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Abstract 

2The type-II-cytokine IFN-γ (interferon gamma) is not only a pivotal player in innate immune 

responses but also assumes functions in controlling tumor cell growth by orchestrating cellular 

responses against neoplastic cells. It predominantly triggers cellular responses through the 

Janus Kinase (Jak)/ Signal Transducer and Activator of Transcription 1 (STAT1) pathway leading 

to STAT1 binding to the promoter region of target genes. As key regulators of mRNA and 

protein expression levels, microRNAs (small non-coding RNAs) take part in fine-tuning complex 

biological processes such as cell proliferation, neoplastic transformation, apoptosis, immune 

surveillance and differentiation. 1MiR-29, one of the most interesting miRNA families in humans 

to date, consists of three mature members miR-29a, miR-29b and miR-29c, which are encoded 

in two genetic clusters. In this PhD thesis, the miR-29 primary cluster pri-29a~b-1 was shown 

to be IFN-γ-induced and STAT1-dependently up-regulated in melanoma cell lines. 2Furthermore, 

expression levels of mature miR-29a and miR-29b were elevated in cell lines and in primary 

melanoma patient samples while the pri-29b-2~c cluster was almost undetectable in cell lines. 

Moreover, tumor-suppressing properties of miR-29 family members have been detected: 

inhibition of melanoma cell proliferation could be induced by miR-29a, which down-regulated 

CDK6 (cyclin-dependent kinase 6), an important player in cell cycle G1/S transition. Also, 

knockdown of CDK6 resulted in reduced proliferation of melanoma cells, suggesting that miR-

29-mediated growth inhibitory effects may be brought about by CDK6-downregulation. 

These findings identify the pri-29a~b-1 cluster as a novel IFN-γ-regulated gene. Furthermore, a 

potential novel signaling pathway was identified: IFN-γ � Jaks � P-STAT1 � miR-29 � CDK6, 

which opens up new connections between miRNAs, interferon signaling and malignant 

melanoma, possibly clearing the way to novel concepts for new treatment options in the future. 
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Zusammenfassung 

Das Typ-II-Zytokin IFN-γ ist nicht nur ein zentraler Akteur in der angeborenen Immunantwort, 

sondern besitzt auch wichtige Funktionen in der Wachstumskontrolle von Tumorzellen, indem es 

zelluläre Antworten gegen neoplastische Zellen vermittelt. Es wirkt hauptsächlich über den 

Janus Kinase (Jak)/ Signal Transducer and Activator of Transcription 1 (STAT1) Signalweg, 

welcher zur Bindung von STAT1 in der Promoterregion von Targetgenen führt. MikroRNAs 

(kleine, nicht-codierende RNAs) sind bedeutsame Regulatoren von mRNA- und 

Proteinexpressionsspiegeln und tragen zur Feinjustierung komplexer biologischer Prozesse bei, 

wie z.B. Zellproliferation, neoplastische Transformation, Apoptose, Immunkontrolle und 

Differenzierung. miR-29, momentan eine der interessantesten der bisher bekannten miRNA-

Familien, besteht im Menschen aus den drei „reifen“ Familienmitgliedern, miR-29a, miR-29b und 

miR-29c, welche in zwei genetischen Clustern codiert sind. In dieser Doktorarbeit wurde 

gezeigt, dass das miR-29 Primärtranskript pri-29a~b-1 in Melanomzellen IFN-γ-induziert und 

STAT1-abhängig hochreguliert ist. Desweiteren waren die Expressionsspiegel der reifen miRNAs 

miR-29a und miR-29b in Zelllinien und primären Melanompatientenproben erhöht, während das 

pri-29b-2~b Transkript in Zelllinien fast nicht detektierbar war. Darüber hinaus wurden Tumor-

supprimierende Eigenschaften von miR-29-Familienmitgliedern ausfindig gemacht: eine 

Inhibierung der Proliferation von Melanomzellen konnte durch miR-29a induziert werden, welche 

CDK6 (cyclin-dependent kinase 6) herunterregulierte, einen wichtigen Akteur im G1/S-Übergang 

des Zellzyklus. Auch „Knock-down“ von CDK6 führte zu verminderter Proliferation von 

Melanomzellen, was darauf hindeutet, dass die durch miR-29a vermittelte Wachstumsinhibition 

durch Verminderung der CDK6-Expression bewerkstelligt werden könnte.  

Diese Ergebnisse beschreiben das pri-29a~b-1-Cluster als neues, IFN-γ-reguliertes Gen. 

Außerdem wurde ein neuer Signalweg entdeckt, IFN-γ � Jaks � P-STAT1 � miR-29 � CDK6, 

welcher neue Verbindungen zwischen miRNAs, Interferon Signaling und malignen Melanomen 

aufzeigt und möglicherweise den Weg für neuartige Behandlungskonzepte ebnet. 
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1 Introduction 

This PhD project addresses the fundamental question of if and how miRNA expression can be 

regulated by the cytokine IFN-γ and STAT1 transcription factors and furthermore considers their 

potential relevance for melanoma development. Accordingly, the introduction focuses on three 

major topics: miRNAs, Interferon/Jak/STAT signaling and melanoma. The first part of the 

introduction provides an overview on miRNAs, their biogenesis, regulation, mode of action and 

role in cancer as well as the miR-29 family, which became of special interest while the project 

was in progress. The second part introduces the canonical Jak-STAT signaling pathway and its 

main players. The last part of the introduction presents a brief overview on melanoma, an 

aggressive type of skin cancer, which was the main biological system investigated in this PhD 

project. 

1.1 MicroRNAs 

In the past decade, small non-coding microRNAs (miRNAs) have been identified as important 

novel players in post-transcriptional gene regulation and ever since, their expression patterns 

and cellular functions have been investigated in cancer and other diseases (Winter et al. 2009; 

Krol et al. 2010b). MicroRNAs (miRNAs) are a class of small non-coding RNA molecules (~22 

nucleotides), whose main function is the negative regulation of gene expression at a post-

transcriptional level. They are conserved in plants and animals (Ambros 2003), but not present 

in bacteria (Tjaden et al. 2006). In human cells, miRNAs are expressed in all cell types and are 

involved in the control of fundamental cellular processes such as differentiation, apoptosis, 

proliferation, cell death and others (Esau et al. 2004; Hwang and Mendell 2006; Jovanovic and 

Hengartner 2006). MiRNAs were initially discovered in 1993, when Victor Ambros, Rosalind Lee 

and Rhonda Feinbaum were studying the larval development in the nematode C. elegans and 

discovered the miRNA lin-4, which they showed to inhibit the lin-14 mRNA (Lee et al. 1993). 

However at that stage, lin-4 was only described as a short RNA product from the lin-4 gene. 

The term ‘miRNA’ was only introduced following their characterization as a separate class of 

biologically relevant molecules around the year 2000 (Pasquinelli et al. 2000; Lagos-Quintana et 

al. 2001; Lau et al. 2001; Lee and Ambros 2001). The rapidly growing interest in various 

aspects of miRNA biology is reflected by the constantly increasing number of publications since 

their first discovery. For the current version 19 of miRBase, entries for newly identified miRNAs 

have risen to 26,264 representing 193 different species (Kozomara and Griffiths-Jones 2011). 

Over the past decade, many diseases including almost all types of cancer have been connected 

to aberrant expression of miRNAs (Esquela-Kerscher and Slack 2006; Chang and Mendell 2007; 

Iorio and Croce 2012b). 1Like protein-coding genes, miRNAs can either act as tumor 
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suppressors when down-regulating potentially oncogenic targets or they can exert oncogenic 

functions when tumor-suppressive target mRNAs are down-regulated (Carleton et al. 2007). 

Apart from their role in regulation of mRNA expression and involvement in cancer, miRNAs were 

postulated to confer robustness to biological processes by compensating for alterations of 

cellular transcription levels (Ebert and Sharp 2012). 

Biogenesis of miRNAs 

The canonical miRNA biogenesis pathway (Winter et al. 2009; Krol et al. 2010a; Treiber et al. 

2012) is a multi-step process and an overview is shown in Fig. 1. miRNAs are transcribed in the 

nucleus mainly by RNA-polymerases II, but the involvement of RNA-polymerases III has also 

been reported for some cases (Faller and Guo 2008). The polymerases create a primary 

transcript, which is several thousand nucleotides long and contains a 5’-methylguanosine-cap as 

well as a 3’-poly(A)-tail like mRNAs. This primary (pri-) miRNA is then processed into a 70-80 

nucleotide-long precursor form (pre-miRNA) by the RNase III enzyme Drosha and the dsRNA-

binding protein DGCR8 (DiGeorge syndrome critical region 8). This pre-miRNA exerts a typical 

hairpin structure with a 2 nucleotide 3’-overhang derived from Drosha-processing (Graves and 

Zeng 2012). Its nuclear export is subsequently mediated by Exportin 5 which, supported by 

Ran-GTP, delivers the pre-miRNA to the cytoplasm (Davis-Dusenbery and Hata 2011). The 

following step, i.e. cleaving of the precursor molecule into its bioactive, mature form, is 

performed by the RNase enzyme Dicer, one of the most important proteins within the miRNA 

biogenesis pathway (Ma et al. 2011b). Together with its interacting partners TRBP (TAR RNA-

binding protein), PACT (protein activator of PKR) and Ago2 (Argonaute 2) (Koscianska et al. 

2011), it is often referred to as RISC (RNA-induced silencing complex) loading complex (RLC) 

(Winter et al. 2009). The Dicer-derived mature miRNA duplex is 21-23 nucleotides long. It is 

quickly separated by helicase into two single strands whose further distribution depends on 

thermodynamic stability and which are subsequently named differently: The ‘major’ strand (also 

known as ‘guide’ strand) is generally incorporated in the RISC and is found in a higher 

concentration in the cell in comparison to the ‘minor’ strand (also known as ‘passenger’ strand 

or miRNA star (*) sequences). However, recently evidence was provided that also star (*) 

sequences, which are now labeled as ‘-3p’ in contrast to the ‘-5p’-suffix for the ‘major’ strands, 

are not always degraded but can exhibit biological functions and thus target an own set of 

mRNAs (Fig. 1) (Czech and Hannon 2011). The RISC, sometimes referred to as ‘miRISC’ when 

loaded with a miRNA, is in charge of directing the incorporated, single-stranded miRNA to its 

target mRNA (Winter et al. 2009). The miRNA subsequently represses expression of mRNAs and 

their encoded proteins in the cytosol, mostly by binding to their 3’-UTR but binding to the 5’-

UTR (Orom et al. 2008) or the coding region (Fang and Rajewsky 2011) has also been reported. 
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Fig. 1 Schematic overview: genomic organization and biogenesis of human miRNAs 

((Winter et al. 2009; Meister 2011), adapted). (A) miRNAs can be encoded in polycistronic clusters or as 

monocistronic genes. Most miRNA genes are encoded within introns of protein coding genes; some 

miRNAs, which are processed by the splicosome, form entire introns. (B) Pri-miRNAs are transcribed in 

the nucleus mainly by RNA-polymerase II. After first processing of the primary transcript to the pre-

miRNA by Drosha and DGCR8, the precursor molecule is exported to the cytoplasm by Exportin 5. 

Cleavage by Dicer leads to the ~22 nucleotide long mature miRNA duplex. The major strand gets 

incorporated into the RISC complex, where it can act on target mRNAs while the other strand is degraded 

or targets an own set of mRNAs. Ago2 - Argonaute protein 2; DGCR8 - DiGeorge syndrome critical region; 

RISC – RNA-induced silencing complex; TRBP – TAR RNA binding protein.  
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The seed region determins, which mRNA can potentially be targeted by a given miRNA. It 

comprises nucleotides 2-7, which generally exhibit a perfect complementarity to the 

corresponding binding site of the mRNA-3’-UTR (Fabian et al. 2010). The seed sequence also 

influences target gene recognition and the efficiency of the subsequent repressing procedure. 

Interaction with the 6 nucleotides of positions 2-7, (‘6-mer’) results in the weakest possible 

binding to the target UTR and consequently leads to a weak repression. The repression is 

enhanced, if an adenosine is present at position 1 (‘7-mer-A1’-site, Fig. 2) and even more so, if 

nucleotides 2-8 exibit a perfect match (‘7mer-m8’-site) or if eight nucleotides perfectly pair with 

the target mRNA as shown in Fig. 2 (Bartel 2009; Schnall-Levin et al. 2011). However, so-called 

atypical sites with mismatches can also occur (Bartel 2009). 

 

 

 

Fig. 2: Canonical miRNA target sites 

Different possibilities of target gene recognition and binding by miRNAs as described in the text. The 

binding efficiency increases together with the efficiency of target gene repression from the 7mer-A1 

pairing to the 8mer site. Adapted from (Bartel 2009). 

 

Mode of action 

MiRNAs and target mRNAs interact while the mature miRNA strand is incorporated in the RISC 

complex. The two main mechanisms which had been described initially for miRNA-mediated 

gene silencing were mRNA degradation and inhibition of translation of the respective mRNA 

(Filipowicz et al. 2008). It was furthermore claimed that the detailed mode of action depends on 

the complementarity between miRNA and target mRNA sequence with full complementarity 

leading to mRNA degradation while incomplete complementarity induces prevention of 
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translation (Lim et al. 2005; Brodersen and Voinnet 2009). In principle, protein translation can 

be inhibited at multiple steps, for example during initiation, assembly of the ribosomal subunits 

as well as during elongation and termination of translation (Chekulaeva and Filipowicz 2009). 

Additional modes of action have been proposed in recent years. Very recently, Morozova et al. 

published an overview of miRNA-mediated mechanisms based on literature analysis and on a 

mathematical model, suggesting that the various reported mechanisms coexist in the cell, as 

shown in Fig. 3 (Morozova et al. 2012). These mechanisms include: cap inhibition, 60 S joining 

inhibition, inhibition of elongation, ribosome drop-off, co-translational protein degradation, 

sequestration in P-bodies (processing bodies), mRNA decay, mRNA cleavage and transcriptional 

inhibition. Most of them have been confirmed experimentally, however, some remain 

controversial (Morozova et al. 2012; Zinovyev et al. 2012). 

 

 

 

 

Fig. 3: Possible miRNA modes of action on protein translation 

From (Zinovyev et al. 2012). Translation can be inhibited at several steps: (1) initiation of translation can 

be prohibited by preventing the assembly of the initiation complex (for example by action on eIF4 or 

40S), (2) searching for the start codon can be prevented, (3) ribosome assembly can be affected, (4) the 

translation process can be inhibited. Other mechanisms include for example transport to P-bodies, 

ribosome drop-off, co-translational protein degradation and others (not shown here). 

40S, 60S: ribosomal subunits; 80S: assembled ribosome, RISC: RNA-induced silencing complex; eIF4 - 

eukaryotic translation initiation factor 4; PABPC1 - Polyadenylate-binding protein 1; cap – mRNA cap 

structure.  

 

In terms of target gene repression, in silico, in vitro and in vivo studies show that a single 

miRNA can down-regulate hundreds of genes (Krek et al. 2005; Lim et al. 2005). On the other 
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hand, one gene can be targeted by several miRNAs (Wu et al. 2010). According to recent 

publications, miRNA functions are not solely limited to actions in the cytoplasm, but can also 

perform tasks in the nucleus (Huang and Li 2012). 

Genomic organization and regulation of miRNA expression 

miRNAs can be organized in genetic clusters with several members being encoded close to each 

other or within a certain distance between genomic locations of single miRNAs (Fig. 1). Cluster 

members are often generated within a transcriptional unit from a common primary transcript, 

but can also be regulated separately. For miRNA families, precursor sequences of the different 

members are positioned in different genomic locations, but all members share the same 

conserved seed region. miRNA family members have the same name which is followed by a 

letter to differentiate between family members from different genomic locations: for example 

hsa-miR-23a is encoded on chromosome 19 whereas its ‘sister’ miRNA hsa-miR-23b is 

transcribed from chromosome 9. 

MiRNAs exhibit a relatively low rate of evolutionary changes and thus can be used as 

phylogenetic markers (Wheeler et al. 2009). Their genes can be located in intergenic regions or 

within introns or exons of protein-coding genes (Kim and Nam 2006) and entire pri-miRNAs can 

also be spliced like normal mRNAs (miRtrons) (Kim 2005) (Fig. 1). In contrast to the 

transcriptional start sites (TSSs) of protein-coding genes, identification of miRNA TSSs and 

assignment of promoter regions remains difficult and conventional methods for TSS 

identification are often not suitable, mainly due to the quick processing and rapid turnover times 

of primary miRNA transcripts (Krol et al. 2010a). Thus, only a few precise miRNA promoters 

have been experimentally characterised so far (Chien et al. 2011). 

Transcriptional regulation is thought to be the main mechanism for regulation of miRNA 

expression (Bartel 2004), but other controlling processes including epigenetic silencing (Bueno 

et al. 2008) and different processing and turnover times have also been described (Krol et al. 

2010b). Depending on the surrounding cellular context or tissue, differential expression of 

proteins of the miRNA processing machinery will affect miRNA amounts (Lu et al. 2005b). 

Furthermore, expression levels of certain miRNAs can be drastically altered if the primary 

transcript is encoded at genomically instable sites, which are often deleted or multiplied in 

cancer (Calin et al. 2004). Binding of transcription factors to the promoter region of a gene 

normally leads to activation of targets, however, transcription can also be repressed. Identifying 

the transcription factors, which regulate miRNAs or their respective host genes (in the case of 

intragenic miRNAs) is crucial for understanding regulation and different miRNA expression 

patterns in a healthy versus a diseased cellular context. 

As miRNAs are predicted to control approximately 50 % of human genes (Friedman et al. 2009) 

and are often de-regulated in cancer and other diseases, deciphering cellular networks of their 
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own regulation is of obvious importance. Different mechanisms are implicated in the regulation 

of miRNAs, which can act at several cellular stages as was recently reviewed by Krol and 

colleagues (Krol et al. 2010b). For example the protein machinery involved in miRNA processing 

can be influenced by other proteins: Drosha and Dicer efficiencies are largely dependent on 

their binding partners DGCR8 and TRBP, respectively (Han et al. 2009; Melo et al. 2009). 

Furthermore, miRNA stability can be influenced by modifications at the 3’-end, as exemplified by 

the RNA-binding protein LIN-28 which can repress the maturation of the let-7 miRNA 

(Viswanathan et al. 2009). Furthermore, RNA-binding proteins partake in the regulation of 

miRNAs by direct interaction with the RISC-complex (Galgano et al. 2008) and miRNAs can also 

be epigenetically silenced (Bueno et al. 2008; Yan et al. 2011). 

Like mRNAs, most miRNAs are transcribed by RNA-polymerase II. Likewise, transcription factors 

can regulate miRNA expression in the same way as they control expression levels of protein-

coding genes. Among others, miRNA-regulation by c-myc (O'Donnell et al. 2005), p53 (Jin et al. 

2011) and HIF (hypoxia-inducible factor) (Kulshreshtha et al. 2007) has been demonstrated. 

Hence, transcription factors provide the opportunity to fine-tune miRNA expression levels also in 

a tissue-specific manner. Additionally, transcription factor-miRNA interactions can be part of a 

regulatory network including feedback loops: Transcription factors can guard the expression of 

a certain miRNA and vice versa, a transcription factor can be negatively regulated by a miRNA 

either via direct interaction or via a secondary regulator. The feedback loop involving miR-133b 

and the transcription factor PitX3 (Pituitary homeobox 3) in neurons is a well-described example 

with miR-133b-mediated repression of PitX3 and PitX3-dependent transcriptional regulation of 

miR-133b (Kim et al. 2007). More loops involving miRNA-transcription factor-interaction will be 

discussed below. A major focus of this PhD thesis was the investigation of transcriptional 

regulation of miRNA expression and therefore a brief introduction of eukaryotic transcription is 

provided in chapter 2.3. 

miRNAs in cancer 

miRNAs have been implicated in the regulation of processes that promote cancer growth or 

conversely, in processes that might prevent cancers from developing. Since their discovery, 

deregulation of miRNA expression has been connected to a plethora of malignancies and other 

diseases. Like protein-coding genes, miRNAs can be classified as being either ‘oncogenic’ or 

‘tumor-suppressive’. A very recent review lists the ‘key microRNAs involved in cancer’, whose 

oncogenic or tumor-suppressive functions have been extensively studied in several cancer types 

(Lujambio and Lowe 2012). Table 1 shows an overview of the most prominent cancer 

microRNAs. 
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Table 1: Selection of most prominent cancer microRNAs 

(green) Tumor suppressor miRNAs and (red) oncogenic miRNAs, ↑ ≙ up-regulated; ↓ ≙ down-regulated. 
Adapted from (Garzon et al. 2009a; Iorio and Croce 2012a). 
 
miRNA Expression in 

patients 

Selection of confirmed 

targets 

Experimental data 

miR-15a/16-1 ↓ in CLL Bcl-2, WT-1 Induce apoptosis and decrease tumorigenicity 

Let-7 (a-d) ↓ in lung and 

breast cancer 

Ras, c-myc, HMGA2 Induce apoptosis 

miR-29 ↓in CLL, AML, lung 

and breast cancers, 

cholangiocarcinoma 

and others 

TCL-1, MCL-1, CDK6, 

DNMT3s 

Induce apoptosis and decrease tumorigenicity 

miR-34a-c ↓in pancreatic, 

colon and breast 

cancers 

CDK4, CDK6, cyclinE2, 

E2F3 

Induce apoptosis 

miR-155 ↑ in CLL, DLBCL, 

AML, BL, lung and 

breast cancers 

c-maf Induces lymphoproliferation, pre-B 

lymphoma/leukemia in mice 

miR-17~92 

cluster 

↑ in lymphomas, 

breast, lung, colon, 

stomach and 

pancreatic cancers 

E2F1, Bim, PTEN Cooperates with c.myc to induce lymphoma in 

mice, transgenic miR-17-92 develop 

lymphoproliferative disorders 

miR-21 ↑ in breast, colon, 

pancreas, lung, 

prostate, liver and 

stomach cancer, 

AML, CLL and 

glioblastoma 

PTEN, PDCD4, TPM1 Stimulates invasion and metastasis in different 

tumour types 

miR-372/373 ↑ in testicular 

tumors 

LATS2 Promote tumorigenesis in cooperation with RAS 

 

One of the first ‘oncomirs’ described was miR-21, which exhibits elevated levels in many human 

cancers and which down-regulates tumor suppressor genes such as those encoding PTEN 

(phosphatase and tensin homolog) and RECK (reversion-inducing-cysteine-rich protein with 

kazal motifs) (Meng et al. 2007a; Gabriely et al. 2008; Pan et al. 2010). Another well-known 

example is oncogenic miR-155, which was shown to repress genes responsible for repair of DNA 

damage (Costinean et al. 2006; Tili et al. 2011). On the other hand, the most prominent 

representatives of miRNAs exhibiting predominantly tumor-suppressive properties include miR-

34, miR-15~16, members of the let-7 family as well as the miR-29 family (Calin et al. 2002; 

Garzon et al. 2009b; Hermeking 2009; Buechner et al. 2011; Zhang et al. 2011b). The miR-29 

family or its single members, which will be described in more detail below, have been shown to 

be down-regulated in glioblastoma (Cortez et al. 2010), lung cancer (Yanaihara et al. 2006), 

prostate cancer (Porkka et al. 2007), colon cancer (Cummins et al. 2006), chronic lymphocytic 

leukemia (Calin et al. 2005) and many other malignancies. Apart from those miRNAs which can 

clearly be attributed to a distinct class, miRNAs with ‘dual’ functions as oncogenic or tumor-

suppressive, depending on the cellular context, have been reported. Examples are miR-125b, 

the miR-181 family and miR-220 (Fabbri et al. 2007b; Visone et al. 2007; Nam et al. 2008). 

Reliable and detailed knowledge of these miRNA functions is crucial to pave their way to the 
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clinic: The allocation to the ‘oncomir’ or ‘tumor-suppressive’ group should be determined before 

levels of miRNAs are manipulated in clinical treatments. 

miRNAs as biomarkers and therapeutical agents 

1Since it has been demonstrated that miRNAs often have tissue- and disease-specific expression 

patterns, the possibility to use miRNAs as biomarkers for early diagnosis of malignancies and 

other diseases has been studied extensively in recent years. They exhibit an extreme high 

stability in formalin-fixed tissues, plasma and serum samples (Mitchell et al. 2008) and are 

present in most solid tissues (Lu et al. 2005a; Liang et al. 2007). Apart from blood, where they 

are currently being examined and evaluated as ’secreted or circulating’ miRNAs, the small RNA 

molecules have been detected in many body fluids such as tears, breast milk, urine, bronchial 

lavage and others (Weber et al. 2010). Thus, as soon as there are robust and standardized 

methods for extraction, quantification and analysis of these secreted miRNAs, they are likely to 

become promising biomarkers, offering a non-invasive approach for the diagnosis of diseases, 

which alter miRNA expression profiles. The respective studies, which have been initiated for 

many different cancer types mostly rely on a panel of different miRNAs instead of single 

molecules (Chen et al. 2012). 

As described above, a cancer cell can emerge following the over-expression of classic 

oncogenes and so-called ‘oncomirs’ (such as the miR-17-92 family, miR-21, -155, miR-34a etc.), 

which down-regulate tumor-suppressors that normally control cell proliferation (Krutovskikh and 

Herceg 2010). On the other hand, miRNAs that function as tumor-suppressors by targeting 

cellular oncoproteins (such as let-7 family members, miR-15a, -16, -29, etc.) are frequently 

down-regulated in cancer tissues (Henry et al. 2011). Therapeutics opting to replace the 

diminished tumor-suppressor miRNAs are currently being investigated and seem promising, as 

miRNAs exhibit high stability as well as high specificity for their target mRNAs (Henry et al. 

2011; Kasinski and Slack 2011). 1Furthermore, miRNAs and their target genes represent 

interesting pharmaceutical targets as part of a general or personalized therapy in the future. 

However, several problems need to be adressed, such as efficient delivery and potential side-

effects. The miRNA treatment with the biggest potential for clinical application is currently a LNA 

(locked nucleic acid)-inhibitor of liver-specific miR-122 termed ‘Miraversen’, which is in clinical 

trials as an application against hepatitis C virus (HCV) infections, which can lead to the 

development of hepatocellular carcinoma (HCC). Remarkably, miR-122 inhibition was shown to 

reduce HCV viremia in monkeys (Lanford et al. 2010; Hildebrandt-Eriksen et al. 2012). 

1Otherwise, clinical applications are still rare and before miRNAs will routinely be incorporated in 

clinical therapeutic interventions, more detailed information on their precise biological functions 

within different cellular contexts will need to be collected. 
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The miR-29 family 

1The miR-29 family is among the earliest ones discovered (Lagos-Quintana et al. 2001) and is 

highly conserved among species (Kozomara and Griffiths-Jones 2011). An overview on the 

genomic organization and the mature sequences of the miR-29 family is shown in Fig. 4. 1In 

humans, it is encoded by two clusters, miR-29a~29b-1 (chromosome 7q32.3) and miR-29b-

2~29c (chr 1q32.2). miR-29a and miR-29b-1 (GenBank accession number EU154353 as well as 

miR-29c and miR-29b-2 (EU 154351 and EU154352) are co-transcribed by RNA-polymerase II 

as a polycistronic primary transcript from the minus strand (Chang et al. 2008; Mott et al. 

2010), only encoded 649bp and 504bp apart from each other, respectively. 1With identical seed 

sequences, miR-29 family members share most of their predicted targets. 1MiR-29b-1/b-2 have 

the same mature sequence and miR-29a and 29c mature sequences only differ by one 

nucleotide (Fig. 4). 

 

 

 

Fig. 4: miR-29 family: genomic organization and mature sequences. 

(A) 2The miR-29 family is transcribed from the respective antisense strand from two genetic clusters of 

chromosomes 7 (pri-29a~b-1) and 1 (pri-29b-2~c). (B) The three mature forms miR-29a/29b/29c share 

the same seed region (blue box). 2Differences between the mature sequences are underlined; the one 

nucleotide difference between miR-29a and miR-29c is shown in italics. 

 

1All miR-29 family members are ubiquitously expressed in healthy tissues (www.microrna.org, 

(Betel et al. 2008)). 1Both clusters, miR-29a~29b-1 and miR-29b-2~29c, are intergenic with no 

protein-coding genes in close proximity. 1Only a non-coding RNA (LOC646329), which has not 

been further characterized yet, shares part of the sequence with miR-29a~29b-1 

(www.genome.ucsc.edu) (Kent et al. 2002). The human miR-29 family represents a very 

important miRNA family whose members are increasingly recognized as tumor suppressors in a 

variety of malignancies. 1Since their sequence was added to miRBase in 2001 (Lagos-Quintana 

hsa-miR-29a: 5’-U AGCACCAAGCACCAAGCACCAAGCACCA UC UGAAAUCGGUUA-3’
hsa-miR-29b: 5’-U AGCACCAAGCACCAAGCACCAAGCACCA UU UGAAAUCAGUGUU-3’

hsa-miR-29c: 5’-U AGCACCAAGCACCAAGCACCAAGCACCA UU UGAAAUCGGUUA-3’

649 bp
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et al. 2001), the number of publications on one or more members of the human miR-29 family 

rose quickly to more than 100. In recent overview articles on miRNAs in cancer, the miR-29 

family resided among the topmost cancer-associated miRNAs (Spizzo et al. 2009; Lujambio and 

Lowe 2012). Members of the miR-29 family have been shown to be implicated in many 

divergent cellular processes like extracellular matrix homeostasis (Villarreal et al. 2011), 

collagen expression (van Rooij et al. 2008), insulin signaling (Pandey et al. 2010), aging (Ugalde 

et al. 2011) and others. The number of confirmed targets for one or more family members is 

constantly rising, including many different protein classes ranging from transcription factors 

(Steiner et al. 2011; Ugalde et al. 2011), viral proteins (Ahluwalia et al. 2008) to growth factors 

(Hand et al. 2012), structural cell components (van Rooij et al. 2008) and others. 1Noteworthy, 

miR-29 members have also been connected to diseases other than cancer, for example 

myocardial infarction (van Rooij et al. 2008), diabetes (Pandey et al. 2010) and atherosclerosis 

(Chen et al. 2011). The implication of the miR-29 family in diseases like myocardial infarction 

and renal injury has recently been reviewed as well as its tumor-suppressing functions and its 

role in the immune system (Kriegel et al. 2012; Liston et al. 2012; Schmitt et al. 2012a). 
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1.2 Signal Transduction 

Signal transduction in cellular communication 

A task which the human body solves with a fascinating accuracy is the allocation of an efficient 

communication system for intercellular correspondence. Already in the early steps of embryonal 

development, the few cells which will grow up to organs and constitute the complex organism 

later on, exchange information to ensure proper division, differentiation and positioning. After 

formation of organs and the organism as such, cell communication remains crucial for everyday 

survival. Signal transduction in general represents a fundamental basis for the regulation and 

maintenance of the body functions. It provides the basic elements for the communication of 

cells with each other, enables them to take up extracellular information in form of signals and 

process them to the inside of the cell where subsequent tasks like gene regulation can be 

fulfilled (Eckardstein 2009). 

The impact of signal transduction in cancer and other diseases is obvious - false regulation of 

the extracellular signal or entire signal transduction pathways leads to wrong transmission of 

the information from the extracellular environment to the inside and thus can cause imbalances 

in the homeostasis of the cell. Therefore, it is important to decipher the functions of single 

components, which take part in signal transduction processes in order to understand those 

malfunctions and to develop therapeutical treatment options. One of the most evolutionary 

conserved and simultaneously very prominent signal cascade in eukaryotic cells is the Jak-STAT 

signaling pathway, which will be of major interest for this PhD project. 

Interferons as inducers of the Jak-STAT pathway 

Cytokines are key glycoproteins involved in cellular signaling, which regulate, amongst other 

fundamental processes, growth and differentiation of cells. They are subdivided into five main 

groups, i.e. interleukins, interferons, tumor necrosis factors, colony-stimulating factors and 

chemokines (Eckardstein 2009). The respective cytokine receptors can also be divided into five 

groups according to structural features of their extracellular domains. These are type-I- and 

type-II-cytokine receptors, TNF (tumor necrosis factor) receptors, receptors of the Ig 

(immunoglobulin) superfamily and seven-transmembrane receptors (Eckardstein 2009).  

Interferons comprise a cytokine family with important functions in immune responses and they 

signal via type-II-cytokine receptors. They were originally described as agents that ‘interfere 

with viral replication’ by Isaacs and Lindenmann in 1957 and are classified into two groups type 

I (‘viral interferons’: IFN-α with subtypes, IFN-β, IFN-ω and IFN-τ) and type II (‘immune 

interferon’: only IFN-γ) interferons (Borden et al. 2007). Apart from their specific anti-viral 

activities, common actions of interferons are the regulation of cell growth, differentiation and 

apoptosis as well as the activation of immune cells (Samuel 2001; Santos and Costa-Pereira 
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2011). Because of their above mentioned properties in infection and other cellular processes, 

interferons have first been introduced as therapeutical agents already in 1986 (Pestka 2007). 

Today, IFN-α is still used for treatment against melanoma, (hairy cell) leukemia, chronic 

hepatitis B and C and other diseases, whereas multiple sclerosis patients receive IFN-β 

treatment and IFN-γ is given in chronic granulomatous disease and malignant osteopetrosis 

(Pestka 2007). The probably best known example for the use of interferons as medication is a 

pegylated interferon α 2 which is used in combination with ribavirin for treatment of hepatitis C 

and has been FDA (food and drug administration)-approved in 2002. However, interferon-

treated patients regularly suffer from severe side effects such as flu-like symptoms (headache, 

fever, fatigue etc.), depression and others (Dusheiko 1997). 

IFN-γ has long been recognized for its crucial role in defense against viral and bacterial 

infections as well as in tumor control (Dunn et al. 2006; Schreiber et al. 2011). It can be 

produced by APCs (antigen-presenting cells, such as dendritic cells, monocytes and 

macrophages) and NK (natural killer)-cells and primarily signals through the Jak/STAT pathway 

via binding to the IFNGR1 (IFN-γ-receptor 1, associates Jak1) and IFNGR2 (associates Jak2). 

Examples for IFN-γ-regulated genes are STAT1, IRF-1 and SOCS1 (Fig. 6). IFN-α and IFN-β 

signal via IFNAR1/2 (IFN-α-receptor 1) (Fig. 6). 

The Jak-STAT signaling pathway 

Conserved among eukaryotes, STAT pathways are also present in slime molds, worms, flies and 

vertebrates, but not in fungi and plants (Darnell 1997; Aaronson and Horvath 2002). The Jak-

STAT pathway was discovered 20 years ago (Stark and Darnell 2012) and can be activated by 

cytokines, but also by growth factors and hormones (Subramaniam et al. 2001; Eckardstein 

2009). Main components of the pathway are the respective receptor, Janus kinases and STAT 

transcription factors. STAT transcription factors can also become activated independently of the 

Jak-STAT pathway, for example by receptors with intrinsic tyrosine kinase activity such as the 

EGF (epidermal growth factor) and PDGF (platelet-derived growth factor) receptor (Levy and 

Darnell 2002). This PhD project focuses on the induction of the Jak-STAT pathway by 

interferons, following the path: IFN-γ � IFNGR1/2 � Jak1/2 � P-STAT1 � STAT1 target 

genes. 

Main players of the Jak-STAT pathway: Janus kinases and the STAT family of 

transcription factors 

The Janus kinase family consists of the four cytoplasmic, receptor-associated tyrosine kinases 

Jak1, Jak2, Jak3 and Tyk2. Jak1, Jak2 and Tyk2 show ubiquitous expression, whereas Jak3 is 

only expressed in hematopoietic cells (Cornejo et al. 2009). Janus kinases are named after the 

two-faced roman god Janus, which stands for the past and the future. Similar to the two faces 
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of the god Janus, Jaks have two kinase domains, i.e. a functional kinase domain and a so-called 

pseudokinase domain, which is catalytically inactive (Saharinen and Silvennoinen 2002).  

In total seven STAT genes (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B and STAT6) have 

been identified in mammals. The common feature of the mammalian STAT protein family are 

their conserved domains (Levy and Darnell 2002; Reich and Liu 2006), some of which are 

shown in Fig. 5 for STAT1. The sizes of STAT proteins range from 750 to 850 amino acids 

(Kisseleva et al. 2002). 

 

 

Fig. 5: STAT1 crystal structure and DNA binding motif 

Crystal structure of the STAT1 dimer bound to DNA with the following protein domains; green: coiled-coil 

domain; red: DNA-binding domain; orange: linker domain; cyan: SH2-domain. The phosphotyrosine 

residue Tyr701, which is critical for activation is indicated by the red arrow, the DNA backbone is grey. 

(taken from (Chen et al. 1998))  

 

The N-terminal and the coiled-coil domain are important for protein-protein-interaction, as for 

example the interplay of STAT1 with PIAS (protein inhibitor of activated STAT) (Shuai 2000). 

The DNA binding domain provides the possibility for dimerized STATs to interact with promoter 

regions of their respective target genes. Another important region, which is crucial for the 

dimerization of STAT proteins is the SH2 protein domain (Src homology 2). This motif is 

structurally conserved, present in many signaling molecules and generally recognizes 

phosphotyrosine residues. Importantly, phosphorylation of a single tyrosine residue (pY 701, 

Fig. 5) only within the C-terminus is required for STAT-activation (Santos and Costa-Pereira 

2011). Briefly, STATs can dimerize by interaction between the SH2 domain of each STAT protein 

with the phosphotyrosine of the other STAT monomer. In contrast to the other domains, the 

sequence of the C-terminal transactivation domain is quite variable and therefore mostly 
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responsible for the formation of the seven different STAT proteins. STAT1 represents a central 

player of interferon signaling and consists of the two isoforms alpha (p91) and beta (p84), 

which are produced by alternative splicing of the STAT1 gene with p91 being the designated 

canonical form (UniprotConsortium 2011). The importance of STAT1 proteins as transducers of 

interferon signaling is emphasized by studies, which observed effects after impairment of STAT1 

function: STAT1 knockout mice exhibited an increased susceptibility to viral and bacterial 

infections (Meraz et al. 1996; Schroder et al. 2004). Diminished immune reaction to 

mycobacterial attacks were observed in humans with STAT1 germline mutations (Dupuis et al. 

2001; Boisson-Dupuis et al. 2012). Apart from dimerization with other STAT factors, STAT1 can 

also associate with other proteins and transcription factors, as for example with p48 (also 

known as IRF-9 within the ISGF3 complex (Fig. 6) (Boisson-Dupuis et al. 2012). STATs can 

function in cooperation with other transcription factors such as c-Jun and SP-1 (Shuai 2000; 

Ginsberg et al. 2007). Another well-described interaction of STATs is the association with the 

co-activators p300 and CBP (CREB-binding protein), which improve the interaction with the 

basal transcription factors (Wojciak et al. 2009). 

The Jak-STAT pathway: Events following IFN-γ stimulation 

Binding of IFN-γ to its receptor leads to oligomerization of two IFNGR1/IFNGR2 complexes, 

which are pre-assembled with Jaks (Samuel 2001; Saha et al. 2010). Subsequently, Jak1 and 

Jak2 get trans-phosphorylated and activated. Subsequently, they phosphorylate the tyrosine 

residues Y440 of the IFN-γ-receptor chains, which thereby create docking sites for the SH2 

domains of STAT1. The attracted STAT1 is then phosphorylated at the tyrosine residue Y701 

(Fig. 5). Additionally to tyrosine Y701, also the STAT1 serine residue S727 can be 

phosphorylated, which is required for maximal transcriptional activity (Sun et al. 2005). In 

addition to Tyr701 and Ser727 phosphorylation, acetylation, methylation and sumoylation as 

additional posttranslational modifications have been reported for STAT1 (Boisson-Dupuis et al. 

2012). After activation, the resulting STAT1-STAT1 homodimers dissociate from the receptor 

and translocate to the nucleus. Nuclear import is supported by importins (Jerke et al. 2009), 

mediated by nuclear localization signal (NLS) (Fagerlund et al. 2002). There the STAT1-STAT1 

homodimer binds to GAS-elements in promoter regions of target genes, which carry the 

consensus sequence TTCN(2-4)GAA (Decker et al. 1997). However, also unphosphorylated STAT1 

is able to drive gene expression (Cheon et al. 2011). 
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Fig. 6: Signal transduction processes following IFN-γ and IFN-α/β stimulation 

(A) IFN-γ stimulation of the IFN-γ receptor induces a conformational change in the receptor chains, 

resulting in phosphorylation of Jak1/Jak2 and subsequent phosphorylation of the tyrosine residues Y440 

in the IFNGR1 chains. These form docking sites for latent STAT1 proteins, which get recruited to the 

cytosolic receptor chains, become phosphorylated, dimerize and translocate to the nucleus. There they 

bind to regulatory promoter elements, i.e. GAS elements (gamma activated sequences). Known STAT1 

target genes are for example STAT1, IRF-1 and SOCS1. (B) IFN-α/β signaling is accomplished via the 

IFNAR, which leads to the production of STAT1-STAT2-IRF-9 trimers. They bind to ISREs (IFN stimulated 

response elements) in promoter regions of target genes and initiate their transcription. Alternatively, 

STAT1-STAT1 dimers can also be formed upon IFN-α/β stimulation of the IFNAR, as indicated by the 

arrow. 

