF75-110 T Colora (Frankfurt, Germany) 

General Rotator STR4 Stuart Scientific (Staffordshire, UK) 

HERAcell CO2 Incubators Heraeus (Hanau, Germany) 

HERAcell 150i CO2 Incubators Thermo Scientific (Langenselbold, Germany) 

HERAsafe HS 12 biological safety cabinet Heraeus (Hanau, Germany) 

Ice Machine Eurfrigor Ice Makers Srl (Lainate, Italy) 

Incubations hood TH-30 Edmund Bühler GmbH (Hechingen, Germany) 

InoLab pH 720 pH-meter WTW (Weilheim, Germany) 

Jouan B4i Centrifuge Thermo Scientific (Langenselbold, Germany) 

Laboshaker Gerhardt Analytical Systems (Königswinter, Germany) 

Liquid Nitrogen Container KGW-Isotherm (Karlsruhe, Germany) 

Microwelle HF 26521 Siemens (München, Germany) 

Mini-PROTEAN 3 Electrophoresis system Bio-Rad Laboratories (München, Germany) 

Mini Trans-Blot Cell Bio-Rad Laboratories (München, Germany) 

Multipette Plus Eppendorf (Hamburg, Germany) 

Nalgene Mr. Frosty Freezing Container A. Hartenstein (Würzburg, Germany) 

Nanodrop ND-1000 Spectrophotometer PEQLAB Biotechlonogie (Erlangen, Germany) 
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Optima Max Ultracentrifuge Beckman Coulter (Krefeld, Germany) 

Perfection V700 Photoscanner Epson (Meerbusch, Germany) 

Pipette PIPETMAN Gilson (Middleton, WI, USA) 

Pipette Single-Channel Eppendorf (Hamburg, Germany 

Pipette Pipetus Hirschmann (Eberstadt, Germany) 

PowerPac 200 Power Supply Bio-Rad Laboratories (München, Germany) 

Precision Balance scale 770 Kern & Sohn (Balingen, Germany) 

Precision Balance scale CP 42023 Sartorius (Göttingen, Germany) 

PS250 Power Supply Hybaid (Heidelberg, Germany) 

PTC 200 DNA Engine Thermal Cycler MJ Research (St. Bruno, Canada) 

PURELAB Ultra Water Purification 
system 

Elga (Celle, Germany) 

QuadroMACS™ Separator Miltenyi Biotec(Bergisch Gladbach,Germany) 

Refrigerated Laboratory Centrifuge  Eppendorf (Hamburg, Germany) 

Refrigerator KG39VVI30 Siemens (München, Germany) 

Refrigerator Premium Liebherr (Lindau, Germany) 

Refrigerator V.I.P. Series -86 °C Freezer Sanyo (Wood Dale, IL, USA) 

Rocky 3D Labortechnik Frübel (Lindau, Germany) 

Savant SpeedVac DNA 110 Thermo Scientific (Langenselbold, Germany) 

Shakers SM-30 Edmund Bühler (Hechingen, Germany) 

SmartSpec 3000 Spectralphotometer Bio-Rad Laboratories (München, Germany) 

Sunrise Microtiter plate reader Tecan (Männedorf, Schweiz) 

Tabletop Centrifuge 4K10 Sigma Laborzentrifugen (Osterode am Harz, Germany) 

Tabletop Centrifuge 4K15C Sigma Laborzentrifugen (Osterode am Harz, Germany) 

Thermoblock TDB-120 BioSan (Riga, Latvia) 

Thermomixer comfort Eppendorf (Hamburg, Germany) 

TLA-55 Rotor Package, Fixed Angle Beckman Coulter (Krefeld, Germany) 

Transsonic Ultrasonic Cleaning Units Elma (Singen, Germany) 

Ultrospec 3100 pro Spectralphotometer Amersham Biosciences (München, Germany) 

Vortex Genie 2 Scientific Industries (Bohemia, NY, USA) 

Vortex Shaker REAX 2000 Heidolph (Schwabach, Germany) 

Water bath Köttermann (Hänigsen, Germany) 

XCell SureLock Mini-Cell Electrophoreses 
system 

Invitrogen (Darmstadt, Germany) 

 

5.1.2 Experimental material 

Experimental materials Company 

Amersham Hyperfilm ECL GE Healthcare (Buckinghamshire, UK) 

Beackers VWR (Darmstadt, Germany) 
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Biosphere Filter Tips (10 µl, 200 µl, 1000 µl) Sarstedt (Nümbrecht, Germany) 

Blotting Paper Grade GB003 Whatman (Dassel, Germany) 

Cell Scrapers TPP (Trasadingen, Schweiz) 

Centrifugentubes (15 ml, 50 ml) Sarstedt (Nümbrecht, Germany) 

Combitips Plus (5 ml, 10 ml) Eppendorf (Hamburg, Germany) 

CryoPure tubes 1.8 ml Sarstedt (Nümbrecht, Germany) 

Cuvettes Sarstedt (Nümbrecht, Germany) 

Erlenmeyer Flasks Schott (Mainz, Germany) 

Falcon Multiwell Cell Culture Plates BD Biosciences (Heidelberg, Germany) 

Falcon Round bottom test tubes 5 ml BD Biosciences (Heidelberg, Germany) 

Filtropur Cell Strainer Sarstedt (Nümbrecht, Germany) 

Filtropur Syringe Filter Sarstedt (Nümbrecht, Germany) 

Glass Bottles Fisher Scientific (Schwerte, Germany) 

Gloves, Latex VWR (Darmstadt, Germany) 

Gloves, Nitril VWR (Darmstadt, Germany) 

Hemocytometer Brand (Wertheim, Germany) 

LS Columns Miltenyi Biotec (Bergisch Gladbach, Germany) 

MicroAmp Optical 96-Well Reaction Plate Applied Biosystems (Darmstadt, Germany) 

MicroAmp Optical Adhesive Film Applied Biosystems (Darmstadt, Germany) 

Microlance™ needles BD Biosciences (Heidelberg, Germany) 

Microlon 600 96-Well Microplate Greiner Bio-One (Frickenhausen, Germany) 

Microscopic cover glasses 12x12 mm R. Langenbrinck (Emmendingen, Germany) 

Microtestplate 96-Well Sarstedt (Nümbrecht, Germany) 

Mini-PROTEAN 3 Short Plates Bio-Rad Laboratories (München, Germany) 

Mini-PROTEAN 3 Spacer Plates 1,5 mm Bio-Rad Laboratories (München, Germany) 

Mini-PROTEAN Comb (15 Wells, 1,5 mm) Bio-Rad Laboratories (München, Germany) 

Myelin Removal Beads II Miltenyi Biotec (Bergisch Gladbach, Germany) 

Nunc MaxiSorp 96-Well Plate, black Thermo Scientific (Langenselbold, Germany) 

Overhead Transparencies R. Langenbrinck (Emmendingen, Germany) 

Pasteur Pipettes VWR (Darmstadt, Germany) 

PCR Soft Tube 0.2 ml Biozym Scientific (Oldendorf, Germany) 

Pipette Tips (10 µl, 200 µl, 1000 µl) Sarstedt (Nümbrecht, Germany) 

Polyallomer Tube, 1.5 ml, Snap-On Cap Beckman Coulter (Krefeld, Germany) 

Precision Wipes Kimtech Science Kimberly-Clark (Koblenz, Germany) 

Pro-Gel 10-20% Tris-Tricin-Gel Anamed Elektrophorese (Groß-Bieberau/Rodau, Germany) 

Protran Nitrocellulose Transfermembranes Whatman (Dassel, Germany) 

PVDF Western Blotting Membranes Roche (Mannheim, Germany) 

Safe-Lock Tubes (0.5 ml, 1 ml, 2 ml) Eppendorf (Hamburg, Germany) 

Scalpel Blades B. Braun (Melsungen, Germany) 

Serological Pipettes (5 ml, 10 ml, 25 ml) Sarstedt (Nümbrecht, Germany) 
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Slide Box neoLab (Heidelberg, Germany) 

Standing Cylinders VWR (Darmstadt, Germany) 

Syringes B. Braun (Melsungen, Germany) 

Tissue Culture Dish Sarstedt (Nümbrecht, Germany) 

Tissue Culture Flask Sarstedt (Nümbrecht, Germany) 

UV Quartz cuvette 10 mm Hellma (Müllheim, Germany) 

5.1.3 Chemicals 

Chemicals Company 

0.05% Trypsin/EDTA (1x) Invitrogen (Darmstadt, Germany) 

(3-Aminopropyl) triethoxysilane Sigma Aldrich (Taufkirchen, Germany) 

β-Mercaptoethanol Sigma Aldrich (Taufkirchen, Germany) 

β-Secretase Substrate IV, Fluorogenic Merck (Darmstadt, Germany) 

γ-Secretase Substrate , Fluorogenic Merck (Darmstadt, Germany) 

Agarose Biozym (Oldendorf, Germany) 

Ammoniumpersulfat (APS) Sigma Aldrich (Taufkirchen, Germany) 

Antibiotic-Antimycotic 100x Invitrogen (Darmstadt, Germany) 

Bovine Serum Albumin (BSA) Sigma Aldrich (Taufkirchen, Germany) 

Borat VWR (Darmstadt, Germany) 

Bromphenol blue  Sigma Aldrich (Taufkirchen, Germany) 

Casein Fluka (Buchs, Switzerland) 

Chloroform Applichem (Darmstadt, Germany) 

Citrate acid Serva (Heidelberg, Germany) 

Congo red igma Aldrich (Taufkirchen, Germany) 

Dimethylsulfoxid (DMSO) Sigma Aldrich (Taufkirchen, Germany) 

Diaminobenzidin-Hydrochlorid (DAB) Sigma Aldrich (Taufkirchen, Germany) 

DNA Ladder (100 bp, 1 kb) New England Biolabs (Frankfurt am Main, Germany) 

dNTP Mix Roche (Mannheim, Germany) 

Dithiothreitol (DTT) Sigma Aldrich (Taufkirchen, Germany) 

Dulbecco's Modified Eagle Medium (DMEM) Invitrogen (Darmstadt, Germany) 

Entellan®mouting media VWR (Darmstadt, Germany) 

Ethidiumbromid Carl Roth (Karlsruhe, Germany) 

Ethanol Sigma Aldrich (Taufkirchen, Germany) 

Ethylendiaminetetraacetat acid (EDTA) Sigma Aldrich (Taufkirchen, Germany) 

Ethylene glycol tetraacetic acid (EGTA) Sigma Aldrich (Taufkirchen, Germany) 

Fetal Bovine Serum (FBS) Invitrogen (Darmstadt, Germany) 

Glycine Carl Roth (Karlsruhe, Germany) 

Glycerol Sigma Aldrich (Taufkirchen, Germany) 

Guanidine Hydrochloride Sigma Aldrich (Taufkirchen, Germany) 
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H2O2 Otto Fishar (Saarbrueken, Germany) 

H2SO4 Fluka (Buchs, Switzerland) 

HCl Sigma Aldrich (Taufkirchen, Germany) 

Ham's F-12 Medium Invitrogen (Darmstadt, Germany) 

Hank's Buffered Salt Solution (HBSS) Sigma Aldrich (Taufkirchen, Germany) 

Hexamer Random Primer Invitrogen (Darmstadt, Germany) 

HiLyte Fluor™ 488-conjugated A42  AnaSpec(Fremont, USA) 

Isoflurane Baxter (Unterschleißheim, Germany) 

Isopropanol Carl Roth (Karlsruhe, Germany) 

KHCO3 Merck (Darmstadt, Germany) 

KCl Merck (Darmstadt, Germany) 

Lipopolysaccharide (LPS) Axxora (Lörrach, Germany) 

MgCl2 Fluka (Buchs, Switzerland) 

MgSO4 Fluka (Buchs, Switzerland) 

Mayer's Hematoxylin  VWR (Darmstadt, Germany) 

Methanol Sigma Aldrich (Taufkirchen, Germany) 

Milk powder Carl Roth (Karlsruhe, Germany) 

NaCl Merck (Darmstadt, Germany) 

NaF Merck (Darmstadt, Germany) 

Na2HPO4 Carl Roth (Karlsruhe, Germany) 

NaH2PO4 x H2O Merck (Darmstadt, Germany) 

Na4P2O7 Sigma Aldrich (Taufkirchen, Germany) 

Na3VO4 Sigma Aldrich (Taufkirchen, Germany) 

NH4Cl Sigma Aldrich (Taufkirchen, Germany) 

Okadic acid Sigma Aldrich (Taufkirchen, Germany) 

Orange G Merck (Darmstadt, Germany) 

PageRuler Prestained Protein Ladder Invitrogen (Darmstadt, Germany) 

Pam3CSK4 Invivogen (San Diego, CA, USA) 

Paraformaldehyd (PFA) Merck (Darmstadt, Germany) 

Protease inhibitor Cocktail Roche (Mannheim, Germany) 

Rotiphorese Gel 30 Carl Roth (Karlsruhe, Germany) 

RPMI 1640 Invitrogen (Darmstadt, Germany) 

Sodium actate Merck (Darmstadt, Germany) 

Sodium dedecylsulfat (SDS) Carl Roth (Karlsruhe, Germany) 

Sucrose VWR (Darmstadt, Germany) 

Tetramethylethylendiamin (TEMED) Serva (Heidelberg, Germany) 

Tricine Carl Roth (Karlsruhe, Germany) 

Trizma®base Sigma Aldrich (Taufkirchen, Germany) 

Triton X-100 Sigma Aldrich (Taufkirchen, Germany) 

TRizol Sigma Aldrich (Taufkirchen, Germany) 
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Tween 20 Sigma Aldrich (Taufkirchen, Germany) 

Western Lightning ECL Substrate Perkin Elmer (Rodgau, Germany) 

Xylene  Otto Fischar (Saarbrücken, Germany) 

Xylene cyanol Molekula (München, Germany) 

5.1.4 Kits  

Title Company 

A40 Human ELISA Kit Invitrogen (Darmstadt, Germany) 

A42 Human ELISA Kit Invitrogen (Darmstadt, Germany) 

Bio-Rad Protein Assay Bio-Rad Laboratories (München, Germany) 

DyNAmoTM Flash probe qPCR Kit Thermo Scientific (Bonn, Germany) 

DyNAmoTM Flash SYBR Green qPCR Kit Thermo Scientific (Bonn, Germany) 

Mouse TNF alpha ELISA Ready-SET-Go! eBioscience (San Diego, CA, USA) 

Neural Tissue Dis. Kit (p) Miltenyi Biotec(Bergisch Gladbach,Germany) 

OptEIATM TMB Substrate Reagent Set BD Bioscience (Heidelberg, Germany) 

RNeasy® Plus Mini Kit Qiagen (Hilden, Germany) 

RQ1 RNase-free DNase Promega (Mannheim, Germany) 

SuperScript® II Reverse Transcriptase Invitrogen (Darmstadt, Germany) 

VECTOR Blue Alkaline Phosphatase Substrate kit Vector Laboratorie (Burlingame, USA) 

VectaStain Elite ABC kit Vector Laboratorie (Burlingame, USA) 

VectaStain Elite ABC-AP kit Vector Laboratorie (Burlingame, USA) 

5.1.5 Oligonucleotides 

Table 3.1 Primers for the Real-Time-quantitative-PCR (SYBR Green method) 

