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Abkürzungsverzeichnis 

ACE    “Angiotensin I converting enzyme” 

ATP    Adenosintriphosphat 

BHMT    Betain-Homocystein-Methyltransferase 

CARE FOR HOMe  “Cardiovascular and renal outcome in CKD 2-4 patients 

- The forth Homburg evaluation” 

CCR2    “Chemokine (C-C motif) receptor 2” 

CCR5    “Chemokine (C-C motif) receptor 5” 

CD    “Cluster of differentiation” 

CKD    “Chronic kidney disease” 

CKD-ND   „Chronic kidney disease, no dialysis“ 

CV    “Cardiovascular” 

CX3CR1   “Chemokine (C-X3-C motif) receptor 1” 

DNA    “Deoxyribonucleic acid” 

ENG    “Endoglin” 

eNOS    ”Endothelial nitric oxide synthase” 

HOMe ALONE “Heterogenetiy of monocytes and echocardiography among 

allograft recipients in nephrology” 

HOM sweet HOMe “Heterogeneity of monocytes in subjects who undergo elective 

coronary angiography – The Homburg evaluation” 

IL    Interleukin 

I Like HOMe “Inflammation, lipoprotein metabolism and kidney damage in 

early atherogenesis — The Homburg evaluation” 

IMT    “Intima-media thickness” 

K/DOQI   “Kidney disease outcomes quality initiative” 

LDL    “Low density lipoprotein” 
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LFA-1    “Lymphocyte function-associated antigen” 

LPS    Lipopolysaccharid 

MS    Methionin-Synthase 

oxLDL    oxidiertes LDL 

PBMC    “Peripheral blood mononuclear cell” 

PSGL-1   “P-selectin glycoprotein ligand-1” 

RefSeq    “NCBI reference sequence” 

RNA    “Ribonucleic acid” 

ROS    “Reactive oxygen species” 

SAH    S-Adenosylhomocystein 

SAM    S-Adenosylmethionin 

SMSDK   “SuperTAG methylation-specific digital karyotyping” 

SuperSAGE   “Serial analysis of gene expression” 

TEK    “Tyrosine kinase, endothelial“ 

THF    Tetrahydrofolat 

TLR2    Toll-like Rezeptor 2 

TLR4    Toll-like Rezeptor 4 

TNFα    Tumornekrosefaktor alpha 

VEGFR   “Vascular endothelial growth factor receptor” 

VLA-4    “Very Late Antigen-4” 
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Zusammenfassung 

Chronisch nierenkranke Patienten weisen gegenüber nierengesunden Menschen eine deutlich 

erhöhte Mortalität auf, welche vor allem auf eine massiv beschleunigte Atherosklerose mit 

nachfolgend erhöhter kardiovaskulärer Morbidität zurückgeführt werden kann. Monozyten 

stellen als Mediatoren der Inflammation ein zentrales Bindeglied in der beschleunigten 

Atherogenese chronisch nierenkranker Menschen dar. Durchflusszytometrisch lassen sich drei 

Subpopulationen von Monozyten charakterisieren: klassische CD14++CD16-, intermediäre 

CD14++CD16+ und nicht-klassische CD14+CD16++ Monozyten. Vorarbeiten konnten eine 

zentrale Rolle der intermediären Monozyten in der Atherogenese nierenkranker Menschen 

aufzeigen und eine erhöhte Anzahl intermediärer Monozyten als Prädiktor kardiovaskulärer 

Ereignisse bei Dialysepatienten charakterisieren. 

In der vorliegenden Arbeit konnte einerseits auf der Basis epidemiologischer Untersuchungen 

aufgezeigt werden, dass intermediäre Monozyten nicht nur in selektierten Kohorten von 

Dialysepatienten, sondern auch bei nicht-dialysepflichtigen chronisch nierenkranken 

Patienten und selbst bei nierengesunden Menschen Prädiktoren kardiovaskulärer Ereignisse 

sind. Andererseits erfolgte experimentell eine detaillierte Charakterisierung der drei 

Monozytensubpopulationen, welche selektiv proinflammatorische Eigenschaften 

intermediärer Monozyten aufzeigte. Schließlich wurden dysregulierte epigenetische 

Mechanismen bei chronisch nierenkranken Menschen identifiziert, die zu den monozytären 

Veränderungen und der beschleunigten Entstehung atherosklerotischer Läsionen bei diesen 

Patienten beitragen könnten. 

Zusammenfassend erlauben die Ergebnisse dieser Arbeit eine bessere Charakterisierung der 

Monozytenheterogenität und schärfen das pathophysiologische Verständnis der hohen 

kardiovaskulären Morbidität chronisch nierenkranker Menschen. Auf dieser Basis werden 

intermediäre Monozyten als potentielles Ziel zukünftiger Behandlungsstrategien zur 

Prävention und Therapie kardiovaskulärer Erkrankungen bei chronisch nierenkranken 

Menschen diskutiert. 
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Abstract (Zusammenfassung in englischer Sprache) 

Compared to individuals from the general population, patients with chronic kidney disease 

(CKD) suffer from a dramatically increased mortality, which is mainly due to accelerated 

atherosclerosis and subsequent elevated cardiovascular morbidity. As central cellular 

components of the immune system, monocytes may contribute to accelerated atherosclerosis 

in CKD patients. Three monocyte subsets are characterized via flow-cytometry: classical 

CD14++CD16-, intermediate CD14++CD16+ and nonclassical CD14+CD16++ monocytes. 

Recent studies revealed a central role of intermediate monocytes in CKD-associated 

atherosclerosis. Accordingly, high cell counts of intermediate monocytes predicted 

cardiovascular events in dialysis patients. 

The present thesis first extends findings from epidemiological studies in dialysis patients, 

characterizing intermediate monocytes as predictors of cardiovascular events in cohorts of 

non-dialysis CKD patients and even in patients without overt CKD. Secondly, experimental 

analyses provided a detailed characterization of the three monocyte subsets, revealing subset-

specific proinflammatory characteristics of intermediate monocytes. Finally, dysregulated 

epigenetic mechanisms were found in CKD patients, which may contribute to the shift in 

monocyte subsets and to accelerated atherosclerosis in these patients. 

In summary, these results allow a better characterization of monocyte heterogeneity and 

broaden the pathophysiological understanding of the high cardiovascular morbidity of CKD 

patients. Based on these results, intermediate monocytes are currently discussed as potential 

targets for prevention and treatment of CKD-associated cardiovascular disease. 
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1. Einleitung 

1.1 Die chronische Nierenerkrankung 

Eine veränderte Altersstruktur und wachsende Komorbidität in westlichen Industrieländern 

konfrontiert unsere Gesellschaft mit einer progredienten Prävalenz der chronischen 

Nierenerkrankung (chronic kidney disease [CKD]), woraus für das Gesundheitswesen sowohl 

medizinisch als auch ökonomisch eine wachsende Belastung resultiert. So weisen in den 

Vereinigten Staaten von Amerika 26,3 Millionen Menschen eine chronische 

Nierenerkrankung auf [13]. Hingegen ist die Anzahl chronisch nierenkranker Menschen in 

Deutschland aufgrund fehlender epidemiologischer Untersuchungen in den letzten Jahren 

nicht detailliert bekannt; allerdings nahm allein die Anzahl der Dialysepatienten zwischen 

1995 und 2007 von 41350 auf 66508 zu [7]. 

Die Lebenserwartung chronisch nierenkranker Menschen ist aufgrund einer ausgeprägten 

extrarenalen Komorbidität, die von der massiv beschleunigten Atherosklerose mit konsekutiv 

erhöhter kardiovaskulärer Morbidität und Mortalität dominiert wird, dramatisch verringert 

[16]. Dieser Zusammenhang zwischen chronischer Nierenerkrankung und dem Auftreten von 

Herz- und Gefäßerkrankungen wurde vor einigen Jahren als „Kardiorenales Syndrom“ 

definiert [67]. 

Das erhöhte Risiko für kardiovaskuläre Ereignisse bei chronisch nierenkranken Patienten 

kann dabei nicht allein durch die erhöhte Prävalenz klassischer kardiovaskulärer 

Risikofaktoren wie Bluthochdruck, Diabetes mellitus, Nikotinkonsum und 

Hypercholesterinämie [52,59,82] erklärt werden, sondern beruht additiv auf dem Einwirken 

sogenannter nicht-klassischer Risikofaktoren (Tabelle 1). 

 

Tabelle 1. Klassische und Nicht-klassische Risikofaktoren bei chronischer Nierenerkrankung 

(modifiziert nach Sarnak et al [71]) 

Klassische Risikofaktoren Nicht-klassische Risikofaktoren 

Höheres Alter Homocystein 

Männliches Geschlecht Anämie 

Bluthochdruck Dysregulierter Ca/P Metabolismus 

Erhöhtes LDL Cholesterin Oxidativer Stress 

Diabetes mellitus Chronische (Mikro)inflammation 

Rauchen Malnutrition 

Physische Inaktivität  

LDL: low-density-lipoprotein; Ca: Calcium; P: Phosphat 
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Im Einklang hiermit vermag die isolierte Behandlung klassischer kardiovaskulärer 

Risikofaktoren wie die Senkung des LDL-Cholesterins mittels Statintherapie, oder die Gabe 

vaskuloprotekiver ACE- (angiotensin I converting enzyme) Hemmer, welche sich bei 

nierengesunden Menschen als kardioprotektiv erwiesen, keine substantielle Reduktion 

kardiovaskulärer Mortalität bei chronisch nierenkranken Patienten zu erreichen [19,88,91]. 

Daher erscheint ein besseres pathophysiologisches Verständnis der atherosklerotischen 

Gefäßveränderungen bei chronisch nierenkranken Menschen erforderlich, um effektivere 

Therapiestrategien definieren zu können. Ein zentraler Fokus zukünftiger Forschung zur 

kardiovaskulären Morbidität chronisch nierenkranker Patienten sollte hierbei auf nicht-

klassische kardiovaskuläre Risikofaktoren gelegt werden. 

1.2 Monozyten und Atherosklerose 

Die chronische (Mikro)inflammation ist ein zentraler nicht-klassischer Risikofaktor des 

nierenkranken Patienten [68], welcher zentral durch eine Monozytendysfunktion 

charakterisiert ist. So konnte einerseits der lange vorbekannte urämische Immundefekt, 

welcher sich in einer verminderten Impfantwort und einer erhöhten Infektneigung 

manifestiert, auf eine Monozytenfunktionsstörung zurückgeführt werden, die durch 

gesteigerte Sekretion proinflammatorischer Zytokine und verminderte T-Zell Co-Stimulation 

gekennzeichnet ist [25]. Andererseits weisen Monozyten eine zentrale Bedeutung in der 

Entstehung und Progredienz atherosklerotischer Läsionen auf [33]. Bereits in der Frühphase 

der endothelialen Dysfunktion adhärieren Monozyten über distinkte Adhäsionsmoleküle (z.B. 

PSGL-1, VLA-4, LFA-1) an aktivierte Endothelzellen und migrieren in die Intima der 

Gefäßwand (siehe Abbildung 1). Hier differenzieren sie sich zu Dendritischen Zellen oder 

Makrophagen und induzieren die Entstehung atherosklerotischer Läsionen, indem sie 

proinflammatorische Zytokine und Wachstumsfaktoren sezernieren und dadurch weitere 

Immunzellen in die Gefäßwand locken [48]. Durch Aufnahme von oxLDL und weiteren 

Lipiden entstehen aus den Makrophagen Schaumzellen, die unter dem Endothel als 

„Fettstreifen“ („fatty streaks“) eine charakteristische Veränderung der Gefäßwand darstellen. 

Zusätzlich kommt es zum Einwandern glatter Muskelzellen aus der Media- in die Intima-

Schicht der Gefäßwand und schließlich zur Ausbildung eines komplizierten 

atherosklerotischen Plaques, bestehend aus einem nekrotischen Kern, der von glatten 

Muskelzellen und einer Kollagenmatrix umgeben wird. Eine Ruptur der Plaques kann zur 

Freisetzung prothrombotischen Materials und zur Aktivierung der Koagulationskaskade mit 

nachfolgender Thrombusbildung führen, was sich klinisch bei Erkrankung von 
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Herzkranzarterien als akuter Myokardinfarkt, bei Erkrankungen von hinzuführenden Arterien 

als Apoplex manifestieren kann. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 1. Rolle von Monozyten in der Entstehung atherosklerotischer Gefäßerkrankung. 

Monozyten adhärieren an aktivierte Endothelzellen und migrieren in den subendothelialen Raum, wo 

sie sich entweder zu Dendritischen Zellen oder Makrophagen differenzieren. Durch Sekretion 

proinflammatorischer Zytokine werden weitere Immunzellen sowie glatte Muskelzellen in die Intima 

angelockt und aktiviert. Außerdem nehmen Makrophagen Lipide auf und differenzieren sich zu 

Schaumzellen, die unter dem Endothel als „Fettstreifen“ zu erkennen sind. Dieser inflammatorische 

Zustand führt letztendlich zur Ausbildung eines komplizierten atherosklerotischen Plaques, der aus 

einem lipid- und makrophagenreichen nekrotischen Kern besteht. Eine Destabilisierung des Plaques 

kann zur Ruptur führen und sich nachfolgend als Myokardinfarkt oder Apoplex manifestieren. 

Obgleich in experimentellen Studien eine zentrale Rolle von Monozyten in der 

atherosklerotischen Gefäßerkrankung zweifelsfrei nachgewiesen werden konnte, erwiesen 

sich jedoch in epidemiologischen Untersuchungen die zirkulierenden Zellzahlen der 

Monozyten vermeintlich überraschenderweise nicht als eigenständige Prädiktoren 

kardiovaskulärer Ereignisse [89]. Aus klinischer Sicht erscheint eine Aufklärung dieser 

diskrepanten Befunde wünschenswert, weil ein gleichermaßen diagnostisch zuverlässiger und 

pathogenetisch relevanter Marker der Mikroinflammation erlauben könnte, Patienten besser 

als bisher hinsichtlich ihres kardiovaskulären Risikos zu stratifizieren. 

Zur Aufklärung dieses Widerspruchs zwischen experimentellen und klinisch-

epidemiologischen Befunden trägt die Erkenntnis bei, dass humane Monozyten keine 

homogene Zellpopulation darstellen. 
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1.3 Monozytenheterogenität bei CKD und Atherosklerose 

Die Existenz phänotypisch unterschiedlicher Monozytensubpopulationen wurde erstmals 

1989 beschrieben [60]. Auf der Grundlage differentieller Expression des LPS-Rezeptors 

CD14 sowie des Immunglobulin Rezeptors FCγRIII CD16 wurden initial zwei 

unterschiedliche Monozytensubpopulationen charakterisiert und eine kleinere Subpopulation, 

die neben CD14 auch CD16 co-exprimiert (CD16-positive Monozyten, 7 – 15 % aller 

zirkulierender Monozyten), von der Mehrzahl der Monozyten, welche kein CD16 exprimieren 

(CD14++CD16- Monozyten), differenziert. 

CD16-positive Monozyten wurden zunächst als proinflammatorische Monozyten bezeichnet, 

da sie einerseits in zahlreichen inflammatorischen Erkrankungen in erhöhter Zellzahl 

nachzuweisen sind [21,28,36,43,45,70,74,80] und andererseits im Vergleich zu 

CD14++CD16- Monozyten vermehrt proinflammatorische Zytokine wie TNFα und 

IL12p40/IL12p70 sowie vermindert das antiinflammatorische Zytokin IL10 bilden [4,22,79]. 

Zusätzlich verleiht die starke Expression distinkter Adhäsionsmoleküle (z.B. VLA-4, 

CX3CR1) dieser Monozytensubpopulation eine hohe endotheliale Affinität sowie ein hohes 

Potential zur transendothelialen Migration [1]. 

Auch aus nephrologischer Sicht erscheint von besonderem Interesse, dass Dialysepatienten 

deutlich erhöhte Zellzahlen der CD16-positiven Monozyten aufweisen [6,8,44,58,64,72], eine 

jede Hämodialysebehandlung jedoch einen passageren Zellzahlabfall der CD16-positiven 

Monozyten induziert, der vermutlich auf eine vorübergehende Adhärenz an Endothelzellen 

zurückgeführt werden kann [65,72]. In Querschnittsanalysen bei chronisch nierenkranken 

Patienten zeigte sich außerdem eine Assoziation erhöhter Zellzahlen der CD16-positiven 

Monozyten mit subklinischen atherosklerotischen Gefäßerkrankungen [84]. 

Durch nähere Charakterisierung der Monozytensubpopulationen wurde im Jahre 2003 die 

Gesamtpopulation der CD16-positiven Monozyten erstmals in zwei funktionell und 

phänotypisch distinkte Monozytensubpopulationen unterteilt und diejenigen Monozyten, die 

den LPS-Rezeptor CD14 ebenso hoch exprimieren wie die Hauptpopulation der 

CD14++CD16- Monozyten, von Monozyten mit verringerter Expression von CD14 

differenziert [1]. Eine Gruppe internationaler Experten bestätigte im Jahre 2010 die Existenz 

dieser drei distinkten Monozytensubpopulationen und führte die folgende offizielle 

Nomenklatur für Monozyten ein [96]: 

klassische CD14++CD16- Monozyten, 

intermediäre CD14++CD16+ Monozyten, 

nicht-klassische CD14+CD16++ Monozyten. 
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Die Gesamtpopulation der intermediären und nicht-klassischen Monozyten wird dabei als 

„CD16-positive Monozyten“ bezeichnet. 

Rezente klinische und experimentelle Studien deuten auf einen proinflammatorischen 

Charakter insbesondere der intermediären Monozyten hin. So konnte eine Hochregulation von 

CCR5 [1], ACE [83] und TLR2 [86] auf den intermediären Monozyten gezeigt werden. 

Gleichzeitig bilden diese intermediären Monozyten nach LPS Stimulation stärker als die 

klassischen und nicht-klassischen Monozyten TNFα und IL1  [14]. Umfassendere 

experimentelle Studien sind jedoch notwendig, um den proinflammatorischen Charakter 

intermediärer Monozyten detaillierter zu untersuchen [97]. 

Klinische Untersuchungen unserer Arbeitsgruppe zur prognostischen Bedeutung von 

Monozytensubpopulationen bestätigen den proinflammatorischen und präsumtiv 

proatherogenen Charakter der CD14++CD16+ Monozyten. So erwies sich in einer Kohorte 

von 94 Dialysepatienten die Zellzahl der CD14++CD16+ Monozyten, nicht jedoch der 

CD14+CD16++ Monozyten, als signifikanter und unabhängiger Prädiktor für das Auftreten 

kardiovaskulärer Ereignisse in einem Beobachtungszeitraum von 35 Monaten [32]. In zwei 

weiteren klinischen Studien bei Dialysepatienten konnte diese prognostische Bedeutung der 

CD14++CD16+ Monozyten bestätigt und sowohl die intradialytische Kinetik [65] als auch 

eine erhöhte ACE Expression [85] von intermediären Monozyten als weitere Prädiktoren 

erkannt werden. 

In der Zusammenschau dieser Voruntersuchungen lässt sich eine pathophysiologische 

Bedeutung für die CD14++CD16+ Monozyten in der Atherogenese postulieren. Allerdings ist 

die Genese der Zellzahlzunahme der CD14++CD16+ Monozyten bei chronisch nierenkranken 

Patienten bislang ungeklärt. Zudem lassen sich diese Daten nicht ohne Weiteres auf nicht-

dialysepflichtige chronisch nierenkranke Patienten oder gar die nierengesunde 

Allgemeinbevölkerung übertragen, da sich Dialysepatienten sowohl allgemein in der 

Pathogenese der Atherosklerose als auch spezifisch in der Verteilung der 

Monozytensubpopulationen von anderen Patientenkollektiven unterscheiden [49]. 

Deshalb sollte der prädiktive Charakter von CD14++CD16+ Monozyten auch bei anderen 

Patientenkollektiven untersucht werden. 
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1.4 Bedeutung epigenetischer Mechanismen für die beschleunigte 

Atherosklerose bei CKD 

Die Ursachen für die urämische Monozytendysfunktion sowie für die Verschiebungen der 

Monozytensubpopulationen bei chronischer Nierenerkrankung sind bislang nicht hinreichend 

bekannt. In dem unphysiologischen urämischen Milieu können zahlreiche Faktoren wie die 

Hyperhomocysteinämie, chronische Inflammation, Dyslipidämie und oxidativer Stress eine 

Funktionsstörung der Monozyten induzieren. So konnten Zhang et al. [94,95] 

tierexperimentell zeigen, dass die Hyperhomocysteinämie die Bildung proinflammatorischer 

Monozyten induziert, welche nachfolgend in atherosklerotische Läsionen einwandern. Bisher 

wurde jedoch noch nicht untersucht, inwiefern die erhöhten Homocysteinspiegel bei 

chronisch nierenkranken Patienten, die aus einer verminderten renalen Exkretion und einem 

verminderten Katabolismus von Homocystein resultieren, die Entstehung der CD16-positiven 

Monozyten induziert. 

Homocystein vermittelt pathophysiologisch zahlreiche proatherogene Prozesse, wie die 

Bildung reaktiver Sauerstoffspezies (reactive oxygen species [ROS]) [2], Migration von 

Leukozyten in atherosklerotische Läsionen [62], Proliferation von glatten Gefäßmuskelzellen 

[54] sowie Induktion eines prothrombotischen Zustands [5]. Im vermeintlichen Einklang 

zeigte sich in klinischen Studien eine Assoziation erhöhter Homocysteinspiegel mit 

kardiovaskulären Ereignissen bei chronisch nierenkranken Patienten [55]. 

Homocystein ist als zentraler Bestandteil des C1-Metabolismus direkt an der epigenetischen 

Genregulation beteiligt (Abbildung 2). Im C1-Metabolismus wird Homocystein zu 

S-Adenosylmethionin (SAM) umgewandelt; SAM ist der universelle Methylgruppendonor für 

zahlreiche zelluläre Methylierungsreaktionen, darunter auch für die DNA-Methylierung, die 

als eine zentrale epigenetische Komponente die Genexpression reguliert. Aus SAM entsteht 

nach erfolgter Methylierungsreaktion S-Adenosylhomocystein (SAH). Da SAH ein potenter 

kompetitiver Inhibitor von SAM-abhängigen Methyltransferasen ist [18], wird SAH 

physiologischerweise metabolisiert, um zelluläre Methylierungsreaktionen nicht zu behindern. 

Dies geschieht durch Hydrolyse von SAH zu Homocystein und Adenosin. Da diese Reaktion 

jedoch reversibel ist, führt jegliche Akkumulation von Homocystein auch zu einem Anstieg 

von SAH und somit zu einer potentiellen Inhibition der DNA-Methylierung. 

Physiologischerweise wird Homocystein deshalb entweder zu SAM (über die 

Folsäure/Vitamin B12- oder Betain-abhängige Remethylierung) oder zu Cystathionin (über die 

Vitamin B6-abhängige Transsulfurierung) metabolisiert; beide Prozesse sind jedoch bei 

chronisch nierenkranken Patienten gestört [61,93]. 
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Abbildung 2. Rolle des C1-Metabolismus bei zellulären Methylierungsreaktionen. Homocystein 

kann entweder über den Transsulfurierungs- oder den Remethylierungspathway abgebaut werden. 

Über die Remethylierung entsteht S-Adenosylmethionin (SAM), der universelle Methylgruppendonor 

für zelluläre Methylierungsreaktionen, darunter auch für die DNA-Methylierung. Nach erfolgter 

Methylierung entsteht aus dem SAM das S-Adenosylhomocystein (SAH); SAH ist ein kompetitiver 

Inhibitor von Methyltransferasen und wird deshalb weiter zu Homocystein metabolisiert, um zelluläre 

Methylierungsreaktionen nicht zu behindern. Diese Reaktion ist jedoch reversibel, so dass eine 

Akkumulation von Homocystein auch zur Zunahme der SAH-Spiegel führt. Eine Eliminierung von 

Homocystein ist deshalb essentiell. THF: Tetrahydrofolat; MS: Methionin-Synthase; BHMT: Betain-

Homocystein-Methyltransferase; Vit B12: Vitamin B12; Vit B6: Vitamin B6. 

Außerhalb der Nephrologie weisen zahlreiche experimentelle und klinische Studien auf eine 

kausale Bedeutung einer veränderten DNA-Methylierung in der Atherogenese hin. So zeigen 

nierengesunde Patienten mit atherosklerotischen Gefäßerkrankungen einen gestörten globalen 

DNA-Methylierungsstatus in PBMCs (peripheral blood mononuclear cells) auf, der mit 

erhöhten Plasma-Homocystein- und SAH-Konzentrationen assoziiert ist [3,10,46,73]. In 

atherosklerotischen Läsionen treten DNA-Methylierungsveränderungen in Kontrollregionen 

verschiedener Gene auf, die an der Pathogenese von Atherosklerose beteiligt sind, wie etwa 

der Superoxid Dismutase (SOD), der endothelialen Stickstoffmonoxid-Synthase (eNOS) und 

dem Östrogen-Rezeptor-α (ESR1) [9,11,35,47,63]. 

Aus klinischer Sicht erscheint bedeutsam, den Einfluss des C1-Metabolismus auf die DNA-

Methylierung bei chronisch nierenkranken Patienten zu untersuchen, obwohl in mehreren 

großen Interventionsstudien eine Senkung der Homocysteinspiegel mittels Substitution von 
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Folsäure, Vitamin B6 und Vitamin B12 nicht zu einer Reduktion kardiovaskulärer Ereignisse 

führte [34,42,90,98]. Als mögliche Erklärung für diese vermeintlich widersprüchlichen 

Befunde kann im Einklang mit aktuellen experimentellen und klinischen Studien postuliert 

werden, dass SAH gegenüber Homocystein ein besserer Marker epigenetischer 

Fehlregulationen und daher ein geeigneterer Prädiktor kardiovaskulärer Erkrankungen ist 

[50,87]. Interessanterweise resultiert eine Substitution von Folsäure, Vitamin B6 und 

Vitamin B12, welche in den frustranen Interventionsstudien eingesetzt wurde, zwar in einer 

Homocystein-Senkung, nicht jedoch in einer Senkung von SAH [27,38]. Aus nephrologischer 

Sicht erscheint außerdem bedeutsam, dass SAH bei chronischer Nierenerkrankung deutlicher 

akkumuliert als Homocystein [41], da die Niere eine ausschlaggebende Rolle in der 

Eliminierung von SAH spielt [23]. Somit lässt sich ein direkter Zusammenhang zwischen 

chronischer Nierenerkrankung und der Kontrolle von Transmethylierungsreaktionen 

postulieren (zusammengefasst in [17,40,76-78]). Im Einklang damit konnten mehrere Studien 

eine Beeinträchtigung von Transmethylierungsreaktionen bei Hämodialysepatienten 

aufzeigen [24,39,51,75]. Darüber hinaus stellte sich eine gestörte DNA-Methylierung als 

unabhängiger Risikofaktor für das Auftreten kardiovaskulärer Todesfälle bei 

Hämodialysepatienten heraus [75]. 

Untersuchungen zur prognostischen Bedeutung erhöhter SAH-Spiegel und epigenetischer 

Fehlregulation sind notwendig, um die Bedeutung eines gestörten C1-Metabolismus in der 

beschleunigten Atherogenese chronisch nierenkranker Menschen weiter aufzuklären. Ebenso 

müssen weitere Studien untersuchen, inwiefern die Störung des C1-Metabolismus die Bildung 

präsumtiv proatherogener Monozyten bei chronisch nierenkranken Patienten induziert. 

1.5 Weitergehende Zusammenfassung 

Eine detaillierte Diskussion zum Thema Monozytenheterogenität und Epigenetik bei CKD-

assoziierter Atherogenese erfolgte in folgenden zwei Übersichtsartikeln, die im Rahmen der 

Dissertationsarbeit erstellt wurden (siehe Anhang): 

 

1) Zawada AM, Rogacev KS, Schirmer SH, Sester M, Böhm M, Fliser D, Heine GH. 

Monocyte heterogeneity in human cardiovascular disease. Immunobiology. 2012 

Dec;217(12):1273-84. 

2) Zawada AM, Rogacev KS, Heine GH. Clinical relevance of epigenetic dysregulation 

in chronic kidney disease. Nephrol Dial Transplant. Im Druck. 
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1.6 Zielsetzung der Arbeit 

Die vorgelegte Dissertationsarbeit fokussiert vor dem ausgeführten wissenschaftlichen 

Hintergrund auf drei Fragestellungen: 

Zunächst soll in epidemiologischen Untersuchungen die prognostische Bedeutung von 

CD14++CD16+ Monozyten bei chronisch nierenkranken, nicht-dialysepflichtigen Patienten 

sowie bei Nierengesunden erfasst werden. Hierbei wird postuliert, dass die Erfassung der 

Monozytenheterogenität den vermeintlichen Widerspruch aufzulösen vermag, dass trotz der 

zentralen Rolle von Monozyten in der Pathogenese der Atherosklerose bisherige 

epidemiologische Studien keine eindeutige Assoziation zwischen Monozytenzahlen und 

kardiovaskulären Erkrankungen aufzeigten. Nachfolgend soll über die epidemiologischen 

Studien hinaus eine genauere Charakterisierung der Monozytensubpopulationen erfolgen, um 

ein besseres Verständnis der Bedeutung von Monozytensubpopulationen bei Patienten mit 

chronischer Nierenerkrankung zu ermöglichen sowie um Faktoren zu charakterisieren, welche 

bei Urämie zur Veränderung der Verteilung von Monozytensubpopulationen beitragen. 

Schließlich sollen epigenetische Regulationsmechanismen bei chronisch nierenkranken 

Patienten untersucht werden, da eine epigenetische Dysregulation bei nierenkranken 

Menschen zentral zur veränderten Monozytenbiologie sowie darüber hinaus zu 

proinflammatorischen Prozessen beitragen könnte. 
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2. Ergebnisse 

2.1 CD14++CD16+ Monozyten als Prädiktoren kardiovaskulärer Ereignisse 

bei nicht-dialysepflichtigen chronisch nierenkranken Patienten 

Diese Arbeit wurde publiziert als: 

Rogacev KS, Seiler S, Zawada AM, Reichart B, Herath E, Roth D, Ulrich C, Fliser D, Heine 

GH. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney 

disease. Eur Heart J. 2011 Jan;32(1):84-92. 

 

Zusammenfassung 

Die prognostische Bedeutung der CD14++CD16+ Monozyten ist bislang nur bei 

Dialysepatienten [32], nicht bei Patienten mit chronischer, nicht-dialysepflichtiger 

Nierenerkrankung („chronic kidney disease, no dialysis“ [CKD-ND]) untersucht. Letztere 

Patientengruppe überragt jedoch weltweit in ihrer Populationsgröße die Gruppe der 

Dialysepatienten deutlich und stellt ähnlich wie die Dialysepatienten eine kardiovaskuläre 

Hochrisikogruppe dar. Ziel dieser Studie war daher zu untersuchen, ob die Anzahl 

CD14++CD16+ Monozyten nicht nur bei Dialysepatienten, sondern auch bei CKD-ND ein 

Prädiktor kardiovaskulärer Ereignisse darstellt.  

Bei 119 Patienten mit CKD-ND wurde die prognostische Bedeutung der präsumtiv 

proatherogenen CD14++CD16+ Monozyten erfasst. Über eine Nachbeobachtungszeit von 

durchschnittlich 4,9 Jahren wurde das Auftreten kardiovaskulärer Ereignisse bestimmt. Die 

Patientengruppe wurde 2004 rekrutiert; im Rahmen der Promotionsarbeit erfolgte einerseits 

die epidemiologische Auswertung der Patientendaten, andererseits die 

subpopulationsspezifische Charakterisierung der Expression der Chemokinrezeptoren CCR2, 

CX3CR1 und CCR5 bei insgesamt 30 chronisch nierenkranken Patienten mittels 

Durchflusszytometrie. 

Unabhängig vom Stadium der chronischen Nierenerkrankung zeigte sich eine differentielle 

Expression der Rezeptoren auf den Monozytensubpopulationen: während CD14++CD16- 

Monozyten eine starke Expression von CCR2 und CD14+CD16++ Monozyten eine starke 

Expression von CX3CR1 aufwiesen, zeigten CD14++CD16+ Zellen neben der Co-Expression 

der beiden Rezeptoren CCR2 und CX3CR1 eine subpopulationsspezifische Expression von 

CCR5. Einhergehend mit der hohen Expression an proatherogenen Markern stellte sich 

zudem heraus, dass chronisch nierenkranke Patienten mit erhöhter Anzahl der 
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CD14++CD16+ Monozyten ein erhöhtes kardiovaskuläres Risiko aufwiesen (Hazard Ratio 

für eine Zellzunahme von 10 Zellen/µL 1,26 [Konfidenzintervall: 1,04 – 1,52; p = 0,018]). 

Weiterhin konnte im Einklang mit der Hypothese, dass das urämische Milieu durch 

Beeinflussung des Epigenoms monozytärer Zellen eine Differenzierung zu CD16-positiven 

Monozyten induziert, eine Korrelation zwischen der Anzahl CD16-positiver Monozyten – 

insbesondere der CD14+CD16++ Monozyten (r = 0,201, p = 0,038) – und dem Serum-

Homocystein festgestellt werden. 

Diese Ergebnisse festigen die Bedeutung von CD14++CD16+ Monozyten in der Pathogenese 

der Atherosklerose und deuten auf eine Beteiligung epigenetischer Mechanismen an der 

Verschiebung der Monozytensubpopulationen bei chronisch nierenkranken Menschen hin.  

Auf Basis dieser Ergebnisse soll innerhalb der CARE FOR HOMe Studie (Cardiovascular and 

Renal Outcome in CKD 2-4 Patients – The Forth Homburg evaluation) bei 444 chronisch 

nierenkranken, nicht-dialysepflichtigen Patienten die Bedeutung von SAM und SAH, als 

weitere zentrale epigenetische Regulationsfaktoren, im Kontext der Monozytenheterogenität 

bei CKD erfasst werden. 
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2.2 CD14++CD16+ Monozyten als Prädiktoren kardiovaskulärer Ereignisse 

bei Nierengesunden 

Diese Arbeit wurde publiziert als: 

Rogacev KS, Cremers B, Zawada AM, Seiler S, Binder N, Ege P, Große-Dunker G, Heisel I, 

Hornof F, Jeken J, Rebling NM, Ulrich C, Scheller B, Böhm M, Fliser D, Heine GH. 

CD14++CD16+ Monocytes Independently Predict Cardiovascular Events: A Cohort Study of 

951 Patients Referred for Elective Coronary Angiography. J Am Coll Cardiol. 2012 Oct 

16;60(16):1512-20. 

 

Zusammenfassung 

CD14++CD16+ Monozyten sind als unabhängige Prädiktoren kardiovaskulärer Ereignisse bei 

chronisch nierenkranken Patienten identifiziert worden [32,66]. Chronisch nierenkranke 

Patienten sind jedoch eine hoch selektive Patientenpopulation, die eine deutliche 

Verschiebung in den Monozytensubpopulationen aufweist. Zudem unterscheiden sich 

chronisch nierenkranke Patienten in der Pathogenese der Atherosklerose von Nierengesunden, 

weshalb sich epidemiologische Studienergebnisse nicht ohne Weiteres auf andere 

Patientengruppen übertragen lassen. Im Rahmen der HOM SWEET HOMEe Studie 

(Heterogeneity of Monocytes in Subjects Who Undergo Elective Coronary Angiography - 

The Homburg Evaluation) wurde nun die Hypothese überprüft, ob die Anzahl an 

CD14++CD16+ Monozyten auch bei Nierengesunden ein Prädiktor für kardiovaskuläre 

Ereignisse darstellt. 

Bei 951 Patienten, die sich in der Klinik für Innere Medizin III (Kardiologie, Angiologie und 

Internistische Intensivmedizin) des Universitätsklinikums des Saarlandes einer elektiven 

Koronarangiographie unterzogen, wurden Monozytensubpopulationen durchflusszytometrisch 

analysiert und das Auftreten des primären Endpunktes (definiert als kardiovaskulärer Tod, 

akuter Myokardinfarkt, Nicht-hämorrhagischer Schlaganfall) jährlich nachverfolgt. 

Die durchschnittliche Nachbeobachtungszeit betrug 2,6 ± 1,0 Jahre, in der 93 Patienten den 

primären Endpunkt erreichten. Während in der univariaten Kaplan-Meier-Analyse die Anzahl 

der Gesamtmonozyten (p = 0,010), der CD14++CD16- (p = 0,024) und der CD14++CD16+ 

Monozyten (p < 0,001) den primären Endpunkt prognostizierten, blieben nach Korrektur für 

weitere Risikofaktoren nur die CD14++CD16+ Monozyten unabhängige Prädiktoren für 
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kardiovaskuläre Ereignisse (Hazard Ratio viertes gegen erstes Quartil 3,019 

[Konfidenzintervall: 1,315 – 6,928; p = 0,009]). 

Da somit CD14++CD16+ Monozyten auch bei Nierengesunden als Prädiktoren 

kardiovaskulärer Ereignisse erkannt werden konnten, könnten diese Zellen ein spezifisches 

Ziel für zukünftige therapeutische Interventionen bei kardiovaskulären Risikopatienten 

darstellen. Hierzu sollten weitere Studien zunächst Monozytensubpopulationen detaillierter 

charakterisieren, um einerseits die Biologie der CD14++CD16+ Monozyten besser zu 

verstehen und um andererseits potentielle Mechanismen für eine selektive Modifikation oder 

Depletion dieser Zellen aufzuzeigen. 
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2.3 Charakterisierung humaner Monozytensubpopulationen 

Diese Arbeit wurde publiziert als: 

Zawada AM, Rogacev KS, Rotter B, Winter P, Marell RR, Fliser D, Heine GH. SuperSAGE 

evidence for CD14++CD16+ monocytes as a third monocyte subset. Blood. 2011 Sep 

22;118(12):e50-61. 

 

Zusammenfassung 

Da auf der Basis epidemiologischer Vorarbeiten CD14++CD16+ Monozyten als ein 

potentielles Ziel für zukünftige therapeutische Interventionen postuliert wurden, war eine 

detaillierte Charakterisierung der drei Monozytensubpopulationen unabdingbar. Es sollte 

dabei geklärt werden, ob CD14++CD16+ Monozyten tatsächlich eine distinkte Zellpopulation 

darstellen, die sich nicht nur phänotypisch, sondern auch funktionell von den CD14++CD16- 

sowie den CD14+CD16++ Monozyten abgrenzen lässt. Dabei sollte weiterhin die Hypothese 

überprüft werden, dass die CD14++CD16+ Monozyten besonders proatherogene 

Komponenten des angeborenen Immunsystems sind. 