 

For IFN-α and IFN-β, signal transduction follows a similar way via IFNAR1/2, which are 

associated with Tyk2/Jak1, respectively, the subsequent formation of STAT1/STAT1 dimers or 

STAT1/STAT2/IRF-9 heterotrimers, which are also known as ISGF3 (interferon-stimulated 

gamma factor 3) complexes. Following IFN-α/β stimulation, they bind to ISRE (IFN stimulated 

response elements) in promoter regions of the respective genes, represented by the consensus 

sequence AGTTTN3TTTCC (Kessler et al. 1988).  
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Negative regulation of the Jak-STAT pathway 

Several negative regulators can partake in the inactivation of the Jak-STAT pathway, such as 

SOCS (suppressor of cytokine signaling) and PIAS (protein inhibitor of activated STAT) proteins. 

SOCS proteins are rapidly up-regulated with enhanced STAT activation, thus providing a typical 

loop of feedback inhibition. They bind to phosphorylated Janus kinases and the respective 

receptors to block the pathway; for example binding of phosphotyrosines in a receptor chain by 

SOCS proteins prevents the subsequent binding of STAT factors (Rawlings et al. 2004). PIAS 

proteins are constitutively expressed E3-SUMO protein ligases which directly interact with 

phosphorylated STAT dimers and inhibit the DNA recognition process (Wormald and Hilton 

2004). Another group of negative regulators are PTPs (protein tyrosine phosphatases), as for 

example the tyrosine phosphatase SHP-1 (Src homology region 2 domain-containing 

phosphatase-1), which can dephosphorylate Jaks or their receptors (Rawlings et al. 2004). 

Several phosphatases such as SHP-2 which can act as negative regulators of STAT proteins 

have been described (Shuai and Liu 2003; Xu and Qu 2008). 

Concerning negative regulation of the Jak-STAT-pathway following IFN-γ-stimulation in 

particular, several specific mechanisms have been reported. For example, the IFN-γ/IFNGR 

complex can be internalized and subjected to degradation in the endosomal pathway, making it 

unavailable for further transduction of the signal, possibly to hamper overstimulation (Claudinon 

et al. 2007; Trinchieri 2010). However, receptors are not always degraded but can be recycled 

and send back to the surface (Claudinon et al. 2007). STAT1 can be sumoylated by PIAS1, 

leading to inhibition of its activity (Ungureanu et al. 2005). Additionally, SOCS1 provides specific 

feedback inhibition of IFN-γ-signaling, which itself induces SOCS1 (Fig. 6). 

Connecting the Jak-STAT pathway to miRNAs 

STAT factors have been first described to regulate transcription of miRNA genes a few years 

ago (Löffler et al. 2007; Meng et al. 2007b) and the importance of miRNA-STAT factor 

interactions has very recently been summarized in a review (Kohanbash and Okada 2012). 

However, only few connections have been described in detail. One of the first relationships 

between cytokine-induced Jak/STAT signaling and miRNAs has been established by Löffler et 

al., who showed that IL-6 increased the expression of oncogenic miR-21 via STAT3 activation in 

myeloma cells (Löffler et al. 2007), which has been subsequently confirmed by other groups in 

different cell lines (Iliopoulos et al. 2010; Yang et al. 2010; Kohanbash and Okada 2012). Also, 

miR-181b, miR-17-92 and miR-199a-5p have been shown to be STAT3-induced (Brock et al. 

2009; Iliopoulos et al. 2010; Haghikia et al. 2011). A positive feedback loop between STAT1 and 

miR-155 has recently been discovered in epithelial cells, where STAT1 induced up-regulation of 

miR-155, which in turn negatively regulated SOCS1 (Kutty et al. 2010). 
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1.3 Regulation of gene expression and eukaroytic transcription  

Several different ways to control the regulation of gene expression are known to date including 

transcriptional and posttranscriptional regulation, epigenetic mechanisms including structural or 

chemical modifications of DNA, posttranscriptional regulation by miRNAs and regulation of 

translation. The regulation by miRNAs has been briefly explained above (2.1 MicroRNAs – mode 

of action) and the transcriptional regulation of gene expression as well as additional epigenetic 

mechanisms will be addressed below. 

 

 

 

Fig. 7: Epigenetic changes in mammalian cells: DNA methylation and different chromatin 

structures 

taken from (Ohgane et al. 2008) 

(upper part) Methylation of CpG islands within the DNA leads to silencing of corresponding genes 

(methylation of CpG islands is indicated by black circles (left) in contrast to white circles (right), which 

represent hypo-methylated CpG islands). (lower part) Chromatin structure (condensed – in closed 

conformation, transcriptionally inactive in contrast to relaxed – in more open conformation, at 

transcriptionally active sites) is accommodated by histone modifications, i.e. acetylation and methylation. 

H3 – histone 3; K – lysine residus.  

 

To fit into the nucleus and to prevent the DNA from damage, it is generally tightly packed 

around histone proteins into nucleosomes (Fig. 7). For the initiation of transcription, the 

compact chromatin (‘heterochromatin’) has to be re-arranged to a more open comformation 

(‘euchromatin’) in order to provide enough space for the polymerase. This is accomplished by 

several well-described modifications at specific histones, which become enzymatically modified 

and include methylation and acetylation. In contrast to DNA-methylation, which occurs at CpG 

islands and epigenetically silences genes, the methylation status of distinct histone residues can 

be correlated with the chromatin status: for example H3K4me3 (tri-methylation of histone H3 at 

lysine 4) is often found close to the transcription start site (TSS) of active promoters 

(Benevolenskaya 2007), whereas H3K9me3 (tri-methylation of lysine 9 within histone 3) is a 
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marker for inactive genes (Rosenfeld et al. 2009) (Fig. 7). Also acetylation of lysines, as 

mediated by histone acetyltransferases (HATs) influences chromatin structure; as for 

methylation, acetylation of histones is associated with a less condensed chromatin structure 

whereas hypo-acetylated chromatin is tightly packed (Fig. 7). Only in the open conformation, 

chromatin is accessible for the RNA-polymerase and the transcription process can be initiated.  

As the first step in gene expression, eukaryotic transcription enables cells to elicit a response 

following exposure to extracellular signals via diverse signaling processes (Lee and Young 2000; 

Maston et al. 2006). To start the transcription process, assembly of the initiation machinery 

including the positioning of the RNA polymerase at the respective DNA sequence is required. For 

protein-coding genes and the majority of miRNA genes, transcription is performed by RNA-

polymerase II and can be subdivided into initiation, elongation and termination, with the 

majority of regulation happening at the initiation step. Initiation of transcription takes place at 

the promoter region of DNA, which is located upstream of the transcription start site. The so-

called ‘core promoter’ region mostly contains the minimum number of elements which are 

necessary for transcription like a TATA box, an initiator element (INR), a downstream promoter 

element (DPE) and a TFIIB (transcription factor 2B) recognition element. Furthermore, the TSS 

and a binding site for the RNA-polymerase are located here. Besides this region, other 

regulatory elements such as silencers and enhancers, which provide recognition sequences for 

the specific transcription factors are part of the genomic regulatory region. In contrast to the 

‘core promoter’ elements, they can be localized up to many thousands of base pairs away from 

the transcription start site. The transcription process starts with the assembly of the ‘pre-

initiation’ complex. Briefly, TBP (TATA-binding protein), a subunit of TFIID, binds to the TATA 

box and ensures subsequent gathering of the remaining general transcription factors (TFII-A, B, 

E, F, H) to the promoter region, where they lead RNA polymerase II to the transcription start 

site. Afterwards, RNA polymerase II creates a complementary RNA copy of the DNA during the 

elongation step which is polyadenylated at the termination step and transcription of the 

respective gene is accomplished. Further fine-tuning and activation or silencing of gene-

expression requires the activity of additional transcription factors (Maston et al. 2006; Spitz and 

Furlong 2012).  

Transcription factors 

Eukaryotic control of gene expression is much more complex than the mechanisms that exist in 

prokaryotes, which can be mainly attributed to the existence of transcription factors and their 

influence on RNA polymerase II activity. Controlling the transcription rate is crucial for the fine-

tuning of gene expression. Transcription factors are composed of a DNA-binding domain and a 

transactivating (or transrepressing-) domain as well as further domains responsible for the 

interaction with other proteins, as shown in Fig. 5 for STAT1. Their function is to recognize and 
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bind to specific, 6-10 nucleotide long DNA sequences (enhancer or silencer elements of target 

genes) and to interact with RNA-polymerase II to influence transcriptional activity either by 

blocking (repressors) or enhancing (activators) the action of the polymerase (Maston et al. 

2006). The respective regulatory elements can be located hundreds or thousands of basepairs 

upstream and downstream of the promoter region. Several public databases allow for the 

scanning of user-provided DNA-sequences for conserved transcription factor binding sites, as for 

example ‘Genomatix’,  ‘Transfac’ and ‘Jaspar’ (Matys et al. 2003; Vlieghe et al. 2006); the latter 

two were used within this PhD project.  

Currently, ChIP (chromatin immunoprecipitation) provides the method of choice to verify 

transcription factor binding sites within promoter regions of target genes. Briefly, the chromatin 

including the DNA-bound transcription factors is fragmented by sonication and subsequently 

immune-precipitated with an antibody for the analyzed transcription factor. After purification, 

the respective DNA-sequence can be amplified by PCR or detected by  microarray (then known 

as ChIP-chip) or deep sequencing (ChIP-Seq, Fig. 8) (Collas 2010). ChIP-Seq is a commonly 

used high-throughput method which allows for determination of genome-wide binding sites for 

a given transcription factor. A comprehensive study including ChIP-Seq data for STAT1 has 

been performed by Robertson et al. in Hela cells (Robertson et al. 2007).  

Apart from the ChIP analysis for binding sites in the promoter regions of target genes for the 

transcription factor of interest, other components of the transcription process can be 

investigated: For example ChIP-Seq can also be performed with an antibody, which recognizes 

the characteristic histone signatures (e.g. H3K4Me3) as explained above (Fig. 7) to search for 

transcriptionally active promoters (Young et al. 2011; Ntziachristos et al. 2012). 

In addition to transcription factors, co-activators and co-repressors mediate the interaction 

between general and specific transcription factors and influence transcription efficiency (Spitz 

and Furlong 2012). For example the co-activators CBP (CREB binding protein)/p300, which have 

been shown to interact with STAT1, exhibit histone acetyltransferase activity, enabling them to 

promote transcription by acetylation of histones (Bandyopadhyay et al. 2002) (Fig. 7). Along 

with the combinatorial control mediated by transcription factors and their tissue-specific 

distribution, these above mentioned factors and processes contribute to the specificity of 

transcription, which is a major reason for the general complexity of eukaryotic organisms. 
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Fig. 8: ChIP-Seq (scheme) 

Taken from http://www.bnl.gov/newsroom/news.php?a=11351 

(from top to bottom) Initial steps include (1) cross-linking of transcription factors to DNA, (2) 

fragmentation of DNA and binding of the specific antibody of choice followed by precipitation of the 

fragments which are bound by this antibody. (3) Those DNA fragments are subjected to high-throughput 

sequencing and (4) the respective sequences can be mapped to the genome. (5) Note that the number of 

enriched sequences corresponds to the height of the peak, which is obtained as a read-out of ChIP-Seq 

data. 
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1.4 Melanoma 

Composition of the skin and types of skin cancer 

The skin represents the largest and most versatile organ of the body. Apart from protection 

against infection, injury and temperature loss, one of its most important functions is to protect 

against UV radiation. The outermost part of the skin is divided into epidermis, dermis and 

adjacent subcutaneous tissue (Fig. 9).  

 

 

Fig. 9 Layers of the skin 

(Pictures from (Junqueira et al. 2005), chapter 17 ‘The skin’). (A) The outer layer of the skin is divided 

into epidermis, dermis and the adjacent subcutaneous tissue (hypodermis), ‘thick’ skin is shown in this 

picture. (B) Magnified view on the human epidermis, which is composed of the different layers (from 

outside to inside) stratum corneum, lucidum, granulosum, spinosum and basale and separated from the 

dermis by a basement membrane. Melanocytes as the melanin-producing cells of the skin are generally 

located in the stratum basale in the deepest part of the epidermis, just above the basement membrane. 

(C) Enlarged picture of the stratum basale with keratinocytes and a melanocyte. The arrow indicates a 

melanocyte which is surrounded by keratinocytes and melanin (brownish structure which covers the 

nuclei of the keratinocytes), which is secreted by melanocytes and is taken up by the cells in their vicinity.  

 

Keratinocytes represent the main components of the epidermis (> 90 % of the cells). Moreover, 

the epidermal layer contains squamous cells, basal cells and melanocytes which are all prone to 

skin cancer development. Named according to the cell type they develop from, basal and 

squamous cell carcinoma (often referred to as ‘non-melanoma skin cancer’) as well as 

melanoma represent the three most common types of skin cancer (AmericanCancerSociety 
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2012). For all of them, the number of cases has increased over the past couple of years (Garbe 

and Blum 2001; Thompson et al. 2005). Basal cell carcinoma is one of the most common skin 

tumors. It derives from the lowest layer of the epidermis (stratum basale, Fig. 9). Survival rates 

are extremely good as the tumor rarely metastasizes. Nevertheless, it grows invasively and can 

- if not treated - lead to a massive destruction of the surrounding tissue. Squamous cell cancer 

is less common, but metastasizes with a higher frequency. It develops from keratinocytes of the 

stratum spinosum (Fig. 9). Other types of skin cancer - though occurring much less frequently - 

are for example Merkel cell carcinoma, Kaposi’s sarcoma and others. While the mortality rates 

of basal and squamous cell carcinoma are relatively low (Stulberg et al. 2004), (metastatic) 

melanoma is less common, but a far more dangerous and aggressive type of skin cancer, 

leading to 5-year survival rates of < 5% (Miller and Mihm 2006). Melanoma contribute to the 

vast majority of deaths caused by skin cancer, although they only contribute to less than 5% of 

all skin cancer cases (AmericanCancerSociety 2012). The incidence of melanoma and non 

melanoma skin cancers has been increasing during the last couple of years (WHO, 

www.who.int) and it is estimated to rise even further. Fig. 10 illustrates a comparison of 

international age-standardized incidences of melanoma together with the respective mortality 

rates. Australia shows by far the highest incidence of melanoma: In 2008, incidence rates were 

60.5 cases/100.000 men and 39.3 cases/100.000 women (http://www.aihw.gov.au). 

 

 

 

Fig. 10: Melanoma: international comparison of age-standardized incidences  

(blue: men, red: women) and mortality rates (grey), calculated per 100.000 inhabitants (data from 2007-

2008 or the last year which was available, graph adapted from Robert-Koch-Institut Germany; 

(www.rki.de));. Data from Australia are from 2008 (age-standardized incidences) and 2007 (mortality 

rates) and obtained from the ‘Australian Cancer Incidence and Mortality books’, ACIM 

(http://www.aihw.gov.au). 
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Melanocytes and their normal function: production of melanin 

Melanocytes are the pigment-producing cells of the skin and located at the bottom layer of the 

epidermis (Fig. 9). Together with their derivative pigment melanin, their function is the 

protection of DNA from UV-radiation-induced DNA damages (Hu 2008). Melanogenesis is 

induced as soon as a part of the skin is exposed to sun. Briefly, tyrosinase catalyzes the 

conversion of tyrosine to 3,4-dihydrophenlyalanine (dopa) and to dopachinone, which is then 

subsequently converted to melanin. It accumulates in melanosome vesicles, which migrate to 

the tips of the melanocytes, where they get released and taken up by the surrounding 

keratinocytes (Park et al. 2009a). Every melanocyte has contact to approximately 30 

keratinocytes. Skin pigmentation in general is determined by the specific type of melanin 

pigment that is predominant: eumelanin is rather brownish, while pheomelanin causes the 

reddish color of red hair and freckles. Differences in pigmentation are inherited; for example red 

haired people, who usually exhibit fair skin have more pheomelanin than eumelanin (Mitra et al. 

2012). Also the size, number and density of melanosomes plays a role in skin pigmentation. 

Benign accumulations of melanocytes are referred to as ‘melanocytic nevi’ or ‘nevi’ (Markovic et 

al. 2007) and commonly known as ‘moles’. Melanoma can develop from pre-existing moles or 

they can derive from a new location on normal skin spontaneously.  

Melanoma – origin and development 

The WHO classifies melanoma in four different subtypes, i.e. superficial spreading melanoma 

(SSM), acral lentiginious melanoma (ALM), lentigo maligna melanoma (LMM), nodular 

melanoma (NM). They differ in several features as the age at which they mostly occur or in 

their location on the body. For example, LMM are most common in elderly people and develop 

from pigmented areas of the skin. NM occur in sun-exposed areas of the skin and develop 

quickly. SSM is the most common type of melanoma whereas acral lentiginous melanoma are 

quite rare and develop in palms, nails etc. (www.skincancer.org). 

The mechanical progression of healthy epidermal tissue to metastatic melanoma is a multi-step 

process and a known set of mutations accompanies the single steps towards malignancy (Miller 

and Mihm 2006) (Fig. 11). In normal skin or in a benign nevus, melanocytes proliferate slowly. 

The next step towards malignancy is a dysplastic nevus, which shows atypical growth behavior. 

Such spots can potentially be identified by the ‘ABCDE’-rule (which will be explained below, Fig. 

12), as they show suspicious asymmetry or borders, a large diameter or multiple colors. The 

following radial growth phase represents the first malignant stage of melanoma development 

and progression. Still, cells show low invasiveness and proliferation. Proliferation increases 

dramatically during the vertical growth phase, thus cells are able to penetrate the basement 

membrane, infiltrate the dermis and invade the connective tissue. In the last and metastatic  
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state, melanoma cells can spread over the lymphatic system as well as the blood and 

metastasize. 

 

 

 

 

Fig. 11: Histological progression of melanocyte transformation to melanoma is a multi-step 

process  

(Picture from (Miller and Mihm 2006), modified). 

A benign nevus shows normal growth behavior, although somatic BRAF mutations can already occur at 

this early stage. Loss of CDKN2A/PTEN is observed for dysplastic nevi, while the radial growth phase is 

characterized by increased Cyclin D1 expression and the tumor cells acquire the ability to penetrate the 

basement membrane. During the vertical growth phase, increased expression of N-Cadherin, αVβ3 

integrin and MMP-2 are observed while E-cadherin expression is lost and TRPM1 is reduced, which is 

absent in the following, metastatic phase. In this last phase of melanocyte transformation, melanoma 

cells are able to metastasize to other organs. CDKN2A – cyclin-dependent kinase inhibitor 2A, PTEN- 

phosphatase and tensin homolog, MMP – matrix-metalloprotease, TRPM - Melastatin. 

 

Genetic characteristics of melanoma 

Many cellular pathways have been described to be de-regulated in melanoma, which include the 

MITF (microphtalmia-associated transcription factor) pathway, the PI3K (phosphoinositide-3 

kinase)-Akt pathway, the RAS (rat sarcoma virus)-RAF-MEK (dual specificity mitogen-activated 

protein kinase kinase)-ERK (extracellular regulated kinase) pathway as well as the p16INK4A-

CDK4 (cyclin-depent kinase 4) -RB (Retinoblastoma) pathway. Table 2 provides an overview of 

the most important genes in melanoma and melanoma development. A selection of affected 

pathways and their functions will be explained in more detail below.  
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Table 2: Genes and cellular pathways important in melanoma  

(adapted from (Miller and Mihm 2006)) TF = transcription factor; TS = tumor suppressor; Onc = 

oncogene; VGP = vertical growth phase; RGP = radial growth phase; expr. = expression; oncogenes are 

marked in red, whereas tumor suppressors are shown in green. 

Pathway Gene/Protein  Normal function Changes in melanoma 

MAPK 

RAS 

N-RAS 

BRAF 

neuroblastoma RAS viral (v-

ras) oncogene homolog/ 

v-raf murine sarcoma viral 

oncogene homolog B1 

Oncogenes Sporadic activating 

mutation (N-RAS: 

G13R, BRAF: V600E) 

 

MEK Mitogen-activated protein 

kinase – extracellular-

regulated kinase 

Signal Transduction Up-regulated in RGP & 

VGP 

ERK1/2 

(MAPK) 

Extracellular-regulated 

kinase 1 / 2 (mitogen-

activated kinase) 

Signal Transduction Activity enhanced 

INK4A 

CDK 

Rb 

CDKN2A/ 

 INK4A 

Cyclin-dependent kinase 

inhibitor 2A / inhibitor of 

kinase 4A 

TS, negative regulator of 

cell proliferation 

Germline mutations, 

sporadic deletions, 

promoter inactivation 

CDK4 Cyclin-dependent kinase 4 Promoter of proliferation Familial germline 

mutations 

CCND1 Cyclin D1 Promoter of proliferation Sporadic amplification 

Rb Retinoblastoma TS, negative regulator of 

cell proliferation 

Phosphorylation � 

G1/S transition 

ARF 

p53 

ARF Alternate reading frame 

(CDKN2A) 

TS, degrades MDM2 Germline mutations, 

sporadic deletions, 

promoter inactivation 

etc. 

p53 Tumor protein p53 TS, induces apoptosis and 

suppresses proliferation  

after DNA-damage 

Expr. usually present 

in melanoma 

MDM2 Mouse double minute 2 Targets p53 for 

ubiquitination & 

destruction 

Up-regulated in 

presence of ARF 

mutation 

PTEN 

Akt 

PTEN Phosphatase and Tensin 

homolog 

TS, counteracts PI3K 

activity 

Sporadic deletion 

PI3K Phosphatidylinositol 3 

kinase 

Signaling molecule for 

many growth factors 

Active, when PTEN is 

mutated 

Akt  

(PKB) 

Protein kinase B Onc, activated by PI3K, 

leads to increased cell 

survival 

Sometimes amplified 

MSH 

MITF 

MC1R Melanocortin receptor 1 Receptor for α-MSH affects hair and skin 

color 

MITF Micropthalmia-associated 

transcription factor 

TF Expr. decreased 

 

TYR Tyrosinase Pigment synthesis 

MLANA Melan-A Melanoma antigen 

recognized by T-cells 1 

TRPM1 Melastatin 1 ? 

BCL-2  Cell survival Variable up-regulation 

(in various phases of 

melanoma) 

Cell  

Adhesion 

molecules 

β-Catenin Adherens junction 

protein; 

also affects gene 

expression 

Sporadic mutations 

E-cadherin Cell adhesion molecule Reduced expr. in VGP 

N-cadherin Cell adhesion molecule Aberrant expr. in VGP 

αVβ3 integrin Dimer that forms cell 

adhesion molecule 
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A transcription factor of particular importance for melanoma development is MITF 

(microphthalmia-associated transcription factor). It is responsible for melanocyte development 

and controls their proliferation, survival and differentiation (Tsao et al. 2012). Amplified in 10-20 

% of melanoma, it has widely been described as oncogene, but has also been attributed tumor-

suppressive functions (Bell and Levy 2011). 

The CDKN2A locus 

The CDKN2A (cyclin-dependent kinase 2A) gene is a well-known melanoma susceptibility locus 

(Hussussian et al. 1994) (Table 2), which encodes for two proteins, p16INK4A and p14ARF. p16INK4A 

is deleted in about 50% of melanoma (Bennett 2008) while p14ARF is affected less often (Zuo et 

al. 1996; Soufir et al. 1998; Tang et al. 1999). Both act as tumor suppressors in the cell cycle 

by controlling G1 � S transition via the phosphorylation status of Rb1. p14ARF positively 

regulates p53 via MDM2 (murine double minute) and thus controls induction of p21WAF1/CIP1, 

which controls CDK2/Cyclin E–mediated phosphorylation of Rb1. p16INK4A inhibits the activation 

of CDK4 and CDK6, which are normally complexed with Cyclin D1 and p16INK4A can also 

phosphorylate Rb1. In an unphosphorylated form, Rb1 binds to the transcription factor E2F, 

thereby hindering it from expression of genes necessary for G1 � S transition. Genetic defects 

in the CDKN2A locus concerning either of the two proteins result in uncontrolled cell 

proliferation as will be further discussed below (Fig. 42). 

The MAP-kinase pathway in melanoma 

The Ras-Raf-MEK-ERK-signaling cascade plays a prominent role in most cancer types. It is 

normally activated by growth factors via receptor tyrosine kinases, leading to cell proliferation 

and survival. Initial activation of Ras is a trigger for subsequent phosphorylation of single 

proteins along the Raf � MEK (MAPK/ERK kinase) � ERK path with each phosphorylation 

acting as an activation of the subsequent protein in the pathway. Consequently, constitutive 

activation of only one of the members can lead to uncontrolled proliferation and cancer. 

Members of the MAP-kinase pathway are mutated in many cancer types. NRAS (member of the 

Ras family together with KRAS and HRAS) is mutated in ~15-30 % of melanomas (Rosenfeld et 

al. 2008) while BRAF is mutated in ~60 % (Davies et al. 2002), mostly showing the BRAFV600E
 

mutation. An inhibitor is available for clinical treatment of individuals with BRAFV600E mutations, 

which will be further discussed below. The importance of this kinase for melanoma development 

is emphasized by the fact that BRAF-mutated melanoma metastasize with a higher percentage 

than not mutated ones (Broekaert et al. 2010) and therefore show a more aggressive clinical 

progression (Long et al. 2011). As NRAS and BRAF mutations are mostly mutually exclusive, the 

majority of melanomas exhibit at least one of them (Glud and Gniadecki 2012).  
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The PI3K-Akt pathway in melanoma 

Upon stimulation by growth factors and hormones, the family of PI3K mediates the 

phosphorylation of the inositol ring on phosphoinositides, converting PIP2 (Phosphatidylinositol 

4,5-bisphosphate) to PIP3 (Phosphatidylinositol (3,4,5)-triphosphate). After phosphorylation, the 

second messenger PIP3 is required for phosphorylation of signaling proteins containing 

pleckstrin-homology domains, like the serine-threonine kinase Akt (Proteinkinase B), which 

subsequently activates other proteins that act on cellular growth, survival and the cell cycle 

(Cantley 2002). The tumor suppressor and phosphatase PTEN counteracts the PIP2 � PIP3 

phosphorylation mediated by PI3K. All of the proteins mentioned above are prone to genetic 

changes in melanoma (Table 2): Akt3 (member of the Akt family of serine/threonine protein 

kinases together with Akt1 and Akt2) activity is increased in around 70 % of sporadic melanoma 

(Sharma et al. 2009) and loss of PTEN occurs frequently (Wu et al. 2003) while mutations 

within PI3K genes are rare (Davies 2012). Apart from genetic changes in the human skin, 

several external risk factors can influence melanoma development. 

Environmental and genetic risk factors 

The impact of sun exposure on melanoma development has been assessed in many studies and 

a firm connection has been established. Sun-derived UV radiation is thought to be the cause for 

around 86 % of melanomas (Parkin et al. 2010), as well as for the majority of mutations in 

melanoma (Pleasance et al. 2009). Already one blistering sunburn increases the general risk to 

develop melanoma (Lew et al. 1983), while the risk doubles after more than five sunburns at 

any age (Pfahlberg et al. 2001). Sunburns which have been acquired during childhood increase 

the risk even more. Of course, the geographical location of an individual has an important 

impact on daily sun-exposure and is enhanced in the southern hemisphere. Also UV-light from 

so-called ‘non-solar’ resources as tanning beds and sunlamps augment the melanoma burden. 

Interestingly, UV-tanning devices were listed in ‘group 1’ of the most dangerous cancer-causing 

substances by the International Agency for Research on Cancer (partner organization of the 

WHO), which also includes plutonium and cigarettes (El Ghissassi et al. 2009). Users of indoor 

tanning devices are 74 % more likely to develop melanoma than subjects who have never used 

them (Lazovich et al. 2010). Also the risk for squamous cell carcinoma (x 2.5) and basal cell 

carcinoma (x 1.5) is increased (Karagas et al. 2002).  

Apart from environmental factors, the genetic background of an individual also influences the 

development of this cancer. For example the number of nevi on the body correlates directly 

with the risk for melanoma as nevi have the potential to progress to a malignant state (Markovic 

et al. 2007). Immunosuppressed individuals or people suffering from Xeroderma pigmentosum 

exhibit a higher risk, which is also the case for individuals with a familial history of melanoma 
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(Cho et al. 2005a; Cho et al. 2005b) often showing germline mutations in the respective 

susceptibility genes (as listed in Table 2). 

Melanoma detection and current treatment options 

Once a melanoma has developed, early discovery is crucial. A commonly established way of 

melanoma self-control is the ‘ABCDE’-rule (Fig. 12). Here, features of existing moles or spots on 

the body get evaluated for their Asymmetry, Border irregularity, Color variation, Diameter and if 

they are Evolving (any itching, bleeding or crusting).  

 

 

Fig. 12: Images for illustration of the ‘ABCD’ rule 

As described in the text. Taken from NCI Visuals online (http://visualsonline.cancer.gov/) 

 

The ‘ugly duckling’ sign is a rather recent innovation. This analysis aims at identification of 

moles or spots that look totally different from the spots in the vicinity. Most affected sites for 

melanoma development are arms and legs for women and the back for men (Boyle et al. 1995; 

Tsai et al. 2005). Suspicious moles, which show abnormal growth behavior, color or even 

lesions should directly be presented to a dermatologist.  

The most obvious and elementary treatment option of malignant melanoma is physical excision 

of the primary tumour, which – like for most types of skin cancer - can be seen on the surface 

of the skin. If the tumor has not reached the radial growth phase yet and thus did not invade 

the basement membrane (compare Fig. 1, then referred to as ‘melanoma-in-situ ‘), the chance 

for formation of metastasis is extremely low (Bene et al. 2008). Nevertheless, except excision at 

early stages, no curative therapies exist and metastatic melanoma exhibit a severe resistance to 

available therapies. The 5-year survival rate for melanoma patients heavily depends on the time 

of detection: if detected before the tumor has penetrated the basement membrane, chances to 

survive are 98 %. However, this quickly drops to 62 %, when lymph nodes are affected and 

further to 15% when the tumor has metastasized (AmericanCancerSociety 2012). For clinical 

reports, staging of tumors is performed according to the American Joint Committee on Cancer 

(AJCC) (Balch and Soong 2008). Here, the vertical tumor thickness (divided into 5 stages 

according to Breslow (Breslow 1970), the mitotic rate, ulceration and the lymph node status are 

analyzed (Glud and Gniadecki 2012). Additionally, the ‘Clark’ classification, which characterizes 

the invasion level of the tumor (stages 0 to IV) has been widely used (www.skincancer.org). As 

mentioned above, when detected early, melanoma can be efficiently treated by surgical 
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resection. However, all therapeutics which are used to treat metastasized malignant melanoma 

to date merely increase survival by several months. Consequently, current treatment options are 

rather palliative and aim to minimize reccurence. Often, therapies against melanoma include 

administration of high-dose IFN-α-2b as an adjuvant treatment, which has, however, severe 

side effects such as fever, fatigue and weight loss. Around 50% of melanoma patients exhibit 

V600E mutations in the cellular kinase BRAF (Ascierto et al. 2012). In 2011, a targeted kinase 

inhibitor therapy was licensed. The BRAF-inhibitor Zelboraf® (also known as Vemurafenib, 

Roche) has been FDA-approved for treatment of late-stage melanoma patients who carry the 

V600E mutation and this treatment increases life expectancy by several months (Sala et al. 

2008; Flaherty et al. 2010). Nevertheless, none of the available treatment options (kinase 

inhibitors, chemotherapy) can entirely extinguish the malignancy (Chapman et al. 2011). 

Ipilimumab (Yervoy®, Bristol-Myers Squibb) which is also used for treatment of malignant 

melanoma, is a monoclonal antibody targeting CTLA-4 (cytotoxic T-lymphocyte antigen 4) to 

induce an antitumor immune response (Scheier et al. 2011). More drugs are currently under 

investigation in clinical trials, for example the monoclonal antibody Bevacizumab (Avastin®, 

Roche), which inhibits angiogenesis and has already been approved for the treatment of other 

cancer types. However, the most promising approach to date in immunotherapy against 

melanoma uses T-cells, which have been genetically modified to express receptors directed 

against tumor antigens, such as MAGE A3 and –A12 (melanoma antigen encoding gene) (Zhu et 

al. 2012).  

Melanoma and miRNAs 

As they are involved in virtually all cellular processes, clearly miRNAs are supposed to be also be 

involved in melanoma development and progression, as reviewed extensively during the last 

couple of years (Mueller and Bosserhoff 2009; Howell et al. 2010; Glud and Gniadecki 2012; 

Völler et al. 2013). This is supported by the fact that miRNAs have been shown to play decisive 

roles already in normal skin development and homeostasis (Botchkareva 2012; Schneider 

2012): Knockouts of the key miRNA processing enzymes DGCR8 (Yi et al. 2009) and Dicer 

(Bernstein et al. 2003) led to death of mice in early embryogenesis. Furthermore, individual 

miRNAs could be attributed important functions in skin development, as for example miR-203, 

which can promote epidermal differentiation (Yi et al. 2008). However, concerning malignant 

melanoma, relatively few studies on the function of miRNAs have been published so far in 

comparison to other cancer types. The majority of studies on miRNAs in melanoma established 

miRNA expression profiles in different healthy and diseased skin stages, i.e. healthy nevi, 

primary and malignant melanoma. Pilot studies in this area investigated microarray expression 

profiles in healthy melanocytes versus melanoma cell lines and reported distinct miRNA 

signatures (Zhang et al. 2006; Gaur et al. 2007; Mueller and Bosserhoff 2009). Along this line, 
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we have previously analyzed the miRNome of a set of melanoma cell lines and FFPE patient 

samples (Philippidou et al. 2010; Schmitz Ulf et al. 2013) and other groups have investigated 

blood samples of melanoma patients for screenings to identify potential biomarkers (Leidinger 

et al. 2010). Latest screening studies added previously unknown miRNAs (as miR-4291, miR-

4317 and miR-4324) to the miRNAs de-regulated in melanoma as the corresponding microarray 

experiments were based on the current version 19 in contrast to earlier studies (Sand et al. 

2012). Apart from those evaluations which concerned the whole miRNome, individual miRNAs 

have been subsequently connected with proteins involved in melanoma growth and behaviour. 

The first link between a single miRNA and melanoma tumorigenesis was the discovery that the 

transcription factor MITF (microphthalmia-associated transcription factor) was regulated by miR-

137 (Bemis et al. 2008) and also by miR-182 (Segura et al. 2009). MITF mediates melanocyte 

proliferation, survival and differentiation and primary as well as metastatic melanomas exhibit 

alterations in the connected pathway (Cronin et al. 2009) (Table 2). Also other well-known 

cancer-associated miRNAs, as for example the let-7 family, have been connected to melanoma: 

let-7a down-regulated integrin β3 (Muller and Bosserhoff 2008), which contributes to the 

invasive potential of melanoma cells and let-7b has been confirmed to target the cell cycle 

regulator Cyclin D1 (Table 2) (Schultz et al. 2008). Other examples for ‘key’ cancer-associated 

miRNAs with melanoma involvement are miR-34a, which is silenced in melanoma (Lodygin et al. 

2008), miR-155, which is over-expressed and negatively regulates melanoma growth  as well as 

the oncogenic miR-17-92 cluster, which is also over-expressed (Levati et al. 2009). Although 

only a small selection of melanoma-connected miRNAs was addressed here, it is certain that 

they play a pivotal role in general skin functions and melanoma development. This PhD project 

aims to decipher further miRNA-melanoma cellular networks, with the focus on STAT1-regulated 

miRNAs.
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2 Objectives 

The main focus of this PhD project was the investigation of miRNAs that could be induced by 

IFN-γ and that are regulated STAT1-dependently. By elucidating STAT1 regulation of miRNA 

expression and their respective target genes, an important objective was to identify new 

regulatory pathways for the growth control of melanoma and later, other cancer cells. Following 

this path, the aim was to identify and describe a complete regulatory line of events starting with 

cytokine stimulations of different melanoma cells → STAT induction → identification of STAT-

regulated miRNAs → identification and analysis of miRNA target genes → functional role of 

target genes in cancer. Apart from this major objective, another important issue was expression 

profiling of melanoma to find potential biomarkers. The main objectives of this PhD project are 

briefly summarized below: 

 

• Identification of differentially regulated miRNAs in untreated versus IFN-γ-stimulated cell 

lines (microarray): list potentially STAT1-regulated miRNAs  

• Validation of candidate STAT1-regulated miRNAs  

• In silico analysis of promoter regions of identified miRNAs 

• Subsequent identification of the role of STAT1-regulated miRNAs in defined cellular 

processes and their implication in melanoma development 

•  In silico identification of respective miRNA target genes 

• Experimental verification of potential target genes, which are likely to play a role in 

melanoma development and/or progression or exhibit other interesting cancer-related 

properties  

• Analysis of the functional relevance of miRNA-regulated target genes for the growth 

characteristics of melanoma cells: proliferation, migration/invasion, apoptosis. 

• Analysis of global and selected miRNA expression patterns in melanoma cell lines and 

patient samples 
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3 Materials 

Tables with the suppliers for all laboratory equipment as well as solution and buffer recipes can 

be found in the Appendix in (Table 8-Table 11). 

Cell lines 

Table 3: Human cell lines used in this study 

DSMZ = Deutsche Sammlung von Mikroorganismen und Zellkulturen (german collection of microorganism 

and cell cultures), RWTH = Rheinisch-Westfälische Technische Hochschule Aachen 

 

Cell line description Medium Company/ 

obtained from 

A375 melanoma, 

metastatic 

RPMI + 10 % FCS ATCC 

A375 (wt) 

A375 (F) 

A375 stable 

transfectants 

RPMI + 10 % FCS  

+ 400 µg/ml G418 

Dr. Marcin Kortylewski 

(Kortylewski et al. 1999)  

FM-55M1 melanoma late stage 

(metastatic) 

RPMI + 10 % FCS ESTDAB, Tübingen, Germany 

FM-55P melanoma, early 

stage (primary) 

RPMI + 10 % FCS ESTDAB, Tübingen, Germany 

G361 melanoma RPMI + 10 % FCS RWTH Aachen, Germany 

IGR-37 melanoma, late 

stage 

RPMI + 10 % FCS DSMZ, Braunschweig, Germany 

IGR-39 melanoma, early 

stage 

RPMI + 10 % FCS DSMZ, Braunschweig, Germany 

MelIm 

MelJuso 

melanoma RPMI + 10 % FCS Prof. Bosserhoff, Regensburg, 

Germany 

MeWo melanoma RPMI + 10 % FCS Prof. Schadendorf, Essen, 

Germany 

SK-Mel30 melanoma RPMI + 10 % FCS Prof. Böhm, Münster, Germany 

NHEM-M2 normal human 

epidermal 

melanocytes  

Melanocyte medium M2 PromoCell 

HaCat keratinocytes DMEM + 10 % FCS Prof. Fusenig, Heidelberg, 

Germany 

Hek293T human embr. kidney 

cells 

DMEM + 10 % FCS RWTH Aachen, Germany 

Jurkat Leukemia T cells RPMI + 10 % FCS RWTH Aachen, Germany 

MT4 T cells RPMI + 10 % FCS Dr. Devaux, Luxembourg 

 

FFPE (formalin-fixed paraffin-embedded) patient material 

Skin tissue samples from patients with either benign nevi or melanoma were collected at the 

Dermatology Department of the University Hospital of Freiburg (Germany) under supervision of 
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Prof. Dorothee Nashan and histopathologically examined to confirm clinical diagnoses. Upon 

excision, tissues were fixed in FFPE according to standard dermatohistopathologic techniques. 

In this PhD project, RNAs of 5 healthy skin samples, 4 benign nevi, 12 primary and 14 

metastatic melanoma samples were analyzed by qRT-PCR. 2The primary and metastatic samples 

were collected from different parts of the body from a total number of 5 melanoma patients. 

The study was approved by the ethical review board of EK Freiburg (reference 196/09) as well 

as by Luxembourg’s ethics comission, and written informed consent was obtained from healthy 

controls and live patients. 

Bacteria 

E. coli DH5 α (Invitrogen) were used for cloning experiments and were cultivated in LB medium.  

Vectors 

pmirGLO Dual Luciferase miRNA target expression vector  

(Promega, #E1330) 

pmirGLO was used for cloning of the luciferase constructs. The vector itself is designed for 

quantitative evaluation of microRNA activity and the corresponding mRNA regulation. miRNA 3´-

UTRs containing miRNA target sites or isolated target sites can be inserted 3´of the firefly 

luciferase gene (luc2), which represents the primary reporter gene. Thus, reduced firefly 

luciferase expression indicates the binding of endogenous or introduced miRNAs to the cloned 

miRNA target sequence. Furthermore, the vector contains a second luciferase gene, encoding 

the Renilla luciferase (hRluc-neo), which acts as an internal control reporter and is used for 

normalization purposes. The 3’-UTRs and the single binding sites of potential miR-29 target 

genes were inserted into the multiple cloning site (MCS) by standard cloning procedures as will 

be described below. 
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Fig. 13: pmirGLO vector (Promega) 

3’UTRs of CDK6 and PI3KR1 or isolated miR-29 binding sites were cloned into the multiple cloning site 

(MCS), which is located downstream of the firefly luciferase reporter gene (luc2) and upstream of the 

renilla luciferase gene (hRluc-neo fusion). The vector furthermore contains an ampicillin resistance (Amp) 

for selection of bacteria that contain the plasmid. 