Gen Primer forward 5' - 3' Primer reverse 5' - 3' 

mouse ccl-2 AAGAGATCAGGGAGTTTGCT CTGCCTCCATCAACCACTTT 

mouse gapdh ACAACTTTGGCATTGTGGAA GATGCACGGATGATGTTCTG 

mouse il-1 GAAGAAGAGCCCATCCTCTG TCATCTCGGAGCCTGTAGTG 

mouse il-10 AGGCGCTGTCATCGATTTCTC TGCTCCACTGCCTTGCTCTTA 
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mouse inos ACCTTGTTCAGCTACGCCTT CATTCCCAAATGTGCTTGTC 

mouse tnf- ATGAGAAGTTCCCAAATGGC CTCCACTTGGTGGTTTGCTA 

5.1.6 Antibody 

Table 3.2 Antibodies used in this work 

Antibody Company 
mouse monoclonal anti α-tubulin 

Clone, DM1A 
Abcam (Cambridge, UK) 

rabbit  polyclonal anti β-actin Cell Signaling (Beverly, MA, USA) 

mouse monoclonal anti Amyloid β 

Clone,  WO2 
Millipore (Schwalbach, Germany) 

mouse monoclonal anti Amyloid β 

Clone,  6F/3D 
Dako (Hamburg, Germany) 

rat monoclonal anti CD16/CD32 

Clone, 2.4G2 
BD Pharmingen (NJ, USA) 

rat monoclonal anti CD45 

Clone, 69/CD45 
BD Pharmingen (NJ, USA) 

rabbit polyclonal anti Collagen type IV Abcam (Cambridge, UK) 

chicken polyclonal anti GFP Abcam (Cambridge, UK) 

mouse monoclonal anti Iba1 

Clone, 20A12.1 
Millipore (Schwalbach, Germany) 

rabbit polyclonal anti Iba1 Wako (Neuss, Germany) 

rabbit monoclonal anti IKKβ 

Clone, Y466 
Abcam (Cambridge, UK) 

rabbit polyclonal anti IKKβ Novus Biologicals (Littleton, USA) 

rabbit monoclonal anti Ki67 

Clone, SP6 
Abcam (Cambridge, UK) 

rabbit polyclonal anti Munc18-1 Cell Signaling (Beverly, MA, USA) 

mouse monoclonal anti NeuN 

Clone, A60 
Millipore (Schwalbach, Germany) 

rabbit monoclonal anti phosho-p65 

Clone, 93H1 
Cell Signaling (Beverly, MA, USA) 

rabbit monoclonal anti p65 

Clone, D14E12 
Cell Signaling (Beverly, MA, USA) 
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mouse monoclonal anti PSD95  

Clone, 6G6-1C9 
Abcam (Cambridge, UK) 

rabbit polyclonal anti RFP Rockland (Gilbertsville, USA) 

mouse monoclonal anti S100 

Clone. 4C4.9 
Abcam (Cambridge, UK) 

rabbit monoclonal anti phosho-SMAD2 

Clone, 138D4 
Cell Signaling (Beverly, MA, USA) 

rabbit monoclonal anti SMAD2 

Clone, D43B4 
Cell Signaling (Beverly, MA, USA) 

rabbit monoclonal anti phosho-SMAD5 

Clone,41D10 
Cell Signaling (Beverly, MA, USA) 

rabbit monoclonal anti SMAD5 

Clone, D4G2 
Cell Signaling (Beverly, MA, USA) 

goat anti chicken  Alexa 488 Conjugate Invitrogen (Darmstadt, Germany) 

goat anti rabbit  Alexa 488 Conjugate Invitrogen (Darmstadt, Germany) 

goat anti mouse Alexa 546 Conjugate Invitrogen (Darmstadt, Germany) 

goat anti rabbit biotin Conjugate Vector Laboratorie (Burlingame, USA) 

goat anti rat biotin Conjugate Vector Laboratorie (Burlingame, USA) 

goat anti mouse HRP Conjugate Dako (Hamburg, Germany) 

goat anti rabbit HRP Conjugate Promega (Mannheim, Germany) 

5.1.7 Buffer 

Table 3.3 Recipe of solution 

Recipe Chemicals Amount Concentration

10x Citric buffer Citric acid 2.014g 10mM 

  Up to1 Liter  

10x PBS NaCl 400 g 1.37 M 

  KCl 10 g 27 mM 

  Na2HPO4 71 g 100 mM 

  NaH2PO4 x H2O 69 g 100 mM 
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  dest. H2O Up to5 Liter   

  Adjust to pH 7.4     

10x TBS Tris 302.5 g 500 mM 

  NaCl 425 g 1.45 M 

  dest. H2O Up to 5 Liter   

  Adjust to pH 7.4     

5x DNA-Laoding buffer Bromphenol blue 1 mg 0.1% 

  Xylene cyanol 2 mg 0.2% 

  Orange G 2 mg 0.2% 

  Sucrose 500 mg 50% 

  0.5 M EDTA [pH 8.0] 2 µl 1 mM 

  dest. H2O Up to 1 ml   

5x TBE Tris 270 g 446 mM 

  Borat 137.5 g 446 mM 

  0.5 M EDTA [pH 8.0] 100 ml 10 mM 

  dest. H2O Up to 5 Liter   

3x SDS-Page Laoding buffer 1 M Tris/HCl [pH 6.8] 187.5 µl 187.5 mM 

  20% SDS 300 µl 6% 

  Glycerol 300 µl 30% 

  -Mercaptoethanol 150 µl 15% 

  3% Bromphenol blue (w/v) 10 µl 0.03% 

  dest. H2O Up to 1 ml   

10x SDS-Tris-Glycine Running buffer Tris 151.5 g 250 mM 

  Glycine 720.5 g 1.92 M 

  SDS 50 g 1% (w/v) 

  dest. H2O Up to 5 Liter    
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10x SDS-Tris-Tricine running buffer Tris 121 g 1 M 

  Tricine 171 g 1 M 

  SDS 10 g 1% (w/v) 

  dest. H2O Up to1 Liter    

10x Transfer buffer Tris 30 g 248 mM 

  Glycine 138 g 1.84 M 

  dest. H2O Up to 1 Liter    

* for use mix 100 mL 10X Transfer buffer with 200 mL methanol and 700  mL dest. H2O 

Blocking buffer Nonfatty milk 5g 10% 

 1x PBS Up to 50 ml  

DMEM media 
Dulbecco's Modifed Eagle Medium

(DMEM)(High Glucose) 
445 ml 89% 

 Fetal bovine serum 50 ml 10% 

 Antibiotic-antimycotic(100x ) 5 m 1% 

* Fetal bovine serum should be inactivated in 56°C water bath for 30 min. 

RPMI media RPMI 1640 Medium 445 ml 89% 

 Fetal bovine serum 50 ml 10% 

 Antibiotic-antimycotic(100x ) 5 ml 1% 

* Fetal bovine serum should be inactivated in 56°C water bath for 30 min. 

SDS-Cell lysis buffer 1 M Tris/HCl [pH 7.5] 2.5 ml 50 mM 

  0.5 M EDTA [pH 8.0] 200 µl 2 mM 

  0.5 M EGTA [pH 8.0] 200 µl 2 mM 

  Protease inhibitor Cocktail 1 Tablet 1x 

  20 µM Okadic acid 125 µl 50 mM 

  0.25 M Na4P2O7 1 ml 5 mM 

  1 M Na3VO4 100 µl 100 µM 
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  1 M DTT 50 µl 1 mM 

  1 M NaF 2.5 ml 50 mM 

  20% SDS 5 ml 2% 

  dest. H2O Up to 50 ml   

5.1.8 Mice 

TgCRND8 APP-transgenic mice (apptg) on a 129 background (continuously interbred for more 

than 9 generations to reach the genetic cognate) expressing a transgene incorporating both the 

Indiana mutation (V717F) and the Swedish mutations (K670N/M671L) in the human app gene 

under the control of hamster prion protein (PrP) promoter were kindly provided by D. Westaway 

(University of Toronto). In this mouse strain, the A load does not differ between male and 

female mice (Chishti et al., 2001). Ikbkbfl/fl mice carrying loxP site–flanked ikbkb alleles on a 

C57BL6/N genetic background were kindly provided by M. Pasparakis (University of Cologne; 

Pasparakis et al., 2002). Ikbkbfl/fl mice express normal levels of IKK. LysM-Cre knock-in mice 

(LysM-Cre+/+) expressing Cre from the endogenous lysozyme 2 gene locus were obtained from 

Jackson Laboratory (Bar Harbor, ME, USA; Stock Number 004781; Clausen et al., 1999) and 

were back-crossed to C57BL6/J mice for more than 6 generations. Thus, myeloid cell type (e.g., 

microglia and macrophages)-specific IKKβ-deficient (ikbkbfl/flCre+/-) mice were generated by 

breeding ikbkbfl/fl mice and LysM-Cre knock-in mice. APP-transgenic mice deficient in IKK 

specifically in myeloid cells (apptgikbkbfl/flCre+/-) were then established by cross-breeding APP-

transgenic mice with ikbkbfl/fl and LysM-Cre mice on a constant C57BL6/129 (1:1) genetic 

background. All mice from the same litter were used for the study without any exclusion so that 

the phenotype of APP-transgenic mice with or without IKK ablation in myeloid cells was 

compared only between siblings.  

To demonstrate the cell-specific expression of Cre recombinase, we cross-bred LysM-Cre mice 

to ROSAmT/mG Cre report mice (Jackson Laboratory; Stock Number 007676), which express cell 

membrane–targeted tomato fluorescent protein (TFP) before Cre exposure and express cell 

membrane–targeted GFP in Cre-expressing cells. To track microglia and brain macrophages with 

deficiency of IKK in the AD mice, apptgikbkbfl/flCre+/- mice were further mated to ROSAmT/mG 

mice to obtain apptgikbkbfl/flROSAmT/mGCre+/- mice.  
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To demonstrate the chemokine (C-C motif) receptor 2 (CCR2)-positive cells in the AD mice, we 

cross-bred TgCRND8 APP-transgenic mice to CCR2-RFP mice (Jackson Laboratory; Stock 

Number 017586), in which the CCR2 coding sequence has been replaced with an RFP encoding 

sequence. All animal experiments were approved by the regional ethical committee of the 

regional council in Saarland, Germany. 

5.2 Methods 

5.2.1 Cell isolation and primary cell culture 

Primary microglia were isolated from brains of newborn C57BL6 mice and cultured as 

previously described (Liu et al., 2005). Briefly, the meninges from the forebrains of newborn 

mice were mechanically removed. The cells were seeded into poly-lysine-coated flasks and 

cultured in DMEM medium supplemented with 10% FBS under a humidified atmosphere of 

10% CO2 at 37°C for at least 14 days (Ishii K, 2000). Microglial cells were then collected from 

the microglia-astrocyte co-cultures by shaking with a rotary shaker (220 rpm, 15min).  

Bone marrow cells were isolated from medullar cavities of the tibia and femur of 8-week-old 

littermate mice resulting from crosses of ikbkbfl/fl and LyzM-Cre knock-in mice (ikbkb fl/flCre-/- 

and ikbkbfl/flCre+/- mice). Bone marrow-derived macrophages (BMDM) were cultured in 

Dulbecco’s modified Eagle medium (Life Technologies, Karlsruhe, Germany) supplemented 

with 10% fetal bovine serum (FBS, PAN Biotech, Aidenbach, Germany) and 20% L929 cell-

conditioned medium (DSMZ, Braunschweig, Germany) in Ф10 cm dishes (BD, Heidelberg, 

Germany) according to a published protocol (Hao et al., 2011). As shown in flow cytometry, 

>98% BMDM cells were CD11b-positive.  

5.2.2 Positive selection of CD11b-positive microglia in the adult mouse brain 

In order to determine the ablating efficiency of floxed ikbkb gene by LyzM-Cre and the 

microglial inflammatory activation, the whole cerebrum harvested from 3 or 6-month-old APP-

transgenic mice with and without deficiency of myeloid IKKβ (ikbkbfl/flCre-/- or ikbkbfl/flCre+/-) 

was carefully dissected to prepare a single cell suspension using Neural Tissue Dissociation Kit 

(papain) with the removal of myelin using Myelin Removal Beads II (both from Miltenyi Biotec 
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GmbH, Bergisch Gladbach, Germany) according to the protocols provided by the company (Liu 

et al., 2014). Procedure is as follows: 

1. Prepare 1950 μl enzyme mix 1 for up to 400 mg tissue and vortex. Pre-heat the mixture at 

37 °C for 10 minutes before use. 

2. Remove the mouse brain. Determine the weight of tissue in 1 ml of cold HBSS to make 

sure the 400 mg limit per digestion is not exceeded. 

3. Place the brain on the lid of a 100 mm diameter petri dish, remove the meninges, and cut 

brain into small pieces using a scalpel. 

4. Using a 5 ml pipette, add 5 ml of HBSS (w/o) and pipette pieces back into an 

appropriate-sized tube. Rinse with HBSS (w/o). 

5. Centrifuge at 300 g for 7 minutes at room temperature and aspirate the supernatant 

carefully. 

6. Add 1950 μl of pre-heated enzyme mix 1 (Solutions 1 and 2) per up to 400 mg tissue. 

7. Incubate in closed tubes for 15 minutes at 37 °C under slow, continuous rotation. 

8. Prepare 30 μl enzyme mix 2 per tissue sample by adding 20 μl of Solution 3 to 10 μl of 

Solution 4. Then add to samples. 

9. Invert gently to mix. Do not vortex. 

10. Dissociate tissue mechanically using the 17G needles by pipetting up and down 8 times 

slowly. Avoid forming air bubbles. 

11. Incubate at 37 °C for 10 minutes. 

12. Dissociate tissue mechanically using the 22G needles. Pipette slowly up and down 5 

times with each pipette, or as long as tissue pieces are still observable. Be careful to avoid 

the formation of air bubbles. 

13. Incubate at 37 °C for 10 minutes. 

14. Apply the cell suspension to a 70μm cell strainer, placed on a 50 ml tube. 

15. Discard cell strainer and centrifuge cell suspension at 300 g for 10 minutes at room 

temperature. Aspirate supernatant completely. 

16. Suspend cells with buffer to the required volume for further applications. 

After pelleting cells by centrifugation, 80l of blocking buffer containing 25g/ml rat anti-

mouse CD16/CD32 antibody (2.4G2, BD), 10% FBS was added to prevent non-specific binding. 

Thirty minutes after blocking at 4 °C, 20l MicroBeads-conjugated CD11b antibody (Miltenyi 
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Biotec GmbH) was directly added to the cells. After 1 more hour of incubation at 4°C, cells were 

washed with buffer and loaded onto MACS LS Column (Miltenyi Biotec GmbH) to separate 

CD11b-positive and negative cells. Lysis buffer was immediately added to both the CD11b-

positive and the CD11b-negative cells for isolation of total RNA using RNeasy Plus Mini Kit 

(Qiagen GmbH). alternatively, CD11b+ cells were used for flow cytometric analysis after cells 

were stained with fluorescence-labeled anti-CD45 antibody (clone 30-F11, eBioscience, San 

Diego, CA, USA); or CD11b+ cells were used for Western blot detection of IKK after cells 

were lysed in buffer (50 mM Tris/HCl [pH 7.4], 145 mM NaCl, 1% Triton-100, and protease 

inhibitor cocktail; Roche Applied Science) and the rabbit monoclonal antibody against IKK 

(clone Y466; Abcam, Cambridge, UK) was used to blot the membrane. 

5.2.3 Preparation of A peptides 

The 42-amino acid form of human A (A42) was kindly provided by Dr. L. Fülöp (Albert 

Szent Gyorgyi Medical University, Hungary). The oligomeric and fibrilar A were prepared 

according to the published protocol with minor modification (Dahlgren et al., 2002).  