Hierzu wurde erstmals erfolgreich eine Isolation der drei humanen 

Monozytensubpopulationen aus der Blutzirkulation etabliert. Bei nachfolgender genomweiter 

Expressionsanalyse mittels SuperSAGE (Serial Analysis of Gene Expression) wurden 

insgesamt 5 487 603 Sequenzabschnitte („tags“) sequenziert. Eine Annotation zur humanen 

RefSeq Datenbank erlaubte 97 selektive Marker der CD14++CD16+ Monozyten zu 

identifizieren (p < 10
-10

). Mittels der Gene Ontology Analyse konnten distinkte 

immunologische Prozesse beschrieben werden, die in den CD14++CD16+ Monozyten 

präferentiell aktiviert sind, wie die Antigenprozessierung und –präsentation (z.B. CD74, 

HLA-DR, IFI30, CTSB), Inflammation (z.B. TGFB1, AIF1, PTPN6) und Angiogenese (z.B. 

TIE-2, CD105). Weiterhin erlaubte die Isolation von Monozytensubpopulation eine 

funktionelle Charakterisierung, wobei CD14++CD16+ Monozyten das größte Potential zur 

Aktivierung der CD4+ T-Zell-Proliferation, zur Angiogenese und zur ROS-Bildung 

aufwiesen. Schließlich konnte mithilfe von HLA-DR Microbeads eine selektive Depletion der 

CD14++CD16+ Monozyten erzielt werden. Eine Zusammenfassung der Funktionen der drei 

Monozytensubpopulationen ist in Abbildung 3 dargestellt. 

Zusammenfassend weisen diese Daten auf eine distinkte Funktion der CD14++CD16+ 

Monozyten im humanen Immunsystem hin und suggerieren eine entscheidende Rolle dieser 
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Zellen in der Entstehung und Progression atherosklerotischer Gefäßläsionen. Zudem wurden 

erstmals in vitro Möglichkeiten einer selektiven Depletion dieser Zellen aufgezeigt. Auf 

dieser Basis sollten zukünftige Studien Optionen einer Modifikation oder Depletion von 

CD14++CD16+ Monozyten in vivo zur Prävention kardiovaskulärer Erkrankungen ergründen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Abbildung 3. Funktionen der drei Monozytensubpopulationen (schematische Zusammenfassung 

rezenter eigener und externer Publikationen). CD14++CD16- Monozyten besitzen aufgrund der 

präferentiellen Bildung antimikrobieller Proteine und aufgrund ihrer hohen Phagozytoseleistung eine 

ausgeprägte antimikrobielle Kapazität [14,92]. Sie wandern nachfolgend entweder in Gefäße ein oder 

differenzieren sich weiter zu CD14++CD16+ Monozyten. CD14++CD16+ Monozyten sind 

prädisponiert für die Antigenprozessierung und –präsentation (HLA-DR, CD74) und besitzen das 

größte Potential zur Induktion der CD4+ T-Zell-Proliferation [69,92]. Sie bilden vermehrt 

proinflammatorische Zytokine (TNFα, IL1 ) und reaktive Sauerstoffspezies (ROS) [14,92]. Die 

Fähigkeit zur Aufnahme von oxLDL sowie die Expression von proatherogenen Chemokinrezeptoren 

(CCR2, CCR5, CX3CR1) verleiht den CD14++CD16+ Monozyten ein hohes proatherogenes Potential 

[1,57,66,69]. Außerdem exprimiert diese Monozytensubpopulation verstärkt proangiogene Marker 

(TIE-2, VEGFR, ENG) [92]. CD14++CD16+ Monozyten können ebenso in das Endothel einwandern 

und sich dort zu Makrophagen / Dendritischen Zellen bzw. in der Zirkulation zu CD14+CD16++ 

Monozyten differenzieren. CD14+CD16++ Monozyten patrouillieren das Endothel in kriechenden 

Bewegungen und sind ebenso in der Lage in das Endothel zu wandern [1,14]. Sie besitzen die 

kürzesten Telomere, so dass sie die am weitesten entwickelte Monozytensubpopulation darstellen 

[56]. 
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2.4 Fehlregulation atherosklerose-assoziierter Gene als mögliche Ursache 

für die beschleunigte Atherosklerose chronisch nierenkranker Menschen 

Diese Arbeit wurde publiziert als: 

Zawada AM, Rogacev KS, Hummel B, Grün OS, Friedrich A, Rotter B, Winter P, Geisel J, 

Fliser D, Heine GH. SuperTAG Methylation-Specific Digital Karyotyping (SMSDK) Reveals 

Uremia Induced Epigenetic Dysregulation of Atherosclerosis-Related Genes. Circ Cardiovasc 

Genet. 2012 Dec 1;5(6):611-20. 

 

Zusammenfassung 

Daten unserer [66] und anderer Arbeitsgruppen [94,95] weisen auf eine zentrale Rolle eines 

gestörten C1-Metabolismus sowohl in der Monozytenbiologie als auch in der Pathogenese der 

Atherosklerose [2,5,54,62]. Erste Untersuchungen bei Patienten mit prävalenten 

atherosklerotischen Gefäßleiden aus der nierengesunden Allgemeinbevölkerung deuten 

zudem auf eine spezifische epigenetische Fehlregulation atherosklerose-assoziierter Gene 

sowohl in atherosklerotischen Läsionen als auch in mononukleären Zellen hin 

(zusammengefasst in [81]). Bislang fehlen jedoch jegliche Studien, die die Regulation 

atherosklerose-assoziierter Gene bei chronischer Nierenerkrankung untersuchten. 

Deshalb erfolgte im Rahmen der vorliegenden Promotionsarbeit eine genomweite DNA-

Methylierungsanalyse bei CKD Patienten mittels des SuperTAG methylation-specific digital 

karyotyping (SMSDK). Die DNA wurde aus mononuklären Zellen des peripheren Blutes von 

zehn männlichen Hämodialysepatienten im Alter zwischen 50-60 Jahren sowie von zehn 

alters- und geschlechtsgleichen Kontrollprobanden isoliert. 

Die Analyse von 27 043 436 tags ergab insgesamt 4 288 Loci, die zwischen Dialysepatienten 

und Kontrollprobanden differentiell methyliert waren (p < 10
-10

). Die Annotation der UniTags 

(sequenzgleiche tags) zu Promotordatenbanken und zur “Genetic Association Database” 

erlaubte eine differenzielle Methylierung von 52 Kandidatengenen, die mit kardiovaskulären 

Erkrankungen assoziiert sind, sowie von 72 Kandidatengenen, die mit 

Immun-/Infektionserkrankungen assoziiert sind, zu identifizieren. Mittels Gene Ontology 

Analyse konnten diese Kandidatengene zu distinkten proatherogenen Prozessen klassifiziert 

werden, wie dem Lipidmetabolismus und -transport (u.a. HMGCR, SREBF1, LRP5, EPHX2, 

FDPS), der Zellproliferation und Zellzyklusregulation (u.a. MIK67, TP53, ALOX12), der 

Angiogenese (u.a. ANGPT2, ADAMTS10, FLT4) sowie der Inflammation (u.a. TNFSF10, 
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LY96, IFNGR1, HSPA1A, IL12RB1). Diese Methylierungsveränderungen waren zudem mit 

einer differentiellen Expression distinkter Oberflächenmarker (CD43, CD86) sowie einer 

funktionellen Beeinträchtigung der Monozyten (ROS-Bildung, Phagozytosefähigkeit) bei 

Dialysepatienten assoziiert. 

Somit erlaubte diese erstmalige genomweite DNA-Methylierungsanalyse bei 

Hämodialysepatienten eine Charakterisierung fehlregulierter atherosklerose-assoziierter Gene. 

Eine solche Charakterisierung, welche in den letzten Jahren von zahlreichen Experten 

wiederholt eingefordert wurde [17,40,76-78], bietet nun die Möglichkeit neue Biomarker für 

die atherosklerotische Gefäßerkrankung bei chronisch nierenkranken Menschen zu 

identifizieren. Da DNA-Methylierungsveränderungen bereits frühzeitig in der Atherogenese 

auftreten [53], besitzt ein solcher Biomarker das Potential, das kardiovaskuläre Risiko von 

chronisch nierenkranken Patienten frühzeitiger als bisher zu erfassen. Nachdem eine 

Assoziation zwischen fehlregulierter DNA-Methylierung und Monozytendysfunktion bei 

chronisch nierenkranken Menschen erkannt wurde, sollten zukünftige Studien untersuchen, 

inwiefern die DNA-Methylierungsveränderungen direkt zu Verschiebungen der Monozyten-

subpopulationen bei chronisch nierenkranken Menschen beitragen. 
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3. Weiterführende Ergebnisse und Ausblick 

3.1 Differenzierung humaner Monozytensubpopulationen 

Diese Arbeit wurde zur Begutachtung eingereicht als: 

Rogacev KS*, Zawada AM*, Achenbach M, Held G, Fliser D, Heine GH. Development of 

human monocyte subsets and its modulation by immunosuppressants. 

 

* Co-Erstautorenschaft 

 

Zusammenfassung 

Die bisher veröffentlichen klinischen und experimentellen Untersuchungen weisen auf eine 

zentrale Bedeutung der CD14++CD16+ Monozyten in der Atherogenese hin. Vor diesem 

Hintergrund wird die Immunmodulation von Monozytensubpopulationen als innovative 

Therapie bei kardiovaskulären Erkrankungen diskutiert [26,37]. Um Mechanismen entwickeln 

zu können, die eine Modulation von Monozytensubpopulationen erlauben, ist jedoch zunächst 

ein besseres Verständnis der Entwicklung der Monozytensubpopulationen essentiell. So ist 

bisher nicht abschließend geklärt, wie der Differenzierungsprozess humaner 

Monozytensubpopulationen abläuft. 

Daher wurden im Rahmen dieser Promotionsarbeit Monozytensubpopulationen bei 

Leukämiepatienten nach autologer und allogener hämatopoetischer Stammzelltransplantation 

im Zeitverlauf analysiert. Weiterhin wurde ein Zellkulturmodell zur Differenzierung von 

Monozytensubpopulationen aus CD34+ hämatopoetischen Stammzellen entwickelt. 

Hierdurch sollte einerseits die Differenzierung humaner Monozytensubpopulationen weiter 

untersucht werden, andererseits ein Modell generiert werden, welches die Wirkung 

verschiedener Substanzen auf die Differenzierung von Monozytensubpopulationen selektiv 

auszutesten vermag. 

5-6 Tage nach Stammzelltransplantation waren CD14-CD16- Zellen die ersten Zellen, die in 

der Zirkulation erschienen. Anschließend war im zeitlichen Verlauf eine graduelle Zunahme 

zunächst der CD14++CD16-, gefolgt von den CD14++CD16+ und später den 

CD14+CD16++ Monozyten zu erkennen. Es gab keine Unterschiede in der Verteilung der 

Monozytensubpopulationen zwischen den autolog und den allogen transplantierten Patienten. 

Jedoch unterschieden sich die beiden Patientengruppen in der Expression distinkter 

monozytärer Oberflächenmarker (CCR2, HLA-DR, ENG, TEK und TLR4). Weiterhin konnte 
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in Übereinstimmung mit früheren Studien [15,20,31] eine selektive Depletion CD16-positiver 

Monozyten durch Kortikosteroide bei Patienten nach Stammzelltransplantation beobachtet 

werden. In vitro konnte eine Differenzierung der CD34+ hämatopoetischen Stammzellen zu 

CD14++CD16- und nachfolgend zu CD14++CD16+ Monozyten erreicht werden. Dies 

erfolgte durch einen zweistufigen Prozess, indem die CD34+ hämatopoetischen Stammzellen 

zunächst unter Einfluss von TPO, SCF, Flt-3 Ligand und IL-3 expandiert und diese 

anschließend in einem Differenzierungsmedium (Hematopoietic Progenitor Medium, 

PromoCell GmbH) kultiviert wurden. Die in vitro differenzierten CD14++CD16+ Monozyten 

zeigten vergleichbare Eigenschaften mit zirkulierenden Monozyten in vivo (Expression von 

Oberflächenmarkern, ROS-Bildung, Phagozytose, Induktion der CD4+ T-Zell-Proliferation). 

Konventionelle Immunmodulatoren (Rapamycin, Dexamethason) und der Aryl-Hydrocarbon-

Rezeptor Aktivator Benzo(a)pyren erlauben, die Differenzierung von Monozyten zu 

inhibieren. 

Zusammenfassend unterstützen diese Daten das Konzept eines gemeinsamen Vorläufers der 

Monozytensubpopulationen, aus dem sich zunächst CD14++CD16- Monozyten 

differenzieren, die sich anschließend in CD14++CD16+ und später in CD14+CD16++ 

Monozyten entwickeln. Anhand des aufgezeigten in vitro Modells zur Differenzierung 

humaner Monozytensubpopulationen können zukünftige Studien zur selektiven Beeinflussung 

von Monozytensubpopulationen auf diesen Forschungsergebnissen aufbauen. 
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3.2 Ausblick 

Experimentell-klinische Untersuchungen: 

Zukünftige Studien sollen untersuchen, inwiefern die Urämie per se die Differenzierung der 

einzelnen Monozytensubpopulationen aus CD34+ Vorläuferzellen beeinflusst, um 

Möglichkeiten einer selektiven Beeinflussung von CD14++CD16+ Monozyten aufzuzeigen. 

Rezente Daten konnten den Transkriptionsfaktor NR4A1 (Nur77) als zentralen Regulator der 

Monozytendifferenzierung zu CD16-positiven Monozyten charakterisieren, so dass eine 

Modifikation dieses Transkriptionsfaktors ein potentielles Target für eine selektive 

Beeinflussung der CD14++CD16+ Monozyten darstellt [30]. Weiterhin sollten Optionen einer 

direkten zell-spezifischen Therapie mit monoklonalen Antikörpern gegen einzelne 

Monozytensubpopulationen erwogen werden, nachdem in anderen Bereichen der Inneren 

Medizin monoklonale Antikörper gegen spezifische Leukozytensubpopulationen bereits 

erfolgreich etabliert werden konnten [12]. Schließlich könnten Absorptionssäulen, die 

spezifisch gegen CD14++CD16+ Monozyten gerichtet sind und während einer 

Hämodialysebehandlung in den extrakorporalen Kreislauf integriert werden könnten, eine 

spezifische Depletion dieser Zellpopulation ermöglichen. Aktuell verfügbare 

Absorptionssäulen, die etwa bei der entzündlichen Darmerkrankung verwendet werden, 

erlauben bereits eine Reduktion der CD14++CD16+ Monozyten; jedoch werden durch diese 

Säulen neben den CD14++CD16+ Monozyten auch neurophile Granulozyten und 

Blutplättchen depletiert, so dass selektivere Säulen entwickelt werden müssen [29]. 

Weiterhin sollte überprüft werden, ob die Urämie DNA-Methylierungsveränderungen in den 

sich entwickelnden Monozyten induziert und somit eine veränderte Differenzierung von 

Monozyten bewirkt. Dazu wird eine genomweite DNA-Methylierungsanalyse in 

CD14++CD16+ Monozyten erfolgen, welche entweder unter Kontrollbedingungen oder unter 

Urämie differenziert werden.  

 

Epidemiologische Untersuchungen: 

Parallel sollte in epidemiologischen Untersuchungen die prognostische Bedeutung einerseits 

der Monozytensubpopulationen, andererseits von Parametern des C1-Metabolismus weiter 

untersucht werden. 

Diese Fragestellung soll im Rahmen des HOMe Studienprojektes, welches die CARE FOR 

HOMe, die I Like HOMe, die HOM sweet HOMe und die HOMe ALONE Studie umfasst, 

bearbeitet werden (Tabelle 2). 
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So soll die prognostische Bedeutung erhöhter Zellzahlen der intermediären Monozyten über 

längere Beobachtungszeiträume als in bisherigen Studien untersucht werden; hierzu sollen 

alle Teilnehmer der CARE FOR HOMe und der HOM sweet HOMe Studie bis zum Jahr 2015 

nachverfolgt werden. Die HOMe ALONE Studie wird erstmals die prognostische Bedeutung 

erhöhter Zellzahlen der intermediären Monozyten bei allogen nierentransplantierten Patienten 

aufzeigen. Schließlich erfolgte in der CARE FOR HOMe Studie eine differenzierte, 

subpopulationsspezifsche Analyse der Oberflächenexpression von Chemokinrezeptoren und 

weiteren Oberflächenmarkern, um zu untersuchen, ob eine qualitative Monozytenanalyse über 

eine reine Bestimmung der Zellzahlen einzelner Subpopulationen hinaus prognostisch 

relevant ist. 

Weiterhin soll im HOMe Studienprojekt untersucht werden, ob SAH als renaler und 

kardiovaskulärer Prädiktor Homocystein überlegen ist. Zum Zeitpunkt der Einreichung der 

Dissertationsschrift suggerieren präliminäre Querschnittsanalysen der I Like HOMe Studie, 

dass SAH deutlicher als Homocystein mit der Nierenfunktion assoziiert ist; zusätzlich 

korreliert in diesen Zwischenanalysen SAH, nicht aber Homocystein, mit der IMT (Intima-

Media-Dicke) als Marker der subklinischen Atherosklerose. 

Die prognostische Bedeutung der beiden C1-Metabolite soll in der CARE FOR HOMe Studie 

überprüft werden. Das Studiendesign der prospektiven CARE FOR HOMe Studie erlaubt, 

erstmals in einer größeren epidemiologischen Untersuchung pathophysiologische 

Zusammenhänge zwischen zentralen Mediatoren der epigenetischen Fehlregulation (SAH / 

Homocystein) und kardiovaskulären Ereignissen an einem gut charakterisierten Kollektiv 

chronisch nierenkranker Menschen zu überprüfen. 

Die Integration von experimentell-klinisch und epidemiologischen Untersuchungen soll ein 

besseres Verständnis der beschleunigten Atherosklerose nierenkranker Menschen erlauben, 

welches in neuen Möglichkeiten der Prävention und Therapie der inakzeptabel hohen 

kardiovaskulären Morbidität chronisch nierenkranker Patienten resultieren könnte. 
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Tabelle 2. Das HOMe Studienprojekt. 

Studie 

    

Einschlusskriterien 
Chronisch nierenkrane Patienten 

K/DOQI 2-4 

Gesunde Probanden ohne 

manifeste CV Erkrankung 

Patienten vor elektiver 

Koronarangiographie 

Patienten nach allogener 

Nierentransplantation 

Ausschlusskriterien 

immunsuppressive Therapie 

klinisch manifeste Infekte 

bekanntes Malignom 

akutes Nierenversagen 

Alter < 20 bzw. > 60 Jahre 

immunsuppressive Therapie 

CV Erkrankung 

Alter < 18 Jahre 

klinisch manifeste Infekte 

bekanntes Malignom 

akutes Nierenversagen 

Erhobene Parameter 

(Einschluss) 

klassische CV Risikofaktoren 

Calcium/Phosphat Parameter 

Echokardiographie 

Monozytensubpopulationen 

klassische CV Risikofaktoren 

Intima-Media-Dicke 

Cholesterinhomöostase 

Monozytensubpopulationen 

klassische CV Risikofaktoren 

Koronarangiographie / 

Lävographie 

Monozytensubpopulationen 

klassische CV Risikofaktoren 

Calcium/Phosphat Parameter 

Echokardiographie 

Monozytensubpopulationen 

Anzahl Studienteilnehmer 444 622 1368 222 (geplant) 

Primäres kardiovaskuläres 

Outcome 
jegliches CV Ereignis - 

akuter Myokardinfarkt 

ischämischer Schlaganfall 

kardiovaskulärer Tod 

jegliches CV Ereignis 

Primäres renales Outcome 

Reduktion der eGFR um ≤ 50 % 

Nierenersatzverfahren ≥ 3 Mo 

Tod 

- - 

Reduktion der eGFR um ≤ 50 % 

Nierenersatzverfahren ≥ 3 Mo 

Tod 

Sekundäres 

kardiovaskuläres Outcome 

akuter  Myokardinfarkt 

ischämischer Schlaganfall 

kardiovaskulärer Tod 

- jegliches CV Ereignis 

akuter Myokardinfarkt 

ischämischer Schlaganfall 

kardiovaskulärer Tod 

Sekundäres renales 

Outcome 

Reduktion der eGFR um ≤ 50 % 

Nierenersatzverfahren ≥ 3 Mo 
- - 

Reduktion der eGFR um ≤ 50 % 

Nierenersatzverfahren ≥ 3 Mo 

CV: kardiovaskulär; Mo: Monate; weitere Informationen unter www.uks.eu/home 

http://www.uks.eu/home
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Aims Patients with chronic kidney disease (CKD) pose a worldwide growing burden to health care systems due to accel-
erated atherosclerosis and subsequent high cardiovascular (CV) morbidity. Atherogenesis is prominently driven by
monocytes and monocyte-derived macrophages. The expression of CD14 and CD16 characterizes three monocyte
subsets: CD14++CD162, CD14++CD16+, and CD14(+)CD16+ cells; the latter two are often denoted as ‘proin-
flammatory’ CD16+ monocytes. Despite an association between CD16+ monocyte counts and higher CV risk in
cross-sectional cohorts, the prognostic impact of elevated CD16+ monocyte counts is poorly understood.

Methods
and results

We assessed monocyte heterogeneity using flow cytometry in 119 patients with non-dialysis CKD, who were pro-
spectively followed for a median of 4.9 (inter-quartile range 4.8–5.0) years for the occurrence of CV events. In
addition, we assessed expression of chemokine receptors on monocyte subsets. CD14++CD16+ monocyte were
independently associated with CV events [hazard ratio (for an increase of 10 cells/mL) 1.26 (confidence interval:
1.04–1.52; P ¼ 0.018)] after adjustment for variables that significantly affected CD14++CD16+ cell counts at base-
line. Across the spectrum of CKD, CD14++CD16+ monocytes selectively expressed CCR5.

Conclusion We found that CD14++CD16+ monocytes were independently associated with CV events in non-dialysis CKD
patients. Our results support the notion that CD16+ monocytes rather than CD162 monocytes are involved in
human atherosclerosis.

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Keywords Monocyte heterogeneity † Cardiovascular outcome † Chronic kidney disease † Cardio-renal syndrome

Introduction
Monocytes and monocyte-derived macrophages are at the centre
stage of the innate immune system, fulfilling important tasks in
host-defence, immunoregulation, tissue repair, and regeneration.1

Nonetheless, monocyte biology in health and disease is still
poorly understood, and puzzling findings remain, such as the
missing coherent association between monocyte counts and cardi-
ovascular (CV) disease in large epidemiological studies.2– 4 This is
somehow counterintuitive, as monocytes and macrophages are
well-established key players in atherosclerosis.5

A possible explanation might be that human monocytes were con-
sidered to be a homogenous leucocyte subpopulation until 1989,
when human monocyte heterogeneity was reported for the first
time.6 Presently, three human monocyte subsets are defined by the

differential expression of the LPS receptor CD14 and the FcgIII
receptor CD16, which are CD14++CD162 cells, CD14++CD16+

cells, and CD14(+)CD16+ cells. In earlier studies, the latter two
subsets are summarized as CD16+ monocytes, which account for
10–20% of all circulating monocytes.7 As opposed to classical
CD14++CD162 monocytes, CD16+ monocyte counts are elevated
in numerous inflammatory conditions,8–15 including end-stage renal
disease.16 Therefore, CD16+ monocytes have traditionally been
termed ‘proinflammatory’ monocytes.17

In line, dialysis patients with high CD14++CD16+ monocyte
counts are at increased risk for future CV events.18 Obviously,
dialysis patients are a highly selected population, so that findings
from this population cannot be transferred to other patient
groups. Therefore, we see a pressing need for further experimental
and clinical research in human monocyte heterogeneity to clarify
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the significance of the respective monocyte subsets for human path-
ology and to test whether the predictive role of CD14++CD16+

monocytes in dialysis patients for CV events holds true in broader
patient groups.

In the present study, we demonstrate that CD14++CD16+

monocytes are independently associated with CV events in
patients with non-dialysis chronic kidney disease (CKD), even
though CD16+ monocyte counts in CKD patients are close to
the range observed in healthy individuals and considerably lower
than in patients on haemodialysis.

Methods

Study population
In a prospective cohort study on monocyte heterogeneity and CV
outcome in CKD, 152 stable ambulatory patients with CKD
K/DOQI 1–5 not receiving renal replacement therapy were screened.
In all patients, comorbidity was determined by standardized interviews

and by review of medical documentation. Thirty-one patients were
excluded from the analysis as they were on immunosuppressive treat-
ment, and in two patients, determination of monocyte subsets failed
due to lost blood samples, leaving 119 patients in the study. In this
cohort, CKD was due to diabetic nephropathy (n ¼ 26), glomerulone-
phritis (n ¼ 20), interstitial nephritis (n ¼ 14), nephrosclerosis (n ¼
13), autosomal dominant polycystic kidney disease (n ¼ 8), obstructive
nephropathy (n ¼ 4), other primary renal diseases (n ¼ 20), and
unknown conditions (n ¼ 14).

Prevalent CV disease was defined as a history of myocardial infarction,
coronary artery angioplasty/stenting/bypass surgery, stroke, carotid
endarterectomy/stenting, non-traumatic lower extremity amputation,
or lower limb artery bypass surgery/angioplasty/stenting. Diabetes mel-
litus was diagnosed if a patient had a history of diabetes mellitus, a spon-
taneous plasma glucose level of .200 mg/dL, self-reported diabetes
mellitus, and/or received hypoglycaemic treatment. Patients were cate-
gorized as active smokers if they were current smokers or had stopped
smoking ,1 month before entry into the study. Systolic and diastolic
blood pressures (BP sys and BP dia) were measured in a supine position.
Pulse pressure was calculated as BP sys2BP dia.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics of the study participants

Overall (n 5 119) No event (n 5 72) Event (n 5 47) P

Age (years) 66 (54–71) 63 (50–70) 70 (64–76) ,0.001

Women (%) 54 (45) 35 (49) 19 (40) 0.479

Smokers (%) 11 (9) 9 (13) 2 (4) 0.143

Diabetes mellitus (%) 42 (35) 17 (24) 25 (53) 0.001

History of CVD (%) 41 (34) 18 (25) 23 (49) 0.015

K/DOQI stage 1 (%) 2 (2) 2 (3) 0 (0) 0.008

K/DOQI stage 2 (%) 16 (13) 13 (18) 3 (6)

K/DOQI stage 3 (%) 45 (38) 33 (46) 12 (26)

K/DOQI stage 4 (%) 28 (23) 13 (18) 15 (32)

K/DOQI stage 5 (%) 28 (23) 11 (15) 17 (36)

Total cholesterol (mg/dL) 201 (163–231) 208 (163–233) 195 (161–228) 0.602

HDL cholesterol (mg/dL) 50 (40–59) 52 (40–61) 48 (41–53) 0.318

Body mass index (kg/m2) 29 (26–33) 29 (26–33) 29 (25–33) 0.859

Plasma calcium (mmol/L) 2.4 (2.3–2.4) 2.4 (2.2–2.4) 2.4 (2.3–2.4) 0.327

Plasma phosphorus (mg/dL) 3.6 (3.1–4.4) 3.5 (3.0–4.2) 3.9 (3.3–5.0) 0.031

C-reactive protein (mg/L) 3.2 (2.9–7.6) 2.9 (2.9–6.4) 4.3 (2.9–13.2) 0.117

Plasma homocystein (mmol/L) 15 (12–21) 14 (11–20) 18 (13–27) 0.001

Proteinuria (g/g creatinine) 0.4 (0.0–2.2) 0.2 (0.0–1.4) 1.7 (0.0–3.3) 0.003

Systolic blood pressure (mmHg) 170 (150–185) 165 (146–184) 175 (155–195) 0.061

Diastolic blood pressure (mmHg) 95 (85–110) 95 (86–109) 95 (80–110) 0.752

Pulse pressure (mmHg) 70 (60–85) 68 (55–85) 75 (65–85) 0.011

Antiplatelet therapy (%) 41 (35) 20 (28) 21 (45) 0.049

Beta-blockers (%) 64 (55) 36 (51) 28 (61) 0.447

Angiotensin-receptor blockers (%) 66 (57) 38 (54) 28 (61) 0.442

ACE-inhibitors (%) 44 (38) 28 (40) 16 (35) 0.440

Statins (%) 41 (35) 23 (32) 18 (38) 0.695

Haemoglobin (g/dL) 13.0 (11.6–14.3) 13.3 (12.4–14.4) 12.0 (11.2–14.2) 0.014

Platelets (×103 cells/mL) 230 (188–268) 222 (183–261) 235 (189–268) 0.715

Leucocytes (cells/mL) 6800 (5600–7800) 6550 (5400–7550) 7000 (5800–8400) 0.257

Neutrophils (cells/mL) 4030 (3192–5037) 3838 (3188–4676) 4488 (3216–5548) 0.150

Lymphocytes (cells/mL) 1606 (1323–2072) 1628 (1358–2166) 1584 (1232–1974) 0.236

Variables are presented as percentage, or as median with inter-quartile range, as appropriate.
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Informed consent was obtained from all patients, and the study
design was approved by the local Ethics Committee.

All participants were followed from the baseline examination in
2004 until death or until 31 July 2009. One patient was lost to
follow-up. The pre-specified combined clinical endpoint was the first
occurrence of a CV event (defined as myocardial infarction, coronary
artery angioplasty/stenting/bypass surgery, stroke with symptoms
lasting .24 h, carotid endarterectomy/stenting, non-traumatic lower
extremity amputation, lower limb artery bypass surgery/angioplasty/
stenting, or death). All-cause mortality was assessed as a secondary
endpoint.

To assess whether the reported shift in monocyte subset counts in
CKD patients16 occurs before or after the onset of dialysis treatment,
we compared monocyte subset counts among 39 controls with intact
renal function, 39 patients suffering from advanced CKD (stages 4/5,
not yet undergoing renal replacement therapy), and 39 dialysis
patients.

These groups were matched for age (+5 years), gender, prevalent
CV disease, and diabetes mellitus, as defined above.

Laboratory methods
Total cholesterol, high-density lipoprotein cholesterol (HDL-C),
calcium, phosphorus, albumin, and C-reactive protein were measured
using standard techniques. Glomerular filtration rate was estimated
(eGFR) using the MDRD study equation 4. Differential blood counts
were determined with automated cell counters.

Via flow cytometry, monocyte subsets were identified according to
our previously published standard staining and gating strategy19 in a
whole blood assay using 100 mL of heparin anticoagulated blood.
Cells were stained with monoclonal antibodies—anti-CD86 (HA5.2B7,
Beckman-Coulter, Krefeld, Germany), anti–CD16 (3G8, Invitrogen,
Hamburg, Germany), anti-CD14 (Mf9, BD Biosciences, Heidelberg,
Germany), and analysed by flow cytometry (FACSCalibur, BD Bio-
sciences) using the Cell Quest software.

Monocytes were gated in a SSC/CD86+ dotplot, identifying mono-
cytes as CD86+ cells with monocyte scatter properties. Subpopu-
lations of CD14++CD162, CD14++CD16+, and CD14(+)CD16+

monocytes were distinguished by their surface expression pattern of
the LPS receptor CD14 and the FcgIII receptor CD16. Using these
basic panels, monocyte subpopulations were further examined for
the expression of the chemokine receptors CCR2, CCR5, and
CX3CR1 in 30 patients, equally distributed across CKD stages 2–4.
The following monoclonal antibodies were used: anti-CCR2 (48607,
BD Biosciences), anti-CCR5 (2D7, BD Biosciences), and anti-CX3CR1
(2A9-4, Biozol, Eching, Germany). Flow cytometrical data were
measured as median fluorescence intensity and standardized against
coated fluorescent particles (SPHEROTM, BD Biosciences).

Statistical analysis
Categorical variables are presented as percentage of patients, and
compared by Fisher’s exact test. Continuous data are expressed
as medians with inter-quartile range (IQR) and compared by

Figure 1 Relationship between tertiles of CD14++CD16+ monocyte counts and event-free survival in patients with chronic kidney disease
(Kaplan–Meier analysis with log-rank test).
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Mann–Whitney test (for two independent samples) or by Friedman
test (for paired samples), as appropriate. Correlation coefficients
were calculated by Spearman test. Kaplan–Meier survival curves
were calculated, and event-free survival (i.e. time until first CV
event as defined above) as well as overall survival (i.e. time until
death of any cause) were compared by log-rank test. Cox
proportional-hazards models were calculated to examine the
relationship of monocyte subset cell counts with event-free survival
after adjustment for variables that were associated with
CD14++CD16+ monocyte counts at baseline, and for eGFR.

Data management and statistical analysis were performed with SPSS
17.0. The level of significance was set at P ≤ 0.05.

Results

Baseline characteristic
The baseline characteristics of all 119 study participants are shown
in Table 1. Forty-seven patients (39.5%) experienced a CV event
before 31 July 2009. One patient was lost after a follow-up
period of 1.8 years; the remaining 71 patients have been followed
for a median of 4.9 (IQR 4.8–5.0) years. As expected, those
patients who had a CV event were older, had a higher prevalence
of diabetes mellitus at baseline, higher pulse pressure measure-
ments, and more advanced CKD with lower eGFR, higher protei-
nuria and higher plasma phosphate levels (Table 1).

At baseline, eGFR correlated neither with total monocyte counts
(r ¼ 20.048, P ¼ 0.601) nor with monocyte subpopulation
counts (CD14++CD162: r ¼ 20.012, P ¼ 0.895; CD14++CD16+:
r ¼ 20.117, P ¼ 0.205; CD14(+)CD16+: r ¼ 20.094, P ¼ 0.310).
Similarly, total monocytes and monocyte subset counts were not sig-
nificantly associated with BP sys, pulse pressure, serum phosphate,
and proteinuria (data not shown). Conversely, CD14++CD16+

and CD14(+)CD16+ monocytes were significantly correlated
with age (r ¼ 0.187, P ¼ 0.042 and r ¼ 0.206, P ¼ 0.025, respect-
ively), whereas total monocytes and CD14++CD162 were not.
Interestingly, CD14++CD16+ monocytes were the only monocyte
subset to be significantly correlated with C-reactive protein (r ¼
0.253, P ¼ 0.006), whereas CD14(+)CD16+ monocytes were
significantly associated with serum homocystein levels (r ¼ 0.201,
P ¼ 0.038).

At study enrolment, CD14++CD16+ monocyte counts were
significantly elevated among patients with prevalent diabetes melli-
tus [diabetics: median 32 (IQR 21–39); non-diabetics: median
22 (IQR 17–34) cells/mL, P ¼ 0.009], and prevalent CV disease
[CV disease: median 27 (IQR 21–37); no CV disease median 23
(17–36) cells/mL, P ¼ 0.046], whereas patients on statin treatment
had higher counts of CD14(+)CD16+ monocytes [statin intake:
median 75 (IQR 56–111); no statin intake: median 61 (IQR
47–86) cells/mL; P ¼ 0.028], but not of CD14++CD162,

Figure 2 Tertiles of CD14++CD16+ monocyte counts and overall survival in patients with chronic kidney disease (Kaplan–Meier analysis
with log-rank test).
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CD14++CD16+ monocytes, or total monocytes, respectively.
Intake of antiplatelet agents, angiotensin-converting enzyme
(ACE)-inhibitors, angiotensin-receptor blockers, and beta-blockers
was not associated with differences in monocyte (subset) counts.

CD1411CD161 monocytes and their
relation to cardiovascular outcome
and mortality
Patients who experienced a CV event during follow-up had higher
CD14++CD16+ monocyte counts compared with patients without
an event, whereas counts of total monocytes, CD14++CD162, and
CD14(+)CD16+monocytes did not differ significantly. When stratify-
ing patients by their CD14++CD16+ monocyte counts, patients in
the highest tertile had the shortest event-free survival (Figure 1). Like-
wise, these patients had the shortest overall survival (Figure 2). The
prognostic impact of this monocyte subset is even strengthened
when stratifying patients by their percentage of CD14++CD16+

monocytes (defined as % of all circulating monocytes) instead of
absolute counts of CD14++CD16+ monocytes (see Supplementary
material online, Figures S1 and S2).

In contrast, tertiles of CD14++CD162 (Figure 3) and
CD14(+)CD16+ monocytes (Figure 4) did not predict survival
in our patient cohort. In Cox regression analysis, CD14++CD16+

monocyte counts remained significantly associated with event-free

survival after adjustment for variables that were correlated with
CD14++CD16+ monocyte counts at baseline (age, diabetes mellitus,
prevalent CV disease, and C-reactive protein), and for eGFR
(Table 2).

Chemokine receptor expression
on monocyte subsets
The chemokine receptors CCR2, CCR5, and CX3CR1 are relevant
in subset-specific extravasation of monocytes in atherosclerotic
plaques.20 Therefore, we analysed monocyte surface expression
pattern of these chemokines receptors in 30 CKD patients. Flow
cytometry confirmed monocytic subset-specific expression of che-
mokine receptors across different stages of CKD. Although
CD14++CD162 monocytes expressed highest levels of CCR2,
and CD14(+)CD16+ monocytes express highest levels of
CX3CR1, CD14++CD16+ monocytes are characterized by selec-
tive expression of CCR5 and coexpression of both CCR2 and
CX3CR1 irrespective of kidney function (Figure 5).

Comparison of chronic kidney disease
patients to subjects with normal renal
function and haemodialysis patients
As we observed no significant increase in monocyte subset counts
with declining renal function—contrasting the known expansion of

Figure 3 Tertiles of CD14++CD162 monocyte counts and overall survival in patients with chronic kidney disease (Kaplan–Meier analysis
with log-rank test).
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CD16+ monocytes in haemodialysis patients16—we compared 39
subjects with normal renal function, 39 patients with CKD (not
receiving renal replacement therapy), and 39 haemodialysis
patients matched for age, gender, prevalent CV disease, and
diabetes mellitus.

In each group, 18 out of 39 (46%) patients were male, 22
patients (56%) were diabetics, and 14 patients (36%) had a
history of CV disease. Counts of CD16+ monocytes significantly

differed among the three groups, with lower counts of
CD14++CD16+ and CD14(+)CD16+ monocytes in subjects
with normal renal function and CKD patients compared with hae-
modialysis patients (Figures 6 and 7).

Discussion
Research interest in monocyte heterogeneity gained strong
momentum in the last decade, as a subset-specific contribution
of monocytes to atherogenesis has been postulated.21 However,
human monocyte heterogeneity and its relation to human CV
disease are still poorly understood.