 

Antibodies 

 

Table 4 : Antibodies 

Primary antibodies Dilution species company 

Actin (C4) 1:4000 rabbit Millipore 

CDK6 1:500 mouse Santa Cruz 

FIN13 1:3000 mouse BD 

IRF-1 (C-20) 1:1000 rabbit Santa Cruz 

P (Y701)-STAT1 1:1000 mouse BD 

p85α (PI3K) 1:1000 mouse Upstate 

STAT1 1:1000 mouse Santa Cruz 

Tubulin 1:4000 mouse Santa Cruz 

Secondary antibodies Dilution company 

HRP-labeled  

(for ECL detection) 

1:5000 Cell Signaling Technology 

fluorophor-coupled  

(for quantification in Licor) 

1:10.000 Licor Biosciences 

 

All primary antibodies were diluted in TBS-N + 0.01-0,1 % NaN3. Secondary antibodies for ECL-

detection were diluted in TBS-N and secondary antibodies for quantification in a mixture of Licor 

Blocking Buffer (1/5) and PBS + 0.1 % Triton (4/5). 
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miR-mimics/inhibitors and siRNA 

MiR-29a and miR-29b mimics and inhibitors and their respective negative controls (NC-mimic 

and NC-inhibitor) were obtained from Qiagen, whereas ‘ON-TARGET’ siRNA for CDK6 and the 

corresponding negative control were purchased from Dharmacon. 

Oligonucleotides 

Primers for amplification of mature miRNAs were purchased from Qiagen. All other 

oligonucleotides were self-designed in our laboratory, obtained from Eurogentec and are listed 

in Table 6 and Table 5. 

Software 

For text files and analysis of data Microsoft Office 2010TM was used, for further statistical 

analyses and graphs we used Graph Pad Prism5. MicroRNA target gene prediction was 

performed by in silico analysis of the 3´-UTR of potential miR-29 target genes using a 

combination of the open source databases TargetScan ((Friedman et al. 2009), 

http://www.targetscan.org/), DIANA-microT v3.0 ((Maragkakis et al. 2009), 

http://diana.cslab.ece.ntua.gr/micro-CDS) and microRNA.org ((Betel et al. 2008), 

http://www.microrna.org). Quantification of Western blots was performed with the analysis 

software V3.0 provided by Licor Biosciences whereas ECL-detected Western blot bands were 

detected with the program provided by ChemiStar (Intas) or the ImageLab™ software (Bio-Rad) 

and further processed with Adobe Photoshop CS3. The NCBI homepage 

(http://www.ncbi.nlm.nih.gov/) and Netprimer (http://www.premierbiosoft.com/netprimer/) 

were used for analysis of primer sequences and the Excel applet GeNorm (Vandesompele et al. 

2002) was used for qPCR normalization. The UCSC-tracks which have been used for the in silico 

analysis will be explained below. 

 

Table 5:  Primer sequences I 

Cloning primers and oligonucleotides used for the construction of luciferase constructs. 
 amplicon  sequence amplicon 

size (bp) 

cl
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r 
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CDK6  

3’UTR 

F 5’-TTTGCTAGCTGTATTAGTGTTTCTGCATTGCC-3’ 1607 

R 5’-TTTCTCGAGTTGGACAGTGATATTTCAACACC-3’ 

PI3KR1  

3’UTR 

F 5’-TTTGCTAGCACGTTCCTAAGCTGGAGTGCTT-3’ 1552 

R 5’-TTTCTCGAGCAGTCCAGAGCAGTGACAGTATGA-3’ 

o
li
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fo
r 
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 c
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n
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29a FC F 5’-TCGACTAACCGATTTCAGATGGTGCTAT-3’  

R 5’-CTAGATAGCACCATCTGAAATCGGTTAG-3’ 

CDK6-BS1 F 5’-TCGACATGGAGAGCACCATGTGGACAAG-3’ 

R 5’-CTAGACTTGTCCACATGGTGCTCTCCATG-3’ 

CDK6-BS2 F 5’-TCGACACTCAAAGCACCAAAACAGAGCATTCTG-3’ 

R 5’-CTAGACAGAATGCTCTGTTTTGGTGCTTTGAGTG-3’ 

CDK6-BS3 F 5’-TCGACTCATTCTAGCACCCAGTAAGACATCCAG-3’ 

R 5’-CTAGACTGGATGTCTTACTGGGTGCTAGAATGAG-3’ 
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Table 6: Primer sequences II 

Primers used for qRT-PCR of primary and precursor miRNAs, reference genes and mRNAs of target 

genes. 

 

amplicon 
 

sequence 
amplicon 

size 

(bp) 

primary 

miRNAs 

pri-29a~b-1 F 5’-GGGCTTTCTGGAACCAATCC-3’ 68 

R 5’-ACAATGCGATATCCTGTACAATTACAT-3’ 

pri-29b-2~c F 5’-AAGAGCAAAATACACTCTTGAGTT-3’ 63 

R 5’-AACCCCCTTCTCTACTGTCAC-3’ 

precursor 

miRNAs 

pre-29a F 5’-ATGACTGATTTCTTTTGGTGTTCA-3’ 64 

R 5’-ATAACCGATTTCAGATGGTGCTA-3’ 

pre-29b-1 F 5’-CTTCAGGAAGCTGGTTTCATAT-3’ 64 

R 5’-TGATTTCAAATGGTGCTAGACA-3’ 

pre-29b-2 F 5’-CTGGTTTCACATGGTGGCTTA-3’ 62 

R 5’-CACTGATTTCAAATGGTGCTAGATA-3’ 

pre-29c F 5’-GGCTGACCGATTTCTCCTGG-3’ 76 

R 5’-TCCCCCTACATCATAACCGATTT-3’ 

reference 

genes 

HPRT1 F 5’-TGGACAGGACTGAACGTCTT-3’ 77 

R 5’-GAGCACACAGAGGGCTACAA-3’ 

β-Actin F 5’-TGACCCAGATCATGTTTGAGA-3’ 108 

R 5’-AGTCCATCACGATGCCAGT-3’ 

CycloA F 5’-CAGACAAGGTCCCAAAGACA-3’ 139 

R 5’-CCATTATGGCGTGTGAAGTC-3’ 

TBP F 5’-ACCCAGCAGCATCACTGTT-3’ 127 

R 5’-CGCTGGAACTCGTCTCACTA-3’ 

Potential  

miR-29 

target 

genes 

DNMT3A F 5’-TATTGATGAGCGCACAAGAGAGC-3’ 111 

R 5’-GGGTGTTCCAGGGTAACATTGAG-3’ 

DNMT3B F 5’-GGCAAGTTCTCCGAGGTCTCTG-3’ 113 

R 5’-TGGTACATGGCTTTTCGATAGGA-3’ 

Bcl-2 F 5’-TGTGGAGAGCGTCAACCG-3’ 113 

R 5’-CCCAGCCTCCGTTATCCT-3’ 

PTEN F 5’-TAAGGACCAGAGACAAAAAGG-3’ 143 

R 5’-CATTGGAATAGTTTCAAACATCA-3’ 

Akt3 F 5’-AAAGGGAAGAATGGACAGAA-3’ 143 

R 5’-TATGATGGGTTGTAGAGGCA-3’ 

cdc42 F 5’-CGTGACCTGAAGGCTGTCAA-3’ 129 

R 5’-ACACACCTGCGGCTCTTCTT-3’ 

Mcl-1 F 5’-AGTATCACAGACGTTCTCGTAAGG-3’ 106 

R 5’-GCCACCTTCTAGGTCCTCTACA-3’ 

Dicer1 F 5’-GAAAATATCAGGTTGAACTGCTTG-3’ 116 

R 5’-GATAGGACAGCTCTTTAGTGAGTAGTAC-3’ 

CDK6 F 5’-CCAGCAGCGGACAAATAA-3’ 92 

R 5’-CCACAGCGTGACGACCA-3’ 

PI3KR1 F 5’-ATACCCGCACATCCCAGG-3’ 118 

R 5’-TGTATTCTTTGCTGTACCGCTC-3’ 
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4 Methods 

4.1 Cell culture 

All cells were grown in a humidified atmosphere with 5 % CO2 in T75 CELLSTARTM cell culture 

flasks in a Hera cell 100 incubator in 15 ml of the respective medium. All cell lines were 

routinely tested to be mycoplasma-negative by PCR, taken in to culture (from frozen aliquots) 

the week before the experiment and split after reaching 70-90 % confluence. Splitting was 

performed by detaching the cells with 200 mg/l Trypsin/EDTA (Versene) and subsequent 

division in new culture flasks with fresh medium. For storing, the content of a 10 cm-cell culture 

dish was pelleted for 5 min at 1400 rpm (Eppendorf centrifuge 5702); the pellet was dissolved 

in the respective medium containing 10 % DMSO. Cells were stored in CRYO.S™-tubes at -

80 °C for short term storage and in liquid nitrogen for longtime storage. Before seeding, cells 

were quantified with a Bürker cell counting chamber. 

4.2 Stimulations with cytokines 

Cytokine stimulation: time-course experiments 

For stimulation of melanoma cell lines and HEK 293T cells, 105 cells per well were seeded in 6-

well-plates in at least triplicates for each treatment. For Jurkat and MT4 T-cells, 105 cells per 

well were seeded in 12-well plates. Cells were either left untreated or stimulated with a final 

concentration of 50 ng/ml human IFN-γ, IFN-α, IFN-β or IL-27 for different periods of time and 

harvested all together at the end of the experiment, as indicated in Fig. 14. 

 

 
Fig. 14: Experimental setup of cytokine stimulation time-course experiments 

Cells were seeded at day 1 of the experiment and the stimulations at the different time points were 

performed as indicated above. For subsequent Western Blot analysis or RNA-extraction, cells were all 

harvested together at the end of the experiment. 

seeding

stimulations

collection

time

3h8h

day 1

72h 48h 24h

day 2 day 3 day 4
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Pre-treatment with Janus kinase inhibitor I (JII) 

Experiments with Jak-inhibitor 1 included a pre-treatment step with 5 µM of the inhibitor, which 

was added one hour before commencing cytokine stimulation. For all experiments, cells were 

collected all together at the end of the time course for further experimental analyses. 

Concentrations and length of treatment with inhibitor had previously been optimised in our 

laboratory (Kreis et al. 2007; Reinsbach et al. 2012). 

4.3 RNA extraction 

Isolation of total RNA from cell lines 

For all experiments except cloning of the 3’-UTRs and microarray analyses, total RNA of cell 

lines was extracted using TRIsure (Guanidium thiocyanate-phenol-chloroform extraction). 

Briefly, for adherent cells, the medium was aspirated and cells were washed once at RT with 1 x 

PBS. Cells were lysed directly in the culture dish by addition of 1 ml TRIsure per well. 

Suspension cells were washed with PBS, trypsinized and pelleted. The pellet was dissolved in 

1 ml of TRIsure. For both, the lysates were transferred to 1.5 ml Safe-Lock Eppendorf 

microcentrifuge tubes. Phase separation was carried out by adding 200 µl chloroform to each 

sample followed by a centrifugation step for 15 min at 4 °C at 13,200 rpm (Eppendorf 

centrifuge 5415D). The RNA accumulates in the (upper) aqueous phase, while DNA and 

proteins are discarded with the interphase and the (lower) organic phase. The upper aqueous 

phase was carefully collected and the RNA was precipitated after addition of 500 µl isopropanol 

and centrifugation for 10 min at 4 °C at 13,200 rpm (Eppendorf centrifuge 5415D).  Afterwards, 

the RNA pellets were washed three times with 1 ml EtOH (75 %), dissolved in DEPC-H2O and 

stored at -20°C until further use or at -80 °C for long-term storage. Quantity and purity of RNA 

samples were assessed by determining the ratios of absorbance at 260 nm/280 nm and 260 

nm/230 nm using a NanoDrop ND-2000c spectrophotometer.  

Isolation of total RNA from cell lines for subsequent microarray analyses 

For LC Sciences and Affymetrix miRNA microarrays, RNA was extracted with the miRNeasy kit 

according to the manufacturer’s protocol with an additional on-column DNase I digestion. 

DNase I treatment 

To degrade any DNA contamination in total RNA samples, DNAse I treatment was performed 

before the reverse transcription. Briefly, 2 µg of RNA were mixed with 2 µl of 10 x DNase I-

buffer, 0.5 µl DNase I (2 U/µl) and the respective amount of DEPC-H2O (up to a total volume of 

20 µl) on ice. The mixture was incubated at 37 oC for 10 min and then placed on ice. 0.5 µl of 

0.02 M EDTA was added to each sample (final concentration of 0.5 mM) to protect the RNA 

during the following heat-inactivating step. After vortexing, the DNase was heat-inactivated at 
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75 oC for 10 min. The DNase-treated RNA was re-quantified in Nanodrop to ensure RNA 

amounts between 50-90 ng/µl.  

Extraction of total RNA from FFPE patient material 

For FFPE-samples, five scalpel-scraped slices of FFPE tissue were pooled and RNA was extracted 

using the RT2-FFPE extraction kit. Quantity and purity of RNA samples were assessed using a 

NanoDrop ND-2000c spectrophotometer. 

4.4 Reverse transcription, quantitative Realtime PCR and Analysis 

Reverse Transcription to obtain cDNA for subsequent cloning 

Total RNA from A375 cells was extracted with the Nucleospin RNA extraction kit according to 

the manufacturer´s instructions. cDNA synthesis was performed with the Thermoscript RT-PCR 

system. Briefly, 500 ng RNA was incubated with 1 µl dNTPs (10 mM), 0.5 µl oligo dT (50 µM) 

and H20 (up to 10 µl) for 5 min at 65 °C and then placed on ice. After addition of 2 µl 5x cDNA 

buffer, 0.5 µl 0.1 M DTT, 0.5 µl RNaseOut, 1 µl of H20 and 0.5 µl of thermoscript polymerase 

the mixture was incubated for 1h at 50 °C and for 5 min at 85 °C. The resulting cDNA served as 

input for PCR amplifications as described below. 

Reverse Transcription for subsequent miRNA and mRNA expression analysis 

For FFPE samples and cell lines, 250 ng of total RNA was reversely transcribed using the 

miScript System according to the manufacturer’s instructions and as depicted schematically in 

Fig. 15. The system allows for simultaneous reverse transcription of mRNA and miRNAs. The 

reverse transcription mix includes a poly(A) polymerase to allow the addition of Poly(A) tails to 

miRNAs, which are not polyadenylated in nature. In the first step of the reaction, miRNAs get 

polyadenylated whereas the reverse transcription is performed in the second step. Additionally, 

a universal tag is added to the 3’-end of miRNAs and mRNAs, which is needed for later 

amplification during the real-time PCR. For reverse transcription, briefly, 250 ng of total RNA 

were diluted in DEPC-H2O to a total volume of 7.5 µl and mixed with 2 µl miScript RT Buffer and 

0.5 µl reverse transcriptase mix. Incubation times were 37 °C for 60 min followed by 95 °C for 5 

min. 
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Fig. 15: miScript system – schematic overview 

(from miScript handbook, Qiagen) Polyadenylation, reverse transcription and real-time amplification of 

miRNAs as described in the text. 

 

Realtime-qPCR 

Realtime polymerase chain reaction or quantitative real time polymerase chain reaction (qPCR) 

allows for amplification and simultaneous quantification of specific DNA fragments. Apart from 

Northern Blotting, microarray analysis or sequencing, it provides a standard method for 

detection and quantification of miRNAs and mRNAs (VanGuilder et al. 2008). It offers the 

opportunity to calculate absolute miRNA amounts, when standard concentrations are used in 

the same assay. However, mostly relative miRNA or mRNA expression levels are assessed and 

are determined with respect to a panel of so-called ‘house-keeping’ or reference genes, which 

show stable expression levels even after treatment (Bustin et al. 2009).  

For the quantification of mature miRNAs, real-time PCR was carried out on a CFX96 or CFX384 

detection system using 5 ng RNA input, 2 x iQ SYBR Green Supermix and 10 x miRNA-specific 

primer assay (Qiagen). To detect mRNAs and primary/precursor miRNAs, 25 ng or 125 ng RNA 

input, 2 x iQ SYBR Supermix and 5 pmol gene-specific primer pairs (Table 6) were used. 

Thermal cycling conditions for all reactions were 95 °C for 3 min, 39 x (95 °C for 15 s, 60 °C for 

30 s), 95 °C for 1 min, 60 °C for 1 min, followed by a melting-curve analysis: 60 °C to 95 °C, 

increment 0.5 °C for 20 s. 
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Analysis of realtime-qPCR results 

If not stated otherwise, expression analysis was performed using the GeNorm VBA applet for 

Microsoft Excel, version 3.5 (Vandesompele et al. 2002; Mestdagh et al. 2009). The add-in 

calculates a normalization factor (NF) which is based on the raw quantity of the house keeping 

genes (HKG), calculated from their respective cycle thresholds (Ct ‘s) with  

 

raw	HKG	quantity � 	2�������	��	������� 

 

and     

	

NF � geometric	mean	of	raw	HKG	quantity 

 

wherein Ct min = minimum Ct of the respective house keeping gene for all samples. The 

housekeeping genes TBP (TATA-binding protein), HPRT (Hypoxanthine 

phosphoribosyltransferase 1), CycloA (Peptidylpropyl isomerase A) and β-Actin (see Table 6 for 

sequences) were used for normalization of mRNA amplification and primary / precursor miRNAs 

and RNU1A, RNU5A (RNA, U1A/5A, small nuclear) and SCARNA17 (small Cajal body-specific 

RNA 17) (all from Qiagen) for mature miRNAs. After determination of the NF, the gene of 

interest (GOI) is normalized by dividing the raw gene of interest quantity by the normalization 

factor: 

	

raw	GOI	quantity � 	2�������	��	������� 

     

      and 

 

normalized	GOI � 	
raw	GOI	quantity

NF
 

 

For stimulation experiments, the normalized GOIs were then divided by the mean of the 

untreated control and the values of the single time points were subsequently averaged to obtain 

the relative expression (REL). Apart from normalization, the Genorm applet calculates a gene 

expression stability measure M for the reference genes, allowing for further quality control of 

the experiment and for elimination of genes with the most unstable expression. For our studies, 

analysis was performed based on the Genorm-calculated normalization factor of three reference 

genes with an M-value below 1.5 (in most cases < 0.5). 
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4.5 miRNA microarrays 

LC Sciences 

Total RNA from the NHEM, IGR39 and IGR37 lines was subjected to genome-wide microRNA 

expression profiling (miRBase, version 11.0) using the µParaflo® microarray technology as 

described on the web site of LC Sciences (Houston, TX, USA) and by us (Philippidou et al. 

2010). Briefly, total RNA (2-5 µg) was size-fractionated with a YM-100 Microcon filter (Millipore) 

to isolate small RNAs (<300 nt). These were subsequently 3’-poly(A) tailed and fused to 

nucleotide tags for later Cy3 and Cy5 dye labeling. Hybridisation of RNAs with the probes (which 

are complementary to target miRNAs (miRBase)) was carried out overnight on a µParaflo 

microfluidic chip. The respective hybridization images were collected by a laser scanner 

(GenePix 4000B, Molecular Device) and subsequently processed with the Array-Pro image 

analysis software (Media Cybernetics). Data analysis was performed by LC Sciences.  

Affymetrix 

Duplicate total RNA samples from A375 melanoma cells (stimulated for different periods of time 

with IFN-γ or including the pre-treatment with JII at the 72 h time point) were analyzed as 

published previously by members of our group (Reinsbach et al. 2012). Affymetrix GeneChip 

miRNA 2.0 Arrays (based on miRBase version 15, Affymetrix Datasheet P/N EXP00180) were 

performed at the microarray facility of the CRP Santé (Luxembourg), which included use of the 

FlashTag Biotin HSR RNA labelling kit (Genisphere, USA) according to the manufacturer’s 

instructions.  

4.6 Transfection of cells 

Mimic/inhibitor experiments 

105 cells/well were seeded in 6-well plates in antibiotic-free medium and transfected after 24 h 

with 50 nM of each miR-29a and miR-29b mimics, with 150 nM miR-29a inhibitor or with 

corresponding amounts of negative controls (NC-mimic or NC-inhibitor) using the 

DharmafectDuo transfection reagent according to the supplied protocol; 1 ml of medium was 

added 24 h after transfection. Efficient transfection was confirmed by qRT-PCR (Fig. 29). For 

miR-29 target gene expression, RNA and protein lysates were collected 24 h, 48 h and 72 h 

after transfection and subsequently analyzed by RT-qPCR and Western blot. 

Combination experiment with miR-29 inhibitor and IFN-γ 

2 x 103 cells/well were seeded in 96-well plates in antibiotic-free medium and transfected 24 h 

with 150 nM of miR-29a inhibitor or the same amount of negative control (NC-inhibitor) or were 

left untreated. For the combination experiment and for the samples with IFN-γ treatment only, 

stimulation (50 ng/ml IFN-γ) was performed 8h after transfection. 
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CDK6 siRNA transfection 

5 x 104 cells were transfected with 75 nM ON-TARGET siRNA or siRNA negative control (si-NC) 

24 h after seeding in 6-well plates using the HiPerfect transfection reagent according to the 

manufacturer’s instructions in a total volume of 1 ml antibiotic-free medium and 1 ml medium 

was added 24 h after transfection. CDK6 mRNA and protein levels were assessed after 24 h, 

48 h and 72 h to confirm efficient down-regulation (Fig. 38). 

4.7 Reporter gene assays 

Cloning of 3’-UTRs and single miR-29a binding sites  

For PCR amplification of 3’-UTRs, a ~1600 bp part of the 3’-UTR of two predicted miR-29 

target genes was amplified from A375 cDNA using primer pairs (Table 5) with incorporated XhoI 

(forward) or NheI (reverse) restriction sites. The CDK6 construct (1600 bp) contained three 

putative miR-29 binding sites, whereas the PI3KR1 construct (1567 bp) contained one binding 

site (Fig. 37). Briefly, 2 µl of cDNA were subjected to PCR using the Phusion DNA polymerase in 

a total reaction volume of 50 µl with 10 µl buffer, 1 µl dNTPs, 1 µl of each primer 

(forward/reverse, 100 µM), 0.2 µl polymerase, 2.5 µl DMSO and 32.3 µl H20. Cycling conditions 

(for 35 cycles) were 98 °C for 30 s (initial denaturation), 98 °C for 10 s (denaturation), 65°C for 

20 s (annealing), 72 °C for 15 s (extension) and 72 °C for 10 min (final extension). Purification 

of PCR products and all following purifications of plasmid DNA as well as separation of DNA 

after restriction digests were performed by cutting bands of appropriate size from a 1 % 

agarose gel under UV-light. Subsequent purification of the DNA from agarose gels was 

performed with the innuPREP DOUBLE pure kit according to the manufacturer’s instructions. 

For vector preparation for subsequent cloning, 2 µg of pmirGLO DNA were digested in a total 

volume of 30 µl with 3 µl NEB2 buffer, 3 µl BSA, 0.3 µl XhoI, 0.3 µl NheI and H20 (up to 30 µl). 

30 µl of purified PCR products (amplified 3´-UTRs) were digested with 5 µl NEB2 buffer, 5 µl 

BSA, 0.3 µl XhoI, 0.3 µl NheI and 9.4 µl H20. Both digestions were performed for 1.5 h at 37 °C, 

followed by a heat-inactivating step at 65 °C for 20 min. For subsequent cloning, linearized 

vector DNA was dephosphorylated to avoid re-ligation of the vector: after digestion, plasmid 

DNA was incubated for 1 h at 37 °C with 0.4 µl CIP upon addition of 2 µl NEB2 buffer and 18 µl 

H20 in a total volume of 50 µl. Linearized plasmid DNA and inserts were purified on a 1 % 

agarose gel.  

For ligation, 100 ng of digested vector DNA was incubated with inserts in two different molar 

ratios (vector to insert - 1:3 or 1:7) along with 2 µl of 10x ligase buffer, 0.5 µl T4 DNA ligase 

and H20 ad 20 µl overnight at 16 °C. Bacteria were transformed with ligated plasmids (as will be 

described below). 

For cloning of single miR-29 binding sites (CDK6, BS 1-3 and 29a full complementary site, 
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FC), oligo annealing was performed. Oligonucleotides (obtained from Eurogentec, Table 5) were 

diluted to a concentration of 10 µM. 2 µl of each forward/reverse oligo were incubated with 46 

µl of oligo annealing buffer for 2 min at 100 °C and then left on the heatblock to cool down to 

room temperature. For ligation, oligos were diluted 1:10 to obtain a concentration of 4 ng/ µl 

per oligo. 4 ng of oligo and 50 ng of linearized vector were ligated with 2 µl buffer and 0.5 µl of 

T4 DNA ligase at 16 °C overnight. 2 µg of pmirGLO plasmid were digested in a total volume of 

30 µl with 3 µl NEB2 buffer, 3 µl BSA, 0.3 µl XhoI, 0.3 µl XbaI and 21 µl of H2O for 1.5 h at 

37 °C and oligos were ligated into open vectors as described above. Purification was performed 

on a 1 % agarose gel as described before.  

Chemically competent E. coli cells were prepared for subsequent transformation of 

plasmids. For the starter culture, 2 ml LB medium was inoculated with a single colony of E. coli 

DH5 α and incubated overnight at 37 °C with 250 rpm (Certomat MOII, Sartorius). 20 ml of pre-

warmed LB were inoculated with the starter culture at 37 °C, 250 rpm (Certomat MOII, 

Sartorius) until the OD600 reached approximately 0.4. The culture was centrifuged at 4300 rpm 

(Heraeus Megafuge 1.0R) for 15 min at 4 °C and the pellet was then resuspended in 2 ml ice-

cold TSS buffer. 20 % glycerol was added and the cell suspension was dispensed in 300 µl 

aliquots to be stored at -20 °C until further use. 

For transformation of competent cells, an aliquot of competent bacteria was thawed on ice. 

150 µl of competent DH5 α bacteria were incubated with 100 ng of the ligated plasmid DNA for 

30 min on ice. The cells were subjected to heat shock at 42 °C for 90 s and placed on ice for 2 

min. 1 ml of LB-medium was added to the mixture, followed by pre-culturing at 37 °C with 

shaking at 250 rpm for 1 h. The cells were then centrifuged at 10.000 rpm for 1 min and plated 

on LB agar supplemented with ampicillin to a final concentration of 50 µg/ml. The plate was 

incubated overnight at 37°C. 

To verify correct insertion of the constructs (mini preparation), 2 ml LB medium 

supplemented with ampicillin (final concentration of 50 µg/ml) was inoculated with a single 

bacterial colony and incubated overnight at 37 °C with shaking (250 rpm). The cells were 

harvested by centrifugation at 13.000 rpm. For the following steps, plasmid DNA was purified 

using the 5prime Miniprep kit according to the instruction manual provided. Instead of the 

supplied elution buffer, 10 mM Tris (pH 8) was used.  

For analytical restriction digest after small scale plasmid isolation, plasmid DNA was 

incubated with the restriction enzymes XhoI and NheI for 1.5 h at 37 °C to confirm the 

presence of the correct ligation of 3’-UTR inserts in the pmirGLO vector. For oligo cloning, 

control digest was performed with XhoI and HindIII. For both, correct sizes were monitored on 

1 % agarose gels. DNA sequencing was performed to verify correct ligation of fragments into 

the pmirGLO vector, constructs were sequenced by GATC (Konstanz, Germany) and DNA 
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sequences were verified using the GATC viewer, which is provided on the GATC homepage 

(http://www.gatc-biotech.com/en/index.html). 

For subsequent preparative isolation of plasmid DNA (midi preparation), 100 ml LB 

medium supplemented with ampicillin (final concentration of 50 µg/ml) were inoculated with a 

single bacterial colony and incubated overnight at 37 °C with shaking (250 rpm, Certomat MOII, 

Sartorius). The cells were harvested by centrifugation at 4300 rpm (Heraeus Megafuge 1.0R). 

Plasmid DNA was purified using the Xtra Midi Plus kit according to the instruction manual 

provided.  

Luciferase reporter gene assays 

For luciferase assay, the dual luciferase reporter assay system was used according to the 

manufacturer´s instructions. The sequence parts of CDK6 and PI3KR1- 3’UTRs containing miR-

29 binding sites, CDK6 miR-29a single binding sites and the miR-29a full complementary 

sequence were cloned into the pmirGLO Dual Luciferase miRNA target expression vector 

downstream of the luciferase gene (see Table 5 for primer sequences and oligonucleotides). 

A375 cells were seeded at a density of 5 x 104 cells/well in 24-well plates 24 h prior to 

transfection. Cells were transiently co-transfected with 500 ng plasmid and 50 nM miR-29a 

mimic or negative control (NC-mimic) for 48 h and 72 h. Samples were lysed with 1x Passive 

Lysis Buffer for 15 min at room temperature. Lysates were transferred in 96-well plates and 

frozen at -20°C until the measurement for both time points was performed together.  

For measurement, 10 µl of lysate were transferred into a LIA luminescence 96-well plate. 

Measurement of firefly activity was performed after addition of 50 µl of LARII (luciferase assay 

reagent II) reagent per well and measurement of renilla activity was monitored after 

subsequent addition of 50 µl of Stop & Glo reagent per well. The firefly/renilla activity ratios of 

mimic-transfected samples were calculated and normalized to the respective ratios of the 

negative control-transfected samples for each construct and each time point. 2Significance was 

assessed by one-way ANOVA followed by a Bonferroni Post-Hoc test. 

4.8 Western blots and Licor quantification of protein levels 

Preparation of protein extracts from cell lines 

Adherent cells were washed 1x with PBS, followed by direct lysis on ice with Laemmli buffer. 

Generally 500 µl were used for 1 well from a 6-well plate, if confluent. Alternatively, suspension 

cells were pelleted in Eppendorf reaction tubes, the pellet was lysed in Triton lysis buffer for 10 

min on ice and Laemmli buffer was added to the solution. 
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SDS page and Western blotting 

Extracts containing equal amounts of protein were boiled for 5 min at 95 °C and 10-20 µl of 

each sample per lane were separated by 8-12 % SDS-PAGEs at 20-30 mA/gel. A protein 

standard ladder (Precision Plus ProteinTM Standard) was loaded to confirm the sizes of proteins 

investigated. The proteins were then transferred to a nitrocellulose membrane (for Licor 

quantification, see below) or PVDF membrane (the latter had been activated in methanol for 1 

minute before blotting, for ECL (enhanced chemoluminescence)-detection) in a semi-dry 

Western blotting chamber for 1 h at 48 V per blot. The membrane was blocked for 30 min at 

room temperature with blocking buffer. After three washes (5 min each) in TBS-N buffer, the 

membrane was probed with 10 ml of the respective first antibodies (Table 4) overnight at 4 °C 

with gently shaking. After three more TBS-N washing steps, it was subsequently incubated with 

the HRP (horseradish peroxidase)-labeled (for ECL detection) or fluorophor-coupled (for Licor 

quantification) secondary antibody of the respective species (Table 4) for 1h at RT with shaking. 

For ECL-detection, membranes were washed three times for 5 min in TBS-N and placed in ECL 

substrate reagent supplemented with H2O2 for 1 min. Membranes were exposed in the 

Molecular Imager ChemiDocTM XRS+ system or the ChemiStar system for various times and 

chemiluminescent signals were detected. Before re-probing, PVDF membranes were stripped for 

30 min at 70 oC in stripping buffer, washed in H2O, blocked for 30 min and incubated with the 

next antibody. Equal loading was confirmed by actin, tubulin or FIN13 loading controls for PVDF 

membranes.  

Licor quantification (Li-cor Biosciences) 

The Li-cor Odyssey Infrared Imaging System (Li-cor Biosciences) enables infrared fluorescence 

detection of protein signals by two independent infrared channels (700 nm and 800 nm). This 

technology allows for a wide dynamic range and thus accurate quantification of protein bands 

from membranes (www.licor.com). This is achieved by using fluorophor-coupled secondary 

antibodies instead of peroxidase-coupled ones as routinely used for ECL detection. For 

quantification of CDK6 and p85α protein levels, signal intensities of the different fluorophor 

channels 700 nm and 800 nm were assessed with the Odyssey imaging system at a resolution 

of 84 µm and analyzed with the provided software. CDK6 and p85α signals were normalized to 

the respective tubulin loading controls. 

4.9: Functional assays: Incucyte experiments 

The Incucyte machine is an automated live-cell imaging system which allows label-free and 

kinetic analysis of cell growth rates and morphology. It is positioned inside a standard cell 

culture incubator and equipped with a camera, which can e.g. photograph cells in phase-

contrast or detect fluorescence signals to provide raw data for subsequent quantification of 
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cellular growth rates or other analyses. After seeding or treatment of the cells, imaging can take 

place inside the machine under normal cell-culture conditions without removing the cells to RT 

in between (www.essenbioscience.com). 

Apoptosis assay 

2 x 103 cells/well were seeded in 96-well plates and transfected 24 h after seeding with the 

respective amounts of mimic, inhibitor or negative controls as described above (5.6). After 

transfection, cells were additionally incubated with 5 µM of NucView 488 Caspase detection 

reagent. The NucView reagent combines a caspase-3 substrate and a non-functional dye, which 

becomes functional and emits fluorescence upon enzymatic cleavage of the substrate. Thus, 

caspase activity in living cells can be followed up in real-time. 50 µM Etoposide was used as 

positive control for apoptosis and fluorescence was monitored by Incucyte over 72 h. For 

subsequent analysis, object counting thresholds were set to recognize fluorescent cells over 

background fluorescence of the medium and the number of fluorescent cells per well was 

calculated by the Incucyte software. 

Real-time proliferation assays  

All proliferation assays were performed by real-time monitoring in the Incucyte live-cell imaging 

system, which photographed cells in phase contrast every 3 h, taking 9 (for 96-well plate) to 25 

(for 6-well plate) pictures per well. For monitoring the growth of untreated melanoma cell lines, 

25 x 103 cells/well of eight untreated melanoma cell lines were seeded in 12-well plates and 

harvested after 96 h. To monitor basal miRNA levels in these cell lines, RNA was extracted and 

miR-29 species were amplified by qRT-PCR as described below. 
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4.10 In silico analysis of the miR-29 promoter region 

For the TSS (transcription start site) overview, all published TSSs on both miR-29 clusters, 

which were available before May 2012 were collected and converted to genome version 19 

(hg19) with the UCSC (University of California Santa Cruz) Liftover utility for coordinate 

conversion (http://genome.ucsc.edu/cgi-bin/hgLiftOver). The subsequent in silico analysis on 

the promoter region was performed based on the UCSC  Genome Browser (Kent et al. 2002) 

using the UCSC tracks described below, which are described in more detail on the UCSC 

homepage (http://genome.ucsc.edu/). The analysis included several characteristic features of 

promoter regions, which are explained below. The aim of this analysis was to overlay these 

characteristic features (conservation score, histone mark) with predicted and experimentally 

verified STAT1 binding sites in order to identify candidate STAT1 transcription factor binding 

sites which could be responsible for miR-29 regulation. 

Vertebrate Basewise Conservation by PhyloP  

(Siepel et al. 2005; Pollard et al. 2009) (found under ‘comparative genomics’) 

Evolutionary conservation of promoter regions, especially transcription factor binding sites is 

correlated with a higher possibility of actual usage of the site for transcription factor binding. 

The UCSC track shows a multiple alignment of the genomes of 46 vertebrate species and the 

corresponding evolutionary conservation. In the plots, conserved sites are represented in blue, 

with positive scores; sites shown in red and assigned to negative scores are considered to be 

fast-evolving. 

H3K4Me3 Mark  

(trimethylation of histone H3 lysine 4) (Ram et al. 2011)  

(found under ‘regulation’ � ‘integrated regulation’ from ENCODE tracks) 

The H3K4Me3 signature is often found near active promoters because it changes the chromatin 

to a more open conformation, thus making it more accessible for transcription, as explained in 

the introduction (Fig. 7). The track shows the levels of enrichment of H3K4Me3 as investigated 

by ChIP-seq in K562 cells.  

Transcription Factor Binding Sites determined by ChIP-seq 

from ENCODE/Stanford/Yale/USC/Harvard (track ‘ENCODE transcription factor binding’ � SYDH 

found under ‘regulation’) 

The track shows predicted transcription factor binding sites as determined by ChIP-seq 

experiments which were performed in IFN-γ-treated K562 leukemia cells and in HeLaS3 cells 

(for HeLaS3 data: (Robertson et al. 2007)(both experiments: Snyder laboratory, Stanford; IFN-γ 

treatment for 30 min). Both ChIP experiments were carried out with an STAT1 antibody (sc-

345). The bar (Fig. 26) represents the enrichment for binding of the transcription factor 
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together with the site having the greatest evidence of transcription factor binding (peak, here 

represented by a red line). According to UCSC, both measures are based on processed data 

(normalized data from pooled replicates). 

Predicted transcription factor binding sites based on ChIP-seq data 

Transcription factor ChIP-seq from ENCODE (found under ‘regulation’ � integrated regulation 

from ENCODE tracks): This track also shows predicted transcription factor binding sites, in 

which the peaks from the ChIP-seq data were analyzed by a pipeline developed from Anshul 

Kundaje (for further details see UCSC (http://genome.ucsc.edu/)), which combined data from a 

panel of different cell lines. 

Putative pri-29a~b-1 transcription start sites 

Putative transcription start sites of the pri-29a~b-1 cluster were collected from literature 

(derived from in vitro experiments as well as computational predictions), converted to the 

human genome version hg19 and allocated to the pri-29a~b-1 promoter as shown in (Schmitt 

et al. 2012a) and references therein.  

Potential STAT1 binding sites  

(predicted by Jaspar and Transfac) 

For own investigation of the pri-29a~b-1 promoter sequence for potential STAT1 binding sites, 

we used the open-source website ‘Jaspar‘ (Vlieghe et al. 2006) as well as the commercial 

program ‘Transfac‘ (Matys et al. 2003) which both predict transcription factor binding sites in a 

given DNA sequence. 

GAS elements 

The sequence search for GAS elements in the promoter region was performed for the 

consensus sequences TT(C/A)CNNNAA(A/G) (Pagliaccetti et al. 2008) and TT(C/A)NNN(G/T)AA 

(Smith et al. 2012). 
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5 Results 

5.1  IFN-γ-induced miRNAs 

Identification of differentially regulated miRNAs in melanoma cell lines following 

cytokine treatment 

The main focus of this thesis was the identification and characterization of IFN-γ-induced 

miRNAs. To this end, there was a previous report showing that IL-6 induced STAT3-dependent 

up-regulation of miR-21 in multiple myeloma cells (Löffler et al. 2007). Here we turned our 

interest to IFN-γ, which is known to play pivotal roles in immune regulation (Schroder et al. 

2004; Borden et al. 2007) and regulation of growth behavior as was previously demonstrated 

for melanoma cells (Kortylewski et al. 2004). However, no STAT1-dependent miRNAs had been 

reported yet, and thus all 837 human miRNAs listed in the former miRBase version 11.0 were 

potential candidates. To investigate basal expression levels of miRNAs and their possible 

transcriptional regulations by STAT1 factors, IGR39 (representing early stage, primary 

melanoma) and IGR37 (late stage, metastatic melanoma from the same patient as IGR39) 

melanoma cell lines as well as NHEM (normal human epidermal melanocytes) were treated with 

50 ng/ml IFN-γ for different periods of time (3 h and 72 h) and total RNA of the cells was 

subsequently analyzed by miRNA microarray (LC Sciences, miRBase version 11.0). This initial 

miRNA microarray experiment served as a starting point for this PhD project to provide 

important information to the following questions: Firstly, it offered an overview on basal miRNA 

expression levels of the three (untreated) cell lines as well as on differentially expressed miRNAs 

within the untreated cell lines, which represented different melanoma stages (Fig. 16). The 

latter could be subsequently classified in up- or down-regulated miRNAs according to melanoma 

progression stages (NHEM � IGR39 � IGR37) (Philippidou et al. 2010). In this study, we 

compared these array results on untreated melanoma cell lines with miRNA expression profiles 

of 88 cancer-related miRNAs by PCR-array which was performed on melanoma patient samples. 

Interestinlgy, miR-200c was consistently down-regulated with tumour progression in all samples 

(melanoma cell lines and patient samples). miR-146a and miR-155 levels were increased in 

patient samples, but decreased in cell lines with melanoma progression whereas miR-205 and 

miR-23b exhibited reduced expression levels in patient samples. Subsequent Ingenuity pathway 

analysis determined a de-regulated gene network around MITF, the key transcription factor in 

melanoma development (Philippidou et al. 2010; Schmitz Ulf et al. 2013).  

