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1. ABBREVIATIONS 

 

AB antibody 

AD Alzheimer’s disease 

ADRDA Alzheimer’s Disease and Related Disorders Association 

AG Antigen 

AICD APP intracellular domain 

AP alkaline phosphatase 

APC’s antigen presenting cells 

APOE Apolipoprotein E 

APP Amyloid precursor protein  

Aβ Amyloid-β 

BACE1 β-site APP cleaving enzyme 1 

BBB Blood-brain barrier 

BDNF brain derived neurotrophic factor - 5 

CD Cluster of Differentitation 

CNS Central nervous system 

CSF Cerebrospinal fluid 

CTF C-terminal fragment 

DAB diaminobenzidine 

DSM-IV Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition  

EOAD Early-onset Alzheimer’s disease 

ECF Extra cellular fraction 

ECS Extra cellular space 

FAD Familial Alzheimer disease 

FcR Fc receptor 

GDNF glial-derived neurotrophic factor 

GFAP Glial fibrillary acidic protein 

HIER heat-induced epitope retrieval 

HRP horseradish peroxidase  

IBA-1 ionized calcium binding adaptor molecule 1  

ICF Intra cellular fraction 

ICS Intra cellular space 

IFN Interferon 
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IFNAR Interferon-α receptor 

IHC immunohistochemistry 

IL Interleukin 

iNOS inducible nitric-oxide synthase 

IP intraperitoneal 

ISG interferon-stimulated genes 

LFB Luxol fast blue 

MAC membrane attack complex  

MF Membrane fraction 

MHC II Major histocompatibility complex type II 

MMSE Mental Status Examination 

MRI Magnetic resonance imaging 

MS Multiple sclerosis 

NADPH nicotinamide adenine dinucleotide phosphate-oxidase 

NFκB Nuclear factor kappa B 

NINCDS National Institute of Neurological and Communicative Disorders and Stroke 

NMDA N-methyl-D-aspartate 

NO Nitric oxide 

PAS Periodic acid Schiff 

PET Positron emission tomography 

PPARγ Peroxisome proliferator-activated-receptor 

PS-1 Presenilin 1 

PS-2 Presenilin 2 

RAGE receptor for advanced glycation end products 

sAPPα soluble ectodomain fragment of APP after cleavage by secretase α 

SR scavenger receptor 

TLR4 Toll-like receptor 4 

TNF tumour-necrosis factor 
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2. SUMMARY 

 

Alzheimer’s disease is the most common form of dementia characterized by a chronic and 

progressive deterioration of memory and other cognitive functions. In the inevitable course of the 

disease patients ultimately present an almost complete loss of their intellectual functions and they 

become dependent on constant nursing care. More than 35 million people have been affected 

worldwide in 2010, a number which is associated with a remarkable socio-economic impact 

especially in countries of the developed world. Despite intensive investigations the precise 

mechanism of the disease pathogenesis is not yet fully understood and a drug that would be able to 

cure or alter the progressive course of the disease remains to be discovered.  

According to the amyloid hypothesis AD originates from the imbalance of production and clearance 

of amyloid β. Activation of a broad inflammatory response is regarded as an important feature of the 

disease that might actively contribute to its pathogenesis. Microglia are the main inflammatory cells 

of the central nervous system. This study investigated whether immunomodulative interferon β (IFN-

β) treatment could influence the disease pathophysiology by enhancing microglial phagocytotic 

activity in vivo. Transgenic ApdE9 mice and respective wild type controls were treated with IFN-β or 

phosphate buffered saline. The treatment was initiated prior onset of the disease until its 

manifestation. Brains of the sacrificed animals were prepared for immunohistochemical stainings to 

study the effect of IFN-β on the amyloid plaque load and the activation of inflammatory cells such as 

microglia and astrocytes. Further, data of western blotting samples against Aβ and transcription 

levels of inflammatory mediators and glial cell components have been evaluated.  

Analyses of stained sections demonstrated a dose dependent effect of IFN-β treatment. High doses 

IFN-β was associated with a moderate reduction in the number of stained plaque deposits. Effects on 

glial cells included an increase in the number of microglia and astrocytes at sites of plaque deposits. 

Western blot analysis and the results of the real time PCR did not provide an explanation for the 

underlying mechanism of this finding. The mice did not present evident brain structural alterations 

such as axonal damage or demyelination thus a therapeutic effect of IFN-β could not be assessed.  

The study provides first data indicating possible immunomodulatory effects of IFN-β on AD pathology 

in vivo. The obtained results suggested a dose depended effect on the amyloid plaque load and 

colocalised glial cell activity.  



7 
 

3. ZUSAMMENFASSUNG 

 

Die Alzheimer Erkrankung stellt die häufigste Form der Demenzen dar und ist durch einen chronisch, 

zunehmenden Verlust von Merkfähigkeit sowie anderen kognitiven Fähigkeiten gekennzeichnet. Im 

Verlauf der Erkrankung erleiden die Betroffenen einen fast vollständigen Verlust ihrer intellektuellen 

Fähigkeiten und sind auf permanente Pflege angewiesen. 2010 waren weltweit mehr als 35 Millionen 

Menschen betroffen. Diese Zahl ist vor allem für Industrieländer von erheblicher sozial-ökonomischer 

Bedeutung. Trotz intensiver Forschung konnte der zu Grunde liegende pathophysiologische 

Zusammenhang bisher nicht vollständig geklärt werden. Auch eine medikamentöse Therapie, welche 

die Alzheimer Erkrankung heilen oder ihren progedienten Verlauf beeinflussen könnte, bedarf noch 

der Entwicklung. 

Gemäß der Amyloid Hypothese entwickelt sich die Alzheimer Erkrankung auf der Basis eines 

Ungleichgewichts bezüglich der Produktion und der Beseitigung von Amyloid β. Die Aktivierung einer 

umfassenden Entzündungsreaktion wird als ein bedeutendes Merkmal angesehen, welche zur 

Manifestation der Erkrankung beitragen könnte. Mikroglia stellen die primären Immunzellen des 

Zentralnervensystems dar. Die vorliegende hat Arbeit untersucht, ob eine immunomodulative 

Therapie mit Interferon β (IFN-β) die Krankheitsentstehung in vivo beeinflussen könnte. Transgene 

ApdE9 Mäuse und entsprechende Kontrolltiere wurden jeweilig mit IFN-β oder Phosphatgepufferter 

Salzlösung (PBS) behandelt. Die Versuchstiere wurden vor Beginn der Erkrankung bis zur ihrer 

Manifestation behandelt. Die Gehirne der Versuchstiere wurden nach Präparation zur 

anschließenden immunhistochemischen Färbungen vorbereitet, mit Hilfe deren untersucht wurde, 

ob IFN-β die Amyloid-Plaque-Last und die Aktivierung von Immunzellen wie Mikroglia und Astrozyten 

beeinflusst. Zusätzlich wurden Daten von der Westernblotuntersuchungen zu Aβ und den 

Transkiptionsniveaus von inflammatorischen Mediatoren und Gliazellbestandteilen bewertet. 

Die Analyse der gefärbten Präparate zeigte eine dosisabhängige Wirkung durch IFN-β. Die 

Behandlung mit hochdosiertem IFN-β war verbunden mit einer moderaten Reduktion der gefärbten 

Plaqueablagerungen. Die Wirkung auf Gliazellen beinhaltete eine Zunahme von Mikroglia und 

Astrozyten im Bereich um die Plaqueablagerungen. Die Westernblotanalysen und die Ergebnisse der 

real-time PCR konnten keine Erklärung für den zugrundeliegenden Mechanismus beisteuern. 

Hirnstrukturelle Veränderungen wie Axonenschädigung oder Demyelinisierung wiesen die 

Versuchstiere nicht auf, so dass eine therapeutische Beeinflussung dieser durch IFN-β nicht beurteilt 

werden konnte. 
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Die Arbeit liefert erste Erkenntnisse zum Zusammenhang einer möglichen immunmodulativen 

Wirkung von IFN-β auf die Alzheimer Pathologie in vivo. Die Ergebnisse legen einen dosisabhängigen 

Effekt auf die Plaquezahl sowie assoziierte Gliazellaktivität nahe 
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4. INTRODUCTION 

4.1. Alzheimer Disease (AD) 

 

Alzheimer’s disease (AD) is the most common form of dementia (Querfurth HW et al. 2010). The 

disease leads to acquired cognitive and behavioural impairment that interferes with the social and 

occupational functioning of the individual (Medscape of WebMD Health Professional Network LLC.). 

During the inevitable course of the disease affected people become fully dependent on assistance 

and nursing care. AD implicates a high burden to patients, caregivers and the society (Citron M 2010). 

There are expected 35 million people affected with AD worldwide in 2010 (Querfurth HW et al. 

2010). The socio-economic impact of dementia disorders is already nowadays enormous with 

approximate world costs of US$ 604billion in 2010 (Wimo A et al. 2010). The number of people 

suffering from dementia is thought to almost double with every 20 years leading to estimated 115 

million people in 2050 (Prince M et al. 2009). At present, none of the approved medications is able to 

cure AD or likely to alter the progressive course (Citron M 2010, Yaari R et al. 2007). Investigation in 

more effective treatment alternatives is therefore important to limit the impact of an aging 

population which is linked with an increasing number of AD patients (Wimo et al. 2010).  

4.1.1. Clinical presentation 

AD is a slowly progressive disorder that commonly presents with an insidious onset of gradual and 

chronic impairment of memory (Blennow K et al. 2006, Yaari R et al 2007). The memory decline 

concerns first the anterograde memory and leads by disease progression to retrograde amnesia 

(Rowland LP et al. 2005). Apathy and depression can coexist especially during the early phase of the 

disease (Alzheimer’s association 2010). The full picture of AD includes diverse clinical features due to 

dysfunction of widespread areas of the cerebral cortex. The cognitive decline can cause language 

difficulties, disorientation, visuospatial dysfunction, apraxia, agnoisa and dysfunction of executive 

function and affect calculation, judgement and decision-making (Yaari R et al 2007). Aphasie causes 

an incoherent speech pattern (Fowler TJ et al. 2003). The loss of the spatial and topographical sense 

and the abstract reasoning result in the characteristic disorientation of patients (Rowland LP 2005, 

Fowler TJ et al. 2003). Confusion and the impaired concentration and executive skill make 

constructional tasks difficult and the patient dependent on support. Besides the cognitive decline, AD 

patients show frequently behavioural and psychotic symptoms such as aggression, agitation, 

insomnia, delusion, hallucinations and psychotic episodes (Blennow K et al. 2006, Yaari R et al 2007). 

These symptoms affect the life quality of patients and care givers and contribute further to the care 

burden and economical cost (Blennow K et al. 2006). Many AD patients of terminal state show an 
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almost complete loss of the intellectual functions and are bedridden due to severe motor disabilities, 

spasticity and the loss of primitive reflexes (Citron M 2010, Fowler TJ et al. 2003). The course of AD 

from diagnosis until death lasts from 3 to 9 years (Querfurth HW et al. 2010). Mortality in AD patients 

derives commonly from intercurrent infections as especially pneumonia or sepsis but also from 

inanition, stroke, respiratory and cardiovascular diseases (Ropper AH et al. 2009, Dickson DW 2003).  

4.1.2. Genetics 

There exist two forms of AD. Familial Alzheimer disease (FAD) is a rare autosomal-dominant inherited 

condition that accounts for less than 5% of the clinical cases of AD (Yaari R et al. 2007). FAD is also 

referred as early-onset AD (EOAD) as it shows an aggressive course of the disease with an onset of 

first symptoms possible during the third decade (Medscape of WebMD Health Professional Network 

LLC.), mostly between 40-60years (Yaari R et al. 2007). Mutations in three genes have been identified 

to be responsible for 90% of EOAD cases: the amyloid precursor protein (APP), presenilin 1 (PS-1) and 

presenilin 2 (PS-2) (Citron M 2010, Yaari R et al. 2007). However, the majority of Alzheimer patients 

arise from the sporadic form of the disease or late-onset AD. Sporadic AD is characterised by an 

onset of symptoms after the age of 65 years (Thal DR et al. 2005, Alzheimer’s association 2010). The 

cause for this common form of AD remains unknown but a heterogeneous aetiology, based on aging 

in concert with complex interactions of genetic and environmental factors is assumed (Blennow K et 

al. 2006).  

4.1.3. Epidemiology and risk factors 

AD is the most common cause of dementia, accounting for 50-60% of the cases (Blennow K et al. 

2006). The single most important risk factor for AD is advance in age (Yaari R et al. 2007). The 

prevalence of AD in individuals younger than 65 is less than 1% and often suggested to be caused 

genetically in the context of EOAD (Rowland LP 2005, Prince M et al. 2009). From the age of 65 years 

the prevalence shows an almost exponential increase with age (Blennow K et al. 2006) as it doubles 

with every five years (Prince M et al. 2009). According to a study by the Robert Koch institute there 

are about 1 billion individuals amongst the 65years aged and older who are affected by dementia in 

Germany and they estimate the incidence will account for about 200.000 new cases every year 

(Weyerer S 2005). A positive family history of AD is the second most important risk factor. A first 

degree relative affects the individual risk for AD by a 3-4 fold, age corrected increase (Yaari R et al. 

2007). An important genetic susceptibility risk factor for sporadic AD has been identified with a 

genetic polymorphism of the apolipoprotein E (APOE) gene status (Blennow K et al. 2006, Citron M 

2010, Prince M et al. 2009, Yaari R et al. 2007). APOE is a protein involved in the cholesterol transport 
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in the brain. The ε4 allele of the APOE gene increases the risk to develop AD in a dose dependent 

manner by three times in heterozygotes and by 15 times in homozygotes (Blennow K et al. 2006, 

Yaari R et al. 2007). The gender difference of women comprising for two third of the clinical cases of 

AD is thought to derive mainly from longer life expectancy (Weyerer S 2005). Strong evidence 

associates AD with cardiovascular and cerebrovascular risk factors such as cigarette smoking, midlife 

high blood pressure, obesity, dyslipidemia and diabetes (Fassbender K et al. 2008, Prince M et al. 

2009). Epidemiological studies point also towards depression, traumatic head injuries and profuse 

alcohol consumption as risk factors for AD. A reduced risk for AD seems to derive from anti-

inflammatory medication and a beneficial role has been observed with some psychosocial factors 

such as high education, physical exercise and mental activity (Citron M 2010, Fassbender K 2008). 

4.1.4. Impact of AD 

The annual economic costs of dementia worldwide are estimated US$ 315 billion (Prince M 2009). 

72% of the costs are allotted to high income countries like Europe (Wimo A et al. 2010). The 

“informal costs” of AD due to limited capabilities of diseased and care provided by families is 

predicted to have an increasing impact on national budgets in future (Prince M 2009). Besides the 

consequences on the health and social care systems worldwide and the effects on patients, AD 

implicates the health of care givers. Carers of demented people are twice as likely to develop sings of 

psychiatric illnesses and a major depression can be diagnosed in about 15 to 30%. Consequences on 

physical health of strained carer are likely as they show an impaired immunity and a higher mortality 

rate (Wimo A et al. 2010). 

4.1.5. Diagnosis 

The definite diagnosis of AD relies on a neurohistopathological analysis that remains to be the gold 

standard (Bird TD et al. 2010, Blennow K et al. 2006). In this examination a clinical AD diagnosis is 

verified post mortem through the detection of typical AD hallmark lesions in exceeding number 

compared to age matched controls without dementia (Bird TD et al. 2010). In contrast, the clinical 

diagnosis is based on the medical history and findings from clinical, neurological and psychiatric 

examinations (Blennow K et al. 2006). Memory loss and disturbance in other cognitive spheres is 

assessed by an initial testing of attention, orientation, concentration, the recent and remote 

memory, language, calculation, praxis, judgement, executive and visuospatial abilities (Yaari R et al. 

2007, Medscape of WebMD Health Professional Network LLC.). Therefore the Mini-Mental Status 

Examination (MMSE) constitutes a useful tool for a brief mental state screening. The most commonly 

used criteria for diagnosis of AD are provided by the NINCDS-ADRDA (National Institute of 



12 
 

Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 

Disorders Association) and the DSM-IV (Diagnostic and Statistical Manual of Mental Disorders, Fourth 

Edition) (Yaari R et al. 2007). Both criteria demand the exclusion of other possible causes for a 

demented condition as for instance delirium, neoplasma, infection, metabolic disorders, vitamin 

deficiency, toxic metabolits and other intracerebral or internal diseases (Schmidtke K et al. 2008, 

Yaari R et al. 2007, Medscape of WebMD Health Professional Network LLC.,). By neuroimaging and 

laboratory testing such reason can be ruled out and clinical diagnosis, verified by histological analysis 

shows 80-90% accuracy (Bird TD et al. 2010, Schmidtke K et al. 2008). Additional tests including 

analysis of the cerebrospinal fluid (CSF), scanning of the cerebral glucose-PET metabolism, genetic 

testing or measurement of hippocampal atrophy play a minor role in the clinical routine (Schmidtke K 

et al. 2008). The prospect on CSF biomarkers promises value in the detection of incipient stages and 

for the discrimination of AD from other forms of dementia (Blennow K et al. 2006).  

4.1.6. Management  

The management of AD is based on supportive care, assisted living and symptomatic drug treatment 

of AD specific cognitive disturbance and coexisting behavioural signs (Bird TD et al. 2010, Blennow K 

et al. 2006). Acetylcholine inhibitors and the NMDA (N-methyl-D-aspartate) receptor antagonist 

memantine are drugs that address the neurotransmitter disturbance in the AD brain. It is 

hypothesized that the degradation of cholinergic neurons results in acetylcholine deficiency in the AD 

brain contributing to memory disturbance and cognitive symptoms (Blennow K et al. 2006). 

Acetylcholinesterase inhibitors address the enzymatic degradation of the neurotransmitter in the 

synaptic cleft and thus enhance cholinergic neurotransmission (Blennow K et al. 2006, Yaari R et al. 

