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1 ZUSAMMENFASSUNG 

Unter den verschiedenen Substanzklassen die in den letzten Jahren auf dem weltweiten 

Drogenmarkt erschienen, waren auch einige synthetische Cocain Analoga zu finden. Eines 

davon ist Dimethocaine, (DMC, larocaine, 3-diethylamino-2,2-dimethylpropyl)-4-

aminobenzoate) welches bereits in den 1930er Jahren als Lokalanästhetikum vermarktet 

wurde, jedoch psychoaktive Nebenwirkungen sowie ein hohes Abhängigkeitspotential zeigte. 

Heutzutage wird DMC als Cocain Ersatz verkauft und konsumiert. Das Ziel dieser Arbeit war 

es den in vivo und in vitro Metabolismus von DMC mittels Flüssigchromatographie und 

hochauflösender Massenspektrometrie (LC-HR-MS
n
) aufzuklären. DMC wurde dazu 

männlichen Wistar Ratten verabreicht und deren Urin über 24 Stunden gesammelt. Die 

Urinaufbereitung erfolgte durch enzymatische Konjugatspaltung mit anschließender 

Extraktion mittels Proteinfällung oder Festphasenextraktion. Die so gewonnenen Extrakte 

wurden dann per LC-HR-MS
n
 analysiert. Darüber hinaus benutzten wir humane N-

Acetyltransferasen 1 (NAT1) und NAT2 um die beobachteten N-Acetylierungen genauer 

charakterisieren zu können. Als Hauptreaktionen des Phase I und II Metabolismus konnten 

die Esterhydrolyse, die Deethylierung, die Hydroxylierung, die N-Acetylierung sowie 

Kombinationen von diesen identifiziert werden. Für die N- Acetylierung von DMC stellte sich 

die NAT2 als wichtigstes Enzym dar. 
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2 SUMMARY 

Among the novel substance classes, which appeared on the drugs of abuse market in the last 

years, also synthetic cocaine analogs were identified. One of them, dimethocaine (DMC, 

larocaine, 3-diethylamino-2,2-dimethylpropyl)-4-aminobenzoate) was already marketed as 

local anesthetic in the 1930s showing also psychoactive effects and risk of addiction. 

Nowadays, DMC is sold as cocaine replacement. The aim of this work was to study its in vivo 

and in vitro metabolism by means of liquid chromatography-(high resolution)-mass 

spectrometry (LC-HR-MS
n
) techniques. DMC was administered to male Wistar rats and 

pooled urine samples were collected for 24h. The urine was then prepared by enzymatic 

cleavage, solid phase extraction or protein precipitation. The extracts were then analyzed by 

LC-HR-MS
n
. Furthermore, human N-acetyltransferase 1 (NAT1) and NAT2 were used for 

characterizing the N-acetylation. The main phase I and II reactions observed were ester 

hydrolysis, deethylation, hydroxylation, N-acetylation, and combination of them. NAT2 was 

identified to be the most relevant enzyme for DMC N-acetylation.  
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3 INTRODUCTION 

In the last years, numerous compounds such as synthetic cocaine analogs appeared on the 

drugs of abuse market mainly to overcome legislation issues. Dimethocaine, already marketed 

as local anesthetic in the 1930s (Figure 1, DMC, larocaine, 3-diethylamino-2,2-

dimethylpropyl)-4-aminobenzoate), was one of them. However, only a few years after 

introduction into the market, DMC was removed due to this psychoactive effects and risk of 

addiction. Nowadays, DMC caught the attention of the world wide drugs of abuse market and 

it is sold as cocaine replacement (http://research-chemicals-

direct.com/acatalog/Dimethocaine__Larocaine_.html 2013 Nov 07). 