Secondly and of special importance for this PhD project, the microarray provided the 

fundamental information necessary for consecutive selection of potential STAT1-regulated 

miRNAs. All three cell lines exhibit a clearly distinct miRNA expression pattern after IFN-γ-
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stimulation, with IGR39 showing the highest number of regulations (Fig. 16). Furthermore, 

miRNAs which showed differential regulation between the three treatments (untreated, 3 h and 

72 h IFN-γ) could be allocated into several groups according to their distinct differential 

expression pattern (Fig. 16). The expression level of several miRNAs was already altered after a 

short time interval (3 h) and remained in this state even after 72 h (D1, U1, Fig. 16). Most 

miRNAs were either up-regulated or down-regulated over time with most regulations occurring 

solely at the late time point (72 h, D2 and U2, Fig. 16). Interestingly, especially in NHEM cells, 

differential expression levels over time partly exhibited ‘curve’-like shapes, f.e. a clear up- or 

down-regulation at the early time point (3 h) and returning to basal levels after 72 h of IFN-γ 

stimulation (C1, C2, Fig. 16). In addition to this clustering analysis, array results were analyzed 

for differential miRNA expression levels after IFN-γ-stimulation in comparison to the respective 

untreated control at both time points to identify a ‘working list’ of potentially STAT1-regulated 

miRNAs. This analysis led to further selection of a panel of seven microRNAs, which were 

differentially regulated in the cell lines analyzed and which were of interest for other biological 

reasons. Those included miR-21, miR-23a, miR-29a, miR-146a, miR-211, miR-1246 and miR-

1826 (Fig. 16). miR-211 was excluded from further experiments because it was found to be 

undetectable in most melanomas (data not shown) and as it was the focus of another study 

from our group where the functional role of this miRNA in melanoma was investigated (Margue 

et al. submitted). Interestingly, miR-1246 showed the strongest up-regulation after IFN-γ-

stimulation on the microarrays and has been reported to exhibit a high basal expression level on 

different array platforms (Zhang et al. 2011a; Piepoli et al. 2012), however, these findings could 

not be confirmed by qRT-PCR. This could be due to unspecific hybridization to the miR-1246 

probes or because current commercially available primers are not suitable for qPCR 

amplification of this miRNA.  

 

Fig. 16: Differentially expressed miRNAs on clustered heatmaps based on LC Sciences miRNA 

microarrays 

Heatmaps illustrate significantly differentially expressed miRNAs (p-value < 0.01, ANOVA) between the 

different treatments (untreated, 3 h or 72 h stimulation with 50 ng/ml IFN-γ, respectively). Single miRNAs 

showing differential expression are represented in the vertical area, whereas the three treatments are 

aligned horizontally. Note that every miRNA is spotted four times on the array, resulting in four rectangles 

per cell line and treatment. Colors represent Z-score values as indicated at the bottom. According to their 

differential regulation patterns, miRNAs can be divided into several groups: down-regulated (D) and up-

regulated (U) miRNAs as well as miRNAs regulated in a ‘curve’ (C) (with down-/up-regulation at the time 

points D1 = early (3 h) and late (72 h), D2 = late, U1 = early and late, U2 = late whereas the curve- 

regulation can be divided into C1 = down-regulation followed by return to basal level and C2 = up-

regulation followed by return to basal levels). miRNAs with a high differential expression over time which 

were selected for further analysis are marked in green. 
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Otherwise, differential expression of miRNAs in IFN-γ-stimulated samples in comparison to the 

untreated control was confirmed by qPCR for all miRNAs tested and different regulation patterns 

were detected in the different cell lines (Fig. 17). Efficient IFN-γ-stimulation was confirmed by 

induction of P-STAT1 and up-regulation of the STAT1 target gene STAT1 itself by parallel 

Western blot analysis (Fig. 17). Surprisingly, different regulation patterns for the same RNA 

samples were detected, when miRNA expression was normalized either to the housekeeping 

gene RNU6B or SCARNA17. For example in IGR37 cells, most of the analyzed miRNAs (miR-21, 

-23a, -29a, -146a, -1826) were found to be up-regulated, when referred to RNU6B, but were 

down-regulated, when SCARNA17 was used for normalization (Fig. 17). miR-21 was not induced 

in A375 and MeWo cells when normalized to SCARNA17, but was up-regulated when calibrated 

to RNU6B. Both genes are commonly used reference RNAs for qPCR amplification of miRNAs. 

Nevertheless, miR-29a and miR-1826 showed the most robust regulation of all miRNAs tested in 

the investigated cell lines and were thus selected for further analyses. Because the miR-1826 

sequence was later on identified to be a fragment of 5.8S rRNA (ribosomal RNA), it was 

removed from miRBase and thus from our list of human miRNAs of interest. Subsequently, the 

focus was set on the miR-29 family with its mature members miR-29a, -29b and -29c, which is 

one of the most important miRNA families to date, implicated in the regulation of various 

cellular processes (Kriegel et al. 2012; Schmitt et al. 2012a). For control purposes, miR-100 

(slightly down-regulated after IFN-γ stimulation) and miR-25 (stable levels) were selected. To 

circumvent the above described normalization problem and to be able to reliably identify the 

small expression changes typical for miRNAs (1.5 – 5 fold), the Genorm normalization method 

(for details see methods section) has been used for all following experiments, which uses a 

minimum number of three housekeeping genes (in our case RNU1A, RNU5A and SCARNA17), 

thus allowing for more accurate normalization of miRNA expression changes according to the 

MIQE-guidelines (Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments) (Bustin et al. 2009). 
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Fig. 17: IFN-γ stimulation of three in melanoma cell lines: qPCR amplification of candidate 

miRNAs as selected from the LC Sciences microarray experiment 

(A,B) The miRNAs miR-21, -23a, -29a, -146a, -1246 and -1826 were amplified from A375, MeWo and 

IGR37 melanoma cell lines, which had been left untreated or stimulated with IFN-γ for 3 h, 8 h, 24 h, 48 

h or 72 h. Graphs show miRNA relative expression (REL) normalized to the house keeping genes 

SCARNA17 (A) or RNU6B (B) and to the untreated control. Bars ≙ mean with SD of technical triplicates; 

only single experiments are shown for other experiments. (C) Efficient STAT1-activation was confirmed by 

Western blot analysis. 

 

To gain a comprehensive view on the regulation of the miR-29 family, the expression of all miR-

29 species following IFN-γ-stimulation was addressed in detail: kinetics of both primary clusters 

pri-29a~b-1 and pri-29b-2~c, the different precursor molecules pre-29a, pre-29b-1, pre-29b-2 

and pre-29c as well as the mature miRNAs miR-29a and miR-29b were analyzed. Nevertheless, 

it must be noted that precursor primers can also amplify primary miRNAs and up-regulation of 

miR-29 precursors may partially reflect the pri-29a~b-1 signal. Expression of mature miR-29c, 

which is derived from the pri-29b-2~c cluster was not analyzed as it only bears one nucleotide 

difference to miR-29a (Fig. 4). 2Therefore, specific and correct qPCR amplification of miR-29c 

expression was not possible with the SYBR system (data not shown). 



ResultsError! Reference source not found. 

56 

The pri-29a~b-1 cluster and mature miR-29a/29b are regulated by IFN-γ in 

melanoma cell lines 

To accurately assess the regulation of the miR-29 family by IFN-γ-induced STAT1, the 

melanoma cell lines MeWo and A375, as well as stably transfected A375 derivates were used for 

further stimulation experiments with IFN-γ. 2A375-STAT1(F) represent STAT1-dominant 

negative cells harboring a phenylalanine replacement of tyrosine residue 701 crucial for STAT1 

phosphorylation and dimerization (Kortylewski et al. 2004)(Fig. 5). 2Thus, transcription of STAT1 

target genes is abolished despite IFN-γ stimulation. 2The corresponding positive control cells 

A375-STAT1(wt) express the STAT1 wild-type construct instead (Kortylewski et al. 2004). 

2Stimulation of A375, MeWo and A375-STAT1(wt) cell lines with 50 ng/ml of IFN-γ induced a 

prominent STAT1 phosphorylation, which decreased after 48 h of IFN-γ treatment, whereas the 

STAT1-dominant negative cells A375-STAT1(F) only exhibited a delayed and weak P-STAT1 

signal after IFN-γ stimulation (Fig. 18), see also (Kortylewski et al. 1999)). 2Functional activity of 

the P-STAT1 transcription factor was confirmed by up-regulation of the STAT1 target genes IRF-

1 and STAT1 itself, which showed induced expression after 3 h and 8 h, respectively. 2Following 

stimulation, changes in miRNA expression levels were assessed by qRT-PCR. A375, A375-

STAT1(wt) and MeWo cell lines showed a strong and significant up-regulation (>5 fold) of the 

pri-29a~b-1 cluster, starting 24 h after IFN-γ stimulation, while expression of the pri-29b-2~c 

cluster was not altered (Fig. 18, upper panel). 2Accordingly, miRNA precursors pre-29a and pre-

29b-1 were also augmented whereas pre-29b-2 and pre-29c levels remained unaffected (Fig. 

18, middle panel). 2Subsequently, significant up-regulation of both mature miR-29a and miR-

29b following IFN-γ stimulation was confirmed (Fig. 18, lower panel). The two control 

amplifications of miR-100 (slightly down-regulated) and miR-25, which remained stable over 

time following IFN-γ stimulation confirmed the initial microarray-based expression profiles (Fig. 

18, lower panel). 2Except for minor expression changes of the Pri/Pre-miR-29 species after 72h 

of IFN-γ treatment, no up-regulation was detected in the A375-STAT1(F) dominant negative 

control cells, clearly suggesting that STAT1 activity is required for the IFN-γ-induced regulation 

of miR-29.  
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Fig. 18: 2 Expression profiles of miR-29 clusters in melanoma cells 
2A375-STAT1(F), A375-STAT1(wt), A375 and MeWo melanoma cells were stimulated with IFN-γ for 

different time points. 2(A) Western Blot analysis (representative blots of biological triplicates) confirms 

activation of P-STAT1 and induction of STAT1 and IRF-1 after IFN-γ stimulation while dominant negative 

A375-STAT1(F) cells show minor effects. 2(B) Time course study of miRNA-expression after IFN-γ-

stimulation. 2Graphs show relative expression (REL) from quantitative qRT-PCR data for the pri-29a~b-1 

and the pri-29b-2~c clusters, the precursors pre-29a/29b-1/29b-2/29c and mature miR-29a/29b/25/100. 
2Fold expression was calculated relative to the untreated control. Bars = mean with SD for biological 

triplicates. 2Statistical significance was tested with one-way ANOVA, followed by a Dunnett Post-Hoc test 

with * p<0.05, ** p<0.01 and *** p<0.001.  
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Detailed time course microarray experiment confirms IFN-γ-induced regulation of 

miR-29 

In the course of a master thesis project in our group (Reinsbach et al. 2012), a more detailed 

time course miRNA microarray experiment was performed using IFN-γ-stimulated A375 cells 

(including untreated, 30 min, 3 h, 6 h, 12 h, 24 h, 48 h, 72 h, 96 h time points). In parallel and 

as a negative control, cells had been pre-treated with Jak inhibitor 1 (JI1), which specifically 

inhibits Janus tyrosine kinases and subsequently prevented miR-29 up-regulation after IFN-γ 

stimulation. Optimal concentrations of inhibitor had previously been established in our 

laboratory. As shown in Fig. 19, the STAT1 phosphorylation for cells pretreated with JI1 was 

almost undetectable. 

 

 

 

Fig. 19: STAT1-activation after IFN-γ stimulation and abrogation of P-STAT1 signals 

following JI1-pretreatment 

Detailed IFN-γ kinetics in A375 cells (50 ng/ml IFN-γ or pre-treated with 5 µM JII followed by IFN-γ 

stimulation). Activation of P-STAT1 (left) and Jak-inhibition (right) were confirmed prior to microarray 

analysis of the corresponding RNA samples (Reinsbach et al. 2012). 

 

Following the confirmation of successful IFN-γ-stimulation, duplicate RNA samples of A375 cells 

from all time points (untr, 0.5 to 96 h) and from the 72 h JI1-pre-treated cells were subjected 

to miRNA-microarray (Affymetrix) (Fig. 20) and subsequent qRT-PCR validation of selected 

miRNAs (data not shown). Up-regulation of mature miR-29a and miR-29b after IFN-γ-

stimulation, as well as no modulation of miR-25 and slight down-regulation of miR-100 over 

time was confirmed (Fig. 20). No expression change in comparison to untreated cells was 

observed after JI1-pre-treatment and subsequent IFN-γ stimulation for any of the miRNAs, 

indicating that the transcriptional induction of miRNAs following IFN-γ-stimulation is Jak-

dependent and STAT-mediated. Altogether, these data substantiate the time-dependent up-

regulation of the expression of pri-29a~b-1 cluster as well as of the mature miRNAs miR-29a 

and -29b in melanoma cells, which is triggered by IFN-γ-induced STAT1 signaling.  

Interestingly, also miRNA star sequences showed differential regulation. The miRNA star 

(miR*)-sequences, as named on the microarray (and as explained before, introduction Fig. 3), 

represent the miRNA, which arises from the 3´-arm of the hairpin and is conventionally 
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considered as “minor” product. In this case, miR-29a* and miR-29c* were not induced whereas 

miR-29b-1* and miR-25* was up-regulated after IFN-γ-stimulation.  

 

 

 

Fig. 20: miRNA and miRNA* expression profiles in A375 cells 

Corresponding data were derived from a more detailed IFN-γ time course miRNA microarray experiment 

including cells treated with JI1 (72h JI1, IFN-γ stimulation for 72 h after pre-treatment with JI1, blue 

dots). 2Depicted are log2-values of the mean of duplicate microarray experiments. 

 

miRNAs from the  miR-23a/27a/24-2 clusters show strand-specific IFN-γ-induction  

Other IFN-γ-induced miRNAs from the detailed miRNA microarray experiment included also 

several miRNA star sequences which showed regulation patterns different to their partner 

duplex strands (Fig. 21). For example, miR-23a* and miR-27a* were up-regulated, whereas 

miR-23a and miR-27a did not exhibit differential expression following IFN-γ. For the second 

miR-23/27/24 cluster, all miR-23/27 species were down-regulated (Fig. 21). Interestingly, both 

clusters are composed of three miRNAs from different families each (miR-23/miR-27/miR-24). 

This leads to the suggestion that the cellular functions of miR-23a*/miR-23b* and miR-

27a*/miR-27b* could complement each other (Reinsbach et al. 2012).  
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Fig. 21: Strand-specific IFN-γ induction the miR-23a/27a/24-2 cluster and down-regulation 

of the miR-23b/27b/24-1 cluster 

(A) Genomic organization of both clusters miR-23a/27a/24-2 (chr 19, -) and miR-23b/27b/24-1 (chr 9, +) 

(B) miRNA and miRNA* expression profiles in A375 cells derived from the detailed IFN-γ time course 

miRNA microarray experiment including cells treated with JI1 (72hJI1, IFN-γ stimulation for 72h after pre-

treatment with JI1, blue dots). 2Depicted are log2-values of the mean of duplicate microarray 

experiments. 

 

Analysis of miR-29 regulation in other biological systems 

To investigate whether the observed regulation patterns are specific for melanoma cells or if 

they can be reproduced in other cell types, we performed the same stimulation experiments in 

HEK293T kidney cells and Jurkat T-cells and also used the type-I interferons IFN-α and IFN-β in 

preliminary stimulation experiments (Fig. 22). Up-regulation of mature miR-29a/b after IFN-γ-

stimulation and unchanged miR-25 levels were also observed in these two other cell lines (Fig. 

22), albeit miR-29a up-regulation was slightly weaker than in melanoma cells. Interestingly, also 

IFN-α and IFN-β-stimulation led to enhanced miR-29a and miR-29a expression in Jurkat and 

HEK cells, proving that also type-I-interferons can induce these miRNAs. However, effects were 
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stronger in Jurkat cells than in HEK cells and miR-29a/b induction after IFN-β stimulation was 

higher in comparison to IFN-α stimulation in Jurkat cells (Fig. 22). 

 

 

 

Fig. 22: Analysis of miR-29 regulation patterns in HEK293T and Jurkat cells 

Up-regulation of mature miR-29a/29b after IFN-α, IFN-β and IFN-γ stimulation in Jurkat T cells and 

HEK293T kidney cells. miR-25 levels remained unchanged in Jurkat cells and were slightly affected after 

IFN-α and IFN-β stimulation of HEK293T cells. Graphs show relative expression (REL). Bars = mean with 

SD for biological triplicates (IFN-γ) or technical triplicates (IFN-α, IFN-β). Statistical significance was 

tested with one-way ANOVA, followed by a Dunnett Post-Hoc test with * p<0.05, ** p<0.01 and *** 

p<0.001  

 

In addition to our findings for melanoma cells (Fig. 18) and previously published data on the 

role of miR-29 in various other cancer types (Sengupta et al. 2008; Wang et al. 2008; Zhao et 

al. 2010) miR-29 family members were also shown to be up-regulated in T-cells (Fig. 22).  

When analyzing potential target genes of miR-29 with publicly available databases and literature 

searches (see below, Fig. 33) we found that miR-29a/29b had also been reported to target the 

HIV (human immunodeficiency virus) -protein nef (negative regulatory factor) (Hariharan et al. 

29a 29b 25

1

2

3

4

5

29a 29b 25

1

2

3

4

5

**
**

*

29a 29b 25

1

2

3

4

5

* *

* *

****

******

Jurkat T-cells

96h

c
3h
8h
24h
48h
72h

untr

IFN-γ
(50ng/ml)

IFN-α
(50ng/ml)

IFN-β
(50ng/ml)

29a 29b 25

1

2

3

4

5

HEK cells

29a 29b 25

1

2

3

4

5

*

29a 29b 25

1

2

3

4

5

96h

c
3h
8h
24h
48h
72h

24h
untr

48h
72h



ResultsError! Reference source not found. 

62 

2005). Nef has a positive influence on HIV infectivity and replication by down-regulating cell 

surface molecules like CD4 (cluster of differentiation 4) and MHC (major histocompatibility 

complex) I and II (Kirchhoff et al. 2008). Following this interesting connection, we found in a 

report that miR-29a modulates HIV-production and infectivity (Nathans et al. 2009). With this 

information at hand we initiated initial experiments to investigate a potential connection 

between IFN-γ/miR-29a/nef in T-cells, using MT4 T-cells, which can be infected by HIV. MiR-

29a/b were up-regulated after stimulation of MT4 T-cells with IFN-α-, IFN-β- and IFN-γ. Follow-

up studies are currently being planned to investigate whether IFN-induced up-regulation of miR-

29a/b is sufficient to reduce nef expression in HIV-infected T-cells and to possibly decipher a 

new role for interferons and miRNAs during HIV infection. 

 

 

 

Fig. 23: Initial experiments on miR-29 in MT4 cells 

(A) Mature miR-29a/29b up-regulation after IFN-α-, IFN-β- and IFN-γ-stimulation (50 ng/ml) in MT4 T 

cells. Graphs show relative expression (REL). Bars ≙ mean with SD for biological triplicates. Statistical 

significance was tested with one-way ANOVA, followed by a Dunnett Post-Hoc test with * p<0.05, ** 

p<0.01 and *** p<0.001. (B) Efficient phosphorylation of P-STAT1 after stimulation (IFN-α-, IFN-β- and 

IFN-γ, 50 ng/ml) was confirmed by Western blotting. 

 

IL-27 induces a P-STAT1 response in melanoma cell lines and up-regulates miR-29 

For all following experiments, we focused again on melanoma cells. Members of our group had 

shown that although it belongs to the IL-6-type cytokine receptor family, IL-27 (interleukin 27) 

assumes IFN-γ-like functions in hepatoma cells and induces a STAT1 response (Schoenherr et 
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al. 2010). We tested whether IL-27 could also activate STAT1 in melanoma cells leading to up-

regulation of miR-29 as it was confirmed that IL-27 exhibits anti-proliferative activities on 

melanoma cell lines (Yoshimoto et al. 2008). The required receptors for IL-27 signal 

transduction are WSX-1 and gp130 (glycoprotein 130), which are known to be expressed on 

MeWo cells (Pflanz et al. 2004). Indeed, P-STAT1 activity as well as miR-29a/b up-regulation 

was confirmed in A375 and MeWo cells (Fig. 24). Also phosphorylation of STAT3 following IL-27 

stimulation could be detected in the early time points (3 h – 24 h). Interestingly, also the 

untreated samples showed a P-STAT3 signal, which can be explained by constitutive activity of 

STAT3 in cell culture experiments, which include wells with a high cell density (Kreis et al. 

2007). 

 

 

Fig. 24: IL-27 induces a STAT1-response in A375 and MeWo melanoma cell lines 

Time course study of miRNA-expression after IL-27-stimulation (50 ng/ml) in A375 and MeWo melanoma 

cells. (A) Western Blot analysis confirms activation of P-STAT1 and induction of STAT1 and IRF-1 after IL-

27 stimulation as well as activation of P-STAT3. (B) qRT-PCR: graphs show relative expression (REL) from 

quantitative qRT-PCR data for the mature miRNAs miR-29a, miR-29b, miR-25 and miR-100. Fold 

expression was calculated relative to the untreated control. Bars ≙ mean with SD for technical (A375) or 

biological (MeWo) triplicates. Statistical significance (MeWo) was tested with one-way ANOVA, followed 

by a Dunnett Post-Hoc test with * p<0.05, ** p<0.01 and *** p<0.001.  
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5.1  In silico analysis of the miR-29 promoter regions 

As miR-29 family members could be induced by STAT1, we next analyzed their respective 

promoter regions more closely. Both clusters of the miR-29 family are intergenic and currently 

there is no common agreement on their transcription start sites (TSSs). To taper the region 

which could be responsible for miR-29 regulation, a detailed literature search was performed on 

all published TSS coordinates for both clusters (Saini et al. 2007; Chang et al. 2008; Marson et 

al. 2008; Saini et al. 2008; Corcoran et al. 2009; Mott et al. 2010; Chien et al. 2011), which 

were then converted into the human genome version 19 (hg19) as described in more detail in 

our recent review (Schmitt et al. 2012a). So far, 14 different TSSs have been annotated for the 

miR-29 family (Fig. 25). TSS analysis revealed that the genomic locations of the published 

transcription start sites were distributed over a large distance.  

 

 

Fig. 25: Promoter organization and potential transcription start sites for miR-29 clusters 
1Potential TSSs for both clusters miR-29a~29b-1 (TSSab1-8) and miR-29a~29b-2 (TSSbc1-6) from 

literature, as described in (Schmitt et al. 2012a). 1Coordinates have been converted to genome version 

hg19/GRCh37 and are as follows: TSSab1 chr7:130.572.487; TSSab2 chr7:130.586.832; TSSab3 

chr7:130.596.983; TSSab4 chr7:130.597.889; TSSab5 chr7:130.598.020; TSSab6 chr7:130.598.638; 

TSSab7 chr7:130.598.268; TSSab8 chr7:130.800.298; TSSbc1 chr1:207.977.425; TSSbc2 

chr1:207.979.479; TSSbc3 chr1:207.985.009; TSSbc4 chr1:207.996.050; TSSbc5 

chr1:207.997.156;TSSbc6 chr1:207.037.276. The magnified insert (TSSab4-7) indicates a culmination of 

described TSSs and thus a putative promoter region of the miR-29a~29b-1 cluster. 

 

However, four of the TSSs for the miR-29a~29b-1 cluster accumulated in a 700 bp-region, 

which could be its most important regulatory region, while no refinement was possible for the 
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miR-29c~29b-2 cluster (Fig. 25). Genomic coordinates for those four transcription start sites 

were obtained by experimental (TSSab4 and TSSab5) (Chang et al. 2008; Mott et al. 2010) and 

computational (TSSab6 and TSSab7) analyses (www.switchgeargenomics.com). 

In silico analysis of the pri-29a~b-1 promoter region identifies a putative regulatory 

region containing two STAT1 binding sites 

After the region for the approximate location of the pri-29a~b-1 promoter had been narrowed 

down and to further confirm the STAT1-mediated regulation of this cluster, a comprehensive in 

silico examination of the region chr7:130,560,000-130,610,000 (hg19) was conducted, spanning 

the sequence 40.000 bp upstream and 10.000 downstream of the putative pri-29a~b-1 

transcription start site as described in Schmitt et al. (Schmitt et al. 2012a); an illustration is 

shown in Fig. 25. This analysis included the UCSC genome browser features ‘H3K4Me3 mark’, 

‘vertebrate conservation’ and also incorporated data from a ChIP-Seq experiment which had 

been performed on IFN-γ treated Hela cells within the ENCODE project (ENCyclopedia of DNA 

Elements) (Kent et al. 2002) (all features are further described in the methods section). This 

initial analysis identified a region (chr7:130,596,800-130,599,000; hg19) with high vertebrate 

conservation, a H3K4Me3-mark as marker for open chromatin and a prominent ChIP-Seq peak 

and also contained five of the putative transcription start sites described in literature (Fig. 26 A). 

We thus concentrated on the sequence mentioned above for the following analyses.  

By combination of several sequence searches and publicly available in vitro data and in silico 

analyses, we identified two STAT1 bindings sites (chr7:130597141-130597155 and 

chr7:130597778-130597792) within a conserved region of chromosome 7 in the promoter 

region of the pri-29a~b-1 cluster. The binding sites which could be responsible for pri-29a~b-1 

regulation have been predicted by two different algorithms (‘Jaspar’ and ‘Transfac’) (Fig. 26 B) 

and overlapped with ChIP-Seq-based data as well as ENCODE-predictions for STAT1 binding 

sites. Furthermore, they were located in close proximity of a H3K4Me3-mark (marker for open 

chromatin) and are located close to putative transcription start sites found in literature. 

Interestingly, transcription of the pri-29a~b-1 from the region described above would lead to a 

very long primary construct of ~36 kb. 
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Fig. 26: In silico analysis of a putative STAT1-regulatory region within the pri-29a~b-1 

promoter 

(A) Initial analysis on chr7:130,560,000-130,610,000 (hg19) included (from top to bottom) putative TSSs 

from literature (Fig. 25 and (Schmitt et al. 2012a)). ENCODE STAT1-ChIP-seq peaks from a ChIP 

experiment performed on IFN-γ-stimulated Hela cells, position of mature hsa-miR-29a and hsa-miR-29b-1 

sequences, H3K4Me3 peaks and vertebrate conservation scores (blue / positive scores: conserved sites; 

red / negative scores: fast-evolving sites) were all obtained from UCSC (Kent et al. 2002).  

(B) Detailed analysis on chr7:130,596,800-130,599,000 (hg19), magnified insert from (A). From top to 

bottom: ENCODE TF-ChIP-seq: STAT1 binding sites as predicted by the UCSC track ENCODE (Hudson and 

Snyder 2006; Euskirchen et al. 2007) transcription factor binding; GAS-search: GAS elements from 

computational screen for the consensus sequences TT(C/A)CNNNAA(A/G) (light green) (Pagliaccetti et al. 

2008) and from screen for consensus sequence TT(C/A)NNN(G/T)AA (green) which had been used by 

Smith et al. (Smith et al. 2012). Jaspar/Transfac: putative STAT1 binding sites predicted by Jaspar (dark 

blue) or Transfac (light blue); the red star indicates the sites found by both of the programs. TSS 

literature: potential transcription start sites collected from literature, as summarized in (Schmitt et al. 

2012a) and corresponding to TSS labelling from Fig. 25: TSSab3: (Chien et al. 2011) miRStart; TSSab4: 

(Mott et al. 2010); (TSS)ab5: (Chang et al. 2008); TSSab6 & TSSab7: UCSC: ’SwitchGear’. ENCODE 

STAT1 ChIP-seq and H3K4Me3 mark and vertebrate conservation: magnified insert from A), the red line 

indicates the middle of the STAT1-ChIP-seq-peak. 
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5.3  Functional characterization of miRNA-29 in melanoma 

The miR-29b-2~c cluster is undetectable in melanoma cell lines, melanocytes and 

keratinocytes 

2As both miR-29 primary clusters as well as the mature miR-29a/29b showed different basal 

expression levels in stimulation experiments and are known to be differentially expressed in 

several other types of cancer (Pekarsky et al. 2006; Stamatopoulos et al. 2009), we next 

analyzed the miR-29 basal expression profiles in a panel of melanoma cell lines, primary human 

melanocytes (NHEM-M2) and HaCaT keratinocytes (Fig. 27).  

 

 

 

Fig. 27: 2Analysis of miR-29 basal expression levels and proliferation of untreated melanoma 

cell lines 
2Comparison of basal expression levels of (A) primary miRNA clusters pri-29a~b-1 (blue/red/black bars) 

and pri-29b-2~c (grey bars) and (B) mature miR-29a (blue/red/black bars) and miR-29b (grey bars) in 

NHEM-M2, eight melanoma cell lines and HaCaT keratinocytes. Bars = mean of = 2(dCt) x102 with SD of 

biological triplicates (dct = ct target – ct GEOMEAN of 3 reference genes). (C) 2Mean growth curves of 

untreated melanoma cell lines over 4 days (biological quadruplicates). 2Melanoma cell lines with ‘low 

expression’ of pri-29a~b-1 and miR-29a show faster proliferation whereas cells with a relatively ‘high 

expression’ proliferate slower.  
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2Pri-29a~b-1 was strongly expressed whereas pri-29b-2~c was almost undetectable in all cell 

lines analyzed (Fig. 27). This is in accordance with previous studies reporting down-regulation 

of the pri-29b-2~c cluster in rhabdomyosarcoma (Wang et al. 2008) and B-cell lymphoma 

(Chang et al. 2008). Mature miR-29a consistently showed higher basal expression levels than 

miR-29b in all cell lines examined (Fig. 27). To exclude the possibility that the differences in 

expression levels mentioned above were caused by different primer efficiencies (e.g. miR-29a 

versus miR-29b primer and pri-29a~b-1 primer versus pri-29b-2~c), we tested the primer 

efficiencies of all miR-29 primer and confirmed them to be between 80% and 120% (data not 

shown).  

MiR-29a/29b expression levels inversely correlate with growth behavior of 

melanoma cell lines 

The classification of miR-29 as tumor-suppressor miRNA has been widely accepted and the 

possibility to use synthetic miR-29 as therapeutic agent in treatments of cancer seems to 

become increasingly realistic. 2Properties counteracting the development and spreading of 

cancer cells that have been observed in vitro and in vivo after miR-29 overexpression include 

reduced invasion and proliferation and induction of apoptosis (Xiong et al. 2010; Fang et al. 

2011). 2These findings prompted us to analyze a potential correlation of basal miR-29 

expression levels with cell growth. Proliferation of untreated melanoma cell lines was monitored 

over time (Fig. 27) in order to correlate it with miR-29a and pri-29a~b-1 basal expression levels 

obtained from cells harvested 96 h after seeding. NHEM-M2 primary melanocytes were not 

included in this experiment as they hardly proliferate. 2According to their expression levels, 

melanoma cell lines could be grouped in miR-29a and pri-29a~b-1 ‘low-expression’ lines (A375, 

MeWo, IGR39, WM9) and ‘high expression’ cell lines (FM55P, FM55M1, SK-Mel30, IGR37) (Fig. 

27). 2Generally, cell lines with lower miR-29a showed an increased proliferation rate compared 

to lines with higher basal miR-29a levels (Fig. 27). Furthermore, the inverse correlation between 

pri-29a~b-1/miR-29a expression and the proliferation rate of melanoma cell lines might suggest 

a potential involvement of miR-29 in anti-proliferative effects in melanoma cells.  

MiR-29a/b are responsible for growth inhibition of melanoma cells 

To follow up these initial findings on proliferation (Fig. 27), we applied miR-29a/29b mimics to 

A375 cells, which exhibit a relatively low miR-29a/29b basal expression and, vice versa, we 

applied a miR-29a inhibitor to FM55P cells, which have a high basal miR-29a/29b expression 

(Fig. 27). 2Proliferation assays with mimics and inhibitors and the corresponding amounts of 

scrambled controls, NC (negative control)-mimic and NC-inhibitor, corroborated that miR-29 

indeed inhibited growth of melanoma cells: transfection of miR-29a/29b mimics caused a 

remarkable reduction of proliferation as compared to NC-mimic-transfected A375 cells. 
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Fig. 28: 2 Proliferation assay of miR-29a/b-mimic-transfected and miR-29a-inhibitor-

transfected melanoma cells confirms the growth-inhibitory role of miR-29 
2Proliferation assay of (dark blue) mimic/inhibitor- and (light blue) NC (negative control)-mimic/NC-

inhibitor-transfected cells over 72h in (A) A375 and (B) FM55P cells; representative graphs of four 

independent experiments. 2Error bars depict SDs of technical triplicates. 2The inserted graphs (upper left 

corners) show the mean confluence of 4 biological replicates at 0 h and 72 h time points of the 

proliferation assay. 2Depicted are ratios of confluence of miR-29a/b-mimic / NC-mimic treated cells (A) 

and miR-29a-inhibitor / NC-inhibitor treated cells (B). Bars ≙ mean with SEM. Significance was assessed 

by a two-tailed t-test with * p<0.05, ** p<0.01 and *** p<0.001. 

 

In turn, FM55P cells, in which miR-29a was inhibited, proliferated faster than NC-inhibitor-

transfected control cells (Fig. 28). 2To confirm efficient transfection, miR-29a/29b tracking by 

qPCR was performed in parallel to the proliferation experiments (Fig. 29). 2Application of miR-

29b inhibitor was not possible as it turned out that the inhibitor itself was amplified by miR-29b 

primers in qRT-PCR, thus inhibition of miR-29b could not be properly monitored and controlled. 

2However, as shown in Fig. 27, miR-29b was generally expressed to a much lower degree than 

miR-29a, so that inhibition of miR-29a was considered to be more important regarding cellular 

effects. Furthermore, initial experiments on combinatorial miR-29a/29b inhibition revealed no 

additional or synergistic effects on potential target genes (see below) compared to miR-29a 

inhibition alone (data not shown). 
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Fig. 29: qRT-PCR tracking experiments to confirm efficient mimic/inhibitor transfection 

miR-29a/29b mimics were tracked in A375 cells (A) and miR-29a suppression after inhibitor transfection 

was quantified in FM55P cells (B) by qRT-PCR. 2Expression levels of miR-29a/29b were assessed 24h, 48h 

and 72h after mimic/inhibitor transfection; bars show means of biological triplicates with SD, relative to 

negative control (NC)-mimic/NC-inhibitor controls. 2Note that miR-29b transfection and/or amplification 

was more efficient than for miR-29a. 

 

In the course of the miR-29-mimic/inhibitor-experiments in melanoma cell lines we analyzed 

their impact on proliferation by measuring growth rates following IFN-γ stimulation. Dose-

dependent inhibition of proliferation by IFN-γ-treatment alone of up to 40 % was detected for 

A375 and MeWo cells (Fig. 30), and this was in line with previous findings for melanoma and 

other cancer cells (Garbe and Krasagakis 1993; Knüpfer et al. 2001; Kortylewski et al. 2004; 

Saha et al. 2010).  

 

 

 

Fig. 30: Proliferation assay following IFN-γ stimulation 

A375 (left) and MeWo (right) melanoma cell lines were left untreated or stimulated with 5, 25 or 50 

ng/ml IFN-γ and growth was monitored over 90 h. Error bars show SEM of technical triplicates. IFN-γ 

dose-dependently inhibited melanoma proliferation in both cell lines. 
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Both miR-29a/b and IFN-γ inhibited melanoma growth (Fig. 28,  Fig. 30) and inhibition of miR-

29a led to enhanced proliferation with respect to the control treatment (Fig. 28). These findings 

raised the question whether in course of a combined IFN-γ/miR-29a inhibitor treatment, 

inhibition of miR-29a would be able to compensate for the inhibition of proliferation mediated by 

IFN-γ (Fig. 31). Inhibitor/IFN-γ double treated cells indeed proliferated faster than NCI/IFN-γ 

treated ones (Fig. 31). However, growth differences were not very prominent and not 

consistently reproducible, probably due to the harsh effects of the double treatment on the 

cells. 

 

 

Fig. 31: Proliferation assay: combination experiment with miR-29 inhibitor and IFN-γ in 

FM55P-cells 

FM55P melanoma cells were left untreated, stimulated with 50 ng/ml IFN-γ or transfected with miR-29a-

inhibitor (Inh), the respective negative control (NC-inhibitor) or a combination of either of them with 50 

ng/ml IFN-γ. Left: as shown above, IFN-γ inhibited proliferation and mir-29a inhibitor transfection (Inh) 

led to enhanced proliferation in comparison to the scrambled control (NCI). Right: Following combined 

treatment, the proliferation rate of inhibitor/IFN-γ treated cells was higher than for NCI/IFN-γ treated 

cells. Error bars show SD of technical triplicates.  

 

Manipulation of miR-29a/b expression levels has no significant impact on apoptosis 

To expand the findings on miR-29-mediated cellular effects, apoptosis was monitored after 

transfection of miR-29a/b mimics and inhibition of miR-29a in A375 and FM55P melanoma cell 

lines by a caspase-3 based Incucyte assay (Fig. 32). Apoptosis rates for miR-29a/b mimic-

transfected cells were slightly enhanced in comparison to the control treatment and, vice versa, 

less apoptosis was observed when miR-29a was inhibited. It has been described previously that 

miR-29 induces apoptosis (Mott et al. 2007; Wang et al. 2011b). Here, effects were not very 

prominent and a reliable difference in apoptosis levels of miR-29a/b-mimic or miR-29a-inhibitor-

transfected cells in comparison to the respective negative controls could not be confirmed. 
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Fig. 32: Apoptosis assay of miR-29a/b-transfected A375 cells and miR-29a-inhibitor-

transfected FM55P cells 

Caspase-3 activity was monitored in Incucyte over 72h for miR-29a/b-transfected cells (29ab) in 

comparison to NC-mimic (NC-M)-transfected A375 cells (left) and for miR-29a-inhibitor (29a-Inh) in 

comparison to NC-inhibitor (NC-Inh)-transfected FM55P-cells (right). Graphs show the number of 

apoptotic cells per well (fluorescent cells with a fluorescence intensity above the background) as counted 

by the Incucyte software. Graphs show a representative replicate out of biological triplicates for each cell 

line, error bars show SD of technical triplicates. Etoposide (Eto) was used as positive control for 

apoptosis.  

 

5.4  The quest for miR-29a/b target genes 

MiR-29 is predicted to regulate more than 1000 human genes (TargetScanHuman 6.1). To 

further elucidate the role of the miR-29 family in melanoma, a combination of several 

algorithms (TargetScanHuman 6.1, Diana-microT v3.0, and miRanda) was consulted in order to 

compile a list of potentially interesting target genes, which carry predicted miR-29 target sites 

and could play a role in melanoma development and progression. As the three mature miR-29 

species share their seed sequence and the remaining mature sequences are very similar, the 

lists of target genes for miR-29a, -29b and -29c can be considered identical. Venn diagram 

analysis of the three target gene lists identified 97 targets as commonly predicted by the three 

programs (Fig. 33).  
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Fig. 33: Venn diagram of potential miR-29 target genes as predicted by Diana, miRanda and 

TargetScan 

The three programs were requested to search for miR-29a target genes. Venn diagram analysis 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) identified 97 target genes, which had been 

predicted by all three of the programs. 

 

To shorten this list of potential miR-29 target genes, the candidates were screened for their 

potential relevance in melanoma development and the list was expanded by several more 

candidates from literature analysis. Furthermore, this initial selection was cross-checked with 

data from a previous mRNA microarray experiment, which had been performed on a panel of 

five untreated melanoma cell lines (Master Thesis Project, Stefanie Schmitz). Expression 

analysis revealed that most of the potential target genes were either not expressed in the 

majority of cell lines or only showed a very low basal expression (data not shown). Based on 

this information, ten potential target genes were chosen for further tests (Fig. 33). The 

selection of potential miR-29 target genes is shown in Table 7.  
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Table 7: Selection of potential miR-29 target genes selected for further analysis 

(descriptions taken from http://www.ncbi.nlm.nih.gov/gene) 

Gene Name description 

Akt3 v-akt murine thymoma viral 

oncogene homolog 3 
Member of the Akt kinase family, which regulate cell signaling in 

response to insulin and growth factors  

Bcl-2 B-cell CLL/lymphoma 2 Integral outer mitochondrial membrane protein that blocks apoptotic 

death of several cells (f.e. lymphocytes) 

Cdc42 Cell division control protein 42 

homolog 

Small GTPase of the Rho-subfamily, involved in cell morphology, 

migration etc. 

CDK6 cyclin-dependent kinase 6 Important player in cell cycle; phosphorylates RB, which subsequently 

leads to G1/S transition 

Dicer1  Endoribonuclease, involved in miRNA processing 

DNMT3A 

DNMT3B 

DNA (cytosine-5-)-

methyltransferase A/B 
Catalyzes transfer of methyl group to DNA 

� involved in gene silencing 

Mcl-1 myeloid cell leukemia sequence 

1 
Member of Bcl-2 family; 2 isoforms: one enhanced cell survival, while 

the other one promotes apoptosis 

PI3KR1 Phosphoinositide-3-kinase 

regulatory subunit 
Subunit of PI3K, which is a signaling molecule for growth factors and 

hydroxylates phosphatidylinositols; involved in cell growth. 

proliferation etc. 

PTEN Phosphatase and tensin homolog Tumor suppressor; counteracts PI3K; negatively regulates the Akt-

pathway 

 

To further reduce and verify this target gene selection, expression levels of the potential target 

genes were evaluated by RT-qPCR 24h after transfection with NC-mimic as this represents the 

approximate control for the subsequent miR-29a/b-mimic-transfections (Fig. 34).  

 

 

Fig. 34: Expression of potential target genes in A375 cells after NC-mimic-transfection 

Basal expression level of target genes in A375 cells 24h after transfection of 100 nM NC-(negative 

control) mimic. Graphs show relative expression level with REL = 2(Ct target – Ct TBP) x 102 with SD of 

technical triplicates. Akt3, cdc42, CDK6, Mcl-1, PI3KR1 and PTEN show a high or moderate basal 

expression while Bcl-2, Dicer1 and DNMT3A/B only exhibit a low expression in A375 cells. 