2007). The therapy shows a modest positive effect on cognitive, functional and behavioural 

symptoms and is currently approved for mild to moderate AD (Blennow K et al. 2006, Fassbender K 

et al. 2008). Glutamate is a major excitatory neurotransmitter that binds to the NMDA receptor in 

processes of learning and memory (Blennow K et al. 2006). Binding of glutamate to the NMDA 

receptor of neurons causes the opening of calcium channels. In diseased neurons an increased influx 

of calcium ions can occur resulting in neuronal damage by excitotoxicity (Fassbender K et al. 2008). 

Memantin is a non-competitive NMDA-receptor antagonist that binds to the receptor during 

activation, modulates the ionic influx and thereby protects neurons from glutamate mediated 

neurotoxicity. Memantine is approved for the therapy of moderate to severe AD where it shows 

modest benefits on cognitive and behavioural symptoms (Blennow K et al. 2006, Fassbender K et al. 

2008). Aggressive behaviour, psychomotoric agitation and psychosis occur frequently, especially in 

the late stage of AD. Atypical antipsychotic drugs are preferably used for their management whereas 

anticonvulsants comprise treatment alternatives (Blennow K et al. 2006). 
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4.2. Pathology and hallmarks of AD 

AD pathology is characterized macroscopically by progressive cerebral atrophy with subsequent 

enlargement of cortical sulci and the ventricle system (Bernreuther C et al. 2006). Atrophy results 

from synaptic and neuronal loss on the cellular level. The neurodegenerative changes show a specific 

pattern of distribution by disease progression. Initial changes occur in the medial temporal structures 

of the hippocampus, the entorhinal cortex and amygdala and they expand to the neocortical 

association region (neural.net. Measuring brain atrophy in Alzheimer’s disease 2003). Degeneration 

of cholinergic basal forebrain neurons within the medial septum and the nucleus basalis of Meynert 

leads to cholinergic hypofunction and hence to cognitive decline and profound dementia (Sastre M et 

al. 2006). The degree of atrophy has been shown to correlate with the severity of pathological 

changes within the brain tissue (neural.net. Measuring brain atrophy in Alzheimer’s disease 2003). 

The AD typical histological findings include the two hallmark lesions of extracellular deposits of 

amyloid-β, forming senile plaques and neurofibrilllary tangles which are composed by intraneuronal 

accumulations of abnormal filaments of tau in the context of degeneration of neurons and synapses 

(Blennow K et al. 2006, Querfurth HW et al. 2010). The initiation of a broad inflammatory response 

including chronic microglia activation upon AD pathology is an important feature of the disease 

(Walter S et al. 2007). Nevertheless the pathological changes in the AD brain are complex including 

synaptic dysfunction, neuronal and white matter loss, mitochondrial dysfunction, oxidative damage 

and vascular pathology (reviewed by Querfurth HW et al. 2010). Several vascular changes might 

contribute to the diminished cerebral blood flow in AD. For instance atherosclerotic vascular disease 

is suggested to be significantly more pronounced in AD patients (Roher AE et al. 2004) and cerebral 

amyloid angiopathy is present in up to 90% (Greenberg SM et al 2004). Evidence further implies 

dysfunction of the blood-brain barrier (Roher AE et al. 2004).  

4.2.1. Neurofibrillary tangles 

Tau pathology and intraneuronal tangles are a hallmark of AD pathology. Though their presence is 

not specific for AD as they occur in multiple disorders, the load of tangles and their localization 

within the brain tissue correlate strongly with the severity of cognitive dysfunction (Citron M 2010). 

Tau protein is the major component of the intraneuronal alterations seen in AD. In a healthy brain, 

soluble tau associates to microtubules and stabilizes their structure. By this it supports the formation 

of tracts for axonal transport and the cytoskeleton during axonal growth (Blennow K et al. 2006, 

Citron M 2010). The typical intraneuronal inclusions in AD are formed by aggregates of abnormal 

hyperphosphorylated, insoluble tau filaments (Citron M 2010). Tau phosphorylation is regulated by 

multiple kinases and phosphatases. The impact of tau hyperphosphorisation and tangle formation in 
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the pathogenesis of AD is unknown (Blennow K et al. 2006). Nevertheless, formation of 

neurofibrillary tangles impairs cellular and synaptic functioning. They are thought to contribute to 

the disease by a direct toxic effect of the aggregates and by a destabilizing effect on microtubules, 

affecting the axonal transport within the neuron and thus contribute to early neuronal death and 

dementia (Blennow K et al. 2006, Citron M 2010, Thal DR et al. 2005).  

4.2.2. Senile plaques  

Senile plaques are spherical structures in the extracellular space which are mainly composed of 

amyloid-β (Aβ) peptides (Hjorth E et al. 2010, Yaari R et al. 2007). Aβ deposits are commonly 

surrounded by activated microglia and recruited astrocytes (Sastre M et al. 2008). In AD, senile 

plaques exhibit three morphological types: diffuse, neuritic and cored plaques (Giulian D et al. 1995). 

Diffuse plaques contain homogeneous deposits of Aβ (Thal DR et al. 2005). They are the only type of 

senile plaques which is not associated with activated microglia and they occur also in the brains of 

non-demented elderly (Giulian D et al. 1995). Classic neuritic plaques contain a central amyloid core 

formed by Aβ peptides which is surrounded by dystrophic nerve endings (neurites) (Blennow K et al. 

2006, Yaari R et al. 2007). Plaques that consist merely of an isolated, dense core of amyloid are 

designated cored or “burnt-out” plaques (Thal DR et al. 2005). In addition to senile plaques further 

depositions of Aβ can be distinguished within the AD brain. They differ in their morphology, by the 

density of amyloid, the presence of dystrophic neuritis, the degree of glial cell reaction in the tissue 

and their pattern of distribution (Thal DR et al. 2005, Yaari R et al. 2007).  

4.3. Pathogenesis of AD based on the amyloid hypothesis 

Aβ plaques and Aβ peptides are thought to represent the culprits for the neurodegenerative 

processes in AD (Hjorth E et al. 2010). Aβ peptides constitute the major components of plaques and 

they derive from catalytic cleavage of APP (Sastre M et al. 2008). APP is a ubiquitously present type I 

transmembrane protein (Selkoe DJ 2001). The APP ectodomain serves as cell surface receptor, is 

involved in cell adhesion and plays a major role in neurite outgrowth and synaptogenesis during 

neuronal development and presumably after traumatic head injury. The APP intracellular domain 

regulates APP function and is involved in axonal transport and signalling processes (Zheng H et al. 

2006). APP is processed by a group of enzymes, designated secretases. In an amyloidogenic pathway 

sequential proteolytic cleavage of APP liberates soluble Aβ peptides from the ectodomain. The 

peptides contain mainly 40 (Aβ-40) and 42 (Aβ-42) amino acids of which Aβ-42 is highly fibrillogenic 

and regarded as the most toxic isoform (Gandy S, 2005, reviewed by Citron M 2010). Aβ peptides are 

prone to self-aggregate, resulting in various coexisting physical structures and finally deposit into 
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insoluble plaques (Hjorth E et al. 2010). Amongst other roles, Aβ oligomers for example can suppress 

hippocampal long-term potentiation which is an important process for memory (Walsh DM, 2004). 

Further, Aβ oligomers exert direct neurotoxicity and seem to contribute to synaptic dysfunction by a 

multitude of mechanisms including NMDA receptor endocytosis, impairment of nicotinic 

acetylcholine receptor signalling (Snyder EM, 2005) and by exacerbating the lack of trophic actions by 

binding to the receptor of the brain derived neurotrophic factor (BDNF), (Garzon DJ 2007). Other Aβ 

peptides assemble to fibrils and arrange themselves into β-pleated sheets which build insoluble 

fibres and aggregate to form senile plaques within the tissue. Aβ peptides are generated by 

subsequent cleavage through β- and γ-secretase. The secretase-β activity originates mainly from an 

integral membrane aspartyl protease called β-site APP cleaving enzyme 1 (BACE1). Cleavage of APP 

by BACE1 generates a c-terminal fragment (APP-CTF-β), which is subsequently cleaved by secretase γ 

to produce Aβ. Secretase-γ is an intramembranous protease complex that consists of four essential 

proteins: presenilin, nicastrin, PEN-2 and APH-1. Presenilin constitutes the active site of the 

enzymatic activity and interestingly, mutations in the gene encoding for presenilin (PS-1, PS-2), result 

in familial AD (Gandy 2005, Vassar R 1999). Cleavage of APP in the context of a non-amyloidogenic 

pathway is carried out by secretase-α activity which cleaves APP within the Aβ domain and thus 

destroys it. The resulting soluble ectodomain fragment of APP (sAPPα) features amongst others 

neurotrophic properties and can also undergo subsequent cleavage by secretase-γ (Sastre M et al. 

2008).  
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Figure 4.1 Schematic diagram of APP sequential processing. APP is a transmembrane protein. The Aβ domain within the APP 

is partly embedded in the plasma membrane. In the amyloidogenic pathway cleavage of APP by secretases β- (BACE-1) and 

γ- results in release of Aβ peptides in the extracellular space (ECS). Cleavage by secretase-α takes place within the Aβ-

sequence and therefore precludes Aβ generation. This is referred as the non-amyloidogenic pathway resulting in the large 

soluble APP fragment (sAPPα) and the remaining C-terminal fragment (CTF). CTF’s resulting from α or β- secretase activity 

are subsequently cleaved by γ-secretase and the by this remaining APP intracellular domain (AICD) is metabolised in the 

cytoplasm. Cleavage of APP-CTF-α by γ-secretase releases a short peptide named p3.  ICS = intracellular space.  

 

Aβ is generated constitutively during normal cell metabolism though its function is unknown 

(Blennow K et al. 2006, Stromer T et al. 2005). Aβ peptides are usually cleared from the brain by 

several mechanisms: Firstly, Aβ peptides are phagocytosed by activated microglia (Sastre M et al. 

2008). Aβ peptides are further degraded by enzymes such as the insulin-degrading enzyme, 

neprilysin and the endothelin converting enzyme. Moreover cerebral Aβ load is balanced by a regular 

transport across the blood-brain barrier (BBB) and Aβ efflux is mediated via a protein related to the 

low density lipoprotein receptor (Tanzi RE et al. 2004). The imbalance of Aβ production and clearance 

resulting in their aggregation and accumulations to amyloid deposits is understood to be the 

initiating factor of a cascade which leads ultimately to degeneration of neurons and AD pathology 

(Hardy J, Selkoe DJ 2002). This theory is referred as the “amyloid hypothesis” which is broadly 

supported by the genetics of FAD. All mutations associated with FAD (APP, PS-1, PS-2) affect either 

ECS 

ICS 
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the substrate or the key enzymes of the Aβ metabolism. They enhance the amyloidogenic processing 

of APP and even increase the secretion of the aggregation prone Aβ-42 isoform compared to Aβ-40. 

Further patients of Down’s disease develop Aβ plaque pathology early in life. These individuals carry 

an extra copy of chromosome 21 which harbours the APP gene (Rovelet-Lecrux A et al. 2006). The 

finding that the plaque load in AD brains correlates with the severity of dementia provides further 

support for the crucial role of Aβ metabolism in the pathogenesis of AD (Blennow K et al. 2006). 

Amongst other effects, Aβ peptides and plaques are suggested to cause the neurodegenerative 

changes in AD by initiation and maintenance of a broad inflammatory response (Citron M 2010, 

Hjorth E et al. 2010). The following chapter highlights the connection of inflammation and AD 

pathology, the impacts of an uncontrolled pro-inflammatory milieu and on the other site the 

therapeutic potential of a directed immune response. 

 
Figure 4.2 Amyloid cascade hypothesis. The imbalance of Aβ production and clearance results in an increased load of Aβ. Aβ 
oligomers exert direct neurotoxicity. Deposits of Aβ initiate inflammatory and oxidative stress. Impairment of neuronal and 
synaptic function causes neurotransmitter deficits and cognitive symptoms. Tau pathology and tangle formation is 
suggested to occur as a downstream event which could contribute neuronal dysfunction and cognitive symptoms (Blennow K 
et al. 2006).  
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4.4. The interaction between AD pathology and inflammation  

Accumulation of abnormal proteins like Aβ and neurofibrillary tangles and stimuli from 

neurodegeneration represent initiators of a broad inflammatory process which is thought to lead to 

synaptic dysfunction and neuronal cell death by oxidative and inflammatory damage (reviewed by 

Akiyama H et al. 2000, reviewed by Querfurth HW et al. 2010). A chronic local inflammatory response 

is clearly present in pathologically vulnerable areas of the AD brain. In contrast, brains of non-

demented elderly which contain a sufficient expression of hallmark lesion that would otherwise 

justify a diagnosis of AD show drastically less inflammatory markers compared to brains from AD 

patients (reviewed by Akiyama H et al. 2000). Astrocytes and microglia are glial cells and important 

for maintaining the integrity and homeostasis in the brain (Farfara D et al. 2008). They represent the 

main component of inflammation within the central nervous system (CNS) (Hjorth E et al. 2010) and 

upon stress they can further mediate the permeability of the BBB to recruit immune cells from the 

periphery (Farfara D et al. 2008). Activated microglia and recruited astrocytes cluster commonly at 

sites of AD hallmark lesions. Together with neurons they are connected in highly interactive 

processes with each other as well as with numerous subsystems of neuroinflammatory mediators 

including the complement, cytokines and chemokines, acute phase proteins, excitotoxins, and 

inflammatory enzymes, ultimately creating a self-propagating cascade of inflammation (Wyss-Coray 

T. et al. 2002, reviewed by Sastre M 2006). Glial cell activation seems to constitute an early event in 

the AD, starting even in the absence of focal Aβ deposition. In a transgenic mouse model of AD, focal 

glial activation preceded amyloid plaque deposits (Nunomura A et al. 2001) and a clinical PET study 

detected microglia activation at a very early stage of AD (Cagnin A et al. 2001).  

Inflammation occurs not only secondary to AD pathology but rather interacts with APP metabolism 

and Aβ generation. Some cytokines, including Interleukin (IL) -1 and IL-6 which are both up-regulated 

in the AD brain, are suggested to increase APP synthesis (Akiyama H et al. 2000, Hjorth E et al. 2010).  

Levels and activity of the APP processing enzyme BACE1 are also up-regulated in the AD brain. Also 

cultured neurons exposed to pro-inflammatory cytokines and oxidative stress as well as chronic 

reactive astroglia express high levels of BACE1 (reviewed by Sastre M et al. 2008). Interestingly, 

expression of BACE1 seems to be regulated by transcriptional factors, known to regulate 

inflammation. The BACE1 promotor harbours binding sites for NFκB (nuclear factor kappa B) (Bourne 

KZ et al. 2007) and for PPARγ (Peroxisome proliferator-activated-receptor) (Sastre M et al. 2003). 

NFκB is a prime inflammatory transcription factor. It is indicated to activate BACE1 transcription 

(Sastre M et al. 2008) and a further binding site of NFκB exists in the APP gene (Grilli M et al. 1995). 
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PPARγ is suggested to act as a repressor of BACE1. Decreased levels of PPARγ augment BACE1 

promotor activity. Inflammatory conditions are suggested to down-regulate PPARγ and indeed, 

PPARγlevels are decreased in AD, presenting a condition that could contribute to increased 

generation of Aβ (reviewed by Sastre M et al. 2008).  

4.5. Microglia in AD 

Microglia represent macrophage-derived cells (Farfara D et al. 2008). They are believed to derive 

from myeloid precursor cells, which enter the CNS during embryogenesis (reviewed by Solito et al. 

2012). Microglia constitute the first line defence against pathogens and tissue damage within the 

nervous system (Conde JR et al. 2006). Extensive evidence suggests that activated microglia have 

central role in the innate immune response and that they contribute to cell loss and cognitive decline 

in AD (Combs CK et al. 2001, Weiner HL et al. 2006). In response to chemotactic signalling and 

activation microglia cluster at sites of Aβ deposits and deeply interdigitate neuritic plaques (Akiyama 

H et al. 2000). Microglial activation induces a change in their morphology from resting cells with a 

small soma and ramified processes into a motile “amoeboid-like” phenotype with enlarged soma and 

shortened cellular processes. Further it stimulates the production of a variety of pro-inflammatory 

mediators and the up-regulation of cell surface proteins such as the major histocompatibility 

complex type II (MHC II), CD11b and scavenger receptors (SR’s) (Akiyama H et al. 2000, Heneka MT et 

al. 2007, Weiner HL et al. 2006). In response to aggregated Aβ, microglia cells differentiate into cells 

with diverse properties. Phagocytic properties could be beneficial in AD by increasing clearance of 

Aβ. On the contrary, the chronic microglia activation in AD is thought to contribute to progressive 

neurodegeneration because of their neurotoxic properties through generation and secretion of 

cytotoxic molecules (Weiner HL et al. 2006) 

4.5.1. Activation and contribution to neurodegeneration in AD 

Once stimulated, microglia can produce a variety of neurotoxic mediators including cytokines, 

chemokines, complement factors, inflammatory enzymes, reactive oxygen and nitrogen species, and 

neurotoxic secretory products (Walter S et al. 2007). All of them can contribute to neuronal 

dysfunction and cell death and create a vicious circle in a perpetuating cascade (Heneka MT et al. 

2007). 

AD alterations in general, but especially Aβ initiate microglia activation. Activation follows binding of 

Aβ to microglial surface receptors, such as scavenger receptors (Paresce DM et al. 1996) and the 

receptor for advanced glycation end products (RAGE) (Yan SD et al. 1998). Fibrillar Aβ is further 
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suggested to bind to the Toll-like receptor 4 (TLR4) (Walter S et al. 2007). Total RAGE levels are 

significantly increased in AD and correlate with disease severity.  Similarly to other ligands, Aβ 

binding to RAGE initiates a NFκB dependent production of inflammatory mediators (Lue LF et al. 

2009).  

Activation of RAGE conveys for instance the potent pro-oxidant effects of Aβ by generation of 

reactive oxygen and nitrogen species (Querfurth HW et al. 2010). Increased expression of NADPH 

oxidase (nicotinamide adenine dinucleotide phosphate-oxidase) and the inducible nitric-oxide 

synthase (iNOS) follow microglia stimulation by fibrillar Aβ in vitro (reviewed by Weiner HL et al. 