The A (1–42) peptide was initially dissolved to 1 mM in hexafluoroisopropanol (Sigma) and 

separated into aliquots in sterile microcentrifuge tubes. Hexafluoroisopropanol was removed 

under vacuum in a Speed Vac, and the peptide film was stored dessicated at -20 °C. For the 

aggregation protocols, the peptide was first resuspended in dry dimethyl sulfoxide (Me2SO, 

Sigma) to a concentration of 5 mM. For oligomeric conditions, Ham’s F-12 (phenol red-free, 

BioSource, Camarillo, CA) was added to bring the peptide to a final concentration of 100 µM 

and incubated at 37 °C for 48 h. For fibrillar conditions, 10 mM HCl was added to bring the 

peptide to a final concentration of 100 µM and incubated for 48 h at 37 °C. After these 

solubilization and aggregation protocols, no major differences were observed in the preparation 

and structural characterization of synthetic and recombinant peptide. Fluorescent A was 

prepared by mixing HiLyte Fluor™ 488-conjugated A42 (AnaSpec, Fremont, USA) and 

unlabeled A at the ratio of 1:10. Endotoxin concentrations of peptide samples were <0.01 

EU/ml as determined by the LAL assay (Lonza, Basel, Switzerland). Western blot analysis 

confirmed that HiLyte Fluor™ 488-conjugated and non-conjugated forms of A42 peptides had 

similar oligomeric conformation.   
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5.2.4 Flow cytometric analysis of HiLyte Fluor™ 488-Aβ42 internalization in 

primary microglia and macrophages 

In order to investigate the different internalization of A oligomers and fibrils by microglia and 

macrophages, and effects of IKK on A internalization, microglia cells cultured in a 24-well 

plate (BD) at a density of 2105 cells/well were treated with 0.2 and 1 M HiLyte Fluor™ 488–

conjugated A42 aggregates for different time durations as indicated in the results. As controls, 

cells were challenged with 10 and 100g/ml pHrodoTM Green-conjugated E. coli BioParticles 

(Life Technologies) and 1l/ml FluoSpheres fluorescent microspheres (1107 polystyrene 

microspheres/ml, 1m diameter; Life Technologies) (Liu et al., 2006; Hao et al., 2011). To 

investigate effects of blocking TGF-–SMAD2/3 signalling on A internalization, wild-type 

microglia were pre-treated with activin-like kinase-5 (ALK5) inhibitors, SB-505124 and SB-

431542 at 0, 0.004, 0.02, 0.1, 0.5 or 1.0 M for 1 hour, which was followed by the incubation 

with 1.0 M fluorescent oligomeric A42 aggregates for 6 hours in the presence of pre-treated 

inhibitors. Thereafter, macrophages or microglia were washed with 1 phosphate buffered saline 

(PBS) and detached from the plate with trypsin-ethylenediaminetetraacetic acid (EDTA) (Life 

Technologies). The mean fluorescence intensity (mFI) of internalized fluorophore-conjugated 

A42, E. coli or beads and percentages of positive cell with intracellular proteins or particles 

were immediately determined by BD FACSCanto II flow cytometry (Franklin Lakes, USA). To 

examine the surface binding of A, cells were incubated with HiLyte Fluor™ 488-conjugated 1 

M A42 aggregates for 6 hours on ice and then analyzed for mFI.  

5.2.5 Barnes maze test 

The Barnes maze test was used to assess the cognitive function of different APPtransgenic and 

wild-type littermate mice, using the established protocol (Hao et al., 2011; Liu et al., 2012). The 

test involved five days of acquisition training with two trials per day. For each trial, latency to 

enter the escape chamber and distance travelled were recorded by EthoVision® XT (V7.0) 

tracking software (Noldus Information Technology, Wageningen, The Netherlands), and the 

latency and total distance were averaged from the two trials per day. Twenty-four hours after the 

last training day, a probe trial was performed, in which: i) the escape chamber was removed; ii) 
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mice were placed in the center of the maze as same as in the acquisition training; iii) Each mouse 

was given 5 minutes to explore the maze. During the probe phase, the time mice spent in the 

target zone which is adjacent to the escape hole and its two neighboring holes and the frequency 

mice visited the target zone and non-targeting zone surrounding other holes far from the escape 

hole (see Figure. 4.6) were recorded. The experimenter was kept blind to the mouse genotypes 

during the whole test. 

5.2.6 Tissue collection for pathological analysis 

Animals were euthanized at 6 months of age by inhalation of isofluorane (Abbott, Wiesbaden, 

Germany). Whole blood was collected via intracardial puncture and kept in EDTA-containing 

Eppendorf tubes. Mice were then rapidly perfused transcardially with ice-cold PBS and the brain 

removed and divided. The left hemi-brain was immediately fixed in 4% paraformaldehyde (PFA, 

Sigma) for immunohistochemistry. A 0.5mm thick piece of tissue was sagittally cut from the 

right hemi-brain. The cortex and hippocampus were carefully separated and homogenized in 

Trizol (Life Technologies) for RNA isolation. The remainder of the right hemi-brain was snap 

frozen in liquid nitrogen for biochemical analysis (Figure 3.1) (Hao et al., 2011; Liu et al., 2012; 

Xie et al., 2013). 

 

Figure 3.1 Schematic figure of brain sample sections preparation. The brain was divided into 4 parts. The left 
hemi-brain was immediately fixed in 4% PFA and stored at 4 °C for immunohistochemistry process. A 0.5 mm-
thick piece of cerebral tissue was sagittally cut from the right hemi-brain, homogenized in TRIzol for RNA isolation. 
The rest of right hemi-cerebral was snap frozen in liquid nitrogen for biochemical analysis. The remained part was 
frozen is liquid nitrogen as well. 



MATERIALS AND METHODS

 

  34

5.2.7 Immunohistochemistry  

5.2.7.1 Iba-1 and Ki67 Staining 

In order to evaluate neuroinflammatory activation, 4% PFA-fixed left hemispheres were 

embedded in paraffin and serial 40m thick sagittal sections were cut and mounted on glass 

slides. Immunohistochemical staining with the primary antibody, rabbit anti-Iba-1 (1:500, Wako 

Chemicals, Neuss, Germany), was performed on these sections (Liu et al., 2013). Detailed 

procedures are as follows: 

1. The slides were serially deparaffinized in the solutions (2 x 5 min Xylene, 2 x 5 min 

100% ethanol, 5 min 96% ethanol, 5 min 70% ethanol, and 5 min 50% ethanol). 

2. Antigen retrieval by cooking the sections in 1× citrate buffer (10 mM, pH 6.0) in a 

microwave oven, 560 watts, 3 min × 5 times. Refill with buffer between each cooking. 

Cool down slowly by leaving on the bench for >30 min after cook. 

3. The endogenous peroxidase of the tissue was inactivated via incubating the slides in 

the mixture of H2O2 /Methanol/dH2O buffer, RT, 30min. 

4. Wash slides with TBS, 5 min × 2 times and then with TBS-T, 5 min, once. 

5. Block with blocking buffer (0.2% Casein (w/v) + 0.1% Tween 20 + 0.1% Triton X-

100 in PBS), RT, 1h. 

6. 1st Antibody reaction: with 1:500 dilution of the polyclonal rabbit-anti mouse-Iba-1 

(Wako) in dilution buffer (0.02% Casein (w/v) + 0.01% Tween 20 + 0.01% Triton X-

100 in PBS), incubate at 4 °C, overnight. 

7. Wash as step 4. 

8. 2nd Antibody reaction: with the 1:500 diluted HRP labeled goat-anti-rabbit (Promega) 

in dilution buffer, RT, 1h. 

9. Wash as step 4. 

10. Develop with DAB, 120 sec, and then wash with dH2O, 3 times. 

11. Counterstaining with Hematoxylin, 10 sec, forward to dH2O wash 3 times. Then 

develop in running tap water for 5 min, and then change back to dH2O. 

12. Dehydration: serially treat the slides in the following solutions: water, 3 min, 50% 

ethanol, 3 min 70% ethanol,  3 min 96% ethanol,  2 x 3 min 100% ethanol,  2 x 5 min 

Xylene. 
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13. Mount the slides with Entellan Neu (Merck), and then cover the tissue with cover 

glass. 

To detect proliferating microglia, the rabbit monoclonal antibody (clone SP6, Abcam) directed 

against Ki67 was added to sections after stained with Iba-1 antibodies, but before haematoxylin 

counterstaining. Thereafter, VectaStain ABC-AP kit and VECTOR Blue Alkaline Phosphatase 

Substrate kit were used, without haematoxylin counterstaining. Ki67 staining was visualized in 

blue. Detailed procedures are as follows: 

14. After step 10, adds 1st Antibody: 1:200 dilution of anti Ki67 monoclonal antibody 

(Abcam) in dilution buffer (0.02% Casein (w/v) + 0.01% Tween 20 +0.01% Triton 

X-100 in PBS), incubate at 4 °C, overnight. 

15. Wash as step 4. 

16. 2nd Antibody reaction: with the 1:200 diluted biotin labeled goat-anti-rabbit (Vector 

Laboratories) in dilution buffer, RT, 1h. 

17. Preparation of ABC-AP reagent: Add 10 μl Reagent A, 10 μl Reagent B to 1 ml 

PBS/T. Incubate in dark for at least 30 min before use. 

18. Wash the slides as step 4. 

19. Incubate the slides with ABC-AP reagent, RT, 30 min. 

20. Wash as step 4.  

21. Develop with Alkaline Phosphatase Substrate, 10min, at 37 °C and then wash with 

dH2O, 3 times. 

22. Dehydration: serially treat the slides in the following solutions: water, 3 min, 50% 

ethanol, 3 min 70% ethanol, 3 min 96% ethanol, 2 x 3 min 100% ethanol, 2 x 5 min 

Histo-clear. 

23. Mount the slides with VectaMount™ (Vector Laboratories), and then cover the tissue 

with cover glass.  

5.2.7.2 Aβ staining 

 In order to evaluate Aβ load, the sections throughout the entire hippocampus were randomly 

selected according to the random sampling method described in the last section. Volumes of A, 

congo red staining and brain tissues (hippocampus and cortex) were estimated with the Cavalieri 

probe (Gundersen and Jensen, 1987) with 20µm of a grid size, which provided CE estimates 
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<0.04. The A load was demonstrated as the ratio of A volume to relevant brain tissue volume. 

Detailed procedures are as follows: 

1. The slides were serially deparaffinized in the solutions (2 x 5 min Xylene, 2 x 5 min 

100% ethanol, 5 min 96% ethanol, 5 min 70% ethanol, and 5 min 50% ethanol). 

2. Antigen retrieval by cooking the sections in HCl solution (2 mM) in a microwave 

oven, 560 watts, 3 min × 5 times. Refill with solution between each cooking. Cool 

down with distill water after cook and incubate in formic acid for 1 min. 

3. Wash slides with TBS, 5 min × 2 times and then with TBS-T, 5 min, once. 

4. Block with blocking buffer (0.2% casein + 0.1% Tween 20 +0.01% Triton X-100 in 

PBS), RT, 1h. 

5. 1st Antibody reaction: with 1:50 dilution of the mouse monoclonal anti-human Aβ 

antibody (clone 6F/3D, Dako, Hamburg, Germany) in dilution buffer (0.02% casein + 

0.01% Tween 20 +0.01% Triton X-100 in PBS), incubate at 4 °C, overnight. 

6. Wash as step 3. 

7. 2nd Antibody reaction: with the 1:200 diluted HRP-conjugated goat anti-mouse IgG 

(Dako) in dilution buffer, RT, 1h. 

8. Wash as step 3. 

9. Develop with DAB, 120 sec, and then wash with dH2O, 3 times. 

10. Dehydration: serially treat the slides in the following solutions: water, 3 min, 50% 

ethanol, 3 min 70% ethanol,  3 min 96% ethanol,  2 x 3 min 100% ethanol,  2 x 5 min 

Xylene 

11. Mount the slides with Entellan Neu (Merck), and then cover the tissue with cover 

glass. 

All images were acquired by Zeiss AxioImager.Z2 microscope (Carl Zeiss, Göttingen, Germany) 

equipped with a Stereo Investigator system (MicroBrightField, Williston, USA). The 

stereological technique was used to count the number of microglia. Briefly, after systematic 

random sampling of every 10th section throughout the entire hippocampus and cortex dorsal to 

the hippocampus, the Optical Fractionator as the stereological probe was used to quantify Iba-1-

labelled cells with 12012018m of a disector and 400400m of a sampling grid. The 

estimated coefficient of error (CE) was less than 0.08. Tissue thickness was measured at each 
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disector location, using a focus drive with 0.1m accuracy. In each disector, only Iba-1 positive 

cells with clear haematoxylin nucleus staining were counted. 

The proliferating microglia, which appeared with typical brown microglial processes and dark 

blue nuclei, were counted in the total hippocampus area in the randomly selected sections as 

described above. Data were reported as the number of antibody-labeling cells divided by the full 

area (mm2) of interest. All immunohistochemical analyses were performed by an experimenter 

blinded to the genotype of mice. 

5.2.8 Congo red staining 

To identify compacted amyloid in a beta-sheet secondary structure in the brain tissue, we stained 

paraffin-embedded sections as described above with Congo red according to the standard 

laboratory procedures (Wilcock et al., 2006). Detailed procedures are as follows: 

1. The slides were serially deparaffinized in the solutions (2 x 5 min Xylene, 2 x 5 min 

100% ethanol, 5 min 96% ethanol, 5 min 70% ethanol, and 5 min 50% ethanol). 

2. Rehydrate the sections by incubating for 30 s in distilled water (dish a). 

3. Incubate the slides for 20 min in the alkaline saturated NaCl solution (dish b). 

4. Incubate the slides for 20 min  in the Congo red solution (dish C). 

5. Rinse by dipping ten times in 95% ethanol (dish d). 

6. Rinse by dipping ten times in 100% ethanol (dishes e end f). 

7. Incubate the slides for 5 min in each of the three xylenes (dishes g-i). 

8. Mount with Mowiol. 

To demonstrate the Aβ deposits in the blood vessel, we cooked Congo red-stained sections in 

citrate buffer and then treated them with pepsin (Life Technologies) for the antigen retrieval. 

After being blocked in goat serum, the sections were incubated with a rabbit polyclonal against 

collagen type IV (Cat. ab6586, Abcam) as the first antibody and Alexa488-conjugated goat anti-

rabbit IgG as the second antibody.  

To analyze the distribution of A plaque size, we acquired images of hippocampus after Congo 

red staining with a 10 objective (Carl Zeiss) using the Virtual Tissue Module 

(MicroBrightField). The hippocampus was delineated and the area of individual plaques was 



MATERIALS AND METHODS

 

  38

determined after performing histogram-based segmentation with Image-Pro Plus 6.0 software 

(Media Cybernetics, Silver Spring, MD, USA). 

5.2.9 Immunofluorescent staining  

To demonstrate the co-localization of IKKβ or GFP and different cellular markers, e.g. Iba-1, 

S100 and NeuN, the paraffin-embedded sections were used. The primary antibodies, rabbit 

polyclonal anti-IKKβ (Cat. NB600-477, Novus Biologicals), and rabbit or chicken polyclonal 

anti-GFP (Cat. ab290 and Cat. ab13970, Abcam) were first incubated with deparaffinised brain 

section and thereafter with Alexa488-conjugated goat anti-rabbit IgG or chicken IgY. After 

thorough washing, further antibodies against different cellular markers [mouse monoclonal anti-

Iba-1 (clone 20A12.1, Merck Millipore, Billerica, USA), mouse monoclonal anti-S100 (clone 

4C4.9, Abcam) or mouse monoclonal anti-NeuN (clone A60, Merck Millipore)] were used and 

visualized with relevant Alexa546-conjugated second antibodies (all second antibodies were 

from Life Technologies).  