We have previously reported on the relationship of CD16+

monocytes and CV events in dialysis patients. In these studies,
baseline CD14++CD16+ monocyte counts18 and haemodialysis-
induced CD16+ monocyte kinetics independently predicted CV
outcome.22 Of note, dialysis patients are a highly selected population,
and epidemiological data from these patients cannot be extrapolated
to other individuals. Specifically, dialysis patients experience a tremen-
dous CV event rate. At the same time, they show a notable elevation
of CD16+ monocyte counts compared with patients with intact renal
function.16

It has been fully unknown whether this shift in monocyte sub-
populations towards CD16+ monocytes occurs only in end-stage

Figure 4 Tertiles of CD14(+) CD16+ monocyte counts and overall survival in patients with chronic kidney disease (Kaplan–Meier analysis
with log-rank test).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 2 Cox proportional-hazards model (outcome
variable: incident cardiovascular events)

Parameters HR CI P

CD14++CD16+ monocytes
(per 10 cells/mL)

1.26 1.04–1.52 0.018

Age (per 10 years) 1.52 1.14–2.03 0.004

eGFR (per mL/min/1.73 m2) 0.97 0.95–0.99 ,0.001

Diabetes mellitus (yes) 1.67 0.89–3.14 0.114

Prevalent cardiovascular disease (yes) 1.80 0.94–3.46 0.076

C-reactive protein (mg/L) 0.99 0.98–1.00 0.162

Indicated are hazard ratios (HR), their 95% confidence interval, and level of
significance.
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renal disease, or at less severe renal impairment. Moreover, the
prognostic impact of monocyte subset counts in non-dialysis
CKD has been ignored before, despite the fact that non-dialysis
CKD is an emerging global health issue, and that patients with
less advanced CKD outnumber the dialysis population by far.

Albeit at lower CV risk compared with dialysis patients, individ-
uals at earlier stages of CKD already suffer from an accelerated
atherogenesis.23 Recently, the strong bidirectional relationship
between renal and CV morbidity has been underscored by the

introduction of the classification of cardiorenal syndrome, in
which the pathophysiological role of monocytes has been
especially highlighted.24

We now report that non-dialysis CKD patients have CD16+

monocyte counts close to the normal range observed in subjects
with preserved renal function. Nonetheless, CD14++CD16+

monocyte counts are independently associated with CV events
in patients with non-dialysis CKD in multivariate analysis.

Figure 5 Expression of CCR2, CCR5, and CX3CR1 on CD14++CD162 monocytes (blue columns), CD14++CD16+ monocytes (red
columns) and CD14(+)CD16+ (green columns) across stages of chronic kidney disease. Flow cytometrical data were measured as median flu-
orescence intensity (MFI) and standardized on CD14++CD162 monocytes. Results are presented as means+ SEM. Data were analysed using
Kruskal–Wallis test.

Figure 6 Counts of CD14++CD16+ monocytes in 39
matched triples of control subjects with normal renal function,
patients with chronic kidney disease not on dialysis, and haemo-
dialysis patients. Results are presented as means+ SEM.

Figure 7 Counts of CD14(+)CD16+ monocytes in 39 matched
triples of control subjects with normal renal function, patients
with chronic kidney disease not on dialysis, and haemodialysis
patients. Results are presented as means+ SEM.

K.S. Rogacev et al.90

 at Saarlaendische U
niversitaets-uL

andesbibliothek/ M
ed. A

bteilung on February 18, 2013
http://eurheartj.oxfordjournals.org/

D
ow

nloaded from
 

http://eurheartj.oxfordjournals.org/


In support of our present and earlier findings,18,19,22 there are
other cogent arguments for the prominence of CD16+ monocytes
but not CD162 monocytes in the inflammatory disease athero-
sclerosis: firstly, it is well established from epidemiological studies
that CD16+ monocyte counts are elevated in many other inflam-
matory conditions.8– 15 Secondly, CD16+ monocytes are efficient
producers of inflammatory cytokines, whereas they poorly
secrete the anti-inflammatory interleukin (IL)-10.25,26 Thirdly,
several lines of evidence suggest a high endothelial affinity of
CD16+ monocytes conferred by their surface expression of che-
mokine receptors and adhesion molecules e.g. CX3CR1, CCR5,
VLA-4, and CD11c.27,28 Interestingly, it has already been reported
in 2000 that CD16+ monocytes reside in the marginal pool where
they can be rapidly mobilized in a catecholamine-dependent
manner.28 This observation has been later verified in an outstand-
ing study demonstrating that the mouse counterparts of CD16+

monocytes crawl along the endothelium and rapidly extravasate
upon inflammatory stimuli.29 The authors termed this the ‘patrol-
ling behaviour’ of the murine counterparts of CD16+ monocytes,
and discussed these cells as a potential therapeutic target in inflam-
matory conditions such as atherosclerosis.29 In line with this
notion, are mechanistic data from studies by Ancuta et al.30 indicat-
ing that CD16+ monocytes home to sites of endothelial activation
in a CX3CR1-dependent manner, where they secrete MMP-9,
CCL-2, and IL-6 with the ability to propagate further vascular
injury through the recruitment of T-lymphocytes and additional
monocytes. The relevance of CX3CL1 and CX3CR1 in athero-
sclerosis31–33 additionally makes a good case for the role of
CD16+ in atherosclerosis, as CX3CR1 is highly expressed on
CD16+ monocytes.

Further strong evidence derives from several studies showing
that the CCR5 delta32 variant is associated with a more favourable
CV outcome in the general population34 and with better all-cause
as well as CV survival in patients with end-stage renal disease.35

CCR5 blockade in experimental atherosclerosis has been proved
to be beneficial36,37 and has been consecutively discussed as a
potential therapeutic option in diabetics as a CV high-risk
population.38 Interestingly, CCR5 inhibition is feasible as it is
an already applied therapeutic principle in HIV infection treat-
ment.39 As pointed out before, CCR5 is expressed by CD16+

monocytes (especially CD14++CD16+ monocytes) but not by
CD14++CD162 monocytes as shown in the present study and
previously.27

The cumulative evidence for a prominent role of CX3CR1
and CCR5 in atherosclerosis—favouring CD16+ monocytes as
drivers of atherosclerosis—together with our clinical data on the
association between CD16+ monocytes, CV risk factors in
low-risk subjects,19 and CV events in high-risk individuals18,22 and
in the present trial, strongly suggest that CD16+ monocytes are
most likely the relevant monocyte subset in human atherosclerosis.

Furthermore, we feel that our data from non-dialysis CKD
patients might be hypothesis generating for studies on monocyte
heterogeneity and CV complications in the general population.

In summary, we report the role of CD14++CD16+ monocytes
for future CV events in a cohort representative of a much larger
patient group compared with earlier studies.18,22 Extending pre-
vious knowledge on monocyte heterogeneity and CV outcome,

we raise now the hypothesis that modulating CD14++CD16+

monocyte function—e.g. through interference with the CCR5–
CCL5 axis—might be beneficial for preventing CV events.

Supplementary material
Supplementary material is available at European Heart Journal
online.
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CD14��CD16� Monocytes
Independently Predict Cardiovascular Events
A Cohort Study of 951 Patients Referred for Elective Coronary Angiography
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Objectives The aim of this study was to analyze the yet ill-defined relationship of distinct human monocyte subsets with
cardiovascular outcomes in a broad patient population at cardiovascular risk.

Background Monocytes, the most abundant immune cell type found in atherosclerotic plaques, are crucial promoters of
atherogenesis. Three distinct human monocyte subsets exist: classical CD14��CD16�, intermediate
CD14��CD16�, and nonclassical CD14�CD16�� monocytes. Immunomodulation of distinct monocyte sub-
sets has recently been discussed as a new therapeutic avenue in atherosclerosis.

Methods Cardiovascular events in 951 subjects referred for elective coronary angiography were prospectively analyzed.
Monocyte subset analysis was performed using flow cytometry, blinded to patients’ clinical characteristics, and
patients were categorized according to quartiles of total monocyte and monocyte subset counts. The primary
endpoint was defined a priori as the first occurrence of cardiovascular death, acute myocardial infarction, or non-
hemorrhagic stroke. Endpoint adjudication was done blinded to monocyte subset distribution.

Results During a mean follow-up period of 2.6 � 1.0 years, 93 patients experienced the primary endpoint. In univariate
Kaplan-Meier analysis, counts of total (p � 0.010), classical CD14��CD16� (p � 0.024), and intermediate
CD14��CD16� (p � 0.001) monocytes predicted the primary endpoint, whereas nonclassical monocytes did
not (p � 0.158). After full adjustment for confounders, CD14��CD16� monocytes remained the only mono-
cyte subset independently related to cardiovascular events (fourth vs. first quartile: hazard ratio: 3.019; 95%
confidence interval: 1.315 to 6.928; p � 0.009).

Conclusions CD14��CD16� monocytes independently predicted cardiovascular events in subjects referred for elective coro-
nary angiography. Future studies will be needed to elucidate whether CD14��CD16� monocytes may become
a target cell population for new therapeutic strategies in atherosclerosis. (J Am Coll Cardiol 2012;60:
1512–20) © 2012 by the American College of Cardiology Foundation
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Monocytes are the central drivers of vascular inflammation
in atherosclerosis. They contribute to atherogenesis from
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the formation of the earliest asymptomatic atherosclerotic
lesions, namely fatty streaks, to final plaque rupture with
potentially fatal outcomes (1,2). Although experimental
studies have proven a causative role of monocytes in athero-
genesis (3), epidemiological analyses have failed to unequiv-
ocally demonstrate an association between circulating
monocyte counts and cardiovascular disease (4).

Importantly, monocytes display substantial heterogeneity,
which is reflected by the differential surface expression of
the lipopolysaccharide receptor (CD14) and the low-affinity
Fc�-III receptor (CD16). Although a subset-specific con-
tribution of monocytes has been proposed in recent years on
the basis of laboratory data (3), monocyte heterogeneity has
not been analyzed thoroughly in the context of human

atherosclerosis.
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October 16, 2012:1512–20 CD14��CD16� Monocytes and Cardiovascular Outcomes
The existence of 3 distinct monocyte subsets is ac-
knowledged by recent consensus (5), namely, classical
CD14��CD16� monocytes, intermediate CD14��CD16�
monocytes, and nonclassical CD14�CD16�� mono-
cytes. However, most previous studies did not distinguish
between intermediate CD14��CD16� and nonclassical
CD14�CD16�� monocytes but subsumed these 2 subsets as

D16-positive monocytes. Consequently, the intermediate
onocyte subset was by far the most poorly characterized mono-

yte subset until recently (6). Although numerically the small-
st monocyte subpopulation and seemingly displaying just
n intermediate immunophenotype, CD14��CD16�
onocytes are a clearly distinguishable subset, as evidenced

y the distinct gene expression profile recently been reported
y Wong et al. (7) as well as our group (6), independently of
ach other.

We previously reported a predictive role of intermediate
D14��CD16� monocyte counts in patients with

hronic kidney disease (CKD) (8), a selected patient group
t highest cardiovascular risk. Of note, CKD-associated
mmune dysfunction, which is characterized by profound
hifts in monocyte subsets (9,10), and the CKD-specific
attern of accelerated atherosclerosis both preclude an
ncritical generalization of our previous findings to the
eneral population.

Against this background, we initiated the HOM
WEET HOMe (Heterogeneity of Monocytes in Subjects

ho Undergo Elective Coronary Angiography—The
omburg Evaluation) study to test the hypothesis that

ounts of intermediate CD14��CD16� monocytes pre-
ict cardiovascular events in subjects at cardiovascular risk
eferred for elective coronary angiography.

ethods

etween May 2007 and June 2010, subjects who were
dmitted to Saarland University Medical Center for elective
oronary angiography were invited to participate in the
OM SWEET HOMe study. The study was approved by

he local ethics committee, and all participants provided
ritten informed consent.
At study inclusion, a history of smoking, diabetes, current

rug intake, and cardiovascular comorbidities were recorded
sing a standardized questionnaire. Patient-reported co-
orbidities were confirmed by chart review. Prevalent

ardiovascular disease was diagnosed in subjects with coro-
ary artery disease (a history of myocardial infarction or
oronary artery angioplasty, stent implantation, or bypass
urgery), cerebrovascular disease (a history of major stroke
defined as acute onset of neurological symptoms persisting
or �24 h] or carotid endarterectomy or stent implantation)
r peripheral artery disease (a history of nontraumatic lower
xtremity amputation or lower limb artery bypass surgery,
ngioplasty, or stent implantation).

Subjects were categorized as active smokers if they were

urrent smokers or had stopped smoking �1 month before
tudy entry. Subjects with self-
eported or physician-reported
iabetes mellitus, with nonfast-
ng blood glucose levels �200

g/dl, with fasting blood glucose
evels �126 mg/dl, or with cur-
ent use of hypoglycemic medi-
ation were categorized as having diabetes. Body mass index
as calculated as weight in kilograms divided by the square
f height in meters.
Coronary angiography was performed on the day of

ospital admission. Coronary artery disease was defined in
ubjects who had stenoses � 50% in a major coronary artery
n current coronary angiography and/or who had a history
f coronary revascularization for coronary artery stenosis.
Because of their potential interference with monocyte

ubset counts, intake of systemic immunosuppressive agents
as considered an exclusion criterion for the present analysis.
aboratory measurements. Blood samples were obtained
nder standardized conditions. Blood levels of creatinine,
otal cholesterol, high-density lipoprotein cholesterol, low-
ensity lipoprotein cholesterol and C-reactive protein
CRP) were measured using standard methods. Estimated
lomerular filtration rate was calculated using the 4-variable
odification of Diet in Renal Disease study equation.
Leukocyte and monocyte counts were measured with

utomated cell counters using standard techniques. Using
ow cytometry, monocyte subpopulations were analyzed in
whole-blood assay using 100 �l of whole blood, as

described and validated previously (6). Cells were stained by
monoclonal antibodies (CD86 PE [HA5.2B7; Beckman-
Coulter, Krefeld, Germany], CD16 PeCy7 [3G8; BD
Biosciences, Heidelberg, Germany], CD14 PerCP [M�9;

D Biosciences]) and analyzed using flow cytometry
FACSCalibur and FACS Canto II; BD Biosciences) using
ell Quest and FACSDiva software (BD Biosciences).
In brief, monocytes were gated in an SSC/CD86� dot plot,

dentifying monocytes as CD86� cells with monocyte scatter
properties. Subsets of CD14��CD16�, CD14��CD16�,
and CD14�CD16�� monocytes were defined according to the
surface expression pattern of the lipopolysaccharide receptor
CD14 and the Fc�-III receptor CD16 (compare Fig. 1 for a
representative example). Nomenclature of monocyte subsets fol-
lowed the recommendations of the Nomenclature Committee of
the International Union of Immunological Societies (5).
Outcome analysis. After study inclusion, all study partic-
ipants, or their next of kin, were contacted annually until
death or until September 30, 2011, for outcome analysis.

We obtained medical records from the treating physicians
for verification of all events reported by study participants or
their next of kin. All events were adjudicated by the same
investigators, who were blinded to monocyte data, accord-
ing to the following definitions.

The composite primary endpoint was defined a priori as
the first occurrence of cardiovascular death, acute myocar-

Abbreviations
and Acronyms

CKD � chronic kidney
disease

CRP � C-reactive protein
dial infarction, or nonhemorrhagi
c stroke. Definition of
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acute myocardial infarction followed the joint European
Society of Cardiology, American College of Cardiology
Foundation, American Heart Association, and World
Heart Federation task force consensus (11). Stroke was
defined as “rapidly developing clinical symptoms and/or
signs of focal (or at times global) disturbance of cerebral
function lasting � 24 hours (unless interrupted by surgery)
or leading to death, with no apparent cause other than of
vascular origin,” in accordance with the World Health
Organization (12). Those subjects without evidence of
cerebral hemorrhage on cerebral imaging were defined to
have nonhemorrhagic stroke. Deaths due to cardiovascular
auses included sudden cardiac death, death from acute
yocardial infarction, death from congestive heart fail-

re, fatal stroke, fatal arrhythmia, and other fatal vascular
vents.

As a secondary endpoint, we defined the first occurrence
f any cardiovascular event (defined as myocardial infarc-
ion; coronary artery angioplasty, stent implantation, or
ypass surgery; stroke [with acute onset of neurological
ymptoms persisting for �24 h]; carotid endarterectomy or

stent implantation; nontraumatic lower extremity amputa-
tion; or lower limb artery bypass surgery, angioplasty, or
stent implantation) or death.
Statistical analysis. Data management and statistical anal-
ysis were performed using PASW Statistics 18 (SPSS, Inc.,
Chicago, Illinois) and the software environment for statis-
tical computing R. Two-sided p values �0.05 were consid-

Figure 1 Flow Cytometric Analysis
of Monocyte Subpopulations

Depicted are classical CD14��CD16� monocytes, intermediate
CD14��CD16� monocytes, and nonclassical CD14�CD16�� monocytes
(representative example).
ered significant. Categorical variables are presented as per-
cents of patients and were compared using chi-square tests.
Continuous data are expressed as mean � SD (or, in case of
skewed distributions, as median [interquartile range]) and
were compared using Mann-Whitney U tests. The associ-
ations between continuous variables were assessed using
Spearman rank correlation testing.

Subjects were divided into 4 equally sized groups (quar-
tiles) according to their total monocyte counts and mono-
cyte subset counts. Kaplan-Meier survival curves were used
to compare event-free survival (i.e., time until first occur-
rence of the primary or secondary endpoint) between
groups. Participants with noncardiovascular death were
censored at the time of death. The log-rank test was used to
test the hypothesis that at least 1 of the survival curves
differs from the others.

Cox proportional-hazards models were calculated to an-
alyze the relationship of total monocyte and monocyte
subset cell counts with event-free survival after adjustment
for age and sex (model 1); further adjustment for systolic
blood pressure, plasma cholesterol, diabetes, smoking, and
body mass index (model 2); and finally further adjustment
for estimated glomerular filtration rate, CRP, prevalent
cardiovascular disease, and total leukocyte count (model 3).

To assess the predictive discrimination of each Cox
model, we calculated the C-statistic (13), which provides
the proportion of evaluable patient pairs that can be cor-
rectly classified by a model.

Results

Baseline characteristics. Monocyte subset analysis was
intended in 999 HOM SWEET HOMe participants. Of
these, 36 subjects were on systemic immunosuppressive
medication, and 12 did not undergo planned coronary
angiography after admission, leaving 951 subjects in the
present analysis.

Baseline characteristics of these 951 patients are pre-
sented in Table 1. As expected, study participants had a
high burden of risk factors and cardiovascular disease.
Consequently, cardioprotective medication use was highly
prevalent.

Study participants were followed for a mean of 2.6 � 1.0
ears; 3 patients were lost to follow-up. The predefined
omposite primary endpoint (cardiovascular death, acute
yocardial infarction, or nonhemorrhagic stroke) occurred

n 93 subjects, of whom 29 subjects had nonfatal acute
yocardial infarctions, 24 had nonfatal nonhemorrhagic

trokes, and 45 subjects died of cardiovascular causes. Study
articipants who experienced the primary endpoint were
lder, had more comorbidities, and had higher markers of
ystemic inflammation (Table 1).

onocyte subset counts and cardiovascular risk factors. At
tudy initiation, the mean monocyte count was 583 � 211
ells/�l, of which 470 � 179 cells were CD14��CD16�

monocytes, 42 � 24 cells were CD14��CD16� mono-

cytes, and 71 � 37 cells were CD14�CD16�� mono-
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cytes. Associations of monocyte (subset) counts with
traditional and nontraditional cardiovascular risk factors
are specified in Table 2. Cell counts of all 3 monocyte

Baseline Characteristics of Study ParticipantsTable 1 Baseline Characteristics of Study Pa

Variable
Total Cohort
(n � 951)

Age (yrs) 65.1 � 10.3

Body mass index (kg/m2) 28.5 � 4.6

Systolic BP (mm Hg) 147 � 22

Diastolic BP (mm Hg) 82 � 11

Hip circumference (cm) 103.5 � 10.0

Waist circumference (cm) 101.5 � 12.5

Creatinine (mg/dl) 1.0 � 0.3

eGFR (ml/min/1.73 m2) 75 � 20

CRP (mg/l) 1.9 (0.9–4.0)

Total cholesterol (mg/dl) 187 � 47

LDL cholesterol (mg/dl) 113 � 41

HDL cholesterol (mg/dl) 49 � 15

Triglycerides (mg/dl) 129 (93–182)

Leukocytes (1/�l) 6,709 � 1,957

Total monocytes (1/�l) 583 � 211

Women 305 (32.1%)

Smoking 122 (12.8%)

Diabetes mellitus 363 (38.2%)

Prevalent CVD 568 (59.7%)

Prevalent CAD 513 (53.9%)

Cerebrovascular artery disease 94 (9.9%)

Peripheral artery disease 67 (7.0%)

Beta-blockers 710 (74.7%)

ACE inhibitors 559 (58.8%)

Angiotensin receptor blockers 193 (20.3%)

Calcium-channel blockers 191 (20.1%)

Antiplatelet agents (%) 714 (75.1%)

Statins (%) 562 (59.1%)

Values are mean � SD, median (interquartile range), or n (%).
ACE � angiotensin-converting enzyme; BP � blood pressure; CAD � co

eGFR � estimated glomerular filtration rate; HDL � high-density lipopr

Correlation Coefficients of Monocyte (Subset) Counts With TraditioTable 2 Correlation Coefficients of Monocyte (Subset) Counts

Variable

Total Monocytes
CD14��

Mono

r p Value r

Age �0.019 0.564 �0.048

Body mass index 0.047 0.150 0.011

Systolic BP 0.006 0.853 �0.019

Diastolic BP �0.042 0.196 �0.055

Hip circumference 0.064 0.054 0.024

Waist circumference 0.122 �0.001 0.086

Creatinine 0.084 0.010 0.058

eGFR �0.020 0.537 0.012

CRP 0.213 �0.001 0.192

Total cholesterol �0.048 0.136 �0.051

LDL cholesterol �0.024 0.461 �0.025

HDL cholesterol �0.150 �0.001 �0.148

Triglycerides 0.078 0.016 0.057

Leukocytes 0.629 �0.001 0.632
Abbreviations as in Table 1.
ubsets were correlated with traditional markers of in-
ammation (CRP and leukocyte counts). Additionally,
D14��CD16� and CD14�CD16�� monocyte

ants

rimary EndPoint
(n � 858)

Primary Endpoint
(n � 93) p Value

64.7 � 10.3 68.8 � 9.1 �0.001

28.4 � 4.6 29.0 � 5.0 0.396

147 � 22 150 � 23 0.547

82 � 10 81 � 11 0.192

03.4 � 9.7 104.2 � 12.3 0.990

01.1 � 12.1 105.6 � 15.0 0.039

1.0 � 0.3 1.1 � 0.5 �0.001

76 � 19 69 � 22 �0.001

1.9 (0.9–3.8) 3.7 (1.6–6.4) �0.001

187 � 47 181 � 42 0.184

114 � 41 111 � 37 0.561

49 � 15 48 � 13 0.032

29 (92–182) 124 (96–182) 0.866

,640 � 1,931 7,344 � 2,094 0.001

577 � 211 633 � 209 0.005

83 (33.0%) 22 (23.7%) 0.079

13 (13.2%) 9 (9.7%) 0.415

12 (36.4%) 51 (54.8%) 0.001

96 (57.8%) 72 (77.4%) �0.001

49 (52.3%) 64 (68.8%) 0.003

72 (8.4%) 22 (23.7%) �0.001

52 (6.1%) 15 (16.1%) 0.002

39 (74.5%) 71 (76.3%) 0.906

94 (57.6%) 65 (69.9%) 0.067

69 (19.7%) 24 (25.8%) 0.372

69 (19.7%) 22 (23.7%) 0.653

45 (75.2%) 69 (74.2%) 0.912

01 (58.4%) 61 (65.6%) 0.399

artery disease; CRP � C-reactive protein; CVD � cardiovascular disease;
DL � low-density lipoprotein.

nd Nontraditional Cardiovascular Risk FactorsTraditional and Nontraditional Cardiovascular Risk Factors

� CD14��CD16�
Monocytes

CD14�CD16��
Monocytes

Value r p Value r p Value

0.138 0.066 0.040 0.100 0.002

0.728 0.064 0.049 0.164 �0.001

0.563 0.044 0.174 0.137 �0.001

0.091 �0.013 0.682 0.057 0.078

0.461 0.104 0.002 0.185 �0.001

0.010 0.128 �0.001 0.206 �0.001

0.075 0.152 �0.001 0.099 0.002

0.709 �0.145 �0.001 �0.089 0.006

0.001 0.233 �0.001 0.102 0.002

0.116 �0.045 0.163 �0.007 0.838

0.451 �0.019 0.554 �0.007 0.819

0.001 �0.131 �0.001 �0.052 0.112

0.077 0.069 0.035 0.104 0.001

0.001 0.443 �0.001 0.242 �0.001
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counts showed weak, albeit significant, correlations with
body mass index, renal dysfunction, age, and serum
triglycerides.

Total monocyte and CD14��CD16– monocyte counts
were higher in men than in women. In patients with
diabetes, all monocyte subset counts were elevated (Online
Table S1). Interestingly, prevalent cardiovascular disease
was not associated with a shift in monocyte (subset) counts.
Further associations between monocyte (subset) counts and
intake of cardioprotective medication are listed in Online
Table S1.
Total monocyte counts, monocyte subset counts, and
cardiovascular outcomes. Patients who experienced events
had a mean of 508 � 178 CD14��CD16� monocytes/�l,
47 � 22 CD14��CD16� monocytes/�l, and 77 � 43
CD14�CD16�� monocytes/�l. In contrast, patients who
had uneventful follow-up had a mean of 466 � 178
CD14��CD16� monocytes/�l (p � 0.011 compared
with patients with events), 41 � 24 CD14��CD16�
monocytes/�l (p � 0.001), and 70 � 37 CD14�CD16��
monocytes/�l (p � 0.105).

After stratifying the study cohort by monocyte (subset)
cell counts into quartiles, higher counts of total monocytes
(log-rank test, p � 0.010), CD14��CD16� monocytes
(p � 0.024), and CD14��CD16� monocytes (p �
0.001), but not of CD14�CD16�� monocytes (p �
0.158), were univariately associated with the primary end-
point of cardiovascular death, acute myocardial infarction,
or nonhemorrhagic stroke in Kaplan-Meier survival analysis
(Fig. 2, Online Figs. S1A to S1C).

Similarly, higher CD14��CD16� monocyte counts

Figure 2 Relationship Between Quartiles of CD14��CD16�
Monocyte Counts and Event-Free Survival

Primary endpoint: cardiovascular death, acute myocardial infarction,
or nonhemorrhagic stroke; Kaplan-Meier analysis with log-rank test.
significantly predicted the occurrence of any cardiovascular
event, pre-defined as a secondary endpoint, in Kaplan-
Meier analysis (p � 0.028) (Fig. 3), whereas counts of total
monocytes (p � 0.098), CD14��CD16� monocytes (p �
0.066), and CD14�CD16�� monocytes (p � 0.062) only
ended to predict adverse cardiovascular outcomes.

In multivariate regression analysis, subjects with higher
ell counts of CD14��CD16� monocytes remained at
igher risk for adverse outcomes after adjustment for age
nd sex (model 1); further adjustment for systolic blood
ressure, plasma cholesterol, smoking, diabetes mellitus,
nd body mass index (model 2); and additional adjustment
or renal function, CRP, prevalent cardiovascular disease,
nd total leukocyte counts (model 3), compared with indi-
iduals with the lowest counts of CD14��CD16� mono-
ytes (quartile 1) (Table 3).

In contrast to CD14��CD16� cells, neither total
onocyte counts nor counts of CD14��CD16 – or
D14�CD16�� monocytes predicted adverse outcomes

n fully adjusted models (Table 3).
In addition, Table 4 provides the C-statistics correspond-

ng to the Cox analyses reported in Table 3. Discrimination
verall improved for covariate adjustment. Regardless of
djustment, a specific benefit in terms of prediction perfor-
ance was seen for CD14��CD16� monocytes. Thus,

he C-statistic analysis supports our conclusion that only
D14��CD16� monocyte measurements improve risk
rediction over the total monocyte count. To further illus-
rate that CD14��CD16� monocytes might render
rognostic information for cardiovascular outcome in
ddition to more conventional markers of inflammation,
e cross-stratified the study cohort by the median of
D14��CD16� monocyte counts and CRP higher than

Figure 3 Relationship Between Quartiles of CD14��CD16�
Monocyte Counts and Event-Free Survival

Secondary endpoint: cardiovascular event; Kaplan-Meier analysis with log-rank test.
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and lower than 2 mg/l, which corresponds to the CRP
inclusion criterion of Justification for the Use of Statins in
Prevention: An Intervention Trial Evaluating Rosuvastatin
(14). Those subjects who had CD14��CD16� monocyte
counts higher than the median in conjunction with higher
CRP levels had the worst outcomes (Online Fig. S1D) in
Kaplan-Meier analysis (p � 0.001).

Discussion

The identification of a subset-specific involvement of mono-
cytes in murine models of atherosclerosis was a breakthrough
in cardiovascular research (15,16). Lately, specific immuno-
modulation of a distinct monocyte subset has been discussed as
a promising therapeutic avenue in atherosclerosis (17). This
notion is backed by the successful application of cell-targeted
therapy in other fields of medicine, such as the introduction of
rituximab in patients with lymphoma (18).

Unfortunately, advances in understanding of murine ath-
erosclerosis are not paralleled by a better grasp of human
pathology, given that the potential monocyte target subpop-

Adjusted Cox Regression Analysis (Different Models) for CardiovasTable 3 Adjusted Cox Regression Analysis (Different Models) f

Monocyte Subset n
Events

(n)

Model 1

HR 95% CI

Total monocytes

Quartile 1 242 17 1.000

Quartile 2 235 19 1.263 (0.656–2.432)

Quartile 3 236 24 1.528 (0.820–2.848)

Quartile 4 238 33 2.308 (1.280–4.162)

CD14��CD16� monocytes

Quartile 1 238 18 1.000

Quartile 2 238 21 1.186 (0.631–2.229)

Quartile 3 237 21 1.261 (0.671–2.369)

Quartile 4 238 33 2.144 (1.198–3.836)

CD14��CD16� monocytes

Quartile 1 238 9 1.000

Quartile 2 238 28 3.191 (1.505–6.766)

Quartile 3 237 23 2.74 (1.267–5.926)

Quartile 4 238 33 3.899 (1.861–8.168)

CD14�CD16�� monocytes

Quartile 1 238 21 1.000

Quartile 2 238 18 0.796 (0.424–1.495)

Quartile 3 237 25 1.225 (0.685–2.190)

Quartile 4 238 29 1.348 (0.767–2.372)

Model 1 includes monocyte (subset) counts, age, and sex; model 2 is further adjusted for systolic blo
for estimated glomerular filtration rate, C-reactive protein, prevalent cardiovascular disease, and

CI � confidence interval; HR � hazard ratio.

C-Statistics Corresponding to theCox Regression Analyses Reported in Table 3Table 4 C-Statistics Corresponding to the
Cox Regression Analyses Reported in Table 3

Monocyte Subset Model 1 Model 2 Model 3

Total monocytes 0.666 0.705 0.734

CD14��CD16� monocytes 0.661 0.701 0.732

CD14��CD16� monocytes 0.699 0.723 0.748
CD14�CD16�� monocytes 0.666 0.698 0.731
ulation in atherosclerosis has not been convincingly identi-
fied yet. So far, most information derives from few cross-
sectional studies: in a heterogenous cohort of 308 subjects,
a shift toward CD16-positive monocytes was associated
with the presence of coronary artery disease (19). Later,
small cross-sectional studies linked high counts of CD16-
positive monocytes with the presence of vulnerable athero-
sclerotic plaques in patients with stable angina pectoris (20)
and with fibrous cap thickness in patients with unstable
angina pectoris (21). Of note, none of these studies distin-
guished intermediate CD14��CD16� monocytes from
nonclassical CD14�CD16�� monocytes (as discussed in
detail previously [22,23]). Consequently, so far, the respec-
tive roles of CD14��CD16� and CD14�CD16��
monocytes in human atherosclerosis have not been fully
discerned. Against this background, large prospective stud-
ies of monocyte subsets and cardiovascular outcomes have
been demanded recently (17).

We previously set out to analyze the relationship between
subset-specific monocyte counts and adverse cardiovascular
outcomes in selected patient groups. Initially, we focused
our analysis on patients with CKD receiving dialysis treat-
ment (10,24,25), reasoning that this highest cardiovascular
risk group would allow us to gather information in a limited
sample size because of the high event rate. This allowed us
to demonstrate CD14��CD16� monocytes to be inde-
pendent predictors of cardiovascular events in dialysis pa-
tients (10). However, a drawback of this approach was the

Eventsrdiovascular Events

Model 2 Model 3

e HR 95% CI
p

Value HR 95% CI
p

Value

1.000 1.000

5 1.228 (0.636–2.368) 0.541 1.009 (0.515–1.976) 0.979

2 1.487 (0.796–2.779) 0.213 1.229 (0.644–2.348) 0.532

5 2.180 (1.195–3.977) 0.011 1.381 (0.681–2.801) 0.371

1.000 1.000

7 1.182 (0.627–2.227) 0.605 1.051 (0.551–2.006) 0.880

1 1.251 (0.665–2.352) 0.487 1.036 (0.540–1.988) 0.915

0 2.039 (1.124–3.701) 0.019 1.259 (0.625–2.536) 0.520

1.000 1.000

2 3.121 (1.470–6.629) 0.003 3.218 (1.459–7.095) 0.004

0 2.508 (1.154–5.454) 0.02 2.444 (1.074–5.563) 0.033

1 3.722 (1.770–7.829) 0.001 3.019 (1.315–6.928) 0.009

1.000 1.000

9 0.793 (0.421–1.494) 0.473 0.867 (0.456–1.649) 0.663

4 1.193 (0.661–2.156) 0.558 1.138 (0.622–2.082) 0.675

0 1.251 (0.705–2.220) 0.444 1.037 (0.571–1.883) 0.906

sure, plasma cholesterol, diabetes, smoking, and body mass index; and model 3 is further adjusted
kocyte count.
cularor Ca

p Valu

0.48

0.18

0.00

0.59

0.47

0.01

0.00

0.01

�0.00

0.47

0.49

0.30

od pres
observed strong shift in monocyte subsets toward CD16-
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positive cells compared with healthy controls (10), preclud-
ing a translation of these results to non-CKD populations.

Next we prospectively analyzed monocyte heterogeneity
in subjects with earlier stages of CKD not requiring dialysis.
At baseline, these patients had CD14��CD16� cell counts
between those of subjects with preserved renal function and
those of patients with CKD receiving dialysis. Nonetheless,
higher CD14��CD16� monocyte counts again predicted
cardiovascular outcomes in these patients (8).

To test the validity of these findings in a broad patient
group not affected by the CKD-associated monocyte subset
shift, we recruited subjects from the general population at
cardiovascular risk, who were referred for elective coronary
angiography. Our HOM SWEET HOMe study, the larg-
est prospective cohort study on monocyte heterogeneity so
far, thereby comprised a representative sample of subjects at
cardiovascular risk with either prevalent coronary artery
disease or a high burden of risk factors. At baseline, cell
counts of all 3 monocyte subsets were correlated with
traditional as well as nontraditional cardiovascular risk
factors. Interestingly, CD14��CD16� monocytes seem
particularly to integrate cardiovascular risk burden, a notion
that is supported by earlier data (26). Of most interest,
CD14��CD16� monocytes were the only independent

redictors of adverse cardiovascular outcomes after full
djustment for traditional and nontraditional cardiovascular
isk factors in the HOM SWEET HOMe study.

With regard to our fully adjusted Cox regression analysis,
ne might suspect a threshold effect of CD14��CD16�
onocyte counts, because in this model, quartiles 2 to 4

redicted adverse outcomes to a similar extent. A compa-
able conclusion could be also drawn from our previous
tudy on CD14��CD16� monocytes and survival in
on-dialysis-dependent patients with CKD; here, the
aplan-Meier curve of the second tertile clearly separated

rom the first tertile but ran close and parallel to the third
ertile (8).

However, this concept is merely a hypothesis originating
posteriori from the present dataset. Future studies with

redefined cell count cutoff values should therefore prospec-
ively test this idea.

Circumstantial evidence suggesting a role of CD16-
ositive monocytes in atherosclerosis supports our present
ndings. Mechanistically, the significance of CD16-positive
onocytes in atherosclerosis is emphasized by their proin-

ammatory capacity (6,27) along with their endothelial
ffinity (28). Their preferential adherence to activated en-
othelial cells (29) together with their potential to secrete

nterleukin-6, matrix metalloproteinase-9, and chemokine
C-C motif) ligand 2 and to attract T-lymphocytes and
urther monocytes (30) should be considered proatheroscle-
otic features.

Furthermore, the role of CD16-positive monocytes in
therosclerotic vascular disease is underscored by their

ssociation with subclinical atherosclerosis (31). w
Of note, among CD16-positive monocytes, intermediate
D14��CD16� monocytes can be viewed as particularly

proatherogenic, as they selectively express C-C chemokine
receptor type 5 (6,8,29), which has been associated with
atherosclerosis in experimental (1) and large epidemiologi-
cal (32–34) studies. Moreover, subset-specific high reactive
oxygen species production and CD74 expression predispose
CD14��CD16� monocytes to propagate atherogenesis
(6). These proatherogenic virtues are further extended by the
proangiogenic capacity of intermediate CD14��CD16�
monocytes (6,35), linking them to potential plaque neovas-
cularization as an important component in advanced stages
of atherosclerosis (36).

Our study has several strengths that support the signifi-
cance of CD14��CD16� monocytes in cardiovascular
disease.

First, the large cohort size provides firm ground for our
results. Second, our monocyte analysis protocol, which
has been validated (6) against a suggested reference
method (37), reliably distinguishes between intermediate
CD14��CD16� and nonclassical CD14�CD16��
monocytes (6). Third, analysis of monocyte subsets was
performed blinded to baseline characteristics, and endpoints
were adjudicated blinded to the distribution of monocyte
subpopulations.

As the major limitation, our study cannot prove causality,
because of its nature as a cohort study.

However, our study provides an extensive dataset on
human monocyte heterogeneity in atherosclerosis, a field in
which a plethora of murine data on monocyte heterogeneity
contrast with the paucity of human data. Considering the
limitations of murine models (1,2,38), clinical studies have
been demanded to fill this knowledge gap (17).

One might argue that our present findings are in contra-
diction to results from murine studies that favor a proath-
erosclerotic role of Ly6Chigh monocytes, conventionally
egarded as counterpart of human CD14��CD16�
onocytes, over Ly6Clow monocytes, which are convention-

lly viewed as homologues of both human CD14��CD16�
nd CD14�CD16�� monocytes (39).

However, this concept has recently been refined by Cros
t al. (40), who reported that human CD14��CD16– and
D14��CD16� monocytes both cluster together with
urine Ly6Chigh monocytes, whereas CD14�CD16��

monocytes cluster together with Ly6Clow monocytes. This
nding is of great importance, because it could help recon-
ile murine studies with our present findings as well as with
revious human studies that favored CD16-positive mono-
ytes in cardiovascular disease.