2006). Oxidative damage by NO and free radicals concern multiple molecular targets of cells and 

leads subsequently to the impairment of mitochondrial function, cellular energy discrepancy through 

impaired glucose transport and ionic imbalance by affecting membrane permeability (reviewed by 

Querfurth HW et al. 2010).  

Aβ can stimulate a NFκB-dependent pathway that is required for cytokine production (Combs CK et 

al. 2001). Compared to samples from non-demented brains, microglia from AD patients show 

increased expression of pro-inflammatory cytokines including several interleukins (IL-1β, IL-6, IL-8, IL-

12) and TNF-α (tumour-necrosis factor α) (Weiner HL et al. 2006). The cytokines TNF-α, IL-1β and IL-6 

directly impair neuronal function and suppress hippocampal long-term potentiation (Tancredi V et al. 

1992, Murray CA et al. 1998). These cytokines are are highly interwoven in AD processes: The 

cytokine IL-1 occurs early in the course of the disease and augments its pathogenesis. IL-1 is 

suggested to stimulate the Aβ generation as it increases synthesis of APP in human astrocytes by up 

to 6-fold (Sastre M et al. 2006). It enhances neuronal acetylcholinesterase activity, microglial 

activation and stimulation of its own production (Heneka MT et al. 2007). In astrocytes, it induces 

amongst other effects the expression of acute phase proteins, the generation of NO following iNOS 

activation (Rossi F et al. 1996) and most importantly the secretion of cytokine S100β. At normal 

levels S100β promotes neurite growth. Elevated levels of S100β are associated with senile plaques 

and are suggested to be responsible for the dystrophic neurite growth at sites of Aβ deposits 

(reviewed by Akiyama H et al. 2000, Mrak RE et al. 2001). Further S100β represents an additional 

ligand for RAGE and their interaction causes increased RAGE expression and amplification of 

inflammation and oxidative stress (Lue LF et al. 2009). The cytokine IL-6 is generally understood as a 

destructive, pro-inflammatory cytokine. It promotes astrogliosis (Selmaj KW et al. 1990), amplifies 

microglia activation (Heyser CJ et al. 1997) and is associated with increased APP synthesis (Altstiel LD 

et al. 1991). Also TNF-α is commonly regarded as a powerful pro-inflammatory cytokine. It is a potent 

stimulator of the transcriptional factor NFκB which further amplifies the immune response in 
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particular by increasing the expression of pro-inflammatory mediators (Cardinaux JR et al. 2000). 

TNF-α accounts for most of the neurotoxic activities of microglial and monocyte secretory products 

(Combs CK et al. 2001). Microglial TNF-α stimulates iNOS expression in neurons and the following 

production of NO contributes to neuronal cell apoptosis (Weiner HL et al. 2006). However the full 

impact of TNF-α on AD is not yet fully understood as it seems to convey also contradictory 

neuroprotective properties in specific experimental settings (reviewed by Akiyama H et al. 2000).  

Microglia secrete further excitotoxins such as glutamate (Piani D et al. 1992) and quinolinic acid 

(Espey MG et al. 1997). They directly affect synapses and dendrites and contribute to synaptic 

dysfunction and subsequent neuronal loss in AD (Akiyama H et al. 2000). Moreover an amine has 

been identified within the cortical gray matter and hippocampus of AD brains that evokes fulminant 

excitotoxicity. This AD neurotoxin is secreted by microglia after stimulation by senile plaques (Giulian 

D et al. 1995). In vivo the compounds have been capable of destroying hippocampal neurons in a 

concentration of as few as picomolars. However, their action was blocked by NMDA-receptor 

antagonists (Giulian D 1999), which are an approved therapy in AD. 

Chemokines are secreted proteins, which are important in mediating the innate immune response in 

the CNS and are able to recruit immune cells from the blood to the brain (Farfara D et al. 2008). 

Upon activation microglia have been shown to express certain chemokine receptors, including CCR3 

and CCR5 (Xia MQ et al. 1998). Further, they produce chemokines such as CXCL8 (CXC ligand 8) and 

CCL3 (CC ligand 3) and in vitro studies have demonstrated, that the secretion of chemokines CCL2 

and CCL3 by plaque associated microglial promotes astroglial chemotaxis (Kitazawa M et al 2004). 

The complement system plays an important role in the initial recruitment and activation of glial cells 

and in turn activated microglia enhance the complement cascade. In vitro studies demonstrated that 

microglia isolated from AD brains constitutively secrete two-fold more complement component 1q 

(C1q) than microglia from non-demented individuals (Akiyama H et al. 2000). C1q is co-localised with 

most of the amyloid deposits in the AD brain (Rogers J et al. 1992) and it initiates the classical 

pathway of the complement. The amplifying cascade produces multiple molecules with cytopathic 

relevance including anaphylatoxins (C3a, C5a), Aβ binding opsonins (C4b, c3b) and ultimately leads to 

the formation of the pro-inflammatory membrane attack complex (MAC). In AD, Aβ fibrils, NFTs and 

fragments from neurodegeneration are competent initiators of the complement cascade by the 

classical and alternative pathway which both result in the formation of MAC’s (reviewed by Akiyama 

H et al. 2000). Numerous MAC’s are found in vicinity to Aβ deposits and tangle formation. In a 

process called “bystander lysis” MAC’s attack also neighbouring healthy tissue and ultrastructural 
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analysis confirmed that MAC’s are present on the surface of adjacent neurites in AD samples (Itagaki 

S et al. 1994, Webster S et al. 1997). In addition, C1q could facilitate the formation of Aβ fibrils as it 

appears to stabilize Aβ oligomers and it is able to bind multiple Aβ molecules (McGreal E et al. 2002, 

Webster S et al. 1996). On the contrary, activation of the complement system can enhance microglial 

phagocytosis of Aβ in AD (Farfara D et al. 2008). Microglia express the C1q receptor which enhances 

phagocytosis, particularly upon interaction of C1q with particles that are opsonised by antibodies 

(Webster SD et al. 2001).  

4.5.2. Beneficial role of microglial activation  

Microglia cells do not constitute a single uniform cell population. Activation results in development 

of a broad range of functional phenotypes of which some can exert beneficial and other destructive 

effects (Garden GA et al. 2006, Schwartz M et al. 2006, Weiner HL et al. 2006). Whereas the above 

described neurotoxic phenotype of microglia can contribute to the detrimental course, the activation 

of phagocytic or even antigen presenting microglia phenotype could be beneficial in AD (Weiner HL 

et al. 2006). According to the amyloid hypothesis, the imbalance of Aβ production and clearance, 

leading to accumulation of Aβ initiates AD pathogenesis (Heneka MT et al. 2007, Querfurth HW et al. 

2010). Therefore removal of the disease-causing agent could constitute an effective treatment 

approach (Hjorth E et al. 2010). Microglia activation could be useful through contribution to Aβ 

clearance by phagocytosis and degradation (Heneka MT et al. 2007). Microglia can phagocytose Aβ 

fibrils and oligomers by various scavenger receptors expressed on surface of activated cells, including 

integrin-αβ (Coraci IS et al. 2002), CD36 (El Khoury J et al. 1996, Bamberger ME et al. 2003), CD47 

(Porter JC et al. 1998), formyl peptide receptor 2 (Iribarren P et al. 2005a, 2005b) SR-A and SR-BI 

(Paresce DM et al 1996). Fibrillar Aβ, opsonised by complement component C3b stimulates 

engulfment following interaction with the complement receptors on activated microglia (Akiyama H 

et al. 2000). Solube Aβ can also be directly incorporated via heparin sulphate proteoglycans (Giulian 

D et al. 1998), insulin receptors (Xie L et al. 2002) and proteinase inhibitors (serpin)-enzyme complex 

receptor (Boland K et al. 1996).  

Moreover microglia account to Aβ clearance by release of Aβ degrading enzymes such as the 

metalloproteases neprilysin and insulin degrading enzyme (Qiu WQ et al. 1997) as well as enzyme 

gelatinase A (Yamada T et al. 1995). 

Microglial activation can further mediate neuroprotective properties by release of several trophic 

factors, including the glial-derived neurotrophic factor (GDNF) (Liu B et al. 2003).  
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The microglial phenotype is suggested to be determined by the nature of stimuli, their sequence and 

duration. Induction of microglia through aggregated Aβ seems to induce a response similar to 

activation by invading microorganism, promoting a phenotype that produces cytotoxic molecules, 

such as TNF-α. In contrary, IL-4 and IFN-γ have been shown to induce a neuroprotective phenotype 

of microglia in vitro (Butovsky O et al. 2005) as they improve microglia function as APC’s by 

expression of e.g. MHC-II. Hence capable of presenting antigens, microglia can engage a dialog with 

T-cells resulting in increased Aβ clearance (Schwartz M et al. 2006). Moreover, a classical mechanism 

to enhance microglial phagocytosis is through the Fc receptor (FcR). Engagement of FcR by antibody 

(AB) bound pathogens initiates their phagocytosis (Farfara D et al. 2008) and FcR-mediated 

phagocytosis of AB bound Aβ has been speculated upon findings of an immunisation trial in animals 

(Webster SD et al. 2001).  

4.5.3. Interaction of activated microglia with adaptive immunity  

In general, the role and involvement of peripheral T-cell function in AD is still unclear (Schindowski K 

et al. 2007). Perturbations in the stability of the BBB have been reported in AD which would enable T-

cell infiltration (Nguyen MD et al. 2002). However, the brains from AD patients contain only very low 

levels of infiltrating T cells in close vicinity of Aβ plaques (Town T et al. 2005). Interestingly, microglia 

from AD brains show increased expression of MHC II compared to control brains (Akiyama H et al. 

2000). MHC class II molecules are commonly found on antigen presenting cells (APC’s) where they 

communicate with the adaptive immune system via interaction with T-cell receptors (Weiner HL et 

al. 2006). In a mouse model of AD, active immunisation with Aβ and passive administration of 

amyloid-specific antibodies induced microglial cell activation, reduced amyloid levels markedly and 

was associated with reverse of behavioural impairment (Farfara D et al. 2008). Aβ clearance 

following Aβ-immunisation was associated with enhanced microglial-cell activity around remaining 

amyloid plaques (Schenk D et al. 1999). Also a human trial using Aβ-42 immunization achieved 

significant clearance of Aβ plaque. The trial had to be discontinued due to pronounced activation of T 

cells leading to menigoencephalitis (Orgogozo JM et al. 2003) but modified trials of passive 

immunisation are currently on the way (Hjorth E et al. 2010).   

4.5.4. Microglial differentiation 

Specific activation of microglial Aβ phagocytosis while reducing their pro-inflammatory response is 

an important immunotherapeutic avenue. As mentioned above, it has been suggested that 

differentiation of microglia in the presence of IL-4 and IFN-γ could promote the beneficial microglia 

phenotype. IL-4 promotes microglial production of insulin-like growth factor 1 which is linked with 
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cell renewal. Microglial activation by IFN-γ or IL-4 is associated with neurogenesis, 

oligodendrogenesis and protection of neurons (Schwartz M et al. 2006). Hjorth et al. investigated the 

response of human microglia to Aβ and the possibilities to increase glial cell uptake of Aβ by 

immunomodulatory agents in vitro. Amongst the agents studied, IFN-γ and the combination of IFN-γ 

with IL-1β increased the proportion of cells showing uptake of Aβ-42 significantly by 50% and 60%, 

respectively. Nevertheless, the effect was also associated with reduced secretion of the neurotrophic 

growth factor BDNF by microglia and a simultaneous increase of IL-6 (Hjorth E et al. 2010).  
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4.6. Interferon β 

IFN-β belongs to the type I subgroup within the interferon family. Interferons represent a group of 

multifunctional cytokines which exert antiviral, antiproliferative and immunomodulatory properties. 

The most important members of the interferon family in humans include the type I interferons α 

(IFN-α) and β (IFN-β) and the only known member of the type II interferon subclass, interferon γ (IFN-

γ) (De Veer MJ et al. 2001). IFN-α is used for therapy of viral infections as chronic hepatitis B and C 

and in some cancer types such as the Kaposi sarcoma (Bekisz J et al. 2004). IFN-β is the most popular 

treatment for multiple sclerosis (MS) though its mechanism of action is not fully understood (Axtell 

RC et al. 2008). In general interferons mediate their effects by induction of gene transcription of their 

target genes. More than 300 interferon-stimulated genes (ISGs) have been identified. ISG products 

are the primary effectors of IFN response and they confer their pleiotropic biological functions for 

instance in mediation of immunity, inflammation, antigen processing and presentation, cell 

signalling, transcription, protein degradation and mediation of apoptosis (De Veer MJ et al. 2001).   

IFN-β has been shown to penetrate the BBB and to exert its biological activity in primate brains 

(Malik O et al. 1998). The first licensed human IFN-β, interferon β-1b (Betaferon) is used in the 

treatment of relapsing- remitting MS where it reduces the frequency of clinical exacerbation (Bekisz J 

et al. 2004).  Due to the observed beneficial effects of IFN-β in MS, the effects of IFN-β on glial cells 

and inflammation have been studied in multiple studies, mainly in vitro. Despite possible differences 

in glial cell response between species, the findings outline effects and mechanisms of IFN-β with the 

potential to modulate pathological processes within the CNS (Malik O et al. 1998). 

All type I interferons bind to a common surface receptor, the human IFN-α receptor (IFNAR) through 

which they induce multiple signalling pathways (Bekisz J et al. 2004, Kim MO et al. 2002). In 

microglia, IFN-β can activate NFκB, AP-1 and the JAK/STAT signalling pathway, which suggests 

complex immunomodulatory effects of IFN-β. Amongst the pleiotropic biological effects of IFN-β in 

the CNS, are the inhibition of IFN-γ actions (as the induction of MHC class II expression on glial cells 

and the up-regulation of iNOS in astrocytes for instance) (Kim MO et al. 2002). IFN-β can further 

promote the integrity of the BBB and reduce infiltration of peripheral immune cells into the CNS 

(Benveniste EN et al. 2007). IFN-β has been found to inhibit the amplification of inflammatory 

stimulus via epitope spreading that involves the extension of an immune response against multiple 

epitopic structures of an antigen (Axtell RC et al. 2008). The data of IFN-β affecting chemokine 

expression is controversial. Some in vitro studies suggest that IFN-β induces expression of microglial 

chemokines including RANTES, MIP-1α, MIP-1β (Kim MO et al. 2002), whereas the majority of studies 

describe a reduced microglial production of chemokines (Axtell RC et al. 2008).  
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Concomitantly, Hall et al. present an antagonizing effect of IFN-β on chemokines. They examined 

closely the immunomodulatory effects of IFN-β in neonatal rodent microglia and the interaction of 

IFN-β with IFN-γ. The data showed that IFN-β counteracted the proliferative stimulus of certain 

chemokines and most importantly inhibited proliferation of microglia by 60%. In contrast, IFN-β up-

regulated the number and density of microglial Fc-receptor expression by almost three fold, which 

increased their phagocytotic capability. Furthermore, they depicted that IFN-β significantly reduced 

the ability of IFN-γ to promote microglial cytotoxicity through mounting of a respiratory burst. The 

effect of IFN-β on peripheral lymphocytes includes modulation of cytokine release. IFN-β decreases 

secretion of pro-inflammatory cytokines such as IFN-γ and TNF-α and on the contrary increases anti-

inflammatory cytokines like TGF-β1 and IL-10 from activated T-cells (Hall GL et al. 1997).  

These findings are in line with effects of IFN-β on human lymphocytes. IFN-β has been reported to 

inhibit proliferation of human lymphocytes, to modify their expression of membrane receptors and 

the pattern of cytokine secretion. Secretion of IFN-γ, TNF-α and IL-13 was inhibited, whereas 

elevated secretion was shown for IL-2 and as well a nearly four-fold increase of IL-10 (Billiau A 2006).  

Malik et al. demonstrated a similar effect of IFN-β as described by Hall et al. Growth factors including 

TNF-α, IFN-γ and IL-1β could stimulate astrocyte proliferation. Malik showed furthermore that 

mitogenic proliferation by growth factors of astrocytes was inhibited by IFN-β dose-dependently. The 

inhibitory effect of IFN-β was limited to mitogen induced proliferation whereas the basal number of 

astrocytes was not reduced. Malik suggests that IFN-β reduces astroctytosis and promotes 

endogenous repair (Malik O et al. 1998). 

Finally, Billiau reviews the role of type I interferon as a key component of innate immunity. 

Combined findings from clinical studies in MS, experimental animal models and in vitro studies 

suggest IFN-β involvement in regulation of innate and even acquired immunity, by regulating 

recruitment and secretory activity of leukocytes during inflammation (Billiau A 2006). 
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5. AIM OF THE STUDY 

This study was carried out to investigate the immunomodulatory effects of interferon β (IFN-β) on 

the pathogenesis of Alzheimer’s disease in vivo in a transgenic APP mouse model.  

The work was based on the preliminary findings from in vitro studies, where mononuclear 

phagocytes (monocytes/microglia) showed an increase of bead phagocytosis following treatment 

with IFN β. This study aimed to clarify whether similar effects occur in vivo in order to evaluate the 

potential of IFN β as a novel therapeutic option for patients with AD. 

The study was based on the widely accepted paradigm that AD pathology originates from the 

generation of amyloid β peptides and their deposition to plaques in the interplay with a widespread 

inflammatory response. As outlined earlier, AD pathogenesis starts years before the first symptoms 

occur and the activation of the inflammatory processes might precede the formation of plaque 

pathology. 

The study aimed to answer following questions: 

 Does treatment with IFN-β reduce the formation of amyloid plaques in the early stage of the 

disease? 

 Does treatment with IFN-β affect the activation of inflammatory cells and their association 

with AD hallmark lesions? 

 Does treatment with IFN-β reduce structural changes in the context of disease-related 

neuronal cell death including axonal injury and the degree of demyelination? 

 Does IFN-β affect the cytokine milieu? 

 Does IFN-β treatment alter the amount or distribution of soluble and oligomeric Aβ? 