To detect CCR2-RFP positive cells in the brain, brain sections from 6-month-old bone marrow 

chimera APP-transgenic mice, which were constructed as in our published study (Hao et al., 

2011) with ROSAmT/mG mice as the bone marrow donor, were used as positive controls. A 

rabbit polyclonal anti-RFP and its variants, e.g. tdTomato, (Rockland Immunochemicals, 

Gilbertsville, USA) was used as the first antibody and Alexa546-conjugated anti-rabbit IgG as 

the second antibody (Life Technologies). 

5.2.10 Confocal microscopy 

To investigate the relationship between microglia and A deposits, four equidistant (120m 

interval) serial sections from each mouse (see the last section) were co-stained with rabbit Iba-1 

(Wako Chemicals) and monoclonal anti-A (clone 6F/3D, Dako), and then Alexa488- or Cy3-

conjugated second antibodies. Under Zeiss LSM 510 Meta Confocal Microscope (Carl Zeiss) 

with 40 objective, A deposits labeled with Cy3 were imaged after excitation with a 543nm 

laser. Thereafter, Z-stack serial scanning at 1m interval from -15 to +15mm was performed 

under the excitation of 488 and 543nm lasers. From each section, five randomly chosen areas 

were analyzed. In order to count the number of Iba-1-positive cells co-localizing with A 
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deposits, the images of Alexa488 (Iba-1) and Cy3 (A) were color-coded and a 3-dimential 

structure was reconstructed with the software Imaris 7.2.3 (Bitplane AG, Zurich, Switzerland). 

At the same time, the area of A from each lay of serial scanning was determined using ImageJ. 

Finally, the total number of microglia in each section was normalized by the total area of A 

deposits.  

5.2.11 Brain homogenates  

The brain was homogenized as previously described (Liu et al., 2012). Briefly, frozen 

hemispheres were bounce-homogenized in the TBS containing protease inhibitor cocktail (Roche 

Applied Science, Mannheim, Germany) and centrifuged at 16,000g for 30 minutes at 4°C. The 

supernatant (TBS-soluble fraction) was collected and stored at -80°C. The pellets were re-

suspended in the TBS plus 1% Triton-X (TBS-T), sonicated for 5 minutes in 4°C water bath and 

centrifuged at 16,000g for another 30 minutes at 4°C. The supernatant was collected and stored 

at -80°C as the TBS-T-soluble fraction. The pellets were extracted for a third time using an ice-

cold guanidine buffer (5M guanidine-HCl/50mM Tris, pH 8.0, herein referred to as guanidine-

soluble fraction). The protein concentration of all samples was measured using Bio-Rad Protein 

Assay (Bio-Rad Laboratories GmbH, Munich, Germany). The A concentrations in 3 different 

fractions of brain homogenates were determined by A42 and Aβ40 ELISA kits (both from Life 

Technologies). The TNF- concentration in the TBS-soluble brain fraction was measured by 

ELISA (eBioscience), with results normalized based on the sample’s protein concentration.  

5.2.12 Bio-Rad Protein Assay 

Protein concentration Bio-Rad Assay was completed with Protein Assay Reagent (Bio-Rad), 

based on the Bradford dye-binding procedure (Bradford, 1976), a simple colorimetric assay for 

measuring total protein concentration. Protein concentrations between 200 µg/ml and 1,400 

µg/ml (20-140 µg totals) can be assayed in a microplate format. Briefly, in high-concentration 

assay, 10 l sample or serial diluted standards were loaded on a 96-well format microplate, and 

then 200 l 1× assay reagent was added to each well. Absorption at 595 nm was read with a 

Micro-plate reader and protein concentration was determined according to a standard curve. 
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5.2.13 ELISA 

5.2.13.1 A ELISA 

A1-40 and A1-42 concentrations in three different fractions of brain homogenates were 

determined by Aβ42/40 ELISA kits (both from Invitrogen). Procedure is as follows: 

1. Prepare samples and through serial dilution prepare the following A1-40/ A1-42 

standards: 250, 125, 62.5, 31.25, 15.63, 7.81, and 0 pg/ml Hu Aβ40/ Aβ42. 

2. Add 50 μl of A1-40/ A1-42 peptide standards, controls, and samples to each plate well. 

3. Add 50 μl of anti-Hu Aβ40/ Aβ42 (Detection Antibody) solution to each well. Cover 

plate with plate cover and incubate for 3 hrs at room temperature with shaking. 

4. Thoroughly aspirate solution from wells and discard the liquid. Wash wells 4 times.  

5. Add 100 μl Anti-rabbit Ig’s-HRP Working Solution to each well. Cover plate with the 

plate cover and incubate for 30 min at room temperature. 

6. Thoroughly aspirate solution from wells and discard the liquid. Wash wells 4 times. 

7. Add 100 μl of Stabilized Chromogen to each well. The liquid in the wells will begin to 

turn blue. Incubate for 30 min at room temperature and in the dark.  

8. Add 100 μl of Stop Solution to each well. Tap side of plate gently to mix. The solution in 

the wells would change from blue to yellow. 

9. Read the absorbance of each well at 450 nm having blanked the plate reader against a 

chromogen blank composed of 100 μl each of Stabilized Chromogen and Stop Solution. 

Read the plate within 30 min after adding the Stop Solution. 

10. Use curve fitting software to generate the standard curve. Read the concentrations for test 

samples and controls from the standard curve. Multiply value(s) obtained for sample(s) 

by the appropriate factor to correct for the sample dilution.  

5.2.13.2 TNF- ELISA 

TNF- concentrations in TBS fractions of brain homogenates and plasma were determined by 

TNF- ELISA kits (from eBioscience). Procedure is as follows: 

1. Coat ELISA plate with 100 µL/well of TNF- capture antibody in 1X Coating Buffer. 

Seal the plate and incubate overnight at 4°C.  
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2. Aspirate wells and wash 3 times with >250 µL/well Wash Buffer. Allowing time for 

soaking (~1 minute) during each wash step increases the effectiveness of the washes. Blot 

plate on absorbent paper to remove any residual buffer.  

3. Dilute 1 part 5X ELISA/ELISPOT Diluent with 4 parts DI water. Block wells with 200 

µL/well of  1X ELISA/ELISPOT Diluent. Incubate at room temperature for 1 hour.  

4. Prepare samples and through serial dilution prepare the following TNF- standards: 1000, 

500, 250, 125, 62.5, 31.25, and 0 pg/ml mouse TNF-.Add 100 µL/well of your samples 

to the appropriate wells. Seal the plate and incubate at room temperature for 2 hours.  

5. Aspirate/wash as in step 2. Repeat for a total of 3-5 washes.  

6. Add 100 µL/well of TNF- detection antibody diluted in 1X ELISA/ELISPOT Diluent. 

Seal the plate and incubate at room temperature for 1 hour.  

7. Aspirate/wash as in step 2. Repeat for a total of 3-5 washes.  

8. Add 100 µL/well of Avidin-HRP diluted in 1X ELISA/ELISPOT Diluent. Seal the plate 

and incubate at room temperature for 30 minutes.  

9. Aspirate and wash as in step 2. In this wash step, soak wells in Wash Buffer  for 1 to 2 

minutes prior to aspiration. Repeat for a total of 5-7 washes.  

10. Add 100 µL/well of 1X TMB Solution to each well. Incubate plate at room temperature 

for 15 minutes.  

11. Add 50 µL of Stop Solution to each well.  

12. Read plate at 450 nm and 570nm. Subtract the values of 570 nm from those of 450 nm 

and analyse data.  

5.2.14 Western blot analysis  

For evaluation of IKK protein, microglia and BMDM cells derived from ikbkbfl/flCre-/- and 

ikbkbfl/flCre+/- mice were washed with PBS and lysed in the buffer [50mM Tris/HCl, pH=7.4, 

145mM NaCl, 1% Triton-100 and protease inhibitor cocktail (Roche Applied Science)]. For 

detection of phosphorylated and total amount of p65 component of NF-κB complex, microglia 

were activated with 10µM oligomeric Aβ42 for 12 minutes and immediately lysed in the buffer 

[50mM Tris/HCl, pH=7.4, 2mM EDTA, 50nM Okadaic acid, 5mM Sodium pyrophosphate, 

50mM NaF, 1mM DTT, 1% Triton-100 and protease inhibitor cocktail (Roche Applied Science)]. 

To detect IKK, phosphorylated and total p65, phosphorylated and total SMAD2 and 
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phosphorylated and total SMAD5 in microglia and BMDM cells and synaptic proteins in the 

brains, cell lysates and TBS-T-soluble brain fractions derived from APP-transgenic and non-

transgenic littermate mice differing in IKK expression were separated by 10% Tris-glycine 

PAGE.  

5.2.14.1 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

The sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) technique 

separates proteins according to their mobility difference in an electric field. Protein samples 

treated with SDS show an identical charge per unit mass and migrate in SDS gels only according 

to their molecular masses. The SDS-PAGE system used in this study is the Mini-PROTEAN® 3 

Cell electrophoresis system (Bio-Rad). One gel is composed of a lower separating gel and an 

upper stacking gel. The stacking gel is 5%, while the percentage of the separating gel varies from 

8% to 15%. Low percentage gels are used for large proteins, while small proteins are separated 

in high percentage gels. In this study, 10% separating gel was used. The gel and the electrodes 

were assembled in the SDS-PAGE chamber. The samples were diluted 1:2 in 3 × SDS-PAGE 

Sample loading buffer and heated at 95°C for 5min. Then, 20 μl sample per well was loaded to 

10% Acrylamide gel for electrophoresis running at 120 V until the Bromophenol blue front runs 

out of the gel. Proteins on the gel were transferred to membranes of nitrocellulose (NC) or 

polyvinylidene fluoride (PVDF) and detected by immunoblotting. 

5.2.14.2 Protein detection using immunoblotting 

Proteins separated by SDS-PAGE were further transferred to NC or PVDF membranes. PVDF 

membranes must be activated prior to the transfer by short incubation in 100 % methanol. 

In this work, the membrane and sponges were immersed in transfer buffer before the transfer and 

the transfer buffer was cooled at 4 °C. In the transfer, the gel and membrane were sandwiched 

between sponge and paper (sponge/paper/gel/membrane/paper/sponge) and all are clamped 

tightly together after ensuring no air bubbles have formed between the gel and membrane. The 

transfer chamber was completely filled with transfer buffer and completed the transfer at 250 mA 

for 65 min. Subsequently, the sandwich was unpacked and the SDS gel discarded. The 

membrane with the immobilized protein was 10% skim milk powder (w/v) in PBS for 1 h at RT 

or 4 ° C overnight in order to saturate unspecific binding sites. Then, the membrane was washed 
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twice for 5 minutes each with PBS. The primary antibody was diluted in PBS with 1% skimmed 

milk powder (w/v) at the concentration indicated below, and incubated with the membrane at 4 

°C overnight. The membrane was washed 3x10 min in TBS + 0.05% Tween 20 to remove 

residual primary antibody. The membrane was then incubated with the appropriate secondary 

antibody at the concentration indicated below. The secondary antibody was diluted in PBS +1% 

skim milk powder (w/v) and the incubation period was 1 hours. Therefore, the membrane was 

washed 3x10 min with TBS + 0.05% Tween 20. Lightning ECL substrate (Perkin Elmer) was 

developed. According to the manufacturer charges substrate solution A and B substrate solution 

were mixed in a 1:1 ratio and evenly distributed on the membrane. After 2 minutes, the substrate 

mixture was removed and the chemiluminescence detected using Amersham Hyperfilm ECL 

(GE Healthcare) in a darkroom. Kodak GBX developer and fixer were used to make signals 

visible. 

The western blot films were scanned with the Epson Perfection V700 Photo Scanner. 

Densitometric analyzes were performed with the image processing program Image J (NIH, 

Version 1.43). 

5.2.15 Purification of membrane components and β- and γ-secretase activity assays 

Membrane components were purified from 6-month-old APP-transgenic and non-transgenic 

littermate mouse brains with established methods (Burg et al., 2013; Hao et al., 2011; Xie et al., 

2013). Briefly, brain tissue was homogenized in sucrose buffer (10mM Tris/HCl, pH=7.4, 1mM 

EDTA, 200mM sucrose). Cell nuclei were removed by centrifugation at 1,000g and 4°C for 10 

minutes. The supernatant was transferred to a new tube and centrifuged again at 10,000g and 

4°C for 10 minutes. The resulting supernatant was centrifuged at 187,000g and 4°C for 75 

minutes in an Optima MAX Ultracentrifuge (Beckman Coulter, Krefeld, Germany). The 

supernatant was discarded and the pellet containing the crude membrane fraction was stored at -

80°C until use. β- and γ-secretase activities were measured by incubating the crude membrane 

fraction at 0.1mg/ml for β-secretase and 1mg/ml for γ-secretase with 8µM secretase-specific 

FRET substrates. At 37°C, in the β-secretase buffer (0.1M sodium acetate, pH=4.5) and γ-

secretase buffer (50mM Tris/HCl, pH=6.8, 2mM EDTA), both secretases cleaved the fluorogenic 

substrates resulting in continuous accumulation of fluorescence signals which were measured by 
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Synergy Mx Monochromator-Based Multi-Mode Microplate Reader (BioTek, Winooski, USA). 

For both secretase assays, dynamic reading of fluorescence intensity in each well was performed 

for 73 cycles with intervals of 5 minutes. Fluorescence intensity of the first cycle was considered 

to be background and subtracted for each well. Data were presented as an activity-time curve.  

5.2.16 Reverse transcription and quantitative PCR for analysis of gene transcripts 

Real-time PCR is a quantitative PCR method for the determination of cope number of PCR 

templates such as DNA or complementary DNA (cDNA) in a PCR reaction. There are two types 

of real-time PCR: intercalator-based and probe-based. Both methods require a special 

thermocycler equipped with a sensitive camera that monitors the fluorescence in each well of the 

96-well plate at frequent intervals during the PCR Reaction. Intercalator-based method (also 

known as SYBR Green method) requires a double-stranded DNA dye in the PCR reaction which 

binds to newly synthesized double-stranded DNA and gives fluorescence. Probe-based real-time 

PCR (also known as TaqMan PCR) requires a pair of PCR primers (as regular PCR does) an 

additional fluorogenic probe which is an oligonucleotide of 20-26 nucleotides with both a 

reporter fluorescent dye and a quencher dye attached. The probe is designed to bind only the 

DNA sequence between the two specific PCR primers. Only a specific PCR product can generate 

a fluorescent signal in TaqMan PCR. Therefore, the TaqMan method is more accurate and more 

reliable than SYBR green method.  

In our study, real-time PCR was performed using SYBR green (Roche Applied Science) or 

Taqman® probes (Life Technologies) with the 7500 Fast Real-Time PCR System (Life 

Technologies). The primer sequences for detecting transcripts of tnf-α, il-1β, inos, il-10, ccl-2 

and glyceraldehyde 3-phosphate dehydrogenase (gapdh) were the same as used in our earlier 

study (Liu et al., 2006). Taqman® gene expression assays from Life Technologies were used to 

measure transcripts of the following genes: mouse tnf-α, il-1β, mrc1, arg1, ikbkb, chi3l3, cd36, 

sra, ide, nep, rage, lrp1 and 18s RNA. For the ikbkb transcript detection, the Taqman® gene 

expression assay (Mm01222249_m1) was used with the amplified PCR product overlapping 6-7 

exon boundary of ikbkb. 
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5.2.16.1 Brain total RNA isolation with Trizol 

Homogenization: The 0.5 mm-thick piece of tissue sagittally cut from the right hemi-brain (see 

above tissue preparation section 3.2.6) was homogenized in 1 ml Trizol (Invitrogen). 