 

Figure 1: Chemical structures of DMC and cocaine 

 

Figure 2: Chemical structure different local anesthetics of amino-ester-type. 
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3.1 PHARMACOLOGY AND TOXICOLOGY OF DIMETHOCAINE 

As expected for a central nervous system (CNS) stimulant, DMC acts mainly as a dopamine-

reuptake-inhibitor [1-4]. Like cocaine, DMC is snorted since oral ingestion would lead to 

rapid hydrolysis of DMC [5]. After consumption of DMC, consumers describe feelings of 

euphoria but also dyspnea and complaints of angina pectoris (www.eve-

rave.ch/Forum/viewtopic.php?f=38&t=15752, 2013 Nov 07). The intravenous abuse is 

described to produce an initial flush and an alert or sometimes even relaxed feeling in the first 

minutes after injection accompanied with side effect such as a strong hangover and fatigue 

(www.land-der-traeume.de, 2013 Nov 07). All in all, DMC is reported to have similar effects 

like cocaine (www.salvia-community.net, 2013 Nov 07). Graham and coworkers recently 

compared the pharmacological properties of DMC and cocaine in the rat via intraperitoneal 

injection [3]. Afterwards, levels of DA and its metabolites were measured 10, 25, and 40 min 

after application. DMC was shown to have high affinity for the DA transporter mainly in the 

nucleus accumbens stimulating the reward system. Woodward et al. described DMC to be 

similarly potent as cocaine concerning the DA-reuptake-inhibitor efficiency [4]. Comparison 

of the pharmacological potencies of different local anesthetics revealed the following potency 

order cocaine > DMC > tetracaine > procaine > chloroprocaine [1]. However, nothing is 

known so far about its toxicokinetics such as metabolism and elimination. 

 

Figure 3: Advertisement of DMC as a “research chemical” 
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3.2 ROLE OF THE N-ACETYLTRANSFERASES NAT1&2 AND THEIR GENETIC 

POLYMORPHISM 

Arylamine N-acetyltransferases (NATs) belong to a special family of enzymes that are 

involved in the activation and detoxification of aromatic amines [6;7]. Two isoforms of the 

NAT enzymes are known, NAT1 and NAT2. They acetylate amino-, hydroxyl-, and 

sulfhydryl-groups in phase II metabolism of different xenobiotics and carcinogens. The 

typical chemical reactions of the NAT enzymes are shown in Figure 4. 

 

 

Figure 4: Reactions catalyzed by NATs. N-acetylation from acetyl-CoA of arylamine (para- 

aminobenzoic acid is shown) (A), arylhydrazines (isoniazid is shown) (B), O-acetylation of 

N-arylhydroxylamine (the carcinogen N-hydroxy-4- aminobiphenyl is shown) (C). In (D) N,O 

acetyl transfer of an N-hydroxamic acid is shown (the carcinogen N-hydroxy-2- acetylamino)-

fluorene) [8]. 
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The N-acetylation reactions of (A) and (B) use acetyl-CoA as cofactor and leading generally 

to inactivation of carcinogens or drugs. The O-acetyl transferase reaction (C) also uses acetyl-

CoA as cofactor but the N,O-transfer reaction (D) occurs without acetyl-CoA as a cofactor. 

The both last reactions are activating reactions and generate N-acetoxy esters, which lead to 

the production of carcinogenic nitrenes [8]. The N-acetylation is a typical detoxifying reaction 

and is generally catalyzed by NAT2. In O-acetylation of N-hydroxyl aromatic amines NAT1 

has a major role and leads to the activation of this metabolites [9]. 

Genes for human NAT1 and NAT2 are localized on chromosome 8. Both enzymes NAT1 and 

NAT2 are highly polymorphic and can create individual variations in the biotransformation of 

aromatic amines [9]. The NAT polymorphism was one of the first examples of 

pharmacogenetic variations, which were described. Popular is the example of the 

antitubercular drug isoniazid, which was the reason for further investigation on the NAT 

metabolism and its polymorphism [8]. This polymorphism is caused by a switch of 

nucleotides in the DNA sequence of the NAT genes (single nucleotide polymorphism, SNP) 

[10]. Because of combination of these switches of nucleotides, it can be possible that one or 

more amino acids in the NAT proteins are different. As a result of this exchange of amino 

acids for example the NAT2 enzyme cannot work in the same way a normal NAT2 enzyme 

could, or it can work even better, depending on the way the molecular structure of the protein 

changed. Because of this polymorphism we can divide populations in slow or poor acetylation 

phenotype, intermediate acetylation phenotype and rapid acetylation phenotype. Depending 

on the NAT polymorphism, persons of the rapid acetylation group catalyze and inactivate 

administered drugs faster than persons of the slow acetylation group. This is important to 

know and explains why some persons need higher doses of drugs than others and why on the 

other hand slow acetylators have more negative side effects or a higher risk of specific 

cancers, for example bladder cancer, because many cancer-causing substances were 
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metabolized by the NAT isoenzymes [8]. But also an overexpression of the NAT enzymes is 

possible and was detected in a special subpopulation of breast cancer cells [11]. This could be 

explained by the activating properties of the NAT, and because of this it could be possible 

that some special carcinogens are formed faster. A typical substrate for NAT1 is for example 

para-aminobenzoic acid and for NAT2 sulfamethazine [6;12]. However, a lot of drugs and 

cancer-causing substances, such as 2-aminofluoren, cannot be allocated to one of the two 

isoenzymes, because they are substrate of both.  