In addition, 2 aspects deserve special consideration when
nterpreting results from murine studies. First, most murine
tudies on monocyte heterogeneity in atherosclerosis ana-
yzed only 2 murine monocyte subsets: Ly6Chigh and

Ly6Clow cells (16). Second, many murine studies are per-
formed in apolipoprotein E�/� mice on an atherogenic diet,
hich accordingly show massively elevated cholesterol levels
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and a very profound rise of Ly6Chigh cells (up to 14-fold in
individual studies [15]) without concomitant changes in
Ly6Clow monocyte counts (15). In humans, such extreme
alterations are restricted to rare disease states such as
familial hypercholesterolemia, in which a significant in-
crease of CD14��CD16� monocytes has been reported
(41). In contrast, wild-type mice on an atherogenic diet
display significant increases neither of Ly6Chigh nor of
Ly6Clow cell counts and no atherosclerotic lesions despite
persisting hypercholesterolemia (15). Accordingly, in a pre-
vious study in healthy volunteers, we did not observe
associations between CD14��CD16� monocytes and
cholesterol levels or subclinical atherosclerosis (31).

Taken together, we believe that our present results do
not conflict with findings from earlier murine studies, if
critical attention is paid to the respective experimental
setting.

Ideally, studies on monocyte heterogeneity in other ex-
perimental animals, such as pigs, whose immune system is
evolutionary closer to that of humans and which show a
comparable monocyte subset distribution (42), will comple-
ment our existing knowledge in the future.

Conclusions

We report an association of CD14��CD16� monocytes
with cardiovascular events in subjects from the general
population referred for elective coronary angiography. It
remains to be proven whether the CD14��CD16�
monocyte subset represents a target cell population for new
therapeutic strategies in atherosclerosis.
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SuperSAGE evidence for CD14��CD16� monocytes as a third monocyte subset
Adam M. Zawada,1 Kyrill S. Rogacev,1 Björn Rotter,2 Peter Winter,2 Rolf-R. Marell,3 Danilo Fliser,1 and Gunnar H. Heine1

1Department of Internal Medicine IV, Saarland University Hospital, Homburg/Saar, Germany; 2GenXPro GmbH, Frankfurt am Main, Germany; and
3Institute of Immunology and Genetics, Kaiserslautern, Germany

Monocytes are a heterogeneous cell popula-
tion with subset-specific functions and phe-
notypes. The differential expression of
CD14 and CD16 distinguishes classical
CD14��CD16�, intermediate CD14��CD16�,
and nonclassical CD14�CD16�� mono-
cytes. Current knowledge on human
monocyte heterogeneity is still incom-
plete: while it is increasingly acknowl-
edged that CD14��CD16� monocytes are
of outstanding significance in 2 global
health issues, namely HIV-1 infection and
atherosclerosis, CD14��CD16� mono-
cytes remain the most poorly character-

ized subset so far. We therefore devel-
oped a method to purify the 3 monocyte
subsets from human blood and analyzed
their transcriptomes using SuperSAGE in
combination with high-throughput se-
quencing. Analysis of 5 487 603 tags re-
vealed unique identifiers of CD14��CD16�

monocytes, delineating these cells from
the 2 other monocyte subsets. Gene On-
tology (GO) enrichment analysis sug-
gests diverse immunologic functions,
linking CD14��CD16� monocytes to Ag
processing and presentation (eg, CD74,
HLA-DR, IFI30, CTSB), to inflammation

and monocyte activation (eg, TGFB1,
AIF1, PTPN6), and to angiogenesis (eg,
TIE2, CD105). In conclusion, we provide
genetic evidence for a distinct role of
CD14��CD16� monocytes in human im-
munity. After CD14��CD16� monocytes
have earlier been discussed as a poten-
tial therapeutic target in inflammatory dis-
eases, we are hopeful that our data will
spur further research in the field of mono-
cyte heterogeneity. (Blood. 2011;118(12):
e50-e61)

Introduction

Monocytes are cornerstones of the immune system linking innate
and adaptive immunity and are critical drivers in many inflamma-
tory diseases. They are known to originate from a common myeloid
precursor in the BM and give rise to tissue macrophages and
dendritic cells (DCs).1,2

As diverse as monocyte function is their immunophenotype.
Based on the differential expression of the lipopolysaccharide
(LPS) receptor CD14 and the Fc�IIIR CD16, 2 subpopulations
were initially defined (CD14��CD16� monocytes and CD16-
positive monocytes).3

However, considerable heterogeneity within the minor CD16-
positive monocyte population does exist, which had been neglected
until 2003, when Ancuta et al reported that CD16-positive mono-
cytes can be further subdivided into phenotypically distinct
CD14��CD16� and CD14�CD16�� cells.4

The recently updated classification of monocyte heterogeneity
follows this differentiation of CD16-positive monocytes into
CD14��CD16� and CD14�CD16�� monocytes and acknowl-
edges the existence of 3 monocyte subsets, that is, classical
monocytes (CD14��CD16�), intermediate monocytes
(CD14��CD16�), and nonclassical monocytes (CD14�CD16��).5

As reviewed recently, the intermediate monocyte subset re-
mains poorly characterized because of the fact that most clinical
and experimental studies either ignored these cells, or analyzed
intermediate and nonclassical monocytes as a single subset.6

Although neglected in earlier studies, the intermediate mono-
cytes are of major clinical importance: first, we found that elevated
CD14��CD16� monocyte counts independently predict adverse out-

come in patients at high cardiovascular risk.7,8 Moreover, a host of data
suggests that intermediate monocytes are of significance in HIV-1
infection,9,10 given that—unlike classical and nonclassical monocytes—
they selectively express CCR5, the coreceptor for HIV-1.4,8

Although CD14��CD16� monocytes show an intermediate
phenotype in many chemokine receptors (eg, CCR2 and CX3CR1),
they can be clearly distinguished by distinct identifiers from
CD14��CD16� and CD14�CD16�� monocytes, such as the
subset-specific surface expression of CCR54,8 and of angiotensin-
converting enzyme (ACE; CD143).11 Admittedly, so far, proof for
the existence of the intermediate monocyte subset derives mainly
from flow-cytometrical surface expression analysis. Flow cytom-
etry is limited in its analytical capacity, whereas gene expression
profiling provides a much more profound characterization. In line,
previous knowledge on the heterogeneity of 2 major subsets of
CD14��CD16� and CD16-positive monocytes has recently been
extended by gene expression profiling.12-15

However, no data on the gene expression profile of the
intermediate CD14��CD16� monocyte subset exist so far because
of the technically challenging procedure of separating CD16-
positive monocytes into CD14��CD16� and CD14�CD16�� cells.

To unravel heterogeneity of CD16-positive monocytes, we set
out to develop a method to separate the 3 human monocyte subsets,
and analyzed them in combination with an improved version of the
SuperSAGE method16 to characterize the monocyte subsets’ tran-
scriptomes. This method provides digital transcriptome data in a
very high resolution, as rare transcripts which remain invisible on
microarrays can also be exactly quantified.
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Methods

Isolation of human monocyte subsets

Twelve healthy volunteers were recruited for the study. All participants
gave written informed consent in accordance with the Declaration of
Helsinki. The study protocol was approved by the Ethics Committee of
Saarland University Hospital.

EDTA-anticoagulated blood was drawn by venopuncture and PBMCs
were immediately isolated by Ficoll-Paque (Lymphocyte Separation Me-
dium; PAA) gradient density centrifugation. Subsequently, NK cells and
neutrophils were depleted using CD56 and CD15 MicroBeads (NonMono-
cyte Depletion Cocktail, CD16� Monocyte Isolation Kit; Miltenyi Biotec)
according to the manufacturer’s instructions. From these negatively isolated

cells, human monocyte subsets were isolated according to their different
CD14 and CD16 expression. First, the cells were incubated with FITC-
conjugated anti-CD14 Ab (Miltenyi Biotec) and then with anti-FITC
MultiSort MicroBeads (Anti-FITC MultiSort Kit; Miltenyi Biotec) to
separate the pre-enriched monocytes in CD14�� and CD14�/� cells. After
release of anti-FITC MultiSort MicroBeads, both fractions were incubated
with CD16 MicroBeads (Miltenyi Biotec) and separated into 3 monocyte
subsets (compare Figure 1 for a representative example). All steps of
monocyte subset isolation were performed at 4°C. After each single step,
purity was analyzed flow-cytometrically.

RNA isolation and construction of SuperSAGE libraries

Isolated monocyte subsets were immediately lysed, frozen in liquid nitrogen, and
stored at �80°C until RNA preparation. Total RNA from lysates was isolated

Figure 1. Purification of human monocyte subsets. (A) PBMCs were isolated by Ficoll-Paque and stained with anti-CD86, anti-CD14, and anti-CD16; CD86-positive cells
(monocytes) are red, whereas CD86-negative (nonmonocytic) cells are black (i). NB: Percentages refer to CD86-positive monocyte subsets among all PBMCs, excluding
CD86-negative cells (eg, CD16-positive NK cells and neutrophils) which protrude into the CD14�CD16�� monocyte gate in this dot plot. (B) After depletion of NK cells and
neutrophils (CD16-positive nonmonocytic cells) using CD56 and CD15 MicroBeads (not shown), negatively isolated cells were separated into CD14�� (i) and CD14�/� cells
(ii) using FITC-conjugated anti-CD14 Ab and accordingly anti-FITC MultiSort MicroBeads. (C) Both fractions were incubated with CD16 MicroBeads to separate CD14�� cells
into CD14��CD16� (i) and CD14��CD16� monocytes (ii), and to purify CD14�CD16�� monocytes (iii) from CD14�/� cells. Top line: Flow cytometric analysis; bottom line:
microscopic images (Keyence BZ-8000J [Keyence Deutschland] equipped with a Plan Apo 60�/1.40 oil objective lens [Nikon], magnification 30�, room temperature) after
cytospin and May-Grünwald-Giemsa staining. Representative examples from 12 independent experiments are shown. In each dot plot, subset-specific percentages of
monocytic cells among total cells are shown as means � SD.
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using the RNeasy Micro Kit (QIAGEN) including DNase treatment. From
12 donors, same aliquots of each sample were matched for SuperSAGE, leading
to a total RNA amount of 12.0 �g (CD14��CD16�), 1.2 �g (CD14��CD16�),
and 1.6 �g (CD14�CD16��), respectively.

SuperSAGE libraries were produced at GenXPro GmbH essentially as
described by Matsumura et al,17 but with the implementation of GenXPro
PCR-bias-proof technology to distinguish PCR copies from original tags. Quality
assessment of the tags was performed according to Qu et al18 to reduce
sequencing errors and artificial tag sequences. Tags were counted using the
“GenXProgram.” Likelihoods for differential expression of the tags were
calculated according to Audic and Claverie.19 The 26-bp tags were annotated to
the human-refseq-database (National Center for Biotechnology Information
[NCBI] from September 2010). Tags with no hits were annotated to all other
mammalian refseq-mRNA databases (NCBI from September 2010). Tags
matching to the same transcript were summed up to define a “transcript
frequency”; P values for differential expression were also calculated based
on the transcript frequencies. All SuperSAGE data are available in the Gene
Express Omnibus (GEO) under accession number GSE30811.

Gene ontology information

Gene ontology (GO) information was obtained from www.GeneOntology.org
for the refseq-mRNA entries. P values describing the likelihood for
enrichment of GO terms were calculated by the Fisher exact test, based on
transcripts that were differentially expressed with a P � 10�10.20

Flow cytometric analysis

Via flow cytometry (FACS Canto II with CellQuest Software;
BD Biosciences) monocyte subsets were identified according to our
previously published gating strategy.7 Briefly, monocytes were gated in
a side scatter/CD86 dot plot, identifying monocytes as CD86-positive
cells with monocyte scatter properties. Subpopulations of CD14��CD16�,
CD14��CD16�, and CD14�CD16�� monocytes were distinguished by
their surface expression pattern of the LPS receptor CD14 and
the Fc�IIIR CD16.

For validation, we compared this gating strategy to an alternative
strategy which was recently suggested by Heimbeck et al.21 As summarized
in supplemental Figure 1 and supplemental Table 1 (available on the Blood
Web site; see the Supplemental Materials link at the top of the article), both
gating strategies yielded virtually identical results.

For validation of SuperSAGE results, surface expression of different
Ags was analyzed in 10 healthy subjects via a whole-blood assay using
100 �L of EDTA anticoagulated blood. Surface expression was quantified
as median fluorescence intensity (MFI) and standardized against coated
fluorescent particles (SPHEROTM; BD Biosciences). Histograms were
created with FCS Express Version 3 Software (De Novo Software). Abs
used in this study are summarized in supplemental Table 2.

Measurement of ROS

Isolated PBMCs were incubated with the cell-permanent carboxy-
H2DFFDA (Invitrogen) in a concentration of 10�M for 15 minutes at
37°C and 5% CO2. Afterward, cells were stained with anti-CD14, anti-
CD16, and anti-CD86. The intracellular reactive oxygen species (ROS)
levels within the monocyte subsets were determined as MFI by flow
cytometric analysis.

Phagocytosis assay

Fluoresbrite Yellow Green (YG) Carboxylate Microspheres (0.75 �m;
Polysciences) were opsonized with heterologous serum (diluted to 50%
with Krebs Ringers PBS) for 30 minutes at 37°C and adjusted to 108 particles/mL.
One hundred microliters of citrate anticoagulated whole blood was mixed
with 10 �L of opsonized particles and incubated with gentle shaking for
30 minutes at 37°C. Control samples were incubated at 4°C. Samples were
stained as described in “Flow cytometric analysis,” and counts of FITC-
positive cells were determined flow-cytometrically in each monocyte
subset.

In vitro angiogenesis assay

Angiogenic activity of monocyte subsets was assessed using a solubilized
basement membrane preparation extracted from the Engelbreth-Holm-Swarm
mouse sarcoma (Matrigel Basement Membrane Matrix; BD Biosciences).
Matrigel was thawed at 4°C overnight and distributed on 24-well plates
(200 �L/well). Afterward, Matrigel was allowed to solidify at 37°C for at least
1 hour. In 3 independent assays, freshly isolated monocyte subsets from healthy
individuals were seeded on the polymerized matrix at a density of 1 � 105

cells/well and stimulated with human VEGF (10 ng/mL; Miltenyi Biotec). Cells
were cultivated at 37°C in 5% CO2. After 3 days, formation of tube-like
structures was microscopically analyzed. HUVECs were used as positive control.

Proliferation assay

The monocyte subset-specific ability to induce CD4� T-cell proliferation
was analyzed by measuring the cytoplasmic dilution of CFDA-SE (Vybrant
CFDA-SE Cell Tracer Kit; Invitrogen). In detail, freshly isolated monocyte
subsets from 5 healthy subjects were cultivated overnight in 96-well plates
at a density of 5 � 104 cells/well in the presence of 2.5 �g/mL staphylococ-
cal enterotoxin B (SEB; Sigma-Aldrich).

Within 24 hours, autogenic CD4� T cells were isolated using the CD4�

T Cell Isolation Kit II (Miltenyi Biotec). Purity of isolated CD4� T cells
was � 97%. CD4� T cells were labeled with 5�M CFDA-SE at 37°C. After
10 minutes, RPMI (�5% FCS) was added in excess to stop labeling,
followed by 2 washing steps. Afterward, 2 � 105 CD4� T cells were added
to stimulated monocytes. After 3 days, counts of proliferating T cells were
analyzed flow-cytometrically by measuring CFDA-SE dilution, identifying
T cells by anti-CD3 APC. All experiments were performed in duplicate. For
negative control, labeled T cells were cultivated without monocytes and
without SEB, respectively.

Results

Generation of SuperSAGE libraries

Human monocyte subsets were purified with MACS technology
based on the differential CD14 and CD16 expression, yielding a
purity of 98.0% � 0.6% for CD14��CD16� monocytes,
89.3% � 5.2% for CD14��CD16� monocytes, and 96.3% � 3.3%
for CD14�CD16�� monocytes, with a mean viability of � 97%
for all subsets (Figure 1).

Three independent SuperSAGE libraries were generated from
isolated human monocyte subsets. After eliminating incomplete reads,
twin ditags, ditags without complete library-identification DNA linkers,
and tags which were detected only once (singletons), the total number of
SuperSAGE tags was 5 487 603, comprising three 610 673 tags from
CD14��CD16� monocytes, 1 189 952 tags from CD14��CD16�

monocytes, and 686 978 tags from CD14�CD16�� monocytes. These
tags accounted for 154 313 unique sequences (UniTags) in the com-
bined libraries, of which 112 873 (73.1%) matched sequences corre-
sponding to human refseq-RNA database entries and were considered
for further analysis. The remaining UniTags hit either to a nonhuman
database (4773 UniTags [3.1%]), or did not hit to the refseq databases
(36 667 UniTags [23.8%]), and thus represented UniTags for mitochon-
drial transcripts, nonannotated transcripts, and sequencing artifacts.

Monocyte subset-specific genes

The 112 873 UniTags which matched to the human database repre-
sented 26 951 transcripts in the combined libraries (Figure 2). The
complete list of identified transcripts in the monocyte subsets is shown
in supplemental Table 5. Comparing gene expression profile in pairs of
monocyte subsets, CD14��CD16� and CD14�CD16�� monocytes
showed the highest similarity (Figure 2). Of 19 337 transcripts which
were identified in the combined CD14��CD16� and CD14�CD16��
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libraries, 559 (2.9%) were differentially expressed with a P � 10�10,
among which 258 genes were up-regulated in CD14��CD16� mono-
cytes, and 301 genes in CD14�CD16�� monocytes. CD14��CD16�

and CD14��CD16� monocytes could be distinguished from each other
by 1127 of 25 489 identified transcripts (4.4%), whereas CD14��CD16�

and CD14�CD16�� monocytes differed in the expression of 947 of
24 083 (3.9%) transcripts when applying the same cutoff value
(P � 10�10).

Comparison of SuperSAGE versus microarray

For validation of the SuperSAGE results, we compared our data
with the previously published microarray results by Ancuta et al.12

As the latter study did not distinguish between CD14��CD16�

and CD14�CD16�� monocytes, we recalculated the tag counts
of CD16-positive monocytes in the present study by pooling
data of CD14��CD16� and CD14�CD16�� monocytes in a
1:1.6 ratio, based on the relative frequencies of these cells within
the PBMCs.

Table 1 lists the 30 most differentially expressed genes between
CD14��CD16� and CD16-positive monocytes according to An-
cuta et al.12 Of note, microarray analysis and SuperSAGE found a
strikingly similar expression pattern, even though some quantita-
tive differences in the magnitude of fold-change values remain
because of the different methods applied.

Figure 2. Schematic representation of differences in
gene expression between the 3 monocyte subsets.
For each pair of monocyte subsets, the number of total
transcripts, and the number of differentially expressed
transcripts that reached a level of significance of
P � 10�10 are depicted. Statistical analysis was per-
formed according to Audic and Claverie.19

Table 1. Comparison of SuperSAGE results with microarray data by Ancuta et al12

Gene symbol

Ancuta et al12 SuperSAGE

CD16�/CD16� ratio CD14��CD16� mo TPM CD16-positive mo TPM Ratio P

S100A12 0.1 29.6 0.4 0.0 8.0 � 10�22

VCAN 0.2 905.4 36.1 0.0 0

CD14 0.2 1701.9 240.0 0.1 0

CD36 0.2 106.1 9.4 0.1 9.6 � 10�56

CD99 0.2 181.7 32.9 0.2 2.0 � 10�67

METTL9 0.3 401.9 60.9 0.2 1.6 � 10�163

CSF3R 0.3 410.7 77.0 0.2 8.7 � 10�147

PLBD1 0.3 945.0 159.8 0.2 0

MS4A6A 0.3 852.5 105.3 0.1 0

ITGAM 0.3 111.3 27.4 0.2 2.0 � 10�33

SELL 0.3 973.8 103.5 0.1 0

CRTAP 0.4 375.8 109.8 0.3 6.4 � 10�92

S100A9 0.4 4796.3 627.8 0.1 0

GPX1 0.4 1038.6 428.5 0.4 1.7 � 10�156

PLP2 0.4 142.1 36.4 0.3 1.2 � 10�40

LST1 2.5 128.2 683.2 5.3 4.5 � 10�271

IFITM3 2.5 173.9 923.9 5.3 0

SOD1 2.5 26.6 43.8 1.6 4.8 � 10�4

IFITM2 2.5 578.0 2932.7 5.1 0

NAP1L1 2.8 37.1 82.7 2.2 7.2 � 10�12

CSF1R 2.8 256.2 1227.6 4.8 0

MS4A7 2.8 387.5 1114.8 2.9 9.6 � 10�235

TCF7L2 3.0 10.5 91.4 8.7 6.4 � 10�50

TAGLN 3.2 6.1 54.1 8.9 1.8 � 10�30

HMOX1 3.5 118.8 750.4 6.3 0

IFITM1 4.5 2.5 26.4 10.6 1.0 � 10�16

SIGLEC10 4.8 7.8 55.4 7.1 4.3 � 10�28

MTSS1 5.7 14.7 147.4 10.0 1.2 � 10�84

CDKN1C 18.4 8.3 1712.4 206.3 0

FCGR3A 20.1 27.1 1911.6 70.5 0

P � 10�310 is denoted as 0.
TPM indicates tags per million; and mo, monocytes.
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Genes differentially expressed between CD14��CD16� and
CD14�CD16�� monocytes

Because 4 earlier studies analyzed gene expression between
CD14��CD16� and CD16-positive monocytes,12-15 we deliber-
ately chose to focus our data presentation on differences between
the 2 subsets of CD16-positive monocytes (CD14��CD16� and
CD14�CD16��), which had been neglected before. Comparisons
between CD14��CD16� versus CD14��CD16� monocytes and
CD14��CD16� versus CD14�CD16�� monocytes—which are
not the major topic of the present report—are summarized in
supplemental Tables 3 and 4.

Those 30 genes defined by a 26-hit tag which differed most
significantly between CD14��CD16� and CD14�CD16�� mono-
cytes are presented in Table 2. CD14��CD16� monocytes were
distinguished from CD14�CD16�� monocytes by significant higher
expression of genes linked to defense against microbial pathogens
(LYZ, S100A8, CD14, S100A10 [for the ease of legibility, gene
symbols are given in “Results”; gene titles are listed in supplemen-
tal Table 5]) and MHC II–restricted Ag processing and presentation
(HLA-DRA, CD74, IFI30, HLA-DPB1, CPVL). In contrast,
CD14�CD16�� monocytes expressed higher levels of genes
connected to MHC I–restricted processes (HLA-B, B2M) to migra-
tion and transendothelial motility (LSP1, LYN, CFL1, MYL6) and
to cell-cycle progression (CDKN1C, STK10).

Biologic and functional differences between CD14��CD16� and
CD14�CD16�� monocytes

Gene ontology (GO) information was obtained from www.GeneOn-
tology.org for the refseq-mRNA entries. P values describing the
likelihood for enrichment of GO terms (enrichment P values) were
calculated by the Fisher exact test, based on transcripts that were
differentially expressed between the CD16-positive monocytes
with a P � 10�10. A total of 15 737 transcripts were annotated to
biological process (Figure 3, with GO terms showing a significant

difference [enrichment P � .05] highlighted), 16 260 transcripts to
molecular function (supplemental Figure 2), and 16 615 to cellular
component (supplemental Figure 3). In the following, those 4 GO
terms within the biological process which showed the most
pronounced differences in gene expression (according to P values)
are further characterized.

Immune system process

Several genes involved in immune response were differently
expressed between CD14��CD16� and CD14�CD16�� mono-
cytes, pointing to distinct functions of these monocyte subsets in
immune defense.

In detail, transcripts up-regulated (P � 10�10) in CD14��CD16�

monocytes included those linked to the innate immune response
(eg, CD14, CFP, NCF2) and to MHC II–restricted processing and
presentation in adaptive immune response (eg, IFI30, CD74, and
further HLA-DR paralogues).

In contrast, innate immune genes up-regulated in CD14�CD16��

monocytes included those coding for complement factor D (CFD),
signaling lymphocytic activation molecule family member
7 (SLAMF7), and GTP cyclohydrolase 1 (GCH1). Within adaptive
immune response, CD14�CD16�� monocytes predominantly
expressed, for example, sialophorin (SPN), protein kinase
C, 	 (PRKCD), STAT6, and MHC I–associated mechanisms
(eg, B2M, HLA-B, HLA-E, and PSMB9).

Moreover, CD14��CD16� and CD14�CD16�� showed differ-
ent expression of genes related to activation of monocytes, with
higher expression of allograft inflammatory factor 1 (AIF1),
TGFB1, CD93, and protein tyrosine phosphatase, nonreceptor type
6 (PTPN6) in CD14��CD16� monocytes, and higher expression of
CD16, yes-1 Yamaguchi sarcoma viral-related oncogene homolog
(LYN), heme oxygenase 1 (HMOX1), and Kruppel-like factor
6 (KLF6) in CD14�CD16�� monocytes.

Figure 3. Pie charts of the functional annotation of identified transcripts from CD14��CD16� and CD14�CD16�� monocytes based on GO categorization (biological
process). Using GO categories, transcripts of CD14��CD16� and CD14�CD16�� monocytes were categorized by the function of their encoded protein products. GO terms
with statistical significant difference in gene expression are highlighted and projected into the right pie chart. Fisher exact test (2-tailed test) was used to compare groups for
significant enrichment of particular GO classes. Numbers of transcripts for each GO term are given. All data are presented at level 2 GO categorization.
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Cellular process

Within the GO term cellular process, CD14��CD16� and
CD14�CD16�� monocytes strongly differed in the expression of
genes involved in cell adhesion, oxidative stress, and phagocytosis,
pointing to a distinct transendothelial trafficking potential and a
greater capacity of CD14��CD16� monocytes for generation of
ROS as well as for phagocytosis of pathogens.

In detail, while CD14�CD16�� monocytes expressed signifi-
cantly higher levels of mRNA for numerous genes within the
adhesion process (eg, SLAMF7, RHOA, SPN, PECAM1, CYTH1,
CYTIP, ITGAL, CD151), CD14��CD16� monocytes up-regulated
expression of genes for distinct adhesion molecules such as CD93,
TGFBI, parvin � (PARVG), and CSF3R.

Moreover, CD14��CD16� monocytes up-regulated genes linked
to the generation of superoxide radicals (eg, CYBA, TSPO, NCF2)
and down-regulated genes coding for enzymes in the detoxification
of superoxide radicals (eg, SOD2, PRDX1, GPX4).

Finally, with regard to the process of phagocytosis,
CD14��CD16� monocytes expressed significantly higher levels of
mRNA for CD14, ras-related C3 botulinum toxin substrate
1 (RAC1), and CD93.

Metabolic process

Although a large number of genes connected to the GO term
metabolic process were up-regulated in CD14�CD16�� mono-
cytes (eg, STK10, GNAI2, CFL1, PSAP), suggesting an increased
potential of these cells for protein metabolism, CD14��CD16�

monocytes selectively up-regulated the expression of genes linked
to Ag processing (eg, CPVL, CTSB, IFI30).

Response to stimulus

Immune cells respond to diverse stimuli, such as those evoked by
bacterial infection or wounding. Again, numerous genes linked to
the GO terms defense response and response to wounding were
differentially expressed in monocyte subsets, with higher expres-
sion of, for example, lysozyme (LYZ), S100 calcium-binding
protein A8 (S100A8) and complement component 1, q subcompo-
nent, B chain (C1QB) in CD14��CD16� monocytes, and higher
expression of tumor necrosis factor receptor superfamily member
1B (TNFRSF1B), arachidonate 5-lipoxygenase (ALOX5), and car-
bohydrate sulfotransferase 2 (CHST2) in CD14�CD16�� mono-
cytes, pointing to a differential role of monocyte subsets in dealing
with biologic stress.

Unique identifiers of CD14��CD16� monocytes

To further unravel CD14��CD16� cells as a separate monocyte
subpopulation, we aimed to identify unique markers which are
selectively overexpressed in these monocytes.

Among those 258 genes which were up-regulated in CD14��CD16�

compared with CD14�CD16�� monocytes, 97 genes were likewise
up-regulated in comparison to CD14��CD16� monocytes (defined as
P � 10�10). Of these 97 genes, 15 top genes defined by a 26-hit tag are
presented in Table 3. The majority of these 15 top genes are linked to
protein turnover and MHC II–restricted protein processing and presenta-
tion, such as CD74 and other HLA-DR paralogues, IFN�-inducible
protein 30 (IFI30), calpain, small subunit 1 (CAPNS1), ras homolog
gene family member B (RHOB), and cathepsin B (CTSB); others have a
central role in monocyte activation, for example, protein tyrosine
phosphatase nonreceptor type 6 (PTPN6), TGF�1 (TGFB1), and
allograft inflammatory factor 1 (AIF1).

Validation of monocyte subset specific markers identified by
SuperSAGE

Finally, we aimed to test the biologic relevance of SuperSAGE data
by flow cytometry and functional analyses.

Among the 97 genes which were found to be selectively
overexpressed in CD14��CD16� monocytes (reaching predefined
level of statistical significance with a P � 10�10), only few genes
coding for surface proteins (eg, CD74 and HLA-DR) are accessible
for flow cytometry. Therefore, we additionally analyzed further
genes which again are up-regulated in CD14��CD16� monocytes
in SuperSAGE analysis, despite formally not reaching the strict
statistical significance, such as the 2 proangiogenic markers
endoglin (ENG) and the TEK tyrosine kinase (CD202B, angiopoi-
etin receptor). As depicted in Figure 4A, flow cytometric analysis
confirmed overexpression of these 4 markers on protein level.

To further underline the impact of these findings, we next
demonstrated that those surface Ags which are selectively ex-
pressed in CD14��CD16� cells might allow selective depletion of
this monocyte subset in vitro, as shown exemplarily by using
anti-HLA-DR MicroBeads (Figure 4B).

Because several genes involved in oxidative stress were up-
regulated in CD14��CD16� monocytes, we measured subset-
specific spontaneous ROS levels using the ROS detection reagent
H2DFFDA, and confirmed CD14��CD16� monocytes to be the
main producers of ROS within the 3 monocyte subsets (Figure 4C).

After CD14��CD16� monocytes showed selective up-regulation of
genes linked to Ag processing and presentation, we next analyzed the
subset specific ability of SEB stimulated monocytes to induce CD4�

T cell proliferation. Consistently with gene expression and flow
cytometric analyses, CD14��CD16� monocytes had the highest capac-
ity to induce CD4� T-cell proliferation (Figure 4D).

Remarkably, despite their low HLA-DR expression,
CD14��CD16� monocytes likewise showed a substantial potential
for CD4� T-cell activation. To unravel this seeming contradiction,
we analyzed the fate of isolated CD14��CD16� monocytes after
SEB stimulation and found these cells to differentiate toward
CD14��CD16� monocytes. Concomitantly, after 72 hours of stimu-
lation, CD14��CD16� monocytes up-regulated expression of
HLA-DR (Figure 4E) and CD74 (data not shown) toward levels
similar to unstimulated CD14��CD16� monocytes. In contrast,
CD14�CD16�� monocytes did not enhance HLA-DR expression
on SEB stimulation (data not shown).

Next, after we found CD14��CD16� monocytes to selectively
up-regulate central proangiogenic markers as ENG and TEK, we
analyzed surface expression of KDR (VEGFR2), which also signifi-
cantly contributes to angiogenesis. In line with ENG and TEK, KDR
was selectively up-regulated in CD14��CD16� monocytes (Figure 4F).
To confirm a proangiogenic character of CD14��CD16� monocytes,
we analyzed their capacity to form cordlike structures in Matrigel after
VEGF stimulation. Unlike CD14��CD16� and CD14�CD16�� mono-
cytes, CD14��CD16� monocytes selectively collocated to clusters
within 3 days (Figure 4F). However, no monocyte subset formed typical
HUVEC-like structures.

Analogous to specific markers of CD14��CD16� monocytes,
we also validated our SuperSAGE results for markers of
CD14��CD16� and CD14�CD16�� monocytes: for
CD14�CD16�� monocytes, we confirmed subset-specific expres-
sion of the 4 adhesion molecules PECAM1 (CD31), SPN (CD43),
ITGAL (CD11A), and CD47 by flow cytometry (Figure 4A). For
CD14��CD16� monocytes, overexpression of CD93, FCGR1A
(CD64), ITGAM (CD11B), and CD36 was flow-cytometrically
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Figure 4. Monocyte subset-specific identifiers. (A) Surface expression of distinct markers on CD14��CD16� monocytes (blue columns), CD14��CD16� monocytes (red
columns), and CD14�CD16�� monocytes (green columns) performed by flow cytometry. Data were measured as median fluorescence intensity (MFI) and presented as
means � SEM. Background fluorescence (measured in negative controls) was subtracted. Statistical analysis was performed using the Kruskal-Wallis test. (B) NK cells and
neutrophil-depleted PBMCs before (left dot plot) and after (right dot plot) incubation with anti–HLA-DR MicroBeads and subsequent negative isolation. (C) Flow cytometric
analysis of spontaneous intracellular ROS levels within the 3 monocyte subsets using the ROS-detection reagent carboxy-H2DFFDA. Data are presented and analyzed as
described in panel A. (D) CD4� T-cell proliferation, measured flow-cytometrically as cytoplasmic dilution of CFDA-SE. Monocyte subsets were isolated, stimulated with SEB
(2.5 �g/mL), and cultivated with CFDA-SE–labeled CD4� T cells for 3 days. After gating for CD3-positive cells, percentages of proliferating CD4� T cells were determined and
denoted as means � SD. Representative examples of 5 independent experiments are shown. (E) Stimulation of isolated CD14��CD16� monocytes with 2.5 �g/mL SEB
versus control. After 24, 48, and 72 hours, percentages of CD14��CD16� monocytes (left panels) and expression of HLA-DR (right panel) of total events was determined
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confirmed (Figure 4A). As these 4 proteins are involved in the
phagocytosis process, we tested the biologic relevance of this
overexpression and confirmed that CD14��CD16� monocytes
exhibit the highest phagocytosis potential (Figure 4G).

Discussion

During the past 2 decades a dichotomized view on human
monocyte heterogeneity prevailed, distinguishing between classi-
cal (CD14��CD16�) and nonclassical (CD16-positive) monocytes.

However, the existence of an intermediate monocyte subset,
which had been identified several years before,4 has very
recently been acknowledged in the International Consensus
Statement on Monocyte Nomenclature.5 From now on, we
should accordingly differentiate 3 major monocyte subsets:
classical CD14��CD16�, intermediate CD14��CD16�, and
nonclassical CD14�CD16�� monocytes.

Of note, the intermediate CD14��CD16� monocyte subset is
only poorly characterized, as the 2 CD16-positive monocyte
subsets (CD14��CD16� and CD14�CD16�� cells) have been
analyzed together in most studies so far, as reviewed recently.6

Moreover, CD14��CD16� monocytes are of importance in the
pathology of 2 global health issues, HIV-1 infection,9,10 and
cardiovascular disease.7,8 Therefore, a better understanding of this
subset is clearly needed. We aimed to characterize this subset more
thoroughly with whole genome transcriptome analysis focusing on
differences between the CD16-positive monocytes.

Using SuperSAGE, we analyzed the expression of approxi-
mately five 500 000 tags in the 3 human monocyte subsets, and
found a high level of transcriptional similarity, mostly between
intermediate CD14��CD16� and nonclassical CD14�CD16��

monocytes (97.1%, P � 10�10), arguing for a high developmen-
tal relationship. However, 559 genes showed strong differential
expression between CD14��CD16� and CD14�CD16�� mono-
cytes; among those, 97 were strongly overexpressed in
CD14��CD16� monocytes compared with both CD14��CD16�

and to CD14�CD16�� monocytes.
These 97 markers of CD14��CD16� monocytes should be

considered as only a fraction of all distinct identifiers, as we set a
very strict level of significance to a P � 10�10. Thus, many
differentially expressed genes were excluded, for example, CCR5
(CD195), ENG (CD105), and TEK (CD202B). Despite not for-
mally reaching the strict predefined level of significance in
SuperSAGE analysis, we could demonstrate selective expression
of these molecules on protein level making them further identifiers
of the intermediate monocyte subset.

Previously published whole genome expression analyses re-
vealed biologic and functional differences between CD14��CD16�

and CD16-positive monocytes.12-15 These previous analyses linked
CD14��CD16� monocytes to myeloid (eg, CD14, MNDA, TREM1,
CD1D, CD93) and granulocyte lineage (eg, FPR1, CSF3R, S100A8-
9/12),12 and showed an increased antimicrobial potential of these

cells (eg, LYZ, MPO, RNASE3, PLBD1).15 In contrast, CD16-
positive monocytes were shown by previous whole genome
expression analyses to be at a more advanced stage of differentia-
tion, and to have a more DC (eg, SIGLEC10, CD43, RARA) and
macrophage (eg CSF1R, MAFB, CD97, C3AR) character, thereby
possessing effector functions related to Ag processing and presenta-
tion (eg, CTSL, CTSC), and suggesting diverse patterns of transen-
dothelial migration (eg, CX3CR1, CD31).12

As previous gene expression studies did not distinguish be-
tween the 2 CD16-positive subsets, our SuperSAGE data expand
current knowledge about monocyte heterogeneity and help to
unequivocally delineate CD14��CD16� monocytes from
CD14�CD16�� monocytes.

The herein presented SuperSAGE analysis revealed that
CD14��CD16� monocytes are likely to be predisposed for
Ag presentation, as they express genes encoding MHC II molecules
(eg, CD74, HLA-DR) and genes involved inAg processing and turnover
of proteins (eg, IFI30, CAPNS1, RHOB, CTSB). This assumption is
strengthened by the selective expression of CCR5 in CD14��CD16�

monocytes and the fact that DC precursors can be recruited directly from
the blood to the lymphoid organs through signaling induced by
CCR5-CCL3 interactions.22 Consistently, we found SEB-stimulated
CD14��CD16� monocytes to have highest capacity to activate
CD4� T-cell proliferation in functional analysis.

GO enrichment analysis revealed further biologic and func-
tional differences between the 2 CD16-positive subsets. Among
biological processes, those genes which differed most signifi-
cantly between intermediate and nonclassical monocytes were
connected to the immune system process (eg, CFP, NCF2, CFD,
PRKCD) arguing for specialized immunologic functions in vivo.
In line, the 2 CD16-positive subsets harbor a contrasting
capacity for modulating inflammatory responses; for example,
the production of IL-1B and TNF-
 on stimulation with LPS is
restricted to CD14��CD16� monocytes.23

Many clinical and experimental studies showed a proinflamma-
tory role of CD16-positive monocytes, as their counts rise in
numerous acute and chronic inflammatory conditions,24-30 and as
they represent the major producers of the inflammatory cytokines
TNF-
31 and IL-12.32 In SuperSAGE analysis, CD14��CD16�

monocytes showed a high activation and inflammatory potential
which is indicated by the selective up-regulation of genes linked to
inflammatory processes (eg, AIF1, TGFB1). In line, we found this
intermediate monocyte subset to be the main producer of ROS
within the 3 monocyte subsets.