1. Phase separation: Incubate the homogenized samples for 5 min at room temperature to 

permit complete dissociation of nucleoprotein complexes. Then add 0.2 ml of chloroform 

and shake vigorously by hand for 15 sec, and then incubate at room temperature for 3 

min. Centrifuge the samples at 12,000  g for 15 min at 4 C. The sample mixture was 

separated into a lower red, phenol-chloroform phase, an interphase and a colorless upper 

aqueous phase. RNA remains in the aqueous phase. 

2. RNA precipitation: Transfer the colourless aqueous phase to a fresh tube; precipitate the 

RNA from the aqueous phase by mixing with 0.5 ml isopropyl alcohol. Incubate at room 

temperature for 10 min and then centrifuge at 12,000  g for 10 min at 4 C. The 

precipitated RNA is the gel-like pellet on the bottom side of the tube. 

3. RNA wash: remove the supernatant and wash the RNA once with 1 ml 75% ethanol. Mix 

by vortexing and centrifuge at 7,600  g for 5 min at 4 C. 

4. Redissolve the RNA: briefly dry the RNA pellet, incubating for 10 min at RT and then 

dissolve it in appropriate volume of RNase-free water. 

5.2.16.2 Genome DNA degradation prior to RT-PCR 

To erase trace genomic DNA contamination in the RNA sample, RQ1 (RNA Qualified) RNase-

Free DNase (Promega), which is a DNase I that degrades both double-stranded and single-

stranded DNA endonucleolytically, was used. The reaction was set up as following: 

RNA sample in water 8 l 

RQ1 RNase-Free DNase 10  Reaction buffer 1 l 

RQ1 RNase-Free DNase 1 U/ g RNA 

Nuclease-free water To a final volume of 10 l 
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Incubate at 37 C for 30 min, and then add 1 l of RQ1 DNase Stop solution to terminate the 

reaction. The DNase was then inactivated by incubating at 65 C for 10 min. 

5.2.16.3 First strand cDNA synthesis  

First-strand cDNA was synthesized by priming total RNA with hexamer random primers 

(Invitrogen) and using Superscript II reverse transcriptase (Invitrogen), which is an engineered 

version of Moloney Murine Leukemia Virus RT with reduced RNase H activity and increased 

thermal stability. This enzyme can be used to generate cDNA up to 12.3kb. The reaction is: 

Total RNA 3 g 

Rndom primer (250 ng/l) 1 l 

dNTP mix (10 mM each) 1 l 

Nuclease-free water To a final volume of 12 l 

Heat the mixture to 70 C for 5 min and quick chill on ice for 2min. And then add: 

5x First-strand buffer 4 l 

0.1 M DTT 2 l 

Mix contents gently. Incubate at 25 C for 2 min. 

Add 1 l (200 units) SuperscriptTM II and mix gently. 

Incubate at 25 C for 10 min and 45 C for 50 min. 

Inactivate the reaction by heating at 70 C for 15min. The cDNA can be ready for use.

5.2.16.4  Real-time quantitative PCR 

For quantification of tnf-α, il-1β, mrc1, arg1, ikbkb, chi3l3, cd36, sra, ide, nep, rage, lrp1, gapdh 

and 18S  transcription level, real-time quantitative PCR with the Taqman® gene expression 
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assays o was performed using the 7500 Fast real-time PCR system (Applied Biosystems) with a 

DyNAmo™Flash Probe qPCR kit (Roche Applied Science).  

Reaction setup for Taqman probe: 

Components Volume Concentration 

2x DyNAmo Flash Probe Master Mix 10 µl 1x 

Primer Mix (10 µM) 1 µl 0.5 µM 

50x ROX reference dye 0.06 µl 0.3x 

cDNA 1 µl max. 150 ng 

ddH2O Up to 20 µl   

 

 Select FAM-labeled detectors and set up reaction system cycling to run: 

step purpose temp time cycles 

1 Initial denaturation 95 °C 10 min 1 

Denaturation 95 °C 10 s 
2 

Annealing+extension 60 °C 30 s 
45 

The amount of double-stranded PCR product synthesized in each cycle was measured by 

detecting the free FAM dye cleaved from the Taqman® probes. Threshold cycle (Ct) values for 

each test gene from the replicate PCRs was normalized to the Ct values for the 18s RNA control 

from the same cDNA preparations. The ratio of transcription of each gene was calculated as 

2(Ct), where Ct is the difference Ct (18s RNA) – Ct (test gene). 

5.2.17 Statistics 

Data shown in the Figures are presented as mean  SD (for in vitro data) or mean  SEM (for in 

vivo data). For multiple comparisons, one-way or two-way ANOVA followed by Bonferroni’s, 

Tukey’s Honestly Significant Difference or Tamhane’s T2 post hoc test (dependent on the result 

of Levene’s test to determine the equality of variances) was applied. Two-independent-samples 
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t-test was used to compare means for two groups of cases. All statistical analysis was performed 

on Statistical Package for the Social Sciences 15.0 for Windows (SPSS, Chicago). Statistical 

significance was set at p<0.05. 
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6 RESULTS 

6.1 Establishment of APP-transgenic mice with IKK deficiency in myeloid 

cells, i.e., endogenous microglia in the brain 

To ablate IKK specifically in the myeloid cell lineage, especially in microglia, we cross-bred 

TgCRND8 APP-transgenic mice (apptg) to ikbkb-floxed mice (ikbkbfl/fl) and LysM-Cre knock-in 

mice (LysM-Cre+/+). In the brains of 3-month-old apptgikbkbfl/flCre+/- mice, immunofluorescence 

staining determined that IKK protein levels were greatly reduced by Cre-mediated gene 

recombination in Iba-1+ cells in the parenchyma, which represent endogenous microglia and 

potentially infiltrating brain macrophages, but not in NeuN+ cells (neurons) (Figure. 4.1 A, B). 

IKK was undetectable in S100-stained cells (astrocytes) (Figure. 4.1, C). Accordingly, Western 

blotting results showed that the amount of IKK in CD11b+ cells isolated from 

apptgikbkbfl/flCre+/- mice was significantly less than that in control cells isolated from 

apptgikbkbfl/flCre-/- littermates (IKK/actin: 0.0370.004 vs. 0.0510.003; t test, p=0.022; Figure. 

4.1.1, D E). Similarly, quantitative PCR analysis showed that the levels of ikbkb transcripts in 

CD11b+ brain cells from apptgikbkbfl/flCre+/- mice were 34.53%1.61% of the levels of ikbkb 

transcripts from apptgikbkbfl/flCre-/- littermate mice (Figure. 4.1, F). In contrast, in CD11b– brain 

cells, including neurons, astrocytes, and oligodendrocytes, the levels of general ikbkb transcripts 

were unaffected by Cre expression (Figure. 4.1, F).  
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Figure 4.1. LysM-Cre efficiently excises the floxed ikbkb gene in microglia and brain macrophages. A-C. Brain 
sections derived from 3-month-old ikbkbfl/flCre+/- (IKKko) and ikbkbfl/flCre-/- (IKKwt) mice were stained for IKK 
(in green) and various cellular markers: Iba-1, NeuN, and S100 (in red). To determine the ablation efficiency of the 
ikbkb gene by Cre recombinase, CD11b+ and CD11b– cells were isolated from the brains of these two groups of 
mice. IKK protein was detected and quantified by Western blot (D-E. t test; n=4 per group) and the ikbkb gene 
transcripts were measured by quantitative PCR (F. t test; n=4 per group). 
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In additional experiments, we also measured IKK protein levels in CD11b+ circulating 

monocytes and cultured bone marrow–derived macrophages, which had been prepared according 

to our established protocol (Hao et al., 2011). LysM-Cre could more efficiently recombine the 

floxed genes in these peripheral myeloid cells than in microglia (Figure, 4.2; IKK/actin: 

0.0950.014 vs. 0.3320.034, t test, p<0.001, in monocytes; 0.0130.002 vs. 0.2660.063, t test, 

p=0.013, in cultured macrophages derived from apptgikbkbfl/flCre+/- and apptgikbkbfl/flCre-/- 

littermates, respectively). Our results were in accordance with those of a previous published 

report stating that the rate of LysM-Cre–mediated gene recombination is approximately 40% in 

microglia and 60% in monocytes (Goldmann et al., 2013). 

 

Figure 4.2. LysM-Cre efficiently excises the floxed ikbkb gene in bone marrow derived macrophages and 
peripheral monocytes. Cultured bone marrow–derived macrophages and CD11b+ circulating monocytes were 

isolated from ikbkbfl/flCre+/-(IKKko) and ikbkbfl/flCre-/-(IKKwt) mice. IKK protein in BMDM (A, B) and 
peripheral monocytes (C, D) was detected and quantified by Western blot (t test, n ≥3 per group). 
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To further confirm the cell selectivity of Cre, LysM-Cre mice were cross-bred to ROSAmT/mG 

Cre report mice (Muzumdar et al., 2007). This report system confirmed that Cre recombinase 

was active only in Iba-1+ cells, not in S100+ cells (Figure. 4.3). 

 

Figure 4.3. LyzM-Cre does not affect IKK expression in neurons and astrocytes. Brain sections derived from 
3-month-old apptgikbkbfl/flCre+/- (IKKko) and apptgikbkbfl/flCre-/- (IKKwt) mice were stained with rabbit anti-IKK 
(visualized in green fluorescence) and mouse monoclonal antibodies against NeuN and S100 (visualized in red 
fluorescence). Co-localization of IKK and NeuN or S100 was shown by yellow color and the co-localization of 
IKK, NeuN and DAPI (in blue fluorescence) was shown in white. In both IKKwt and IKKko mice, IKK was 
detected in NeuN-positive cells (A), but not in S100-positive cells (B).  

It is known that LysM-Cre recombines floxed genes in myeloid cells outside the brain, including 

monocytes, macrophages, and neutrophils (Clausen et al., 1999; Goldmann et al., 2013). We 
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wondered whether peripheral myeloid cells had migrated into the brain and affected brain 

pathology in our APP mice, although one published study found a negative answer to this 

question (Mildner et al., 2011). We found no positive immunohistochemical staining with 

neutrophil-specific or CD3-specific antibodies in the brains of 6-month-old APP-transgenic mice 

(data not shown). Therefore, we excluded the possibility of brain infiltration of neutrophils and 

T-lymphocytes, both of which are CD45+. However, we did observe a few CD45+ cells in the 

same brain; these cells were diffused or clustered within a region of the brain parenchyma but 

were not distributed throughout the entire brain area where A was deposited. The density of 

CD45+ cells was 2.01±0.42/mm2 in the hippocampus and cortex of apptgikbkbfl/flCre+/- mice and 

1.88±0.38/mm2 in the hippocampus and cortex of apptgikbkbfl/flCre-/- mice (Figure. 4.4, A, B; t 

test between two groups, p>0.05). In addition, we used flow cytometry to count fluorescence-

labeled cells and found that in the CD11b+ brain cell populations derived from 

apptgikbkbfl/flCre+/-, apptgikbkbfl/flCre-/-, and even appwtikbkbfl/flCre-/- mice approximately 2% of 

cells were CD45+. This ratio did not differ between the three groups of mice (Figure. 4.4, C, D; 

One-way ANOVA, p>0.05) but was significantly higher in the experimental autoimmune 

encephalitis (EAE) mice than in appwtikbkbfl/flCre-/- mice (10.30%0.54%, Bonferroni’s post-hoc 

test, p<0.001). EAE is a mouse model of multiple sclerosis with infiltration of peripheral 

leukocytes in the central nerve system. We considered these CD45/CD11b+ cells with limited 

numbers to be potentially infiltrating brain macrophages.  

As an additional confirmation of the existence of brain macrophages in AD mice, we performed 

immunohistochemical staining with a popularly used macrophage-recognizing antibody, anti-

CD68. We did not observe CD68+ cells in the brain parenchyma of either apptgikbkbfl/flCre+/- or 

apptgikbkbfl/flCre-/- mice. We cross-bred TgCRND8 APP-transgenic mice to CCR2-RFP mice 

(Saederup et al., 2010). In 6-month-old APP-transgenic mice heterozygous for the ccr2-rfp gene, 

we found no RFP+ cells in the brain parenchyma and only a few cells in close proximity to 

cerebral blood vessels (Figure. 4.4, E; n=3). As a positive control we used brains from 6-month-

old bone marrow chimera APP-transgenic mice, which were constructed as previously described 

(Hao et al., 2011) with ROSAmT/mG mice as the bone marrow donor. The bone marrow–derived 

cells were distributed in the brain parenchyma and expressed TFP, which reacts with the same 

antibody against RFP in CCR2-RFP mice. The results of this experiment provide evidence for 
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the limited infiltration of brain macrophages in AD mice, given that brain macrophages are 

derived from Ly6ChighCCR2+ monocytes (Mildner et al., 2007; Mizutani et al., 2012; Varvel et 

al., 2012). 

 

Figure 4.4. Infiltration of CD45+ or CCR2+ cells in APP-transgenic mouse brain. A. Brain sections derived from 
6-month-old APP-transgenic mice with (ko) and without (wt) ablation of IKK in myeloid cells were stained for 
CD45 (in brown, arrowhead). IKK ablation did not affect the density of CD45+ cells in the hippocampus and cortex 
(B. t test; n=6 per group). C. CD11b+ cells were isolated from 6-month-old IKKko and wt APP-transgenic mice 
and fluorescently labeled with CD45 antibody for flow cytometry. Histograms show CD45+ cells and comparisons 
between two groups with control in gray color. D. Columns summarize percentages of CD45+ cells in the CD11b+ 
brain cell populations (One-way ANOVA; n>7 per group). E. Brain sections derived from 6-month-old APP-
transgenic mice that were mated to CCR2-RFP knock-in mice were stained for RFP. A brain section from a 6-
month-old tdTomato-transgenic bone marrow chimera APP-transgenic mouse was used as a positive control, 
because the chosen antibody recognized both RFP and tdTomato (F). TdTomato+ cells are distributed in the brain 
parenchyma with typical microglial morphology. 
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We also investigated the effects of IKK deficiency in myeloid cells on peripheral inflammatory 

status by measuring plasma TNF-α levels. We observed no difference in plasma TNF-α levels 

between the four mouse groups (appwtikbkbfl/flCre+/-, 35.38±10.56 pg/mL; appwtikbkbfl/flCre-/-, 

34.84±11.39 pg/mL; apptgikbkbfl/flCre+/-, 32.68±13.88 pg/mL; and apptgikbkbfl/flCre-/-, 

35.88±9.09 pg/mL; One-way ANOVA, p>0.05; n=9 per group).  