 

Indeed, some of the target genes (DNMTA/B, Bcl-2, Dicer1) had very low basal expression 

levels whereas others (CDK6, cdc42, Akt3) were comparatively stronlgy expressed. 

Subsequently, the miR-29a/b mimic was applied to A375 cells to examine whether tentative 

target genes could be down-regulated (Fig. 35). 
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Fig. 35: Expression levels of target genes in A375 cells following miR-29a/b mimic 

transfection 

mRNA levels were assessed 24h, 48h and 72h after transfection of 50nM each miR-29a and miR-29b 

mimic and were normalized to NC-mimic controls (REL-values were obtained by dividing target gene 

mRNA levels after mimic treatment by target gene mRNA levels of the corresponding NC-mimic-treated 

cells). Bars show mean of technical replicates with the propagated error. 

 

mRNA levels of Akt3, Bcl-2, cdc42 remained unchanged after miR-29a/b mimic treatment, 

whereas a modest down-regulation was observed for PI3KR1 and PTEN (Fig. 35). Interestingly, 

Dicer1 and Mcl-1 were up-regulated, while a clear down-regulation was monitored for CDK6, 

DNMT3A and DNMT3B. The PI3K regulatory subunit (gene: PI3KR1; protein: PI3K/p85α) and 

CDK6 were selected for further analyses. Bcl-2, Dicer1 and DNMT3A/B showed a very low basal 

expression level in A375 cells (Fig. 34), hence a miR-29-mediated down-regulation would 

unlikely be of particular importance in the cellular context and therefore they were not 

considered any further. CDK6 had a high basal expression level, which was clearly reduced after 

mimic-transfection, while PI3KR1 exhibited a moderate basal expression and only a minor 

reaction to the treatment (Fig. 34, Fig. 35). Both genes play important roles in cell cycle control, 

cellular signaling and proliferation and had already been confirmed as miR-29 targets in several 

cancers (Garzon et al. 2009b; Park et al. 2009b; Zhao et al. 2010; Li et al. 2011), however not 

for melanoma. 
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MiR-29a/29b down-regulate CDK6, but not PI3K 

2To assess the effect of miR-29 on CDK6 and PI3K expression in melanoma, mRNA and protein 

levels were examined after miR-29 mimic or inhibitor treatments by qRT-PCR and quantitative 

immunoblotting, respectively (Fig. 36).  

 

 

Fig. 36: Effects of miR-29 on potential target genes CDK6 and PI3K 

(A,B) 2relative mRNA and protein expression levels (REL) of miR-29 target genes CDK6 (dark blue) and 

PI3K (light blue), assessed 24 h, 48 h and 72 h after mimic/inhibitor transfection compared to NC-

mimic/NC-inhibitor controls (REL-values were obtained by dividing target gene mRNA/protein levels after 

mimic/inhibitor treatment by target gene mRNA/protein levels of the corresponding NC-mimic/NC-

inhibitor treated cells); bars show means of biological triplicates with SD. Statistical significance was 

assessed by one-way ANOVA followed by a Bonferroni Post-Hoc test. (C) Down-regulation of miR-29 

target proteins CDK6 and PI3K is observed after IFN-γ stimulation of melanoma cells. 
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2Combined transfection of miR-29a/29b reduced CDK6 mRNA and protein levels in A375 cells as 

compared to scrambled controls whereas PI3K levels were not affected (Fig. 36A). 2In 

agreement with that, knockdown of miR-29a in FM55P cells resulted in a slight up-regulation of 

CDK6 levels while PI3K remained unchanged (Fig. 36B). These data indicate that miR-29 is 

involved in down-regulation of CDK6 protein while PI3K does not seem to be a specific target in 

melanoma cells. Upon analysis of protein levels, CDK6 was found to be down-regulated in 

response to miR-29 induction after IFN-γ stimulation in A375 cells and A375-STAT1(wt) but not 

in A375-STAT1(F) cells, suggesting STAT1 dependency (Fig. 36C). In contrast, PI3K levels were 

reduced in all three cell lines, hinting at STAT1-independent effects. 

CDK6 is a direct target of miR-29a 

To determine whether a direct interaction between target genes and miR-29 exist, we 

performed luciferase assays with reporter constructs containing a part of the CDK6 3´-UTR, its 

three single miR-29 binding sites as predicted by TargetScan (www.targetscan.org), a part of 

the PI3KR1-3´-UTR or the miR-29a full complementary sequence as a positive control (Fig. 37). 

Luciferase activity dropped by ~60 % for both time points, 48 h and 72 h, when the CDK6 3´-

UTR construct was co-transfected with miR-29a mimic in A375 melanoma cells. 2The 

corresponding single binding sites contributed to this suppression with 38 % (BS1), 34 % (BS2) 

and 35 % (BS3), though only 72 h after transfection (Fig. 37). 2This suggests that all three miR-

29 binding sites partake in the suppression of CDK6. 2Surprisingly, the PI3KR1 construct was 

also significantly suppressed by the miR-29a mimic in luciferase assays (Fig. 37) while only 

marginal effects had been observed on mRNA and protein level (Fig. 36). 2Taken together, 

these findings indicate that both CDK6 and PI3KR1 3´-UTRs are directly targeted by miR-29 in 

melanoma cells; however, only CDK6 suppression seems to be relevant in a cellular context. 

Because of these overall inconsistent results for PI3KR1, we continued our experiments only 

with CDK6. 
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Fig. 37: Luciferase assay experiments for 3’-UTR sequences of predicted miR-29 target genes 

CDK6 and PI3KR1 

(A) Schematic overview of CDK6 and PI3KR1 luciferase constructs with positions of conserved miR-29a 

binding sites predicted by TargetScan (bold) in the CDK6-3’UTR (BS1-3) and in the PI3KR1-3’UTR (BS) 

and corresponding miR-29a sequences (italics). (B) Luciferase activity in A375 cells transfected with 

constructs containing the positive control miR-29a full complementary sequence (29a-FC), parts of CDK6- 

or PI3K1-3’UTRs or CDK6 single binding sites (BS1-BS3) and miR-29a mimic or the same amount of 

negative control for 48 h and 72 h. Relative luciferase activity (as calculated by the ratio of firefly and 

renilla activities) of miR-29a-transfected samples was normalized to NC-mimic-transfected control 

samples (with luciferase activity of miR-29a-transfected samples divided by NC-mimic-transfected 

samples = 1 set to 100%). Bars show the mean of biological triplicates with SD, relative to NC-mimic 

controls for each construct. Statistical significance was tested with one-way ANOVA, followed by a 

Bonferroni Post-Hoc test with * p<0.05, ** p<0.01 and *** p<0.001. 

 

The direct miR-29 target CDK6 regulates the growth behavior in melanoma cells 

2To further explore the relevance of reduced CDK6 levels for the cell, we used siRNA against 

CDK6 and assessed proliferation over 72h in A375 and FM55P cells (Fig. 39). Reduction of CDK6 

mRNA and protein levels led to a clearly diminished proliferation in both cell lines. Efficient 

knockdown of CDK6 was confirmed by qRT-PCR and Western blotting (Fig. 38). 
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Fig. 38: Tracking of CDK6 mRNA and protein levels after si-RNA transfection 
2To confirm efficient knock-down by CDK6-siRNA, CDK6 expression was tracked in (A) A375 and (B) 

FM55P cells by Western blot (left) and qRT-PCR (right), which both confirm efficient knockdown of CDK6. 

For qRT-PCR, expression levels of CDK6 were assessed 24h, 48h and 72h after siRNA transfection; bars 

show means of biological triplicates with SD relative to negative control. 

 

 

 

Fig. 39: Effects of siRNA-mediated knockdown of CDK6 on proliferation of melanoma cells 

A375 (left) and FM55P (right) cells transfected with CDK6 siRNA (si-cdk6, light blue) show reduced 

proliferation in comparison to cells transfected with siRNA negative control (si-NC, blue). Results were 

reproduced in at least two biological replicates. 2The inserted bar diagrams (upper left corners) show the 

mean confluence of at least 3 biological replicates at 0h and 72h time points of the proliferation assay. 

Bars show ratios of confluence of si-CDK6 / si-NC; with SEM. Significance was assessed by a two-tailed t-

test with * p<0.05, ** p<0.01 and *** p<0.001. 
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MiR-29a and miR-29b are up-regulated in primary melanoma patient samples 

2MiR-29a/29b expression profiles were analyzed in FFPE melanoma patient samples from normal 

skin, nevi, primary and metastatic melanoma by qRT-PCR (Fig. 40). 2Nevi represent the most 

appropriate control samples as they contain predominantly melanocytes while normal skin 

samples are mostly composed of keratinocytes. 2In comparison to healthy skin and nevi, both 

miR-29a and miR-29b showed an up-regulation in primary melanoma samples whereas in 

metastatic tumors, expression levels were only slightly enhanced compared to healthy controls. 

2Closer sub-classification of the patient samples revealed, however, that only two of five 

patients demonstrated the enhanced miR-29a/29b expression, indicating that expression levels 

are heterogeneous and will have to be assessed in larger patient cohorts.  

 

 

 

Fig. 40: 2miR-29 expression in FFPE melanoma patient samples 
2Analysis of miR-29a (left) and miR-29b (right) basal expression of individual FFPE-patient samples from 

NS = normal skin, N = nevi, P = primary melanoma and M = metastatic melanoma of a total number of 

five patients. 2All graphs show 2-∆ct with ∆ct= (ctmiR-29a/29b– ctRNU5A). 
2Primary and metastatic tumor 

samples were sorted according to patients P1-5: P1-circles, P2-rectangles, P3-crosses, P4-triangles, P5-

asterisks. 

 

NS Nevi primary metastasis

1

2

3

m
iR

-2
9a

 b
as

al
 e

xp
re

ss
io

n

NS N P M NS Nevi primary metastasis

1

2

3

4

m
iR

-2
9b

 b
as

al
 e

xp
re

ss
io

n

NS N P M



DiscussionError! Reference source not found. 

82 

6 Discussion 

Regulation of miRNA expression. The broad impact of miRNAs on the initiation, 

development and maintenance of cancer and other diseases but also their possible use as 

therapeutic compounds or targets has become increasingly evident over the past decade. 

Substantial experimental efforts have been undertaken to reveal miRNA sequences, their modes 

of actions and their roles in cellular homeostasis and malignancies. Along this line it became 

soon obvious that it is of particular importance to figure out how miRNAs themselves are being 

regulated in order to further understand miRNA-cancer-pathways and to be able to efficiently 

manipulate the abundance of these small non-coding RNA molecules. Generally, expression 

levels of miRNAs can be regulated transcriptionally, by epigenetic silencing, differential 

biosynthesis or different turnover times (Bartel 2004; Bueno et al. 2008; Krol et al. 2010b). 

Moreover, miRNAs have also been shown to be regulated by extracellular stimuli, e.g. cytokines 

like interferons (Pedersen et al. 2007).  

Cytokines play a pivotal role in the immune system by communicating cellular responses to 

inflammation and infections (O'Shea and Murray 2008). Nearly all cell types can come into 

contact with cytokines such as IFN-γ, which is mainly secreted by activated T and NK cells and 

which represents the most important Th1 (T helper type 1)– cytokine in innate and adaptive 

immunity to infection (Schroder et al. 2004; Saha et al. 2010). Generally, cytokines can activate 

transcription factors, subsequently leading to transcription of target genes including miRNAs. 

IFN-γ primarily triggers the JAK/STAT pathway resulting in a STAT1-mediated transcriptional 

activation of target genes. The importance of interactions between miRNAs and STAT 

transcription factors has very recently been summarized in a review (Kohanbash and Okada 

2012). Classical and well-described examples for miRNAs with connection to STATs are miR-21 

(Löffler et al. 2007) and miR-155 (Kutty et al. 2010), which both are regulated by STAT factors, 

while miR-29 represents a miRNA family which had not been associated to STATs before. 

 

Connecting the miR-29 family to Jak-STAT signaling. In this PhD project, the miR-

29a~29b-1 primary cluster as well as mature miR-29a/b were found to be specifically and dose-

dependently up-regulated after IFN-γ stimulation of melanoma, HEK and T-cells (Fig. 17, Fig. 

19, Fig. 22). IFN-γ stimulation of a control cell line expressing dominant-negative STAT1 (A375-

STAT1(F)) did not cause an up-regulation of miR-29, providing strong evidence that STAT1 is 

indeed mediating IFN-γ-induced effects on miR-29 expression levels (Schmitt et al. 2012b) (Fig. 

17). This finding was further strengthened by an experiment with a specific Jak inhibitor which 

abrogated STAT1 activation (Reinsbach et al. 2012).  
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The miR-29 family is one of the first ones described, is highly conserved among species and the 

increasing number of publications on single family members emphasizes their important role in 

many cellular processes of cancer biology. Along with miR-34, miR-15~16 and members of the 

let-7 family, miR-29 is currently the most prominent representative of miRNAs exhibiting 

predominantly tumor-suppressive properties (Calin et al. 2002; Garzon et al. 2009b; Hermeking 

2009; Buechner et al. 2011; Zhang et al. 2011b) and as reviewed in the course of this PhD 

project (Schmitt et al. 2012a). 

In general, human miRNAs, especially the majority of tumor suppressor miRNAs, are located in 

fragile regions of the genome and often show loss of heterozygosity in cancer (Calin et al. 

2004). However, miR-29 genes are encoded in chromosomal locations, which do not experience 

frequent genomic rearrangements (Douglass et al. 1985; Barr 2001). 1This suggests that 

transcriptional regulatory mechanisms are responsible for modulation of miR-29 expression 

levels rather than deletions, translocations or mutations. In line with our findings about the 

STAT1-dependent up-regulation of the miR-29a~29b-1 cluster, the contribution of other 

transcription factors to control miR-29 expression has been demonstrated. Transcriptional up-

regulation of miR-29a~29b-1 was mediated by the transcription factor CEBPα 

(CCAAT/enhancer-binding protein alpha) (Eyholzer et al. 2010). In addition, miR-29a and miR-

29c were up-regulated by canonical Wnt-signaling and SMAD3 (mothers against 

decapentaplegic homolog 3) induced miR-29b expression (Kapinas et al. 2009; Villarreal et al. 

2011). On the contrary, the miR-29a~29b-1 cluster was found to be negatively regulated by c-

myc, NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells) and hedgehog 

signaling (with involvement of Gli as the responsible transcription factor) in different cell lines 

(Chang et al. 2008; Mott et al. 2010; Ma et al. 2011a). Taken together, it is likely that the 

transcriptional regulation of the miR-29 clusters is mediated by a combination of various 

transcription factors. Furthermore, STAT1 collaborating transcription factors like SP-1 (specificity 

protein 1), AP-1 (activator protein 1) or CEBP (CCAAT/enhancer-binding protein) presumably 

also play a role in the regulation process (Zhou et al. 1998; Wang et al. 2010). In this context it 

is noteworthy that several miRNAs in addition to miR-29 were IFN-γ-induced in our experiments 

and could play a role for the cellular context. For example, miR-155 was among the miRNAs, 

which were up-regulated upon IFN-γ stimulation (Reinsbach et al. 2012). Interestingly, SOCS1 

has been shown to be directly targeted by miR-let7a/b and miR-155 in hepatic stellate and 

human hepatoma cells, respectively (Su et al. 2011; Meng et al. 2012). Thus, IFN-γ-induced 

miR-155 expression might contribute to IFN-γ signaling by prolonging the STAT1 signal due to 

inhibition of SOCS1. 

Within this PhD project, STAT1-dependent up-regulation of the miR-29a~29b-1 cluster was 

reported, while miR-29b-2~29c was not IFN-γ-induced (Fig. 20). The results on miR-29a~29b-1 
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were further corroborated by in silico analyses: A combination of computational and 

experimental evidence identified two STAT1 binding sites as likely candidates for miR-29a~29b-

1-regulation inside a putative miR-29a~29b-1 promoter region containing several potential 

transcription start sites (Fig. 26). However, although several types of transcriptional regulation 

on the miR-29a~29b-1 cluster have been experimentally elucidated, disagreement about the 

corresponding transcription start sites continues to exist (Fig. 25). A considerable number of 

studies has contributed to the investigation of the transcription start sites of both miR-29 

clusters by computational and experimental methods (Saini et al. 2007; Chang et al. 2008; 

Marson et al. 2008; Saini et al. 2008; Corcoran et al. 2009; Mott et al. 2010; Chien et al. 2011) 

(www.switchgeargenomics.com). For the miR-29b-2~29c cluster, current data do not allow for 

a clear assignment of a TSS. However, for miR-29a~29b-1, the position of the most likely TSS 

could here be narrowed down to a 700 bp region around four predicted and partly 

experimentally validated TSSs which most likely contains the ‘real’ transcription start sites 

(Schmitt et al. 2012a) (Fig. 25). Possible reasons for the discrepancies in the reported TSSs 

could be the existence of multiple TSSs and/or differences due to the diverse experimental and 

computational methods that have been applied. 1Another source of variation may result from 

the use of different genome versions and GenBank assemblies causing variation of coordinates 

within the published data.  

 

MiR-29 family members exhibit deviating expression levels in different cellular 

contexts. Although both transcriptional activation and repression have been reported for miR-

29a~29b-1 regulation, the vast majority of publications report a down-regulation of miR-29 or 

its single members in cancer (Calin et al. 2005; Yanaihara et al. 2006; Eyholzer et al. 2010). 

These reduced expression levels could be confirmed within this project by screening a panel of 

melanoma cell lines for different miR-29 species and family members, which revealed almost no 

expression of the pri-29b-2~c cluster and a much higher basal miR-29a than miR-29b level (Fig. 

27). In tumor cells, reduced miR-29 expression is frequently observed and diminished 

expression of miRNAs in general is often associated with enhanced oncogenesis (Henry et al. 

2011; Nguyen et al. 2011). The difference in pri-29a~b-1 and pri-29b-2~c expression levels, 

which has been detected here, is consistent with the results in other types of cancer, in which 

the pri-29b-2~c cluster was mostly down-regulated (Pekarsky et al. 2006; Wang et al. 2008; 

Stamatopoulos et al. 2009). Also the revative expression levels of human mature forms of miR-

29a, miR-29b and miR-29c are divergent in different tissues (Sempere et al. 2004).  

Apart from differential regulation, miRNA stability could influence these expression differences: 

it can range from several hours (Bail et al. 2010) to weeks (van Rooij et al. 2007). For example 

Xiong et al. observed that transfected miR-29b duplexes were only stable for 4-7 days in HepG2 
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cells and were not detectable any more four weeks after transfection in nude mice (Xiong et al. 

2010). An even more rapid decay (8-12 hours) for miR-29 family members has been reported 

by others (Hwang et al. 2007; Zhang et al. 2011c). In addition to those findings, another 

explanation for miR-29b regulation has been suggested by Hwang et al. who found miR-29a 

highly expressed throughout the cell cycle, while miR-29b only exhibited high levels during 

mitosis (Hwang et al. 2007). Considering the large amount of time which cells spend for the 

whole cell cycle in contrast to mitosis, this could be a possible explanation for the enhanced 

miR-29a/miR-29b ratio found by us and others.  

 

The tumor-suppressing properties of the miR-29 family. The fact that miR-29 family 

members are often not expressed in cancer cells could be crucial for cancer cell growth: miR-29 

down-regulates important genes such as CDC42, TCL-1 and MCL-1, which normally confer 

tumor-suppressing traits. In this context, anti-proliferating as well as anti-invasive and pro-

apoptotic effects have been observed after miR-29 introduction into a variety of cancer cells 

(Fig. 41) (Xiong et al. 2010; Fang et al. 2011). Fig. 41 summarizes reported findings of miR-29 

functions in different cancer types. 

 

 

 

Fig. 41: Types of cancer in which miR-29 family members have been shown to exert tumor 

suppressive or oncogenic properties 

Tumor-suppressing properties have been demonstrated (among others) for RMS (rhabdomyosarcoma) 

(Wang et al. 2008), HCC (hepatocellular carcinoma) (Xiong et al. 2010; Fang et al. 2011), AML (acute 

myeloid leukemia) (Eyholzer et al. 2010), CLL (chronic lymphocytic leukemia) (Santanam et al. 2010), 

glioblastoma (Cortez et al. 2010) and lung and pancreatic cancer (Muniyappa et al. 2009) whereas tumor-

promoting properties have been observed for AML (Han et al. 2010), colorectal liver metastasis (Wang 

and Gu 2011) and breast cancer (Gebeshuber et al. 2009; Wang et al. 2011a). 
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Along this line, an inverse correlation between miR-29a/b expression and the proliferation rate 

of various melanoma cell lines has been observed in this project, which was corroborated in 

miR-29 mimic or -inhibitor transfected cells, whereas the pro-apoptotic effects could not be 

confirmed reliably (Fig. 27, Fig. 28, Fig. 32). These anti-proliferative effects of miR-29a/b on 

melanoma cell lines furthermore agree with current literature on miR-29 properties. As 

mentioned above, the tumor-suppressor functions which have been demonstrated for miR-29 

family members in different cell lines mostly include induction of apoptosis as well as a 

reduction of proliferation and invasion (Muniyappa et al. 2009; Cortez et al. 2010). Importantly, 

in vivo experiments in mice further confirmed these findings: re-expression of otherwise 

silenced miR-29 inhibited tumor growth of rhabdomyosarcoma (Wang et al. 2008) and reduced 

tumor formation by HCC (hepatocellular carcinoma) cells (Xiong et al. 2010) along with a 

decreased invasive potential, angiogenesis and metastasis in HCC-transplanted nude mice (Fang 

et al. 2011).  

In contrast to the majority of studies highlighting tumor-suppressive properties (Fig. 41), up-

regulation of miR-29b in highly metastatic breast cancer cells in comparison to low-metastatic 

types together with enhanced migration and invasion as well as increased resistance to 

apoptosis has been observed (Wang et al. 2011a). Also, elevated levels of miR-29a in patients 

with invasive breast carcinomas in comparison to benign samples from patients with non-

invasive hyperplasia have been reported (Gebeshuber et al. 2009). Interestingly and in line with 

these augmented levels of miR-29 in breast cancer and AML (Han et al. 2010), we have made 

similar observations in melanoma patient samples: miR-29a and 29b were up-regulated in 

primary melanoma relative to healthy nevi (Philippidou et al. 2010). Similarly, analysis of 

primary and metastatic melanoma patient samples during this PhD project revealed increased 

miR-29a/29b expression in some primary tumor samples in comparison to normal skin, nevi and 

metastatic tissue while all metastatic lesions had low levels of these miRNAs (Schmitt et al. 

2012b) (Fig. 40). Possibly, IFN-γ, which is produced by macrophages and/or T cells and NK-cells 

as a start of a signaling cascade and first line of defense against the developing tumors, induces 

miR-29 expression via STAT1, which in turn could act as tumor-suppressing miRNA 

counteracting manifestation of the cancer at early stages. The fact that miR-29a/29b were only 

up-regulated in two out of five primary melanoma patients is striking and requires further 

evaluation in a larger panel of patient samples including early neoplasia and advanced 

metastatic stages. Surprisingly, a recent study on cutaneous melanoma reported unchanged 

miR-29a and-29b expression levels while miR-29c was down-regulated in metastatic melanoma 

in comparison to primary tumor samples. However, no healthy control tissue or nevi were 

included in this study, hampering the interpretation of the results (Nguyen et al. 2011). Apart 

from the noteworthy exceptions in AML and breast cancer as mentioned above and in the report 
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on primary melanoma by Nguyen et al., miR-29 family members have consistently and 

predominantly been reported to be down-regulated and to assume tumor-suppressive 

properties in cancers.  

 

CDK6 and other miR-29 target genes. The importance of miR-29 regulation has been 

addressed above, however the role of miR-29 family members in cancer is mainly determined 

by their respective target genes. As for all miRNAs, the identification and analysis of mir-29 

target genes in various tissues and malignancies is of obvious importance. Down-regulation of 

several important cellular proteins by miR-29 family members has been reported, among others 

the DNA-methyltransferases DNMT3A and B (Fabbri et al. 2007a; Garzon et al. 2009b; Hand et 

al. 2012). 1DNMTs are involved in DNA-methylation of CpG islands causing epigenetic silencing 

of the corresponding genes. 1Interestingly, DNMT3 is frequently up-regulated in various 

malignancies such as hepatoma, lung, prostate, colorectal and breast cancer (Eads et al. 1999; 

Patra et al. 2002; Girault et al. 2003; Saito et al. 2003; Kim et al. 2006), which emphasizes the 

importance of this link between DNMTs and reduced miR-29 expression. 

1Other miR-29 target genes include extracellular matrix proteins such as collagens, de-

regulation of which can favor cancer growth and progression (Sengupta et al. 2008; van Rooij 

et al. 2008; Maurer et al. 2010). Also the matrix-metalloprotease MMP-2 (Liu et al. 2010; Fang 

et al. 2011), elastin and fibrillin 1 (van Rooij et al. 2008), laminin γ1 (Sengupta et al. 2008) and 

integrin beta 1 (Liu et al. 2010) have been confirmed as miR-29 target genes, which all have 

recently been discussed in a review by Kriegel et al. and summarized by us (Kriegel et al. 2012; 

Schmitt et al. 2012a). An overview on miR-29 target genes is shown in the Appendix. 

In this PhD thesis, CDK6 was for the first time confirmed as a direct miR-29 target in melanoma 

cells (Fig. 36, Fig. 37) (Schmitt et al. 2012b). It was furthermore demonstrated that knockdown 

of CDK6 expression resulted in reduced proliferation (Fig. 39) as it had been shown for other 

types of cancer before (Ismail et al. 2011; Whiteway et al. 2012). This suggests, that the 

inhibition of proliferation which was observed in miR-29a/b-mimic-transfected cells may largely 

be mediated via CDK6. CDK6 plays a pivotal role in control of G1/S cell cycle transition (Fig. 42) 

(Grossel and Hinds 2006) and loss thereof is a common event in neoplastic growth (Musat et al. 

2004). The special relevance of CDK6 activity for melanoma growth is emphasized by the fact 

that the gene which encodes tumor suppressor p16INK4A (an inhibitor of CDK6 and CDK4), which 

is transcribed from the CDKN2A melanoma susceptibility locus, is deleted in about 50% of 

melanoma patients (Hussussian et al. 1994; Bennett 2008) (Table 2, Fig. 42). This supports the 

tumor-suppressing functions of miR-29a/b and attributes obvious novel functions to miR-29 as 

CDK6 inhibitor in melanoma. It moreover suggests the hypothesis that enhanced miR-29a/b 

levels, which were up-regulated in some primary melanoma patient samples could take over the 
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tumor-suppressing properties of p16INK4A by inhibiting CDK6, even if the locus is deleted, 

subsequently preventing uncontrolled cell cycle progression (Fig. 43).  

 

 

 

Fig. 42: Interplay of miR-29 and CDK6 

The p16INK4A gene is encoded within the CDKN2A melanoma susceptibility locus and shows often 

mutations or deletions in melanoma (indicated by the red bolt). The p16INK4A protein acts as negative 

regulator of cell cycle progression by inhibiting the activation of CDK6, which is complexed with Cyclin D1 

during G1/S-phase of the cell cycle and can phosphorylate RB. If unphosphorylated, RB binds to the 

transcription factor E2F, thereby hindering it from expression of genes necessary for G1 � S cell cycle 

transition. The latter is accomplished as soon as Rb and E2F dissociate after phosphorylation of Rb via 

Cyclin D1/CDK4/CDK6. miR-29 inhibits CDK6 in melanoma cells and could therefore act as a tumor 

suppressor. For reasons of clarity, this illustration only focuses on miR-29/ p16INK4A /CDK6/RB/E2F and 

does not show the CDKN2A melanoma susceptibility locus as well as p14ARF, p53, CDK4 and other 

participating proteins. 

 

Noteworthy, CDK6 has also been demonstrated to be a direct miR-29 target in mantle cell 

lymphoma (Zhao et al. 2010), acute myeloid leukemia (Garzon et al. 2009b) and cervical cancer 

(Li et al. 2011). Interestingly, the anti-proliferative effects of IFN-γ in many cancers (Garbe and 

Krasagakis 1993; Kortylewski et al. 2004; Mori et al. 2008) which have also been confirmed 

here (Fig. 30) can be explained by an attenuated G1/S transition and may in part be explained 

by a G1 arrest involving down-regulation of G1/S cyclins (Cyclins A and E) and CDK2/4 

(Kortylewski et al. 2004). Here we add CDK6 as another cyclin-dependent kinase which is 

involved in IFN-γ-mediated anti-proliferative effects. These anti-proliferative activities of IFN-γ 

and miR-29 as well as a STAT1-dependent induction of miR-29 expression following IFN-γ 

stimulation have been demonstrated in melanoma cells within this PhD project (Fig. 18, Fig. 20, 
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Fig. 27, Fig. 28, Fig. 30). A series of proliferation assays including combined IFN-γ/miR-29a 

inhibitor treatment indicated that the growth-inhibitory effects of miR-29a could be partially 

responsible for IFN-γ-mediated inhibition of proliferation in melanoma cells which, however, 

could not be confirmed reliably (Fig. 31). This was probably due to too much stress for the cells, 

which were suffering from the double treatment (IFN-γ stimulation plus miR-29 inhibitor 

transfection). Concerning a connection between IFN-γ and melanoma, at a first glance it seems 

questionable how IFN-γ as a cytokine can come into direct contact with melanocytes located in 

the outer layer of the skin. However, this has been recently addressed in an elegant study by 

Zaidi et al. who have shown that IFN-γ-producing macrophages are recruited to the UV-exposed 

skin, where they stimulate proliferation and migration of melanocytes as well as expression of 

genes implicated in immunoevasion and survival. Furthermore, analysis of 27 human melanoma 

samples confirmed that 19 contained IFN-γ-expressing macrophages (Zaidi et al. 2011). A 

scheme summarizing the key events is shown in Fig. 43. 

 

miR-29 and its importance for interferon signaling. Other reports have previously 

connected individual miRNAs to interferon signaling: for example, miR-155 was shown to inhibit 

IFN-γ-signaling in CD4+ T-cells (Banerjee et al. 2010) and miR-29a suppressed interferon-α-

receptor expression in the thymic epithelium (Papadopoulou et al. 2012), implying that IFN 

signaling in general may actively partake in the regulation of miRNA expression levels in cells.  

Moreover, the role of cytokines as inducers of miRNA expression has recently been proposed in 

several studies and examples for cytokine-induced miRNA up- or down-regulation range from 

pro-inflammatory signaling molecules like TNF-α and IL1-β (Roggli et al. 2010; Ruan et al. 

2012) to different types of interferons, which are of special interest as they are central players 

in tumor-immune system interactions (Dunn et al. 2006; Diamond et al. 2011). Pedersen et al. 

analyzed changes of miRNA expression levels in human hepatoma cells after IFN-β stimulation, 

and interestingly found two miRNAs to respond already within 30 min to the cytokine (Pedersen 

et al. 2007), while others exhibited a retarded response as it was mostly observed in this 

project. We have shown here that also IL-27 as well as IFN-α/β induced miR-29.  

2The concept of ‘cancer immunosurveillance’, defined as the immunological protection of a host 

against the development of cancer, has evoked much interest during the last decade: Mediated 

by the host’s immune system, it is triggered by immune recognition of stress ligands or antigens 

expressed on transformed cells.  

IFN-γ has long been recognized for its crucial role in defense against viral and bacterial 

infections as well as in tumor control (Dunn et al. 2006; Schreiber et al. 2011) and this PhD 

project provides evidence for a novel IFN-γ - miR-29 connection via STAT1, which has also been 

confirmed in T-cells (Fig. 23). These findings can be embedded in the context of already known 
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connections between interferons and miRNAs and the important regulatory role for miR-29 in 

the adaptive immune system which has only been unraveled during the past two years, as was 

recently reviewed (Liston et al. 2012; Schmitt et al. 2012a). In accordance with our findings in 

melanoma and T-cells, Smith et al. showed that IFN-γ-induced STAT1 leads to enhanced miR-

29a~b-1 expression in murine and human T-cells with a maximal peak of miR-29a/b expression 

at 48-72h. Moreover, IFN-γ itself (Ma et al. 2011a; Smith et al. 2012) as well as the 

transcription factors T-bet (Steiner et al. 2011; Smith et al. 2012) and Eomes (Eomesodermin = 

T-box brain protein 2) (Steiner et al. 2011), known inducers of the IFN-γ-gene, have recently 

been confirmed to be direct miR-29 targets, thus suggesting a negative regulation of IFN-γ 

expression by miR-29. These findings indicate that a regulatory loop could exist with IFN-γ 

inducing miR-29 expression via STAT1 and miR-29 subsequently repressing IFN-γ directly as 

well as indirectly by down-regulating the IFN-γ-inducing transcription factors T-bet and Eomes 

(Fig. 43).  

In addition to the newly discovered properties in melanoma, the herein described IFN-γ/miR-29 

regulatory loop also reveals new perspectives for the understanding of immunological host 

defense: interestingly, miR-29a/29b have both been reported to target the HIV-protein nef 

(negative regulatory factor) (Hariharan et al. 2005), which down-regulates cell surface 

molecules like CD4 and MHCI and II (Kirchhoff et al. 2008), thereby enhancing HIV infectivity 

and replication. These findings imply another potential regulatory line of events: IFN-γ, secreted 

rapidly in response to HIV infection (Twigg et al. 1999), triggers transcriptional activation of 

miR-29 that in turn down-regulates nef and thus may participate in host control of early HIV 

infection. This connection has been explored in preliminary experiments and IFN-γ-induced up-

regulation of miR-29a and miR-29b could be confirmed in T-cells, which can be infected by HIV-

1 (data not shown). Together with these findings, the overall results obtained in this PhD thesis 

can be described as a regulatory circuit: IFN-γ, which is e.g. secreted by macrophages following 

diverse assaults such as infections or UV light induces a STAT1-dependent up-regulation of miR-

29, which in turn can down-regulate IFN-γ directly or indirectly via T-bet and Eomes (Fig. 43). 

This study extends the current knowledge on the miRNA family miR-29, adding a novel 

regulatory loop involving IFN-γ-mediated Jak/STAT signaling in melanoma cells. The newly 

discovered signaling pathway of IFN-γ → P-STAT1 → miR-29a/b → down-regulation of CDK6 → 

inhibition of tumor growth points at new connections between the immune system, miRNAs, cell 

cycle control and potentially tumorigenesis, which could lead to novel concepts for future 

therapeutic approaches. Currently, melanoma patient samples are characterized for the well-

known mutations in BRAF, NRAS and KIT genes (Berger et al. 2012) or newly discovered 

genetic changes in MITF (Yokoyama et al. 2012). To further tailor personalized and targeted 

therapy options in the future, evaluation of selected miRNA expression levels could be an add-
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on to the routine clinical analysis. Optimal would surely be the use as biomarkers from blood as 

a non-invasive approach. For miR-29 however, this could lead to difficulties because at least in 

cell lines and tissue samples, it exhibits expression changes in most cancer types, as reported 

above. 

 

 

 

Fig. 43: Involvement of the miR-29 family in multiple cellular processes 
2UV-radiation triggers the recruitment of macrophages to the skin, which secrete cytokines like interferon 

gamma (IFN-γ). 2By binding to its receptors, IFN-γ signals through the Jak/STAT pathway triggering 

subsequent activation of STAT1, which then binds to GAS-elements in the promoter region of target 

genes and initiates their transcription. 2IFN-γ-induced, STAT1-dependent up-regulation of miR-29 causes 

a down-regulation of CDK6, a novel miR-29 target gene in melanoma, which plays a crucial role in G1/S- 

cell cycle transition and thus growth control of cancer cells. The genetic locus of the cell cycle inhibitor 

p16INK4A shows often deletions or mutations in melanoma and its function (inhibition of CDK6) might be 

compensated by miR-29a/b. 2IFN-γ-activating transcription factors T-bet and Eomes and IFN-γ itself are 

also targeted by miR-29.  

 

Furthermore, in a pilot biomarker study on melanoma samples, miR-29 had not been detected 

among the de-regulated miRNAs (Leidinger et al. 2010). Concerning therapeutic treatment 

approaches, miR-29 application in form of miR-29-mimicking oligonucleotides seems to have an 

effect on tumor growth in vivo in some cancer types. For example Fabbri et al. validated the 
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down-regulation of DNMTs 3A and 3B by all miR-29 family members and demonstrated reduced 

tumor sizes in mice engrafted with lung cancer cells that had been transfected with single miR-

29 family members (Fabbri et al. 2007a). The same group reported similar findings for AML and 

suggested the use of synthetic miR-29b as therapeutic agent (Garzon et al. 2009b).  

This PhD project has deciphered a previously unknown regulatory pathway around the miR-29 

family with importance for melanoma development. With its often tumor-suppressing functions, 

the miR-29 family lends itself to be explored further in future cancer therapy. However, before 

this becomes a feasible treatment option, we need to acquire a more complete systems-

biological view of the complex interactions of the miR-29 family, including the regulation of miR-

29 gene expression with respect to transcription factors, complete characterization of 

melanoma-specific target genes, and the interplay of miR-29 with other miRNAs. 
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7 Perspectives 

To further validate the STAT1 regulation of the pri-29a/b1 cluster, the potential STAT1 binding 

sites should be experimentally verified by ChIP analysis in melanoma cells. For the investigation 

of the cellular consequences of miR-29 up- or down-regulation, we examined proliferation and 

apoptosis in miR-29-mimic or inhibitor-transfected melanoma cell lines. To further follow up on 

this functional role of miR-29 in cancer-related processes, more functional assays (such as 

migration and invasion assays and cell cycle analysis) could be performed. Knowing the precise 

mechanisms and functional role of the miR-29 family members would be a pre-requisite to 

evaluate potential therapeutic approaches involving this miRNA family. 

Apart from the miR-29 family, on which the main focus was set after the first year of the PhD 

project, many other interesting miRNAs turned out to be potentially STAT1-regulated. For 

example miRNAs from the miR-23/27/24 clusters (chromosome 9 and 19) seem interesting 

because of their distinct regulation patterns and could be investigated further.  

Although this PhD project focused on IFN-γ as a well-known inducer of a prominent STAT1-

response, we also tested IFN-α and IFN-β for stimulation in several initial setup experiments for 

their ability to induce STAT1-dependent miRNAs. Follow-up studies could be performed 

especially using IFN-α as IFN-α 2B is still used for treatment of melanoma patients, but not 

much is known about its regulatory role on miRNAs. It would be interesting to further 

investigate whether different STAT factors induce specific sets of miRNAs or whether there is 

redundancy between the various STATs. 

Moreover, we also examined the miR-29a/b expression in FFPE patient material. Unfortunately, 

only mature miRNAs can be amplified from the total RNA of these samples whereas 

amplification of mRNAs or primary miRNA molecules is generally not possible. Thus, it would be 

important to analyze the miR-29a/b level as well as the expression of the primary and precursor 

molecules of the miR-29 tumor-suppressor family in a larger number of patients, ideally from 

‘fresh-frozen’ nevi, primary and metastatic samples. CDK6-expression could also be addressed. 

In this context, our group recently started a project in which we examine melanoma tumour 

material together with the corresponding blood samples from the same patients. The aim of the 

project is to investigate a melanoma-connected miRNA signature in blood and it would be 

interesting to find out if members of the miR-29 family belong to those circulating miRNAs. 

Finally, the results obtained during the course of this PhD thesis around the newly discovered 

pathway along IFN-γ � P-STAT1 � miR-29 � CDK6 should also be investigated in other types 

of cancer. 
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9   Appendix  

Suppliers 

Table 8: Machines / laboratory equipment 

Machines / laboratory equipment Supplier 

µ clear 96 well plates  Greiner 

-80°C freezer New Brunswick Scientific 

Autoclave 5075 ELV Systec  

Bürker Cell Counting Chamber  Marienfeld Superior 

Cell culture hood Faster BHA48 

Cell culture incubator Hera cell 100 Heraeus 

Centrifuge Megafuge 1.0R Heraeus 

Centrifuges 5702 and 5415D Eppendorf 

Certomat MOII (shaker) Sartorius 

CFX96 and CFX384 Real-time System  

C1000 Thermal Cycler 

Bio-Rad 

Electrophoresis power supply Amersham Biosciences 

Incucyte Essen Bioscience 

Lia (luminescence) white 96 well plates Greiner 

LI-COR Odyssey® Infrared Imaging System LI-COR Biosciences 

Luminescence Reader Fluostar Optima BMG labtech  

Molecular Imager ChemiDocTM XRS+ Bio-Rad 

Nano Drop 2000c Spectrophotometer Thermo Scientific 

Nunclon 96 well plates Thermo Scientific 

SDS PAGE chamber Biometra 

Semi-dry blotting chamber TransBlot SD Cell Bio-Rad  

Thermocycler Gene Amp PCR System 9700 Applied Biosystems 

Thermomixer compact Eppendorf 
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Table 9: Chemicals, solutions, ladders and enzymes. 

Chemicals not mentioned in the table were obtained from well-established companies. 