 

4 AIM OF THE STUDY 

The aim of the presented study was to examine the dimethocaine in vivo metabolism by the 

rat and the involvement of N-acetyltransferase (NAT) isozymes in the main metabolic steps to 

clarify whether a higher risk of increased toxic side effects in poor metabolizer subjects and of 

drug-drug or drug-food interactions with this emerging drug of abuse can be expected.
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5  EXPERIMENTAL PROCEDURES  

5.1 CHEMICALS AND REAGENTS 

DMC was obtained from LGC (Teddington, UK), Isolute HCX cartridges (130 mg, 3 mL) 

from Biotage (Uppsala, Sweden), NADP
+ 

from Biomol (Hamburg, Germany), and isocitrate, 

isocitrate dehydrogenase, carnitin-acetyl-transferase (from pigeon breast muscle), and acetyl-

d,l-carnitine from Sigma-Aldrich (Taufkirchen, Germany). All other chemicals and reagents 

were from VWR (Darmstadt, Germany) and of analytical grade. Baculovirus-infected insect 

cell-expressed NAT1 (human arylamine N-acetyltransferase 1*4, wild-type allele) and NAT2 

(human arylamine N-acetyltransferase 2*4, wild-type allele) as well as control cell cytosol 

were from BD Biosciences (Heidelberg, Germany). After delivery, the cytosols were thawed 

at 37°C, aliquoted, snap-frozen in liquid nitrogen, and stored at -80°C until use. 

 

5.2 URINE SAMPLES  

The in vivo metabolism studies were performed using urine of male rats (Wistar, Charles 

River, Sulzfeld, Germany) for toxicological diagnostic reasons corresponding to the German 

law (http://www.gesetze-im-internet.de/tierschg/BJNR012770972.html, 2013  Nov 07). 

They were administered a single (high) dose of 20 mg/kg body mass dose of DMC in aqueous 

suspension by gastric intubation for identification of metabolites. The rats were placed in 

metabolism cages for 24 h, having water ad libitum. Urine was collected as a pooled sample 

separately from the feces over a 24-h period. All samples were directly analyzed and then 

stored at -20°C. Blank urine samples were collected before drug application to check if 

samples were free of interfering compounds. 
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5.3 SAMPLE PREPARATION FOR THE IDENTIFICATION OF THE PHASE I METABOLITES BY 

LC-HR-MS
n
  

According to Welter et al. [13], a 2.5 mL portion of urine was adjusted to pH 5.2 with acetic 

acid (1 M, approximately 50 μL) and incubated at 56°C for 1.5 h with 50 μL of a mixture 

(100,000 Fishman units/mL) of glucuronidase (EC No. 3.2.1.31, E. Merck, Darmstadt, 

Germany) and arylsulfatase (EC No. 3.1.6.1, E. Merck, Darmstadt, Germany), from Helix 

Pomatia L. The urine sample was then diluted with 2.5 mL of water and loaded on a HCX 

cartridge, previously conditioned with 1 mL of methanol and 1 mL of water. After passage of 

the sample, the cartridge was washed with 1 mL of water, 1 mL of 0.01 M hydrochloric acid, 

and again with 1 mL of water. The retained non-basic compounds were first eluted into a 1.5 

mL reaction vial with 1 mL of methanol (fraction 1), whereas the basic compounds were 

eluted in a second step into a different vial with 1 mL of a freshly prepared mixture of 

methanol/aqueous ammonia 32% (98:2 v/v, fraction 2). The eluates were gently evaporated to 

dryness under a stream of nitrogen at 56°C and reconstituted in mobile phase A/B (1/1).  