Finally, we investigated the effects of IKKβ deficiency on microglial NF-κB activation. Western 

blot analysis showed that the amount of IKKβ protein detected in cultured primary microglia 

derived from ikbkbfl/flCre+/- mice was 49.18%±6.90% of the amount detected in cultured 

microglia derived from ikbkbfl/flCre-/- mice (Figure. 4.5, A, B). The approximately 50% reduction 

in IKKβ protein suppressed the phosphorylation of p65 in the NF-κB complex in the microglia 

both at the basal level and after activation with 10 µM oligomeric Aβ42 (the ratio of 

phosphorylated p65 to total p65 was 0.400.09 in ikbkbfl/flCre-/- cells and 0.110.01 in 

ikbkbfl/flCre+/- cells at the basal level, and 1.290.20 in ikbkbfl/flCre-/- cells and 0.260.05 in 

ikbkbfl/flCre+/- cells after A activation; One-way ANOVA, p<0.05; Figure. 4.5, C, D). However, 

IKK deficiency did not completely block NF-B activation by A42 oligomers, because A 

significantly increased the level of phosphorylated p65 in microglia derived from ikbkbfl/flCre+/- 

mice (t test, p<0.05; Figure. 4.5, C, D). 
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Figure 4.5. IKK ablation inhibits NF-B activation in primary cultured microglia. IKK protein (A, B. t test; 

n=3 per group) and phosphorylated and total NF-B p65 (C, D. t test; n=3 per group) in the primary cultured 

microglial cell lysate derived from ikbkbfl/flCre+/- (IKKko) and ikbkbfl/flCre-/- (IKKwt) mice were detected and 

quantified with Western blotting. For NF-B activation assays, IKK wt and ko microglia were activated with 10 

M oligomeric A42 for 12 minutes.  

6.2 Deficiency of IKK in myeloid cells (microglia) rescues cognitive deficits 

in APP-transgenic mice 

Because deficiencies in TLR2, MyD88, and IRAK4 in myeloid cells, especially in microglia, 

have been shown to ameliorate AD-like pathology and improve neuronal functions in AD mice 

(Hao et al., 2011; Cameron et al., 2012; Liu et al., 2012), we investigated whether deficiency of 

IKK in myeloid cells (microglia) improves the cognitive function of APP-transgenic mice. In 

the Barnes maze (Hao et al., 2011; Liu et al., 2012), the traveling time and distance traveled was 

significantly shorter for all tested mice when training time increased (Figure. 4, A, B, C; One-

way ANOVA, p<0.05). During the test there were no significant differences in running speed 

between various groups of mice or for the same mice on different training dates (Two-way 

ANOVA, p>0.05). Thus, both APP-transgenic (apptg) and non–APP-transgenic (appwt) littermate 

mice with different myeloid expressions of IKK retained the ability to use spatial reference 

points to learn the location of an escape hole (Figure. 4.6, A, B, C). 

There were no differences in traveling time and distance traveled between non–APP-transgenic 

littermate mice with deficiencies in IKK or with wild-type IKK in myeloid cells 

(appwtikbkbfl/flCre-/- and appwtikbkbfl/flCre+/-) (Figure. 4.6, B, C; Two-way ANOVA, p>0.05). 

However, compared to their appwtikbkbfl/flCre-/- and appwtikbkbfl/flCre+/- littermates, 6-month-old 

APP-transgenic mice with wild-type IKK expression in myeloid cells (apptgikbkbfl/flCre-/-) spent 

significantly more time (Figure. 4, B; Two-way ANOVA, p<0.05) and traveled longer distances 

(Figure. 4.6, C; Two-way ANOVA, p<0.05) before reaching the escape hole. Interestingly, 

ablation of IKK specifically in myeloid cells, especially microglia (apptgikbkbfl/flCre+/- mice), 

completely rescued these cognitive deficits in 6-month-old APP-transgenic mice as assessed by 

the Barnes maze test (Figure. 4.6, B, C). Moreover, in the probe trials, appwtikbkbfl/flCre-/- and 

appwtikbkbfl/flCre+/- mice visited the escape hole similarly, and apptgikbkbfl/flCre-/- mice spent less 

time around the escape hole and visited the hole less frequently than did non–APP-transgenic 
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mice, although the difference did not reach statistical significance (Figure. 4.6, D, E). 

Interestingly, in comparison to apptgikbkbfl/flCre-/- mice, apptgikbkbfl/flCre+/- mice with IKKβ 

deficiency in myeloid cells visited the escaping area significantly more frequently and spent 

significantly more time there (Figure. 4.6, D, E).  

 

Figure 4.6. Deficiency in IKK in myeloid cells improves cognitive function in APP-transgenic mice. 
Schematic of the Barnes maze used (A). During the training phase, 6-month-old APP-transgenic mice (APPtg) spent 
more time in the maze and traveled longer distances to reach the escape hole than did their non–APP-transgenic 
littermates (APPwt). Ablation of IKK in myeloid cells (IKKko) significantly reduced the traveling time and 
distance of APPtg mice but not of APPwt mice (B, C. Two-way ANOVA; n≥9 per group). In the probe trial, 
APPtg/IKKko mice remained in the target zone significantly longer and visited the escape hole more frequently 
than the APPtg/IKKwt mice (D, E. One-way ANOVA; n≥9 per group).  

Western blot analysis was also used to quantify the protein levels of PSD-95 (also known as 

disks large homolog 4) and pre-synaptic Munc18-1 in brain homogenates from 6-month-old 

APP-transgenic and wild-type littermate control mice. Both PSD-95 and Munc18-1 levels were 

markedly lower in apptgikbkbfl/flCre-/- mice than in their appwtikbkbfl/flCre-/- and 

appwtikbkbfl/flCre+/- littermates (Figure. 4.7; One-way ANOVA, p<0.05). Similarly, the amounts 

of PSD-95 and Munc18-1 proteins did not differ significantly between appwtikbkbfl/flCre-/- and 

appwtikbkbfl/flCre+/- mice (Figure. 4.7; One-way ANOVA, p>0.05). Interestingly, the reduction in 

PSD-95 and Munc18-1 proteins due to APP-transgenic expression was attenuated by the 
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deficiency of IKK in myeloid cells. The levels of PSD-95 and Munc18-1 proteins were 

significantly higher in brains from apptgikbkbfl/flCre+/- mice than in brains from apptgikbkbfl/flCre-

/- control mice (Figure. 4.7; One-way ANOVA, p<0.05). 

 

Figure 4.7. Deficiency in IKK in myeloid cells attenuated synaptic protein loss in APP-transgenic mice. The 
amount of PSD-95 and Munc18-1 in the brain homogenate was quantified with Western blotting (F, G). Deficiency 
in myeloid IKK was associated with a higher level of PSD-95 and Munc18-1 in the APPtg mouse but not in the 
APPwt mouse (One-way ANOVA; n≥6 per group). 

6.3 Deficiency of IKK in myeloid cells (microglia) reduces inflammatory 

activation in aged APP-transgenic mouse brains  

Because proinflammatory activation contributes to AD pathogenesis, we investigated whether a 

deficiency of IKK in myeloid cells (microglia) might reduce inflammatory activity in the brain. 

We used the stereological technique to estimate the total number of Iba-1+ cells, including 

microglia and potentially infiltrating brain macrophages, in the hippocampus and cortex of 6-

month-old APP-transgenic and non–APP-transgenic mice with or without IKK expression in 

myeloid cells (apptgikbkbfl/flCre+/-, apptgikbkbfl/flCre-/-, appwtikbkbfl/flCre+/- and appwtikbkbfl/flCre-/- 

mice).  The total number of Iba-1+ cells was significantly higher in APP-transgenic mice than in 

non–APP-transgenic mice (Figure. 4.8, A, B, C; One-way ANOVA, p<0.05). The two groups of 

transgenic mice differed significantly in the total number of Iba-1+ cells: apptgikbkbfl/flCre+/- mice, 

20.460.70×103 cells in the hippocampus and 23.740.86×103 cells in the cortex dorsal to the 
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hippocampus; apptgikbkbfl/flCre-/- mice, 25.491.17×103 cells in the hippocampus and 

29.540.89×103 cells in the cortex dorsal to the hippocampus (Figure. 4.8, B, C; One-way 

ANOVA, p<0.05). However, there was no significant difference in the number of Iba-1+ cells 

between the two groups of non–APP-transgenic mice (appwtikbkbfl/flCre+/- mice and 

appwtikbkbfl/flCre-/- mice; Figure. 4.8, B, C; One-way ANOVA, p>0.05).  

We next investigated the mechanisms by which IKK deficiency decreases the number of Iba-1+ 

cells. Because we had observed no significant difference between groups in the recruitment of 

monocyte-derived brain macrophages (Figure. 4.4), we evaluated endogenous microglial 

proliferation by costaining Iba-1 and Ki67, a cell-proliferation marker (Liu et al., 2013). Because 

there were too few cells, we could not use the stereological technique. As shown in Figure. 4.8, 

D, E, there were indeed significantly fewer double-positive cells in the hippocampus of 

apptgikbkbfl/flCre+/- mice (3.670.50 cells per mm2) than in that of apptgikbkbfl/flCre-/- mice 

(5.530.77 cells per mm2; t test, p<0.05).  

Figure 4.8. Deficiency of IKK in myeloid cells reduces the number of microglia in APP-transgenic mice. 
Six-month-old APP-transgenic mice (APPtg) and their non–APP-transgenic littermates (APPwt) were tested for 
inflammatory activation. Microglial cell numbers were estimated with stereological methods after 
immunohistochemical staining of Iba-1 (A. in brown). Proliferating microglia were identified by double staining of 
Iba-1 and Ki67, which appear in blue nucleus and brown cytoplasm (D, E. marked with closed arrowheads; pure 
Iba-1+ cells are marked with open arrowheads).  

We then used ELISA to quantify TNF- protein levels in the TBS-soluble brain homogenate 

derived from 6-month-old APP-transgenic and non-transgenic mice and found that TNF- 

production was significantly higher in APP mice than in their non–APP-transgenic littermates 
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(Figure. 4.9; One-way ANOVA, p<0.001). A deficiency in IKK in myeloid cells did not affect 

the levels of cerebral TNF- protein in non–APP-transgenic mice (Figure. 4.9), but did 

significantly decrease levels of TNF- protein in the brain of APP-transgenic mice, compared to 

littermate APP mice with wild-type IKK expression in myeloid cells (Figure. 4.9; One-way 

ANOVA, p=0.002).  

 

Figure 4.9. Deficiency of IKK in myeloid cells decreased TNF- protein level in the brains. TNF- protein 
concentration in brain homogenates derived from APPtg and APPwt mice was determined by ELISA (One-way 
ANOVA; n≥6 per group). 

We also quantified transcripts of M1-inflammatory gene markers (tnf-, il-1, inos, and ccl2) 

and M2-inflammatory gene markers (il-10, mrc1, arg1, and chi3l3) (Colton et al., 2006) in the 

brains of four separate groups of 6-month-old littermate mice (myeloid IKK: deficient 

[ikbkbfl/flCre+/-] and wild-type [ikbkbfl/flCre-/-] mice; APP-transgenic expression: positive [apptg 

mice] and negative [appwt mice]). As shown in Figure. 4.10, A, B, levels of tnf- and il-1 

transcripts were significantly higher in APP mice than in non–APP mice (One-way ANOVA, 

p<0.05). A deficiency in IKK in myeloid cells (microglia) completely abolished the 

transcriptional upregulation of tnf- and il-1 by APP-transgenic expression (One-way ANOVA, 

p<0.05). In non–APP-transgenic mice, an IKK deficiency in myeloid cells did not change the 

transcription of tnf- and il-1 genes (Figure. 4.10, A, B; One-way ANOVA, p>0.05). Neither 

the transcription of the other M1 genes (inos and ccl2) that we tested, nor the transcription of the 

M2 activation markers differed between myeloid IKK-deficient and wild-type APP-transgenic 
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or non-transgenic mice (Figure. 4.10, C-H). In an additional experiment, we isolated microglia 

and potential brain macrophages from 6-month-old APP-transgenic mice. We observed that 

transcription of the inflammatory gene tnf- but not that of other proinflammatory and 

antiinflammatory genes was significantly lower in CD11b+ cells isolated from 

apptgikbkbfl/flCre+/- mice than in cells from apptgikbkbfl/flCre-/- mice (Figure. 4.10, I; t test, 

p<0.05). 

 

Figureure 4.10.  Myeloid IKK deficiency reduces proinflammatory gene transcription in AD mouse brain. 
Inflammatory gene transcripts in the brain (A-H) and in isolated microglia from 6-month-old APPtg mice (I) were 
measured by quantitative RT-PCR.  
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6.4 Deficiency of IKK in myeloid cells (microglia) reduces A load in aged 

APP-transgenic mouse brains  

Because A pathology is considered to be the key mechanism mediating neuronal death in AD 

(Mucke and Selkoe, 2012), we continued to investigate the effects on the cerebral A load of 

IKKβ deficiency in myeloid cells. We separated brain homogenate from 6-month-old 

apptgikbkbfl/flCre+/- and apptgikbkbfl/flCre-/- mice into 3× TBS–soluble, TBS-T–soluble, and 

guanidine chloride–soluble fractions according to our established protocols (Hao et al., 2011; Liu 

et al., 2012). Compared to apptgikbkbfl/flCre-/- mice, apptgikbkbfl/flCre+/- mice exhibited 

significantly lower concentrations of A42 and A40 in both TBS-T–soluble fractions and 

guanidine chloride–soluble fractions, which were enriched in oligomeric and high-molecular-

weight aggregated A species (Hao et al., 2011) (Figure. 4.11; t test, p<0.05). Using the 

commercially available oligomeric A ELISA kit, we confirmed that the aggregated level of A 

(106.586.20 pg per mg of wet brain tissue) in TBS-T–soluble brain homogenate from 

apptgikbkbfl/flCre+/- mice was significantly lower than that (130.526.20 pg per mg of wet brain 

tissue) in homogenate from apptgikbkbfl/flCre-/- mice (t test, p=0.036). In the TBS–soluble brain 

homogenate fraction, which contained most of the monomeric A species (Hao et al., 2011), a 

deficiency in IKK in myeloid cells did not significantly affect A concentrations (Figure. 4.11; 

t test, p>0.05).  

We used Congo red staining and immunohistochemical analysis to determine the A load in the 

brain. As shown in Figure. 4.12, A and C, the extent and morphology of the congophilic amyloid 

load or of antibody-labelled diffused A or A plaques with dense cores were not changed by a 

deficiency in IKK in the myeloid cell lineage. When we measured A volume (adjusted by the 

volume of analyzed tissues) with the stereological Cavalieri method (Gundersen and Jensen, 

1987), we observed that, after ablation of IKK in myeloid cells, the volume of congophilic A 

load (0.074%0.009% in the hippocampus and 0.143%0.015% in the cortex) was significantly 

reduced (to 0.048%0.006% in the hippocampus [p=0.038] and 0.095%0.012% in the cortex 

[p=0.019]) (Figure. 4.12, A, B; t test for relevant comparisons). 
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Figure. 4.11. Deficiency of IKK in myeloid cells relieved A load in APP-transgenic mouse brain. The brains 
of 6-month-old APP-transgenic (APPtg) mice were analyzed for Aβ load. The brain was homogenized and separated 
into TBS, TBS-T and guanidine-soluble fractions. Amounts of Aβ40 and Aβ42 were measured by ELISA and 
normalized to the homogenate protein concentration. (t test; n=11 per group).  

Similarly, the volume of immunoreactive A load was markedly higher in apptgikbkbfl/flCre-/- 

mice (2.687%0.020% in the hippocampus and 2.801%0.234% in the cortex) than in 

apptgikbkbfl/flCre+/- mice (2.062%0.152% in the hippocampus [p=0.027] and 2.139%0.178% 

in the cortex [p=0.041]) (Figure. 4.12, C, D; t test for relevant comparisons). Because Congo red 

typically binds to the  sheet structure of A plaques (Lorenzo and Yankner, 1994), we 

calculated the ratio of volumes of Congo red staining to volumes of immunohistochemical 

staining, which were not altered by the deficiency in myeloid IKK (Figure. 4.12, E; t test, 

p>0.05), a fact suggesting that the ablation of myeloid IKK does not affect A aggregation. 