Within the transcriptome of CD14��CD16� monocytes, the
tag most frequently expressed was annotated to CD74. Interest-
ingly, CD74 levels were recently suggested as a biomarker for
atherosclerosis: in a clinical cohort study, CD74 levels were
found to be associated with subclinical and overt atherosclero-
sis.33 Animal data support this notion because CD74-deficient
Ldlr�/� mice showed reduced atherosclerosis associated with an
impaired adaptive immune response to disease-specific Ags.34

These results are in line with our previous clinical data showing

Figure 4 (continued) flow-cytometrically. Percentages of CD14��CD16� monocytes derived from CD14��CD16� monocytes are given as means � SD. Representative
examples of 5 independent experiments are shown. HLA-DR MFI was measured as described in panel A. Red arrowhead marks HLA-DR expression of unstimulated
CD14��CD16� monocytes (compare panel A). HLA-DR MFI of SEB-stimulated and control cells were compared by the paired Student t test; *P � .05, **P � .01. (F) Bottom
panel: Surface expression of KDR (VEGFR2) on monocyte subsets measured by flow cytometry. Data are presented and analyzed as described in panel A. Top panel:
Monocyte subsets cultivated for 3 days on Matrigel in the presence of 10 ng/mL VEGF (RPM1 medium/5% FCS). Representative examples of 3 independent experiments are
shown. HUVECs were used as control cells (EGM-2 medium/5% FCS). Image acquistion was performed by the Keyence BZ-8000K microscope equipped with a Nikon Plan
Apo 4�/0.2 objective and the BZ Viewer software, magnification 8-12�, room temperature. (G) Capacity to phagocyte opsonized carboxylate microspheres (0.75 �m, Yellow
Green) by the 3 monocyte subsets within 30 minutes; counts of FITC-positive cells were determined flow-cytometrically and are denoted as means � SD. Representative
examples of 10 independent experiments are shown.
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CD14��CD16� monocyte counts to be independent predictors
of cardiovascular outcome.7,8

As monocytes may further enhance atherogenesis via angiogenesis
(eg, plaque neovascularization) and tissue remodeling, distinct angio-
genic properties have been found in monocyte subsets.35,36 Elsheikh et
al identified a subset of human monocytes expressing the
VEGFR-2 (KDR) to have endothelial-like functional capacity.36

Furthermore, monocytes which express the angiopoetin-2
receptor TIE2 (TEK) have been characterized as highly proan-
giogenic cells specifically linked to tumor infiltration.35 In the
present study, we demonstrated that CD14��CD16� selectively
up-regulated the expression of TIE2, KDR, and ENG, arguing
for an involvement of these cells in the process of angiogenesis.
In functional analysis, CD14��CD16� monocytes selectively
formed clusters on Matrigel after VEGF stimulation, confirming
data from Elsheikh et al who similarly reported clustering of
presumably proangiogenic, VEGFR2-expressing monocytes.36

As our results are also in accordance with the data of Murdoch
et al,37 who found TIE2 expression predominantly on
CD14��CD16� monocytes, it is tempting to speculate that the
chemotactic effect of angiopoetin-2, which is released by
vessels in inflamed or malignant tissues, could contribute to
subset-specific recruitment of CD14��CD16� monocytes.

Transendothelial trafficking is a prerequisite for the response of
monocytes to inflammatory stimuli evoked, for example, by
atherosclerosis or infection. It is well known that this process is
mediated via different mechanisms between CD16-positive and
CD14��CD16� monocytes.38 We here show that numerous genes
coding for adhesion molecules and proteins involved in transendo-
thelial migration were also differentially expressed between the
2 CD16-positive monocyte subsets, arguing for a diverse recruiting
process and migratory behavior of CD14��CD16� and
CD14�CD16�� monocytes.

Indeed, Ancuta et al4 demonstrated that fractalkine (CX3CL1)—
the ligand for CX3CR1—mediates arrest and migration of CD16-
positive monocytes. Notably, expression of CX3CR1 is highest in
CD14�CD16�� monocytes4,8; additionally, SuperSAGE and FACS
analysis demonstrated the highest expression of genes for further
adhesion molecules in CD14�CD16�� monocytes, for example,
integrin 
 L (ITGAL, CD11A), the integrin-associated protein
CD47, sialophorin (SPN, CD43), which is a ligand for ICAM1 and
the macrophage adhesion receptor sialoadhesin (SIGLEC1),39,40

and PECAM1 (CD31), which triggers both leukoendothelial adhe-
sion and integrin-mediated migration of leukocytes into surround-
ing tissues.22

After transendothelial migration, phagocytosis of pathogens is a
hallmark of monocyte function. CD14��CD16� were found to
express a wide range of genes linked to the phagocytosis process
(eg, CD93, CD64, CD32, CD36, CD14, FCN1, SIRPA). Accord-
ingly, in functional analysis, we saw the highest phagocytic
capacity in CD14��CD16� monocytes, which is in line with
previously published data.23 Among the 3 monocyte subsets, genes
coding for antimicrobial proteins (eg, LYZ, S100A8/9, RNASE6)
were highest expressed in CD14��CD16� monocytes; therefore,
this subset is likely to be predisposed to exert the first line of innate
immune defense against microbial pathogens.

In contrast to Cros and coworkers,23 we found highest ROS
levels in CD14��CD16� monocytes rather than in CD14��CD16�

monocytes. This is most likely attributable to the fact that we
measured basal ROS production from freshly isolated cells,
whereas Cros et al analyzed ROS levels after stimulation with
IgG-opsonized BSA.

So far, data on monocyte heterogeneity are at times hard to
interpret partly because of the lack of standards for monocyte
gating. Therefore, it is unclear whether shifts in CD16-positive
monocytes reported in many inflammatory diseases were caused by
total rises of CD16-positive cells or rather selective increases of
CD14��CD16� or CD14�CD16�� monocytes. After the recently
published consensus statement on monocyte heterogeneity nomen-
clature,5 we would like to encourage other groups to analyze the
selective contribution of CD14��CD16� and CD14�CD16��

monocytes in inflammatory states, which might allow a more
subtle understanding of the respective pathophysiologic role of
both subsets. Moreover, we feel an imminent need to standard-
ize the gating strategy for flow cytometric analysis of monocyte
subsets. Of note, we were able to validate our CD86-based
gating strategy against a proposed reference strategy recently
published by Heimbeck et al.21

In summary, we provide first genetic evidence for the proposed
discrimination of human monocytes in classical CD14��CD16�

monocytes, intermediate CD14��CD16� monocytes, and nonclas-
sical CD14�CD16�� monocytes. Although CD14��CD16� mono-
cytes show intermediate functional properties and expression of
many genes, they can nevertheless be clearly distinguished by
newly found unique identifiers from CD14��CD16� and
CD14�CD16�� monocytes, suggesting a distinct role in the
immune system process. Of note, while considering CD14��CD16�

cells as a separate monocyte subpopulation, we do not want to
negate strong developmental relationships between these subsets.
In vivo, monocytes are assumed to leave the BM as CD14��CD16�

cells, to develop within few days to CD14��CD16�, and subse-
quently into CD14�CD16��, albeit formal evidence for this model
is still lacking. Interestingly, we showed in vitro a differentiation of
isolated CD14��CD16� toward CD14��CD16� monocytes in the
present study.

Finally, after CD14��CD16� monocytes have been discussed
as potential therapeutic targets in inflammatory conditions such as
atherosclerosis,8,23,41 we are hopeful that our dataset will spur
future research in this direction with the potential for new
therapeutic avenues.
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Patients with chronic kidney disease (CKD) suffer from 
accelerated atherosclerosis. Accordingly, cardiovascular 

events are the major cause of death in patients with CKD.1

It is widely accepted that nontraditional risk factors are 
major determinants of the exceedingly high burden of car-
diovascular events in CKD.2 Among such nontraditional risk 
factors, uremia-associated alterations in epigenetic regulation 
have recently been hypothesized to promote accelerated ath-
erogenesis in patients with CKD.3–8

Clinical Perspective on p 620
Because epigenetic patterns are influenced by a host of 

environmental factors,9 the unphysiological uremic milieu 
may trigger substantial alterations of the epigenome. More 
specifically, hyperhomocysteinemia,10–12 inflammation,13 
dyslipidemia,14,15 and oxidative stress16 may promote an 
unbalanced DNA methylation, which is a major epigenetic 

modification of the genome. It contributes to transcriptional 
regulation, imprinting, X-chromosome inactivation, and 
genomic integrity.3 Consequently, aberrations in genomic 
DNA methylation are associated with inappropriate gene 
expression and promotion of disease.17

Although the association among CKD, epigenetic dysregu-
lation, and accelerated atherosclerosis has been proposed in 
several review articles, only a few pioneering studies analyzed 
global changes in the epigenome of patients with CKD10–13,18 and 
yielded conflicting results: Ingrosso et al11 reported global DNA 
hypomethylation in a small group of patients on hyperhomocys-
teinaemic hemodialysis (HD), whereas Stenvinkel et al13 found 
global DNA hypermethylation in CKD, which was associated 
with both inflammation and poor outcome in patients on HD.

The association between CKD and global DNA methyla-
tion thus seems to be complex. Moreover, analyses of global 
DNA methylation will offer no information on regulation of 

Background—Accelerated atherosclerosis is a hallmark of chronic kidney disease (CKD). Although the role of epigenetic 
dysregulation in atherosclerosis is increasingly appreciated, only a few studies focused on epigenetics in CKD-associated 
cardiovascular disease, virtually all of which assessed epigenetic dysregulation globally. We hypothesized that gene-
specific epigenetic dysregulation in CKD exists, affecting genes pertinent to inflammation and atherosclerosis.

Methods and Results—Ten clinically stable patients undergoing hemodialysis therapy and 10 healthy age- and sex-matched 
controls were recruited. Genome-wide analysis of DNA methylation was performed by SuperTAG methylation-specific 
digital karyotyping, in order to identify genes differentially methylated in CKD. Analysis of 27 043 436 tags revealed 
4288 genomic loci with differential DNA methylation (P<10–10) between hemodialysis patients and control subjects. 
Annotation of UniTags to promoter databases allowed us to identify 52 candidate genes associated with cardiovascular 
disease and 97 candidate genes associated with immune/infection diseases. These candidate genes could be classified 
to distinct proatherogenic processes, including lipid metabolism and transport (eg, HMGCR, SREBF1, LRP5, EPHX2, 
and FDPS), cell proliferation and cell-cycle regulation (eg, MIK67, TP53, and ALOX12), angiogenesis (eg, ANGPT2, 
ADAMTS10, and FLT4), and inflammation (eg, TNFSF10, LY96, IFNGR1, HSPA1A, and IL12RB1).

Conclusions—We provide a comprehensive analysis of genome-wide epigenetic alterations in CKD, identifying candidate 
genes associated with proatherogenic and inflammatory processes. These results may spur further research in the field of 
epigenetics in kidney disease and point to new therapeutic strategies in CKD-associated atherosclerotic disease. (Circ 
Cardiovasc Genet. 2012;5:611-620.)
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specific genes, and only scarce data on site-specific epigenetic 
changes have been reported in patients with CKD so far.10,11,18

To further unravel the impact of epigenetic dysregulation in 
CKD, we set out to perform whole-genome analysis of DNA 
methylation in patients on HD. We, therefore, expanded the 
methylation-specific digital karyotyping (MSDK) method, 
which has first been described by Hu et al19 and later been 
modified by Li et al,20 into SuperTAG methylation-specific 
digital karyotyping (SMSDK). SMSDK uses those longer (26 
bp) tags that are used in SuperSAGE,21 and thus allows high-
throughput and genome-wide DNA methylation mapping.

We now report substantial differences in the epigenome of 
patients on HD compared with healthy controls, comprising 
a fundamental dysregulation of atherosclerosis-related genes.

Methods
Study Participants
Clinically stable dialysis patients (n=10) undergoing standard HD 
therapy 3 times a week were recruited from the Department of 
Internal Medicine IV, Nephrology and Hypertension of the Saarland 
University Medical Center. In all patients, 20 mL ethylenediaminetet-
raacetic acid (EDTA)-anticoagulated blood was drawn before a HD 
session after the long-interdialytic interval. Ten healthy age- and sex-
matched hospital employees served as controls.

To circumvent age- and sex-specific impact on our epigenetic 
analyses, recruitment was confined to men subjects aged between 50 
and 60 years. All participants gave written informed consent in ac-
cordance with the Declaration of Helsinki. The study protocol was 
approved by the local Ethics Committee.

Quantification of S-Adenosylmethionine/ 
S-Adenosylhomocysteine and Homocysteine
For the quantification of S-adenosylmethionine (SAM) and  
S-adenosylhomocysteine (SAH), EDTA samples were directly placed 
on ice and centrifuged immediately for 10 minutes at 2000g. After 
centrifugation, 1 mL of EDTA plasma was directly acidified with  
100 µL of 1 N acetic acid to prevent SAM degradation, mixed 
 thoroughly, and stored at −70°C until analysis. The high-performance 
liquid chromatography-mass spectrometry detection of SAH and 
SAM was carried out by using a Waters 2795 alliance HT, coupled to 
a Quattro Micro API tandem mass spectrometer (Waters Corporation, 
Milford, MA) as described by Kirsch et al.22

Homocysteine was measured in plasma with a fluorescence po-
larization immunoassay on the Abbott AxSYM system (Abbott 
Laboratories, North Chicago, IL).

DNA Isolation and Construction of SMSDK 
Libraries
Peripheral blood mononuclear cells (PBMCs) were immediately 
isolated from anticoagulated blood by Ficoll-Paque (Lymphocyte 
Separation Medium; PAA, Cölbe, Germany) gradient density centrif-
ugation. DNA was isolated from peripheral blood mononuclear cells 
using the DNeasy Blood & Tissue Kit (Qiagen, Hilden, Germany).

Genome-wide analysis of DNA methylation was performed by 
SMSDK at GenXPro GmbH (Frankfurt, Germany). The libraries 
were generated essentially as described by Li et al20 with modifica-
tions as described by Matsumura et al.23 Hinp1I was used as the meth-
ylation-sensitive enzyme, recognizing non-CpG-methylated GCGC 
sites. After digestion by Hinp1I, a biotinylated adapter, containing the 
recognition site for the restriction enzyme EcoP15I, was ligated to the 
digested DNA. The resulting product was bound to streptavidin-coat-
ed magnetic beads (Dynal). After NlaIII digestion, unbound DNA 
was discarded, and a second adapter, containing another EcoP15I 
recognition site adjacent to a CATG overhang and a priming site for 
Illumina’s p5 primer for high-throughput sequencing on the Illumina 

Genome Analyzer II, was ligated to the NlaIII site. The streptavidin-
bound constructs of DNA fragments, flanked by the two EcoP15I rec-
ognition sites arranged in a head-to-head fashion, were digested with 
EcoP15I to cut off the NlaIII bound adapter and its adjacent 26 to 27 
bp long tags from the streptavidin matrix. The resulting adapter-tags 
were then ligated to p7 adapters from Illumina’s Genome Analyzer 
system. The constructs were sequenced by synthesis on Illumina’s 
Genome Analyzer II system.

Quality Assessment and Statistics of SMSDK Data
Quality assessment of generated tags was performed according to 
Qu et al24 with an in-house software to reduce sequencing errors and 
artificial tag sequences. Tags were counted using the GenXProgram. 
Statistical analysis was performed by using an R-script (http://search.
cpan.org/~scottzed/Bio-SAGE-Comparison-1.00/lib/Bio/SAGE/
Comparison.pm) based on statistics described by Audic and Claverie.25

Gene Ontology Information
Gene ontology (GO) information was obtained from www.
GeneOntology.org for the annotated UniTags. P values describing the 
likelihood for enrichment of GO terms were calculated by the Fisher 
exact test based on UniTags that were differentially expressed with a 
P<10–10.26 GO analysis was performed by using an in-house software 
(http://genxpro.ath.cx).

Validation of DNA Methylation
Bisulfite sequencing was performed according to Geisel et al.10 
Briefly, 500 ng DNA was treated with sodium bisulfite (EpiTect 
Bisulfite Kit, Qiagen), and a section of the METTL2B promoter was 
amplified using the PyroMark polymerase chain reaction (PCR) 
Kit and the PyroMark CpG Assay (PM00031115, Qiagen, Hilden, 
Germany). Pyrosequencing was performed on the PSQ 96MA system 
(Qiagen); percentages of methylated (C) and unmethylated (T) CpGs 
were subsequently calculated. The mean of 2 CpG sites was used as a 
marker for METTL2B methylation.

Real-time Quantitative PCR
After isolating total RNA from PBMCs with the QIAamp DNA 
Blood Mini Kit (Qiagen), 500 ng RNA was reverse transcribed using 
the DyNAmo cDNA Synthesis Kit (Biozym, Hessisch Oldendorf, 
Germany). Real-time PCR was performed on the Mx3005P system 
(Stratagene, Waldbronn, Germany) using the DyNAmo ColorFlash 
SYBR Green qPCR Kit (Biozym) and predesigned primers 
(QuantiTect Primer Assay, Qiagen). Relative quantification was 
performed by the comparative ΔΔCt method. The housekeeping 
gene GAPDH was used as an internal standard (forward primer: 
5′-ctcctccacctttgacgctg-3′; reverse primer: 5′-tcctcttgtgctcttgctgg-3′). 
Experiments were performed in duplicate.

Flow Cytometric Analyses
Flow cytometric analyses were performed according to our previ-
ous report21 using the FACS Canto II with CellQuest Software (BD 
Biosciences, Heidelberg, Germany). Briefly, antigen expression on 
CD86-positive monocytic cells was analyzed via a whole blood assay 
using 100 µL of EDTA anticoagulated blood, quantifying surface ex-
pression as median fluorescence intensity standardized against coated 
fluorescent particles (SPHEROTM; BD Biosciences). Histograms 
were plotted with FCS Express Software (De Novo Software, Los 
Angeles, CA). For measurement of reactive oxygen species, 1×106 
PBMCs were incubated (15 minutes, 37°C, 5% CO

2
) with cell-

permanent carboxy-H
2
DFFDA (Invitrogen, Darmstadt, Germany). 

Afterward, cells were stained with anti-CD14, anti-CD16, and anti-
CD86, and intracellular reactive oxygen species levels were deter-
mined as median fluorescence intensity in CD14++CD16+ monocytes 
(the major reactive oxygen species producing subset).

Phagocytosis assay was performed by using Fluoresbrite Yellow 
Green Carboxylate Microspheres (0.75 µm; Polysciences, Eppelheim, 
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Germany), which were opsonized with heterologous serum (diluted 
to 50% with Krebs Ringers PBS). About 100 µL of citrate antico-
agulated whole blood was incubated with 10 µL of opsonized par-
ticles (108 particles/mL) with gentle shaking for 30 minutes at 37°C. 
Control samples were incubated at 4°C. Afterward, cells were stained 
with anti-CD86, anti-CD14, and anti-CD16, and counts of FITC-
positive CD14++CD16– monocytes (subset with highest phagocytosis 
potential) were determined flow cytometrically.

The following antibodies were used: CD86-PE (HA5.2B7, 
Beckman-Coulter, Krefeld, Germany), CD14-PerCP (MΦ9, BD 
Biosciences), CD16-PeCy7 (3G8, BD Biosciences), and CD43-FITC 
(eBio84-3C1, eBioscience, Frankfurt, Germany).

Statistical Analysis
We compared levels of SAM, SAH, and homocysteine, as well as 
data on pyrosequencing, real-time PCR, and flow cytometry between 
patients on HD and controls using the unpaired Student’s t test. The 
Kolmogorov–Smirnov test was applied to test normality assump-
tion. Both tests were performed with the IBM SPSS Statistics 18 
software.

Results

Participants’ Characteristics
Mean age was 56.1±3.9 years in patients on HD and 53.5±2.4 years 
in control subjects (P=0.100). As expected, patients on dialysis 
had significantly higher C-reactive protein (14.1±12.9 mg/L)  
compared with controls (2.0±1.3 mg/L; P=0.016). Consis-
tent with the anticipated normal renal function, the aver-
age estimated glomerular filtration rate of controls was  
86.0±14.3 mL/min/1.73 m2.

Five patients on dialysis had prevalent atherosclerotic dis-
ease, defined as the presence of coronary artery disease (prior 
myocardial infarction or coronary revascularization), cerebro-
vascular disease (prior stroke with symptoms lasting longer 
than 24 hours or carotid revascularization), and/or peripheral 
artery disease (prior revascularization of lower-limb arteries). 
Controls were free from atherosclerotic disease.

Analysis of central modulators of DNA methylation—
homocysteine, SAH, and SAM—demonstrated significantly 
higher levels of these metabolites in patients on HD (Table 1),  
which is in accordance with previous studies.10,12 Among 
these central modulators, SAH levels differed most pro-
nouncedly (30.9-fold increase in patients on HD; P<0.001) 
compared with homocysteine (2.4-fold increase; P<0.001) 
and SAM (4.8-fold increase; P<0.001). These exceedingly 
high SAH levels resulted in a dramatic decrease in the 

SAM/SAH ratio, an indicator of reduced cellular methyla-
tion capacity.

Generation of SMSDK Libraries
DNA from peripheral blood cells was used for the genera-
tion of 2 independent SMSDK libraries (control library and 
HD library). After eliminating low-quality reads (according 
to Qu et al24 and further elimination of tags with a count <5) 
and trimming of adapter sequences, the total number of tags 
was 27 043 436, comprising 11 942 429 from control subjects 
and 15 101 007 from patients on HD (Table 2 and online-only 
Data Supplement Figure I). These 27 043 436 tags accounted 
for 575 744 unique sequences (UniTags), of which 551 002 
UniTags were found in both SMSDK libraries, 7250 were 
uniquely found in the control library, and 17 492 in the HD 
library. As a result, the control library comprised 558 252 Uni-
Tags, and the HD library comprised 568 494 UniTags.

UniTags were classified in abundance groups according 
to their number of copies (Table 2). Most of the UniTags 
(>99.9%) were found in low frequency, corresponding to 
the low abundance group (<100 copies/million). Less than 
0.1% UniTags were classified to the mid-abundance group  
(100–1000 copies/million) or to the high-abundance group 
(>1000 copies/million), respectively, which is in line with 
previous reports.27

Uremia-associated Dysregulation of DNA 
Methylation
Among all 575 744 UniTags, we calculated the likelihoods for 
different tag frequencies in the control library and HD library 
according to Audic and Claverie.25 We a priori set a strict 
level of significance to P<10–10 in order to selectively identify 
those loci in the genome with very pronounced differences 
in DNA methylation, avoiding false-positive or biologically 

Table 1. Plasma Level of Homocysteine, SAM, and SAH in the 
Study Population

Parameter Controls (n=10) HD patients (n=10) P

Homocysteine, µmol/L 12.6±3.0 30.4±9.3 <0.001

SAM, nmol/L 95.0±24.8 456.6±181.1 <0.001

SAH, nmol/L 13.7±3.7 424.2±202.2 <0.001

SAM/SAH ratio 7.1±1.4 1.2±0.4 <0.001

Statistical analysis was performed with the unpaired Student’s t test. SAM 
indicates S-adenosylmethionine; SAH, S-denosylhomocysteine. 

Table 2. Features of SMSDK Libraries From Control Subjects and Patients On HD

Library Controls (%) Patients on HD (%) Total (%)

Sequenced tags 11 942 429 (44.2%) 15 101 007 (55.8%) 27 043 436 (100%)

Number of unique transcripts (UniTags) 558 252 (97.0%) 568 494 (98.7%) 575 744 (100%)

Abundance classes of UniTags*

 High-abundant (>1000 copies/million) 25 (<0.1%) 31 (<0.1%) —

 Mid-abundant (100–1000 copies/million) 235 (<0.1%) 215 (<0.1%) —

 Low-abundant (<100 copies/million) 557 992 (> 99.9%) 568 248 (>99.9%) —

*Values normalized to 1 million tags. HD indicates hemodialysis.
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irrelevant hits. We thus identified 4288 UniTags differing in 
their counts between patients on HD and control subjects (Fig-
ure 1). Among these 4288 UniTags, 1854 UniTags were found 
more frequently in control subjects, in line with hypermeth-
ylation in patients on dialysis, whereas 2434 UniTags were 
found more frequently in patients on dialysis, demonstrating 
hypomethylation in these patients.

Annotation of UniTags
Using an in-house version of the BLAST software (blastn ver-
sion 2.2.21), we firstly annotated all 575 744 UniTags to dif-
ferent databases in hierarchical order as listed in Table 3 in 
order to match UniTags to their corresponding genomic loci. 
An e-value ≤0.001 was defined as a prerequisite for analysis.

Among all 575 744 UniTags, 79 574 (13.8%) UniTags 
could be annotated to upstream gene regions (databases 1–3) 
and were used for further analyses. The remaining UniTags 
matched to genomic loci not located in upstream gene regions 
(databases 4–6, totaling 265 459 UniTags, 46.1%) or could not 
be annotated at all (230 711 UniTags, 40.1%).

For further stringency in our next analyses, we excluded 
those UniTags that did not match perfectly (number of matches 
<26/26) with sequences in databases 1 to 3. When applying 
these restrictions, 47 348 (59.5%) out of 79 574 UniTags could 
be used for further analyses (online-only Data Supplement 
Table I and Figure I).

Dysregulated Genes in Patients on Hemodialysis
When applying a strict P value (P<10–10), 1089 out of these 
47 348 annotated UniTags differed in their frequencies between 
patients on HD and control subjects. Thus, about a quarter of 
those 4288 UniTags that were found in significant different 
counts between patients on HD and healthy controls in SMSDK 
analysis could be annotated to a specific upstream gene region, 
of which the top 100 hits are summarized in online-only Data 
Supplement Table IIA (hypomethylated genes in patients on HD)  
and online-only Data Supplement Table IIB (hypermethylated 
genes in patients on HD). Additionally, all SMSDK data are 
presented in online-only Data Supplement Table III.

Several of these differentially methylated genes were linked 
to cell differentiation and cell-cycle regulation (eg, DBF4B, 
TNFSF10, and PTPRN) and especially to the p53 pathway 
(eg, TP53, CDC14A, HIPK4, and BAG6).

Moreover, other differentially methylated genes were con-
nected to immune system processes including inflammation (eg, 
CFB, LY96, SPN, NFKB2, and GPX4), adhesion processes (eg, 
ICAM2, CD300LG, and CTNNA3), angiogenesis (eg, ANGPT2, 
ADAMTS10, and FLT4), cholesterol and lipid metabolism/
transport (eg, HMGCR, SLC27A1, and PCCA), or other intra-
cellular transport processes (eg, KIF2C, SNX6, and TIMM8A).

Finally, genes that are directly linked to epigenetic control 
(eg, METTL2B, KDM6A, GADD45A, and JMJD5) and tran-
scriptional regulation (eg, CSRNP2, ZNF382, ZNF251, and 
ZNF85) were also differentially methylated in patients on HD.

Total UniTags: n = 575 744

Hypomethylated loci
in dialysis patients

(n = 2434; P < 10-10)

Hypermethylated loci
in dialysis patients

(n = 1854; P < 10-10)

Control (tag count)
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Figure 1. Scatter plot comparison (log 
scale) of UniTag frequencies in the control 
library (x-axis) and the HD library (y-axis). 
For all 575 744 UniTags, frequencies, 
which quantitatively illustrate the methyla-
tion level of the corresponding genomic 
loci, are displayed. Black circles repre-
sent those UniTags of which frequencies 
differ at a P<10–10 between controls and 
patients on hemodialysis; all other Uni-
Tags are presented as grey dots.

Table 3. Hierarchical Order of Databases for Annotation of 
UniTags

Database UniTags (%)

1  upstream5000.fa_gcgc.fullDesC (UCSC) 51 607 (9.0%)

2  allHumanChromosome_AnnotatedPromoter (MPromDb) 12 848 (2.2%)

3 EPD_Human_DEZ10.fas (EPD) 15 119 (2.6%)

4 all_Human_chr.fa_gcgc (UCSC) 216 024 (37.5%)

5 human.rna.fna (NCBI) 16 376 (2.8%)

6 refseqgene.genomic.fna (NCBI) 33 059 (5.7%)

No hit 230 711 (40.1%)

Total 575 744 (100%)
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Validation of SMSDK Results
First, we compared our SMSDK results with the only prior 
genome-wide DNA methylation analysis in CKD. Focusing on 
renal markers, Sapienza et al18 compared DNA methylation in 
saliva between patients with diabetes mellitus with and without 
CKD by the Illumina HumanMethylation 27 BeadChip array. Of 
187 differentially methylated genes identified by Sapienza et al,18 
70.4% were accordingly differentially methylated (P<0.05) in 
our analysis (online-only Data Supplement Table IV). Secondly, 
we aimed to validate our analysis by performing both bisulfite 
sequencing and real-time PCR of an arbitrary selected gene 

(METTL2B), which is linked to epigenetic regulation, and thereby 
confirmed SMSDK results (online-only Data Supplement Table 
IIB and Figure II). Thirdly, real-time PCR confirmed upregulation 
of LY96 and TNFSF10 (hypomethylated in SMSDK) and down-
regulation of EPHX2 and TRPV1 (hypermethylated in SMSDK) 
in patients on HD (online-only Data Supplement Figure II).

Finally, we aimed to assess the biological relevance of 
SMSDK results by flow cytometry and functional analyses. 
Firstly, in line with their CD43 promoter hypomethylation 
(online-only Data Supplement Table SIII), we demonstrated 
higher CD43 (SPN) protein expression on monocytic cells of 
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Figure 2. Validation of SuperTAG methylation-specific digital karyotyping data by bisulfite sequencing and real-time PCR. (A) Promoter 
methylation of METTL2B (methyltransferase-like 2B) was confirmed by bisulfite PCR and subsequent pyrosequencing. Representative 
pyrograms for 1 CpG are shown. (B) Gene expression of METTL2B was determined by real-time PCR using GAPDH as internal standard. 
Data are presented as mean±SEM and compared by Student t test. *P<0.05; ***P<0.001.
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patients on HD (Figure 3). Secondly, in line with their differ-
ential methylation of genes linked to inflammation and other 
immune system processes, patients on dialysis had higher 
protein expression of the monocytic activation marker CD86, 
higher cellular production of reactive oxygen species and 
higher monocytic phagocytosis rate (Figure 3).

Gene Ontology Analysis for Biological and 
Functional Differences
To investigate whether the above described epigenetic dysreg-
ulation may relate to biological and functional alterations of 
circulating immune cells of patients on dialysis, we next per-
formed GO analysis. Among all 575 744 UniTags, 13 421 Uni-
Tags were annotated to the GO term biological process, 13 617 
to molecular function, and 14 274 to cellular component. 
Figure 4 summarizes all GO terms that were assigned to the 
biological process at level 2 of GO categorization. GO terms 
showing significant differences (enrichment P<0.05) between 
control library and HD library are highlighted. These differing 
GO terms included several central biological processes like 
immune system processes (P=0.001), response to stimulus 
(P=0.003), cell proliferation (P=0.006), death (P=0.016), or 
metabolic processes (P=1.2 × 10–5), among others.

Dysregulation of Atherogenesis-related Genes  
in Patients on Hemodialysis
Following the postulate that uremia induces dysregulation of 
both atherosclerosis-protective genes and atherosclerosis-sus-
ceptible genes,3–8 we finally analyzed whether the 1089 differ-
entially methylated genes between patients on HD and controls 
can be directly linked to cardiovascular disease. Using the 
Genetic Association Database (accessible from the National 
Institutes of Health; http://geneticassociationdb.nih.gov/), we 
tested these genes for association with cardiovascular disease, 
as well as for immune/infection diseases, given that inflamma-
tion plays a central role in the pathogenesis of atherosclerosis.

Among all 1089 genes, 52 genes were associated with cardio-
vascular disease and 97 genes with immune/infection diseases. 
The most relevant genes are listed in Table 4 (cardiovascular 

disease) and Table 5 (immune/infection diseases). Of note, 
various genes connected to inflammation (eg, TNFSF10, LY96, 
IFNGR1, HSPA1A, and IL12RB1) were found to be hypo-
methylated in patients on dialysis. Further genes differentially 
methylated in patients on dialysis were connected to distinct 
cellular processes, including adhesion processes (eg, PKD1, 
MADCAM1, and SPN), cell proliferation and cell-cycle regula-
tion (eg, MIK67, TP53, and ALOX12), apoptosis (eg, CASP8, 
RAD51, and RAD51L1), DNA repair (eg, XRCC1 and DDB2), 
and lipid metabolism (eg, HMGCR, SREBF1, LRP5, EPHX2, 
and FDPS). Interestingly, hypermethylation—indicating down-
regulation of gene expression—affected genes that are sup-
posed to be atherosclerosis-protective (eg, TRPV1 and GPX4).

Discussion
Failure in epigenetic regulation substantially contributes to 
the onset and progression of vascular disease.28 Among the 3 
cornerstones of epigenetic regulation, namely histone modi-
fications, RNA interference, and DNA methylation, the latter 
became the prime target for studies on interactions between 
disturbed gene regulation and promotion of vascular disease.

Accordingly, changes in global DNA methylation have 
been associated with future development of atherosclerosis in 
animal studies14 and with prevalent vascular disease in cross-
sectional clinical studies.29

Patients with CKD suffer from accelerated atherosclerotic 
vascular disease, which cannot completely be explained by 
traditional risk factors.2 Of note, patients on dialysis display 
aberrations in global DNA methylation,11,13 to which several 
features of the unphysiological uremic milieu, such as inflam-
mation,13 hyperhomocysteinemia,10,11 oxidative stress,16 and 
dyslipidemia,14,15 may contribute.

Against this background, it has been speculated that dis-
turbed DNA methylation in CKD may affect atherosclerosis-
related genes with consequently higher susceptibility for 
vascular complications,3–8 although information on site-specific 
regulation of these genes in CKD is virtually missing so far.

Beyond the field of nephrology, site-specific meth-
ylation analyses point to a dysregulation of several 

Figure 4. Pie charts of the functional characterization of annotated UniTags based on GO categorization (biological process). Using GO 
categories, annotated UniTags from the control library and the HD library were categorized by the function of the corresponding protein 
products. Among all UniTags categorized to level 1 GO term biological process, those level 2 GO terms with statistical significant differ-
ence (P<0.05) between control library and HD library are highlighted and projected into the right pie chart. Fisher exact test (2-tailed test) 
was used to compare groups for significant enrichment of particular GO classes. Numbers of UniTags for each GO term are given.
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atherosclerosis-related genes, such as the estrogen receptor α 
gene (ESR1), the inducible nitric oxide synthase gene (iNOS), 
and the extracellular superoxide dismutase gene (SOD3)—in 
the process of atherogenesis (reviewed in ref. 28).

We now aimed to identify atherosclerosis-related candidate 
genes in patients with CKD, extending our earlier studies that 
focused on methylation analysis of a single gene involved in 
oxidative stress-mediated atherosclerosis (p66Shc [SHC1]).10

Using SMSDK, we sequenced 27 043 436 tags. Despite 
choosing a very strict level of significance, we found >4000 
UniTags differing between control subjects and patients on 
dialysis. This allowed us to identify disturbed methylation in 52 
candidate genes associated with cardiovascular disease and in 
97 genes associated with immune and infection diseases accord-
ing to the NIH Genetic Association Database. These genes 
could be linked to diverse proatherogenic processes, including 

lipid metabolism and transport (eg, HMGCR, SREBF1, LRP5, 
EPHX2, and FDPS), cell proliferation and cell-cycle regulation 
(eg, MIK67, TP53, and ALOX12), angiogenesis (eg, ANGPT2, 
ADAMTS10, and FLT4), inflammation (eg, TNFSF10, LY96, 
IFNGR1, HSPA1A, and IL12RB1), and even epigenetic control 
(eg, METTL2B, KDM6A, GADD45A, and JMJD5).

Of note, epigenetic dysregulation not only affects genes 
associated with the promotion of atherosclerosis. Instead, 
we found hypermethylation of genes that have been charac-
terized as atheroprotective in animal studies, namely TRPV1 
and GPX4.30,31 Hypermethylation of these 2 genes points to 
a reduced transcription level of these protective factors in 
patients on dialysis.32

DNA methylation is centrally modulated by C1 metabo-
lism, which itself is skewed in CKD. In C1 metabolism, the 
amino acid methionine is converted to SAM, which serves as 

Table 4. Cardiovascular Disease

Gene symbol Gene title Tag sequence
Control  

TPM
Dialysis  

TPM P FC Protein function

CFB Complement factor B CATGTTGCCCAGGCTGGTCTCAAACT 304.3 506.3 3.7E-148 0.7 Part of alternate pathway of 
complement activation; regulation of 
immune reaction

GCLM Glutamate–cysteine ligase, 
modifier subunit

CATGTAGTTGTGCAGTTTTGAGTGAG 48.9 15.1 1.3E-57 –1.7 Glutathione synthesis

HMGCR 3-Hydroxy-3-methylglutaryl-
CoA reductase

CATGGTGGTGCACCCCTGTAATCCCA 0 14.9 1.3E-57 8.2 Control of cholesterol biosynthesis; 
rate-limiting enzyme of sterol 
biosynthesis

EPHX2 Epoxide hydrolase 2, 
cytoplasmic

CATGACCATTCACCCCTGGACCCCCT 37.8 12.0 1.2E-43 –1.7 Degrading toxic epoxides; associated 
with familial hypercholesterolemia

ECE2 Endothelin converting 
enzyme 2

CATGCCTGGTTAATTTTTGTATTTTT 0 10.7 1.1E-41 7.7 Type II metalloprotease

TP53 Tumor protein p53 CATGTTGGCCAGGCTGGTGTGGAACT 9.2 0 7.9E-40 –7.5 Responds to diverse cellular stresses 
to induce cell-cycle arrest, apoptosis, 
DNA repair

PKD1 Polycystic kidney disease 1 
(autosomal dominant)

CATGCTGGCCAGGTTGGTCTCTAACT 4.6 22.7 1.2E-38 2.3 Regulator of calcium homoeostasis; 
cell–cell/matrix interactions; renal 
tubular development

SREBF1 Sterol regulatory element 
binding transcription factor 1

CATGCCGCTGCACTCCAGCCTGGGTG 0 7.4 5.1E-29 7.2 Regulates transcription of LDL receptor 
gene, fatty acid, and cholesterol 
synthesis pathway

ANGPT2 Angiopoietin 2 CATGGTGACTCACACCTGTAATCTCA 0 6.9 5.4E-27 7.1 Binds to TIE2 receptor and counteracts 
blood vessel maturation mediated by 
ANGPT1

IFNGR1 Interferon gamma receptor 1 CATGAGAGGCTGCCTGATAAACTGAT 0 6.2 3.3E-24 6.9 Receptor for interferon gamma

ALOX12 Arachidonate 12-lipoxy-
genase

CATGGTAAAACCCCATCTCTACCAAA 0 4.7 1.2E-18 6.6 Oxygenase and 14,15-leukotriene A4 
synthase activity; has different physi-
ological roles

HSPA1A Heat shock 70 kDa protein 
1A

CATGGAGACCAACACCCTTCCCACCG 0 4.4 2.2E-17 6.4 Stabilizes proteins against aggregation 
following stress-induced damage

XRCC1 X-ray repair complementing 
defective repair in Chinese 
hamster cells 1

CATGTCAACGTCGTGGGCTTCGCCTG 8.0 1.7 5.2E-15 –2.3 Repair of DNA single-strand breaks

GPX4 Glutathione peroxidase 4 
(phospholipid hydroperoxi-
dase)

CATGTCTACAAAACAATAATTAGCCA 9.6 2.9 7.2E-13 –1.7 Protects cells against membrane lipid 
peroxidation and cell death

LRP5 Low-density lipoprotein 
receptor-related protein 5

CATGGTGAAACTCCATCTCTACTTAA 0 2.6 8.4E-11 5.7 Transmembrane low-density lipopro-
tein receptor

TPM indicates tags per million; FC: fold change (log2[dialysis/control ratio]).
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a universal methyl group donor for methyltransferases. After 
transfer of its methyl group, SAM becomes SAH, which in 
turn binds to the active site of methyltransferases and thus 
strongly inhibits further methylation reactions. SAH may next 
be hydrolyzed to homocysteine. Of note, SAH and homo-
cysteine are in equilibrium, so that hyperhomocysteinemia is 
inevitably associated with elevated SAH levels and with sub-
sequent DNA hypomethylation.11,33

Although increased homocysteine levels are a common 
finding in CKD,10,11,34 and although cohort studies associated 
hyperhomocysteinemia with subsequent cardiovascular events 
in CKD,34 surprisingly none of the interventional studies tar-
geting the high homocysteine levels in CKD proved a bene-
fit,35–39 which is in line with trials in the general population.40,41

Nonetheless, we reckon that those negative interventional 
trials neither rule out a causative role of a disturbed C1 

metabolism in atherogenesis nor preclude epigenetic dys-
regulation from being a promising future therapeutic target in 
atherosclerosis.