 

Overall the study should help to investigate a new therapeutic approach for AD. 
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6. MATERIALS AND METHODS 

 

6.1. Reagents and chemicals 

 

Reagent/ chemical Manufacturer City Country 

2-Methylbutan Reagent Plus Sigma-Aldrich Steinheim  Germany 

3,3’-Diaminobenzidine 
tetrahydrochloride hydrate 97% 

Sigma-Aldrich Steinheim  Germany 

Aceton Hedinger Stuttgart Germany 

Ammonia solution 32% VWR international Briare France 

Aquatex Merck Darmstadt Germany 

Betaferon Bayer-Schering 
Pharma 

Berlin Germany 

Casein Serva Heidelberg Germany 

Chemiluminescence Reagent Plus 
(Western LightningTM) 

Perkin Elmer Waltham USA 

Citric acid  Merck Darmstadt Germany 

Disodium hydrogen phosphate  
(Na2HPO4) 

Merck Darmstadt Germany 

Entellan  Merck Darmstadt Germany 

Formaldehyde solution 37% Appli Chem GmbH Darmstadt Germany 

Formic Acid Merck Darmstadt Germany 

Guanidinium thiocyanate Amresco Solon USA 

Hydrochloric acid (1N) Pharmacy of the 
university hospital 
Homburg 

Homburg Germany 

Hydrochloric acid 32% Roth Karlsruhe Germany 

Hydrogene peroxide 30% (H2O2) Sigma-Aldrich Steinheim  Germany 

Isopropylalkohol Hedinger Stuttgart Germany 

Levamisol hydrochlorid Sigma Deisenhofen Germany 

Lithium carbonate Sigma-Aldrich Steinheim  Germany 

Luxol Fast Blue Department of 
neuropathology of 
the university 
hospital Homburg 

Homburg Germany 

Mayer’s hemalum solution Merck Darmstadt Germany 

Naphthol As-Bi-phosphate Sigma-Aldrich Steinheim  Germany 

New-Fuchsin solution 5% Sigma-Aldrich Steinheim Germany 
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Nitric acid (65%) Merck Darmstadt Germany 

N-N-Dimethylformamide 
(N-N-DMF) 

Sigma-Aldrich Steinheim  Germany 

Periodic acid  Merck Darmstadt Germany 

Potassium chlorid (KCl) Merck Darmstadt Germany 

Nitrocellulose membrane (0,2µm) 
Protan Ba112 

Whatman Springfield Mill United 
Kingdom 

Protease inhibitor cocktail Roche Mannheim  Germany 

Protein A-Sepharose (Fast Flow) Amersham 
Pharmacia Biotech 

Little Chalfont United 
Kingdom 

Protein G-Sepharose (Fast Flow) Amersham 
Pharmacia Biotech 

Little Chalfont United 
Kingdom 

Rotisol Roth Karlsruhe Germany 

Schiff’s reagent Merck Darmstadt Germany 

pre-cast 10-20% SDS-polyacrylamide 
Tris-Tricine gel 

Anamed Heidelberg  Germany 

Silan A 174 Merck Darmstadt Germany 

Silver nitrate ROTH Karlsruhe Germany 

Sodium chloride (NaCl) Pharmacy of the 
university hospital 
Homburg 

Homburg Germany 

Sodium dihydrogen phosphate 
monohydrate 
(NaH2 PO4 x 1H20) 

Merck Darmstadt Germany 

Sodium hydricum in rotulis Caelo (Caesar & 
Loretz GmbH) 

Hilden Germany 

Sodium hydroxide (NaOH) (10N) Pharmacy of the 
university hospital 
Homburg 

Homburg Germany 

Sodium nitrite Merck Darmstadt Germany 

Sodium thiosulfate (Na2S2O3) Sigma-Aldrich Steinheim  Germany 

Tissue-tec OCT compound Sakura Finetek 
Germany 

Staufen Germany 

Tris  
(Trisbase) 

Roth Karlsruhe Germany 

Triton X-100 Merck Darmstadt Germany 

Trizol LS Reagent Invitrogen Paisley Scotland 

Tween 20 Roth Karlsruhe Germany 
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6.2. Antibodies 

 

Antibody Company City  Country 

AP goat anti mouse Dako Glostrup Denmark 

HRP goat anti rabbit (W401B) Promega Madison USA 

Mouse anti human -amyloid clone 6F/3D Dako Glostrup Denmark 

Rabbit anti human GFAP Dako Glostrup Denmark 

Rabbit anti Iba1 Wako Osaka Japan 

Rabbit anti mouse HRP Pierce Rockford USA 

WO2 (Anti-Amyloid β)  
provided by T. Hartmann 

   

 

6.3. Buffers and solutions 

 

0,05% lithium carbonate 1000ml 
0,5mg 

distilled water 
lithium carbonate  

0,2% Casein  1 litre  
2g  
warmed 
add 1ml  
 
 

PBS  
casein  
until complete dissolution  
Tween 20 
 
aliquot by 50ml  
and stored in freezer at -20°C 
 

Anesthetic cocktail  
 
 
425mg 
3,3ml 
1,75ml  
 
1,2ml 
add  

ingredients mixed on stirrer plate using 
magnetic stirrer 
 
chloral hydrate 
propyleen glycol 
6% sodium pentobarbital solution 
(Mebunat) 
absolut ethanol 
distilled water until the total volume of 
10ml 
 
stored in dark at 4°C  
 

Interferon stock solution 300µg 
 
1,2ml 

Interferon beta-1b (9,6 billion units; 
Betaferon) 
0,9% sodium chloride 
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Betaferon solution 106  

units 

(per mouse) 

125µl 
75µl 

Interferon stock solution 
0,9% sodium chloride 

Betaferon solution 104 units 
(per mouse) 

1,25g 
198,75µl 

Interferon stock solution  
0,9% sodium chloride 

Citrate buffer (100mM) 
(10x) 

1l 
21,014g   
15-20 pellets 
 
 

Water 
citric acid  
NaOH  
 
pH adjusted with NaOH 10M until  
pH 6.0 

DAB substrate solution 
(3,3´diaminobenzidine)  

1ml 
25mg 
49ml 
 

20l 

TBS 
DAB  
TBS 
 
H2O2 (32%) just before use 

developer for Bielschowsky 
staining 

100ml 
20ml 
0,5g 
1 drop 

distilled water 
formaldehyde 
citric acid 
nitric acid 
 
stored in 4°C 
 

Buffer for ECF 50mM 
150mM 
0.01% 
0.1% 
2mM 
1mM 
1x 

Tris-HCl (pH 7.4) 
NaCl 
NP-40 
SDS 
EDTA 
Phenylmethylsulfonyl fluoride 
Protease inhibitor cocktail (Roche) 

Guanidinium thiocyanate 
(4M) 

236,32g 
500ml 
 

guanidinium thiocyanate 
distilled water 
dissolve by heating to 50°C 
 

Hydrochloric acid (HCl)  
(2mM) 

999ml 
1ml 

distilled water 
HCl (2molar) 

Buffer for ICF 50mM 
150mM 
0,1% 

Tris-HCl (pH 7.4) 
NaCl 
Triton X-100 

Luxol-Fast-Blue solution 
(0,1%) 

1g 
1000ml 
5ml 

Luxol fast blue 
Alcohol (95%) 
Acetic acid (10%) 



32 
 

Buffer for MF 50mM 
150mM 
0,5% 
3% 
1% 
1mM 
1mM 
1x 

Tris-HCl (pH 7.4) 
NaCl 
Triton X-100 
SDS 
Deoxycholate 
EGTA 
Phenylmethylsulfonyl fluoride 
Protease inhibitor cocktail (Roche) 

New Fuchsin substrate 
solution  

50ml 
 
20-25mg  
 
 
+ solution B: 

300l 
14mg 
 
+ solution C : 
10mg 

250l 

100l 

TBS pH 8,8  
(pH adjusted with NaOH 1M) 
Levamisole 
dissolution  
 
 
N-N-DMF 
As-Bi-phosphate 
 
 
Na nitrite 
Distilled water 
New-Fuchsin solution 5% 
 
filtration 
 

PBS (10X) 
 

400g  
10g  
71g  
69g  
add 5 litre 

NaCl 
KCl  
Na2HPO4 
NaH2 PO4 x 1H20 
distilled water 
 

Periodic acid (1%) 100ml 
1g 

distilled water 
periodic acid  

Silver nitrate (20%) 200ml 
add 40g 

distilled water 
silver nitrate  

TBS (10X) 
 

302,5g 
425g  
pH adjusted  
 
add 5 litre 
 

Trisbase 
NaCl 
with hydrochloride acid 32% until  
pH 7,4-7,5  
distilled water 
 

TBST 1litre 
5ml 

TBS 
Tween 20 
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 6.4. Equipment 

 

3D rising table 
(Rocky 3D ) 

Frobel Lindau Germany 

Cooling plate Thermo Electron 
Corporation 

Erlangen Germany 

Dako Pen Dako Glostrup Denmark 

Eclipse E600 fluorescence 
microsocope 

Nikon Alzenau Germany 

Embedding centre 
(Leica, module EG1150 H) 

Leica Nussloch Germany 

Hotplate stirrer Heidolph Kehlheim Germany 

Incubator Heraeus Instruments 
GmbH 

Hanau Germany 

Microtome 
(Leica, SM2010 R)  

Leica Nussloch Germany 

Microwave oven Sharp Hamburg Germany 

Scale (ALS120-4) Kern Balingen Germany 

Stretching Table  Medite Burgdorf Germany 

Tissue processor 
(Leica TP 1020) 

Leica Nussloch Germany 

 
 

6.5. Experimental assignment 

 

6.5.1. Animals 

 

The animal experiments were performed in the facilities of the national animal centre of Kuopio, 

Finland according to the local ethical regulation. Male heterozygous transgenic ApdE9 mice and their 

nontransgenic littermates (referred as wild-type mice from now on) were used in this study. APdE9 is 

a transgenic mouse model that allows investigating effects of AD pathogenesis and pathology in 

conditions similar to those present in an AD brain. The ApdE9 mouse model is known to mimic AD 

pathogenesis well and the mice brains develop some of the characteristic AD lesions. These AD-like 

alterations include age dependent A-plaque formation. The A-plaques begin manifesting from 

three months of age (Abcam. Fixation and permeabilization in IHC/ICC) and six months old mice bear 
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already a significant A-plaque burden (Jankowsky JL et al. 2004). The mice will develop also neurite 

dystrophy and synaptic dysfunction, which are both typical symptoms of AD pathology. Altogether 

these pathologies lead to gradual impairment of the cognitive functions of the mice (Minkeviciene R 

et al. 2009). The APdE9 mice harbour two separate transgenes that are responsible for the AD 

pathogenesis: the APPswe and PS1dE9 transgenes. The swedish mutation (APPswe) leads to 

increased levels of the APP. APP furthermore acts as substrate for cleavage by an enzyme complex 

that includes -secretase to produce A peptides. The APdE9 mouse strain genome contains further 

the PS1dE9 transgene, which is a deleted form of PS-1 gene. PS1 is a component of the -secretase 

complex, which results in an altered activity of the -secretase enzyme. The -secretase cleavage of 

APP can produce either A-40 peptid or a longer A-42 peptid, the latter being more prone to A 

plaque formation. In case of mutated PS1, a condition known also to cause early onset AD, the ratio 

of A40:42 is shifted in favour of the more pathogenic A42 (Jankowsky JL et al. 2004). The APPswe 

and PS1dE9 transgenes cointegrate and cosegregate as a single locus in the ApdE9 mouse genome 

(Minkeviciene R et al. 2009). The mouse strain was originally purchased from the John Hopkins 

University Baltimore, MD, USA were the line was maintained in a hybrid background of C3HeJ x 

C57BL6/J F1. The strain has been backcrossed to C57BL6/J background for several generations in the 

National Animal Centre of Kuopio, Finland (Minkeviciene R et al. 2008). The animals were housed in 

single cages and in controlled conditions: temperature 22°C, humidity 50-60 % and an artificial 12 

hours day/night cycle. Food and water were provided ad libitum. 

6.5.2. Treatment regime 

A total amount of 29 mice were involved in the study.  

21 ApdE9 transgenic mice were evenly divided into three groups: The first group received human 

Interferon  (betaferon, Bayer-Schering Pharma, Berlin, Germany) intraperitoneal (IP) injections with 

a dose of 104 units. The second group received 106 units of Infereron  and the third group was 

injected with PBS. Additionally eight wild-type mice were separated into two groups: the first group 

received 106 units of IFN- (IP) and the second group PBS injections. Findings from various studies of 

multiple sclerosis demonstrate human IFN-β to be effective in different types of rodents (Maier K et 

al. 2006, Sättler MB et al. 2008, Axtell RC et al. 2010). These findings, indicating cross reactivity of 

IFN-β between species enabled the application of human IFN-β in mice of this study.  

The experiment began when the mice reached the age of seven weeks. Injections were carried out 

three times per week enabling the animals to recovery for at least one day. The whole treatment 

period lasted eight weeks. Betaferon was dissolved into saline. Each mouse received a volume of 
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200µl applied intraperitoneally. As the potential side effects were unknown, mice received only half a 

dose during the first week. 

Over the whole period of the study the condition of the mice were assessed and monitored by 

appearance, behaviour and weight change.  

6.5.3. Perfusion 

The animals were anesthetized by intraperitoneal injection of a pentobariturate-chloralhydrate 

cocktail (see table 3.4). The infusion needle was placed to the left ventricle of the beating heart and 

the right atrium was opened. Perfusion pump enabled the constant infusion of saline for 5 minutes 

by a speed of 10 ml/min. The harvesting of the brains was proceeded discriminatively accordingly to 

the subsequent analyses from this point on. Brain samples of each treatment group were collected 

for RNA-analysis, western blotting and immunohistochemistry (IHC) stainings on paraffine and cryo 

tissue. The brains for RNA-analyses and western blotting were rapidly removed after perfusion with 

saline and divided into the two hemispheres by a cut through the corpus callosum. One hemisphere 

of the brain was put into a microcentrifuge tube containing 1 ml of trizol and stored in –80°C until 

the real-time PCR analysis was performed. The corresponding hemispheres were preserved for 

western blotting analysis by storage in pure microcentrifuge tubes at -80°C. 

The brains that were intended to use for IHC analysis on cryo and paraffine sections were perfused 

with saline for 5 minutes and subsequently with 4% paraformaldehyde for 9 minutes.  

The brains for the analysis on cryo tissue were removed, cut in three blocks, embedded in Tissue-tec 

and frozen in an isopentan bath in –80°C.  

6.6. Preparation of the material for histological analysis 

6.6.1. Fixation 

The aim of the fixation is to prevent the process of autolysis and degradation by bacteria. However, 

the effect on cellular and subcellular structures is aimed to be minimal in order to permit antibodies 

to access the antigene structures which are transformed into an immobilised state upon fixation. As 

there is neither a method nor fixating agent available that simultaneously meets both criteria 

perfectly, all methods of fixation influence the IHC staining and have an impact on the qualitative and 

quantitative evaluation of the staining (ICH WORLD LLC. Immunocytochemistry Methods, Techniques 

and Protocols; Abcam. Fixation and permeabilization in IHC/ICC). 
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Fixation agents are classified into two categories: organic solvents and cross-linking reagents. For 

example alcohol and acetone belong to a group of organic solvents, which remove lipids, dehydrate 

cells and precipitate proteins on the cellular architecture. The fixating agent used in this experiment, 

paraformaldehyde, is a so called cross-linking reagent. It forms intermolecular bridges primarily at 

the sides of free amino groups and thus causes bonding between the proteins. It is thought to 

preserve the cellular structure well but it can reduce the antigenicity as the cross-linking can obstruct 

also the AB binding site. Hence it necessitates the employment of antigen retrieval techniques prior 

to AB incubation upon IHC staining. This step becomes particularly important if a long fixation time 

has been applied.  

In this experiment the paraffine embedded brains for IHC analyses were first perfused with saline 

and then with 4 % paraformaldehyde. The brains were stored in jars with 4 % paraformaldehyde and 

transported to the University of Saarland where the embedding into paraffine was performed. 

6.6.2. Embedding 

In order to cut the brain samples into thin sections without damaging the microstructure of the 

tissue it is necessary first to embed the brains into blocks of paraffine. Hot, liquid paraffine 

permeates the tissue and allows cutting of thin slices after hardening. Complete penetration by 

paraffine can be achieved thorough dehydration of the tissue beforehand (Sternfeld T 2002). 

The brains were put into separate labelled plastic cassettes and placed in a tissue processor (Leica TP 

1020). This device passes the cassettes through a series of containers in an automated manner. The 

course started with isopropyl alcohol solutions of increasing concentration (50 %, 70 %, 80 %, 80 %, 

96 %, 96 %, 100 % and 100 %) lasting 570 minutes. The samples were transferred into two container 

of rotisol (2 x 90 minutes) and finally into two container with paraffine (2 x 105 minutes) which 

completed the course. The plastic cassettes with the dehydrated brains were first moved into the 

paraffine reservoir of the embedding centre (Leica, module EG1150 H). Each brain was divided into 

three blocks by coronal slicing through the frontal lobe and at the level of cerebellum and placed, the 

cut site downwards in a metal mould. The moulds were filled with hot paraffine and the plastic 

cassette, carrying inscription naming the sample, was attached on top. The metal moulds were 

removed after paraffine hardening and the paraffine blocks were stored in room temperature until 

sectioning.  
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6.6.3. Sectioning 

For IHC analysis it is crucial to perform the staining on sections that are as thin as possible but 

simultaneously free from creases.  

To create even sections of 1 µm and 2 µm thickness a sliding microtome (Leica, SM2010 R) was used. 

The paraffine blocks were placed on a cooling plate (Thermo Electron Corporation) at about - 26°C 

for hardening for at least 30minutes prior to sectioning. The blocks were clamped on top of the rigid 

platform and manually adjusted to the orientation of the blade. The sledge containing the blade was 

moved through the tissue by smooth manual drive and using as constant speed as possible. The 

resulting section was transferred with a brush tip from the blade into a water filled cup while further 

serial sections of the tissue were prepared. Each section was then shortly placed in a hot water bath 

for flattening of the paraffin embedded brain tissue, before mounting on labelled object slides. The 

sections were ironed carefully with absorbent paper, dried and placed in an incubator at 60°C over 

night. The slides were stored in room temperature until the stainings were performed.  