 

Chemicals, solutions, ladders and enzymes     Supplier 

1kb Plus DNA ladder Invitrogen 

Oligo annealing buffer Promega 

Acrylamide Applichem 

Agarose FisherScientific 

Ampicillin Carl Roth 

APS Sigma-Aldrich 

BSA (blocking buffer) Applichem 

BSA (restriction digestion) New England Biolabs 

CIP (alcaline phosphatase, calf intestinal) New England Biolabs 

DEPC Sigma-Aldrich 

DNase I New England Biolabs 

dNTP´s Invitrogen 

Ethanol VWR 

Etoposide Sigma-Aldrich 

FCS (fetal calf serum) PAA 

G418 (Geneticin) Gibco 

Glutamine Lonza BioWhittaker 

H202 Sigma-Aldrich 

IL-27 (human) R & D Systems 

Interferons (human, α,β,γ) Peprotech 

iQ SYBR green supermix Bio-Rad 

Isopropanol VWR 

Jak Inhibitor I Calbiochem 

NucView 488 Caspase Biotium 

Penicillin/Streptomycin Lonza BioWhittaker 

Phusion DNA polymerase Finnzymes 

Precision Plus ProteinTM Standard Bio-Rad 

Restriction enzymes New England Biolabs 

SDS Carl Roth 

SYBR® Safe DNA gel stain Invitrogen 

T4 DNA ligase  New England Biolabs 

TEMED GE Healthcare 

TRIsure Bioline USA 

Trypan blue stain Lonza BioWhittaker 

Trypsine Lonza BioWhittaker 
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Table 10: Commercial kits, transfection reagents, buffers, media, membranes, consumables 

 

Kits Supplier 

Dual-luciferase reporter assay system Promega 

Fast Plasmid Mini extraction kit 5 prime 

innuPrep DOUBLE pure kit  Analytical Jena 

miRNeasy kit Qiagen 

miScript Reverse Transcription Kit Qiagen 

Nucleobond Xtra Midi Plus Macherey Nagel 

Nucleospin RNA extraction kit Macherey-Nagel 

RT2-FFPE extraction kit SA Bioscience 

Thermoscript RT-PCR system Invitrogen 

Transfection reagents, buffers and media 

1x passive lysis buffer Promega 

Buffers for restriction digestion New England Biolabs 

Dharmafect Duo Dharmacon 

DMEM Lonza BioWhittaker 

HiPerfect Qiagen 

RPMI Lonza BioWhittaker 

Melanocyte medium M2 PromoCell 

Membranes and consumables  

(Whatman) chromatography paper GE Healthcare 

1.5 ml safe-lock reaction tubes Eppendorf 

Cell culture dishes Greiner 

CRYO.S™-tubes Greiner 

nitrocellulose membrane GE Healthcare 

PCR Sealers Microseal ‘B’ Film Bio-Rad 

PVDF membrane Carl Roth 
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Buffers 

Table 11: Buffer Recipes 

  
Blocking buffer 10 % BSA in TBS-N 
 0.01 % NaN3 
  
Laemmli buffer 20 % glycerol 
 10 % ß-mercaptoethanol 
 4 % SDS 
 0.125 M Tris-HCl, pH 6.8 
 0.002 % bromophenol blue 

  
DNase I buffer 10mM Tris-HCl 
(New England Biolabs) 2.5mM MgCl2 
 10mM CaCl2 
  
Stripping buffer 60 mM Tris/HCl pH 6,7 
 2 % SDS 
 100 mM β-mercaptoethanol 
  
1x PBS NaCl 8 g/L 
 KCl 0.2 g/L 
 KH2PO4 0.24 g/L 
 Na2HPO4 14.4 g/L 
  
TSS solution 1 g tryptone 
 0.5 g yeast extract 
 0.5 g NaCl 
 10 g PEG3350 
 5 ml DMSO 
 5 ml 1 M MgCl2 
  
5x DNA loading buffer 5 ml 10 x TBE 
 3 ml glycerol 
 2 ml H2O 
 3 µg bromophenol blue 
  
ECL solution 20 ml ECL solution (stock) 
 6.6 µl 30 % H2O2 
 H2O2 to be added freshly 
 
ECL stock 
 

 
The ECL solution pCA was used  
as described before 
(Haan and Behrmann 2007) 

  
 100 mM Tris/HCl pH 8.8 
 2.5 mM luminol 
 0.2 mM p-coumaric acid 
  
LB medium 10 g tryptone (1 %) 
 5 g yeast extract (0.5 %) 
 10 g NaCl (1 %) 
 H2O up to 1000 ml  
 to be autoclaved prior to use 
  
LB agar (bacteria plates) 10 g tryptone (1 %) 
 5 g yeast extract (0.5 %) 
 10 g NaCl (1 %) 
 up to 1000 ml H2O 
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 add 15 g agar-agar (1.5 %) 
 to be autoclaved prior to use 
  
10x PBS, 2 l 160 g NaCl   
 4 g KCl 
 4.8 g KH2PO4 

 28.8 g Na2HPO4 
 H2O up to 2 l  
  
10x SDS running buffer, 2 l 60 g Tris (0.25 M)  
 288 g glycine (1.92 M) 
 In 1.5 l H2O 
 add 50 ml 20 % SDS 
 H2O up to 2 l  
  
4x separating gel buffer, 1 l 181.7 g Tris 

(1.5 M Tris/HCl, pH 8.8) add 800 ml H2O 

 add 20 ml 20 % SDS 
 H2O up to 1 l  
  
4x stacking gel buffer,  
500 ml 

250 ml 1 M Tris /HCl pH 6.3 

(1 M Tris/HCl, pH 6.8) 200 ml H2O 

 10 ml 20 % SDS 
 H2O up to 500 ml  
  
Stacking gel (3 %) 3 ml 4x stacking gel buffer 
 7.2 ml H2O 
 1.8 ml 30 % acrylamide 
 100 µl 20 % APS 
 20 µl TEMED 
  
Separating gel (10 %) 3.5 ml 4x separating gel buffer 
 5.8 ml H2O 
 4.7 ml 30 % acrylamide 
 105 µl 20 % APS 
 20 µl TEMED 
  
10x TBE buffer, 2 l 216 g Tris 
 110 g boric acid 
 14.6 g EDTA  
 H2O up to 2 l  
  
10x TBS-N, 2 l 200 ml 1 M Tris/HCl 7.4 
 540 ml 5 M NaCl  
 20 ml NP-40 (IGEPAL A-630)  
 H2O up to 2 l  
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Confirmed direct targets of the miR-29 family 

Table 12: 1Confirmed direct targets of the miR-29 family 

(as extracted from literature search in April 2012); L = luciferase assay, mRNA = mRNA level; iv = in vivo 

(mice), WB = western blot; b = mainly b 

Target  L mRNA WB 29 

a/b/c 

Ref description 

DNMT3A  

 

 

DNA-

methyltransferases 

√ √ √ 29b (Garzon et al. 2009b)  

 

 

Methyltransferases 

 √ iv  29a (Hand et al. 2012) 

√ √ √ 29abc (Fabbri et al. 2007a) 

DNMT3B √ √ √ 29b (Garzon et al. 2009b) 

 √ iv  29a (Hand et al. 2012) 

√ √ √ 29abc (Fabbri et al. 2007a) 

Bim Bcl-2-like 11 √   29b (Kole et al. 2011)  

 

 

 

Members of Bcl-2 

family and others 

involved in apoptosis 

Puma p53 up-regulated 

modulator of apoptosis 

√   29b (Kole et al. 2011) 

Bmf Bcl-2-modifying factor √   29b (Kole et al. 2011) 

Bcl-2 B-cell lymphoma 2 √ √ √ 29abc (Xiong et al. 2010) 

Mcl-1  

Myeloid cell leukemia 

sequence 1 

√ no 

effect 

√ 29b (Mott et al. 2007) 

√ √ √ 29abc (Xiong et al. 2010) 

  √ iv 29ac (Ye et al. 2010) 

Hrk Activator of apoptosis 

harakiri 

√   29b (Kole et al. 2011) 

N-Bak Bcl-2 homologous 

antagonist 

√   29b (Kole et al. 2011) 

Adamts18 ADAM 

metallopeptidase with 

thrombospondin type 1 

motif, 18 

√   29abc (Ugalde et al. 2011)  

 

 

 

 

 

 

 

 

 

 

Extracellular matrix 

proteins 

COL15A1  

 

 

 

 

 

 

 

Collagens 

√ √  29c (Sengupta et al. 2008) 

COL1A1 √   29c  

√ √  29b (Liu et al. 2010) 

COL1A1 √ √ & iv  29b (van Rooij et al. 2008) 

COL1A2 √   29c (Sengupta et al. 2008) 

√ √ & iv  29b (van Rooij et al. 2008) 

COL3A1 √ √  29c (Sengupta et al. 2008) 

√ √  √ 29abc (Maurer et al. 2010) 

√ √  29b (Liu et al. 2010) 

√ √ & iv  29b (van Rooij et al. 2008) 

COL4A1 √ √  29c (Sengupta et al. 2008) 

COL4A2 √   29c  

COL4A1 √ √  29b (Liu et al. 2010) 

COL5A1 √ √  29b  

COL5A2 √ √  29b  

COL5A3 √ √  29b  

COL7A1 √ √  29b (Liu et al. 2010) 

COL8A1 √ √  29b  

Eln1 Elastin √   29b (van Rooij et al. 2008) 

Fbn1 Fibrillin1 √   29b  

Itgb1 Integrin β1 √ √  29b (Liu et al. 2010) 

Laminin γ1  √ √  29c (Sengupta et al. 2008) 

MMP-2  

Matrix metalloprotease 

√  √ 29b (Fang et al. 2011) 

√ √  29b (Liu et al. 2010) 

Osteonectin/  

SPARC 

secreted protein, 

acidic, cysteine-rich 

√ √  29ac (Kapinas et al. 2009) 

T-bet T-box transcription 

factor TBX21 

√ √  29b (Steiner et al. 2011)  

 

 Eomes Eomesodermin = T-box √ √  29b (Steiner et al. 2011) 
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brain protein 2  

 

 

Transcription factors 

HBP1 HMG-box transcription 

factor 1 

√   29abc (Ugalde et al. 2011) 

Mycn V-myc 

myelocytomatosis viral 

related oncogene, 

neuroblastoma derived 

√   29abc (Ugalde et al. 2011) 

YY1 Yin-yang 1 √  √   

iv 

29abc (Wang et al. 2008) 

 √ √ 29ab (Li et al. 2011) 

cdc42 Cell division control 

protein 42 homolog 

√  √ 29abc (Park et al. 2009b)  

Cell cycle proteins 

cdk6 Cyclin-dependent 

kinase 6 

√ √ √ 29abc (Zhao et al. 2010) 

 √ √ 29ab (Li et al. 2011) 

Dusp2 Dual specificity protein 

phosphatase 2 

√   29abc (Ugalde et al. 2011) Phosphatases 

Ppm1d Protein phosphatase 

1D 

√   29abc (Ugalde et al. 2011) 

PTEN Phosphatase and 

tensin homolog 

  √ 29b (Wang et al. 2011a) 

√ √ √ 29a (Kong et al. 2011) 

FUSIP1 FUS-interacting serine-

arginine-rich protein 1 

√ √  29c (Sengupta et al. 2008) RNA splicing 

Ifi30 Gamma-interferon-

inducible lysosomal 

thiol reductase 

√   29abc (Ugalde et al. 2011) Thiol reductase 

IFNAR1 Interferon alpha 

receptor 1 

√   29a (Papadopoulou et al. 2012) Cytokine signaling 

IFN-γ Interferon γ √   29abc (Ma et al. 2011a) 

Igf1 Insulin-like growth 

factor 1 

√ √ iv  29a (Hand et al. 2012) 

Il1RAP Interleukin-1 receptor 

accessory protein 

√ √ iv  29a (Hand et al. 2012) 

LPL lipoproteinlipase √ √ √ 29a (Chen et al. 2011) Lipase 

Narf Nuclear prelamin A 

recognition factor 

√   29abc (Ugalde et al. 2011) Nuclear protein 

nef Negative regulatory 

factor 

√  √ 29ab (Ahluwalia et al. 2008) Virulence factor (HIV) 

√   29a (Nathans et al. 2009) 

p85 α Phosphatidylinositol 3-

kinase, regulatory 

subunit α 

√  √ 29abc (Park et al. 2009b) Kinase 

  √ 29a (Pandey et al. 2010) 

PDPN Podoplanin √ √ √ 29b (Cortez et al. 2010) Membrane 

glycoprotein 

PMP22 Peripheral myelin 

protein 22 

√ √ √ 29abc (Verrier et al. 2009) Major component of 

myelin 

 

Tcl-1 

 

T-cell leukemia 1 

 √ √ 29c (Stamatopoulos et al. 2009) Co-activator of Akt 

√  √ 29b (Pekarsky et al. 2006) 

  √ 29b (Anastasiadou et al. 2010) 

TDG G/T mismatch-specific 

thymine DNA 

glycosylase 

√ √  29c (Sengupta et al. 2008) Glycosylase 

TTP Tristetraprolin √  √ 29a (Gebeshuber et al. 2009) mRNA degradation 

p42.3  √ √ √ 29a (Cui et al. 2011) unknown 
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Abstract 

MicroRNAs (miRNAs) are ubiquitously expressed small, non-coding RNAs that negatively regulate gene 
expression at a post-transcriptional level. So far, over 1000 miRNAs have been identified in human cells and their 
diverse functions in normal cell homeostasis and many different diseases have been thoroughly investigated during 
the past decade. MiR-29, one of the most interesting miRNA families in humans to date, consists of three mature 
members miR-29a, miR-29b and miR-29c, which are encoded in two genetic clusters. Members of this family have 
been shown to be silenced or down-regulated in many different types of cancer and have subsequently been 
attributed predominantly tumor-suppressing properties, albeit exceptions have been described where miR-29s have 
tumor-promoting functions. MiR-29 targets expression of diverse proteins like collagens, transcription factors, 
methyltransferases and others, which may partake in abnormal migration, invasion or proliferation of cells and may 
favor development of cancer. Furthermore, members of the miR-29 family can be activated by interferon signaling, 
which suggests a role in the immune system and in host-pathogen interactions, especially in response to viral 
infections. In this review, we summarize current knowledge on the genomic organization and regulation of the miR-
29 family and we provide an overview of its implication in cancer suppression and promotion as well as in host 
immune responses. The numerous remarkable properties of these miRNAs and their often altered expression 
patterns might make the miR-29 family promising biomarkers and therapeutic targets for various diseases in future.  
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Introduction 

MicroRNAs (miRNAs) are a class of small non-coding RNA molecules (~22 nt), whose main function is the 
negative regulation of gene expression at a post-transcriptional level. MiRNAs are expressed in all cell types and are 
involved in the control of fundamental cellular processes such as differentiation, apoptosis, proliferation, cell death 
and others [1-3]. In recent years, many diseases including almost all types of cancer have been connected to aberrant 
expression of miRNAs [4, 5]. The rapidly growing interest in various aspects of miRNA biology is reflected by the 
constantly increasing number of publications since their first discovery in 1999. For the current version 18 of 
miRBase, entries for newly identified miRNAs have risen to 18226 representing 168 different species [6]. The 
biogenesis of miRNAs has been extensively and expertly reviewed elsewhere [7-10]. 
The present review focuses on the human miR-29, a very important miRNA family whose members are increasingly 
recognized as tumor suppressors in a variety of malignancies. Since their sequence was added to miRBase in 2001 
[11], the number of publications on one or more members of the human miR-29 family rose quickly to 
approximately 100. Members of the miR-29 family have been shown to be implicated in many divergent cellular 
processes like extracellular matrix homeostasis [12], collagen expression [13], insulin signaling [14], ageing [15] 
and others. The number of confirmed targets for one or more family members (Table 1) is constantly rising, 
including many different protein classes ranging from transcription factors [15, 16], viral proteins [17] to growth 
factors [18], structural cell components [13] and others. Noteworthy, miR-29 members have been connected to 
diseases other than cancer, for example myocardial infarction [13], diabetes [14] and atherosclerosis [19]. The 
implication of the miR-29 family in diseases like myocardial infarction and renal injury has recently been reviewed 
[20]. The topic of the present review, however, is the involvement of miR-29 in malignancies: in a recent overview 
article on miRNAs in cancer, the miR-29 family resided among the topmost cancer-associated miRNAs [21]. Here, 
we will focus on the role of miR-29 in cancer and discuss the transcriptional regulation of this miRNA family, it`s 
tumor suppressing functions, it`s potential as a therapeutic target in cancer therapy as well as it`s exceptional tumor 
promoting properties. Furthermore, we will summarize several interesting findings, which attribute immune- 
modulating functions to miR-29 family members and discuss their potential role in immune responses to viral 
infections.   
 
The miR-29 family: genomic organization and transcriptional regulation of expression 

The miR-29 family is among the earliest ones discovered [11] and is highly conserved among species [6]. In 
humans, it is encoded by two clusters, miR-29a~29b-1 (chromosome 7q32.3) and miR-29b-2~29c (chr 1q32.2) (Fig. 
1A). MiR-29a and miR-29b-1 (GenBank accession number EU154353) as well as miR-29c and miR-29b-2 (EU 
154351 and EU154352) are co-transcribed by RNA-polymerase II as a polycistronic primary transcript from the 
minus strand [22, 23], only encoded 649bp and 504bp apart from each other, respectively. With identical seed 
sequences, miR-29 family members share most of their predicted targets. MiR-29b-1/b-2 both have the same mature 
sequence and miR-29a and 29c mature sequences only differ by one nucleotide (Fig. 1A). All family members are 
ubiquitously expressed in healthy tissue (microRNA.org). Chang et al. were the first to experimentally characterize 
the primary transcripts of both miR-29 clusters in B-cells. They found that the miR-29a~29b-1cluster is produced 
from the last intronic region of the primary transcript in contrast to the miR-29b-2~29c cluster, which is processed 
from the last exon of its corresponding transcript [22] (Fig. 1B). Both clusters, miR-29a~29b-1 and miR-29b-2~29c 
are intergenic with no protein-coding genes in close proximity. Currently, there is no common agreement on the 
TSSs of miR-29 family members.  
Both clusters of the miR-29 family are intergenic and currently there is no common agreement on their TSSs. So far, 
14 different TSSs have been annotated for the miR-29 family, which are shown (numbered consecutively) in Figure 
1C. In large-scale computational analyses focusing on multiple genomic features, Saini et al. predicted many 
boundaries of intergenic miRNA transcripts, among others the miR-29b-2~29c clusters’ 5’ and 3’ends (TSSbc1, Fig. 



4 
 

1C)[24] and in a different report the ends of miR-29a~29b-1 (TSSab8, Fig. 1C) and miR-29b-2~29c (TSSbc2, Fig. 
1C)[25]. In a study on embryonic stem cells, Marson et al. collected coordinates of H3K4me3-enriched loci from 
several cell lines and predicted different TSSs for the miR-29 clusters miR-29a~29b-1 (TSSab2, Fig. 1C) and miR-
29b-2~29c (TSSbc6, Fig. 1C)[26]. Corcoran and colleagues annotated the TSS of the miR-29a~29b-1 cluster 
(TSSab1) based on a Pol II ChIP-chip of A549 lung epithelial cells using an own ‘Core Promoter Prediction 
Program’ [27]. A study by Chang et al. provided the first RACE-experiments for the miR-29 family, which 
annotated the 5’- and 3’-ends of both clusters in a human Burkitt lymphoma cell line (TSSab5 and TSSbc4, Fig. 
1C)[22]. Mott et al. confirmed the miR-29a~29b-1 TSS by RACE in H69 non-malignant cholangiocytes (TSSab4, 
Fig. 1C), albeit with a 131 bp downstream shift to the one described by Chang (TSSab5) [23]. Finally, even more 
TSS predictions can be extracted from the miRStart website [28] (TSSab3 and TSSbc5, Fig. 1C) or from the UCSC 
genome browser feature ‘SwitchGear genomics’ (www.switchgeargenomics.com) (TSSab6 & TSSab7 for 
miR29a~29b-1 and TSSbc3 for miR29b-2~29c, Fig. 1C). 
Transcriptional regulation is thought to be the main mechanism for regulation of miRNA expression [7], but other 
controlling processes including epigenetic silencing [29] and different turnover or processing times [10] have also 
been described. Identifying the transcription factors, which regulate miRNAs or their respective host genes, in the 
case of intragenic miRNAs, is crucial for understanding regulation and different miRNA expression patterns in a 
healthy versus diseased cellular context. In a recent review by Kriegel et al. [20], known transcription factor binding 
sites in the promoter region of the miR-29 family have been summarized. The vast majority of publications report a 
down-regulation of miR-29 in cancer [30-32], which will be discussed in more detail below (see also Table 2). To 
some extent, decreased miR-29 levels can be explained by transcriptional repression and an overview of the current 
knowledge about miR-29 regulation is given in Figure 2.  
Although most recent publications report a clear down-regulation of the miR-29 family members in cancer, 
especially with progression, some studies have shown opposite effects with miR-29 being transcriptionally up-
regulated. The transcription factors CEBPA (CCAAT/enhancer-binding protein alpha), p53, SMAD3 (mothers 
against decapentaplegic homolog 3) and canonical Wnt-signaling have all been shown to activate the expression of 
miR-29 family members in various cell types [12, 15, 32-35] (Fig. 2A). In this context, we have recently observed a 
profound and robust up-regulation of miR-29 by the STAT1 (signal transducer and activator of transcription) 
transcription factor induced by interferon γ (IFN-γ) signaling in melanoma and T-cells (dashed box, Fig. 2A). These 
results will be further discussed below. Taken together, depending on the cellular context, several transcription 
factors directly up-regulate or repress the expression of the miR-29 family members and these data are crucial for 
further deciphering miR-29 regulatory networks (Fig. 2A).  
 
 
Involvement of the miR-29 family in cancer 

The predominantly tumor-suppressing properties of miR-29 in solid tissue cancers. Since their discovery, 
miRNAs have been implicated in malignancies and many studies on miRNA deregulation in all types of cancer have 
been carried out. Like protein-coding genes, miRNAs can be classified as being either ‘oncogenic’ or ‘tumor-
suppressive’. Mir-21, one of the first known ‘oncomirs’, has elevated expression levels in many human cancers [36] 
while the miR-29 family or its single members have been shown to be down-regulated in glioblastoma [37], lung 
cancer [30], prostate cancer [38], colon cancer [39], chronic lymphocytic leukemia [31] and many other 
malignancies (Table 2).  
Tumor-suppressor functions have clearly been demonstrated in glioblastoma cells, where the introduction of miR-
29b-mimicking RNA-duplexes was found to induce apoptosis and reduction of proliferation and invasion [37]. In a 
study involving a RMS (rhabdomyosarcoma) xenograft model, it was observed that re-expression of otherwise 
silenced miR-29 inhibited tumor growth in mice [40]. Nude mice showed reduced tumor formation by HCC 
(hepatocellular carcinoma) cells after transfection with miR-29b [41] and the same group later described that miR-
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29b inhibited the invasive potential of HCC cells, as well as angiogenesis and metastasis in HCC-transplanted nude 
mice [42]. Muniyappa et al. focused on a more general approach and compared miR-29a expression levels in various 
cancer cell lines with divergent invasive capacity [43]. A higher miR-29a expression was correlated with a lower 
invasiveness of NSCLC (non-small-cell lung carcinoma) cell lines and over-expression of miR-29a resulted in anti-
invasive and anti-proliferative effects in lung and pancreatic cancer cells [43].  
In contrast to the majority of studies highlighting tumor-suppressive properties, opposing expressing patterns and 
roles seem to exist in breast cancer and primary melanoma. Wang et al. reported an up-regulation of miR-29b in 
highly metastatic breast cancer cells in comparison to low-metastatic ones and showed that miR-29b promotes 
migration and invasion and increases resistance to apoptosis. However, healthy control tissue or primary tumor 
material for determining basal expression levels were not analyzed [44]. Similar to this study, Gebeshuber and 
colleagues recently reported enhanced levels of miR-29a in patients with invasive breast carcinomas in comparison 
to benign samples from patients with non-invasive hyperplasia [45]. MiR-29a transfection into mice had no effect 
on cell proliferation but resulted in enhanced lung metastasis. It remains to be clarified why Wang et al. only 
detected miR-29b while Gebeshuber et al. exclusively reported an up-regulation of miR-29a with neither group 
seeing differential regulation of the other miRNA in the same tissue. Nevertheless, both studies provide evidence 
that miR-29 may indeed have tumor-promoting traits in breast cancer and to our knowledge a down-regulation of 
miR-29 in breast cancer has not been reported so far. Interestingly and in line with elevated levels of miR-29 in 
breast cancer, we have recently made similar observations in melanoma patient samples: both miR-29a and 29b 
were up-regulated, however only in primary melanoma relative to healthy nevi while expression levels in metastatic 
melanoma were decreased even below the levels scored in nevi [46]. Surprisingly, a recent study on cutaneous 
melanoma reported unchanged miR-29a and-29b expression levels while miR-29c was down-regulated in metastatic 
melanoma in comparison to primary tumor samples [47] but again no healthy control tissue or nevi were included. 
Apart from these noteworthy exceptions in primary melanoma and breast cancer, miR-29 family members have 
consistently and predominantly been reported to be down-regulated and to assume tumor-suppressive properties in 
solid tissue cancers.  
 
Properties of the miR-29 family in hematological malignancies. In acute myeloid leukemia (AML), most studies 
have demonstrated a down-regulation of miR-29 in patient material or malignant cell lines. Eyholzer et al. reported a 
suppression of miR-29b expression in AML patient-derived bone marrow samples and showed that the whole miR-
29a~29b-1 cluster was blocked in the disease [32]. They reasoned that this was due to the disruption of CEBPA-
expression in AML and could further prove that the CEBPA transcription factor indeed mediates miR-29b 
expression. In contrast to this, a recent study suggested oncogenic properties of miR-29a in AML. Purified leukemia 
stem cell (LSC)-blast populations of AML patients had up-regulated levels of miR-29a and over-expression of miR-
29a led to the acquisition of the self-renewal capacity of myeloid progenitors and subsequently to the development 
of a myeloproliferative disorder, which progressed to AML in a mouse model [48]. A possible explanation for the 
contradictory results on miR-29 in AML could be the different clinical sample and cell types that were used: patient-
derived bone marrow [32] or PBMCs [49], versus purified human LCSs [48]. 
In addition to acute leukemia, miR-29 has been implicated in chronic leukemia, mainly CLL. Again, most 
publications describe a down-regulation of miR-29 members in CLL patients: miR-29a, -b and –c levels were 
reduced in lymphocytes of CLL-patients and miR-29c was also down-regulated in PBMCs [31, 50-52]. In this 
context, reports by Santanam and colleagues emphasized how crucial adequately controlled samples are, especially 
when comparing miRNA expression levels. Interestingly, they reported that miR-29 decreased when expression 
levels from aggressive CLL samples were normalized to samples from indolent CLL [52] while an up-regulation of 
miR-29 was detected when indolent and aggressive CLL were compared to normal CD19+ lymphocytes [53]. 
Furthermore, the group hypothesized that miR-29 can contribute to the pathogenesis of CLL. This was demonstrated 
in miR-29a~b-1 –transgenic mice, which developed a CLL phenotype in comparison to wild-type mice indicating an 
oncogenic potential for miR-29 in chronic leukemia after over-expression [53].  
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Taken together, a substantial body of evidence on the role of miR-29 and its family members in human malignancies 
has been collected over recent years, spanning many different solid tumors as well as several types of leukemia. 
Like other miRNAs, miR-29 appears to have an important role in development, progression and control of cancer 
and many of the cited studies also addressed the potential of miR-29 in disease-associated prognosis and therapy. 
Most studies corroborate that miR-29 mainly exerts tumor-suppressive properties, which are subsequently lost when 
it is silenced in cancer and the cellular homeostasis is changed depending on the functional role of the target genes 
in the respective type of cancer (Tables 1 & 2). Potentially opposing roles and up-regulated expression levels have 
been reported for AML, primary melanoma and breast cancer. Nevertheless, differential expression patterns of miR-
29 family members in many cancer types offer some potential for the development of targeted therapy once the 
downstream target genes have been clearly identified.  
 
 
Selected miR-29 target genes and their potential involvement in cancer suppression. Beyond assessing the 
expression levels of the miR-29s in different cancer types, it is crucial to identify their target genes in order to 
decipher cancer-associated cellular pathways and networks that might be regulated by miR-29. Table 1 summarizes 
experimentally confirmed miR-29 targets with potential functional roles in various aspects of cancer biology.  
Several groups have independently established that miR-29 family members target and thus down-regulate the 
methyltransferases DNMT3A and DNMT3B (DNA-methyltransferases) [18, 54, 55] (Table 1). DNMTs are 
involved in DNA-methylation of CpG islands causing epigenetic silencing of the corresponding genes. Hyper-
methylation is a normal regulatory mechanism, but can be fatal if tumor suppressor genes are silenced, which has 
been shown for p16INK4A (CDKN2A, cyclin-dependent kinase inhibitor 2A) in lung carcinoma cells [56]. 
Interestingly, DNMT3 is frequently up-regulated in various malignancies such as hepatoma, lung, prostate, 
colorectal and breast cancer [57-61]. An inverse correlation was shown for miR-29c and DNMT expression levels in 
cutaneous melanoma with high expression of miR-29c and low expression of DNMTs in primary melanoma and the 
reverse situation in metastasis [47]. Fabbri et al. validated the down-regulation of DNMTs 3A and 3B by all miR-29 
family members [55] and demonstrated reduced tumor sizes in mice, engrafted with lung cancer cells that had been 
transfected with single miR-29 family members. These important findings provide first indications towards the 
potential miR-29s might have in therapeutic treatment approaches of cancer.  
Another important group of miR-29 targets with a role in cancer progression is the Bcl-2 family (B-cell lymphoma 
2), which encodes genes involved in the regulation of apoptosis [62]. Interestingly, the pro-apoptotic members Bim 
(Bcl-2 like 11), Puma (p53 up-regulated modulator of apoptosis) and Hrk (activator of apoptosis harakiri) as well as 
the anti-apoptotic n-BAK (Bcl-2 homologous antagonist) and Bmf (Bcl-2-modifiying factor) can all be targeted by 
miR-29 [63]. Among the most prominent members, Bcl-2 itself and Mcl-1 (myeloid cell leukemia sequence 1), both 
anti-apoptotic, have been experimentally validated to be direct miR-29 targets in multiple cell types [41, 64, 65]. All 
these studies suggest that decreased expression of miR-29 leads to an up-regulation of Bcl-2 and Mcl-1 and 
consequently to protection of cells from apoptosis, which in turn promotes tumorigenesis. 
Other miR-29 target genes include extracellular matrix proteins, de-regulation of which can favor cancer growth and 
progression. Confirmed miR-29 target genes include collagens [13, 66, 67], the matrix-metalloprotease MMP-2 [42, 
68], elastin and fibrillin 1 [13], laminin γ1 [66] and integrin beta 1 [68], which have recently been summarized in a 
review [20]. Although many targets with distinct functions in numerous cellular processes and different cells types, 
tissues and diseases have been put forward, no ‘universal’ miR-29 target gene seems to exist, which is de-regulated 
in most cancers (Table1). Depending on the cellular context, not all targets are similarly found to be down-regulated 
after mimic treatment. For example, down-regulation of the methyltransferases DNMT3A and DNMT3B was shown 
in AML, lung cancer and liver tissue [18, 54, 55], but could not be confirmed in nasopharyngeal carcinomas [69]. 
Nevertheless, cell-type specific target genes may offer the possibility for a more precise and targeted therapeutic 
intervention by miRNAs with potentially less side effects. 
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MiR-29: a player in immunological host defense? 
 
Apart from direct regulation affecting biogenesis or processing speed mediated by genetic factors and epigenetic 
silencing, miRNAs have also been shown to be indirectly regulated by cytokines like interferons [70]. Cytokine 
signalling plays a pivotal role in the immune system by communicating cellular responses to inflammation and 
infections [71]. Nearly all cell types can come into contact with cytokines such as IFN-γ, which is mainly secreted 
by activated T and NK cells and represents the most important Th1 (T helper type 1) –cytokine in innate and 
adaptive immunity to infection [72]. Generally, cytokines activate transcription factors, which subsequently lead to 
transcription of target genes including those encoding miRNAs. IFN-γ primarily triggers the JAK/STAT pathway 
resulting in a STAT-mediated transcriptional activation of target genes. The importance of interactions between 
miRNAs and STAT transcription factors has very recently been summarised in a review by Kohanbash and Okada 
[73]. In this context, we have found that miR-29a/b was specifically and dose-dependently up-regulated after IFN-γ 
stimulation of melanoma and T-cells. Using a STAT1 dominant-negative control cell line as well as specific Jak 
inhibitors, we have established that this activation is mediated by STAT1 (manuscript in preparation). Along that 
line, we have also investigated the dynamic regulation of miRNA expression profiles following IFN-γ-induced gene 
transcription and observed temporal changes in levels of about 10% of all miRNAs including miR-29a and -29b in 
response to STAT1-activation [74].  
Other reports have previously connected individual miRNAs to interferon signaling: for example, miR-155 was 
shown to inhibit IFN-γ-signaling in CD4+ T-cells [75] and miR-29a suppressed interferon-α-receptor expression in 
the thymic epithelium [76], implying that IFN signaling in general may actively partake in the regulation of miRNA 
expression levels in cells. Recently, two excellent publications provided further insights into the implication of the 
miR-29 family in immune responses. Ma et al. [77] showed that miR-29a and -29b were down-regulated in IFN-γ-
secreting T-cells. Furthermore, they observed a down-regulation of miR-29a and -29b and an up-regulation of IFN-γ 
in activated NK cells and T-cells following infection of mice with Listeria monocytogenes or Mycobacterium bovis. 
By luciferase reporter gene assays, IFN-γ was confirmed to be a direct target of all miR-29 family members and this 
suggests an immunosuppressive role for miR-29 in bacterial infections with the specific down-regulation of IFN-γ 
by miR-29.These findings were confirmed by an experiment in mice transgenically expressing a ‘sponge’ target to 
compete with endogenous miR-29 targets [16]. These mice showed increased Th1-responses and better resistance to 
mycobacteria. Interestingly, Steiner et al. proved that the transcription factors T-bet and Eomes (Eomesodermin = T-
box brain protein 2), both of which are known inducers of IFN-γ production in helper T-cells, were directly targeted 
by miR-29a and -29b, thus facilitating an immune response to intracellular pathogens [16]. Both publications 
suggest that miR-29 negatively regulates IFN-γ production. As mentioned above, we generally see a clear induction 
of miR-29 expression following IFN-γ stimulation and have shown this regulation to be STAT1-dependent. These 
findings indicate that a regulatory loop exists with IFN-γ inducing miR-29 expression via STAT1 and miR-29 
subsequently repressing IFN-γ directly as well as indirectly by down-regulating the IFN-γ-inducing transcription 
factors T-bet and Eomes (Figure 2B).  
Apart from immune responses to bacterial infection, the miR-29 family has also been implicated in immune 
reactions to viral infections. Cellular miRNAs can down-regulate viral protein-coding genes and partake in host-
pathogen interactions, supporting antiviral mechanisms of the host defense. For example, interferon-β rapidly 
elevates the expression of several cellular miRNAs in Hepatitis C-infected cells and in turn, some human miRNAs 
like miR-196 and miR-448 down-regulate viral genomic RNA and viral replication is controlled and reduced [70]. 
For EBV (Epstein-Barr virus) it was reported that EBV-encoded LMP1 (latent membrane protein 1) suppresses the 
Tcl-1 (T-cell leukemia 1) oncogene through miR-29b [78] (Fig. 2B). More interestingly, several studies have 
connected the miR-29 family to HIV. Hariharan et al. reported that miR-29a/29b targets the HIV-nef protein 
(negative regulatory factor) [79]. Nef is a membrane-associated accessory protein able to down-regulate cell-surface 
molecules like CD4, MHCI and II, which enhances virion infectivity and stimulates viral replication [80]. By miR-
29-induced reduction of nef levels, overall protein expression and HIV-1 replication was slowed down [17][patent 
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US 2007/0087335 A1; Brahmachari et al.]. Nathans et al. confirmed the ability of miR-29a to bind to the HIV-1 
3’UTR and reported a high conservation of the otherwise variable nef sequence, which is targeted by the miRNA 
seed region. They found that miR-29a is highly abundant in HIV-infected T-lymphocytes and HIV-1 infection 
induced elevated miR-29a expression in HEK 293T cells. Mimicking miR-29a efficiently suppressed HIV-
production and infectivity, confirming miR-29a as a cellular repressor of HIV-1 mRNA expression. Also, miR-29a 
enhanced HIV-1 mRNA interactions with P bodies and the RISC (RNA-induced silencing complex) proteins 
resulting in an accumulation of viral mRNA at P bodies for translational suppression and thereby reducing the 
infectivity of HIV [81]. It is noteworthy that in contrast to the reports where induced expression of miR-29 after 
HIV-infection and a potential antiviral role of the miR-29 family have been demonstrated, two other publications 
came to different conclusions, both reporting a down-regulation of miR-29 in HIV-infected PBMCs [82, 83] and 
patients [83]. Nevertheless, accumulating evidence suggests that miR-29 could be useful for the control of HIV 
infection at early stages [17, 81], however, the high variability and quick mutation rates of the HIV-genome might 
hamper therapeutic interventions with chemical or miRNA-based drugs.  
 
 
Potential for cancer diagnosis and therapy 
 
Mir-29: potential predictive biomarkers. Several studies have already described the potential of miR-29 family 
members as biomarkers for a variety of malignancies and assessment of miR-29 expression in serum or in various 
types of cancer-derived tissues could contribute to predictions about disease onset and prognosis. In chronic 
leukemia, expression of miR-29 family members discriminated between CLL samples with good and bad prognosis: 
in a patient group with unmutated IgVH (rearranged immunoglobulin heavy-chain variable region gene) and high 
expression of ZAP-70 (70kDa zeta-associated protein), both of which are known predictors of poor prognosis in 
CLL, miR-29a, -29b-2 and -29c had low expression levels and were included in a signature group of 13 miRNAs as 
potential prognostic markers for CLL [31]. In agreement with that, Stamatopulous and colleagues showed that miR-
29c levels significantly decreased in subjects with poor prognosis. Furthermore, miR-29c levels could predict 
individual treatment-free survival and overall survival in a cohort of 110 CLL patients with long-term follow-up 
[50] and likewise, low expression of miR-29c and miR-29b was associated with disease progression in some CLL 
cases [51]. Similarly, Wang et al. reported a down-regulation of miR-29a in PBMCs of AML patients compared to 
healthy individuals [84]. 
MiR-29 was also suggested as a prognostic marker for hepatocellular carcinoma as it was frequently down-regulated 
in HCC (hepatocellular carcinoma), which correlated with a worse prognosis for those patients [41]. A decreased 
expression level of the miR-29 family was furthermore associated with a shorter survival of patients with MCL 
(mantle cell lymphoma) [85]. In colorectal cancer (CRC), serum miR-29a was found to be significantly higher 
expressed in patients suffering from advanced CRC or colorectal liver metastasis than in CRC patients without 
metastasis [86] and very recently, Weissmann-Brenner et al. have shown that high expression of miR-29a was 
associated with longer disease-free survival of stage II CRC patients  [87]. Likewise, miR-29a was significantly 
over-expressed in serum from ovarian cancer patients [88]. For a variety of cancers, the miR-29 family holds 
promise to become a prognostic and predictive biomarker, however, detection protocols, reference tissues or blood 
samples, and appropriate controls need to be standardized in order to ensure reliable and correct measurements of 
miRNA levels. This is even more important for detecting and distinguishing members of the miR-29 family, whose 
expression changes may potentially be small and who share substantial sequence homology.   

Mir-29 as therapeutic tools or targets. Beside their potential function as non-invasive biomarkers and prognostic 
factors for disease outcome, a few research groups have begun to delineate miR-29’s capacity as therapeutic agents, 
for example in leukemia treatment. A common issue in the development of leukemia is aberrant DNA hyper-
methylation, which silences tumor suppressor genes involved in hematopoiesis [89, 90]. As described above, studies 
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by Garzon and Fabbri showed that miR-29 family members target DNA methyltransferases and thus induce global 
hypo-methylation in lung cancer and AML, leading to a reduction of tumor growth in nude mice [54, 55]. The same 
group also described a positive correlation between high levels of miR-29b and improved clinical responses to 
Decitabine, a DNMT-inhibitor used for treatment of AML patients [91]. Both Decitabine and miR-29 have hypo-
methylating effects. Thus, the authors suggested that miR-29b levels might be useful in predicting potential 
Decitabine responses in AML patients. Furthermore, synthetic miR-29b could be used as a therapeutic DNA hypo-
methylation agent for leukemic blasts because over-expression of miR-29b has been shown to reduce global DNA-
methylation, thus inducing apoptosis [54]. Since miR-29 family members mainly exhibit tumor-suppressive 
functions and are often down-regulated in human cancers, re-introduction of synthetic miR-29 at specific tumor sites 
could become a possible treatment option. Vice versa, anti-miR-29 oligonucleotides could be applied in rare cases, 
where one or more miR-29 family members are over-expressed in human cancers (Table 2), similar to applications 
of other antagomirs, which are currently under investigation [92]. However, several issues need to be assessed 
before miR-29 or other miRNAs can be used in clinical applications, the most important of which are efficient 
delivery of miRNAs to target tissues, their potential side effects and their stability[93, 94] . 
In this context, it has been shown that miRNA stability can range from several hours [95] to weeks [96]. Xiong et al. 
observed that transfected miR-29b duplexes were only stable for 4-7 days in HepG2 cells [41] and were not 
detectable any more four weeks after transfection in nude mice. In HeLa cells, synthetic miR-29b was already 
degraded after several hours [97]. Using artificial RNA-duplexes in the same cell line, Zhang et al. also found that 
miR-29 family members decay very rapidly, after 8-12 hours [98]. The question of half-lives for endogenous as well 
as synthetic miRNAs in the cells is important and will influence if and how applicable certain groups of miRNAs are 
for future use in clinical interventions.  
 