 

5.4 SAMPLE PREPARATION FOR IDENTIFICATION OF PHASE II METABOLITES BY LC-HR-

MS
n
 

Formation of glucuronides and sulfates was elucidated as described previously [13;14]. 

Briefly, 200 μL of urine was mixed with 200 μL of acetonitrile, centrifuged at 14,000g for 5 

min, and 10 μL of the supernatant were injected onto the LC-HR-MS system. 

 

5.5 INCUBATIONS WITH NAT1 AND NAT2 

Incubations were performed at 37°C with 50 μM DMC or the PS sulfamethazine using human 

NAT1, human NAT2, and control cytosol for 20 min. Besides enzymes and substrate, 
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incubation mixtures (final volume: 100 μL) consisted of TEA-Buffer pH 7.5 (triethanolamine 

100 mM, ethylenediaminetetraacetic acid 500 mM, and dithiotreitol 50 mM) and CoA system 

(acetyl-CoA 1 mM, acetyl-carnitin 23 mM, and carnitin-acetyltransferase 0.08 U/µL). The 

CoA system was preincubated for 10 min and TEA-Buffer for 5 min at 37°C. Reactions were 

started by addition of the pre-warmed cytosol and stopped with 100 µL of an ice-cold mixture 

of methanol, containing the internal standard (diphenhydramine, 5µM). The solution was 

centrifuged for 2 min at 14,000g, 50 μL of the supernatant phase was transferred to an 

autosampler vial, and injected onto the LC apparatus for analysis.  

For initial screening studies, incubations were performed with 50 μM of DMC or 

sulfamethazine and 0.05 mg/mL NAT1, NAT2, or control cytosol for 20 min. 

Kinetic data of N-acetylation were deduced from incubations with an incubation time of 10 

min and 0.05 mg/mL (NATs) protein concentration. Incubation time and enzyme 

concentration were chosen to be within a linear range of metabolite formation. 

Sulfamethazine and DMC were incubated using substrate concentrations ranging from 0.5 to 

2000 µM (Table 1). Values were estimated by non-linear curve-fitting using GraphPad Prism 

5.00 software (San Diego, CA). The Michaelis-Menten equation (Eqn (1)) was used to 

calculate apparent Km and Vmax values for single-enzyme systems.  

(1) V = Vmax × [S]/ Km + [S] 

Additionally a modified equation was used (Eqn (2)) to calculate estimated Ki representing the 

inhibition constant considering the total substrate concentration range.  

(2) V = Vmax × [S]/ Km + [S] ×(1+S/Ki) 

The best kinetic model was selected, considering the randomness of the residuals, the 

standard errors of the estimates and the correlation coefficients.  
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5.6 LC-HR-MS
n
 APPARATUS FOR IDENTIFICATION OF PHASE I AND II METABOLITES 

According to Welter et al. [13], the extracts were analyzed using a Dionex UltiMate 3000 RS 

pump (ThermoFisher Scientific, TF, Dreieich, Germany) consisting of a degasser, a 

quaternary pump and an UltiMate 3000 RS autosampler, coupled to a TF Velos Orbitrap Pro 

equipped with a heated electrospray ionization (HESI) II source. The LC column was a TF 

Hypersil Gold (150 x 2.1 mm, 1.9 µm) with gradient elution with 10 mM aqueous ammonium 

formate buffer containing 0.1 % (v/v) formic acid as mobile phase A and acetonitrile 

containing 0.1 % (v/v) formic acid as mobile phase B. The gradient and flow rates were 

programmed from 98 % to 0 % A at 500 µL/min within 21 min. Injection volume was 10 µL. 

The MS conditions for the OT were as follows: ESI, positive mode; sheath nitrogen gas flow 

rate of 40 AU; auxiliary gas, 20 AU; source voltage, 4 kV; source heater temperature, 400°C; 

ion transfer capillary temperature, 300°C; capillary voltage, 4 V; CID-MS/MS experiments 

were performed in a data-dependent scan mode (m/z 100-800). Other settings were as follows: 

normalized collision energies, 35%; minimum signal threshold: 100 counts; with a resolution 

of 30,000; isolation width, 1.5 u; activation Q, 0.25; activation time, 30 ms; dynamic 

exclusion mode, repeat counts 2, repeat duration 15 s, exclusion duration 15 s. The TF 

calibration mixture was used for daily mass calibration. 