6.7. General principle of immunohistochemistry  

IHC is a method for identification of cellular structures and tissue components (e.g. proteins) based 

on the principle of antigen-antibody recognition. Any biomolecule (most often proteins and 

polysaccharides) can act as an antigen (AG), which is bound by an AB via the antigenic determinant, 

the epitope (Boenisch T 2001).  

6.7.1. Antibodies 

Two AB classes can be distinguished in regards of production and their characteristics:  polyclonal 

and monoclonal AB’s. 

Polyclonal AB’s are generated in animals upon an immune response due to the administration of an 

AG. The AB, which are subsequently obtained via blood samples have been produced by different 

plasma cells and thus are immunochemically dissimilar. They represent a heterogeneous mix of AB’s 

reacting with various epitopes on the AG they have been raised against. In contrast, monoclonal AB’s 

are products of an individual clone of plasma cells. An immune response is induced in an animal and 

its’ B lymphocytes are harvested from spleen or lymph nodes. The fusion of B lymphocytes with non-

secreting myeloma cells results in the generation of hybridoma, which are cultured, tested and 

propagated. The AB’s produced by the clones are chemically identical. They possess a high specificity 
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as they bind a particular epitope on the AG they have been raised against. (Boenisch T 2001, 

Sternfeld T 2002). 

6.7.2. Methods of antigen detection 

Several methods for antigen detection are available. The direct method utilises a primary AB that is 

conjugated with an indicator molecule which most often consists of an enzyme. The enzyme-labelled 

primary AB reacts with the AG in the tissue. The incubation is followed by the removal of unbound 

AB’s through a washing step. Application of the substrate, a colourless chromogen, initiates a 

catalytic reaction by the enzyme which results in a staining at the site of the AB and thus shows the 

locus of the antigenic structure. The results can be attained quickly and nonspecific reactions are 

limited. Based on this technique, further methods have been developed in order to increase the 

sensitivity for the antigenic structure recognition through signal amplification. The two-step indirect 

method uses a secondary AB that is labelled with the enzyme. It is directed against the unlabelled 

primary AB that has been generated in a different species. The secondary AB can react with several 

diverse epitopes of the primary AB and thus more enzyme molecules are attached to the target site. 

The application of the substrate will result now in a more intensive dye. Cross reactions between the 

secondary AB and the tissue can cause more non-specific staining than in the direct method. To 

reduce unspecific background staining a protein blocking step has to be conducted before AB 

incubation. IHC staining protocol can be further modified by applying any number of linking 

antibodies between the primary AB and the enzyme-labelled one in order to achieve even higher 

sensitivity. The detection of two or more targets on one slide by a multiple staining procedure is 

possible and has been carried out in this experiment (Boenisch T 2001, Kumar GL et al. 2009, 

Sternfeld T 2002). 

6.7.3. Immunoenzymatic staining 

The dye at the site of the antigenic structure is a result of the enzymatic reaction in which a 

colourless chromogen acts as electron donor and is converted into a coloured end product upon its 

oxidation. The enzymatic activity is depending on the concentration of enzyme and substrate and can 

be further influenced by various environmental factors, such as salt concentration, pH, buffers, 

temperature and light.  

AB’s are predominantly linked to alkaline phosphatase (AP) and horseradish peroxidase (HRP), both 

of which have been employed in this project. 
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AP is an enzyme that is endogenously present in humans and mammals where it catalyses the 

hydrolysis of phosphate groups from naphthol phosphate esters. This reaction liberates phosphates 

and phenols. The free phenols couple with diazonium hydroxide and produce an insoluble azo dye 

that precipitates at the site of the bound AB (Kumar GL et al. 2009, Loveless A et al. 1949)  

In this experiment freshly prepared New Fuchsin substrate solution provided the substrate for the 

reaction, giving an insoluble red end product of high staining intensity.  

HRP is an enzyme that has been isolated from the horseradish plant. An iron-containing heme group 

represents the active site of the enzyme which forms a complex with hydrogen peroxide. The 

catalysis of hydrogen peroxide into water and oxygen by HRP demands the presence of an electron 

donor as driving force of the reaction. The chromogen provides the electrons and in doing so itself 

becomes oxidated, forming an insoluble coloured end product (Boenisch T 2001). 

3,3’ Diaminobenzidine (DAB) has been used in this experiment as the chromogen for the reaction 

with HRP and its’ oxidation resulted in a brown dye that is highly insoluble in organic solvents. 

6.7.4. Controls 

Positive and negative controls are essential in every IHC staining for validation and of the results. 

Polyclonal AB’s can react with unspecific tissue components as they are directed against different 

epitopes. Even though this effect is reduced by the use of monoclonal antibodies they bare the risk of 

false positive staining by cross-reactivity due to high similarity between different epitopes (Kumar GL 

et al. 2009, Sternfeld T 2002).  

The positive control confirms the functionality of the staining protocol, and tests the sensitivity of the 

used antibodies for the antigenic structure (ICH WORLD LLC. Introduction to Immunohistochemistry). 

In this study one slide per staining was selected from the laboratory storage that was known to 

express the target epitope.  

A negative control excludes false positive staining due to unspecific binding and cross reactivity of 

antibodies (ICH WORLD LLC. Introduction to Immunohistochemistry). In this experiment one slide per 

staining was selected that had been processed identically with the actual samples. This negative 

control was incubated with plane buffer and serum solution lacking the primary AB whereas the 

secondary AB was applied normally. 
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6.8. Staining by immunohistochemistry  

A staining by IHC follows a general regime consisting of: deparaffinization, antigen retrieval, blocking, 

incubation with the primary and secondary AB’s, development of the dye and counterstaining before 

mounting. The slides are washed thoroughly with buffers in between of each step of the course.  

In this work the washing step consisted of a repeated rinsing in TBS buffer and a third wash in TBST 

buffer. 

6.8.1. Deparaffinization 

The fixated tissue was dehydrated and embedded into paraffine in order to prepare thin slices on 

object plates. For permeation by the water soluble AB’s the tissue has to be deparaffinised and 

rehydrated in a descending series of isopropyl alcohol solutions (Sternfeld T 2002).  

In this work, the sections were kept in rotisol 2 x 5 minutes, followed by 2 x 5 minutes in 100 % 

isopropyl alcohol. The sections were transferred through a series of isopropyl alcohol water solutions 

of 96 %, 70 % and finally 50 % concentrations, where they stayed for 2 minutes in each and finally 

they were immersed in a water container until the antigen retrieval step. 

6.8.2. Antigen retrieval 

The changes in the molecular structure of the tissue due to the fixation affect also the antigenic 

determinants. Those changes impair the binding between the AG and its’ AB and thus make it 

necessary to bring the epitopes into their original conformation in a process referred as antigen 

retrieval. Several factors contribute to the changes induced by the fixation, such as pH, temperature, 

the used tissue, the fixating agent and the duration of fixation. Thus there exists no universal 

technique for antigen retrieval but various methods can be used solitary or in combination. The most 

common techniques include enzymatic treatments of the tissue and the heat-induced epitope 

retrieval (HIER), the latter one being mainly used in this experiment. Proteolytic enzymes such as 

Trypsin, Proteinase K and Pepsin break the intermolecular bonds caused by fixation and thus improve 

the sensitivity of the staining. The principle of HIER is based on the effect of energy transmission to 

the tissue, which is high enough to break the cross-linking between the proteins. The source of heat 

is irrelevant as long as temperatures over 100°C are generated, and microwave oven, water bath, 

autoclave and steamer are widely used. Due to the inverse relationship of temperature and exposure 

time they have to be chosen carefully in order to avoid damage of the tissue but to achieve full 

recovery of the antigenic structures. The results can be optimised in both techniques of antigen 
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retrieval by employment of buffer solution with selected pH which aid to maintain the restored 

conformation (Sternfeld T 2002, ICH WORLD LLC. Protocol Database, Antigen Retrieval Protocols). 

In this study, the slides were placed either into a plastic container with 2 mM HCl or 10mM citrate 

buffer with pH 6, respectively. The heat was induced in repeated sessions of 3 minutes by a 

microwave oven of 560 Watt. The buffer was refilled between each step and after the last boiling the 

slides were carefully cooled down with water. 

6.8.3. Blocking 

Non-specific background staining is characterised as a uniform staining throughout the tissue despite 

the presence of the antigenic structure. One reason for background is non-immunological bonding 

between the specific immune sera with free binding sites within the tissue due to hydrophobic and 

electrostatic forces. This effect can be reduced by blocking of free binding sites with normal serum 

(Kumar GL et al. 2009, ICH WORLD LLC. Introduction to Immunohistochemistry). 

In this experiment, unspecific background staining was blocked using a solution of 0.2 % casein, 

which was applied before primary AB incubation. A washing step with TBS and TBST followed the 

procedure. 

False positive staining can also result from endogenously present enzymes which react with the 

chromogen regardless an AB binding. For that reason endogenously present enzymes that could 

interfere with the staining have to be blocked (Kumar GL et al. 2009, ICH WORLD LLC. Introduction to 

Immunohistochemistry). 

The endogenous AP was inhibited during the stainings of this experiment by levamisole which is a 

component of the New Fuchsin substrate solution for AP-linked AB development. 

Endogenous peroxidase reacts with DAB substrate in HRP-linked AB development. The sections 

where HRP-conjugated secondary AB was used were therefore pretreated with hydrogen peroxide 

and washed prior to primary AB incubation. 

6.8.4. Antibody incubation 

The quality of the IHC staining is influenced by a multitude of variables during the AB incubation. 

These include the AB dilution, the diluent, the duration of incubation and the temperature. The 

optimal dilution of the primary AB is of great importance to achieve a staining which is free of AB 
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precipitation but shows a maximal “signal-to-noise ratio”, that is a peak in the dye intensity while the 

background staining is only minimally present. The optimal concentration of the primary AB depends 

on the density of AG in the tissue and the affinity of the AB to the AG. AB dilution, incubation time 

and temperature are mutually dependent. Long incubation periods allow a high dilution of AB and 

also AB’s with lower affinity can bind enough AG to give visible signal and reach equilibrium between 

bound and free AG. At high temperatures, such as 37°C the equilibrium is reached quicker allowing 

higher AB dilutions whereas long incubation periods should be performed in low temperature and in 

a humified chamber to avoid evaporation and to provide a stable milieu. The binding between the AB 

and the epitope of the AG derives from hydrogen bonding, van der Waals forces and ionic 

interactions in particular, which form the combined strength of the bond described as avidity. The 

AG-AB reaction is reversible and depends on the affinity between AG and AB the avidity of the bond 

between them. Therefore a stable environment contributes to the stability of the AG-AB complex 

whereas the risk for its dissociation during incubation and washing steps is increased by high salt 

concentrations and high temperatures as well as very low pH values (Sternfeld T 2002, Boenisch T 

2001). 

In this work, the optimal dilution of primary AB and its’ relation to the secondary AB was selected 

upon an experimental series of dilutions. The slides were dried from buffer and a circle was drawn 

around the tissue with a grease pen (DAKO pen) that builds a barrier for the AB solution due to its 

hydrophobic nature. The diluted primary AB was pipetted into the centre of the circle and the slides 

were stored in a humified chamber and incubated over night at 4°C. 

The secondary AB was applied the next day after careful rinsing of the slides in TBS and TBST. The 

secondary AB incubation took place for one hour in room temperature and unbound AB was cleared 

off in a washing step with TBS and TBST. In all IHC stainings of this work, 90 µl of AB dilution were 

pipetted onto the section for incubation.  

6.8.5. Development of the dye 

AP-linked AB was detected using a freshly prepared New Fuchsin substrate solution. The solution was 

filtrated before applying into the tissue slide container. The container was placed on a rising table 

apparatus to prevent precipitation during the incubation which lasted about 25 minutes, 

immediately followed by thorough rinsing. 

The HRP-linked AB was detected using a freshly prepared DAB solution. The slides were cleaned of 

DAB after 3 minutes in a washing step by TBST.  
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In double stainings containing AP- and HRP-antibodies, the AP-linked AB was developed first. The 

slides were briefly washed in TBS before applying the DAB solution and the final washing step was 

carried out in TBST. 

6.8.6. Counterstaining 

A counterstaining with hematoxylin enhances and visualizes nuclear borders and creates a contrast 

to the stained target (Kumar GL et al. 2009). 

The slides of this work were counterstained with Mayer’s hematoxylin for 15-20 seconds, washed 

with distilled water and finally rinsed under tap water.   

6.8.7. Mounting 

A cover slip is placed over the stained section to protect the tissue and to increase the clarity for 

inspection by microscope. A mounting medium secures the position of the cover slip and preserves 

the stained sections (Kumar GL et al. 2009).  

The end products of the development with DAB and New Fuchsin substrate solutions are insoluble in 

alcohol and other organic solvents. For that reason mounting in either aqueous- or organic based 

medium are applicable.  

In this work the staining based on New Fuchsin substrate solution was mounted in an aqueous 

mounting agent (Aquatex, Merck) directly after counterstaining.  

In contrast, double stained sections based on New Fuchsin substrate solution and DAB were 

dehydrated in an ascending series of isopropyl alcohol baths of 50 %, 70 % and 90 % concentration, 

transferred into 100 % isopropyl alcohol and finally placed in rotisol. An organic based mounting 

medium (Entellan, Merck) was used for attachment of the cover slips. 

6.9. Immunohistochemistry on paraffin sections 

Analysis were performed on brain tissue from six ApdE9 transgenic mice and two wild-type controls. 

The group of ApdE9 transgenic mice had two animals per treatment group. The groups were treated 

either with high dosage of IFN-β (106 units), low dosage of IFN-β (104 units) or PBS. Wild-type 

controls had been treated with high dosage IFN-β or PBS, respectively. 
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6.9.1. IHC staining of amyloid β deposits 

One section per mouse was deparaffinized and rehydrated as described earlier. The HIER method 

was used for antigen retrieval. Slides were placed in plastic container containing 2 mM HCl and heat 

was induced 5 times for 3 minutes by a microwave oven at 560 Watt. After the slides were cooled 

down, they were placed in formic acid for 1 minute for further epitope unmasking. The slides were 

then briefly washed in TBS and TBST and located in a 0.2 % casein solution for minimum 30 minutes 

to block unspecific AB binding resulting background staining.  

The primary AB, was mouse monoclonal AB against human  amyloid clone 6F/3D (Dako, Glostrup, 

Denmark), and it was diluted 1:100 in 0.0 2% casein solution. The primary AB was pipetted onto the 

grease circle surrounding the section and the slides were placed into a humified chamber for 

overnight incubation at 4°C. Unbound AB was removed the next day in a thorough washing step 

before applying the secondary AB. The secondary AB was AP conjugated goat anti-mouse AB (Dako, 

Glostrup, Denmark), and it was diluted 1:200 in 0.2 % casein, applied to the sections and incubated 

for 1 hour in a humified chamber. A washing step preceded application of New Fuchsin solution. The 

sections were counterstained with Mayer’s hematoxylin and mounted using aqueous mounting 

agent (Aquatex, Merck). 

6.9.2. IHC double staining of IBA-1 positive microglia and amyloid β deposits 

The ionized calcium binding adaptor molecule 1 (IBA-1) is a protein that is highly specifically 

expressed in the cells of the monocytic lineage, including microglia and macrophages. Thus, staining 

for IBA-1 can be used for detection of microglia in the CNS (Ito D et al. 1998). 

One section per mouse was selected, deparaffinised and rehydrated. Slides were placed in 2 mM HCl 

for HIER using microwave oven at 560 Watts. The heat treatments were repeated five times (3 

minutes at a time) and the slides were cooled down afterwards. A washing step with TBS and TBST 

took place in between each of the steps described below unless stated otherwise. The slides were 

placed in formic acid for 1 minute and transferred into denaturing 4 M Guanidinthiocyanat for 15 

minutes. The endogenouse peroxidase was blocked with PBS solution containing 0.1 % of hydrogen 

peroxide where the slides remained for 15 minutes. The block of unspecific background in 0.2 % 

casein solution took place minimum 45 minutes prior to primary AB incubation. The mouse 

monoclonal AB against human  amyloid clone 6F/3D (Dako, Glostrup, Denmark) was used again for 

the detection of amyloid β and the used dilution was 1:100. The diluent was optimised for the 

staining of IBA-1 by using a freshly prepared solution of TBST and 0.4 % triton. A polyclonal AB, which 
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is raised in rabbit and directed against IBA-1 (Wako, Osaka, Japan) was used for microglia recognition 

in dilution of 1:200. Incubation took place in a humified chamber at 4°C for overnight. The secondary 

AB for the staining of amyloid β, was AP conjugated goat anti-mouse AB (Dako, Glostrup, Denmark), 

and it was diluted 1:200 in a solution of TBST and 0.4 % triton. The solution contained also the goat 

anti rabbit HRP linked secondary AB (Promega, Madison, USA) in a dilution of 1:500 for the staining 

of microglia. The incubation took place again in the humified chamber and lasted for 1 hour. The AP-

linked AB was detected first by applying New Fuchsin substrate solution. The slides were washed in 

TBS before the HRP conjugated AB was detected using DAB. The sections were briefly washed in TBST 

and distilled water, counterstained with hematoxylin and dehydrated. The slides were immersed for 

about 10 seconds in the isopropyl alcohol solutions of 50 %, 70 %, 90 % concentration and then 

transferred into 100 % isopropyl alcohol (2 x 1 minute) and finally through two rotisol containers (for 

at least 2 minutes) until finally mounted in Entellan.  

6.9.3. IHC doublestaining of GFAP positive astrocytes and amyloid β deposits     

Glial fibrillary acidic protein (GFAP) is an intermediate filament which is found in glial cells such as 

astrocytes in the central nervous system (ICH WORLD LLC. GFAP Antibody Staining Protocol for 

Immunohistochemistry). 