 
Summary and Conclusions 
 
The increasing number of publications on miR-29 family members emphasizes their important role in many cellular 
processes of cancer biology. The family is one of the first ones described and is highly conserved among species. 
Several studies have contributed to identifying the transcription start sites and managed to narrow down a possible 
region, at least for the miR-29a~29b-1 cluster. MiR-29 targets and down-regulates a diverse set of mRNAs with 
often survival-promoting properties and by doing so, miR-29 can reduce tumor growth and proliferation. In 
concordance with this, the vast majority of studies reports a down-regulation of miR-29 in different cancers and 
clearly assigns tumor-suppressive functions to this microRNA family. Future studies will have to establish the 
reasons for some seemingly tissue-specific exceptions, where miR-29 has tumor-promoting properties. The 
advances in clinical applications of antagomirs and mimics (miR replacement therapy) certainly hold potential for 
future treatment of diseases where miR-29 and others miRNAs are deregulated. However, the use of miRNAs as 
drugs is still in its infancy and questions about delivery, stability and potential side effects remain to be solved 
before a safe and effective treatment options will become available.  
Several groups have begun to decipher the role of miR-29 in immune responses to viruses and bacteria and have 
described opposing immune-modulating properties against intra- or extracellular pathogens. More studies including 
a wider range of different pathogens will be necessary to specify the functional role of miR-29 in immune responses 
to infectious agents.  
Another very interesting connection has been established between the miR-29 family, IFN-induced Jak/STAT 
signaling and as such immune responses to pathogens or potentially to cancer. Interferons are key coordinators of 
interactions between tumors and the immune system. Tumor-infiltrating immune cells can secrete cytokines that 
could trigger transcriptional up-regulation of miR-29 family members, which in turn down-regulate potentially 
oncogenic mRNAs. The concept of “immunoediting” has been introduced to explain observable anti-tumor 
responses that are mainly mediated by interferons as well as opposing effects where the immune system appears to 
promote cancer growth [99, 100]. STAT transcription factors, which are activated by cytokine signaling, have long 



10 
 

been recognized as important mediators of the crosstalk between immune and cancer cells [101, 102]. Considering 
our and other recent findings [103], we argue that miRNAs, and especially miR-29 could assume important 
functions in coordinating interferon-induced responses to suppress transformation into cancer cells: IFN-γ can 
specifically up-regulate miR-29, which in turn may suppress target genes involved in tumorigenesis. In this context, 
it will be interesting to investigate whether some cell types that have generally low levels of miR-29 may have 
acquired resistance to interferons, which would normally drive transcription of these miR genes. MicroRNAs in 
general and miR-29 in particular might be part of the sought after intercellular targets that are mediating the 
interferon-induced immune response to cancer.     
Many recent studies corroborate on the potential use of the miR-29 family as predictive biomarkers for early 
diagnosis of malignancies and other diseases, either alone or in a panel of validated disease-specific miRNAs. 
However, expression levels have to be assessed more accurately in larger patient cohorts paying attention to 
appropriate controls, standardized techniques and amplification protocols, before miRNAs can routinely be used as 
diagnostic tools [104, 105]. Some progress has also been made towards the use of synthetic miRNAs as therapeutic 
agents or tools [106]. With its often tumor-suppressing functions, the miR-29 family lends itself to be explored 
further in future cancer therapy. Once important issues of miR delivery and stability are solved, replacement therapy 
with synthetic miR-29 in cancers where expression levels are low or absent can be envisaged. However, before this 
becomes a feasible treatment option, we need to acquire a more complete systems-biological view of the complex 
interactions of the miR-29 family, including characterization of disease-specific target genes, transcription factors, 
and their interplay with other miRNAs.  
 
 
 
Acknowledgements 
 
M.S. is supported by an AFR-grant by the Fonds National de la Recherche Luxembourg (TR-PHD BFR08-77). The 
work was supported by funding from the University of Luxembourg (F1R-LSC-PUL-09MIRN) and the Fondation 
Cancer (Luxembourg).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



11 
 

References 
 
[1 ] Jovanovic M, Hengartner MO. miRNAs and apoptosis: RNAs to die for. Oncogene. 2006 Oct 
9;25(46):6176-87. 
[2 ] Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV, et al. MicroRNA-143 regulates 
adipocyte differentiation. J Biol Chem. 2004 Dec 10;279(50):52361-5. 
[3 ] Hwang HW, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer. 2006 
Mar 27;94(6):776-80. 
[4 ] Esquela-Kerscher A, Slack FJ. Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer. 2006 
Apr;6(4):259-69. 
[5 ] Chang TC, Mendell JT. microRNAs in vertebrate physiology and human disease. Annu Rev Genomics 
Hum Genet. 2007;8:215-39. 
[6 ] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. 
Nucleic Acids Res. 2011 Jan;39(Database issue):D152-7. 
[7 ] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004 Jan 23;116(2):281-97. 
[8 ] Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA 
polymerase II. EMBO J. 2004 Oct 13;23(20):4051-60. 
[9 ] Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005 
May;6(5):376-85. 
[10 ] Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. 
Nat Rev Genet. 2010 Sep;11(9):597-610. 
[11 ] Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small 
expressed RNAs. Science. 2001 Oct 26;294(5543):853-8. 
[12 ] Villarreal G, Jr., Oh DJ, Kang MH, Rhee DJ. Coordinated Regulation of Extracellular Matrix Synthesis by 
the MicroRNA-29 Family in the Trabecular Meshwork. Invest Ophthalmol Vis Sci. 2011 May 27. 
[13 ] van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of 
microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008 
Sep 2;105(35):13027-32. 
[14 ] Pandey AK, Verma G, Vig S, Srivastava S, Srivastava AK, Datta M. miR-29a levels are elevated in the 
db/db mice liver and its overexpression leads to attenuation of insulin action on PEPCK gene expression in HepG2 
cells. Mol Cell Endocrinol. 2010 Jan 30;332(1-2):125-33. 
[15 ] Ugalde AP, Ramsay AJ, de la Rosa J, Varela I, Marino G, Cadinanos J, et al. Aging and chronic DNA 
damage response activate a regulatory pathway involving miR-29 and p53. EMBO J. 2011 Jun 1;30(11):2219-32. 
[16 ] Steiner DF, Thomas MF, Hu JK, Yang Z, Babiarz JE, Allen CD, et al. MicroRNA-29 regulates T-box 
transcription factors and interferon-gamma production in helper T cells. Immunity. 2011 Aug 26;35(2):169-81. 
[17 ] Ahluwalia JK, Khan SZ, Soni K, Rawat P, Gupta A, Hariharan M, et al. Human cellular microRNA hsa-
miR-29a interferes with viral nef protein expression and HIV-1 replication. Retrovirology. 2008;5:117. 
[18 ] Hand NJ, Horner AM, Master ZR, Boateng LA, Leguen C, Uvaydova M, et al. MicroRNA Profiling 
Identifies miR-29 as a Regulator of Disease-associated Pathways in Experimental Biliary Atresia. J Pediatr 
Gastroenterol Nutr. 2012 Feb;54(2):186-92. 
[19 ] Chen T, Li Z, Tu J, Zhu W, Ge J, Zheng X, et al. MicroRNA-29a regulates pro-inflammatory cytokine 
secretion and scavenger receptor expression by targeting LPL in oxLDL-stimulated dendritic cells. FEBS Lett. 2011 
Feb 18;585(4):657-63. 
[20 ] Kriegel AJ, Liu Y, Fang Y, Ding X, Liang M. The miR-29 Family: Genomics, Cell Biology, and Relevance 
to Renal and Cardiovascular Injury. Physiol Genomics. 2012 Jan 3. 
[21 ] Spizzo R, Nicoloso MS, Croce CM, Calin GA. SnapShot: MicroRNAs in Cancer. Cell. 2009 May 
1;137(3):586- e1. 
[22 ] Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, et al. Widespread microRNA repression by 
Myc contributes to tumorigenesis. Nat Genet. 2008 Jan;40(1):43-50. 
[23 ] Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez-Zapico ME. Transcriptional 
suppression of mir-29b-1/mir-29a promoter by c-Myc, hedgehog, and NF-kappaB. J Cell Biochem. 2010 Aug 
1;110(5):1155-64. 
[24 ] Saini HK, Griffiths-Jones S, Enright AJ. Genomic analysis of human microRNA transcripts. Proc Natl 
Acad Sci U S A. 2007 Nov 6;104(45):17719-24. 
[25 ] Saini HK, Enright AJ, Griffiths-Jones S. Annotation of mammalian primary microRNAs. BMC Genomics. 
2008;9:564. 



12 
 

[26 ] Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T, Johnstone S, et al. Connecting microRNA 
genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell. 2008 Aug 8;134(3):521-33. 
[27 ] Corcoran DL, Pandit KV, Gordon B, Bhattacharjee A, Kaminski N, Benos PV. Features of mammalian 
microRNA promoters emerge from polymerase II chromatin immunoprecipitation data. PLoS One. 
2009;4(4):e5279. 
[28 ] Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, et al. Identifying transcriptional 
start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res. 2011 
Nov;39(21):9345-56. 
[29 ] Bueno MJ, Perez de Castro I, Gomez de Cedron M, Santos J, Calin GA, Cigudosa JC, et al. Genetic and 
epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008 
Jun;13(6):496-506. 
[30 ] Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, et al. Unique microRNA molecular 
profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006 Mar;9(3):189-98. 
[31 ] Calin GA, Ferracin M, Cimmino A, Di Leva G, Shimizu M, Wojcik SE, et al. A MicroRNA signature 
associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med. 2005 Oct 
27;353(17):1793-801. 
[32 ] Eyholzer M, Schmid S, Wilkens L, Mueller BU, Pabst T. The tumour-suppressive miR-29a/b1 cluster is 
regulated by CEBPA and blocked in human AML. Br J Cancer. 2010 Jul 13;103(2):275-84. 
[33 ] Tarasov V, Jung P, Verdoodt B, Lodygin D, Epanchintsev A, Menssen A, et al. Differential regulation of 
microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and 
G1-arrest. Cell Cycle. 2007 Jul 1;6(13):1586-93. 
[34 ] Park SY, Lee JH, Ha M, Nam JW, Kim VN. miR-29 miRNAs activate p53 by targeting p85 alpha and 
CDC42. Nat Struct Mol Biol. 2009 Jan;16(1):23-9. 
[35 ] Kapinas K, Kessler CB, Delany AM. miR-29 suppression of osteonectin in osteoblasts: regulation during 
differentiation and by canonical Wnt signaling. J Cell Biochem. 2009 Sep 1;108(1):216-24. 
[36 ] Pan X, Wang ZX, Wang R. MicroRNA-21: a novel therapeutic target in human cancer. Cancer Biol Ther. 
2010 Jan 12;10(12):1224-32. 
[37 ] Cortez MA, Nicoloso MS, Shimizu M, Rossi S, Gopisetty G, Molina JR, et al. miR-29b and miR-125a 
regulate podoplanin and suppress invasion in glioblastoma. Genes Chromosomes Cancer. 2010 Nov;49(11):981-90. 
[38 ] Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T. MicroRNA expression 
profiling in prostate cancer. Cancer Res. 2007 Jul 1;67(13):6130-5. 
[39 ] Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz LA, Jr., Sjoblom T, et al. The colorectal microRNAome. 
Proc Natl Acad Sci U S A. 2006 Mar 7;103(10):3687-92. 
[40 ] Wang H, Garzon R, Sun H, Ladner KJ, Singh R, Dahlman J, et al. NF-kappaB-YY1-miR-29 regulatory 
circuitry in skeletal myogenesis and rhabdomyosarcoma. Cancer Cell. 2008 Nov 4;14(5):369-81. 
[41 ] Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, et al. Effects of microRNA-29 on apoptosis, 
tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology. 2010 Mar;51(3):836-45. 
[42 ] Fang JH, Zhou HC, Zeng C, Yang J, Liu Y, Huang X, et al. MicroRNA-29b suppresses tumor 
angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology. 2011 
Nov;54(5):1729-40. 
[43 ] Muniyappa MK, Dowling P, Henry M, Meleady P, Doolan P, Gammell P, et al. MiRNA-29a regulates the 
expression of numerous proteins and reduces the invasiveness and proliferation of human carcinoma cell lines. Eur J 
Cancer. 2009 Nov;45(17):3104-18. 
[44 ] Wang C, Bian Z, Wei D, Zhang JG. miR-29b regulates migration of human breast cancer cells. Mol Cell 
Biochem. 2011 Jun;352(1-2):197-207. 
[45 ] Gebeshuber CA, Zatloukal K, Martinez J. miR-29a suppresses tristetraprolin, which is a regulator of 
epithelial polarity and metastasis. EMBO Rep. 2009 Apr;10(4):400-5. 
[46 ] Philippidou D, Schmitt M, Moser D, Margue C, Nazarov PV, Muller A, et al. Signatures of microRNAs 
and selected microRNA target genes in human melanoma. Cancer Res. 2010 May 15;70(10):4163-73. 
[47 ] Nguyen T, Kuo C, Nicholl MB, Sim MS, Turner RR, Morton DL, et al. Downregulation of microRNA-29c 
is associated with hypermethylation of tumor-related genes and disease outcome in cutaneous melanoma. 
Epigenetics. 2011 Mar;6(3):388-94. 
[48 ] Han YC, Park CY, Bhagat G, Zhang J, Wang Y, Fan JB, et al. microRNA-29a induces aberrant self-
renewal capacity in hematopoietic progenitors, biased myeloid development, and acute myeloid leukemia. J Exp 
Med. 2010 Mar 15;207(3):475-89. 
[49 ] Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY, et al. miR-29a and miR-142-3p downregulation 
and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2011 Mar;39(3):2713-22. 



13 
 

[50 ] Stamatopoulos B, Meuleman N, Haibe-Kains B, Saussoy P, Van Den Neste E, Michaux L, et al. 
microRNA-29c and microRNA-223 down-regulation has in vivo significance in chronic lymphocytic leukemia and 
improves disease risk stratification. Blood. 2009 May 21;113(21):5237-45. 
[51 ] Visone R, Rassenti LZ, Veronese A, Taccioli C, Costinean S, Aguda BD, et al. Karyotype-specific 
microRNA signature in chronic lymphocytic leukemia. Blood. 2009 Oct 29;114(18):3872-9. 
[52 ] Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V, et al. Tcl1 expression in 
chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006 Dec 15;66(24):11590-3. 
[53 ] Santanam U, Zanesi N, Efanov A, Costinean S, Palamarchuk A, Hagan JP, et al. Chronic lymphocytic 
leukemia modeled in mouse by targeted miR-29 expression. Proc Natl Acad Sci U S A. 2010 Jul 6;107(27):12210-5. 
[54 ] Garzon R, Liu S, Fabbri M, Liu Z, Heaphy CE, Callegari E, et al. MicroRNA-29b induces global DNA 
hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A 
and 3B and indirectly DNMT1. Blood. 2009 Jun 18;113(25):6411-8. 
[55 ] Fabbri M, Garzon R, Cimmino A, Liu Z, Zanesi N, Callegari E, et al. MicroRNA-29 family reverts 
aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proc Natl Acad Sci U S A. 
2007 Oct 2;104(40):15805-10. 
[56 ] Ulivi P, Zoli W, Calistri D, Fabbri F, Tesei A, Rosetti M, et al. p16INK4A and CDH13 hypermethylation 
in tumor and serum of non-small cell lung cancer patients. J Cell Physiol. 2006 Mar;206(3):611-5. 
[57 ] Girault I, Tozlu S, Lidereau R, Bieche I. Expression analysis of DNA methyltransferases 1, 3A, and 3B in 
sporadic breast carcinomas. Clin Cancer Res. 2003 Oct 1;9(12):4415-22. 
[58 ] Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, Ishii H, et al. Increased protein expression of DNA 
methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human 
hepatocellular carcinomas. Int J Cancer. 2003 Jul 1;105(4):527-32. 
[59 ] Patra SK, Patra A, Zhao H, Dahiya R. DNA methyltransferase and demethylase in human prostate cancer. 
Mol Carcinog. 2002 Mar;33(3):163-71. 
[60 ] Eads CA, Danenberg KD, Kawakami K, Saltz LB, Danenberg PV, Laird PW. CpG island hypermethylation 
in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 1999 May 
15;59(10):2302-6. 
[61 ] Kim H, Kwon YM, Kim JS, Han J, Shim YM, Park J, et al. Elevated mRNA levels of DNA 
methyltransferase-1 as an independent prognostic factor in primary nonsmall cell lung cancer. Cancer. 2006 Sep 
1;107(5):1042-9. 
[62 ] Youle RJ, Strasser A. The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol 
Cell Biol. 2008 Jan;9(1):47-59. 
[63 ] Kole AJ, Swahari V, Hammond SM, Deshmukh M. miR-29b is activated during neuronal maturation and 
targets BH3-only genes to restrict apoptosis. Genes Dev. 2011 Jan 15;25(2):125-30. 
[64 ] Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir-29 regulates Mcl-1 protein expression and apoptosis. 
Oncogene. 2007 Sep 13;26(42):6133-40. 
[65 ] Ye Y, Hu Z, Lin Y, Zhang C, Perez-Polo JR. Downregulation of microRNA-29 by antisense inhibitors and 
a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury. Cardiovasc Res. 2010 Aug 
1;87(3):535-44. 
[66 ] Sengupta S, den Boon JA, Chen IH, Newton MA, Stanhope SA, Cheng YJ, et al. MicroRNA 29c is down-
regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins. Proc Natl 
Acad Sci U S A. 2008 Apr 15;105(15):5874-8. 
[67 ] Maurer B, Stanczyk J, Jungel A, Akhmetshina A, Trenkmann M, Brock M, et al. MicroRNA-29, a key 
regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 2010 Jun;62(6):1733-43. 
[68 ] Liu Y, Taylor NE, Lu L, Usa K, Cowley AW, Jr., Ferreri NR, et al. Renal medullary microRNAs in Dahl 
salt-sensitive rats: miR-29b regulates several collagens and related genes. Hypertension. 2010 Apr;55(4):974-82. 
[69 ] Sengupta S, den Boon JA, Chen IH, Newton MA, Dahl DB, Chen M, et al. Genome-wide expression 
profiling reveals EBV-associated inhibition of MHC class I expression in nasopharyngeal carcinoma. Cancer Res. 
2006 Aug 15;66(16):7999-8006. 
[70 ] Pedersen IM, Cheng G, Wieland S, Volinia S, Croce CM, Chisari FV, et al. Interferon modulation of 
cellular microRNAs as an antiviral mechanism. Nature. 2007 Oct 18;449(7164):919-22. 
[71 ] O'Shea JJ, Murray PJ. Cytokine signaling modules in inflammatory responses. Immunity. 2008 
Apr;28(4):477-87. 
[72 ] Schroder K, Hertzog PJ, Ravasi T, Hume DA. Interferon-gamma: an overview of signals, mechanisms and 
functions. J Leukoc Biol. 2004 Feb;75(2):163-89. 
[73 ] Kohanbash G, Okada H. MicroRNAs and STAT interplay. Semin Cancer Biol. 2012 Feb;22(1):70-5. 



14 
 

[74 ] Reinsbach S, Nazarov PV, Philippidou D, Schmitt M, Wienecke-Baldacchino A, Muller A, et al. Dynamic 
regulation of microRNA expression following Interferon-gamma-induced gene transcription. RNA Biol.  Jul 1;9(7). 
[75 ] Banerjee A, Schambach F, DeJong CS, Hammond SM, Reiner SL. Micro-RNA-155 inhibits IFN-gamma 
signaling in CD4+ T cells. Eur J Immunol. 2010 Jan;40(1):225-31. 
[76 ] Papadopoulou AS, Dooley J, Linterman MA, Pierson W, Ucar O, Kyewski B, et al. The thymic epithelial 
microRNA network elevates the threshold for infection-associated thymic involution via miR-29a mediated 
suppression of the IFN-alpha receptor. Nat Immunol. 2012;13(2):181-7. 
[77 ] Ma F, Xu S, Liu X, Zhang Q, Xu X, Liu M, et al. The microRNA miR-29 controls innate and adaptive 
immune responses to intracellular bacterial infection by targeting interferon-gamma. Nat Immunol. 2011 
Sep;12(9):861-9. 
[78 ] Anastasiadou E, Boccellato F, Vincenti S, Rosato P, Bozzoni I, Frati L, et al. Epstein-Barr virus encoded 
LMP1 downregulates TCL1 oncogene through miR-29b. Oncogene. 2010 Mar 4;29(9):1316-28. 
[79 ] Hariharan M, Scaria V, Pillai B, Brahmachari SK. Targets for human encoded microRNAs in HIV genes. 
Biochem Biophys Res Commun. 2005 Dec 2;337(4):1214-8. 
[80 ] Kirchhoff F, Schindler M, Specht A, Arhel N, Munch J. Role of Nef in primate lentiviral 
immunopathogenesis. Cell Mol Life Sci. 2008 Sep;65(17):2621-36. 
[81 ] Nathans R, Chu CY, Serquina AK, Lu CC, Cao H, Rana TM. Cellular microRNA and P bodies modulate 
host-HIV-1 interactions. Mol Cell. 2009 Jun 26;34(6):696-709. 
[82 ] Houzet L, Yeung ML, de Lame V, Desai D, Smith SM, Jeang KT. MicroRNA profile changes in human 
immunodeficiency virus type 1 (HIV-1) seropositive individuals. Retrovirology. 2008;5:118. 
[83 ] Sun G, Li H, Wu X, Covarrubias M, Scherer L, Meinking K, et al. Interplay between HIV-1 infection and 
host microRNAs. Nucleic Acids Res. 2011 Nov 10. 
[84 ] Wang F, Wang XS, Yang GH, Zhai PF, Xiao Z, Xia LY, et al. miR-29a and miR-142-3p downregulation 
and diagnostic implication in human acute myeloid leukemia. Mol Biol Rep. 2011 Jun 16. 
[85 ] Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W, et al. microRNA expression profile and identification of 
miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood. 2010 
Apr 1;115(13):2630-9. 
[86 ] Wang LG, Gu J. Serum microRNA-29a is a promising novel marker for early detection of colorectal liver 
metastasis. Cancer Epidemiol. 2011 Feb;36(1):e61-7. 
[87 ] Weissmann-Brenner A, Kushnir M, Lithwick Yanai G, Aharonov R, Gibori H, Purim O, et al. Tumor 
microRNA-29a expression and the risk of recurrence in stage II colon cancer. Int J Oncol. 2012 Mar 16. 
[88 ] Resnick KE, Alder H, Hagan JP, Richardson DL, Croce CM, Cohn DE. The detection of differentially 
expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gynecol 
Oncol. 2009 Jan;112(1):55-9. 
[89 ] Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP. Methylation profiling in acute 
myeloid leukemia. Blood. 2001 May 1;97(9):2823-9. 
[90 ] Mizuno S, Chijiwa T, Okamura T, Akashi K, Fukumaki Y, Niho Y, et al. Expression of DNA 
methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia. 
Blood. 2001 Mar 1;97(5):1172-9. 
[91 ] Blum W, Garzon R, Klisovic RB, Schwind S, Walker A, Geyer S, et al. Clinical response and miR-29b 
predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S 
A. 2010 Apr 20;107(16):7473-8. 
[92 ] Poltronieri P, D'Urso PI, Mezzolla V, D'Urso OF. Potential of anti-cancer therapy based on anti-miR-155 
oligonucleotides in glioma and brain tumours. Chem Biol Drug Des.  Jul 26. 
[93 ] Seth S, Johns R, Templin MV. Delivery and biodistribution of siRNA for cancer therapy: challenges and 
future prospects. Ther Deliv.  Feb;3(2):245-61. 
[94 ] Osman A. MicroRNAs in health and disease--basic science and clinical applications. Clin Lab.58(5-6):393-
402. 
[95 ] Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, et al. Differential regulation of microRNA stability. 
RNA. 2010 May;16(5):1032-9. 
[96 ] van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac 
growth and gene expression by a microRNA. Science. 2007 Apr 27;316(5824):575-9. 
[97 ] Hwang HW, Wentzel EA, Mendell JT. A hexanucleotide element directs microRNA nuclear import. 
Science. 2007 Jan 5;315(5808):97-100. 
[98 ] Zhang Z, Zou J, Wang GK, Zhang JT, Huang S, Qin YW, et al. Uracils at nucleotide position 9-11 are 
required for the rapid turnover of miR-29 family. Nucleic Acids Res. 2011 May;39(10):4387-95. 



15 
 

[99 ] Dunn GP, Koebel CM, Schreiber RD. Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 
2006 Nov;6(11):836-48. 
[100 ] Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer 
suppression and promotion. Science. 2011 Mar 25;331(6024):1565-70. 
[101 ] Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: role of STAT3 in the 
tumour microenvironment. Nat Rev Immunol. 2007 Jan;7(1):41-51. 
[102 ] Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev 
Cancer. 2009 Nov;9(11):798-809. 
[103 ] Smith KM, Guerau-de-Arellano M, Costinean S, Williams JL, Bottoni A, Mavrikis Cox G, et al. miR-
29ab1 Deficiency Identifies a Negative Feedback Loop Controlling Th1 Bias That Is Dysregulated in Multiple 
Sclerosis. J Immunol. 2012 Aug 15;189(4):1567-76. 
[104 ] Mizuarai S, Irie H, Kotani H. Gene expression-based pharmacodynamic biomarkers: the beginning of a 
new era in biomarker-driven anti-tumor drug development. Curr Mol Med. 2010 Aug;10(6):596-607. 
[105 ] Vlassov VV, Laktionov PP, Rykova EY. Circulating nucleic acids as a potential source for cancer 
biomarkers. Curr Mol Med. 2010 Mar;10(2):142-65. 
[106 ] Rossbach M. Small non-coding RNAs as novel therapeutics. Curr Mol Med. 2010 Jun;10(4):361-8. 
[107 ] Li Y, Wang F, Xu J, Ye F, Shen Y, Zhou J, et al. Progressive miRNA expression profiles in cervical 
carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol. 2011 Aug;224(4):484-95. 
[108 ] Kong G, Zhang J, Zhang S, Shan C, Ye L, Zhang X. Upregulated microRNA-29a by hepatitis B virus X 
protein enhances hepatoma cell migration by targeting PTEN in cell culture model. PLoS One. 2011;6(5):e19518. 
[109 ] Verrier JD, Lau P, Hudson L, Murashov AK, Renne R, Notterpek L. Peripheral myelin protein 22 is 
regulated post-transcriptionally by miRNA-29a. Glia. 2009 Sep;57(12):1265-79. 
[110 ] Cui Y, Su WY, Xing J, Wang YC, Wang P, Chen XY, et al. MiR-29a inhibits cell proliferation and induces 
cell cycle arrest through the downregulation of p42.3 in human gastric cancer. PLoS One. 2011;6(10):e25872. 
[111 ] Su H, Yang JR, Xu T, Huang J, Xu L, Yuan Y, et al. MicroRNA-101, down-regulated in hepatocellular 
carcinoma, promotes apoptosis and suppresses tumorigenicity. Cancer Res. 2009 Feb 1;69(3):1135-42. 
[112 ] Huang Z, Huang D, Ni S, Peng Z, Sheng W, Du X. Plasma microRNAs are promising novel biomarkers for 
early detection of colorectal cancer. Int J Cancer. 2010 Jul 1;127(1):118-26. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 
 

Table 1: Confirmed direct targets of the miR‐29 family 

Target    L  mRNA  WB  29 
a/b/c  Ref  description 

DNMT3A 

 
 
 

DNA‐methyltransferases 

√ √ √ 29b [54]   
 
 

Methyltransferases 

√ iv 29a [18] 
√ √ √ 29abc [55] 

DNMT3B 

√ √ √ 29b [54] 
√ iv 29a [18] 

√ √ √ 29abc [55] 
Bim  Bcl‐2‐like 11  √ 29b [63]   

 
 
 

Members of Bcl‐2 family 
and others involved in 

apoptosis 

Puma 
p53 up‐regulated modulator of 

apoptosis 
√ 29b

[63] 
Bmf  Bcl‐2‐modifying factor √ 29b [63] 
Bcl‐2  B‐cell lymphoma 2  √ √ √ 29abc [41] 

Mcl‐1 

 
Myeloid cell leukemia 

sequence 1 

√ no 
effect 

√ 29b
[64] 

√ √ √ 29abc [41] 
√ iv 29ac [65] 

Hrk  Activator of apoptosis harakiri √ 29b [63] 
N‐Bak  Bcl‐2 homologous antagonist √ 29b [63] 

Adamts18 

ADAM metallopeptidase with 
thrombospondin type 1 motif, 

18 

√ 29abc

[15] 

 
 
 
 
 
 
 
 
 
 
 

Extracellular matrix 
proteins 

COL15A1   
 
 
 
 
 
 
 

Collagens 

√ √ 29c [66] 

COL1A1 
√ 29c
√ √ 29b [68] 

COL1A1  √ √ & iv 29b [13] 

COL1A2 
√ 29c [66] 
√ √ & iv 29b [13] 

COL3A1 

√ √ 29c [66] 
√ √  √ 29abc [67] 
√ √ 29b [68] 
√ √ & iv 29b [13] 

COL4A1  √ √ 29c [66] 
COL4A2  √ 29c
COL4A1  √ √ 29b [68] 
COL5A1  √ √ 29b
COL5A2  √ √ 29b
COL5A3  √ √ 29b
COL7A1  √ √ 29b [68] 
COL8A1  √ √ 29b
Eln1  Elastin  √ 29b [13] 
Fbn1  Fibrillin1  √ 29b
Itgb1  Integrin β1  √ √ 29b [68] 
Laminin γ1    √ √ 29c [66] 

MMP‐2 
 

Matrix metalloprotease 
√ √ 29b [42] 
√ √ 29b [68] 
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Osteonectin/  
SPARC 

secreted protein, acidic, 
cysteine‐rich 

√ √ 29ac
[35] 

T‐bet 
T‐box transcription factor 

TBX21 
√ √ 29b

[16] 
 
 
 
 
 
 

Transcription factors 

Eomes 
Eomesodermin = T‐box brain 

protein 2 
√ √ 29b

[16] 

HBP1 
HMG‐box transcription factor 

1 
√ 29abc

[15] 

Mycn 

V‐myc myelocytomatosis viral 
related oncogene, 

neuroblastoma derived 

√ 29abc

[15] 

YY1 

Yin‐yang 1 
√ 

√   
iv 

29abc
[40] 

  √ √ 29ab [107] 

cdc42 
Cell division control protein 42 

homolog 
√ √ 29abc

[34] 
 

Cell cycle proteins 

cdk6 
Cyclin‐dependent kinase 6 √ √ √ 29abc [85] 

√ √ 29ab [107] 

Dusp2 
Dual specificity protein 

phosphatase 2 
√ 29abc

[15] 
Phosphatases

Ppm1d  Protein phosphatase 1D √ 29abc [15] 

PTEN 
Phosphatase and tensin 

homolog 
  √ 29b [44] 
√  √ √ 29a [108] 

FUSIP1 
FUS‐interacting serine‐
arginine‐rich protein 1 

√ √ 29c
[66] 

RNA splicing

Ifi30 
Gamma‐interferon‐inducible 
lysosomal thiol reductase 

√ 29abc
[15] 

Thiol reductase

Ifnar1  Interferon alpha receptor 1 √ 29a [76]  Cytokine signaling
IFN‐γ  Interferon γ  √ 29abc [77] 
Igf1  Insulin‐like growth factor 1 √ √ iv 29a [18] 

Il1RAP 
Interleukin‐1 receptor 
accessory protein 

√ √ iv 29a
[18] 

LPL  lipoproteinlipase  √ √ √ 29a [19]  Lipase

Narf 
Nuclear prelamin A 
recognition factor 

√ 29abc
[15] 

Nuclear protein

nef 
Negative regulatory factor √ √ 29ab [17]  Virulence factor (HIV)

√ 29a [81] 

p85 α 
Phosphatidylinositol 3‐kinase, 

regulatory subunit α 
√ √ 29abc [34]  Kinase

√ 29a [14] 
PDPN  Podoplanin  √ √ √ 29b [37]  Membrane glycoprotein

PMP22 
Peripheral myelin protein 22 √ √ √ 29abc

[109] 
Major component of 

myelin 

 
Tcl‐1 

 
T‐cell leukemia 1 

  √ √ 29c [50]  Co‐activator of Akt
√ √ 29b [52] 

√ 29b [78] 

TDG 
G/T mismatch‐specific 

thymine DNA glycosylase  √ 
√ 29c

[66] 
Glycosylase

TTP  Tristetraprolin  √  √ 29a [45]  mRNA degradation
p42.3    √ √ √ 29a [110]  unknown
L = luciferase assay, mRNA = mRNA level; iv = in vivo/mice, WB = western blot; b = mainly b 
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Table 2: Summary of studies reporting an up- or down-regulation of one or more miR-29 family members in cancer  

  Down‐regulation of miR‐29 family members in cancer   ↓ 

type of cancer  sample types  miRNA ref 
acute myeloid leukemia 

(AML) 
patient bone marrow  29b  [32] 

PBMCs  29a  [84] 
 

chronic lymphocytic leukemia 
(CLL) 

  29abc  [31] 
patient lymphocytes  29bc  [51] 

  29bc  [52] 
PBMCs  29c  [50] 

malignant cholangiocytes  cell line  29b  [64] 
colorectal cancer  tissue  29  [39] 
glioblastoma  tissue  29b  [37] 

rhabdomyosarcoma  cell lines & tissue  29b  [40] 
hepatocellular carcinoma  tissue  29  [111] 

lung cancer  cell line  29a  [43] 
tissue  29b  [30] 

mantle cell lymphoma  tissue  29abc  [85] 
nasopharyngeal carcinoma  tissue  29c  [66] 
invasive pancreatic cancer  cell line  29a  [43] 

prostate cancer  tissue  29ab  [38] 
Burkitt lymphoma  cell line  29  [22] 

  Up‐regulation of miR‐29 family members in cancer   ↑ 

type of cancer  sample types  miRNA ref 
AML  patient LSC/ 

non‐LSC‐blasts  
29a  [48] 

CLL  tissue  29ab  [53] 
colorectal liver metastasis 

colorectal cancer 
serum  29a  [86] 
plasma  [112] 

breast  tissue  29a  [45] 
ovarian cancer  serum  29a  [88] 

primary melanoma  tissue  29ab  [46] 
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Figure Legends 

 

Figure 1:  

A) Scheme of miR-29 genomic organization: miR-29a~29b-1 and miR-29a~29b-2 are encoded as a cluster on Chr7 
q32.3 and Chr1 q32.2, respectively (left panel). Mature sequences of the miR-29 family members are shown on the 
right. Note identical mature sequences for miR-29b-1 and miR-29b-2. Seed regions are highlighted by a box and 
nucleotides differing between members are underlined, the single nucleotide difference between miR-29a and miR-
29c is shown in italics (right panel). B) Human primary transcripts of the miR-29 genes. Exons (E1-4/5) are shown 
as white boxes, introns as connecting lines; hairpin structures illustrate the coding position of precursor sequences. 
A scale is given below. C) Promoter organization and potential transcription start sites for both clusters miR-
29a~29b-1 (TSSab1-8) and miR-29a~29b-2 (TSSbc1-6) from literature, as mentioned in the text. Coordinates have 
all been converted to genome version hg19/GRCh37 and are as follows: TSSab1 chr7:130.572.487; TSSab2 
chr7:130.586.832; TSSab3 chr7:130.596.983; TSSab4 chr7:130.597.889; TSSab5 chr7:130.598.020; TSSab6 
chr7:130.598.638; TSSab7 chr7:130.598.268; TSSab8 chr7:130.800.298; TSSbc1 chr1:207.977.425; TSSbc2 
chr1:207.979.479; TSSbc3 chr1:207.985.009; TSSbc4 chr1:207.996.050; TSSbc5 chr1:207.997.156; TSSbc6 
chr1:207.037.276.  

 

 

Figure 2: 

A) Overview of miR-29 family members and their regulation: transcriptional activators and repressors of the miR-
29a~29b-1 and miR-29a~29b-2 clusters are shown that actively influence miR-29 expression levels. The dashed box 
indicates our recent findings on miR-29 regulation by STAT1. (Note that SMAD3 activates miR-29b only and 
canonical Wnt-signaling induced miR-29a and 29c only. B) Immune-modulatory effects of miR-29 and interaction 
with pathogens (as described in “MiR-29: a player in immunological host defense?”).  
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Figure  2
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Abstract

Background: The type-II-cytokine IFN-γ is a pivotal player in innate immune responses but also assumes functions
in controlling tumor cell growth by orchestrating cellular responses against neoplastic cells. The role of IFN-γ in
melanoma is not fully understood: it is a well-known growth inhibitor of melanoma cells in vitro. On the other
hand, IFN-γ may also facilitate melanoma progression. While interferon-regulated genes encoding proteins have
been intensively studied since decades, the contribution of miRNAs to effects mediated by interferons is an
emerging area of research.
We recently described a distinct and dynamic regulation of a whole panel of microRNAs (miRNAs) after
IFN-γ-stimulation. The aim of this study was to analyze the transcriptional regulation of miR-29 family members
in detail, identify potential interesting target genes and thus further elucidate a potential signaling pathway
IFN-γ → Jak→ P-STAT1 → miR-29 → miR-29 target genes and its implication for melanoma growth.

Results: Here we show that IFN-γ induces STAT1-dependently a profound up-regulation of the miR-29 primary
cluster pri-29a~b-1 in melanoma cell lines. Furthermore, expression levels of pri-29a~b-1 and mature miR-29a and
miR-29b were elevated while the pri-29b-2~c cluster was almost undetectable. We observed an inverse correlation
between miR-29a/b expression and the proliferation rate of various melanoma cell lines. This finding could be
corroborated in cells transfected with either miR-29 mimics or inhibitors. The IFN-γ-induced G1-arrest of melanoma
cells involves down-regulation of CDK6, which we proved to be a direct target of miR-29 in these cells. Compared
to nevi and normal skin, and metastatic melanoma samples, miR-29a and miR-29b levels were found strikingly
elevated in certain patient samples derived from primary melanoma.

Conclusions: Our findings reveal that the miR-29a/b1 cluster is to be included in the group of IFN- and
STAT-regulated genes. The up-regulated miR-29 family members may act as effectors of cytokine signalling in
melanoma and other cancer cells as well as in the immune system.
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Background
In the past decade, small non-coding microRNAs
(miRNAs) have been identified as new and important
players in post-transcriptional gene regulation and ever
since, their expression patterns and cellular functions
have been investigated in cancer and other diseases [1,2].
MiRNA biogenesis can be differentially regulated [3], but
generally starts with the generation of a primary (pri-)
miRNA transcript (several thousand nucleotides long),
which is subsequently processed into a 70–80 nucleotide
precursor form (pre-miRNA), which, following nuclear
export, is then cleaved into the ~22 nucleotide mature
miRNA. One strand of the mature duplex is incorporated
in the RISC (RNA-induced silencing complex), where
it recognizes, binds to and represses mRNA target
sequences [1]. MiRNAs are involved in many fundamen-
tal cellular processes as they are estimated to control
>50% of all protein-coding genes in mammals [4].
Consequently, they have been implicated in the regula-
tion of processes that promote cancer growth or con-
versely, in processes that might prevent cancers from
developing. For instance, a cancer cell can emerge fol-
lowing the over-expression of so-called “oncomirs” (such
as the miR-17-92 family, miR-21, -155, etc.) which down-
regulate tumor-suppressors that control cell proliferation.
On the other hand, miRNAs that function as tumor-
suppressors by targeting cellular oncoproteins (such as
let-7 family members, miR-15a, -16, -29, etc.) are fre-
quently down-regulated in cancer tissues [5]. Therapeu-
tics opting to replace the diminished tumor-suppressor
miRNAs are currently being investigated and seem
promising, as miRNAs exhibit high stability as well as
high specificity for their target mRNAs [5,6].
A disease where patients are in urgent need of more

effective treatments is advanced melanoma, the most
aggressive form of skin cancer. Metastatic melanoma
exhibit a severe resistance to therapy leading to 5-year
survival rates of below 5% [7]. Around 50% of patients
exhibit V600E mutations in the cellular kinase BRAF
[8]. Recently, the BRAF-inhibitor ZelborafW has been
approved for treatment of late-stage malignant melanoma
patients with V600E mutations, increasing life expectancy
by several months [9,10]. Nevertheless, except excision at
early stages, no curative therapies exist. Routinely, ther-
apies against melanoma include IFN-α as an adjuvant
treatment. Interferons are cytokines and constitute a
major part of the innate immune response, but they are
also recognized for their anti-proliferative properties. We
and others have shown that the type-II-cytokine IFN-γ
mediates growth inhibition of cancer cells by activating
the transcription factor STAT1 [11,12]. After IFN-γ
stimulation, STAT1 forms homodimers, which bind to
GAS (IFN-γ-activated sequences) elements in the pro-
moter regions of target genes. Very recently, we have
found several miRNAs to be dynamically regulated fol-
lowing stimulation with IFN-γ [13]. One of the first con-
nections between cytokine-induced Jak/STAT signaling
and miRNAs has been established by Löffler et al., who
showed that IL-6 increased the expression of oncogenic
miR-21 via STAT3 activation in myeloma cells [14]. The
signaling cascades involving IL-6 or IFN-α/β/STAT3/
miR-21 and others have been confirmed in several types
of cancer and diseases [15-17].
In the current study, we have focused on the biochem-

ical analysis of individual miRNAs regulated by IFN-γ
which we have recently identified in a detailed-time
course microarray experiment [13], and further concen-
trated on the interesting miRNA family miR-29 with its
three mature members, miR-29a, -29b and -29c. It is
transcribed into two primary transcripts, pri-29a~b-1
and pri-29b-2~c, from chromosomes 7 and 1, respect-
ively. MiR-29 family members target the expression of
proteins such as methyltransferases, extracellular matrix
proteins and transcription factors [18-20], which are
potentially involved in triggering enhanced invasion,
migration or proliferation of cells. They are silenced or
down-regulated in many types of cancer and have con-
sequently been assigned tumor-suppressing properties,
although in some cases also oncogenic roles have been
reported [21,22]. Here, we demonstrate a specific and pro-
found IFN-γ-induced, STAT1-dependent up-regulation
of miR-29a and -29b in melanoma cells and importantly,
also increased expression in primary melanoma patient
samples (but not in metastatic tumors) whereas the
second cluster pri-29b-2~c was consistently undetectable.
Moreover, we provide evidence for the tumor-suppressing
properties of miR-29 family members: inhibition of melan-
oma cell proliferation could be mediated by miR-29a,
which down-regulated CDK6 (cyclin-dependent kinase 6),
an important player in cell cycle G1/S transition. Our
findings identify the pri-29a~b-1cluster as a novel IFN-γ-
regulated gene and open up new connections between
miRNAs, interferon signaling and malignant melanoma,
which could lead to novel concepts for potential treat-
ment options in the future.