 

5.7 LC-MS APPARATUS FOR ANALYSIS OF NAT INCUBATIONS 

The NAT incubation extracts were separated and quantified using an Agilent Technologies 

(AT, Waldbronn, Germany) AT 1100 series atmospheric pressure chemical ionization (APCI) 

electrospray LC-MSD, SL version and a LC-MSD ChemStation using the A.08.03 software. 

The general conditions were according to Peters et al. [15]. Briefly, gradient elution was 

achieved on a Merck LiChroCART column (125 x 2 mm I.D.) with Superspher 60 RP Select 
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B as stationary phase and a LiChroCART 10-2 Superspher 60 RP Select B guard column. The 

mobile phase consisted of 50 mM ammonium formate adjusted to pH 3 with formic acid 

(eluent A) and acetonitrile containing 1 mL/L formic acid (eluent B). The MS operated in 

full-scan mode (m/z 100-600). For quantification, the peak area ratios of the respective target 

ions (M+H
+
) of DMC, acetylated DMC, and the internal standard diphenhydramine were 

used. 

 

 

 

Figure 5: Probe substrate sulfamethazine 
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Table 1. Substrate concentrations used for NAT incubations [μM] 

 

Sulfamethazine Dimethocaine 

NAT1 NAT2 NAT1 NAT2 

0.5 5 0.5 0.5 

1 10 1 1 

2.5 15 2.5 2.5 

5 30 5 5 

10 80 10 10 

25 100 25 25 

50 200 50 50 

80 400 80 80 

100 500 100 100 

200 1000 200 200 

400  400 400 

500  500 500 

1000  1000 1000 

2000  2000 2000 
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6 RESULTS AND DISCUSSION 

6.1 IDENTIFICATION OF THE PHASE I AND II METABOLITES BY LC-HR-MS
n
 

Via interpretation of the HR-MS
n
 spectra and fragmentation patterns depicted in Figure 6/7 

and Figure 8/9, the following phase I and phase II reactions could be elucidated, respectively: 

ester cleavage (spectrum no. 2), N-deethylation (9), hydroxylation (8), N-deethylation and 

hydroxylation (5,7), bis hydroxylation (3), and N-bis deethylation and hydroxylation (4,6). N-

acetylation (17, 19, 20, 21, 22, 23, 24), glucuronidation (10, 11, 12, 13, 14, 15, 16) and 

combination of both (18). The metabolic reactions are also summarized in Figure 10.  

The urinary metabolites of DMC were identified by full-scan HR-MS
n
 after LC separation of 

rat urine extracts. The postulated structures of the metabolites were deduced from the 

fragments detected in the different MS stages, which were interpreted in correlation to those 

of the parent compound. LC-HR-MS
n
 allowed thorough identification of the metabolites 

based on their accurate masses. The numbers of the corresponding mass spectra in Figure 6 to 

9 are given in brackets. The calculated and the measured masses and the delta values in ppm 

of all phase I and phase II metabolites are listed in Table 2. Fragments of protonated DMC 

(m/z 279.2071, spectrum 1 in Figure 6) could be interpreted as follows: cleavage next to the 

ester bond (m/z 120.0446, p-aminobenzoic part) and loss of water at the side chain (m/z 

142.1593). Another pattern is cleavage of the side chain amine part (m/z 206.1181, loss of 

diethylamino part). Further fragmentation of the most abundant ion in the MS
2
 (m/z at 

142.1593) and in the stage of MS
3
 led to the fragment ion at m/z 86.0964. 
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Table 2. Identified phase I and phase II metabolites with their measured and calculated 

masses and the delta values in ppm sorted according to increasing m/z.  

 

Compound Accurate mass 

m/z 

Exact mass 

m/z 

delta 

ppm 

 