One section per mouse was selected, deparaffinised and rehydrated. The sample slides and control 

slides were placed in citrate buffer (pH6) for HIER using microwave oven at 560 Watts for 5 repeated 

heat treatments (3 minutes each) after which they were slowly cooled down. The slides were moved 

into 100 % formic acid for one minute, washed in TBS and transferred into 0.2 % casein solution for 

blocking of unspecific AB binding for at least 30 minutes prior to primary AB incubation. The mouse 

monoclonal AB against human  amyloid clone 6F/3D (Dako, Glostrup, Denmark) was used again for 

the detection of amyloid β and diluted 1:100 in a 0.02 % casein solution. A polyclonal AB, raised in 

rabbit and directed against human GFAP (Dako, Glostrup, Denmark) was diluted 1:1000. Incubation 

took place in a humified chamber at 4°C for overnight. The secondary AB for the staining of amyloid β 

was the AP conjugated goat anti-mouse AB (Dako, Glostrup, Denmark) and it was diluted 1:200 in a 

0.2 % casein solution. A polyclonal HRP linked goat anti rabbit AB (Promega, Madison, USA) was used 

as a secondary AB for staining of astrocytes in a dilution of 1:400. The incubation in the humified 

chamber lasted for 1 hour. The AP-linked AB was developed first with New Fuchsin substrate 

solution. The slides were then washed in TBS before the HRP conjugated secondary AB was visualised 

with DAB. The sections were briefly washed in TBST and distilled water, counterstained with 

hematoxylin and dehydrated and mounted in Entellan.  
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6.10. General histology of paraffin sections 

Stainings were performed on brain tissue from the six ApdE9 transgenic mice and the two wild-type 

controls, which have been studied also by IHC. The group of ApdE9 transgenic mice consisted of two 

animals per treatment group. The groups were treated either with high dosage of IFN-β (106 units), 

low dosage of IFN-β (104 units) or PBS. Wild-type controls had been treated with high dosage IFN-β 

or PBS, respectively. 

6.10.1. Staining by Luxol fast blue / periodic acid Schiff (LFB/PAS) 

In LFB/PAS staining myelin is stained blue whereas demyelinated areas and the parenchyma show a 

pink staining due to effect of the Schiff reaction (Escher A 2008).  

One section per mouse was selected, deparaffinised in rotisol 2 times for 5 minutes and rehydrated 

in isopropyl alcohol of 100 % and solutions of 96 % and 90 % were they stayed 2 times 3 minutes in 

each. The sections were immediately moved into a coplin jar with 0.1 % Luxol-Fast-Blue solution and 

stored in an incubator at 60°C over night. The deep blue stained sections were rinsed in 90 % 

isopropyl alcohol. Each slide went through a series of mediums for differentiation. The first jar 

contained a solution of 0.05 % lithium-carbonate, followed by 70 % isopropyl alcohol and distilled 

water. The procedure was repeated until the tissue showed staining ranging from light blue to green. 

The slides were then transferred into 1 % periodic acid for 5 minutes, washed in distilled water for 5 

minutes and placed in a light shielded jar containing Schiff’s reagent for 30 minutes. The slides were 

subsequently washed in distilled water and dehydrated by transfer through isopropyl alcohol series 

(70 %, 96 % and 100% in concentration). The slides stayed in each jar for 3 minutes and were finally 

moved into rotisol for 5 minutes before mounting with Entellan. 

6.10.2. Bielschowsky’s silver staining 

The Bielschowsky’s silver staining can be used to detect nerve fibers, axons, neurofibrillary tangles 

and senile plaques (ICH WORLD LLC. Bielschowsky’s silver staining protocol for nerve fibers, axons, 

neurofibrillary tangles and senile plaques). 

One section per mouse was selected, deparaffinised in rotisol 2 times for 10 minutes and rehydrated. 

The slides were placed two times into 100 % isopropyl alcohol for 5minutes and transferred through 

a series of isopropyl alcohol solutions of 96 %, 70 % and 50 % in concentration (2 minutes in each). 

The slides were washed in distilled water, moved into a freshly prepared 20 % silver nitrate solution 

for 20 minutes and again washed in distilled water. Ammonia was added dropwise into the 20 % 
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silver nitrate solution until an appearing precipitate dissolved again. The slides were then moved 

back into the 20 % silver nitrate solution and put into a dark spot for 15 minutes. A developing agent 

for Bielschowsky staining (see table 3.4) was added dropwise to the solution until the colour changed 

into brown. The slides were washed in distilled water, dehydrated and mounted with Entellan. 

6.11. Western blot analysis 

The western blot analysis was carried out by Robert Schomburg.  

Samples contained brain tissue from six ApdE9 transgenic mice and two wild type controls. The 

group of ApdE9 transgenic mice contained two animals per treatment group. Treatment groups were 

high dosage of interferon-β (IFN-β) of 106 units, low dosage of IFN-β (with 104 units) and PBS. The 

two wild type controls had been treated with high dosage IFN-β or PBS, respectively. One 

hemisphere per mouse was subjected for analysis by western blotting. 

The protein extraction was performed by following protocol, resulting in four fractions of a) enriched 

extracellular proteins (ECF), b) enriched cytoplasmic proteins (ICF), c) membrane-associated proteins 

(MF) and d) insoluble material or pellet. The hemispheres were placed in tubes containing the buffer 

for enriched extracellular fluid (see buffers). The probes were mechanically homogenized and placed 

in centrifuge for 5 min at 3,000 rpm at 4°C after which lysates were collected. Buffer for intracellular 

fluid (see buffers) were added to the remaining insoluble material. Lysates of cytoplasmic proteins 

were extracted after mechanically dissociation and centrifugation for 90 min at 13,000 rpm at 4°C.  

Buffer for membrane enriched fraction (see buffers) was added to the remaining insoluble material. 

After gentle agitation on a rotating platform and centrifugation for 90 min at 13,000 rpm, lysate of 

membrane-associated proteins was collected. The remaining pellet was incubated with 20 µl of 70 % 

formic acid, mechanically dissociated with a micropipette, gentle agitated for 1 hour and buffered 

with 380 µl of 1 M Tris-Hcl of pH 8.0. After centrifugation at 13,000 rpm for 90 min the supernatant 

was collected for analysis of the fraction d). Immunodepletion of the fractions were achieved by 

sequential incubation for one hour at 4°C with 40µl of Protein A-Sepharose (Fast Flow, Amersham 

Pharmacia Biotech U.K.) and followed by 40µl of Protein-G-Sepharose (Fast Flow, Amersham 

Pharmacia Biotech U.K.). The supernatants were clarified by centrifuging for 90 min at 13,000 rpm. 

Western blot analyses were performed on SDS-PAGE, pre-cast 10-20 % SDS-polyacrylamide Tris-

Tricine gels (Anamed Heidelberg). For each of the four fractions, two blots were loaded containing 

four samples and four lanes for standards. The standard consisted of increasing dosages of amyloid β 

42 (Aβ-42) of 10 pg, 100 pg, 1 ng, 10 ng and 100 ng. 100 µg of protein lysates of ECF, ICF and MF and 
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11 µg protein of the pellet fraction was resuspended with 4 X Tricine loading buffer and transferred 

to 0,2µm nitrocellulose membranes (Protan Ba112, whatman). Accurate protein quantification was 

attained by applying the bicinochoninic acid (BCA) method, with samples and standards as 

duplicates. Figure 6.1 and 6.2 depict the loading pattern of the blots which was conducted for 

analyses of the four fractions. 

Lane 1 2 3 4 5 6 7 8 9 

 312 
 

315 316 317 Aβ-42 
10 pg 

Aβ-42 
100 pg 

Aβ-42 
1 ng 

Aβ-42 
10 ng 

Aβ-42 
100 ng 

 
Mousetype 

 
ApdE9 ApdE9 ApdE9 ApdE9      

Treatment PBS 
IFN-β 
106 

units 

IFN-β 
104 

units 

IFN-β 
106 

units 
     

 
Figure 6.1 Blot A: The blot A contains four lanes of samples and the Aβ-42 standards. All samples of blot A contain material 
from ApdE9 transgenic mice tissue. The tissue of lane 1 derives from the PBS treatment group, samples of lane 2 and 4 were 
treated with 10

6
 units of IFN-β, the sample of lane 3 derives from the treatment group with 10

4
 units of IFN-β. The standard 

consists of five lanes of Aβ-42 in increasing dosage from 10 pg, 100 pg, 1 ng, 10 ng and 100 ng. 
 
 

Lane 1 2 3 4 5 6 7 8 9 

 368 409 416 427 Aβ-42 
10 pg 

Aβ-42 
100 pg 

Aβ-42 
1 ng 

Aβ-42 
10 ng 

Aβ-42 
100 ng 

 
Mousetype  
 

ApdE9 ApdE9 WT WT 
     

Treatment 
IFN-β 
104 

units 
PBS PBS 

IFN-β 
106 

units 

     

 
Figure 6.2 Blot B. The blot B contains four lanes of samples and the Aβ-42 standards. The sample of lane 1 and 2 contain 
tissue from ApdE9 transgenic mice. The samples of lane 3 and 4 contain tissue from wild type mice. The tissue in lane 1 and 
4 derive from the treatment group with IFN-β of 104 units and 106 units, respectively. The tissue in lane 2 and 3 derives from 
the PBS treatment group. The standard is build up as described for blot A. 

 

The membranes were boiled in PBS for 10 min and blocked in TBST containing 5 % skimmed milk. 

Thereafter W02 antibody was applied in dilution 1:1000. The monoclonal antibody W02, 

manufactured and provided by the group Tobias Hartman, is directed against the amino acid residues 

4-10 of human Amyloid β (Aβ) and constitutes cross-reactivity with mouse tissue. It recognises Aβ 

peptides (4kDa) and displays APP proteins (at 120-105 kDa), its cleavage product APP-CTFβ (15-20 

kDa) as well as Aβ oligomers of various sizes (Ida N et al. 1996). The secondary antibody was HRP 

conjugated rabbit anti-mouse AB (Pierce, Rockford, USA), diluted 1:5000. Finally, the blots were 
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developed with by an ECL detection system (Western Lightning TM, Chemiluminescence Reagent Plus, 

PerkinElmer, Boston, USA).  

6.12. Analysis by real-time PCR 

The real-time PCR analyses were carried out in collaboration with Maryse Letiembre. Samples 

contained brain tissue from six ApdE9 transgenic mice and two wild type controls. The group of 

ApdE9 transgenic mice contained two animals per treatment group. Treatment groups were high 

dosage of interferon-β (IFN-β) of 106 units, low dosage of IFN-β (with 104 units) and PBS. The two 

wild type controls had been treated with high dosage IFN-β or PBS, respectively. One hemisphere per 

mouse was subjected for analysis by real-time PCR of one analysis per sample. 

6.12.1. RNA isolation 

Samples were defrosted, mechanically homogenized and incubated in trizol for five minutes at room 

temperature. 0,2 ml chloroform per 1 ml trizol was added to the samples, vigorously shaken for 15 

seconds and incubated at room temperature for 2-3min. Samples were centrifuged at 12.000 rpm at 

4 °C for 15 minutes and the supernatant containing RNA was collected. RNA was precipitated by 

mixing it with 0,5 ml isopropanol per 1 ml of used trizol, vortexed and incubated at room 

temperature for 10min. Centrifugation was carried out at 12.000 rpm at 4 °C for 10 minutes. After 

removal of the supernatant, the pellet was washed with 75% ethanol, mechanically mixed and 

centrifuged at 7.600 rpm at 4 °C for 5 minutes. RNA was air dried for 10 minutes after which 200 µl of 

nuclease-free water was added and samples mixed for complete dissolve RNA. 

6.12.2. cDNA synthesis 

3 µg RNA was mixed with 1 µl of 10 mM dNTPs, 0,5 µl of random primers and water. After incubation 

at 65 °C for 5 minutes, samples were chilled on ice for 2 minutes and centrifuged for 30 seconds. The 

reaction mixture containing the superscript II reverse transcriptase was added and tubes were stored 

at room temperature for 10 minutes, subsequently incubated at 42 °C for 1 hour and finally heat 

inactivated at 70° C for 10 minutes.  

6.12.3. real-time PCR 

Real-time quantitative PCR was carried by using the Applied Biosystems 7500 Sequence Detection 

Systems. Primers were used for amplification of the following test cDNAs:  tumor necrosis factor α 

(TNF-α), interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-β (TGF-β), glial 

fibrillary acidic protein (GFAP), cluster of differentiation-14(CD14), Toll-like-receptore-2 (TLR-2) and -
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4 (TLR-4), respectively. Treshold cycles (Ct) for each cDNA were detected utilizing fluorescent dye 

Mesa green RT-SY2X-03-WOULR. Treshold cycles from each test cDNA and the control 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) was determined from the same cDNA 

preparations. Ct values of the test cDNAs were normalized to the Ct values of the GAPDH control 

from the same cDNA preparations, given                            . The rate of 

transcription of each test cDNA was determinded by the calculation of 2 (   ).  
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7. RESULTS 

7.1. Amyloid β plaque deposition after IFN-β treatment  

In order to investigate whether treatment with interferon β (IFN-β) affects the degree of amyloid β 

deposition in the brain, amyloid plaques were stained by immunohistochemistry.   

The stained samples were analysed in groups according to the three treatment groups as illustrated 

in Table 7.1. Staining of the wild type mice brain slices did not result in a detectable plaque staining 

(data not shown). One representative picture of each of the stainings is shown in Figure 7.2. 

TREATMENT GROUP MOUSE MODEL TREATMENT 

1 ApdE9 transgenic mice PBS 

2 ApdE9 transgenic mice Interferon beta 104 units 

3 ApdE9 transgenic mice Interferon beta 106 units 

Table 7.1 Classification of treatment groups 

 

Figure 7.1 depicts the number of amyloid β plaques counted from stained brain paraffin slices. 

Considering the small number of animals and stained slices in the experiment, the results obtained 

have to be regarded inconclusive and more qualitative than quantitative in nature. However, in 

respect to the control group (1) the data demonstrate a trend towards a dosage dependent effect of 

IFN-β on amyloid β plaque load. Treatment with low amount of IFN-β (104 units) did not reduce 

amyloid β plaque load. Treatment with the high dosage (106 units) of IFN-β, lead to moderate 

reduction in the number of stained plaque deposits.

 

  Figure 7.1 Amount of amyloid beta plaque, analysed by immunohistochemistry.  
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Figure 7.2 shows the staining pattern of typical amyloid β plaque deposits exemplarily for each 

mouse of the three treatment groups.  

treatment 
group 1 
 
treatment: 
PBS 
 

  
Identification 
number 

389-09 P11 390-09 P4 

treatment 
group 2 
 
treatment: 
IFN-β 
 
dosage: 
104 units 

  
Identification 
number 

385-09 P7 
 

387-09 P5+6 

treatment 
group 3 
 
treatment: 
IFN-β 
 
dosage 
106 units 

  
Identification 
number 

386-09 P9 388-09 P8 

 
Figure 7.2 Staining of plaques of amyloid β by immunohistochemical methods. Development of the AP conjugated secondary 
AB by New Fuchsin substrate solution stains deposits of amyloid in a reddish dye(x 600). 
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7.2. IBA-1 positive microglia at plaque site after IFN-β treatment  

In order to investigate the effect of IFN-β on the activity and expression of inflammatory cells and 

their association with typical hallmark lesions of AD, immunohistochemical analysis of microglia at 

amyloid plaque site were performed.  

The number of microglia surrounding each plaque was counted by microscope. Figure 7.4 shows 

exemplarily one picture per treatment group (column A). In the evaluation IBA-1 positive microglia at 

site of amyloid β deposits (green circle) were distinguished from IBA-1 positive microglia in the close 

surrounding tissue (blue circle). The dimension of the proximate surrounding is defined as the border 

of the visual field as seen in microscope using 600x magnification.  

The ratio microglia/ Aβ plaques was formed in order to compare the number of microglia in relation 

to the plaque count. Thereby differences due to varying numbers of plaques between the animals 

were balanced. Figure 7.3 illustrates the ratios of the three treatment groups. The dark grey vertical 

bars represent the ratios for microglia presence at site of plaques. The light grey vertical bars 

represent the ratios of microglia in the proximate surrounding. The ratios of group one can be 

regarded as reference values as control mice of this group received only PBS injections.  

 

Figure 7.3 The ratios represent the arithmetic means of the microglia count per plaque load of both animals of a treatment 
group. The ratios allow it to compare the number of microglia at sites of plaque deposits (dark grey bar) from those within 
the proximate surrounding (light grey bar) for the different treatment groups.  
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The results showed that the ratio of microglia at site of plaques versus total plaque count increases 

from 0,33 in the control group to 0,38 in the group of low dose IFN-β treatment and up to 0,44 in the 

group that received high dose IFN-β treatment. Respectively, an adverse dosage dependent effect 

can be seen regarding the presence of microglia in the surrounding tissue. Taken the ratio of 1,25 of 

the control group, the ratio decreases slightly to 1,17 in the group of low dose IFN-β and to 0,67 in 

the group of high dose IFN-β treatment. Given the very small numbers of animals and stained slices 

statistically significant results cannot be obtained. However, with increasing dosage of IFN-β the 

microglia seem to shift from unspecific location in the surrounding tissue towards amyloid β plaque. 

(Figure 7.3) 
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Treatment 
group 

A) 
 
Double staining of  IBA 1 positive microglia 
and amyloid β 

B) 
 
Double staining of GFAP positive 
astrocytes and amyloid β 

 
1 

  
Identification 
number 

390-09 P2 390-09 P1 

 
2 

  
Identification 

number 
385-09 P5 387-09 P1 

 
3 

  
Identification 
number 

386-09 P2 386-09 P3 

 
Figure 7.4 Double staining of amyloid β and IBA-1 positive microglia (A) and GFAP positive astrocytes (B), respectively 
 (x 600). 



56 
 

7.3. GFAP positive astrocytes at plaque site after IFN-β treatment  

To study the effect of IFN-β on the presence and activity of inflammatory cells double staining of 

GFAP positive astrocytes and amyloid β was performed. 

Figure 7.4 shows one representative picture from each treatment group (column B). In the evaluation 

GFAP positive astrocytes in direct contact with the amyloid plaques were distinguished from 

unspecific GFAP positive astrocytes within the surrounding tissue.  