Of note, epigenetic dysregulation has predominantly been 
addressed by measurement of the surrogate marker homo-
cysteine in most clinical trials; this homocysteine-centered 
approach may result from the relatively convenient homocys-
teine analysis in contrast with the more cumbersome measure-
ment of SAH. Based on our pathophysiological understanding 
of SAH as the direct inhibitor of methylation reactions, its 
measurement as a biomarker for epigenetic dysregulation 
in cardiovascular disease seems to be more meaningful than 
measuring its derivate homocysteine.42,43

Interestingly, all trials aiming at lowering homocysteine for 
primary or secondary prevention of cardiovascular disease used 
folate, vitamin B

6
, and/or vitamin B

12
, all of which efficiently 

Table 5. Immune/Infection Disease

Gene symbol Gene title Tag sequence
Control  

TPM
Dialysis  

TPM P FC Protein function

LY96 Lymphocyte antigen 96 CATGCCACTGCCCTCCAGCCTGGGTG 0 21.1 3.8E-81 8.7 Cooperates with TLR4 in the innate 
immune response to bacterial LPS

FCER1A Fc fragment of IgE, high 
affinity I, receptor for; α 
polypeptide

CATGCCACTGCACTCCAGCCTGAGTG 0 16.5 1.1E-63 8.4 Responsible for initiating the 
inflammatory and immediate 
allergic response

TNFSF10 Tumor necrosis factor (ligand) 
superfamily, member 10

CATGACTAAAACACCAAAAGCAATTG 0 15.6 2.1E-60 8.3 Induces apoptosis in transformed 
and tumor cells

COL2A1 Collagen, type II, α 1 CATGCTGGTCTCAAACTCCTGACCTC 0 11.0 1.1E-42 7.8 α-1 chain of type II collagen; 
specific for cartilaginous tissues

MADCAM1 Mucosal vascular addressin 
cell adhesion molecule 1

CATGTTGGGCAGGCTGGCCTCGAACT 0 7.8 1.5E-30 7.3 Endothelial cell adhesion molecule; 
interacts with LPAM-1, L-selectin, 
VLA-4

CSF3R Colony stimulating factor 3 
receptor (granulocyte)

CATGGTGAAACCCTTTCTCTACTAAA 0 5.4 2.0E-21 6.8 Proliferation, differentiation, 
and survival of cells along the 
neutrophilic lineage

TRPV1 Transient receptor potential 
cation channel, subfamily V, 
member 1

CATGGCGAAACCCTGACTCTACTAAA 4.4 0 1.4E-19 –6.5 Receptor-activated nonselective 
calcium permeant cation channel

IL12RB1 Interleukin 12 receptor, β1 CATGCCATCACGCCCAGCTAATTTTT 0 4.7 1.2E-18 6.6 Involved in IL12 and IL23 trans-
duction

ARG2 Arginase, type II CATGGGCCGGCCGCCTCCCGCGAAGG 0 4.4 2.2E-17 6.4 Catalyzes the hydrolysis of 
arginine to ornithine and down-
regulates NO synthesis

MMP24 Matrix metallopeptidase 24 
(membrane-inserted)

CATGGTGAAACCCTGTCTCTGCAAAA 0 3.6 1.4E-14 6.2 Breakdown of extracellular matrix

TNFRSF13C Tumor necrosis factor recep-
tor superfamily, member 13C

CATGGTGCCGACGCCGCCGCACAAGC 0 3.4 1.4E-13 6.1 B cell-activating factor; regulator 
of the peripheral B-cell population

CASP8 Caspase 8, apoptosis-related 
cysteine peptidase

CATGGAGAAAACCCGTCTCTACTAAA 0 3.2 8.0E-13 6.0 Responsible for TNFRSF6/FAS-
mediated and TNFRSF1A induced 
cell death

RAD51 RAD51 homolog (Saccharo-
myces cerevisiae)

CATGTATATTACATTGCGCTTTAGAA 0 3.1 1.4E-12 6.0 Homologous recombination and 
repair of DNA

FDPS Farnesyl diphosphate syn-
thase

CATGTTGACCAGGCTGGTCTCAGATT 0 3.0 4.6E-12 5.9 Production of farnesyl pyrophos-
phate, a key intermediate in cho-
lesterol/sterol biosynthesis

SPN Sialophorin CATGATCTCAGCTCATTGCAACCTCT 0 2.7 4.7E-11 5.8 Important for function of different 
immune cells; involved in T-cell 
activation

TPM indicates tags per million; FC: fold change (log2[dialysis/control ratio]).
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lower plasma homocysteine levels, but unfortunately do not 
affect SAH levels.44 Furthermore, in patients with CKD, SAH 
accumulates more compared with homocysteine because the 
kidneys are the major site of SAH disposal in humans.45 In 
accordance, in this study, we observed higher differences in 
SAH levels (30.9-fold increase in patients on dialysis) than 
in homocysteine levels (2.4-fold) and SAM levels (4.8-fold).

Importantly, chronic inflammation is commonly observed 
in patients on dialysis and associated with increased cardio-
vascular morbidity and mortality in this patient population 
(reviewed in ref. 46). As such, inflammation is a central ure-
mic feature that—opposed to homocysteine—rather seems to 
trigger DNA hypermethylation13 and thus may induce further 
aberrations in epigenetic regulation.

In line, Stenvinkel and coworkers13 reported that global 
DNA hypermethylation was associated with both inflamma-
tion and poor outcome in CKD. Moreover, it was shown that 
the inflammatory cytokine IL-6 regulates a DNA methyltrans-
ferase gene47 that may result in epigenetic dysregulation.

In this study, we demonstrated that epigenetic dysregula-
tion in CKD comprises both DNA hypomethylation and DNA 
hypermethylation at different genomic loci. Of note, our data 
neither refute the finding of DNA hypomethylation nor chal-
lenge the reported DNA hypermethylation in CKD. Instead, 
our results underscore the importance of site-specific methyla-
tion analyses to deepen our knowledge of epigenetic regula-
tion in CKD.

As a limitation, our present analysis neither allows to dis-
tinguish whether renal replacement therapy or uremia per se 
induces changes in DNA methylation in patients on HD nor to 
characterize the individual contribution of specific causative 
factors to epigenetic dysregulation.

Furthermore, no data on the prognostic impact of site-spe-
cific methylation in patients with CKD exist so far. We are, 
therefore, presently initiating a prospective study that shall 
confirm our hypothesis that dysregulation of predefined can-
didate genes may serve as early markers that predict future 
cardiovascular events in a large cohort of CKD.

Conclusions
A better understanding of the underlying causes of disease bur-
den in CKD is desperately needed as conventional therapies 
failed to demonstrate a definite survival benefit in patients with 
CKD.48–50 Against this background, we present genome-wide 
data on DNA methylation in patients on dialysis and character-
ize epigenetic dysregulation of candidate genes for accelerated 
atherosclerosis in CKD. We are hopeful that our findings may 
reveal relevant pathophysiological pathways that contribute 
to cardiovascular disease in patients with CKD, thus pointing 
toward potential new avenues for prevention and therapy.
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CLINICAL PERSPECTIVE
Patients with chronic kidney disease (CKD) suffer from a tremendous burden of cardiovascular (CV) disease. Therapies 
focusing on classical CV risk factors, such as hypercholesterolemia, failed to substantially reduce this high CV morbidity. 
Therefore, a better pathophysiological understanding of CKD-associated CV disease is mandatory to define new therapeutic 
strategies. Against this background, we tested the hypothesis that epigenetic dysregulation of genes linked to CV disease 
occurs in CKD patients. Using SuperTAG methylation-specific digital karyotyping (SMSDK), we compared genome wide 
DNA methylation between 10 hemodialysis patients and 10 age- and gender-matched controls. We identified 52 genes 
linked to CV disease and 97 genes linked to immune/infection diseases to be differentially methylated in hemodialysis 
patients. These results point for the first time towards epigenetic dysregulation of atherosclerosis-related genes in hemodi-
alysis patients, indicating a potential contribution of changes in DNA methylation to accelerated CV disease in CKD. Future 
studies should first analyse how far pre-defined candidate genes may serve as early markers for future CV events in CKD, 
and subsequently explore preventive and therapeutic strategies against CKD-associated epigenetic dysregulation.

 at Universitaet Saarland on February 18, 2013circgenetics.ahajournals.orgDownloaded from 

http://circgenetics.ahajournals.org/


Beitrag der Mitautoren für die Arbeit: 

 

Zawada AM, Rogacev KS, Hummel B, Grün OS, Friedrich A, Rotter B, Winter P, Geisel J, 

Fliser D, Heine GH. SuperTAG Methylation-Specific Digital Karyotyping (SMSDK) Reveals 

Uremia Induced Epigenetic Dysregulation of Atherosclerosis-Related Genes. Circ Cardiovasc 

Genet. 2012 Dec 1;5(6):611-20. 

 

Beitrag der Autoren: 

Die Studie wurde von Adam Zawada entworfen und geplant. Die Patientenrekrutierung 

erfolgte durch Dr. Oliver Grün und Annika Friedrich. Adam Zawada, Dr. Björn Hummel, Dr. 

Björn Rotter und Dr. Peter Winter führten die Experimente durch. Die Daten wurden von 

Adam Zawada, Prof. Dr. Jürgen Geisel und Prof. Dr. Gunnar Heine ausgewertet. Die 

statistische Auswertung erfolgte durch Adam Zawada, Dr. Björn Rotter und Dr. Peter Winter. 

Prof. Dr. Danilo Fliser beaufsichtigte das Projekt. 

Das Manuskript wurde von Adam Zawada geschrieben und von Dr. Kyrill Rogacev, Prof. Dr. 

Gunnar Heine, Prof. Dr. Danilo Fliser und Prof. Dr. Jürgen Geisel überarbeitet. Alle Autoren 

haben die finale Version des Manuskripts gelesen und ihr zugestimmt. 

 

Alle Autoren haben dieses Dokument unterzeichnet. 

 

 

 

 

 

 

 

 

 

 

 

 

 



M

A
D
a

b

c

a

A
R
R
A

K
A
C
C
C
M

I

i
o
v
v
i
m
n

t
a
t
e
c
(

s
T

0
h

Immunobiology 217 (2012) 1273– 1284

Contents lists available at SciVerse ScienceDirect

Immunobiology

jou rna l h om epage: www.elsev ier .com/ locate / imbio

onocyte  heterogeneity  in  human  cardiovascular  disease

dam  M.  Zawadaa, Kyrill  S.  Rogaceva, Stephan  H.  Schirmerb, Martina  Sesterc, Michael  Böhmb,
anilo  Flisera, Gunnar  H.  Heinea,∗

Department of Internal Medicine IV, Saarland University Medical Center, Homburg, Germany
Department of Internal Medicine III, Saarland University Medical Center, Homburg, Germany
Department of Transplant and Infection Immunology, Saarland University Medical Center, Homburg, Germany

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 13 April 2012
eceived in revised form 26 June 2012
ccepted 13 July 2012

eywords:
therosclerosis
ardiovascular disease
D14
D16

a  b  s  t  r  a  c  t

Atherosclerosis  has  been  characterized  as  an  inflammatory  process,  in  which  monocytes  and  monocyte-
derived  macrophages  are  of  paramount  importance.  Contrasting  with  their established  role  in
atherosclerosis,  monocytes  have not  unanimously  been  found  to predict  cardiovascular  events  in  large
epidemiological  studies.  However,  in  these  studies  human  monocyte  heterogeneity  has  been  largely  over-
looked so  far.  Three  human  monocyte  subsets  can  be  distinguished:  classical  CD14++CD16−, intermediate
CD14++CD16+ and  nonclassical  CD14+CD16++ monocytes.  Of  note,  correct  enumeration  of  subset  counts
requires  appropriate  staining  and  gating  strategies  that  encompass  a  pan-monocytic  marker  (e.g. HLA-
DR or  CD86).  In experimental  studies  on  murine  atherogenesis  a monocyte  subset-specific  contribution
to  atherosclerosis  has been  established.  However,  major  interspecies  differences  in atherogenesis  itself,
onocyte heterogeneity as well  as  in  the  immune  system  (including  monocyte  subset  phenotype  and  distribution)  preclude  a
direct extrapolation  to human  pathology.  Experimental  and  pilot  clinical  studies  point  to a  prominent
involvement  of  intermediate  CD14++CD16+ monocytes  in  human  atherosclerosis.  Future  clinical  studies
should  analyze  monocyte  heterogeneity  in  cardiovascular  disease.  If a specific  contribution  of  interme-
diate  monocytes  should  be confirmed,  immunomodulation  of  this  monocyte  subset  could  represent  a
future  therapeutic  target  in  atherosclerosis.
ntroduction

The global burden of cardiovascular morbidity is steadily grow-
ng, and cardiovascular disease (CVD) is nowadays the leading cause
f death worldwide (Murray and Lopez 1997). Atherosclerotic
ascular disease, representing the largest proportion of the cardio-
ascular disease spectrum, has been acknowledged as a chronic
nflammatory condition in recent decades (Ross 1999), in which

onocytes and monocyte-derived macrophages are the protago-
ists of vascular inflammation (Hansson and Hermansson 2011).

Monocytes have been considered as a homogenous cell popula-
ion until the late 1980s, when Bernward Passlick, Dimitri Flieger
nd Löms Ziegler-Heitbrock first demonstrated the existence of dis-
inct subsets of monocytes (Passlick et al. 1989). Since then, much
ffort was undertaken to understand the implications of mono-

yte heterogeneity in the pathogenesis of cardiovascular disease
Woollard and Geissmann 2010).
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In the present review, we  will first summarize how mono-
cytes contribute to the initiation and progression of atherosclerotic
lesions. Next, we will discuss how far the identification of monocyte
heterogeneity may  broaden our understanding on the involvement
of monocytic cells in atherogenesis. We will focus on the impact
of monocyte subsets in human atherosclerosis, summarizing evi-
dence from clinical studies. Congruent results from murine studies
will be briefly discussed when examining fundamental aspects of
atherosclerosis. For more detailed discussion on murine monocyte
heterogeneity in atherosclerosis, the interested reader is referred
to excellent reviews published in the last years (Auffray et al. 2009;
Gautier et al. 2009; Swirski et al. 2009; Weber et al. 2008; Woollard
and Geissmann 2010).

Monocytes in atherosclerosis

Perpetual (micro)inflammation and its cellular hallmark –
monocyte activation – are the major underlying pathological pro-
cesses in atherogenesis (Ross 1999). Activation of endothelial

cells, which is the initiating event in atherogenesis, is driven by
traditional risk factors such as smoking, hyperglycaemia and hyper-
tension, and mediated by proinflammatory stimuli such as TNF�
(tumor necrosis factor alpha), IL1� (interleukin 1, beta), oxLDL

dx.doi.org/10.1016/j.imbio.2012.07.001
http://www.sciencedirect.com/science/journal/01712985
http://www.elsevier.com/locate/imbio
mailto:Gunnar.Heine@uks.eu
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oxidized low density lipoprotein) and angiotensin II (Alamanda
t al. 2012; Alvarez et al. 2004; Eriksson et al. 2000; Hansson and
ermansson 2011; Riou et al. 2007; Wang et al. 2008). These stim-
li induce expression of adhesion molecules – namely selectins
nd integrin ligands – on the endothelial surface, which allow
ecruitment of circulating monocytes (Hansson and Hermansson
011; Zernecke et al. 2008). Expression of endothelial selectin
E-selectin), which interacts with monocytic P-selectin glycopro-
ein ligand-1 (PSGL-1), mediates rolling of monocytes on activated
ndothelial cells (Mestas and Ley 2008). Subsequently, endothelial
ntegrin ligands – such as VCAM1 (vascular cell adhesion molecule
) and ICAM1 (intercellular adhesion molecule 1) – bind to mono-
ytic VLA-4 (very late antigen-4, �4�1 integrin; dimer of CD49D
nd CD29), or to LFA-1 (lymphocyte function-associated antigen 1;
omposed of CD18 and CD11A) and MAC-1 (macrophage-1 anti-
en; composed of CD18 and CD11B), respectively, thus allowing
rm attachment (Huo et al. 2000; Ley et al. 2011).

Following adhesion, monocytes are recruited into the intimal
ayer of the vascular wall (intima) by diapedesis, which is pri-

arily dependent on PECAM-1 (platelet–endothelial-cell adhesion
olecule-1, CD31) and CD99 (Muller 2003). In the subendothe-

ial space, monocytes differentiate into macrophages under the
nfluence of endothelium-derived MCSF (macrophage colony-
timulating factor) (Hansson and Hermansson 2011). Macrophages
urther amplify the inflammatory process by proliferation and pro-
uction of proinflammatory cytokines and growth factors (Libby
002).

Furthermore, a broad range of pattern recognition receptors,
uch as scavenger receptors, enables macrophages to ingest oxLDL
nd other lipids, resulting in the formation of lipid-laden foam
ells, a defining feature of atherosclerotic lesions (Greaves and
ordon 2009; Kunjathoor et al. 2002). Central scavenger receptors

nvolved in lipid uptake process are scavenger receptors class A (SR-
I, AII, and AIII) and scavenger receptors class B (SR-BI and CD36)

Kunjathoor et al. 2002). Notably, alternative pathways for lipid
ptake may  exist (Manning-Tobin et al. 2009; Moore et al. 2005).

Other pattern recognition receptors mediate oxLDL-induced
nflammatory responses, among which toll-like receptors 2 and 4
TLR2 and TLR4) are of particular importance (Miller et al. 2003;
eimon et al. 2010). Beside these membrane-bound receptors, the
ntracellular pattern recognition receptor NALP3 inflammasome
NLR family, pyrin domain containing 3) exists. Activated by choles-
erol crystals present in macrophages, this multi-protein complex
nduces the secretion of inflammatory cytokines such as IL1� and
L18 (Duewell et al. 2010; Schroder and Tschopp 2010).

In aggregate, these inflammatory processes attract further
mmune cells from the vascular lumen and smooth muscle cells
rom the media layer into the intima. This continuous cell recruit-

ent promotes the formation of advanced atherosclerotic plaques,
onsisting of a necrotic core region surrounded by a cap of smooth
uscle cells and collagen-rich matrix. Subsequently, this fibrous

ap may  gradually be thinned by macrophage-derived matrix met-
lloproteinases (MMPs), rendering the plaques prone to rupture
Newby 2005). As a final process, such disintegration of the fibrous
ap exposes subendothelial prothrombotic material that activates
he intravascular coagulation cascade and induces thrombus for-

ation with subsequent vascular occlusion (Fuster et al. 2005).
Although pathophysiological models unequivocally establish

onocytes as major players in atherogenesis, disparate find-
ngs were reported in epidemiological studies, which did not
onsistently find an association between cell counts of blood
onocytes and cardiovascular disease (Grau et al. 2004; Johnsen
t al. 2005; Wheeler et al. 2004). We  hypothesized before that
cknowledgement of monocyte heterogeneity may  allow reconcil-
ng pathophysiological models with epidemiological studies (Heine
t al. 2008).
gy 217 (2012) 1273– 1284

Human monocyte heterogeneity

Heterogeneity of human monocytes was first described in 1989
based on the differential cell-surface expression of the LPS receptor
CD14 and the Fc�III receptor CD16 (Passlick et al. 1989). Ini-
tially, two  different monocyte subsets were characterized, namely
classical CD14++CD16− monocytes and monocytes co-expressing
CD14 and CD16 (CD16-positive monocytes). According to the
Nomenclature Committee of the International Union of Immuno-
logical Societies, these CD16-positive monocytes should nowadays
be subdivided into intermediate CD14++CD16+ and nonclassical
CD14+CD16++ monocytes by their different expression of CD14
(Ziegler-Heitbrock et al. 2010). Throughout this review article, this
official nomenclature is applied.

While flow cytometric differentiation of monocyte subsets is
based on quantification of surface CD14 and CD16 expression, cor-
rect identification of monocytes inevitably requires staining of a
third pan-monocytic marker. Two  different approaches either using
CD86 (compare Fig. 1) or HLA-DR (compare (Heimbeck et al. 2010))
as pan-monocytic markers have been suggested, which yield iden-
tical results (Zawada et al. 2011). Other staining protocols which
only analyze CD14 and CD16 expression will inevitably fail to cor-
rectly distinguish monocytes from other leukocyte subsets: these
protocols usually rely on cellular physical characteristics (flow
cytometrically measured as forward and side scatter) for defining
monocytes. As depicted in Fig. 2, following such an approach, non-
classical CD14+CD16++ monocytes cannot properly be separated
from other CD16-expressing leukocytes, namely neutrophils and
natural killer cells, leading to an inaccurate assessment of monocyte
subset cell counts.

Importantly, for CD16 staining the use of the 3G8 clone is rec-
ommended. Other clones – such as B73.1/Leu11c – may lead to
incorrect enumeration of CD16-postive monocytes, after the CD16
B73.1/Leu11c epitope is lost in some primary immunodeficiency
diseases (Lenart et al. 2010).

Since the early years of research on monocyte heterogene-
ity, CD16-positive monocytes were considered proinflammatory
cells due to their pronounced expansion in many inflammatory
conditions (Fingerle et al. 1993; Grip et al. 2007; Horelt et al.
2002; Katayama et al. 2000; Kawanaka et al. 2002b; Saleh et al.
1995; Soares et al. 2006; Thieblemont et al. 1995) and their selec-
tive expression of proinflammatory cytokines such as TNF� and
IL12p40/IL12p70 (Belge et al. 2002; Szaflarska et al. 2004). A high
expression of distinct adhesion molecules such as VLA-4 endows
CD16-positive monocytes with a high endothelial affinity, which
allows their homing to the marginal vascular pool, from where
they can be mobilized by exercise in a catecholamine depen-
dent manner (Heimbeck et al. 2010; Steppich et al. 2000). This
high endothelial affinity is further amplified by interactions of
fractalkine (CX3CL1) with its receptor CX3CR1, which is highly
expressed on CD16-positive monocytes and which subsequently
mediates transendothelial migration (Ancuta et al. 2003).

More than one decade after the seminal work by Bernward
Passlick, Dimitri Flieger and Löms Ziegler-Heitbrock (Passlick et al.
1989), a more refined understanding of monocyte heterogeneity
emerged: by analyzing chemokine receptor expression on CD16-
positive monocytes, Ancuta et al. (2003) were able to distinguish
a minor subset of CD14++CD16+ monocytes from CD14+CD16++

monocytes. CD14++CD16+ were subsequently characterized by
their up-regulation of CCR5 (chemokine (C–C motif) receptor 5)
(Ancuta et al. 2003), ACE (angiotensin converting enzyme) (Ulrich
et al. 2006) and TLR2 (Urra et al. 2009). Nonetheless, a dichotomized

view on human monocyte heterogeneity – distinguishing classical
CD14++CD16− monocytes from CD16-positive monocytes – pre-
vailed until 2010, when the existence of three monocyte subsets
was finally acknowledged (Ziegler-Heitbrock et al. 2010).
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Fig. 1. CD86-based gating strategy for human monocyte subpopulations. After whole blood staining with anti-CD86, anti-CD14 and anti-CD16, monocytes are first identified
as  CD86-positive cells with monocyte-specific side scatter properties in a SSC/CD86 dot-plot (gate I). Next, CD86-positive leukocytes are depicted in a forward/sideward
s pertie
C  defin
s l CD1

S
t
s

catter  plot. Here, monocytes are gated according to their characteristic scatter pro
D86  expression in gate I and by monocyte-specific scatter properties in gate II are
ubdivided into classical CD14++CD16− , intermediate CD14++CD16+ and nonclassica
We  (Zawada et al. 2011) and other groups (Cros et al. 2010;
hantsila et al. 2011; Wong et al. 2011) set out to further charac-
erize the three human monocyte subsets and demonstrated subset
pecific functions for all three subsets. Fig. 3 summarizes major
s (gate II); all leukocytes are presented in an ancillary dot-plot. Cells identified by
ed as monocytes, and depicted in a separate dot-plot. Here, monocytes are finally
4+CD16++ monocytes.
markers and functional characteristics of the three monocytes sub-
sets.

By SuperSAGE analysis, we  found 97 genes which are selec-
tively expressed in intermediate CD14++CD16+ monocytes (Zawada
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Fig. 2. Evidence for the need of a pan-monocytic marker in flow cytometric analysis of monocytic subpopulations. This representative example illustrates that a gating
strategy  which merely relies on monocytic scatter properties results in incorrect cell count measurements. This particularly affects nonclassical monocyte counts, as these
cells  overlap with non-monocytic cells in the FSC/SSC dot-plot. Compared to the CD86-based gating strategy, which specifically identifies monocytes, an exclusively scatter-
based  monocytic gating strategy will therefore result either in falsely low counts of nonclassical monocytes – when a narrow gate is drawn around monocytes (A), or to falsely
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igh  counts of nonclassical monocytes – when a wider gate is drawn, which will in
arentheses gives percentages of monocyte subsets from the same individual analy

t al. 2011). Additionally, we identified further surface markers
or CD14++CD16+ monocytes, namely CD74, HLA-DR, TEK (CD202B,
IE2), ENG (CD105) and KDR (VEGFR2), which allow their discrim-
nation via flow cytometry. Concurring results were independently
resented by Wong et al. (2011) who performed microarray
nalysis of monocyte subsets and found a selective upregula-
ion of distinct markers in intermediate monocytes (e.g. HLA-ABC,
LEC10A (CD301), GFRA2).

These descriptive analyses are supplemented by functional
tudies that confirm unique characteristics of CD14++CD16+ mono-
ytes, demonstrating their high efficiency to stimulate CD4 T-cell
roliferation and their high proangiogenic capacity (Rossol et al.
011; Zawada et al. 2011). Moreover, they possess a high inflam-
atory potential, as they are the main producers of ROS in

nstimulated conditions (Zawada et al. 2011) and selectively pro-
uce IL1� and TNF� upon LPS stimulation (Cros et al. 2010).

In contrast, secretion of IL1� and TNF� by nonclassical
D14+CD16++ monocytes is triggered by viruses and nucleic acids
via the TLR7-TLR8-MyD88-MEK pathway) rather than by LPS stim-
lation (Cros et al. 2010). Furthermore, nonclassical monocytes,
hich express a broad range of adhesion molecules, are predis-
osed to innate local surveillance of tissues, as they patrol the

ndothelium in a LFA-1 dependent, crawling behavior (Cros et al.
010).

Gene expression analyses also suggest developmental relation-
hips between the three monocyte subsets. Transcription of genes
ly include CD16-positive natural killer cells (B) and/or neutrophils (C). Numbers in
y a CD86-based gating strategy.

that are associated with maturation progressively increases from
classical over intermediate to nonclassical monocytes (Wong et al.
2011). These data are in line with clinical studies that reported
a consecutive increase, first of intermediate monocytes followed
by nonclassical monocytes after treatment with MCSF (Weiner
et al. 1994). Finally, nonclassical monocytes have shorter telom-
ere lengths (Merino et al. 2011) arguing for a more mature stage
of these cells. Thus, monocyte differentiation is currently consid-
ered as a gradual process in which classical monocytes differentiate
into intermediate and subsequently into nonclassical monocytes as
the most mature cells. In this developmental process, all monocyte
subsets have their specialized immunologic functions allowing a
fast adaption to altered microenvironments. Of note, formal proof
of this concept remains to be provided.

Monocyte heterogeneity in atherogenesis: implications
from murine models

At present, the concept of a subset-specific contribution of
monocytes to atherosclerotic vascular disease is largely derived
from rodent models. The Nomenclature Committee of the Interna-
tional Union of Immunological Societies acknowledged the same

number of monocyte subsets in mice as in men  – namely three
(Ziegler-Heitbrock et al. 2010). However, as CD14 and CD16 are
not applicable for the discrimination of murine monocyte sub-
sets, alternative markers – namely Ly6C and CD43 – are used for
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ig. 3. Major markers and functional characteristics of human monocyte subsets
onocyte subpopulations are developmentally related; nonetheless, they are chara

istinction of monocytes into classical (defined as Ly6C++CD43+),
ntermediate (Ly6C++CD43++) and nonclassical (Ly6C+CD43++) cells.

hile the intermediate monocyte subset has been ignored in most

odent experiments, few reports point to a distinct role of interme-
iate monocytes in murine immunity and suggest that these cells
re predisposed to become lymphatic-migrating dendritic cells (Qu
t al. 2004).
arized from several publications. It is generally assumed that the three human
ed by distinct markers and functional properties.

Importantly, differences in distribution in cell counts of mono-
cyte subsets and in subset-specific cellular functions preclude
uncritical transfer of findings from murine experiments to human

research (Heine et al. 2012; Rogacev and Heine 2010; Strauss-Ayali
et al. 2007). Such differences may  partly explain why the term
“proinflammatory monocytes” has widely been applied to classi-
cal monocytes in murine studies, contrasting with the literature
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n human monocyte heterogeneity, where intermediate and/or
onclassical monocytes have been denoted as “proinflammatory
onocytes”. In line, while gene expression analyses suggest cer-

ain similarities between human and murine monocyte subsets,
everal important markers were found to be conversely expressed
etween the two species’ monocyte subsets, such as CD9, CD36
nd TREM1 (triggering receptor expressed on myeloid cells 1).
oreover, subset-specific PPAR� (peroxisome proliferator acti-

ated receptor �) signature and expression of receptors for uptake
f apoptotic cells differed between species (Ingersoll et al. 2010);
s a shortcoming, CD16-positive monocytes were not differentiated
nto intermediate and nonclassical monocytes.

Nonetheless, research on murine monocyte biology may  add to
ur understanding of human monocyte heterogeneity. For obvious
easons, studies on the developmental relationship of monocyte
ubsets are far more advanced in mice than in men, and depletion
tudies identified classical monocytes as the first monocytes which
ppear in the circulation, followed by intermediate and nonclassical
onocytes (Sunderkotter et al. 2004).
Both humans and mice express the chemokine receptor CCR2 on

lassical monocytes. In rodent experiments, this receptor induces
he egress of classical monocytes from the bone marrow, and
t maintains normal blood monocyte counts in the circulation
Serbina and Pamer 2006; Tsou et al. 2007). In contrast, homeosta-
is of nonclassical monocytes requires CX3CR1 rather CCR2, given
hat the CX3C-axis provides an essential survival signal for this

onocyte subset (Landsman et al. 2009).
Murine classical monocytes can give rise into inflammatory

acrophages and dendritic cells during inflammation as well as
nder homeostatic conditions (Geissmann et al. 2003; Woollard
nd Geissmann 2010). In contrast, nonclassical monocytes were
ermed “patrolling monocytes” as they crawl on the endothelium
n a LFA-1 dependent manner, allowing rapid tissue invasion in
ase of damage or infection, and subsequent differentiation into
acrophages (Auffray et al. 2007).
In line with their distinct roles in homeostasis and inflamma-

ion, murine monocyte subsets may  have different implications in
he process of atherogenesis. In hypercholesterolemia, cell counts
f classical monocytes rise dramatically (Swirski et al. 2007; Tacke
t al. 2007). At the same time, classical monocytes display an
nhanced adhesion capacity to the activated endothelium, which
s followed by their infiltration into atherosclerotic lesions and by
heir differentiation into lesional macrophages (Swirski et al. 2007;
acke et al. 2007). Nonclassical monocytes enter the atheroscle-
otic plaques in a CCR5-dependent manner, albeit to a lesser extent
han classical monocytes (Tacke et al. 2007). Moreover, due to
heir patrolling behavior and their upregulation of central adhesion

olecules – such as CX3CR1 and LFA-1 –, nonclassical monocytes
ay  be further predisposed to contribute to early atherogenesis

Woollard and Geissmann 2010).
Importantly, most rodent studies which analyzed monocyte

eterogeneity in atherogenesis focused on the distinction between
lassical and nonclassical monocytes, ignoring the impact of inter-
ediate monocytes. We  are convinced that the recent appraisal of
onocytic trichotomy may  allow an even more thorough under-

tanding of murine atherogenesis.

onocyte heterogeneity in human atherosclerosis

Both the limited homology in monocyte heterogeneity in dif-
erent species, as well as distinct pathophysiological patterns of

therogenesis between men  and mice (Libby et al. 2011) preclude
n uncritical transfer of results from murine studies to human
athology. This may  explain why most experts consider classi-
al monocytes as central drivers of murine atherogenesis, while
gy 217 (2012) 1273– 1284

CD16-positive monocytes – i.e. intermediate and/or nonclassical
monocytes – have been clinically and mechanistically implicated
in the pathology of human atherosclerosis. Unfortunately, most
reports on monocyte heterogeneity in human atherogenesis did not
consider monocytic trichotomy; instead, in analogy to murine stud-
ies, human intermediate and nonclassical monocytes were often
analyzed as a single population.

This is a matter of concern because the contribution of inter-
mediate and nonclassical monocytes to atherogenesis may  differ
substantially. Compared to nonclassical monocytes, intermediate
monocytes may  possess a higher proinflammatory armamentar-
ium, as in vitro studies found an enhanced production of ROS, TNF�
and IL1� by intermediate monocytes (Cros et al. 2010; Zawada et al.
2011). Moreover, these cells selectively express the chemokine
receptor CCR5 (Ancuta et al. 2003; Rogacev et al. 2011), a marker
which has been associated with atherosclerosis in large epidemi-
ological studies (Gonzalez et al. 2001; Muntinghe et al. 2009; Pai
et al. 2006).

Beyond such in vitro experiments, several clinical studies
aimed to assess the implication of monocyte heterogeneity in
human cardiovascular disease. In the following, we first summarize
cohort studies which assessed relationships between cell counts of
monocyte subsets and specific cardiovascular risk factors, namely
obesity, hypercholesterolemia and chronic kidney disease. Sec-
ondly, we  review cross-sectional studies that analyzed associations
of cell counts of monocyte subsets with prevalent (sub)clinical car-
diovascular disease. Finally, prospective studies that assessed cell
counts of monocyte subsets as predictors of cardiovascular out-
come are discussed.

Epidemiological studies either report absolute cell counts of
monocytes subsets (as cell/�l blood), or relative cell counts (per-
centages among all monocytes). Throughout the following article,
we will use the term “cell counts” when absolute cell numbers are
reported, and “frequency” when relative cell numbers are given.

Cardiovascular risk factors

Obesity and monocyte heterogeneity

Obesity – which is increasingly acknowledged as a strong car-
diovascular risk factor – is a chronic inflammatory condition, in
which adipose tissue generates diverse proinflammatory media-
tors (Rocha and Libby 2009). We  (Rogacev et al. 2010) and others
(Poitou et al. 2011) have suggested that monocytes may link obesity
and cardiovascular disease.

Cottam et al. (2002) first demonstrated a shift towards CD16-
postive monocytes in a small group of 26 morbidly obese (WHO
obesity class III; BMI  > 40 kg/m2) patients. Only recently, Poitou
et al. (2011) extended these findings in a second, larger cohort
which comprised 105 patients with WHO  obesity class II and III
(BMI > 35 kg/m2) involved in a gastric surgery program, 39 pre-
obese and WHO  obesity class I subjects who  underwent a weight
reduction program (BMI 25–35 kg/m2), and 32 lean healthy con-
trols. Frequencies and cell counts of intermediate and nonclassical
monocyte subsets were substantially higher in WHO  obesity classes
II and III, but not in less severe obesity, compared to controls. Similar
associations were found between CD16-positive monocyte subsets
and fat mass, assessed by DXA (dual-energy X-ray absorptiometry).
Finally, homeostasis model assessment (HOMA) insulin resistance
(HOMA-IR), as an indicator of insulin resistance, was  associated
with intermediate and nonclassical monocytes in univariate, but

not in multivariate analysis.

Notably, serial monocyte measurements in 36 obese subjects
who underwent RYGB-(Roux-en-Y gastric bypass) for weight
loss detected a strong decrease of intermediate and nonclassical
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Fig. 4. Correlation of body-mass-index (BMI) with counts of nonclassical monocytes
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n  569 I LIKE HOMe study participants. To allow better visualization, data from a
ingle super-obese participant (BMI = 58.5) are not depicted in the figure. Correlation
oefficients were calculated by Spearman test.

onocyte frequencies, which was more pronounced in the latter
ubset. Congruent findings were reported by Cottam et al. (2002).

By far the largest database on the associations of monocyte
eterogeneity with body weight and other cardiovascular risk fac-
ors in apparently healthy subjects comes from our I LIKE HOMe
Inflammation, Lipoprotein Metabolism and Kidney Damage in
arly atherogenesis – The Homburg Evaluation) study (Rogacev
t al. 2010). Monocyte subset counts were analyzed in 569 health-
are workers aged between 25 and 60 years without prevalent
ardiovascular disease, systemic immunosuppressive treatment,
iabetes mellitus, or advanced chronic kidney disease.

Among I LIKE HOMe participants, BMI  correlated with cell
ounts of nonclassical monocytes (r = 0.246; p < 0.001) (Fig. 4),
hereas no correlation was found with cell counts of classical and

ntermediate monocytes. Interestingly, the correlation between
MI  and nonclassical monocytes remained significant after exclu-
ion of participants with BMI  > 35 kg/m2.