DMC 279.2071 279.2067 1.49 

3-(Diethylamino)-2,2-dimethylpropanol 160.1695 160.1695 -0.79 

DMC-HO-bis-deethyl isomer 1 239.1391 239.1390 0.52 

DMC-HO-bis-deethyl isomer 2 239.1392 239.1390 0.65 

DMC-deethyl 251.1754 251.1754 0.04 

DMC-bis-deethyl N-acetyl 265.1547 265.1546 -0.02 

DMC-HO-deethyl isomer 1 267.1703 267.1703 -0.11 

DMC-HO-deethyl isomer2 267.1703 267.1703 -0.11 

DMC-HO-bis-deethyl N-acetyl 281.1498 281.1495 0.91 

DMC-deethyl N-acetyl 293.1858 293.1859 -0.50 

DMC-HO 295.2015 295.2016 -0.27 

DMC-HO-deethyl N-acetyl  309.1805 309.1808 -1.30 

DMC-di-HO  311.1961 311.1965 -1.37 

DMC-N-acetyl 321.2177 321.2172 1.37 

3-(Diethylamino)-2,2-dimethylpropanol 

glucuronide 

336.2019 336.2010 0.67 

DMC-HO N-acetyl isomer 1 337.2128 337.2121 1.73 

DMC-HO N-acetyl isomer 2 337.2728 337.2121 1.91 

DMC-HO-bis-deethyl glucuronide 415.1710 415.1711 -0.35 

DMC-HO-deethyl glucuronide 443.2012 443.2024 -2.65 

DMC-deethyl-N-O glucuronide 443.2015 443.2024 -2.20 

DMC-HO glucuronide 471.2332 471.2337 -1.09 

DMC-N-O glucuronide 471.2332 471.2337 -1.11 

DMC-di-HO glucuronide 487.2296 487.2286 -0.77 

DMC-HO-N-acetyl glucuronide 513.2445 513.2442 0.45 
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Metabolites of DMC could be identified by comparing the different MS
n
 spectra considering 

the mass shifts caused by metabolic reactions and different elemental compositions. 

Deethylation of the tertiary amine led to the respective nor metabolite (m/z 251.1754, 9). A 

change of 28 u in the fragment ions of the side chain referred to the deethylation (m/z 

142.1593 to m/z 114.1279 in MS
2
 and m/z 86.0964 to m/z 58.0650 in MS

3
). Hydroxylation of 

the aromatic ring system in spectra 8 lead to the protonated molecule at m/z 295.2015 in MS
1
 

and a shift of 16 u in the fragment ion corresponding to the p-aminobenzoic acid part (m/z 

120.0446 to m/z 136.0395 and m/z 206.1181 to m/z 222.1129) in MS
2
. Compounds 

represented by spectra nos. 5 and 7 are two isomers after deethylation and hydroxylation of 

the aromatic ring system. Compounds represented by spectra nos. 4 and 6 are isomers after 

bis-deethylation and hydroxylation of the aromatic ring system. 
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Figure 6: ESI HR-MS
n
 mass spectra of DMC and its phase I metabolites arranged according 

to their elution order. 
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Figure 6 continued  
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Figure 6 continued   
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Figure 6 continued   
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Figure 6 continued   



RESULTS AND DISCUSSION 

 
 

23 
 

 

Figure 7: Proposed structures and predominant fragmentation patterns of DMC and its phase 

I metabolites. The numbers correspond to the ones in Figure 6. 
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Figure 8: ESI HR-MS
n
 mass spectra of DMC and its phase II metabolites arranged according 

to their elution order. 
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Figure 8 continued 
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Figure 8 continued 
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Figure 8 continued  
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Figure 8 continued   
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Figure 8 continued   
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Figure 8 continued   
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Figure 8 continued   
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Figure 9: Proposed structures and predominant fragmentation patterns of DMC and its phase 
II metabolites. The numbers correspond to the ones in Figure 8. 
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N-acetylation was the most abundant step in phase II. Fragmentation protonated and 

acetylated DMC (m/z 321.2177, spectrum 24) could be interpreted as follows: cleavage next 

to the ester bond lead to the acetylated p-aminobenzoic acid part at m/z 162.0552 (m/z 

120.0446 shift of 42 units). This shift is also present in spectra nos. 19 and 21. Beta-cleavage 

of the side chain led to the fragment ions at m/z 142.0446 and m/z 180.0659. Based on this 

fragmentation patterns, the acetylated metabolites of DMC could be identified by comparing 

the different MS
n
 spectra of the acetylated metabolites considering the mass shifts according 

to the different elemental compositions. For example in case of a hydroxylated aromatic ring 

system, the additional acetyl-group led to a shift from m/z 136.0395 to m/z 178.0502 (17, 18, 

20, 22, and 23). The glucuronides were identified based on an accurate mass shift of m/z 

176.0321 due to addition of the glucuronic acid part and interpretation of their MS
3
 and MS

4
 

mass spectra.  