Furthermore, we quantified A deposits in the hippocampus and analyzed the distribution of 

their size. As shown in Figure. 4.12, F, IKK ablation in the myeloid cell lineage tended to shift 

A plaques from large to small, although the difference in the distribution of plaque size between 

IKK-deficient and wild-type mice was not statistically significant (Two-way ANOVA, p>0.05).  
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Figure. 4.12. Myeloid IKK deficiency reduces A plaque in APP-transgenic mouse brain. The A volume in 
the whole hippocampus and cortex was estimated after both Congo red staining (A, B) and immunohistochemistry 
with human Aβ-specific antibody (C, D) and adjusted by volumes of the relevant brain tissues. Myeloid IKK 
deficiency significantly reduces cerebral Aβ load (t test; n=8 per group for Congo red staining and n=13 per group 
for immunohistochemistry). E. The ratio of Congo red-stained volume to Aβ-immunohistochemically stained 
volume is calculated (t test; n=8 per group). F. The size of Aβ plaque was measured and the frequency of Aβ 
plaques with a certain size was showed as percentage of the total number of plaques (Two-way ANOVA, p>0.05; 
n=8 per wt or ko group). 

6.5 Deficiency in IKK enhances microglial and macrophage recruitment 

toward A deposits and A internalization 

Given that a deficiency in IKK in microglia reduced both inflammatory activation and A load 

in the APP-transgenic mouse brain, we hypothesized that IKK deficiency might enhance A 
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clearance by internalization into microglia or macrophages. Because it is difficult to measure 

intracellular A directly in the brain, we first counted microglia and macrophages interacting 

with A deposits; we found that significantly more Iba-1+ cells were recruited to the A deposits 

in apptgikbkbfl/flCre+/- mice than to the A deposits in their apptgikbkbfl/flCre-/- littermates (Figure. 

4.13, A, B; t test, p=0.008), a finding in accordance with our previous findings in AD mice with 

a deficiency in MyD88 in myeloid cells (Hao et al., 2011). However, the amoeboid morphology 

of microglia surrounding A appeared not to be changed by myeloid IKK deficiency, when the 

IKK-deficient cells were tracked by Cre-mediated GFP expression (Figure. 4.13, C).  

 

Figure. 4.13. IKK deficiency increases microglial/brain macrophage recruitment toward A deposits in the 
APP-transgenic mouse brain. The 6-month-old APP-transgenic (APPtg) mouse brain was analyzed for the 
interaction between A and microglia and brain macrophages under confocal microscopy after immunofluorescent 
staining with antibodies against A and Iba-1 (A. A in red and Iba-1 in green). The numbers of microglia and 
macrophages that colocalized with A were counted and adjusted by A volume. (t test; n=6 per group). C. IKKβ-
ablated microglia and macrophages were tracked by GFP expression. After co-staining GFP in green and Iba-1 in 
red fluorescence, microglia and macrophages expressing both proteins appeared in yellow (closed arrowheads) and 
cells expressing Iba-1 alone were shown in red (open arrowhead). Aβ plaques were stained in blue color in the 
bright field and appeared as black holes under confocal microscopy (marked with “*”).  

IKK deficiency also significantly upregulated the transcription of A-cleaning SRA (Frenkel et 

al., 2013) in the brains of APP-transgenic mice but not in the brains of their non–APP-transgenic 
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littermates (Figure. 4.14 A; One-way ANOVA, p<0.05). CD36 transcription was lower in 

apptgikbkbfl/flCre-/- mice than in appwtikbkbfl/flCre-/- littermate controls (Figure. 4.14 B; One-way 

ANOVA, p<0.05), a finding consistent with the observations of El Khoury’s group (Hickman et 

al., 2008). Interestingly, a deficiency in IKK in microglia was associated with the complete 

recovery of CD36 expression in the brains of APP-transgenic mice (Figure. 4.14, B; One-way 

ANOVA, p<0.05) but had no effects on CD36 transcription in non–APP-transgenic mice (Figure. 

4.14, B; One-way ANOVA, p>0.05). 

 

Figure. 4.14. IKK deficiency enhances cerebral expressin of A-interacting receptors. The transcription of 
scavenger receptor A (sra) and cd36 was measured with quantitative RT-PCR and was upregulated by myeloid 
IKK deficiency in APPtg mouse brains but not in APP-wildtype (APPwt) mouse brains (A, B. One-way ANOVA; 
n≥9 per group). 

In further experiments, we challenged primary cultured microglia with HiLyte Fluor 488–

labelled A42 enriched in oligomeric and fibrillar species (Figure. 4.15, A) to model the A 

species in TBS-T–soluble and guanidine–soluble brain homogenates. When microglia were 

treated with aggregated A at a concentration of 1 M, internalization was detectable within 1 

hour, and levels of internalized A increased as the incubation time increased (Figure. 4.15, B, 

C). Significantly more oligomeric A42 than fibrillar A42 was internalized by microglia (with 

or without IKK expression), as measured by mFI (Figure. 4.15, B; Two-way ANOVA, 

p<0.001). After cells were incubated with A42 for 3 hours, the mFI of cells treated with A 

oligomers decreased more quickly than did that of microglia treated with A fibrils. This 

difference could be due to the difference in the efficiency of degradation and extracellular release 
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between A oligomers and fibrils in microglia (Chung et al., 1999; Yamamoto et al., 2008). 

Comparison of the internalizing capability of IKK-deficient and wild-type microglia showed 

that IKK deficiency significantly increased the uptake of A42 oligomers at a concentration of 

1 M but not of A fibrils. This difference remained when A42 treatment was extended to 24 

hours (Figure. 4.15, B, C; Two-way ANOVA, p<0.001). Interestingly, when microglia were 

treated with oligomeric A42 at a concentration of 0.2 M, IKK deficiency did not enhance A 

internalization (Figure. 4.15, B, C; Two-way ANOVA, p>0.05). Similar results were seen in 

internalization assays with bone marrow–derived macrophages, in which IKK-deficient 

macrophages showed a significantly higher uptake of A than IKK–wild-type macrophages 

when cells were treated with oligomeric A42 at concentrations of 1 or 10 M. This A 

internalization enhanced by IKK deficiency disappeared when oligomeric A42 was 

administered at a concentration of 0.5 M or when fibrillar A42 was administered at a 

concentration of 1 M. 

 

Fig. 4.15. IKK deficiency enhances internalization of oligomeric A42 in microglia. A. Aggregating patterns (o, 
oligomeric; f, fibrillar) of HiLyte Fluor 488–labelled A42. B, C. Line curves showing the internalization of 1 or 0.2 
M oligomeric A42 (oA) and 1 M fibrillar A42 (fA) by primary cultured microglia derived from IKK-
ablated (IKKko) and wild-type (IKKwt) mice for various time periods (Two-way ANOVA; n=3 per group). D, E. 
Histograms show the inflammatory gene transcripts in primary microglia 6 hours after the A internalization (t-test; 
n≥6 per group).  

To determine whether elevated inflammatory activation might be inversely related to the 

internalization of A into microglia (Hao et al., 2011; Liu et al., 2012), we performed two 

additional experiments. First, we analyzed the pathological changes in 3-month-old APP-

transgenic mice with or without IKK ablation in myeloid cells as controls for the 6-month-old 

AD mice that we described above. A deficiency in myeloid IKK neither changed cerebral 
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transcripts of tnf-, il-1, and inos genes nor altered A concentrations in all TBS-soluble, TBS-

T–soluble, and guanidine chloride-soluble brain homogenate fractions (Figure. 4.16, A, B). 

Second, we measured the inflammatory activation of cultured microglia during internalization of 

A over a 6-hour interval. As shown in Figure. 4.17, A, B, IKK-deficiency significantly 

suppressed inflammatory gene (e.g., tnf- and il-1) transcription triggered by oligomeric Aβ at 

a concentration of 1 M (Two-way ANOVA, p<0.05). Microglial inflammatory gene 

transcription was not significantly induced by fibrillar Aβ42 at a concentration of 1 M (Figure. 

4.17, A, B; Two-way ANOVA, p>0.05).  

Figure. 4.16. IKK deficiency neither changes proinflammatory gene transcription nor alters A load in 3-
month-old mice. The brains of 3-month-old APP-transgenic (APPtg) mice were analyzed for proinflammatory gene 
transcription (A) and Aβ load (B).  

Figure. 4.17. IKK deficiency reduces oligomeric A-induced inflammatory genes expression in microglia. 
Primary culture microglia derived from wild-type (wt) and IKK deficiency (ko) mice were challenged with 1 M 
oligomeric and fibrillar A42 for 6 hours. The gene transcriptions of tnf- (A) and il-1were detected by RT-
PCR. 
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6.6 Inhibition of TGF-–SMAD2/3 signaling could be involved in microglial 

A internalization enhanced by IKK deficiency 

Because it has been reported that blocking either CD40 or the TGF- signaling cascade in AD 

mice leads to a reduction in both inflammatory activation and A load in the brain (Tan et al., 

1999 and 2002; Town et al., 2008), the same phenomenon we observed in myeloid IKK–

deficient AD mice, we decided to investigate whether IKK modulates CD40 and TGF- 

signaling. Indeed, a deficiency in myeloid IKK significantly decreased transcription levels of 

TGF- receptor types 1 and 2 (tgf-r1 and -r2) in microglia isolated from APP-transgenic mice 

(Figure. 4.18, B; t test, p<0.05), although IKK deficiency did not change the transcription level 

of these two receptors or of TGF-1 in the entire brain (Figure. 4.18, A; t test, p>0.05). In 

cultured microglia, IKK deficiency reduced tgf-1 transcription at the basal level and reduced 

both tgf-1 and tgf-r1 transcription after challenge with oligomeric A42 at a concentration of 

1 M (Figure. 4.18, C; t test, p<0.05). Notably, we observed that IKK deficiency inhibited 

SMAD2 phosphorylation but did not change SMAD5 phosphorylation in microglia in response 

to stimulation with TGF-1 at a concentration of 1 or 10 ng/mL (Figure. 4.18, D, E, F; Two-way 

ANOVA). However, CD40 gene transcription was not changed by IKK deficiency in either 

adult or cultured microglia.  
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Figure. 4.18. IKK deficiency blocks TGF--SMAD2/3 signal pathway. A-C, Transcripts of tgf-β1, tgfβ-r1 and 
r2 genes in the entire hippocampus and cortex, in adult microglia isolated from APP-transgenic mice and in cultured 
primary microglia with and without treatment of 1µM oAβ were measured using real-time PCR (t test; n≥5 per 
group). Primary cultured IKKwt and IKKko microglia were activated with TGF-1 at 0, 1 and 10ng/ml for 30 
minutes. After stimulation, the phosphorylated and total SMAD2 and SMAD5 proteins were detected by Western 
blotting (D-F). The ratios of phospho-/total SMAD2 and SMAD5 reflect SMAD2/3 and SMAD1/5/8 signaling.  

Thereafter, whether A internalization in microglia was increased by blockade of TGF-–

SMAD2/3 signaling was tested, as Town’s group reported (Town et al., 2008). Two ALK-5 

inhibitors, SB-505124 and SB-431542, at concentrations of 1 and 10 M, had been shown to 

inhibit both SMAD2/3 and SMAD1/5/8 signaling in response to exogenous TGF-1 activation 

(Town et al., 2008). We observed that both SB-505124 and SB-431542 at concentrations of 0.1 

and 0.02 M reduced SMAD2 phosphorylation but did not markedly affect SMAD5 

phosphorylation in microglia after the same challenge with TGF-1 (Figure. 4.19, A). This 

partial inhibition was comparable to the inhibition caused by IKK deficiency, as described 
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above. Interestingly, the inhibitor-treated cultured microglia internalized significantly more 

oligomeric A42 aggregates, in a dose-dependent manner, than did the microglia without special 

treatment (Figure. 4.19, B, C; Two-way ANOVA, p<0.05). The concentrations that promoted A 

internalization were between 0.5 M and 20 nM; the maximal effect was induced by a 

concentration of 20 nM (Figure. 4.19, B, C; Two-way ANOVA followed by post-hoc tests, 

p<0.05). At higher and lower concentrations (1 M and 4 nM, respectively), the inhibitors failed 

to promote A internalization.  

 

Figure. 4.19. Blockade of TGF--SMAD2/3 signal increases A internalization in microglia. Primary cultured 
IKKwt microglia were treated with SB-505124 and SB-431542 at 0, 0.02 and 0.1M and then with 1ng/ml TGF-
1 for 30 minutes (A). B, C. IKKwt microglia were pre-treated with SB-505124 and SB-431542 at 0, 0.02 and 
0.1M for 1 hour and then incubated with 1M fluorescent oA for 6 hours in the presence of inhibitors. The 
internalization of oA was assayed with flow cytometry (Two-way ANOVA followed by post-hoc tests, *: p<0.05 
and **: p<0.01 vs. the A internalization without inhibitor treatment; n=4 per group).  

6.7 Deficiency in IKK in myeloid cells does not increase A clearance 

through brain-to-blood transportation 

Deane and colleagues (2004) reported that altered communication of A between the brain 

interstitial fluid and the peripheral bloodstream affects cerebral A load (Deane et al., 2004). 

Peripheral myeloid cells could clear A in the perivascular area so as to reduce A deposition in 

the parenchyma (Hawkes and McLaurin, 2009; Mildner et al., 2011). Neither the volume of A 

that was deposited in the blood vessels nor the number of vessels that tested positive for A 

deposits differed between myeloid IKK-deficient and wild-type APP-transgenic mice  was 

observed (Figure. 4.20, A, B, C; t test, p>0.05). We also measured A levels in the plasma and 
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the expression of RAGE and LRP1 in the brain, two receptors that act as shuttles to transport A 

across the blood-brain barrier (Deane et al., 2003 and 2004). As shown in Figure. 9, neither 

plasma A40 and A42 concentrations in APP-transgenic mice (Figure. 4.20, F) nor receptor 

expression in APP-transgenic and non-transgenic mouse brains (Figure. 4.20, D, E) was affected 

by IKK deficiency in myeloid cells (t test, p>0.05). 

Figure. 4.20. Deficiency of IKK in myeloid cells does not increase A clearance through brain-to-blood 
transportation. The 6-month-old APP-transgenic (APPtg) and non–APP-transgenic (APPwt)  littermate mice with 
(IKKko) and without IKK ablation (IKKwt) in myeloid cells were analyzed for cerebral vascular A deposits 
after tissues were costained with Congo red and collagen type IV antibodies (A-C), and for transcription of lrp1 and 
rage in the brain with quantitative RT-PCR (D, E). Concentrations of Aβ40 and Aβ42 in the plasma from IKKko 
and IKKwt APPtg mice were quantified by ELISA (F). 
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6.8 Deficiency in IKK in myeloid cells does not reduce amyloidogenic APP 

metabolism 

To explore whether IKK deficiency in myeloid cells affects A production in APP-transgenic 

mice, we measured the activities of -secretase and -secretase, the two main enzymes that 

cleave APP to produce A (Mucke and Selkoe, 2012). Surprisingly, neither -secretase activity 

nor -secretase activity was changed by IKK deficiency (Figure. 4.21, A, B). 