Presently, it remains enigmatic which factors drive the shift in
onocyte subsets in obese individuals.

ypercholesterolemia and monocyte heterogeneity

Interactions between lipid metabolism and human monocyte
ubset biology have been suggested by several in vitro studies,
hich found a different pattern of scavenger receptors across
onocyte subsets, along with a subset-specific uptake of native,

xidized and enzymatically degraded LDL-cholesterol (Draude et al.
999; Kapinsky et al. 2001; Mosig et al. 2009; Stohr et al. 1998).

In a clinical study, Rothe et al. (1996) demonstrated that fre-
uencies of nonclassical monocytes negatively correlate with the
oncentration of HDL-C in a small group of hypercholesterolemic
atients, but not among healthy controls. Of note, correlations
f CD16-positive monocyte frequencies with total and LDL-
holesterol were not reported. Polymorphism analysis of the ApoE
enotype suggested that dyslipidemia was the inducer rather than

he consequence of low counts of nonclassical monocytes. Inter-
stingly, in a separate cohort of 79 hypercholesterolemic patients
ith coronary artery disease, high total cholesterol and high serum

riglycerides rather than low HDL-cholesterol was correlated with
gy 217 (2012) 1273– 1284 1279

high frequencies of nonclassical monocytes (Rothe et al. 1999). In
their analysis on the association between obesity and monocyte
heterogeneity, Poitou et al. (2011) very recently confirmed this
association of high frequencies of nonclassical monocytes with
high triglycerides and low HDL-cholesterol in univariate analysis.
Interestingly, adjustment for BMI  virtually eliminated the impact
of lipid parameters on monocyte frequencies in this highly selected
population.

To further investigate associations between lipid metabolism
and monocyte heterogeneity, we  re-analyzed data from 565 I LIKE
HOMe participants who did not receive lipid-lowering drugs at
study inclusion. We  confirmed a weak – albeit significant – nega-
tive correlation between plasma HDL-cholesterol and nonclassical
monocyte counts (r = −0.095; p = 0.025), as well as a positive cor-
relation between plasma triglycerides and these cells (r = 0.156;
p < 0.001). In line with Poitou et al., adjustment for body mass
index eliminated these significant associations (partial correla-
tion coefficients: HDL-cholesterol: r = 0.016; p = 0.698; triglycerides
r = 0.054; p = 0.199). Fig. 5 illustrates the interaction between HDL-
cholesterol (Fig. 5A), triglycerides (Fig. 5B), nonclassical monocyte
counts, and BMI.

Results from studies that analyzed the fate of monocyte sub-
sets after therapeutic interventions yielded very conflicting results.
Again, Rothe et al. (1999) were the first to report a statin-induced
shift in monocyte subset frequencies when patients were random-
ized to receive a cholesterol lowering therapy using fluvastatin, or
placebo, both combined with cholesterol lowering diet counseling.
Surprisingly, an increase in nonclassical monocytes was observed in
both study groups, which was  even more pronounced under statin
therapy; patients on statin treatment additionally experienced an
increase in intermediate monocytes (Rothe et al. 1999). In strik-
ing contrast, Coen et al. (2010) found no change in CD16-positive
monocyte frequencies in patients after therapy with 10 mg rosuvas-
tatin. Finally, cell counts of classical and CD16-positive monocytes
remained stable in patients who were admitted to hospital for
unstable angina pectoris, and who initiated statin treatment, while
a shift towards CD16-positive monocytes was observed in a control
group (Imanishi et al. 2010).

In summary, conflicting data on the associations between
lipid metabolism, intake of lipid lowering agents and monocyte
heterogeneity were reported. Furthermore, associations between
nonclassical monocytes and lipid parameters vanished after adjust-
ment for BMI  in epidemiological studies. Therefore we believe that
other obesity-related factors than hypo-HDL-cholesterinemia or
hypertriglyceridemia causally induce shifts in monocyte subset dis-
tribution in metabolic disease.

Chronic kidney disease and monocyte heterogeneity

Chronic kidney disease (CKD) has been acknowledged as a car-
diovascular risk factor in the last decade and may soon be classified
as a cardiovascular disease equivalent (Sarnak et al. 2003). CKD
patients suffer accelerated atherosclerosis, leading to a high inci-
dence of cardiovascular events (de Jager et al. 2009; Go et al. 2004).

Ongoing microinflammation has been identified as a hallmark
of CKD. Similar to patients with other chronic inflammatory dis-
eases (Fingerle et al. 1993; Grip et al. 2007; Horelt et al. 2002;
Katayama et al. 2000; Kawanaka et al. 2002b; Saleh et al. 1995;
Soares et al. 2006; Thieblemont et al. 1995), dialysis patients face
a shift towards CD16-positive monocytes, which has first been
described by Nockher and Scherberich (1998) and subsequently

confirmed by several other studies (Brauner et al. 1998; Carracedo
et al. 2006; Kawanaka et al. 2002a; Ramirez et al. 2005; Sester
et al. 2001). This expansion comprises both CD16-positive mono-
cyte subsets, intermediate and nonclassical monocytes.
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Fig. 5. Correlations of plasma triglycerides (Fig. 5A) and plasma HDL-cholesterol
(Fig. 5B) with counts of nonclassical monocytes in 565 I LIKE HOMe study partic-
ipants (after exclusion of four individuals on lipid lowering therapy). To illustrate
interactions between nonclassical monocyte counts, parameters of lipid metabolism
and  obesity, BMI  categories of all participants are marked. Because of skewed
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tomography), elevated frequencies of CD16-positive monocytes
istribution, plasma triglycerides are depicted on a logarithmic scale. Correlation
oefficients were calculated by Spearman test.

For a detailed review on monocyte heterogeneity and other
omponents of immune dysregulation in CKD patients, the inter-
sted reader is referred to recent review articles (Heine et al. 2012;
ogacev and Heine 2010). In brief, the underlying pathological
rocesses for this shift in monocyte subpopulations are not fully
nderstood. It is speculated that the dialysis procedure – which
omprises immunostimulation by dialysis membranes and fluids –
er se significantly contributes to this shift. In line, patients at earlier
KD stages not requiring dialysis have markedly lower CD16-
ositive monocyte counts than dialysis patients (Rogacev et al.
011). Moreover, each dialysis session induces a strong transient

rop of CD16-positive monocytes (Nockher et al. 2001; Rogacev
t al. 2009; Sester et al. 2001), which is thought to result from mono-
yte activation and their subsequent attachment to endothelial
gy 217 (2012) 1273– 1284

cells. At the end of each hemodialysis session, counts of CD16-
positive monocytes return to baseline values.

Monocyte heterogeneity in prevalent cardiovascular disease

In line with the associations between cardiovascular risk factors
and monocyte heterogeneity, a growing body of cross-sectional
epidemiological studies indicates a central role of CD16-postive
monocytes in early subclinical atherosclerosis as well as in
advanced cardiovascular disease.

Subclinical atherosclerosis

The largest cohort study among apparently healthy individ-
uals is the I LIKE HOMe study, which sonographically assessed
subclinical atherosclerotic vascular disease by measuring com-
mon  carotid intima media thickness (IMT) (Rogacev et al. 2010).
Among its 569 participants, the I LIKE HOMe study found a sig-
nificant correlation of cells counts of CD16-positive monocytes
and IMT. When subdividing CD16-positive monocytes into inter-
mediate and nonclassical monocytes, only the latter remained
significantly associated with IMT. Notably, the association between
CD16-positive monocytes (or nonclassical monocytes) and IMT
lost statistical significance after adjusting for BMI, again pointing
towards a substantial interaction between obesity, inflammation
and cardiovascular disease.

Conflicting results on the association between common carotid
atherosclerosis and monocyte subsets were reported in smaller
and highly selected patient cohorts: in line with the I LIKE HOMe
study results, frequencies of nonclassical monocytes correlated
with carotid IMT  among stable renal allograft recipients, while fre-
quencies of intermediate monocytes did not (Ulrich et al. 2008).
In contrast, hemodialysis patients with advanced carotid plaques
tended to have higher counts of classical and intermediate mono-
cytes compared to dialysis patients without advanced plaques
(Ulrich et al. 2011). Finally, in WHO  obesity classes II and III
patients, no association was  found between frequencies of CD16-
positive monocytes and subclinical atherosclerosis. Three months
after bariatric surgery, a decreasing intermediate monocyte popu-
lation size was  univariately correlated with a reduction in IMT; this
finding again depended on BMI  variation (Poitou et al. 2011).

Clinically manifest cardiovascular disease

Few cross-sectional studies analyzed monocyte heterogeneity
in patients with manifest cardiovascular disease. The first study –
and up to now the largest – reported higher frequencies of CD16-
positive monocytes in a heterogenous cohort of 247 patients at
various stages of coronary artery disease (CAD), including both
stable CAD patients and patients with acute coronary syndrome
(Schlitt et al. 2004). As a methodological shortcoming, a less sophis-
ticated gating strategy than nowadays recommended was applied,
which did not use a pan-monocytic marker such as CD86 or HLA-DR
for identifying monocytes. Moreover, intermediate and nonclassi-
cal monocytes were not separately analyzed. Subsequently, two
small cross-sectional studies confirmed a shift towards CD16-
positive monocytes (Tallone et al. 2011; Wildgruber et al. 2009).
However, subsuming both studies, a total of only 25 healthy con-
trols and 32 CAD patients were analyzed.

When subdividing CAD patients with stable angina pectoris
by plaque characteristics (assessed by multidetector computed
were only found in patients who  had at least one vulnerable
plaque (Kashiwagi et al. 2010). Finally, a decrease in the CD16-
positive monocyte population size was associated with long-term
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Table 1
Features of the Malmö  Diet and Cancer study and the HOM SWEET HOMe study.

Malmö Diet and Cancer
study

HOM SWEET HOMe
study

Study design Retrospective analysis
(recruitment
1991–1994)

Prospective analysis
(recruitment
2007–2010)

Sample preparation Frozen peripheral
blood mononuclear
cells

Fresh whole blood

Number of Patients 700 954
Follow-up Until 12/2008 Ongoing

Definition of
endpoints

Endpoints:
Myocardial infarction;
ischemic stroke; death
attributable to
underlying coronary
heart disease

Combined primary
endpoint:
Cardiovascular death,
acute myocardial
infarction or
non-hemorrhagic
stroke
Secondary endpoints:
Death of any cause, any
cardiovascular event

Endpoint adjudication Registry analysis by
ICD-Code

Diagnosis confirmed by
chart review

Outcome predictor CD14++CD16−monocytes CD14++CD16+
A.M. Zawada et al. / Immun

laque stabilization in CAD patients with instable angina pectoris
Imanishi et al. 2010).

ntermediate monocytes as predictors of cardiovascular
utcome

Following these cross-sectional studies, the question arises
hether a specific monocyte subset might serve as a biomarker

or prediction of cardiovascular events. First prospective studies
n this issue were performed in CKD patients, which unanimously
ound that high counts of intermediate monocytes independently
redicted adverse outcome among 94 dialysis patients as well as
mong 119 patients at earlier stages of CKD (Heine et al. 2008;
ogacev et al. 2011). Two subsequent cohort studies suggested that
nalysis of intradialytic monocyte kinetics or monocytic expression
f ACE may  yield additional prognostic information (Rogacev et al.
009; Ulrich et al. 2010).

Because of altered monocyte subset distribution and the distinct
attern of accelerated atherosclerosis in CKD, these findings should
ot uncritically be extrapolated to the general population. Cur-
ently, data on the predictive role of monocyte subsets in non-CKD
opulations are scarce.

Therefore we initiated the HOM Sweet HOMe (Heterogeneity of
onocytes in subjects who undergo elective coronary angiography

 The Homburg Evaluation) study which analyzed monocyte het-
rogeneity and cardiovascular events in 954 patients referred for
lective coronary angiography. First results have been presented at
he 2011 EMDS meeting in Brussels; in this preliminary analysis
ntermediate monocyte counts were predictors of cardiovascular
vents in univariate analysis.

These findings are seemingly in conflict with a second cohort
tudy from Sweden, where Berg et al. (2012) randomly selected 700
ubjects from the Malmö  Diet and Cancer study, in whom monocyte
ubsets were measured from isolated, frozen stored mononuclear
eukocytes. At univariate analysis, counts of all three monocyte
ubsets were higher in cases versus controls. After adjustment for
onfounders, high classical monocyte counts – but not frequencies

 predicted cardiovascular events. Notably, the accompanying edi-
orial advocates a cautious interpretation of these data (Mehta and
eilly 2012). It is critical to note that determination of monocyte
ubsets was not performed from fresh blood, which contrasts with
urrent recommendations (Ziegler-Heitbrock et al. 2010). Isolation
nd long-term storage of monocytes could have caused alterations
n monocyte subset distribution and phenotype. For example, con-
rasting with its signature character (Ancuta et al. 2003; Rogacev
t al. 2011; Rossol et al. 2011; Wong et al. 2011), CCR5 was not
electively expressed on intermediate monocytes in this study.
urthermore, a yet not characterized CD14dimCD16dim subpop-
lation was found (as illustrated in a representative dot-plot from

 long-term frozen sample) which may  have arisen from the prepa-
ation procedure or from storage. Finally, gating of monocytes was
ot performed via a validated gating strategy (Heimbeck et al. 2010;
awada et al. 2011), possibly resulting in inaccurate assessment of
D16-positive monocyte counts (see Fig. 2).

Key features of the Malmö  Diet and Cancer study, and of the
OM SWEET HOMe study, are summarized in Table 1.

onocyte heterogeneity in human myocardial infarction

Following reports on a subset-specific contribution of mono-
ytes to murine myocardial infarction (Nahrendorf et al. 2010),

onocyte heterogeneity in human myocardial infarction (MI) has

ttracted substantial interest in recent years. Animal data point to
 sequential contribution of monocyte subsets to injury and repair
Nahrendorf et al. 2010).
monocytes

ICD-Code: International Classification of Diseases Code.

The first human study that serially assessed monocyte subsets
in human myocardial infarction was reported by Tsujioka et al.
(2009) from Wakayama (Japan), who analyzed 36 patients suffering
from acute myocardial infarction (AMI). In line with animal stud-
ies, a sequential mobilization of monocyte subsets was found. An
increase of classical monocytes counts occurred very early after
hospital admission. Cell counts peaked 2.6 days after AMI, and
decreased afterwards. In contrast, CD16-positive counts were low
at hospital admission (compared to patients with stable angina pec-
toris) and gradually increased until day 4.8. Afterwards, their cell
counts remained elevated until the end of the observation period on
day 12 compared to baseline values. Interestingly, peak cell counts
of classical monocytes were negatively associated with myocardial
salvage (assessed via by cardiovascular magnetic resonance imag-
ing [CMRI] at day 7) and negatively correlated with recovery of left
ventricular (LV) function (assessed via CMRI at day 7 and month 6),
while peak counts of CD16-positive monocytes were not.

The same study group later associated peak classical mono-
cyte counts with microvascular obstruction in AMI, again assessed
via CMRI (Tsujioka et al. 2010), whereas CD16-positive monocyte
counts rather than classical monocytes were reported to predict
in-stent restenosis after coronary stenting in AMI (Liu et al. 2010).
Associations between classical monocyte counts in AMI, impaired
left ventricular function and microvascular obstruction were inde-
pendently confirmed by van der Laan et al. (2012).  For logistic
reasons, an unconventional gating strategy for monocyte subsets
was applied; moreover, despite the sequential mobilization of
monocyte subsets after AMI  (Tsujioka et al. 2009), the time-point
of flow cytometric analysis was  not standardized, and no serial
measurements were performed.

Finally, the Wakayama group reported that intake of the direct
renin inhibitor aliskiren may  dampen the peak of classical mono-
cyte counts after AMI, and may  associate with higher myocardial
salvage. The impact of aliskiren on CD16-positive monocytes was
not explicitly reported (Ozaki et al. 2012).

Unfortunately, neither the Wakayama group (Liu et al. 2010;

Ozaki et al. 2012; Tsujioka et al. 2009; Tsujioka et al. 2010), nor van
der Laan et al. (2012) used a pan-monocytic marker – CD86 or HLA-
DR – for monocyte identification. Moreover, both did not provide
separate data on intermediate and nonclassical monocytes counts.
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he impact of this limitation is illustrated by a very recent work of
app et al. (2012),  who differentiated intermediate and nonclassical
onocytes in patients suffering from myocardial infarction (Tapp

t al. 2012). Indeed, they found unique dynamics and functional
haracteristics of the intermediate monocyte subset in patients
fter STEMI (ST-elevation myocardial infarction): cell counts of
ntermediate monocytes increased dramatically in these patients
ompared to control groups, whereas no differences were seen in
he counts of nonclassical monocytes.

onclusions

23 years after the initial description of human monocyte het-
rogeneity, a subset-specific contribution of monocytes to health
nd disease is unequivocally acknowledged. Unfortunately, uncrit-
cal transfer of animal studies to human (patho)physiology, and
ack of uniform denomination of monocyte subsets as well as dis-
repant laboratory techniques between different scientific groups
mpede a clear understanding on how monocyte subsets contribute
o cardiovascular disease in men. We  therefore advocate general
pplication of the monocyte subset nomenclature that has been
uggested by the Nomenclature Committee of the International
nion of Immunological Societies, and general utilization of val-

dated flow cytometry protocols.
Despite these limitations, several experts started to pro-

ose subset-specific immunomodulation of monocytes as future
reatment strategies in human cardiovascular disease. For the
ime being, evidence from in vitro experiments and from clin-
cal cohort studies identified intermediate monocytes as most
romising targets for therapeutic interventions in stable patients
ith atherosclerotic vascular disease. In contrast, the impact of
onocyte subsets in acute myocardial infarction needs further pre-

linical studies before subset-specific therapeutic interventions
hould be proposed.
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ABSTRACT

Across the spectrum of clinical medicine, the field of epige-
netics has gained substantial scientific interest in recent years.
Epigenetics refers to modifications in gene expression which
are not explained by changes in DNA sequence. Classical
components of epigenetic regulation comprise DNA methyl-
ation, histone modifications and RNA interference. In chronic
kidney disease (CKD), several features of uraemia, such as hy-
perhomocysteinemia and inflammation, may contribute to
changes in epigenetic gene regulation. It has been suggested
that these changes may affect genes related to cardiovascular
disease. Thereby, a uraemia-associated disturbance in epige-
netic regulation may contribute to the substantial increase in
cardiovascular morbidity in CKD patients. The present review
aims to summarize current knowledge of epigenetic dysregu-
lation in cardiovascular disease from a nephrological perspec-
tive, with a special focus on DNA methylation. We first
describe the impact of altered epigenetic regulation in non-
CKD-associated arteriosclerosis, and next characterize
uraemic features which may affect epigenetic gene regulation
in the context of cardiovascular disease. Finally, we conclude
that substantial additional work is needed before epigenetic
regulatory mechanisms may become therapeutic targets in
CKD-associated cardiovascular disease.

INTRODUCTION

Patients with chronic kidney disease (CKD) have an unaccep-
tably high risk for cardiovascular events, which is mainly
attributable to dramatically accelerated vascular disease.

Traditional cardiovascular risk factors, such as hypercholes-
terolaemia, hyperglycaemia, arterial hypertension, smoking,
obesity and physical inactivity, can only partly explain this
high cardiovascular risk [1]. In line, conventional cardiovas-
cular treatment strategies failed to improve cardiovascular
survival in CKD patients substantially [1, 2].

Thus, future therapies will have to focus on non-classical
cardiovascular risk factors, among which uraemia-associated
alterations in epigenetic gene regulation attracted some inter-
est in recent years. Epigenetic mechanisms are crucial regula-
tors of cellular homeostasis, which control gene expression
and maintain cell identity during subsequent cell divisions.
Consequently, dysfunctional epigenetic gene regulation may
substantially contribute to the onset and progression of
diverse pathologies such as cancer or arteriosclerosis.

It is increasingly recognized that environmental factors
may influence epigenetic regulation. In line, it is common
opinion that in CKD patients, long-term exposure to the un-
physiological uraemic milieu may affect epigenetic mechan-
isms, which may eventually comprise the regulation of
arteriosclerosis-related genes.

The present review summarizes recent findings in the field
of epigenetics regarding arteriosclerosis and CKD. Notably,
epigenetic dysregulation may affect many other aspects of
renal medicine not covered in this article. Starting in early
life, when maternal–foetal epigenetic interactions are of para-
mount importance for human development [3], epigenetic
mechanisms are of essential importance for renal physiology,
and their dysregulation may induce and perpetuate renal
disease [4].

Admittedly, research on epigenetic regulation in CKD is
still an evolving field in its very beginnings, whereas epige-
netics has been extensively studied in other disciplines of
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internal medicine. In oncology, epigenetic research has
entered the scene as early as 1983, when Feinberg and Vogel-
stein first demonstrated epigenetic dysregulation in cancer
cells [5]. Since then, a steady increase in the understanding of
epigenetic mechanisms in the pathogenesis of human cancer
allowed to define new therapeutic strategies in oncology
(summarized in [6–8]). In 2004, the Food and Drug Admin-
istration approved the DNA methyltransferase inhibitor
azacitidine for treatment of subtypes of myelodysplastic syn-
drome (MDS), where it proved to prolong survival compared
with standard care [9]. Thus, adequate understanding of epi-
genetic dysregulation in human disease may allow to improve
outcome in affected patients.

DNA METHYLATION AS A CENTRAL
EPIGENETIC REGULATOR

The term ‘epigenetics’ refers to changes in gene expression
which are caused by altered DNA accessibility without affect-
ing the nucleotide sequence. In contrast to mutations in the
DNA sequence, epigenetic marks are dynamic; they can be
altered by exogenous factors including nutrition and environ-
mental influences. Nonetheless, epigenetic mechanisms are
sufficiently stable to transmit information on gene expression
from one cell generation to the next; they control diverse bio-
logical phenomena such as X-chromosome inactivation, si-
lencing of transposable elements or genomic imprinting [10].

Epigenetic mechanisms comprise several levels of gene
regulation, which include DNA methylation, histone modifi-
cations and RNA interference. The present review will focus
on DNA methylation, which is the best understood epigenetic
modification in the context of CKD. For space constraints,
the role of histone modifications and RNA interference in
epigenetic regulation are not explained in detail, as excellent
reviews have been published recently, to which the interested
reader may refer to [11–13].

In mammals, DNA methylation occurs at the C5 position
of cytosines predominantly in the context of CpG dinucleo-
tides (cytosines followed by guanines). The 50 regulatory
regions of many genes are enriched in CpG dinucleotides
which form so-called CpG islands, and their methylation
generally prevents gene transcription. In contrast, transcrip-
tionally active DNA regions are typically unmethylated
(Figure 1) [14]. This mechanism of activation and repression
of gene transcription by differential DNA methylation is
mediated via alterations in chromatin configuration and ac-
cessibility of the transcription machinery to the promoter
region.

DNA is associated with histones and other chromosomal
proteins, which themselves can also be modified. Different
modifications of histones exist such as acetylation or methyl-
ation, which regulate the degree of chromatin condensation
and consequently the level of transcription. Of note, a cross-
talk between DNA methylation and histone modifications
exists, so that silencing of gene expression by DNA methyl-
ation is often associated with, e.g., deacetylation of histones
in the same genomic region (Figure 1).

DNA METHYLATION AND
ARTERIOSCLEROSIS IN NON-CKD

Within the spectrum of arteriosclerotic vascular disease,
atherosclerosis defines a chronic inflammatory process
characterized by endothelial cell activation, by infiltration of
circulating monocytes and other leukocytes into the suben-
dothelial space, by subsequent differentiation of monocytes
towards macrophages and dendritic cells and by migration
and proliferation of smooth muscle cells (SMCs) (Figure 2).
Thus, transformation of several distinct cell types essentially
contributes to the development of atherosclerosis (atherogen-
esis), and these cellular transformations necessarily require
reprogramming of gene expression. Therefore, it is highly
probable that epigenetic mechanisms may be centrally in-
volved in atherosclerosis.

In recent years, several clinical and experimental studies
analysed the implications of disturbed DNA methylation in
arteriosclerosis. Until now, only few studies focussed on CKD
patients. All the more, a critical appraisal even of non-CKD
studies appears fruitful to the nephrological community, aug-
menting our understanding of potential implications of epi-
genetic regulation in accelerated arteriosclerosis. In the
following, we first discuss human studies which analysed
global DNA methylation rather than methylation of specific
genes. Secondly, we review human studies on gene-specific
DNA methylation. Finally, we summarize human studies that
assessed global or gene-specific DNA methylation in the
context of CKD.

GLOBAL ASSESSMENT OF DNA
METHYLATION IN ARTERIOSCLEROSIS

Global DNA methylation in cardiovascular disease has been
assessed by analysing either peripheral blood cells, or vascular
tissue. A small cohort study reported lower DNA methylation
in peripheral blood cells (measured by cytosine extension
assay) among 17 male patients with prevalent cardiovascular
disease compared with 15 male healthy controls [15]. Such
an association between global DNA hypomethylation and
prevalent cardiovascular disease was confirmed in the larger
Normative Aging Study, when analysing DNA methylation of
long interspersed nucleotide element-1 (LINE-1) repetitive
elements in peripheral blood mononuclear cells as a marker
for global DNA methylation among 712 elderly men [16].
Moreover, lower LINE-1 methylation at study initiation pre-
dicted cardiovascular mortality in this cohort.

Contrarily, global DNA hypermethylation rather than hy-
pomethylation in peripheral blood cells was reported among
137 Indian coronary artery disease (CAD) patients compared
with 150 controls (assessing global DNA methylation by cy-
tosine extension assay) [17], and among 101 Singapore
Chinese Health Study participants with prevalent myocardial
infarction and/or stroke compared with 185 controls (asses-
sing leukocyte DNA methylation of repetitive elements as
global DNA methylation marker) [18]. In the latter study,
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F IGURE 1 : Mechanism of epigenetic gene regulation. Two major components of epigenetic regulation are DNA methylation and histone
modifications. (1) DNA methylation occurs at the C5 position of cytosines in the context of CpG dinucleotides (indicated as filled circles). An
open chromatin structure (feature of transcriptionally active genes) is characterized by unmethylated CpGs (indicated by open circles). (2)
Further regulatory mechanisms are provided by histone modifications, which may either allow (‘permissive modifications’) or silence (‘repres-
sive modifications’) gene transcription. Of note, interactions between both regulatory pathways exist.

F IGURE 2 : DNA methylation in atherosclerosis. Following initial endothelial activation, circulating monocytes and other leukocyte subsets
are recruited into the subendothelial space. There, monocytes differentiate into macrophages, which take up lipids to form foam cells and thus
give rise to fatty streaks, which are the earliest ultrastructural alterations in atherosclerosis. These early atherogenic lesions may subsequently
gradually develop into advanced atherosclerotic plaques, which are characterized by a lipid- and macrophage-rich necrotic core; migration of
SMCs from the tunica media into the tunica intima may further contribute to this atherogenic process. Current epigenetic knowledge from
analyses of global and/or gene-specific DNA methylation suggests alterations (comprising both hypo- and hypermethylation) to occur in early
as well as in advanced atherosclerotic lesions. Moreover, epigenetic changes in peripheral blood leukocytes were characterized in the context
of atherosclerosis, which may become a clinical marker for epigenetic dysregulation in subjects at cardiovascular risk.
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male patients with incident cardiovascular events during
follow-up had higher global DNA methylation than subjects
with event-free survival, again contrasting to findings from
the Normative Aging Study.

When globally analysing DNA methylation in vascular
tissue samples rather than in peripheral leukocytes, current
data point towards an association between atherosclerotic
lesions and hypo- rather than hypermethylation. With a mi-
croarray-based approach, Castillo-Díaz et al. [19] compared
45 human atherosclerotic coronary artery samples from
patients undergoing revascularization surgery and 16 control
aortic fragments from patients undergoing aortic valve repla-
cement; a near-complete demethylation of normally hyper-
methylated CpG islands was found in advanced human
atherosclerotic lesions. In line, Hiltunen et al. [20], who ana-
lysed DNA methylation via high performance liquid chrom-
atography in 55 human arterial samples obtained from
autopsy or amputation, found reduced global DNA methyl-
ation in advanced atherosclerotic arteries compared with
normal arteries.

These human studies on epigenetic dysregulation in cardi-
ovascular disease are complemented with data from animal
models. DNA hypomethylation was detected in atherosclero-
tic lesions from New Zealand White rabbits and from ApoE
knock-out mice on a Western-type diet [20, 21]. Interest-
ingly, similar DNA hypomethylation occurred during rabbit
aortic SMC transdifferentiation [20]. Further animal data
point to very early dysregulation of DNA methylation in
atherogenesis, as differential DNA methylation—both hypo-
methylation and hypermethylation—is present in aortas and
PBMCs of ApoE−/− mice before any signs of atherosclerotic
lesions [22]; thus, changes in DNA methylation may serve as
very early markers of atherosclerotic vascular disease.

Presently, it remains enigmatic why some reports
suggested DNA hypomethylation in human arteriosclerosis,
while other studies yielded contradictory findings. Differences
in study size, definition of arteriosclerotic, respectively, ather-
osclerotic disease and different technical approaches for as-
sessment of global DNA methylation may partly contribute
to these discrepancies. It is beyond the scope of the present
review to critically discuss limitations of different methods
for methylation analysis in detail. Taken together, only appli-
cation of sophisticated methods for analysis of DNA methyl-
ation, which may be standardized across different
laboratories, and recruitment of subjects from well-character-
ized cohorts will provide robust data that may confirm the
importance of epigenetic dysregulation in the pathogenesis of
cardiovascular disease.

However, the most notable limitation of current studies is
the fact that any measurement of global DNA methylation
will inevitably provide an oversimplified assessment of epige-
netic dysregulation, as it neither quantitatively nor quali-
tatively acknowledges the co-existence of hypo- and
hypermethylation of distinct genes within the same cell. In
line, it has been suggested earlier that hypermethylation
of arteriosclerosis-protective and hypomethylation of arterio-
sclerosis-susceptible genes may exist in arteriosclerotic
disease [12, 23–25].

Thus, although changes in global DNA methylation status
may point towards a pathological condition, a better under-
standing of the interplay between epigenetic dysregulation
and accelerated arteriosclerosis mandates DNA methylation
analyses of specific genes.

S ITE-SPECIFIC ASSESSMENT OF DNA
METHYLATION IN ARTERIOSCLEROSIS

Most studies on site-specific epigenetic regulation in arterio-
sclerosis somewhat arbitrarily selected single genes and re-
ported their methylation status.

In this context, methylation of oestrogen receptor α and β
genes (ERα and ERβ) was investigated repeatedly. Oestrogen
receptors are present in SMCs and endothelial cells, where
they may mediate vasculoprotective effects of oestrogens. Hy-
permethylation of the promoter regions of the ERα and ERβ
genes was detected in coronary plaques and—more specifi-
cally—in SMCs during their transformation from a normal to
a proliferative state [26–28]. Similarly, hypermethylation of
monocarboxylate transporter 3 (MCT3) was found in trans-
forming SMCs [29].

Moreover, in human atherosclerotic lesions, hypomethyla-
tion of the promoter region of the 15-lipoxygenase gene [20],
and hypermethylation of the tissue factor pathway inhibitor-2
(TFPI-2) [30] were described.

Beyond such single-gene analyses, Castillo-Díaz et al. [19]
performed a broader, microarray-based approach that
revealed a total number of 142 hypomethylated and 17
hypermethylated CpG islands in human atherosclerotic
arteries. Many of these CpG islands could be linked to genes
coding for signalling and transcription factors such as
PROX1, NOTCH1 or FOXP1, while others were annotated
to genes connected to angiogenesis, SMC modulation and
inflammation.

Further research is clearly needed to confirm and expand
results of these pioneering studies, before specific epigenetic
biomarkers for arteriosclerosis may be defined on a more
solid basis. Next, it will have to be tested in how far exper-
imental data from tissue analysis are mirrored by similar
changes in samples which can be obtained in convenient, less
invasive manner—such as circulating leukocytes—before
these experimental findings may become clinically relevant.

DNA METHYLATION IN CKD

General consensus exists by most experts that the toxic
uraemic milieu may exert a crucial impact on epigenetic gene
regulation and may thus perpetuate CKD-associated acceler-
ated arteriosclerosis [12, 23–25, 31, 32]. Nevertheless, surpris-
ingly few experimental and clinical studies on this topic have
been reported, most of which analysed altered DNA methyl-
ation in the context of CKD-associated hyperhomocysteine-
mia [33] and inflammation [34].
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HYPERHOMOCYSTEINEMIA ,
CARDIOVASCULAR DISEASE AND DNA
METHYLATION IN CKD

Homocysteine is a central component of the one-carbon
metabolism, which regulates DNA methylation. Its derivative
S-adenosylmethionine (SAM) is the universal methyl group
donor for >100 different cellular methylation reactions, in-
cluding DNA methylation (Figure 3). After transfer of a
methyl group to its target, SAM is converted to S-adenosyl-
homocysteine (SAH), which is a powerful competitive inhibi-
tor of SAM-dependent methyltransferases. Therefore,
efficient removal of SAH is essential for cellular methylation
reactions, which require hydrolysis of SAH into homocysteine
and adenosine via SAH hydrolases. Importantly, this reaction
is reversible, with the equilibrium favouring SAH formation
rather than its hydrolysis, and only rapid removal of homo-
cysteine and adenosine allows this reaction to proceed in the
hydrolytic direction. In contrast, any accumulation of homo-
cysteine would directly increase SAH levels and thereby sub-
sequently inhibit transmethylation reactions. Homocysteine
may either be removed through the remethylation pathway,
in which methionine synthase (in a folate/vitamin B12-depen-
dent reaction) or betaine-homocysteine methyltransferase
(using betaine as methyl group donor) will convert homocys-
teine into methionine. Alternatively, homocysteine can
undergo transsulfuration to cystathionine in a vitamin B6-de-
pendent pathway (cystathionine-β-synthase).

In CKD, homocysteine levels are elevated because of both
decreased renal excretion and impaired capacity to metab-
olize homocysteine. In clinical cohort studies, CKD patients
with highest homocysteine levels suffered most cardiovascular
events [35]. This inspired numerous groups to explore poss-
ible pathophysiological pathways which underlie such detri-
mental effects of hyperhomocysteinemia. Earlier studies first
focussed on functional pathways, such as production of reac-
tive oxygen species [36], promotion of leukocyte recruitment
[37] and SMC proliferation [38], as well as induction of a
pro-thrombotic state [39]. Only in the last years, the impli-
cations of homocysteine in epigenetic mechanisms came into
scientific focus.

Ingrosso et al. [33] were the first to analyse DNA methyl-
ation in the context of CKD-associated hyperhomocysteine-
mia. Assessing global DNA methylation by cytosine
extension assay and southern blotting, 32 male hyperhomo-
cysteinemic haemodialysis patients were found to have sig-
nificantly lower DNA methylation compared with 11 healthy
controls. Moreover, in haemodialysis patients, DNA hypo-
methylation correlated with plasma homocysteine concen-
trations, and folate therapy partly restored DNA methylation.

In contrast, Nanayakkara et al. [40] failed to reproduce the
association between homocysteine and DNA methylation in
93 patients with less advanced CKD (CKD stage 2–4), when
analysing global leukocyte DNA methylation by tandem mass
spectrometry. Nor did they find an association of global DNA
methylation with renal function, subclinical arteriosclerosis

F IGURE 3 : Role of homocysteine metabolism in methylation reactions. The homocysteine derivative SAM is the universal methyl group
donor for a multitude of different methylation reactions, such as DNA methylation. After transfer of its methyl group, S-adenosylhomocys-
teine (SAH) is formed, which is a competitive inhibitor of methyltransferases. Removal of SAH requires its hydrolysis into homocysteine and
adenosine. Since this reaction is reversible, rapid removal of homocysteine is crucial, as accumulation of SAH may inhibit cellular methylation
reactions. This removal is achieved either via the remethylation or via the transsulfuration pathway.
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(measured as common carotid intima media thickness) and
endothelial function. Additionally, homocysteine-lowering
vitamin treatment had no effect on global DNA methylation.
These discrepant findings may partly be explained by different
study designs, as a folate wash-out period was mandatory in
the study by Ingrosso et al. [33], but not in the latter trial [40].

Finally, our group measured parameters of the one-carbon
metabolism and leukocyte LINE-1 methylation as a surrogate
marker of global DNA methylation in 22 haemodialysis
patients and 26 healthy, age- and sex-matched controls. Sur-
prisingly, haemodialysis patients had higher rather than lower
LINE-1 methylation compared with controls [41]; a corre-
lation between SAH and LINE-1 methylation was neither
found within the cohort of haemodialysis patients, nor within
the group of healthy controls. Admittedly, this study is
limited by the small study cohort size, and by the use of a
rather crude surrogate marker for estimation of global DNA
methylation.

In summary, the use of differing laboratory techniques,
and diverse study designs, yielded controversial data on the
impact of a disturbed one-carbon metabolism on DNA
methylation in CKD. In our opinion, a broader understand-
ing will require more refined methological approaches, which
should comprise analysis of gene specific rather than global
DNA methylation. In this regard, a focus on arteriosclerosis-
related genes appears worthwhile.

From a clinical point of view, it may be argued that
further analyses of the implications of one-carbon metab-
olism on DNA methylation in CKD seems futile, since
several interventional trials which aimed to attenuate hyper-
homocysteinemia in CKD via supplementation of folate,
vitamin B6 and/or B12 failed to affect cardiovascular morbid-
ity in CKD patients [42–46].

We nevertheless reckon that these disappointing results do
not preclude a pathophysiological role of one-carbon metab-
olism in cardiovascular disease: while supplementation with
folate, vitamin B6 and/or B12 may reduce homocysteine levels
in CKD, it fails to affect plasma SAH [47]. This is of particu-
lar interest for two reasons: first SAH rather than homocys-
teine is increasingly considered the real culprit in
cardiovascular disease [48, 49], as SAH, but not homocys-
teine, directly inhibits methylation reactions. Secondly, SAH
accumulates in excess to homocysteine with declining renal
function, given that the kidney is the major site of SAH dis-
posal in humans [50, 51].

INFLAMMATION, CARDIOVASCULAR
DISEASE AND DNA METHYLATION IN CKD

A second focus of epigenetic research in CKD centres on
inflammation-induced disturbances in DNA methylation.
Chronic (micro)inflammation is a common feature in CKD,
which drives the development and progression of athero-
sclerotic lesions and thus contributes to elevated cardiovascu-
lar morbidity and mortality in CKD patients [52].

Beyond the field of nephrology, several studies suggested
chronic inflammation to trigger DNA hypermethylation a

decade ago [53, 54]; in line, proinflammatory cytokines were
shown to regulate a DNA methyltransferase gene [55].