 

 

 

Figure 10: Structure of DMC with arrows indicating the described metabolic reactions. 
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6.2 NAT 1 AND 2 KINETIC STUDIES WITH DIMETHOCAINE AND SULFAMETHAZINE 

Initial activity screening revealed that only NAT2 was capable catalyzing the N-acetylation of 

DMC. The kinetic profile of DMC acetylation by NAT2 fitted best into Michaelis-Menten 

kinetic. The Km value was determined to be 102 µM, the Vmax value to be 1.1 units/min/pmol. 

The kinetic profile of sulfamethazine N-acetylation followed best a substrate inhibition 

equation with Km = 588 µM, Vmax = 24 units/min/pmol, and Ki = 12, which fitted well to 

previously published data [6;16;17](Table 3). 

 

Table 3. Km (µM) and Vmax values (dimensionless PAR/min/mg protein.) for acetylation of 

DMC and sulfamethazine by NAT2 

 

DMC sulfamethazine 

Km Vmax Km Vmax 

102 +/- 19 1.1 +/- 0.06 588 +/- 40 24 +/- 1.6 

 

Besides the extensive N-acetylation of the p-aminobenzoic acid part of the parent compound, 

most of the phase I metabolites were excreted as N-acetyl derivatives. Therefore, DMC N-

acetylation was investigated by incubation studies with human NAT1 and NAT2 to evaluate 

their ability to catalyze this most dominant metabolic step of DMC. The initial incubation 

conditions chosen were adequate to make a statement on the general involvement of the NAT 

isozymes. Sulfamethazine was used as suitable probe substrate with Km values available for 

both NAT enzymes [6;16]. It seemed likely that isozyme NAT1 should be of importance for 

DMC N-acetylation because of its p-aminobenzoic acid structure, which was described to be a 

substrate of this enzyme [18]. However, initial activity studies showed that NAT2 played a 

more important role in the DMC metabolism than NAT1. This was further supported by 
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enzyme kinetic studies, where data could only be acquired for NAT2 due to a very low 

product formation in NAT1 incubations. The respective Km and Vmax values can be found in 

Table 3. Endogenous N-acetylation of aromatic or heterocyclic amines by NAT1 or NAT2 is 

an important metabolic part of many drugs. As both enzymes, NAT1 and NAT2, are highly 

polymorphic, individual variations in the biotransformation of aromatic amines may occur 

[9]. It is obvious that there might be individual pharmacokinetic differences of the 

endogenous N-acetylation of DMC, which may lead to increased negative side effects such as 

cardiotoxicity. Such interactions may be much more important for people with a slow 

acetylation phenotype, in fact 50% of all Europeans have the slow or intermediary acetylation 

phenotype [19]. To what extent these points affect the plasma concentrations of DMC and 

also the concentration of acetylated DMC metabolites in urine should be target of further 

studies. 

In conclusion, the presented metabolism study demonstrated the extensive metabolism of 

DMC by the rat mainly via hydroxylation and deethylation as well as acetylation and 

glucuronidation. The endogenous N-acetylation as main part of DMC metabolism was 

catalyzed only by the NAT2 isozyme. Due to the enormous increase of new designer drugs 

and the corresponding health risks, it is an important issue to identify and to study new 

emerged substances. This study could therefore contribute to identification and detection of 

DMC by elucidating its metabolic pathways. Supposing similar kinetic processes in rats and 

humans, this study could serve as a basis for developing suitable screening strategies for 

detection of a DMC intake. This will be investigated in a further study. 
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8 ABBREVIATIONS 

 

3-MT   3-methoxy-tyramine 

acetyl-CoA  Acetyl-coenzyme-A 

AT   Agilent Technologies 

AU   Arbitrary units 

COMT   Catechol-O-methyltransferase 

CNS   Central nervous system 

Da    Dalton 

DA   Dopamine 

DMC   Dimethocaine 

DOPAC Dihydroxyphenylacetic acid 

HCl   Hydrochloride 

HR    High resolution 

IS   Internal standard 

LC   Liquid chromatography 

NAT   (arylamine) N-acetyltransferase 

MS    Mass spectrometry 

PS   Probe substrate 

SNP   Single nucleotide polymorphism 

SPE   Solid phase extraction 
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