 

Figure. 4.21, Deficiency of microglial IKK does not affect - and -secretase activity in APP-transgenic 
mouse brain. Membrane components were prepared from 6-month-old microglial IKK-deficient (ko) and wildtype 
(wt) APP-transgenic (APPtg) and non-APP transgenic (APPwt) littermate mice. β- and γ-secretase activity was 
determined by incubating membrane components with fluorogenic β- and γ-secretase substrates (two-way ANOVA 
shows no difference between different mouse groups, p>0.05, n≥6 per group). 

6.9 Deficiency in IKK in myeloid cells does not increase A clearance 

through endogenous degradation  

Quantitative RT-PCR investigation of the A-degrading enzyme neprilysin and the insulin-

degrading enzyme (Leissring et al., 2003; Miners et al., 2008) showed no significant increase in 

the transcription of nep and ide genes in apptgikbkbfl/flCre+/- mice compared to apptgikbkbfl/flCre-/- 

littermate controls (Figure. 4.22, A, B), a finding suggesting that microglial IKK deficiency has 

no effect on A catabolism. 
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Figure. 4.22, Deficiency of microglial IKK does not change gene transcriptions of A-degrading enzymes in 
APP-transgenic mouse brain. The transcripts of neprilysin (nep) and insulin degrading enzyme (ide) genes were 
quantified by real-time PCR (t-test, p>0.05, between IKKko and IKKwt mice, n≥9 per group). 
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7 DISCCUSION 

AD is a progressive neurodegenerative disorder and the most common form of dementia, which 

is characterized by A deposits, hyperphosphorylated tau-composed neurofibrillary tangle and 

microglia activation. Emerging evidences have suggested that microglia act as a double-edged 

sword in AD pathogenesis: on one side, they contribute to neuronal death by secreting 

inflammatory mediators; and on the other side, they clear neurotoxic A to prevent AD 

progression. Innate immune signaling cascade, e.g. TLRs-MyD88-NF-B, regulate the 

inflammatory mediators, and modify AD pathogenesis (Tahara et al., 2006; Reed-Geaghan et al., 

2010; Hao et al., 2011; Lim et al., 2011; Michaud et al., 2011 and 2012; Song et al., 2011; 

Cameron et al., 2012; Liu et al., 2012). However, the net effect of microgilal activation in AD is 

still unclear. The mechanism switching between detrimental and beneficial effects need to be 

understood. In this study, we demonstrated that a deficiency in IKK in myeloid cells, especially 

in endogenous microglia, simultaneously reduces inflammatory activation and A load in the 

brain and improves cognitive function in AD mice. These findings corroborate the results of our 

earlier studies of the deficiency of myeloid TLR2 or MyD88 in APP-transgenic mice (Hao et al., 

2011; Liu et al., 2012). 

7.1 IKK was specifically deleted in myeloid cells of APP-transgenic mice 

To the best of our knowledge, we were the first to use the Cre-Lox technique in cross-breeding 

experiments to conditionally delete the protein of interest in APP-transgenic mice. This deletion 

allows us to investigate in detail the functions of this protein in AD pathogenesis in a specific 

tissue and within a certain time frame. We investigated IKK in microglia by specifically 

ablating IKK in myeloid cells of APP-transgenic mice, thereby excluding any confounding 

effects from neuronal IKK. Neuronal IKK has been reported to activate neuronal NF-B, thus 

modifying A generation and the degeneration and plasticity of neurons (He et al., 2007; 

Kaltschmidt and Kaltschmidt, 2009; Gutierrez and Davies, 2011; Zhang et al., 2013; Jun et al., 

2013). 

However, in my AD mouse model, the ikbkb gene was deleted not only in endogenous microglia 

but also in peripheral myeloid cells (Clausen et al., 1999; Goldmann et al., 2013). One subset of 
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myeloid cells potentially circulates to the brain parenchyma and serves as brain macrophages 

(Hao et al., 2011). In our APP-transgenic mouse brains we observed a small population of 

CD45+ cells whose distribution was localized within one brain region instead of around most A 

deposits, a finding indicating that these cells are not activated endogenous microglia. These 

CD45+ cells are also neither neutrophils nor T lymphocytes, because they do not express 

neutrophil or CD3 markers. Thus, this cell population may be brain macrophages. Surprisingly, 

the number of CD45+ cells in this population is very limited (<2% of Iba-1+ cells, as estimated 

on the basis of our observations (Hao et al., 2011; Liu et al., 2012; Xie et al., 2013). Moreover, 

flow cytometry showed that approximately 2% of CD11b+ brain cells are CD45+ not only in 

IKK-deficient and wild-type APP-transgenic mice but also in non–APP-transgenic mice. Thus, 

the recruitment of potential brain macrophages appears to be independent of neuroinflammatory 

status and of IKK expression in AD mice.  

Brain macrophages have been shown to originate from CCR2+ monocytes (Mildner et al., 2007; 

Varvel et al., 2012). In another APP-transgenic mouse model, one allele of the ccr2 gene was 

replaced by the RFP-encoding sequence, whereas the other allele expressed CCR2 to exert full 

cellular physiological function   recruitment of brain macrophages in AD mice is limited. APP-

transgenic mouse brains that have not been preconditioned by irradiation are devoid of 

parenchymal peripherally infiltrated macrophages (Mildner et al., 2011; Kierdorf et al., 2013), a 

condition that makes it unlikely that IKK-ablated brain macrophages can affect A pathology 

in the brain parenchyma.  

In the perivascular area, peripheral myeloid cells can interact with A and modify the cerebral 

A load (Hawkes and McLaurin, 2009; Mildner et al., 2011). In my AD mouse models, neither 

the concentration of plasma A (especially A42) and TNF- nor the volume of A deposited in 

the blood vessels was changed by the ablation of IKK in the myeloid cells. Thus, although the 

effects of peripheral myeloid cells on A pathology cannot be completely excluded, the anti-AD 

phenotype observed in our study appears to result primarily from a deficiency in IKKβ in the 

endogenous microglia. 
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7.2 Myeloid deficiency of IKK reduces neuroinflammation  in the brain 

A is currently believed to be the key molecule in the pathogenesis of AD, due to its role as a 

trigger of chronic neuroinflammation (Akiyama et al., 2000; Latta et al., 2014). In AD animal 

models, which over-express human APP, microglia are observed to be activated and recruited to 

A plaque. In AD patients, positron emission tomography (PET) analysis also suggests that AD 

progression relates to microglial activation. In recent years, a number of receptors of the innate 

immunity (CD14, TLR2 and TLR4) and their downstream adapter proteins (MyD88 and IRAK4) 

were identified to mediate A-induced microglial activation, which included M1 and M2 

inflammatory activation. M1 inflammatory activation contributes to local liberation of various 

proinflammatory cytokines (e.g. TNF- and IL-1), chemokines (e.g. CCL-2) and reactive 

oxygen species. (Fassbender et al., 2004; Walter et al., 2007; Jana et al., 2008; Hao et al., 2011; 

Liu et al., 2012). Although cytokines such as TNF- and IL-1 at low levels activate NF-B-

dependent signaling pathways and might promote cellular growth and survival (Piani et al., 1992; 

Tracey and Cerami 1994; Chao et al., 1995; Nguyen et al., 2002), these cytokines at high 

concentrations are neurotoxic over a longer term (Simard and Rivest, 2006; Moore et al., 2009; 

Michaud et al., 2013). It has been recently established that uncontrolled TNF- induces neuronal 

damage and chronic TNF- infusion in the brain causes neuronal death by apoptosis 

(Stepanichev et al., 2003; Simard and Rivest 2006; Cheng et al., 2014). In the case of AD mouse 

model, the pathology was attenuated when neuroinflammation reduced, whether caused by a 

deficiency in CD40 ligand (Tan et al., 1999 and 2002), IRAK4 (Cameron et al., 2012), NLRP3 

(Heneka et al., 2013), or Mrp14 (a neuroinflammation-amplifying protein; Kummer et al., 2012), 

by blocking TGF-–SMAD2/3 signaling (Town et al., 2008), by stimulating PPAR and retinoid 

X receptors (Yamanaka et al., 2012), or by anti-inflammatory agents (Jantzen et al., 2002). In 

another study, adoptive transfer of interferon-–producing A-specific T lymphocytes into AD 

mice severely exacerbated AD pathogenesis (Browne et al., 2013). In contrast, M2 inflammatory 

activation appears to produce beneficial effects in AD by facilitating neurotoxic inflammatory 

resolution and promoting neuronal protection and regeneration (Colton et al., 2006; Qian et al., 

2006; Martinez et al., 2009; Ma et al., 2010; Sharma et al., 2011; Liu et al., 2012).  
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Indeed, in my AD mouse model, I found that the number of microglia in the cortex and 

hippocampus of myeloid ikbk2-deficient APP mice significantly decreased than that in myeloid 

ikbk2-WT APP mice. Meanwhile, the transcriptional levels of M1 inflammatory cytokines such 

as TNF-, IL-1 and CCL-2 were significantly decreased in the brains of APP mice. And less 

TNF- protein was detected in the brain of APP mice. Although astrocytes could also mediate 

inflammatory response (Avila-Munoz and Arias, 2014), as IKK protein level was not change in 

non-myeloid original cells in our model. Thus, in this study, the reduced inflammation effect 

should come from a myeloid source, specifically microglia.  

In our studies, ablation of microglial MyD88 and IKK reduced only M1 inflammatory 

activation without affecting M2 activation in the APP-transgenic mouse brain (Hao et al., 2011). 

In AD mice with a deficiency in CD14 (Reed-Geaghan et al., 2010), TLR2 (Liu et al., 2012), or 

IRAK4 (Cameron et al., 2012), microglia were skewed from M1 to M2 inflammatory activation, 

although the underlying mechanisms were not explained.  

7.3 Myeloid deficiency of IKK reduces A load in the brain 

Aβ is considered to be the major risk factor in the AD pathogenesis because of its 

neurotoxicity. The A peptide derives from APP via proteolytic cleavage by - and - secretases 

(Strooper et al., 2010).The 4 kDa monomer transitions from a random coil or α helix 

conformation to a β-hairpin. This facilitates a dynamic nucleation-dependent polymerisation 

reaction which forms short, soluble, metastable intermediates called oligomers. These assemble 

to form an oligomeric nucleus which can be rapidly extended by monomer addition to form 

curvilinear protofibrils. Finally, protofibrils are bundled together to form the large, insoluble, 

cross β-sheet fibrils which accumulate in plaques (Gilbert, 2013). In vitro model, A oligomers 

increase oxidative stress through calcium homeostasis (Decker et al., 2010). Aggregated Aβ also 

directly injures synaptic junctions in the neocortex and limbic system, thereafter causing 

neuronal loss in AD mouse model (Mucke and Selkoe, 2012). The soluble A oligomers, 

especially dimers, were observed to inhibit long-term potentiation (LTP) by increasing activation 

of extrasynaptic NR2B-containing receptors and cause neuritic degeneration in which Tau 

hyperphosphorylation is involved (Shankar et al., 2008; Li et al., 2011). Furthermore, aggregated 

A could decrease adult neurogenesis, thereby interfering with the recovery from neuronal 
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damage in AD pathogenesis (Crews et al., 2010a; Crews et al., 2010b). In AD patients, A 

deposition which can be assessed by Pittsburgh Compound B- PET co-localizes anatomically 

with other imaging abnormalities associated with AD in many regions of the brain. 

Abnormalities include brain atrophy as shown on brain magnetic resonance imaging, 

hypometabolism measured by fluorodeoxyglucose- PET, and dysfunction of the default mode 

network (DMN) as measured by functional magnetic resonance imaging (Lucey and Bateman, 

2014). 

Microglia have a beneficial effect on AD pathogenesis by clearing Adeposits in the brain 

(Simard et al., 2006; Grathwohl et al., 2009). But does the inhibition of innate immune signal 

pathways of microglia simultaneously attenuate A pathology and pro-inflammatory activation? 

Our previous studies focusing on TLR2 (Liu et al., 2012) and MyD88 (Hao et al., 2011) and the 

current study addressing IKK have consistently given a positive answer to this question. Indeed, 

other published observations show that inflammatory activation inhibits phagocytosis in 

mononuclear phagocytes (Koenigsknecht-Talboo and Landreth, 2005; Townsend et al., 2005; 

Zelcer et al., 2007; Hickman et al., 2008). In both patients with Alzheimer’s disease and AD 

mice, decreased A clearance correlates with higher cytokine production (Fiala et al., 2005 and 

2007; Hickman et al., 2008). The enhancement of A clearance results from reduced 

inflammatory activation rather than from direct effects of the innate immune molecules per se. In 

the brains of 3-month-old APP-transgenic mice and in the microglial/macrophage internalization 

assays with A at low concentrations (e.g., 0.2 M), the inflammatory activation level is low. 

Thus, the presence or absence of MyD88 or IKKβ does not affect A internalization (Hao et al., 

2011).  

However, it has been shown that inflammatory activation by the systemic administration of 

TLR4 ligands can facilitate microglial internalization of A, which decreases the A burden in 

APP-transgenic mice (Michaud et al., 2013). These results raise an apparent discrepancy with 

our findings. In our study, we observed that IKK deficiency specifically blocks TGF-–

SMAD2/3 signaling but does not affect the SMAD1/5/8 pathway in microglia. Microglial 

SMAD1/5/8 signaling is constitutively active. Town reported (2008) that SMAD2/3 signaling 

inhibits macrophage uptake of Aβ, whereas SMAD1/5/8 signaling promotes it; however, an 
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IKK deficiency in the microglia of our AD mice may have attenuated the inhibitory effects of 

SMAD2/3 signaling, thereby enhancing microglial clearance of A in the brain. Using cultured 

microglia, we have confirmed that the pharmacological inhibition of SMAD2/3 signaling 

increases A internalization. In Michaud’s AD mice, microglial SMAD1/5/8 signaling could be 

further induced by TLR4-mediated inflammatory activation, so that the A internalization–

promoting effect is relatively stronger than the inhibitory effect contributed by SMAD2/3. Thus, 

activation of the SMAD1/5/8 signaling cascade by exogenous stimulators may resolve this 

apparent discrepancy. The hypothesis that the signaling balance between SMAD2/3 and 

SMAD1/5/8 modulates microglial A internalization could function also in other AD mice 

deficient in NLRP3 (Heneka et al., 2013) or with PPAR activation (Yamanaka et al., 2012), 

because a deficiency in NLRP3 attenuates (Wang et al., 2013) SMAD2/3 phosphorylation in the 

kidney epithelium, whereas a deficiency in PPAR increases SMAD2/3 phosphorylation in 

embryo fibroblasts (Ghosh et al., 2008). Additional studies are needed to further investigate 

whether this TGF-β hypothesis is a general rule in enhanced microglial Aβ clearance after the 

inhibition of innate immune signaling and exactly how TGF-β regulates microglial endocytosis.  

In our study, a deficiency in IKKβ in myeloid cells did not appear to affect Aβ generation, 

degradation and Aβ efflux from the brain parenchyma. This observation was surprising in light 

of the fact that neuroinflammation has been reported to change β-secretase and γ-secretase 

expression and activity (Sheng et al., 2003; He et al., 2007; Xie et al., 2013) and to alter the Aβ 

transporter function in the blood-brain barrier (Erickson et al., 2012).  

In summary, our study shows that the signaling cascade of TLRs-MyD88-IRAK4-IKK 

mediates A-triggered microglial inflammatory activation. Ablation of IKK inhibits detrimental 

neuroinflammation and facilitates beneficial A clearance, thereby improving neuronal function 

in AD mice. These results contribute to a better understanding of AD pathogenic mechanisms 

that may eventually translate to therapeutic options for the prevention or treatment of AD 

progression. 
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