In CKD, Stenvinkel et al. [34] assessed global DNA
methylation in peripheral blood leukocytes from 37 patients
in CKD stages 3 and 4, 98 incident dialysis patients, 20 preva-
lent haemodialysis patients and 36 controls by the Lumino-
metric Methylation Assay (LUMA) method. When patients
were subdivided into inflamed (CRP ≥ 10 mg/L) and nonin-
flamed (CRP < 10 mg/L) groups, inflamed patients (n = 62)
had significantly higher global DNA methylation than nonin-
flamed patients (n = 93) or controls. When incident dialysis
patients were followed for 36 ± 2 months, DNA hypermethy-
lation was significantly associated with all-cause and cardio-
vascular mortality.

A first study on gene-specific DNA methylation analysis
in the context of inflammation and CKD focussed on DNA
methylation of the p66Shc (SHC1) gene [41]. p66Shc is a
stress response protein involved in reactive oxygen species
metabolism. In murine studies, p66Shc deletion renders
resistance to oxidative stress, thus prolonging life span and
protecting against age-related endothelial dysfunction [56,
57]. Recruiting 22 haemodialysis patients and 26 controls, we
found that the p66Shc gene is hypomethylated in human
CKD, which may lead to enhanced expression of this gene
and subsequently contribute to oxidative stress-mediated ar-
teriosclerosis in CKD.

Admittedly, more comprehensive data on epigenetic dysre-
gulation in the context of CKD-associated inflammation are
needed, which should provide both more specific information
than global methylation analysis, and a broader data set than
analysis of (arbitrarily selected) single-gene methylation.

DNA METHYLATION PROFIL ING IN CKD

Against this background, two recent studies aimed to identify
epigenetic biomarkers in CKD in a whole genome approach.
Using the Illumina HumanMethylation27 Bead Chip array,
Sapienza et al. [58] performed DNA methylation profiling in
24 diabetic haemodialysis patients and 24 diabetic patients
without diabetic nephropathy. After extracting DNA from
saliva, methylation was measured at 27578 CpG sites, which
allowed to analyse methylation of >14 000 genes. One
hundred and eighty-seven of these genes were found to be
differentially methylated at least at two CpG sites, many of
which were implicated in diabetic nephropathy and/or kidney
disease; in pathway analysis, these differentially methylated
genes could be linked to inflammation, oxidative stress, ubi-
quitination, fibrosis and drug metabolism. Of note, this study
deliberately aimed to focus on the identification of epigenetic
biomarkers for kidney disease rather than on the characteriz-
ation of dysregulated genes in the context of CKD-associated
arteriosclerosis.

Therefore, we set out to resolve this question by perform-
ing genome-wide DNA methylation analysis using SuperTAG
methylation-specific digital karyotyping (SMSDK) in 10 male
haemodialysis patients and 10 matched controls without
kidney disease [59]. With this method we analysed 575744
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loci, 4288 of which displayed differential methylation with a
P-value of 10−10. Differentially methylated genes were linked
to distinct proatherogenic processes such as inflammation
(e.g. TNFSF10, LY96, IFNGR1, HSPA1A and IL12RB1), lipid
metabolism and transport (e.g. HMGCR, SREBF1, LRP5,
EPHX2 and FDPS), proliferation and cell-cycle regulation
(e.g. MIK67, TP53 and ALOX12) as well as angiogenesis
(e.g. ANGPT2, ADAMTS10 and FLT4). Importantly, by using
the ‘Genetic Association Database’ we identified 52 genes
which are associated with cardiovascular disease (e.g. HMGCR,
TP53, ANGPT2, IFNGR1 and HSPA1A) and 97 genes with
immune/infection diseases (e.g. TNFSF10, IL12RB1, MMP24,
CASP8 and SPN). These results point for the first time towards
a dysregulation of arteriosclerosis-related genes in CKD, and
may thus indicate an implication of epigenetic dysregulation in
accelerated arteriosclerosis in CKD.

CONCLUSIONS AND FUTURE PERSPECTIVES

After a significant contribution of epigenetic dysregulation to
cardiovascular disease has been suggested in preliminary
studies, the issue of potential therapeutic interventions arises.

Interestingly, unspecific epigenetic modifications have
already entered contemporary cardiovascular medicine, as
some of the pleiotropic effects of routinely used drugs have
been attributed to epigenetic modifications [60]. However, a
more tailored approach in cardiovascular medicine is still
not in sight. Of note, in other fields of internal medicine,
direct targeting of epigenetic regulatory mechanisms—e.g. by
DNA methyltransferase inhibitors and histone deacetylase
inhibitors—are already integrated in clinical medicine albeit
at the price of unspecific intervention [60].

Against the background of the dramatically high cardio-
vascular disease burden, which cannot be satisfactorily
lowered by conventional treatment strategies, transfer of these
novel therapeutic avenues to the field of nephrology should
become a research priority in the future. Given the present
paucity of data in this field, we suggest the following next
steps.

First, after gene-specific changes in DNA methylation
have been characterized very recently, epidemiological studies
should aim to characterize those site-specific epigenetic
modifications that will predict cardiovascular events in a large
cohort of CKD patients. Such approach would allow clini-
cians to identify high-risk individuals who may specifically
benefit from preventive and therapeutic interventions. Even
though such interventions are presently limited to conven-
tional therapeutic strategies, comprising stringent blood
pressure control and proteinuria lowering, more specific in-
terventions into epigenetic regulatory pathways might
become available in future years. Therefore, we aim to
analyse prognostic implications of specific changes in DNA
methylation of pre-defined genes among 444 CKD patients in
our ongoing CARE FOR HOMe study.

Secondly, to characterize potential therapeutic approaches
in epigenetic medicine, a better understanding of a disturbed
C1-metabolism in CKD-associated cardiovascular disease is

needed. After folate, vitamin B6 and/or B12 failed to improve
the high cardiovascular risk in CKD patients despite lowering
homocysteine levels, the role of other C1-metabolites such as
SAH will gain substantial interest in forthcoming years.
Against this background, we are studying the association
between kidney function, C1-metabolites and cardiovascular
disease in our epiGEN HOMe project, comprising our I LIKE
HOMe and CARE FOR HOMe trials. We postulate that elev-
ated SAH may surpass homocysteine as cardiovascular
outcome marker in CKD. If this hypothesis holds true, strat-
egies to efficiently lower SAH levels in CKD patients should
be explored.

Finally, future experimental and clinical studies should
aim to explore further areas of epigenetic regulatory mechan-
isms beyond DNA methylation, including histone modifi-
cations and RNA interference, as both mechanisms still
remain very poorly characterized in the context of CKD-
associated cardiovascular disease.
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Abstract  

Three human monocyte subsets exist: CD14
++

CD16
-
 and CD16-positive monocytes, 

comprising CD14
++

CD16
+
 and CD14

+
CD16

++
 monocytes. Immunomodulation of distinct 

monocyte subsets has been proposed as an innovative treatment for atherosclerosis. Therefore, 

we characterized monocyte development and analyzed potential immunomodulators of 

CD14
++

CD16
+
 monocytes, which are established predictors of cardiovascular outcome. 

We analyzed monocyte subsets in patients following autologous and allogenic stem cell 

transplantation. In vivo CD14
++

CD16
-
 monocytes were the first to arise, followed by 

CD14
++

CD16
+
 and later by CD14

+
CD16

++
 monocytes. Monocyte subset distribution did not 

differ significantly in patients after allogenic compared to autologous transplantation 

(P  >  0.05). Corticosteroids considerably depleted CD14
++

CD16
+
 and CD14

+
CD16

++
 cells 

in vivo, but left CD14
++

CD16
-
 monocytes unaffected. Calcineurin inhibitors, mycophenolic 

mofetil and methotrexate did not influence monocyte subset development, but modified 

surface receptor expression (CCR2, HLA-DR, ENG, TEK and TLR4). Furthermore, human 

monocytes were generated in vitro from CD34
+
 progenitor cells. The impact of conventional 

immunomodulators – steroids, rapamycin, calcineurin inhibtors – and of the aryl hydrocarbon 

receptor (AHR) activator benzo(a)pyrene upon monocyte subsets was studied. Only steroids, 

rapamycin and benzo(a)pyrene significantly affected CD16-positive monocyte counts.  

We report for the first time in vivo the developmental relationship of all three monocyte 

subsets and the effects of established and experimental immunomodulators in vivo and in vitro.  

 

Keywords: monocyte differentiation, CD14, CD16, aryl hydrocarbon receptor, 

immunosuppression, vascular biology 
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Introduction 

The role of monocyte heterogeneity in cardiovascular medicine is increasingly acknowledged 

(1-3). In murine models of atherosclerosis inhibition of chemokine receptors reduces 

circulating monocyte counts and almost completely inhibits atherogenesis (4). Consequently, 

immunomodulation of monocyte subsets has been proposed as an innovative treatment in 

cardiovascular disease (5, 6). Three human monocyte subsets exist: classical CD14
++

CD16
-
, 

intermediate CD14
++

CD16
+
 and nonclassical CD14

+
CD16

++
 monocytes, the latter have been 

previously summarized as CD16-positive cells (7). Pioneering experimental (8) and clinical 

data suggested a prominent role of intermediate CD14
++

CD16
+
 monocytes in cardiovascular 

disease in selected patient groups at highest cardiovascular risk (9, 10). Of note, the predictive 

role of CD14
++

CD16
+
 monocytes for cardiovascular events has been recently confirmed in a 

large cohort from the general population (11). 

In contrast to the extensively studied murine monocyte subsets, human monocyte 

heterogeneity still remains poorly understood (1, 3). Specifically, human monocyte subset 

differentiation and the impact of immunomodulating drugs on human monocyte heterogeneity 

have not been thoroughly studied so far. 

We reasoned that analyzing the developmental relationship and the influence of 

immunosuppressants on human monocyte subsets would advance the notion of therapeutic 

interference with monocyte subpopulations. As a model of de novo human monocyte 

differentiation, we chose to study hematologic reconstitution after allogenic and autologous 

hematopoietic stem cell transplantation (HSCT). In addition, the developmental course and 

the impact of immunosuppressants was analyzed in an in vitro model of human monocyte 

subset development. 
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Material and Methods 

In vivo differentiation of monocyte subsets 

We prospectively analyzed monocyte subpopulation differentiation in 19 patients after HSCT, 

of whom nine patients received allogenic HSCT after myeloablative conditioning regimens, 

and another ten patients underwent high dose chemotherapy with subsequent autologous 

HSCT. Indications for HSCT and conditioning regimes are presented in Table 1A and 1B. 

The local ethics committee approved the study and all patients gave their written consent.  

In order to analyze the effect of immunosuppressive drugs on monocyte subsets, we compared 

patients after autologous transplantation (AutoTx, n = 10) with patients undergoing allogenic 

stem cell transplantation (AlloTx, n = 9). All patients received peripheral blood mononuclear 

cells (PBMCs). AlloTx patients received anti-thymocyte globulin (ATG Genzyme; 4.5 mg/kg 

with related and 7.5 mg/kg with unrelated donors, respectively) on days -4 through -2 for 

prophylaxis of graft versus host disease. During the study period all AlloTx patients were on 

immunosuppression comprising a calcineurin inhibitor (either cyclosporine A [target trough 

level 150-200 ng/ml] or tacrolimus [target trough level: 8-12 ng/ml]) either as monotherapy, 

or combined with either mycophenolate mofetil (2 x 1 g/d from day +1 to day +28) or 

methotrexate (15 mg/m² (d +1), 10 mg/m² (d +3; +6). All patients received 50 mg 

prednisolone prior to stem cell transfusion. Afterwards corticosteroids were selectively 

administered for treatment of nausea, for prevention of allergic reaction to blood transfusions, 

or (in AlloTx) for treatment of graft versus host disease. Monocyte subset analysis was 

performed blinded to clinical characteristics of the respective patient. 

 

Flow cytometric analysis 

Monocyte subsets were identified via flow cytometry (FACS Canto II with FACSDiva 

Software; BD Biosciences, Heidelberg, Germany) according to our standardized and validated 

gating strategy (12) in cell culture or in a whole-blood assay using 100 µl of EDTA 

anticoagulated blood. Briefly, monocytes were gated in a side scatter/CD86 dot plot, 

identifying monocytes as CD86-positive cells with monocyte scatter properties. 

CD14
++

CD16
-
, CD14

++
CD16

+
 and CD14

+
CD16

++
 monocyte subpopulations were then 

distinguished by their surface expression pattern of CD14 (LPS receptor) and CD16 (FcγIII 

receptor). 
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Surface expression of different antigens was quantified as median fluorescence intensity (MFI) 

and standardized against coated fluorescent particles (SPHEROTM; BD Biosciences). The 

following antibodies were used: anti-CD14 PerCP (Mφ9), anti-CD16 PeCy7 (3G8), anti-

CD195 APC (2D7/CCR5), anti-CD282 Alexa Fluor 647 (11G7) and anti-CD192 Alexa Fluor 

647 (48607) from BD Biosciences, Heidelberg, Germany; anti-CD74 FITC (5-329) and anti-

CD105 APC (SN6) from eBioscience Frankfurt, Germany; anti-HLA-DR FITC (L243) and 

anti-CD202b Alexa Fluor 647 (Ab33) from BioLegend, Fell, Germany; anti-CD143 FITC 

(9B9) and anti-CX3CR1 FITC (2A9-1) from Biozol, Eching, Germany; anti-CD86 PE 

(HA5.2B7) from Beckman-Coulter, Krefeld, Germany and anti-CD284 FITC (HTA125) from 

AMS Biotechnology, Abingdon, United Kingdom. 

 

In vitro generation of monocytes from hematopoietic CD34
+
 stem cells 

For isolation of CD34
+
 hematopoietic stem cells, EDTA-anticoagulated blood was drawn 

from healthy volunteers by venopuncture and PBMCs were immediately isolated by Ficoll-

Paque (Lymphocyte Separation Medium; PAA, Cölbe, Germany) gradient density 

centrifugation. CD34
+
 cells were isolated using the CD34 MicroBead Kit (Miltenyi Biotec, 

Bergisch Gladbach, Germany) according to the manufacturer’s instructions. The mean purity 

of isolated CD34
+
 cells was 80.4 ± 6.4 % as determined flow cytometrically after anti-CD34 

(CD34 APC; 581; BD Biosciences) and anti-CD45 (CD45 PE; HI30; BD Biosciences) 

staining. 

Monocytes were generated from isolated CD34
+
 cells in a two step culture: first, CD34

+
 

hematopoietic stem cells were expanded in 6-well plates (1 x 10
4
 cells/ml) for 13 days in the 

Hematopoietic Progenitor Cell Expansion Medium DXF (PromoCell GmbH, Heidelberg, 

Germany) supplemented with the Cytokine Mix E (PromoCell GmbH) which contains the 

recombinant human growth factors TPO, SCF, flt3-ligand and IL-3. A 25 fold expansion rate 

of hematopoietic stem cells was observed within the 13 days. In the second step, expanded 

cells (2 x 10
4
 cells/ml) were seeded in 6-well plates in the Hematopoietic Progenitor Medium 

(PromoCell GmbH). Differentiation of hematopoietic stem cells into monocytes was flow 

cytometrically monitored after anti-CD86, anti-CD14 and anti-CD16 staining, subdividing in 

vitro differentiated monocytes into CD14
-
CD16

-
, CD14

++
CD16

-
 and CD14

++
CD16

+
 cells. 

For experiments with immune modulators, rapamycin, cyclosporine A and dexamethasone 

(all purchased from Biomol, Hamburg, Germany) as well as benzo(a)pyrene and 
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α-naphthoflavone (both purchased from Sigma Aldrich, Munich, Germany) were added to the 

Hematopoietic Progenitor Medium. 

 

Phagocytosis assay 

For phagocytosis assays, Fluoresbrite Yellow Green (YG) Carboxylate Microspheres 

(0.75 µm; Polysciences, Eppelheim, Germany) were first opsonized for 30 minutes at 37°C 

with serum from healthy donors (diluted to 50% with Krebs Ringers PBS) and adjusted to 

10
8
 particles/ml. 

At day 7 of differentiation, 1 x 10
4
 cells in 100 µl of culture medium were mixed with 10 µl 

of opsonized particles and incubated with gentle shaking for 30 minutes at 37°C. Control 

samples were incubated at 4°C. Cells were stained with anti-CD86, anti-CD14 and anti-CD16 

and counts of FITC positive cells were determined flow cytometrically in each cell type 

(CD14
-
CD16

-
, CD14

++
CD16

-
 and CD14

++
CD16

+
 cells). 

 

Measurement of reactive oxygen species (ROS) 

1 x 10
4
 cells from day 7 of differentiation were incubated with the cell-permanent carboxy-

H2DFFDA (Life Technologies, Darmstadt, Germany) in a concentration of 10 µM for 

15 minutes at 37°C and 5% CO2. Afterwards, cells were stained with anti-CD86, anti-CD14 

and anti-CD16 and ROS levels were determined flow cytometrically as MFI within the three 

cell types (CD14
-
CD16

-
, CD14

++
CD16

-
 and CD14

++
CD16

+
 cells). 

 

Proliferation assay 

The ability of distinct cell types (CD14
-
CD16

-
, CD14

++
CD16

+
) to induce CD4

+
 T-cell 

proliferation was analyzed by measuring the cytoplasmic dilution of CFDA-SE (Vybrant 

CFDA-SE Cell Tracer Kit; Life Technologies). Therefore, cells at day 7 of differentiation 

were separated into CD14
-
CD16

-
 and CD14

++
CD16

+
 using CD14 Microbeads (Miltenyi 

Biotec) and cultivated overnight in 96-well plates at a density of 5 x 10
4
 cells/well in the 

presence of 2.5 µg/ml staphylococcal enterotoxin B (SEB; Sigma-Aldrich, Munich, Germany). 

Within 24 hours, CD4+ T-cells were isolated from healthy donors using the CD4+ T Cell 

Isolation Kit II (Miltenyi Biotec) and labeled with 5 µM CFDA-SE for 10 minutes at 37°C. 
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2  x 10
5
 labeled CD4+ T-cells were added to SEB stimulated cells and counts of proliferating 

T-cells were measured after 4 days as CFDA-SE dilution, identifying T-cells after anti-CD3 

(CD3 APC; SK7; BioLegend) staining. 

 

Statistics 

Categorical data were presented as counts (percentages), and continuous data as mean 

(standard deviation), unless indicated otherwise. We compared continuous variables with 

Mann-Whitney test or with Kruskal-Wallis test (followed by Dunn’s test as post-hoc test), as 

appropriate. 
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Results 

Differentiation of human monocyte subsets in patients after HSCT 

In all patients, counts of monocyte subsets were analyzed from day +1 to hospital discharge. 

Figure 1A depicts representative examples from a patient after autologous HSCT and a 

patient after allogenic HSCT. CD14
-
CD16

-
 cells were the first cells appearing in the 

peripheral blood (day 5-6). Over the course of time we observed a gradual increase of 

CD14
++

CD16
-
 monocytes, seamlessly followed by the appearance of CD14

++
CD16

+
 and later 

of CD14
+
CD16

++
 monocytes. Monocyte subpopulation frequencies after HSCT plateaued at 

day 8-10 for CD14
++

CD16
-
 monocytes, at day 12-14 for CD14

++
CD16

+
 monocytes and at day 

14-16 for CD14
+
CD16

++
 monocytes.  

Interestingly, the developmental course of monocyte subsets in patients after autologous 

transplantation was similar to the pattern observed in patients after allogenic transplantation 

(Figure 1A), suggesting that the immunosuppressants given to patients after allogenic 

transplantation had no impact on monocyte subset development. Percentages of monocyte 

subsets determined at the end of the study period differed not between patients after allogenic 

HSCT versus patients after autologous HSCT (classical: 67.5 % vs 60.3 %; intermediate: 

15.7 % vs 16.3 %; nonclassical: 11.5 % vs 15.4 %; P > 0.05, respectively). 

Of note, previous studies reported that glucocorticoids induce depletion of CD16-positive but 

not of classical CD14
++

CD16
-
 monocytes (13-15); however, these reports subsumed 

intermediate CD14
++

CD16
+
 and nonclassical CD14

+
CD16

++
 monocytes as a single population. 

Instead, following recent consensus recommendations (7), we now subdivided CD16-positive 

monocytes into CD14
++

CD16
+
 and CD14

+
CD16

++
 cells, and found both subpopulations to be 

depleted following high dose corticosteroid treatment in HSCT patients (Figure 1B). 

 

Expression of surface markers on differentiating monocytes in patients after HSCT  

In a recent report, we described distinctive surface markers of human monocyte subsets 

characterizing their respective role in immunity (12). To investigate whether 

immunosuppressants have an impact on functional monocyte markers, we analyzed surface 

expression of these markers (CCR2, CD74, HLA-DR, ENG, TEK, CCR5, ACE, TLR2, TLR4, 

CX3CR1) on three monocyte subsets in 9 patients at day 14-16 after autologous HSCT and in 

4 patients at the same timeframe after allogenic HSCT. These markers are centrally involved 
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in distinct physiological and pathological processes such as inflammation and host defense 

(CD74, HLA-DR, TLR2, TLR4), atherosclerosis (CCR2, CCR5, CX3CR1, ACE) and 

angiogenesis (ENG, TEK). We previously described these markers as signature markers of 

the distinct monocyte subsets; CCR2 was a signature for CD14
++

CD16
-
 monocytes, whereas 

CD74, HLA-DR, ENG, TEK, CCR5, ACE, TLR2, TLR4 were signatures for CD14
++

CD16
+
 

monocytes and CX3CR1 was a signature for CD14
+
CD16

++
 monocytes; the subset-specific 

expression pattern of the respective markers in patients after HSCT matched our previous 

description of the surface expression in healthy donors (12). 

When comparing patients after allogenic with patients after autologous HSCT, subset-specific 

expression of all surface markers – except for CD74 – was lower (Figure 2); specifically 

CCR5, ACE, TLR2 and CX3CR1 tended to be downregulated, whereas expression of  CCR2, 

HLA-DR, ENG, TEK and TLR4 was significantly lower ( P < 0.05). 

 

In vitro differentiation of monocytes from CD34
+
 hematopoietic stem cells 

To further analyze monocyte subset differentiation and its modulation by routinely applied 

and experimental immunosuppressants, we established an in vitro model of monocyte 

differentiation.  

During initial expansion of CD34
+
 hematopoietic stem cells over 13 days, no upregulation of 

CD14 and CD16 surface expression was observed. Following this expansion period, 

CD14
-
CD16

-
 cells were cultivated in differentiation medium for 18 days, where they 

differentiated first into CD14
++

CD16
-
 monocytes (day 2-3; with maximal cell counts at day 7-

9), and subsequently into CD14
++

CD16
+
 monocytes (Figure 3A), thus reflecting the 

developmental process observed in vivo after HSCT. However, no further differentiation of 

CD14
++

CD16
+
 monocytes into CD14

+
CD16

++
 monocytes was observed in vitro. 

  

Characterization of in vitro generated monocyte subsets 

CD14
++

CD16
+
 monocytes are characterized as highly proinflammatory cells predicting 

cardiovascular mortality in patients at high cardiovascular risk (9, 10, 12). We now analyzed 

whether in vitro differentiated CD14
++

CD16
+
 monocytes show functional properties 
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comparable to circulating CD14
++

CD16
+
 monocytes, which would allow their use for further 

in vitro research in the field of monocyte subset biology. 

We first measured expression of surface antigens (CD74, HLA-DR, ENG, TEK, CCR5, ACE, 

TLR2 and TLR4), which are in vivo signature markers of circulating CD14
++

CD16
+
 

monocytes (12), on monocyte subsets on day 4 to 18 of in vitro differentiation. Throughout 

the in vitro differentiation period, CD14
++

CD16
+
 monocytes showed highest expression of all 

those signature surface markers (Figure 3B). 

Furthermore, we verified functional characteristics of in vitro differentiated monocytes 

subsets: CD14
++

CD16
+
 monocytes had a high capacity to phagocyte (Figure 3C) and to 

induce CD4
+
 T cell proliferation after SEB stimulation (Figure 3D); moreover, compared to 

CD14
-
CD16

-
 and CD14

++
CD16

-
 cells, CD14

++
CD16

+
 monocytes produced highest levels of 

reactive oxygen species (ROS) (Figure 3E), resembling functional characteristics of their 

circulating CD14
++

CD16
+
 monocytic counterparts in vivo after HSCT. 

 

Impact of conventional immunosuppressants on in vitro differentiation of human 

monocyte subsets 

We assessed the impact of different immunosuppressants on the differentiation process of 

monocyte subsets. Rapamycin (100 nM), cyclosporine A (250 ng/ml) or dexamethasone 

(250 nM) were added to the differentiation medium after initial expansion of CD34
+
 

hematopoietic stem cells, and their differentiation towards CD14
++

CD16
+
 monocytes was 

monitored for 8 days (Figure 4A). The proliferation inhibitor rapamycin reduced the 

development of CD14
++

CD16
+
 monocytes more potently (3.7 fold reduction in CD14

++
CD16

+
 

monocyte percentage at day 8) than dexamethasone (2.2 fold reduction, respectively), while 

development of CD14++CD16+ monocytes was not significantly inhibited by cyclosporine A. 

 

Impact of aryl hydrocarbon receptor activation on in vitro differentiation of human 

monocyte subsets 

Since activation of the aryl hydrocarbon receptor (AHR) was shown to influence 

hematopoietic stem cells (16) and to modulate T cell subsets (17), we hypothesized that AHR 

activation might influence monocyte subset differentiation. 
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Benzo(a)pyrene (10 µM) was added as an AHR activator to the differentiation medium and 

differentiation of monocytes was monitored for 8 days (Figure 4B). Interestingly, of all cells 

CD14
++

CD16
+
 monocytes were preferentially depleted by benzo(a)pyrene (e.g. 12.8 ± 1.9 % 

control vs 4.4 ± 2.7 % benzo(a)pyrene on day 8). This effect could be partially antagonized by 

addition of α-naphthoflavone (5.8 ± 3.1 % benzo(a)pyrene and α-naphthoflavone on day 8). 

(Figure 4B). 
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Discussion 

Monocyte heterogeneity has attracted much scientific interest especially in cardiovascular 

research within the last couple of years (3). 

Of special interest may be the intermediate CD14
++

CD16
+
 monocyte subset, since 

circumstantial evidence suggests pro-atherogenic virtues of CD14
++

CD16
+
 monocytes; among 

those are the combined expression of the chemokine receptor triad, CCR5, CCR2 and 

CX3CR1 (10), that has been shown to be crucial in experimental atherogenesis (4), the 

potential to home to activated endothelial cells and to attract further monocyte and 

T-lymphocytes (8) and their highest inflammatory capacity of all monocyte subsets (12, 18). 

This is underscored by cross-sectional studies associating CD16-positive monocytes with 

cardiovascular risk (19, 20) and by studies reporting that specifically CD14
++

CD16
+
 

monocytes were independent predictors of cardiovascular outcome (9-11, 21). 

However, human monocyte heterogeneity still remains poorly characterized, while a plethora 

of experimental data on murine monocyte subpopulations emerged in recent years (3). In view 

of general immunological interspecies differences in mice and men (22), which are to some 

extent also seen in monocyte heterogeneity (23), experimental data from murine models 

should not be uncritically transferred to humans. Therefore, a validated in vitro model for 

researching human monocyte subsets is needed. Previously monocytes and macrophages have 

been generated from CD34
+
 progenitor cells (24). However, no study so far compared the 

in vitro generated monocytes regarding phenotypic and functional properties with circulating 

human monocytes. In this regard, hematopoietic stem cell transplantation (HSCT) provides a 

unique validation tool for the in vivo evaluation of the temporal sequences of human 

monocyte subset differentiation and for further phenotypic and functional analyses. 

Interestingly, only one report looked at monocyte reconstitution of two subsets 

(CD14
++

CD16
-
 and CD16-positive cells) early after autologous stem cell transplantation (25); 

however the developmental course of the three subsets has not been rigorously followed. Of 

note, as discussed by Wrigly et al. (26) and our group (3) distinction of the two CD16-positive 

monocyte subsets into intermediate CD14
++

CD16
+
 and nonclassical CD14

+
CD16

++
 is 

essential due to the different functional characteristics of these subsets (12, 27). Moreover, the 

effect of immunomodulating drugs on monocyte heterogeneity has been largely overlooked so 

far; therefore we analyzed monocyte reconstitution following allogenic HSCT in comparison 

to autologous HSCT. 
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We report here that classical CD14
++

CD16
-
 monocytes are the first monocyte subset to 

emerge after HSCT, followed by intermediate CD14
++

CD16
+
 monocytes and finally 

nonclassical CD14
+
CD16

++
 monocytes. The observed developmental course and 

characteristics of in vitro generated monocyte subsets are in accordance with the analysis 

following HSCT.  

These findings support the so far unproven concept (1) that classical CD14
++

CD16
-
 

monocytes are precursors of CD16-positive monocytes. 

In vitro only rapamycin and steroids – representing established immunomodulators – 

significantly inhibit development of CD14
++

CD16
+
 monocytes. The observations following 

HSCT support these findings. In vivo glucocorticosteroids deplete CD16-positive monocytes 

(13-15), whereas immunosuppressive drugs such as the calcineurin-inhibitors cyclosporine A 

and tacrolimus, mycophenolate mofetil and methotrexate do not substantially alter monocyte 

subset distribution but merely modulate cell surface receptor expression of CCR2, HLA-DR, 

ENG, TEK, CCR5, ACE, TLR2, TLR4 and CX3CR1. Functional characteristics of monocyte 

subsets could thus be altered since these receptors are implicated in various physiologic and 

pathophysiologic processes, ranging from inflammation and host defense (CD74, HLA-DR, 

TLR2, TLR4) to atherosclerosis (CCR2, CCR5, CX3CR1, ACE) and angiogenesis (ENG, 

TEK). Of note, upregulation of ACE on the surface of intermediate monocytes has been 

associated with atherosclerosis (28) and was reported to be a predictor of outcome in dialysis 

patients (29).  

In addition, we report for the first time that immunomodulation via the AHR activator 

benzo(a)pyrene rather selectively inhibited the differentiation of CD34
+
 progenitor cells to 

CD14
++

CD16
+
 monocytes. This result could point to new strategies regarding monocyte 

subset modulation, since a variety of AHR agonists exist (30). 

Limitations of our study are explained by its design as an observational study in humans. 

Thus, we could neither test the effect of rapamycin in vivo since this drug was not part of the 

established immunosuppressive regimen after HSCT, nor could we test the effect of AHR 

agonists in vivo since none of these compounds obtained a license for use in humans.  

In conclusion, we report the developmental course of human monocyte subsets in vivo and 

in vitro; the validated in vitro model of monocyte subset differentiation may allow to assess 

the effects of novel pharmacological agents on monocyte heterogeneity. 
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What is known about this topic? 

- Three monocyte subsets exist: classical CD14
++

CD16, intermediate CD14
++

CD16
+ 

and 

non-classical CD14
+
CD16

++
 monocytes 

- Monocyte heterogeneity plays a central role in cardiovascular medicine 

- CD14
++

CD16
+
 monocytes are independent predictors of cardiovascular outcome 

- In contrast to the well researched biology of murine monocyte subsets, human 

monocyte subset biology is still poorly understood 

What does this paper add? 

- Developmental relationship of the three human monocyte subsets has been better 

characterized 

- Validation of an in vitro model for differentiation of monocyte subsets 

- Impact of routinely applied immunosuppressants on monocyte subset function and on 

their differentiation was characterized 
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Table 1A Characteristics of patients undergoing allogenic stem cell transplantation 

No. Age Gender Indication Conditioning Immunosuppression Steroid 

1 22.8 m AML FLAMSA CSA/MMF yes 

2 37.1 m CML BU/CY CSA no 

3 54.6 m AML FLAMSA CSA/MMF yes 

4 58.8 f AML CLAMSA CSA/MMF no 

5 63.9 m DLBCL FLU/BU/CY TAC/MMF no 

6 39.1 f cALL TBI/CY CSA/MTX yes 

7 63.8 f AML FLAMSA CSA/MMF yes 

8 52.7 f DLBCL FLU/BU/CY TAC/MMF no 

9 45.3 m T-ALL TBI/CLAMSA CSA/MMF no 
 

m: male, f: female; AML: acute myeloid leukemia, CML: chronic myeloid leukemia in blast 

crisis, DLBCL: diffuse large B-cell lymphoma, c-ALL: common acute lymphatic leukemia, T-

ALL: T-acute lymphatic leukemia 

TBI: total body irradiation; FLAMSA: fludarabine 30 mg/m
2 

(d -12 to -9), cytarabine 2000 

mg/m
2
 (d -12 to -9), amsacrine 100 mg/m

2
 (d -12 to -9), TBI 2 x 2 Gy (d -5), 

cyclophosphamide 60 mg/kg (d -4 to -3); BU/CY: busulfane 3,2 mg/kg (d -7 to -4), 

cyclophosphamide 60 mg/kg (d -3 to -2); CLAMSA: clofarabine 30 mg/m
2
 (d -12 to -9), 

cytarabine 2000 mg/m
2
 (d -12 to -9), amsacrine 100 mg/m

2
 (d -12 to -9), TBI 2 x 2 Gy (d -5), 

cyclophosphamide 60 mg/kg (d -4 to -3); FLU/BU/CY: fludarabine 25 mg/m
2 

(d -8 to -4), 

cyclophosphamide 60 mg/kg (d -3 to -2), busulfane 3,2 mg/kg (d -6 to -4); TBI/CY TBI 2x2 

Gy (d -3 to -1), cyclophosphamide 60 mg/kg (d -5 to -4); TBI/CLAMSA: Total body 

irradiation 2x2 Gy (d -12 to -11), cranial irradiation 24 Gy (d -10) / clofarabine 30 mg/m
2
 (d -

9 to -6), cytarabine 2000 mg/m
2
 (d -9 to -6), amsacrine 100 mg/m

2
 (d -9 to -6), 

cyclophosphamide 60 mg/kg (d -4 to -3). 

CSA: cyclosporine A 3 mg/kg (beginning d -1; subsequently blood target level 150 to 200 

ng/ml), MMF: mycophenolate mofetil 2g/d (d +1 to +28), TAC: tacrolimus 0,05 mg/kg 

(beginning d -1;subsequenly blood target level 8-12 ng/ml), MTX: methotrexate 15 mg/m
2
 

(d  +1), 10 mg/m
2
 (d +3; +6) 

 

 



 

Table 1B Characteristics of patients undergoing autologous stem cell transplantation 

No. Age Gender Indication Conditioning Steroid 

1 54.9 f DLBCL HD-TTBE no  

2 39.1 m MM MEL yes 

3 51.3 m MM MEL yes 

4 43.7 m FL BEAM no 

5 56.3 f T-NHL BEAM no 

6 53.0 m MM MEL yes 

7 57.9 m FL TBI/CY yes 

8 64.9 m DLBCL MEL yes 

9 66.4 m MM MEL yes 

10 60.4 m T-NHL BEAM no 
 

m: male, f: female, DLBCL: diffuse large B-cell lymphoma, MM: multiple myeloma, T-NHL: 

T-Non Hodgkin´s lymphoma 

HD-TTBE: thiotepa 2 x 5 mg/kg (d -4 to -3), carmustine 400 mg/m
2
, etoposide 150 mg/m

2
 

(d  -5 to -3); MEL melphalane 100 mg/m
2
 (d-3 to -2); BEAM: Carmustine 2 x 150 mg/m

2
 

(d -6), cytarabine 2 x 200 mg/m
2
 (d -6 to -3), etoposide 2 x 100 mg/m

2
 (d -6 to -3), 

melphalane 140 mg/m
2
 (d -2); TBI/CY: Total body irradiation 2 x 2 Gy (d -6 to -4), 

cyclophosphamide (60 mg/kg d -3 to -2). 

 



 

Figure Legends 

Figure 1. Monocyte subpopulations in patients after autologous and allogenic HSCT. (A) 

Via flow cytometry, monocyte subsets were analyzed in patients from day one after 

autologous and allogenic HSCT until hospital discharge. According to our validated gating 

strategy (12), monocyte subsets were defined and divided into classical CD14
++

CD16
-
 

monocytes (blue), intermediate CD14
++

CD16
+
 monocytes (red) and nonclassical 

CD14
+
CD16

++
 monocytes (green). CD14

-
CD16

-
 cells are displayed in black. Representative 

examples are shown. (B) Impact of steroids on monocyte subsets is shown in one 

representative patient after allogenic HSCT. 

 

Figure 2. Expression of signature marker proteins on monocyte subsets in patients after 

HSCT. Expression of surface proteins was determined as median fluorescence intensity (MFI) 

in 9 patients after autologous HSCT and in 4 patients after allogenic HSCT. Statistical 

analysis was performed using the Mann-Whitney-U-Test. *P < 0.05; **P<0.01. 

 

Figure 3. Differentiation of monocyte subsets in vitro. (A) After initial expansion of 

CD34+ cells, differentiation was initiated and the process was monitored flow cytometrically 

for 18 days. (B) Expression of surface proteins on CD14
-
CD16

-
 cells (black), CD14

++
CD16

-
 

monocytes (blue) and CD14
++

CD16
+
 monocytes (red) on day 4 to 18 of in vitro differentiation, 

measured as MFI. (C) Capacity to phagocyte opsonized carboxylate microspheres by 

CD14
-
CD16

-
 cells, CD14

++
CD16

-
 monocytes and CD14

++
CD16

+
 monocytes at day 7 of 

differentiation; counts of FITC-positive cells were determined flow cytometrically and are 

denoted as means ± SD. (D) Ability to induce CD4
+
 T cell proliferation by CD14

-
CD16

-
 cells 

and CD14
++

CD16
+
 monocytes at day 7 of differentiation measured flow cytometrically as 

cytoplasmic dilution of CFDA-SE. (E) Measurement of spontaneous intracellular ROS levels 

in CD14
-
CD16

-
 cells, CD14

++
CD16

-
 monocytes and CD14

++
CD16

+
 monocytes by flow 

cytometry using the ROS-detection reagent carboxy-H2DFFDA. Data were measured as MFI 

and presented as means ± SEM. Statistical analysis was performed using the Kruskal-Wallis 

test. Blood was taken from five healthy donors. 

 



 

Figure 4. Impact of immunosuppressants and of aryl hydrocarbon receptor activation 

on in vitro monocyte differentiation. (A) Differentiation of monocytes was flow 

cytometrically monitored for 8 days after the addition of rapamycin (100 nM), cyclosporine A 

(250 ng/ml) or dexamethasone (250 nM) to the differentiation medium after initial expansion 

of CD34
+
 cells. Data are presented as means ± SEM. Representative dot plots for day 8 are 

shown. Statistical analysis was performed using Kruskal-Wallis followed by Dunn's test as 

post-hoc test to compare treated samples vs control. * P < 0.05; ** P < 0.01. 

(B) Differentiation of monocytes after supplementation of the differentiation medium with the 

AHR activator benzo(a)pyrene (10 µM) and / or α-naphthoflavone (20 µM). Representative 

examples for day 1, 5 and 8 are shown including mean values ± SD of 3 independent 

experiments with blood of three healthy donors. 
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