The ratio astrocyte presence/Aβ plaque was formed for each of the three treatment groups. The 

results are presented in Figure 7.5. The dark grey vertical bars relate to the ratios of astrocytes in 

direct contact with the plaque formations. The ratios for the astrocyte activity in the surrounding 

tissue are shown by the light grey bars.  

The results showed that the group which received the high dose IFN-β treatment presents an 

increased ratio of astrocyte presence at sites of amyloid β plaques (0,83) and the unspecific activity is 

reduced (0,17) when compared with the control group. However, given the small group size the 

results remain inconclusive.  

 

Figure 7.5 The ratios represent the arithmetic means of the astrocyte count per plaque load of both animals of a treatment 
group. The ratios allow it to compare the number of astrocytes directly at sites of plaque deposits (dark grey bar) from those 
within the surrounding tissue (light grey bar) for the different treatment groups.  
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7.4. Analysis of demyelination after IFN-β treatment  

In order to study the effect of IFN-β on structural changes that occur during the course of AD, the 

degree of demyelination was analysed by histochemical staining with LFB/ PAS.   

Figure 7.6 shows one representative picture from each treatment group and one picture of a wild 

type control. Light microscopic examination of the stained samples showed no difference in the 

degree of demyelination in this experiment.  

 

  
Animal model:  
 
Treatment:  
 
Identification 
number: 

wild type  
 
IFN-β 106 units  
 
391-09 
 
 

transgenic ApdE9 
 
PBS 
 
389-09  

 

  
Animal model:  
 
Treatment:  
 
Identification 
number: 

transgenic ApdE9 
 
IFN-β 104 units 
 
387-09 

transgenic ApdE9 
 
IFN-β 106 units 
 
388-09  

 
Figure 7.6 LFB/PAS staining of ApdE9 transgenic and wild type control mice brain after IFN-β or PBS treatment. In LFB/PAS 
staining myelinated structures (blue) can be distinguished from the demyelinated areas and the parenchyma (pink) 
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7.5. Analysis of axonal integrity after IFN-β treatment 

In order to investigate the effect of IFN-β on structural changes that occur during the course of AD, 

the degree of axonal damage was examined by histochemical staining with Bielschowsky’s silver 

impregnation.   

Light microscopic examination for the degree of axonal damage was performed for distinct areas of 

the brain which are specified in Figure 7.7.  

 

Figure 7.7 Regions of interest for analysis of Bielschowsky’s silver staining. The black frame outlines the dimension of the 
survey picture (a). Structures of interest for the analysis are the edge of a part of the corpus callosum within the red frame 
(b), the white matter zone within the area of the yellow frame (c) and the cortical zone marked by the green frame (d). 

 

The results of the silver staining for the different treatment groups and the wild type controls are 

shown in Figures 7.8 - 7.11.    

Evaluation of the survey pictures of the different animals does not indicate differences in the amount 

of the silver staining. The regions of interest in each brain were examined for the axonal density, the 

course of the axon fibres and structural abnormalities. No marked differences can be found between 

the transgenic mice treatment groups and the wild type control brain. Despite minor variations, the 

amount of axons seems to be equal between the groups and the axon fibres show a parallel course in 

all examined samples. Signs of other structural abnormalities such as bulging are not present.  

 

CAPTION  
 

 a) survey picture (x 20) 
 

  b) part of the corpus callosum (x 200) 
 

 c) white matter zone (x 400) 
 

 d) part of the cortex cerebri (x 200) 
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Identification  
number 

389-09 390-09 

a) 

  

b) 

  

c) 

  

d) 

  
 
Figure 7.8 Results of the Bielschowsky’s silver staining of the ApdE9 transgenic mice which had received injections of PBS 
(group 1). The horizontal column “a” contains the survey picture of the two animals of the treatment group. Pictures of 
column b, c and d show the regions of interest as there are the part of the corpus callosum (b), a part of the white matter 
zone (c) an a part of the cortex cerebri (d). 
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Identification 
number 

385-09 387-09 

a) 

  

b) 

  

c) 

 

 

 

d) 

  
 
Figure 7.9 Results of the Bielschowsky’s silver staining of the ApdE9 transgenic mice after treatment with 104 units of IFN-β 
(group 2). The horizontal column “a” contains the survey picture of the two animals of the treatment group. Pictures of 
column b, c and d show the regions of interest as there are the part of the corpus callosum (b), a part of the white matter 
zone (c) an a part of the cortex cerebri (d).  
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Identification 
number 

386-09 388-09 

a) 

  

b) 

  

c) 

  

d) 

  
 
Figure 7.10 Results of the Bielschowsky’s silver staining of the ApdE9 transgenic mice after treatment with 10

6
 units of IFN-β 

(group 3). The horizontal column “a” contains the survey picture of the two animals of the treatment group. Pictures of 
column b, c and d show the regions of interest as there are the part of the corpus callosum (b), a part of the white matter 
zone (c) an a part of the cortex cerebri (d).
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 A ) B) 

Identification 
Number 

391-09 392-09 

a) 

  

b) 

  

c) 

  

d) 

  
 
Figure 7.11 Results of the Bielschowsky’s silver staining of the wild type mice after treatment with 10

6
 units of IFN-β (column 

A) and PBS (column B), respectively. The horizontal column “a” contains the survey picture of the two animals of the 
treatment group. Pictures of column b, c and d show the regions of interest as there are the part of the corpus callosum (b), 
a part of the white matter zone (c) an a part of the cortex cerebri (d). 
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7.6. Semi-quantitative analysis of amyloid β after IFN-β treatment by western 

blotting  

 

In order to investigate, whether treatment with interferon β affects the amount and distribution of 

amyloid β (Aβ) in vivo, semi-quantitative analysis of brain samples was performed by western 

blotting.  

The western blots for the four fractions of enriched extracellular protein (ECF), intracellular proteins 

(ICF), membrane-associated-proteins (MF) and pellet are demonstrated in figure x1, x2, x3 and x4, 

respectively. The results of each fraction are shown by two blots, A and B. Blot A contains only 

samples from ApdE9 mice. The samples derive from treatment with PBS (lane 1), 104 units of IFN-β 

(lane 3) and 106 units of IFN-β (lane 2 and 4) (see figure 6.1). Blot B contains samples from ApdE9 

mice in lane 1 and 2 and the wild-type controls in lane 3 and 4. The samples derive from treatment of 

PBS (lane 2 and 3), 104 units of IFN-β (lane 1) and 106 units of IFN-β (lane 4). The lanes 5 -9 in blot A 

and B comprise the standard of Aβ-42 in increasing concentration as 10 pg, 100 p g, 1 ng, 10 ng and 

100ng (see figure 6.2). 

Figure 7.12 contains the western blot analysis for ECF. All four sample lanes of blot A as well as the 

lane 1 and 2 of blot B  shows a strong staining in the area of 110-130kDa, illustrating the recognition 

of the amyloid precursor protein (APP). The area is also represented in lane 3 and 4 of blot B, which 

contain samples from wild-type mice, however staining is distinctly less pronounced. A similar 

staining pattern can be seen in the area of 15 kDa, where is clear staining in sample lanes of blot A 

and the first two lanes of blot B, though considerable differences in the staining intensity cannot be 

seen. Staining in lane 3 and 4 of blot B is clearly less intense. Consistent staining in all sample lanes of 

blot A and B can be seen in the area of 80-90 kDa, and several bands between 40-70 kDa. The area of 

interest at about 4 kDa, representing staining of the soluble amyloid-β peptide (Aβ) is not visually 

detectable in the lanes containing the wild-type samples (blot b, lane 3 and 4), whereas all samples 

from ApdE9 mice show staining. The staining intensity in those lanes is comparable with the Aβ 

standard between 100 pg and 1 ng of Aβ-42. However, distinct differences cannot be stated. The 

staining of lane 1 of blot A and blot B appear to be more pronounced, compared to other lanes of 

ApdE9 samples. 

Figure 7.13 contains the western blot analysis for enriched ICF. The staining pattern is consistent to 

the results of the ECR, concerning the staining of APP (110-130 kDa). A concordant staining pattern 

can be seen in the area of 15 kDa, with clearly weaker staining for wild-type samples. Staining in the 
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area of 80-90 and between 40-70 kDa seem to be conferrable to the results of ECF, despite a weaker 

staining in lane 4 of blot A, deriving from artefacts. The staining of Aβ at 4 kDa can be detected in all 

ApdE9 samples, represented by lane 1-4 of blot A and lanes 1 - 2 of blot B with an staining intensity 

comparable to the Aβ-42 standard at 10-100 pg. Distinct differences in the staining intensity cannot 

be seen. 

Figure 7.14 contains the western blot analysis of enriched MF. Samples from ApdE9 tissue (sample 

lanes blot A and lanes 1-2 of blot B) express a maximal staining 110-130 kDa (APP) and further at the 

area of 15 kDa. At the area of 30 kDa staining in the ApdE9 samples is comparable with Aβ-42 

controls at 100 pg – 1 ng, whereas wild-types express a slightly less intensive staining. Staining in 

other areas are homogeneously found in all sample lanes. Staining of Aβ cannot be distinguished 

from artefacts with certainty.  

Figure 7.15 contains the western blot analysis of insoluble material. In contrast to the results of the 

other fractions, the blots do not express staining in the area that represents APP. Staining in the area 

of 40-70 kDa and 15 kDa is homogeneously present in all sample lanes of blot A and blot B. Staining 

for Aβ cannot be detected in the area of 4 kDa.  
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Figure 7.12 ECF: Western blot analysis of enriched extracellular protein. Blot A contains only samples from ApdE9 mice. The samples 
derive from treatment with PBS (lane 1) and IFN-β with 104 units (lane 3) and 106 units (lane 2 and 4), respectively. Blot B contains 
samples from ApdE9 mice in lane 1 and 2 and the wild-type controls in lane 3 and 4. The samples derive from treatment of PBS (lane 2 
and 3), 10

4
 units of IFN-β (lane 1) and 10

6 
units of IFN-β (lane 4). The lanes 5 -9 in blot A and B comprise the standard of Aβ-42 in 

increasing concentration 10 pg, 100 p g, 1 ng, 10 ng and 100ng. Staining between 110-130 kDa, representing APP is pronounced in 
samples from ApdE9 tissue but can be also detected in wildtype-tissue (blot B, lane 3 and 4). A concordant staining pattern is present is 
presented in the area of 15 kDa. Homogeneous staining in all sample lanes can be seen at 80-90 kDa and several bands at 40 – 70 kDa. 
Staining of Aβ is represented at 4 kDa, which can be seen in all lanes of ApdE9 tissue but not in samples from wild types. The staining 
intensity lies in the range 100 pg - 1 ng of the Aβ-42 standard. Differences in the staining intensity are subtle, showing a slightly more 
intensity in lane 1 of blot A. 

Figure 7.13 ICF: Western blot analysis of enriched intracellular protein. The samples are allocated as described in Fig. 7.12. Staining of 
APP is shown in the area of 110-130 kDa in all sample lanes, but is distinctly more pronounced in samples derived from ApdE9 tissue. A 
concordant staining pattern can be seen in the area of 15 kDa, with clearly weaker staining for wild-type samples. Homogeneously 
staining in all sample lanes can been seen in the area of 80-90 kDa and 40-70 kDa, however a weaker staining in lane 4 of blot A seems 
to derive from artefacts. The staining of Aβ at 4 kDa can be seen in sample samples from ApdE9 tissue with an intensity comparable to 
the Aβ-42 standard at 10-100 pg. Distinct differences in the staining intensity cannot be detected. 
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Figure 7.14 MF: Western blot analysis of enriched membrane-associated proteins.  The samples are allocated as described in Fig. 7.12. 
Staining at 110-130 kDa and 15 kDa are consistently found in samples from ApdE9 tissue (sample lanes 1-4 of blot A and lanes 1-2 of 
blot B). At the area of 30 kDa staining in the ApdE9 samples is comparable with Aβ-42 controls at 100 pg – 1 ng, whereas wild-types 
express a slightly less intensive staining. Staining in further areas can be homogeneously seen in all sample lanes. Staining of Aβ at 4 
kDa cannot be distinguished from artefacts with certainty. 

Figure 7.15 Pellet: Western blot analysis of insoluble material. Staining at 40-70 kDa and 15 kDa can be found in all sample lanes and of 
similar staining intensity between 1-10ng of Aβ-42 standard. Staining of Aβ at 4 kDa is not detectable. 
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7.7. Transcription levels of inflammatory mediators and components of the 

immune and CNS repair system after IFN-β treatment 

Real-time PCR analysis was performed in order to investigate, whether treatment with interferon-β 

(IFN-β) affects the transcription levels of certain inflammatory mediators and components of the 

immune and CNS repair system in a transgenic mouse model of alzheimer’s disease (AD).  

Samples contained brain tissue from six ApdE9 transgenic mice and two wild-type controls. The 

group of ApdE9 transgenic mice had two animals per treatment group. The groups were treated 

either with high dosage of IFN-β (106 units), low dosage of IFN-β (104 units) or PBS. Wild-type controls 

had been treated with high dosage IFN-β or PBS, respectively. One hemisphere per mouse was 

analysed of which one PCR analysis was conducted. 

Transcription levels of iInterleukin-6 (IL-6), IL-10, Tumor necrosis factor α (TNF-α), transforming 

growth factor-β (TGF-β), glial fibrillary acidic  protein (GFAP), Toll-like receptor-2 (TLR-2), Toll-like 

receptor-4 (TLR-4) and cluster of differentiation-14 (CD-14) were determined. The values 

representing the transcription levels per analysed sample are shown in table x1.  The letter “E” in the 

values of transcription levels stands for “to the power of 10”.  

 

Mouse no. / type/ treatment 

Transcription levels 

IL-6 TNF-α IL-10 TGF-β GFAP TLR-2 TLR-4 CD-14 

377 / ApdE9 / 10
6
 units IFN-β 1,0E-04 2,3E-05 1,3E-06 3,9E-03 1,3E-01 5,2E-04 9,7E-04 1,0E-03 

315 / ApdE9 / 106units IFN-β 9,4E-05 1,2E-05 3,0E-07 2,8E-03 6,6E-02 4,2E-04 1,2E-03 6,8E-04 

368 / ApdE9 / 104 units IFN-β 9,3E-05 8,2E-06 8,4E-07 3,0E-03 6,6E-02 1,7E-04 7,6E-04 5,9E-04 

316 / ApdE9 / 104 units IFN-β 6,1E-04 2,3E-05 1,5E-06 3,4E-03 8,6E-02 9,9E-04 1,2E-03 1,2E-03 

409 / ApdE9 / PBS 1,5E-04 2,1E-05 1,0E-06 2,6E-03 7,2E-02 3,7E-04 1,3E-03 ND 

312 / ApdE9 / PBS 1,4E-04 2,7E-05 6,3E-07 2,5E-03 1,1E-01 1,2E-03 1,3E-03 8,9E-04 

427 / WT / 106 units IFN-β 3,0E-04 1,1E-05 3,0E-07 2,4E-03 6,3E-02 4,3E-04 1,6E-03 8,2E-04 

416 / WT / PBS 4,5E-05 1,2E-05 3,0E-07 2,7E-03 7,1E-02 3,8E-04 9,2E-04 7,3E-04 

 

Table 7.2  Relative transcription levels of inflammatory mediators IL-6, IL-10, TNF-α, TGF-β, components of the immune 
system TLR-2, TLR-4, CD-14 as well as the activated astrocyte marker GFAP. Relative transcription levels are normalised 
against transcription levels of the housekeeping gene GAPDH of each sample. ND = not determined  
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Figures 7.16 - 7.23 contain the graph bar illustrations of relative transcription levels of different 

inflammatory mediators or components of the immune system, based on the results presented in 

table 7.2. The y-axis depicts the relative transcription levels (see the formula in the chapter “Material 

and Methods” page 50). Note that the scale varies, as they were adjusted for each studied gene 

separately.  

Figure 7.16 depicts transcription levels of the inflammatory mediator IL-6. Three out of four samples 

obtained from IFN-β treated (high and low dosage IFN-β) ApdE9 transgenic mice contain low relative 

IL-6 transcription levels (1,0 x E-4). The fourth mouse in this group (no. 316) differs from the others 

and has six times increased transcription level (6.0 x E-4). ApdE9 samples treated with PBS do not 

show a marked difference from the IFN-β treated group (apart from subject 316). IL-6 transcription 

levels within the samples obtained from wild-type mice vary only moderately between PBS and IFN-β 

treated mice (4,5 x E-5 and 3,0 x E-5, respectively). 

 

Fig. 7.16 transcription level of IL-6. Transcription levels are homogenous in three out of four samples obtained from ApdE9 
transgenic mice treated with different dosages of IFN-β.In comparison, the fourth sample, obtained from mouse no. 316 
exhibits a six times increased level of transcription. Samples obtained from wild type mice and the PBS-treated ApdE9 mice 
show only minor variation in transcription levels. 
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Figure 7.17 demonstrates the transcription levels of IL-10. No differences in the transcription levels 

of different treatment groups can be seen. Lowest transcription levels (3,0 x E-7) are seen in samples 

obtained from wild-type mice and sample no 315, which derives from an ApdE9 mouse treated with 

high dosage IFN-β. The transcription levels are highest in samples no. 377 (1,3E-6) and 316 (1,5E-6) 

obtained from ApdE9 mice, treated with high and low dosage  of IFN-β, respectively.  

    

Fig. 7.17 transcription levels of IL-10. Lowest transcription levels can be seen in the samples from wild-type mice and mouse 
no 315, obtained from an ApdE9 mouse of the high dosage IFN-β treatment group. Amongst the other ApdE9 mice a 
difference in the transcription levels cannot be seen between the different treatment groups.  

 

Figure 7.18 depicts the transcription levels of TNF-α.  Transcription levels vary from 8,2 x E-6 to 2,7 x 

E-5 and no differences can be seen between the mouse backgrounds or the different treatment 

groups.  
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Fig. 7.18 transcription rate of TNF-α. Transcription levels vary only moderately between the different treatments groups 
and mouse backgrounds. A specific pattern of transcription is not present. 

 

Figure 7.19 depicts the transcription levels of TGF-β. Different treatment groups and mouse types 

have only minor variation in transcription levels, ranging from 2,4 x E-3 to 3,9 x E-3.  

 

Fig. 7.19 transcription levels of TGF-β. Different treatment groups and mouse backgrounds show a consistent level of 
transcription of TGF-β. Treatment group specific differences are not seen. 
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Figure 7.20 demonstrates the transcription levels of GFAP. The transcription of GFAP is higher, than 

any of the other studied markers, varying from 6,3E-2 – 1,3E-1. Nevertheless, there is no 

transcriptional difference between the wild-type or the transgenic animals or the different 

treatment groups.  

 

Fig. 7.20 transcription levels of GFAP. The transcription levels of GFAP are higher than in any of the other analysed markers. 
However, no different patterns of transcription could be seen between the mouse backgrounds or treatment groups. 

 

Figure 7.21 depicts the transcription levels of TLR-2. No differences in the transcription levels of 

different treatment groups or mouse backgrounds can be seen. Transcription level vary around 4E-4 

with lowest expression in a sample obtained from low β-IFN treated ApdE9 mouse and maximal in 

the sample from the PBS treated ApdE9 transgenic mouse no. 312. 
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Fig. 7.21 transcription rate of TLR-2. A specific pattern of transcription levels of different treatment groups or mouse 
background cannot be seen. 

 

Figure 7.22 depicts the transcription levels of TLR-4. Different treatment groups contain a consistent 

level of transcription levels, ranging from 7,6 x E-4 to 1,6 x E-3.   

 

Fig. 7.22 transcription rate of TLR-4. Transcription levels vary only moderately. A difference in transcription based on the 
treatment or mouse background cannot be seen. 
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Figure 7.23 presents the transcription levels of CD-14. Again, no different patterns of transcription 

could be seen between the treatment groups or mouse backgrounds. Transcription levels varied 

from 5,9E-4 to 1,2E-3. CD-14 transcription level in the sample from mouse no. 409 (PBS treated 

ApdE9 mouse) was not determined. 

 

Fig. 7.23 transcription level of CD-14. Sample no. 409 obtained from a PBS treated ApdE9 mouse was not determined. No 
difference in transcription levels of different treatment regimes or mouse background can be seen amongst the other 
samples.  
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8. DISCUSSION 

 

According to a general consensus, development of AD is based on the imbalance of production and 

clearance of Aβ. Subsequent aggregation of Aβ and accumulation to amyloid deposits is believed to 

initiate a cascade, which ultimately leads to degeneration of neurons and AD pathology (Blennow K 

et al. 2006, Querfurth HW et al. 2010). Amongst the complex pathological changes that occur within 

the course of the disease (Querfurth HW et al. 2010), increasing evidence suggests that the initiation 

of a broad inflammatory response may be one of the most important phenomena contributing to 

chronic disease progression (Heneka MT et al. 2010). Reduction of the cerebral Aβ load is associated 

with protection (Morgan D et al. 2000, Janus C et al. 2000) and even reverse of behavioural 

impairment (Cramer PE et al. 2012). In a recent in vivo study, ApoE-directed therapeutics reduced 

more than 50% of the Aβ plaque load and improvement of cognitive and social deficits were 

correlated with a reduction in soluble Aβ peptide levels as seen in an AD mouse model (Cramer PE et 

al. 2012). 

The current work aimed to discover whether IFN-β can influence Aβ load in vivo in order to evaluate 

its’ potential as a novel therapeutic approach for AD. The study was carried out as a cooperation 

project between the University of Kuopio (Finland) and the Department of Neurology of the 

University Hospital, Homburg. Doubly transgenic ApdE9 mice and controls were treated with human 

IFN-β.  The treatment regime was initiated prior to disease manifestation and continued until early 

stages of the disease. 

In this study, a moderate reduction in the number of Aβ plaques was observed following treatment 

with IFN-β compared to controls. These differences in the plaque load detected by 

immunohistochemical analysis can result either from an inhibited production of Aβ and its 

accumulation as plaques or from an increased phagocytosis and degradation of the existing Aβ 

plaques. So far, any effects of IFN-β on Aβ production and/or plaque formation have not been 

reported in the literature. However, results from a few in vitro studies suggest, that IFN-β can 

enhance microglial phagocytotic capacity. In a rodent model of experimental autoimmune 

encephalomyelitis, IFN-β pretreated microglia demonstrated an increased phagocytosis rate (Chan A 

et al. 2003).  In another in vitro study human monocytes and murine microglia were treated with IFN-

α, -β and -γ of various concentrations and the quantitative effects on the phagocytotic activity were 

analysed. Only treatment with IFN-β provoked a significant increase of phagocytotic activity in 

human monocytes following a direct dose-dependent relation. A trend towards enhanced 
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phagocytotic activity could be noted also on murine microglia following treatment with IFN-β though 

the effect did not reach quantitative significance (Schall U 2008).  

This study investigated the effect of interferon-β treatment on soluble amyloid-β peptides and its 

complexes by Western blot analyses utilizing the highly sensitive Wo2 antibody. Nevertheless, the 

results remained inconclusive. Aβ staining represented in the area of 4 kDa within the extracellular 

fraction (ECF) can be detected in all samples of ApdE9 brain tissue but differences in the staining 

intensity are minor. However, the slightly more intense staining in PBS (Blot A, lane 1, Figure 7.12) 

and low-dose IFN-β (Blot B, lane 1, Figure 7.12) treated samples might reflect a dose-dependent 

effect of IFN-β, resulting in reduced generation of Aβ. The ApdE9 samples within the ECF show more 

pronounced staining in the area of about 15 kDa (figure 7.12) than the controls from wild-type mice 

samples. The staining in this area represents the c-terminal fragment of the APP cleavage product 

(APP-CTFβ) (Nunan J et al. 2001).Within the ApdE9 samples only minor differences in the staining 

intensity of APP-CTFβ can be seen between the different treatment groups. Therefore, no clear IFN-β 

treatment effect on the β-secretase mediated APP  cleavage and APP-CTFβ accumulation can be 

seen. Western blot analyses of the ICF show a concomitant staining pattern for Aβ and the APP-CTFβ. 

Marked differences in the staining intensity between the different treatment groups cannot be seen.  

Semi-quantitative analyses depict a reduced concentration of Aβ in the intracellular fraction (10-100 

pg) compared to the extracellular fraction (100 pg-1 ng). This finding is coherent to assumptions 

based on the structure of APP as a transmembrane protein with the Aβ sequence predominantly 

located in the extracellular domain.  

The western blot analyses demonstrate that the antibody WO2 detects the Aβ sequence in various 

different complexes. It recognizes soluble Aβ as well the Aβ sequence within APP, the cleavage 

product APP-CTFβ and various oligomeric structures. Alternatively, quantitative ELISA analyses could 

be performed utilizing an antibody specific for soluble Aβ.  

Microglia are the major immune cells of the CNS. Nowadays they are studied as an attractive tool for 

immunotherapeutic strategies that aim to reduce the Aβ load in AD brains by activation of a specific 

phagocytic phenotype (Weiner HL et al. 2006). The clinical improvement of AD symptoms following 

microglia activation and phagocytosis of Aβ has been demonstrated already in a clinical trial. 

However, this Aβ-42 vaccination trial had to be discontinued due to severe side-effects in terms of 

aseptic meningoencephalitis which occurred in 6% of patients (Orgogozo JM et al. 2003). 
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In the current work, treatment with high dosage of IFN-β was associated with an increased number 

of microglia at sites of plaque deposits compared to the surrounding tissue. This observation could 

result from induced microglial proliferation or represent the shift of distantly located microglia 

towards AD lesions. The effect of IFN-β on microglial proliferation has been investigated earlier in an 

in vitro study with rodent neonatal microglia. IFN-β reduced the proliferation of cultured microglia by 

approximately 60% (Hall GL et al. 1997). Therefore a direct microglial proliferation effect induced by 

IFN-β is an unlikely cause for the effects, observed in this study. Microglia respond to the 

chemotactic signaling by Aβ and several inflammatory mediators. These chemotactic agents are 

associated with Aβ plaques and include complement factors, chemokines and cytokines, which are 

secreted in particular by glial cells (Akiyama H et al. 2000, Heneka MT et al. 2007). IFN-β could 

contribute to a shift in microglial distribution by modulating the cytokine milieu at the sites of AD 

lesions. IFN-β exerts complex effects on the cytokine secretion pattern of microglia (Hall GL et al. 

1997). IFN-β enhances the microglial production of pro-inflammatory mediators such as TNF-α, IL-1β 

and IL-6 (Kawanokuchi J et al. 2004) but simultaneously increases levels of the anti-inflammatory 

cytokine IL-10 (Jin S et al. 2007, Kawanokuchi J et al. 2004). The proinflammatory cytokines could 

contribute to further micrgolial recruitment whereas IL-10 has been found to enhance microglial 

degradation of phagocytosed Aβ (Sokolowski JD et al. 2011). 

This study investigated the effects of IFN-β on astrocyte presence and distribution around AD lesions. 

An increased number of astrocytes were found at sites of plaques after treatment with high dosage 

IFN-β compared to controls. This observation could imply an increased astrocyte proliferation at the 

site of plaques, an enhanced astrocyte survival or a shift from distantly located astrocytes towards 

Aβ plaques. Interestingly, an in vitro study suggested that IFN-β dose-depending may either stimulate 

astrocyte proliferation and survival or contribute to astrocyte death (Barca O et al. 2010).  If IFN-β 

indeed has dose dependent opposing effects on astrocytic proliferation and survival, this could 

explain the observed phenomena of increased number of plaque associated astrocytes in the high 

dosage and decreased number in the low dosage groups compared to controls. However, due to the 

small group size, the results remain inconclusive and the quantitative effect of IFN-β on astrocytes 

has to be evaluated in subsequent studies. It is also possible that the increase of astrocytes in the 

vicinity to Aβ plaques could derive from induced chemotactic signaling. Microglia and astrocytes, 

respond to Aβ deposits and inflammatory mediators and cluster at site of AD lesions (Akiyama H et 

al. 2000, Heneka MT et al. 2007). In addition, IFN-β can induce astrocytic production of neurotrophic 

factors and prevent the release of neurotoxic factors (Barca O et al. 2010). These phenomena 

together could counteract the neurodegenerative course in AD. 
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As already mentioned earlier, numerous glial cell and cytokine interaction have been regularly 

observed in AD and are understood to influence the course of the disease. Amongst others, 

interleukin-6 (IL-6) and TNF-α are regarded as powerful pro-inflammatory cytokines in this process 

(Rubio-Perez JM et al. 2012). IL-6 activates microglia (Heyser CJ et al. 1997) and stimulates iNOS 

activity (Rossi F et al. 1996). IL-6 is strongly induced in pathological processes whereas it is barely 

detectable in healthy adults CNS. Similarly, TNF-α expression is low in the healthy brain but in 

inflammatory or diseased states it is secreted predominantly by activated microglia (Rubio-Perez JM 

et al. 2012). TNF-α induces itself glial cell activation in autocrinic and paracrinic manner, resulting in 

further cytokine production and subsequently accounting for most of neurotoxicity caused by 

activated microglia (Akiyama H et al. 2000, Coombs et al. 2001). However, TNF-α as well as IL-6 have 

been reported to have also neuroprotective properties and their pathophysiological role in AD is not 

yet fully understood. IL-10 and TGF-β are regarded as mainly anti-inflammatory cytokines. IL-10 

contributes to a balance of pro- and anti-inflammatory mediators within the CNS. For instance, it 

limits the inflammatory process by reducing the synthesis of TNF-α and other proinflammatory 

cytokines. Also TGF-β has been shown to repress TNF-α production and it is implicated further in 

astrocytosis and inhibiton of cell death during AD. However, TGF-β itself constitutes a potent 

chemoattractant for microglia and thus harbours also proinflammatory properties. Amongst others 

the cytokines IL-1, IL-10, TNF-α and TGF-β have been consistently detected at increased levels in the 

AD brain (Rubio-Perez JM et al. 2012).  

In this study real time PCR analyses were carried out in order to study the effects of IFN-β of 

inflammatory CNS repair- and immune system components in ApdE9 transgenic and wild-type mice. 

However, the transcription levels of cytokines IL-6, IL-10, TGF-β and TNF-α did not show marked 

differences between the mouse backgrounds or treatment groups. It is possible, that despite some 

Aβ deposits were found, AD brain pathology was not yet sufficiently developed, when the IFN-β 

treatment began. The lack of variability in the cytokine expression levels might be also explained by a 

technical reason due to the low n-value in the study protocol. The transcription levels of IL-6 were 

found to be increased in the brain of mouse number 316, which was an ApdE9 transgenic mouse 

from the low dosage IFN-β treatment group. This could either indicate increased inflammatory 

activity in the sample, though a concomitant increase of TNF-α or other changes in the cytokine 

milieu could not be seen. Therefore it more likely, that this observation derives from a technical 

variation as the analyses lacked replicates. In this study, real-time PCR was conducted one time on a 

single sample per mouse. Furthermore, as there were only few animals per treatment group, 

statistical analysis of the results could not be carried out. In subsequent studies PCR analyses should 

be performed with more samples and the analyses have to be carried out in replicates. Subsequent 
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studies could also include analysis of IL-1 transcription levels as it is an important factor in the onset 

of the inflammation process in AD. Nevertheless, one has to remember, that animal experiments 

regarding neuroinflammatory changes in AD have produced controversial results even within the 

same animal model. This could derive from differences in applied techniques between laboratories 

but also indicate the difficulty in studying inflammatory changes in animal models, which are often 

subtle and under tight temporal regulation (Heneka MT et al. 2007).  

The real time PCR analyses of the microglial pattern recognition receptors TLR-2, TLR-4 and the 

lipopolysaccaride (LPS) receptor CD-14 did not show clear differences in the expression levels 

between any of the treatment and control groups. CD-14 immunoreactive parenchymal microglia 

have earlier been detected in AD lesions of patient samples and as well as TLR-2, the receptor is 

suggested to be involved in phagocytosis of Aβ (Liu Y. et al. 2005). TLR-4 on the other hand might 

partly mediate amyloid peptide-induced microglial neurotoxicity (Walter S et al. 2007). Surprisingly, 

the transcription levels of GFAP did not vary between the different mouse backgrounds and 

treatment groups. GFAP is a marker that labels reactive astrocytes (Sofroniew MV et al. 2010). As 

Astrogliosis is understood to constitute an early event in AD pathology (Heneke MT et al. 2005), the 

results could therefore indicate that AD pathology was not sufficiently developed in the animals 

which would be inconsistent with the IHC analysis. However, due to the low n-value, all the PCR 

analysis have to be considered inconclusive. 

Histological analysis revealed no relevant structural differences between the treatment and control 

groups. However, as axonal damage and demyelination, have to be regarded as manifestations of 

advanced disease. In order to detect the degree of structural changes and a possible protective effect 

induced by IFN-β, older mice with more progressed disease need to be used in subsequent studies. 

Some speculation of IFN-β efficiency against axonal damage and subsequent neuronal degeneration 

can be made from reported MS study results. MS is a chronic inflammatory, neurodegenerative 

disease which leads to neurological disability following an auto-immune attack on myelin covers 

causing axonal degeneration (Van der Walt A et al. 2010). IFN-β can attenuate the early inflammatory 

damage to myelin and protect axons (Bates D 2011). As there is no indication for a direct 

neuroprotection mediated by IFN-β (Kieseier BC et al. 2007, Sättler MB et al. 2006), the increased 

cellular survival is thought to result from an IFN-β induced anti-inflammatory milieu (Sättler MB et al. 

2006). Glutamate mediated neuronal toxicity is involved in the neurodegenerative course in AD 

[Akiyama H et al. 2000, Heneka MT et al. 2007]. IFN-β has been reported to reduce microglial 

inflicted neurotoxicity by reducing their glutamate secretion in vitro (Jin S et al. 2007), to induce the 

secretion of nerve growth factors by endothelial cells (Kieseier BC et al. 2007) and to stimulate 
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astrocytic production of neurotrophic factors (Bates D 2011).  The potential positive effect of IFN-β in 

altering the neurodegenerative course of AD remains to be shown using older transgenic AD mice 

with profound pathology. 

This experiment was carried out as continuation of an in vitro study, where increased bead 

phagocytosis by mononuclear phagocytes was observed following treatment with IFN-β. This study 

investigated possible immunomodulatory effects of IFN-β in vivo using the ApdE9 transgenic mice 

model. This work has provided preliminary qualitative data as well as it revealed pitfalls in the 

applied study design. In general it has to be stated, that the number of animals given per treatment 

group was too small to apply statistical analysis of the results which have to be conducted in 

subsequent studies. Whereas in this work, the treatment was initiated at a very early stage of the 

disease in seven-weeks-aged animals, further studies should use preferably older animals which 

present advanced AD pathology given at the age of about six month. Hence a possible therapeutic 

effect could be assessed more profoundly also better mimicking the clinical situation on heavy 

plaque burden at the time of diagnosis. The treatment period of 8 weeks could be maintained and a 

subgroup could continue receiving the treatment for a total of 16 weeks. Simultaneously the 

improvement of AD symptoms could be studied by testing spatial memory of the animals by water 

maze tasks. The combined analyses of clinical performance and changes on the cellular level could 

provide stronger data the therapeutic potential of IFN-β. In future mouse IFN-β should be used 

instead of human IFN-β, as some recent data suggests that these might not be cross-species reactive 

(Ruotsalainen J et al. 2012). IHC analyses have been proven to be sensitive and can be conducted in 

the same manner. However, the relatively long storage of samples in PFA due to logistics between 

the laboratories might be responsible for the weak staining intensity and this should be avoided. 

Real-time PCR is useful in order to investigate the degree of cytokine activity within diseased brain 

samples but should be carried out in replica and contain multiple samples per tested brain.  

In conclusion, this work provided preliminary, qualitative data implying a potential 

immunomodulatory effect of IFN-β on AD pathology in vivo. We observed a trend of Aβ plaque load 

reduction and an increase of glial cell activity at the sites of AD lesions following IFN-β treatment in 

transgenic murine AD-model. The quantitative effects of IFN-β on AD pathology remain to be shown 

in subsequent studies. 
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