Results
To investigate possible transcriptional regulations of
miRNAs by STAT transcription factors, several melanoma
cell lines were treated with IFN-γ for different time
intervals and were subsequently analyzed by miRNA
microarray as previously described [13]. The top 10
IFN-γ-induced miRNAs from a microarray experiment,
which showed highest differential expression compared
to untreated cells, and detailed time-course expression
profiles thereof are depicted in Figure 1A and Additional
file 1: Figure S1. For further analysis, we focused on
the miR-29 family, as its mature members miR-29a and
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Figure 1 Top 10 IFN-γ-up-regulated miRNAs. (A) Ten miRNAs with highest positive fold changes (as determined by previous microarray
experiments [13]) include miR-29 family members (left). Detailed time course profiles are shown in Additional file 1: Figure S1. The miR-29 family
is transcribed from the respective antisense strand from two genetic clusters of chromosomes 7 (pri-29a~b-1) and 1 (pri-29b-2~c) (right).
The three mature forms miR-29a/29b/29c share the same seed region (grey box). Differences between the mature sequences are underlined;
a nucleotide difference between miR-29a and miR-29c is shown in italics. (B) The presumed pri-29a~b-1 promoter region [22-24] contains five
GAS-elements G1-5 (TT(C/A)CNNNAA(A/G)) and two ISRE-elements I1-2 ((G/A)(G/A)AANNGAAA(C/G)) (GRCh37/hg19).
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miR-29b showed the most robust regulations across all
tested melanoma cell lines and because of its interesting
properties regarding tumor biology. To identify the pres-
ence of potential IFN-response elements, we performed
in silico screening of the promoter region 5 kb upstream
of a putative transcription start of pri-29a~b-1 [22-24]
and found five GAS-elements (TT(C/A)CNNNAA(A/G))
and two ISRE (interferon stimulated response element)-
elements ((G/A)(G/A)AANNGAAA(C/G)) (Figure 1B).
For control purposes, we selected miR-100, which was
slightly down-regulated after IFN-γ stimulation and
miR-25, whose levels were not induced in the micro-
array experiments. Other regulated candidates included
several miRNA star sequences (“miR*” which here repre-
sents the miR strand, which arises from the 3’-arm of the
hairpin, while the 5’-arm would be the guide or parent
strand and is conventionally considered as “minor”
product) which are currently being further assessed in
our laboratory (Figure 1, Additional file 1: Figure S1).

The pri-29a~b-1 cluster and mature miR-29a/29b are
regulated by IFN-γ
For stimulation experiments with IFN-γ, melanoma cell
lines MeWo and A375, as well as stably transfected
A375 derivates were used. A375-STAT1(F) represent
STAT1-dominant negative cells harboring a phenylalanine
replacement of tyrosine residue 701 crucial for STAT1
phosphorylation and dimerization [12]. Thus, transcrip-
tion of STAT1 target genes is abolished despite IFN-γ
stimulation. The corresponding control cells A375-
STAT1(wt) express the STAT1 wild-type construct instead
[12]. To accurately assess the regulation of the miR-29
family by IFN-γ-induced STAT1, we performed time
course experiments (Figure 2). Stimulation of A375,
MeWo and A375-STAT1(wt) cell lines with 50 ng/ml of
IFN-γ induced a prominent STAT1 phosphorylation,
which decreased after 48h of IFN-γ treatment, whereas
the STAT1-dominant negative cells A375-STAT1(F) only
exhibited a delayed and weak P-STAT1 signal after IFN-γ
stimulation (Figure 2A, see also [25]). Functional activity
of the P-STAT1 transcription factor was confirmed by
up-regulation of the STAT1 target genes IRF-1 and
STAT1 itself, which showed induced expression after
3h and 8h, respectively.
Following stimulation, changes in miRNA expression

levels were assessed by qRT-PCR (Figure 2B). A375,
A375-STAT1(wt) and MeWo cell lines showed a strong
and significant up-regulation (>5 fold) of the pri-29a~b-1
cluster, starting 24h after IFN-γ stimulation, while ex-
pression of the pri-29b-2~c cluster was not altered
(Figure 2B, upper panel). Accordingly, miRNA precursors
pre-29a and pre-29b-1 were also augmented whereas
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Figure 2 Expression profiles of miR-29 clusters in melanoma cells. A375-STAT1(F), A375-STAT1(wt), A375 and MeWo melanoma cells were
stimulated with IFN-γ for different time points. (A) Western Blot analysis (representative blots of biological triplicates) confirms activation of
P-STAT1 and induction of STAT1 and IRF-1 after IFN-γ stimulation while dominant negative A375-STAT1(F) cells show minor effects. (B) Time course
study of miRNA-expression after IFNγ-stimulation. Graphs show relative expression (REL) from quantitative qRT-PCR data for the pri-29a~b-1 and
the pri-29b-2~c clusters, the precursors pre-29a/29b-1/29b-2/29c and mature miR-29a/29b/25/100. Fold expression was calculated relative to the
untreated control and SDs are shown for biological triplicates. Statistical significance was tested with one-way ANOVA, followed by a Dunnett
Post-Hoc test with * p<0.05, ** p<0.01 and *** p<0.001. (C) MiRNA and miRNA* expression profiles in A375 cells derived from a more detailed IFN-γ
time course miRNA microarray experiment including cells treated with JI1 (IFN-γ stimulation for 72h after pre-treatment with JI1, black and grey
dots). Depicted are log2-values of the mean of duplicate microarray experiments.

Schmitt et al. Cell Communication and Signaling 2012, 10:41 Page 5 of 14
http://www.biosignaling.com/content/10/1/41
pre-29b-2 and pre-29c levels remained unaffected
(Figure 2B, middle panel). Subsequently, significant up-
regulation of both mature miR-29a and miR-29b fol-
lowing IFN-γ stimulation was confirmed (Figure 2B,
lower panel). The two control amplifications of miR-100
(slightly down-regulated) and miR-25, which remained
stable over time following IFN-γ stimulation confirmed
the initial microarray-based expression profiles (Figure 2B,
lower panel). Similar regulation patterns were also found
in Jurkat and MT4 T-cells and in HEK293T kidney cells
(for mature miR-29a, miR-29b, and miR-25, Additional
file 2: Figure S2). Except for minor expression changes of
the Pri/Pre-miR-29 species after 72h of IFN-γ treatment,
no up-regulation was detected in the A375-STAT1(F)
dominant negative control cells, clearly suggesting that
STAT1 activity is required for the IFN-γ-induced regula-
tion of miR-29 family members.
Figure 2C shows expression results of a detailed time

course microarray experiment using IFN-γ-stimulated
A375 cells. In parallel and as described before, cells had
been pre-treated with Jak inhibitor 1 (JI1), which specif-
ically inhibits Janus tyrosine kinases and subsequently
prevented miR-29 up-regulation after IFN-γ stimula-
tion [13].
Altogether, these data substantiate for the first time

a time-dependent up-regulation of the expression of
pri-29a~b-1 cluster as well as of the mature miRNAs
miR-29a and -29b in melanoma cells, which is trig-
gered by IFN-γ-induced STAT1 signaling.

The miR-29b-2~c cluster is undetectable in melanoma cell
lines, melanocytes and keratinocytes
As both miR-29 primary clusters as well as the mature
miR-29a/29b showed different basal expression levels in
stimulation experiments and are known to be differen-
tially expressed in several types of cancer [26,27], we
next analyzed the miR-29 basal expression profiles in a
panel of melanoma cell lines, primary human melano-
cytes (NHEM-M2) and HaCaT keratinocytes (Figure 3A
and B). Pri-29a~b-1 was strongly expressed whereas pri-
29b-2~c was almost undetectable in all cell lines ana-
lyzed (Figure 3A). This is in accordance with previous
studies reporting down-regulation of the pri-29b-2~c
cluster in rhabdomyosarcoma [28] and B-cell lymphoma
[23]. Also, mature miR-29a consistently showed higher
basal expression levels than miR-29b in all cell lines
examined (Figure 3B).

MiR-29a/29b expression levels inversely correlate with
growth behavior of melanoma cell lines
The classification of miR-29 as tumor-suppressor miRNA
has been widely accepted and the possibility to use syn-
thetic miR-29 as therapeutic agent in treatments of can-
cer seems to become increasingly realistic. Properties
counteracting the development and spreading of cancer
cells that have been observed in vitro and in vivo after
miR-29 overexpression include reduced invasion and
proliferation and induction of apoptosis [29,30]. These
findings prompted us to analyze a potential correlation
of basal miR-29 expression levels with cell growth.
Proliferation of untreated melanoma cell lines was moni-
tored over time (Figure 3C) in order to correlate the
growth rate with miR-29a and pri-29a~b-1 basal expres-
sion levels obtained from cells harvested 96h after seed-
ing. Melanoma cell lines were grouped in miR-29a and
pri-29a~b-1 ‘low-expression’ (A375, MeWo, IGR39,
WM9) and ‘high expression’ cell lines (FM55P, FM55M1,
SK-Mel30, IGR37) (Figure 3A and B). Generally, cell lines
with lower miR-29a showed an increased proliferation
rate compared to lines with higher basal miR-29a levels
(Figure 3C). Furthermore, the inverse correlation be-
tween pri-29a~b-1/miR-29a expression and the prolifera-
tion rate of melanoma cell lines might suggest a potential
involvement of miR-29 in anti-proliferative effects on
melanoma cells. To follow up these findings, we applied
miR-29a/29b mimics to A375 cells, which exhibit a rela-
tively low miR-29a/29b basal expression and, vice versa,
we applied a miR-29a inhibitor to FM55P cells, which
have a high basal miR-29a/29b expression (Figure 3B).
Proliferation assays with mimics and inhibitors and
the corresponding amounts of scrambled controls, NC
(negative control)-mimic and NC-inhibitor, corroborated
that miR-29 indeed inhibited growth of melanoma cells:
transfection of miR-29a/29b mimics caused a remarkable
reduction of proliferation as compared to NC-mimic-
transfected A375 cells (Figure 3D). In turn, FM55P cells,
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Figure 3 Inverse correlation of miR-29a expression levels and melanoma proliferation. Comparison of basal expression levels of
(A) primary miRNA clusters pri-29a~b-1 (blue/red/black bars) and pri-29b-2~c (grey bars) and (B) mature miR-29a (blue/red/black bars) and
miR-29b (grey bars) in NHEM-M2, eight melanoma cell lines and HaCaT keratinocytes. Graphs show 2-Δct x102 with SD of biological
triplicates. (C) Mean growth curves of untreated melanoma cell lines over 4 days (biological quadruplicates). Melanoma cell lines with ‘low
expression’ of pri-29a~b-1 and miR-29a show faster proliferation whereas cells with a relatively ‘high expression’ proliferate slower. (D,E)
Proliferation assay of (black) mimic/inhibitor- and (grey) NC-mimic/NC-inhibitor-transfected cells over 72h in (D) A375 and (E) FM55P cells;
representative graphs of four independent experiments. Error bars depict SDs of technical triplicates. The inserted graphs (upper left corners)
show the mean confluence of 4 biological replicates at 0h and 72h time points of the proliferation assay. Depicted are ratios of confluence
of 29ab-mimic/NC-mimic treated cells (D) and 29a-inhibitor/NC-inhibitor treated cells (E). Error bars show SEM. Significance was assessed by a
two-tailed t-test with * p<0.05, ** p<0.01 and *** p<0.001.
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in which miR-29a was inhibited, proliferated faster than
NC-inhibitor-transfected control cells (Figure 3E).

MiR-29a/29b down-regulate CDK6, but not PI3K
MiR-29 is predicted to regulate more than 1000 human
genes (TargetScanHuman 6.1). We have used a combin-
ation of several algorithms (TargetScanHuman 6.1,
Diana-microT v3.0, microRNA.org) to compile a list of
potentially interesting genes, which carry predicted
miR-29 target sites. After detailed expression analysis of
potential candidates in melanoma cells and initial screen-
ing for their response to miR-29 mimic and inhibitor
treatment (data not shown), we concentrated on the
PI3K regulatory subunit (gene: PI3KR1; protein: PI3K/
p85α) and CDK6, which play important roles in cell cycle
control, cellular signaling and thus, proliferation. Both
have already been confirmed as miR-29 targets in several
cancers [31-34].
To assess the effect of miR-29 on CDK6 and PI3K

expression in melanoma, mRNA and protein levels were
examined after miR-29 mimic or inhibitor treatments by
qRT-PCR and quantitative immunoblotting, respectively
(Figure 4A and B). Combined transfection of miR-29a/
29b reduced CDK6 mRNA and protein levels in A375
cells as compared to scrambled controls whereas PI3K
levels were not affected (Figure 4A). In agreement with
that, knockdown of miR-29a in FM55P cells resulted in a
slight up-regulation of CDK6 levels while PI3K levels
remained unchanged (Figure 4B). These data indicate
that miR-29 is involved in down-regulation of CDK6
protein while PI3K was not specifically targeted in mel-
anoma cells. CDK6 was also down-regulated in response
to miR-29 induction after IFN-γ stimulation in A375
cells and A375-STAT1(wt) but not in A375-STAT1(F)
cells, suggesting STAT1 dependency (Figure 4C). In con-
trast, PI3K levels were reduced in all three cell lines,
hinting at STAT1-independent effects. To further prove
regulation of CDK6 by miR-29, we performed luciferase
assays with reporter constructs containing part of the
CDK6 3’-UTR, its three single miR-29 binding sites as
predicted by TargetScan (www.targetscan.org), part of
the PI3KR1-3’-UTR or the miR-29a full complementary
sequence as a positive control (Figure 4D). Luciferase
activity, as compared to the respective negative control,
dropped by ~60 % for both time points in A375 melanoma
cells when the CDK6 3’-UTR construct was co-transfected
with miR-29a mimic. The corresponding single binding
sites contributed to this suppression significantly with
38% (BS1), 34% (BS2) and 35% (BS3) (Figure 4E). This
suggests that all three miR-29 binding sites partake in the
suppression of CDK6. Surprisingly, the PI3KR1 construct
was also significantly suppressed by the miR-29a mimic
in luciferase assays (Figure 4E) while only marginal
effects had been observed on mRNA and protein level
(Figure 4A,B). Taken together, these findings indicate
that both CDK6 and PI3KR1 3’-UTRs are directly tar-
geted by miR-29 in melanoma cells; however, only CDK6
suppression seems to be important in a cellular context.
To further explore the relevance of reduced CDK6 levels
in the cell, we used siRNA against CDK6 and assessed
proliferation over 72h in A375 (Figure 4F) and FM55P
cells (Figure 4G). Reduction of CDK6 mRNA and protein
level (Additional file 3: Figure S3) led to a clearly dimin-
ished proliferation in both cell lines.
MiR-29a and miR-29b are up-regulated in primary
melanoma patient samples
Finally, we investigated miR-29a/29b expression profiles
in FFPE melanoma patient samples from normal skin,
nevi, primary and metastatic melanoma by qRT-PCR
(Figure 5). Nevi represent the most appropriate control
samples as they contain predominantly melanocytes
while normal skin samples are mostly composed of kera-
tinocytes. In comparison to healthy skin and nevi, both
miR-29a and miR-29b showed an up-regulation in pri-
mary melanoma samples whereas in metastatic tumors,
expression levels were only slightly enhanced compared to
healthy controls. Closer sub-classification of the patient
samples revealed, however, that only two of five patients
demonstrated the enhanced miR-29a/29b expression, in-
dicating that expression levels are heterogeneous and will
have to be assessed in larger patient cohorts.
Discussion
Generally, expression levels of miRNAs can be regulated
transcriptionally, by epigenetic silencing or different turn-
over times [1,35,36]. The role of cytokines as inducers of
miRNA expression has recently been proposed in several
studies and examples for cytokine-induced miRNA up-
or down-regulation include pro-inflammatory signaling
molecules like TNF-α and IL1-β [37,38]. Interferons are
central players in tumor-immune interactions [39,40]. In
this context, the theory of ‘cancer immunosurveillance’,
defined as the immunological protection of the host
against development of cancer, has evoked much interest
during the last decade: mediated by the host’s immune
system, it is triggered by immune recognition of stress
ligands or antigens expressed on transformed cells.
IFN-γ has long been recognized for its crucial role in
defense against viral and bacterial infections as well as
in tumor control [40,41]. It primarily signals through the
Jak/STAT pathway and activated STAT1 homodimers
bind to GAS-elements in promoter regions of target
genes, while IFN-α/β signal additionally through ISRE–
elements. In our study, we have identified several GAS-
elements in the proposed pri-29a~b-1 promoter region.
IFN-γ stimulation of a control cell line expressing

http://www.targetscan.org
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dominant-negative STAT1 (A375-STAT1(F)) did not
cause an up-regulation of miR-29, providing strong evi-
dence that STAT1 is indeed mediating IFN-γ-induced
effects on miR-29 expression levels.
IFN-γ has anti-proliferative effects on cancer cells

including melanoma [11,12] and we show here that
miR-29a, which is induced by IFN-γ exhibited the
same effects. Overall effects on growth were relatively
small, but robust and reproducible, considering that we
only manipulated levels of one miRNA and only used
relatively small amounts of mimics/inhibitors (50 nM/
150 nM) to be as close as possible to physiological rele-
vance. However, IFN-γ may also facilitate melanoma pro-
gression: Zaidi et al. have shown that IFN-γ-producing
macrophages are recruited to the UV-exposed skin and
can stimulate proliferation and migration of melanocytes
as well as induce expression of genes implicated in
immunoevasion and survival. When added to trans-
planted melanoma, these skin-recruited macrophages
enhanced the growth and survival of melanoma. All these
effects were IFN-γ-dependent as demonstrated by anti-
body blocking of IFN-γ [42].
In our study, analysis of primary and metastatic mel-
anoma patient samples revealed increased miR-29a/29b
expression in some primary tumor samples in compari-
son to normal skin, nevi and metastatic tissue while all
metastatic lesions had low levels of these miRNAs.
Possibly, IFN-γ, which can be produced by macro-
phages, T cells and NK cells induces miR-29 expres-
sion via STAT1. miR-29a/29b were only up-regulated
in two out of five primary melanoma patients. In this
respect, it is interesting to note that IFN-γ producing
macrophages have been observed in 70 % of melanoma
samples [42]. A further evaluation of a larger panel of
patient samples including early neoplasia and advanced
metastatic stages is needed where a special focus will
be placed on immune cell infiltration, interferon con-
centration and an interferon-responsive gene signature.
miR-29 has very recently been linked to interferon

biology: it directly targets IFN-γ [43,44], the transcrip-
tion factors Tbet and Eomes crucial for IFN-γ expression
[19,44], and the receptor IFNAR1 [45], thereby drastic-
ally affecting immune regulation such as T cell
polarization and thymic function.
While this manuscript was in preparation, IFN-γ in-

volvement in the regulation of miR-29 expression was
also reported by a group studying T cell activation and
polarization in autoimmune diseases [44]. We here con-
firmed IFN-γ-induced miR-29 up-regulation in T cells
(Jurkat and MT4, Additional file 2: Figure S2) and have
also observed this effect in human embryonic kidney
cells implying a regulatory mechanism of broader rele-
vance. Interestingly, also type I interferons led to an
up-regulation of miR-29 (Additional file 2: Figure S2).
Screening of a panel of melanoma cell lines for dif-

ferent miR-29 species and family members revealed
that the pri-29b-2~c cluster was almost not expressed
and that miR-29a exhibited a much higher basal ex-
pression level than miR-29b. In tumor cells, reduced
miR-29 expression is frequently observed and diminished
expression of miRNAs in general is often associated
with enhanced oncogenesis [5,46]. The difference in
pri-29a~b-1 and pri-29b-2~c expression levels, which we
w?>havedetected, is consistentwithother typesofcancer, in
which the pri-29b-2~c cluster was mostly down-regulated
[26-28]. The fact thatmiR-29 familymembers are often not
expressed in cancer cells could be crucial for cancer control:
miR-29 down-regulates important genes such as CDC42,
TCL-1 and MCL-1, which normally confer tumor-
suppressing traits. In this context, anti-proliferating as
well as anti-invasive and pro-apoptotic effects have
been observed after miR-29 re-introduction in a variety
of cancer cells [29,30]. In line with this, we show anti-
proliferative effects of miR-29 and confirm for the first
time CDK6 as a direct miR-29 target in melanoma cells.
This suggests that miR-29-mediated down-regulation of
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CDK6 is involved in decreasing proliferation rates of
miR-29a/b-mimic-transfected melanoma cells. SiRNA-
mediated knockdown of CDK6 resulted in reduced
proliferation of melanoma cells similar to what has
been shown for other cancer types [47,48]. CDK6
plays a pivotal role in control of G1/S cell cycle tran-
sition [49] and loss thereof is a common event in
neoplastic growth [50]. Noteworthy, CDK6 has also
been shown to be a direct miR-29 target in mantle
cell lymphoma [31], acute myeloid leukemia [34] and
cervical cancer [32].
The numerous anti-proliferative effects of IFN-γ in

many cancers may in part be explained by a G1 arrest in-
volving down-regulation of G1/S cyclins (cyclins A and E)
and CDK2/4 [12]. Accordingly, we find that IFN-γ as well
as miR-29 exhibit anti-proliferative activities in melan-
oma cells involving down-regulation of cell cycle control
players such as CDK6. The relevance of CDK6 activity
for melanoma growth is further emphasized by the fact
that the tumor suppressor p16INK4A (an inhibitor for
CDK6 and 4) is deleted in about 50% of melanoma
patients [51,52]. Here, we describe for the first time that
CDK6 is a direct target of miR-29 involved in regulating
growth behavior of melanoma cells.
Conclusion
Our study extends the current knowledge on the miRNA
family miR-29, adding a novel regulatory loop of IFN-γ-
mediated Jak/STAT signaling in melanoma cells. Figure 6
summarizes the proposed regulatory circuit involving
IFN-γ and miR29: IFN-γ, which is e.g. secreted by
macrophages following diverse assaults such as infections
or UV light induces a STAT1-dependent up-regulation of
miR-29, which in turn can down-regulate IFN-γ expres-
sion directly and indirectly via T-bet and Eomes. Down-
regulation of cell cycle regulators like CDK6 contributes
to IFN-γ-mediated growth arrest.
We report that the pri-29 b-2~c cluster is almost un-

detectable in melanoma, which might markedly reduce
the ability of the miR-29 family to exhibit its tumor-
suppressing properties in these cancer cells. The fact
that miR-29a and miR-29b had enhanced expression
levels in some primary melanoma patients but not in
metastatic tumor samples is in line with many studies
showing down-regulation or low levels of miR-29 in
various advanced cancers [21,22,31,53]. We hypothesize
that the reduced miR-29 expression in cancer cells could
be a consequence of diminished IFN-γ signaling in those
cells, which might already have escaped immune sur-
veillance [41]. In regard to the proposed regulatory cir-
cuit, our study may open new connections between the
immune system, miRNAs and growth control and thus,
tumorigenesis.
Methods
Cell lines and patient samples
Melanoma cell lines A375 (American Type Culture Col-
lection, ATCC), A375-STAT1(F) and A375-STAT1(wt)
[25], FM55P and FM55M1 (European Searchable Tumor
Line Database and Cell Bank, ESTDAB), IGR39 and
IGR37 (Deutsche Sammlung von Mikroorganismen und
Zellkulturen, DSMZ), MeWo (Dr. D. Schadendorf,
Essen, Germany) and SK-Mel30 (Dr. M. Böhm, Münster,
Germany) as well as the T cell lines Jurkat and MT4
(Dr. C. Devaux, Luxembourg) were maintained in
RPMI 1640 supplemented with 10% FCS (PAA), 50 μg/ml
penicillin, 100 μg/ml streptomycin and 0.5 mmol/l
L-glutamine. The stably transfected A375 cell clones
A375-STAT1(F) and A375-STAT1(wt) were grown under
selective pressure with 400 μg/ml Geneticin (G418,
Gibco). HaCaT keratinocytes (Dr. N. Fusenig, Heidelberg,
Germany) and HEK293T were grown in DMEM supple-
mented with 10% FCS, 50 μg/ml penicillin, 100 μg/ml
streptomycin and 2.5% HEPES. NHEM-M2 (normal epi-
dermal human melanocytes, PromoCell) were cultured in
melanocyte growth medium M2 (PromoCell) and har-
vested after reaching ~50% confluence in a 10 cm2 cell
culture dish. All cells were maintained in a humidified at-
mosphere with 5% CO2 and were routinely tested to be
mycoplasma-negative by PCR. Reagents and media were
purchased from Lonza unless specified otherwise.
Ethical approval for use of the patient FFPE (formalin-

fixed paraffin-embedded) and healthy control samples
was obtained by the Ethical review board, Freiburg,
Germany (Reference 196/09). Collection, histopatho-
logical analysis, fixation and RNA extraction were per-
formed as described before [54]. In total, RNAs of 5
healthy skin samples, 4 benign nevi, 12 primary and 14
metastatic melanoma samples were analyzed by qRT-
PCR. The primary and metastatic samples were collected
from different parts of the body from a total number
of 5 melanoma patients. Basal miR-expression levels
were calculated as 2-Δct with Δct= (ct (miR-29a/29b) –
ct (RNU5A)) (Figure 5).

IFN-γ stimulation, RNA extraction, and miRNA microarray
analysis
For IFN-γ time course stimulation experiments, 100x103

cells/well were seeded in 6-well plates (Greiner). Cells
were either left untreated or stimulated with 50 ng/ml of
IFN-γ (PeproTech) for the time periods indicated. 5 μM
Jak inhibitor 1 (JI1, Calbiochem) pre-treatment was
included (72h JI1-time point) in the detailed time course
miRNA microarray experiment one hour before IFN-γ-
stimulation. Samples for RNA extraction and protein
lysates were collected altogether at the end of the treat-
ment for further analyses by qRT-PCR and Western
Blotting, respectively. Total RNA was extracted using
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TRIsure (Bioline USA, Inc.) and subsequently treated
with DNaseI (New England Biolabs) as described before
[54]. Quantity and purity of RNA samples were assessed
using a NanoDrop ND-2000 spectrophotometer. Global
miRNA expression levels were profiled on Affymetrix
GeneCHip miRNA 2.0 Arrays as described before [13].

Relative quantification of primary, precursor and mature
miRNAs and mRNAs
For FFPE samples and cell lines, 250 ng of total RNA
was reversely transcribed using the miScript Reverse
Transcription kit (Qiagen) according to the supplied
protocol. Real-time PCR was carried out on a CFX de-
tection system (Bio-Rad). For quantification of mature
miRNAs, 5 ng RNA input, 2x iQ SYBR Green Supermix
(Bio-Rad) and 10x miRNA-specific primer assay (Qiagen)
were used. To detect mRNAs, miRNA primary clusters
and precursors, 2x iQ SYBR Supermix and 5 pmol gene-
specific primers (for sequences see Additional file 4:
Table S1) were used together with 50 ng (mRNA detec-
tion) or 125 ng (primary/precursor miRNAs) RNA in-
put. PCR conditions for all qRT-PCR reactions were
95°C-3 min; 39x (95°C-15s; 60°C-30s); 95°C-1 min;
60°C-1 min, followed by a melt curve analysis (60°C to
95°C, increment 0.5°C for 20s) to confirm specificity of
the PCR primers. If not stated otherwise, Ct-values for
mRNA and miRNA species were normalized to at least
three housekeeping genes: TBP (TATA binding protein),
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HPRT1 (Hypoxanthine phosphoribosyltransferase 1),
CycloA (cyclophilin A) and β-Actin for mRNAs and
primary/precursor miRNAs; RNU1A, RNU5A (RNA,
U1A/5A small nuclear) and SCARNA17 (small Cajal
body-specific RNA 17) for mature miRNAs. Based on
the geometric mean of the three reference genes, a
normalization factor was calculated for each sample
using geNorm, a VBA applet for Microsoft Excel [55].
The relative amount of each target in each sample was
then corrected by dividing its amount by the corre-
sponding normalization factor. Fold changes were cal-
culated by dividing the normalized relative amount of
treated samples with the normalized relative amount
of the untreated sample that served as a control. Stat-
istical significance was tested with one-way ANOVA,
followed by a Dunnett Post-Hoc test. Except for the
FFPE patient samples, all experiments were performed
at least in biological triplicates. P values of <0.05 (*),
<0.01 (**) and <0.001 (***) were considered significant.
Western blot analysis
Cell lysis, SDS-PAGE, ECL detection, stripping and re-
probing was performed as previously described [56,57]
using the following antibodies: Actin (C4, Milipore),
Tubulin, IRF-1, STAT1 and CDK6 (Santa Cruz), P-STAT1
(Cell Signaling), p85α (PI3K) (Upstate) and the corre-
sponding HRP-labeled (ECL detection, Cell Signaling
Technology) or fluorophor-coupled (quantification, Li-cor
Biosciences) secondary antibodies. For quantification of
proteins, signal intensities were assessed with a Li-cor
Odyssey Infrared Imaging System (Li-cor Biosciences)
and analyzed with the provided software. CDK6 and
p85α signals were normalized to the respective Tubulin
loading controls.
Real-time proliferation assays
25 x103 cells/well of eight untreated melanoma cell lines
were seeded in 12-well plates and harvested after 96h of
real-time monitoring in the IncuCyte live-cell imaging
system (Essen Bioscience), which photographed cells in
phase contrast every 3h. RNA was extracted and miR-29
species were amplified by qRT-PCR as described before
[54] and above.

miRNA mimic/inhibitor transfection
100 x103 cells/well were seeded in 6-well plates
and transfected after 24h with 50 nM of each miR-29a
and miR-29b mimics or with 150 nM miR-29a inhibi-
tor or corresponding amounts of negative controls
(Qiagen) using the DharmafectDuo transfection reagent
(Dharmacon) according to the supplied protocol; effi-
cient transfection was confirmed by qRT-PCR (Additional
file 3: Figure S3). For miR-29 target gene expression, RNA
and protein lysates were collected 24h, 48h and 72h after
transfection and subsequently analyzed by RT-qPCR and
western blot. Proliferation was monitored by the IncuCyte
cell-imaging system as described above.
CDK6 siRNA transfection
50x103 cells were transfected with 75nM ON-TARGET
siRNA or siRNA negative control (si-NC) 24h after
seeding in 6-well plates using the HiPerfect transfection
reagent according to the manufacturer’s instructions
(Qiagen). Proliferation was monitored in the IncuCyte
as described above. CDK6 mRNA and protein levels were
assessed after 24h, 48h and 72h to confirm efficient
down-regulation (Additional file 3: Figure S3C,D).
Luciferase reporter gene assays
The parts of CDK6 and PI3KR1 (Phosphatidylinositol
3-kinase) 3’UTRs containing miR-29 binding sites,
CDK6 miR-29a single binding sites and the miR-29a
full complementary sequence were cloned into the
pmirGLO Dual Luciferase miRNA target expression
vector (Promega) downstream of the luciferase gene
(see Additional file 4: Table S1 for primer sequences and
oligonucleotides). A375 cells were seeded at a density of
50 x103 cells/well in 24-well plates one day before trans-
fection. Cells were transiently co-transfected with 500 ng
plasmid and 50 nM miR-29a mimic or negative control
for 48h and 72h. Samples were lysed with 1x Passive
Lysis Buffer (Promega) and luciferase activity was mea-
sured using the Dual-Luciferase Reporter Assay System
(Promega) according to the manufacturer’s instructions.
Firefly was divided by Renilla activity and normalized to
the negative control for each construct. Significance was
assessed by one-way ANOVA followed by a Bonferroni
Post-Hoc test with * p<0.05, ** p<0.01 and *** p<0.001.

Additional files

Additional file 1: Figure S1. Schmitt_et_al_2012_Contains a graphical
representation of array results: Top 10 up-regulated miRNAs (as listed in
Figure 1A) after IFN-γ stimulation for the indicated time periods and 72h
JI1.

Additional file 2: Figure S2. Schmitt_et_al_2012_Contains bar
diagrams of qRT-PCR results: MiR-29a/29b up-regulation after IFN-γ-
stimulation and unchanged miR-25 levels in A) HEK293T kidney and B)
Jurkat T cells. C) MiR-29a/29b up-regulation after IFN-α-, IFN-β- and IFN-γ-
stimulation (50 ng/ml) in MT4 T cells.

Additional file 3: Figure S3. Schmitt_et_al_2012_Contains bar
diagrams of qRT-PCR results an western blots: Tracking of miR-29a/29b
mimics in A375 cells (A) and miR-29a suppression after inhibitor
transfection in FM55P cells (B); and knock-down of CDK6 mRNA (C) and
protein levels (D) in both cell lines.

Additional file 4: Table S1. within Schmitt_et_al_2012_Contains primer
sequences. Additional Figure legends: Schmitt_et_al_2012_ Contains
additional Figure legends. Powerpoint documents.
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Small noncoding microRNAs (miRNA) regulate the expression of target mRNAs by repressing their trans-
lation or orchestrating their sequence-specific degradation. In this study, we investigated miRNA and miRNA
target gene expression patterns in melanoma to identify candidate biomarkers for early and progressive dis-
ease. Because data presently available on miRNA expression in melanoma are inconsistent thus far, we applied
several different miRNA detection and profiling techniques on a panel of 10 cell lines and 20 patient samples
representing nevi and primary or metastatic melanoma. Expression of selected miRNAs was inconsistent when
comparing cell line–derived and patient-derived data. Moreover, as expected, some discrepancies were also
detected when miRNA microarray data were correlated with qPCR-measured expression levels. Nevertheless,
we identified miRNA-200c to be consistently downregulated in melanocytes, melanoma cell lines, and patient
samples, whereas miRNA-205 and miRNA-23b were markedly reduced only in patient samples. In contrast,
miR-146a and miR-155 were upregulated in all analyzed patients but none of the cell lines. Whole-genome
microarrays were performed for analysis of selected melanoma cell lines to identify potential transcriptionally
regulated miRNA target genes. Using Ingenuity pathway analysis, we identified a deregulated gene network
centered around microphthalmia-associated transcription factor, a transcription factor known to play a key
role in melanoma development. Our findings define miRNAs and miRNA target genes that offer candidate
biomarkers in human melanoma. Cancer Res; 70(10); 4163–73. ©2010 AACR.
Introduction

MicroRNAs (miRNA) are noncoding ∼22 nucleotide short
RNAs that typically downregulate expression of their target
genes. Nucleotides 2 to 8, the so-called “seed” region of miR-
NAs, bind to completely or partially complementary regions
in the 3′ untranslated region (UTR) of target genes, which are
generally present in multiple copies to amplify the regulatory
effects of the miRNA (1, 2). To date, 721 human miRNAs have
been identified (3), which are thought to regulate at least
30% of human genes. A recent in-depth analysis of human
3′ UTR sequences indicated, however, that even >60% of
human protein-coding genes have been under selective pres-
sure to maintain pairing to miRNAs (4).
miRNAs influence most fundamental biological processes

by ultimately altering the expression levels of proteins either
ffiliations: 1Life Sciences Research Unit, University of
urg; 2CRP Santé/Microarray Center , Luxembourg,
rg and 3Department of Dermatology, University Clinic of
reiburg, Germany

lementary data for this article are available at Cancer Research
://cancerres.aacrjournals.org/).

ding Author: Stephanie Kreis, Life Sciences Research Unit,
f Luxembourg, 162A Avenue de la Faiencerie, L-1511 Luxem-
xembourg. Phone: 352-4666446884; Fax: 011-00352-
5; E-mail: stephanie.kreis@uni.lu.

8/0008-5472.CAN-09-4512

erican Association for Cancer Research.

journals.org

American Asso Copyright © 2010 
cancerres.aacrjourDownloaded from 
through interference with mRNA translation or by reducing
the stability of the mRNA in the cytoplasm (5). Downregu-
lated target gene mRNAs can be detected by whole-genome
microarray technology, keeping in mind that translationally
repressed miRNA targets would be missed by such an ap-
proach (6).
Given the tremendous regulatory potential of miRNAs

and their often tissue-specific and disease-specific expres-
sion patterns (7–9), there is increasing evidence that miRNA
expression profiles could be indicative of disease risks and
burdens, and as such, miRNAs are being assessed as possi-
ble biomarkers to aid diagnosis and prediction of different
types and stages of cancers, including melanoma (10–12).
Melanoma arises from melanocytes, which are pigmented
cells present in the basal layer of the epidermis (13). The global
incidence of melanoma continues to rise faster than any other
malignancy, and despite considerable research efforts, no
efficient therapy is available to date. Once melanoma has
metastasized, the median 5-year survival rate is <5% (14).
Relatively few miRNA expression profiling analyses have

thus far included or focused on melanoma samples, and the
available data sets show little agreement with regards to ex-
pression patterns of individual miRNAs or the entire miR-
Nome. Using real-time PCR on 241 individual miRNAs, Gaur
and colleagues (15) have identified a set of 15miRNAs that dis-
tinguished melanomas from other solid cancers whereas
others (16) have described four melanoma-characteristic
miRNAs detected by microarray analysis with only miR-335
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common to both studies. Mueller and colleagues (17) have
recently described a more detailed analysis of miRNA ex-
pression in melanocytes versus seven different melanoma
cell lines based on miRNA microarray analysis. In primary
melanoma cell lines, a set of 49 miRNAs was found to be
strongly upregulated whereas 14 were downregulated; how-
ever, most of these had not been shown before to be sub-
stantially regulated in melanoma development. miRNA
expression in melanocytic nevi derived from formalin-fixed
paraffin-embedded (FFPE) samples has recently been inves-
tigated by Glud and colleagues, who, among others, have
shown that FFPE samples are useful sources for miRNA
profiling (18, 19).
Owing to the many factors that differed between these

studies (real-time PCR versus miRNA microarray approaches;
different microarray platforms and mirBase versions; differ-
ent sample types and melanoma cell lines) it is not surprising
that largely different miRNA sets were considered to be char-
acteristic for melanoma or melanoma progression. However,
thus far no miRNAs have been identified that would allow for
reproducible and specific distinction between early-stage or
late-stage melanoma samples from healthy melanocytes or
benign nevi in cell lines and patients.
To evaluate the discrepancies and/or concordances in

miRNA expression patterns that might result from different
technical approaches on different biological samples, we es-
tablished miRNA expression profiles in primary human
melanocytes [normal human epidermal melanocyte (NHEM)]
versus melanoma cell lines by miRNA microarray, real-time
miRNA reverse transcription–PCR arrays (RT2 Profiler),
followed by individual quantitative real-time PCR (qPCR)
validations. To then correlate cell line–derived expression
patterns with melanoma patients, we next analyzed FFPE pa-
tient samples including benign nevi, primary melanoma, and
metastatic melanoma samples. Cross-correlation of all miR-
NA expression data revealed that only miRNA-200c was com-
monly downregulated in different sample types robustly
detectable by the various technical approaches. Other miR-
NAs were only found to be significantly deregulated in either
cell lines or patients or could not be reproduced using differ-
ent detection techniques.
Finally, whole-genome arrays were used on melanoma cell

lines and melanocytes to identify possible target genes of
some of the differentially regulated miRNAs. We focused on
genes commonly deregulated in melanoma and inversely cor-
related their expression patterns with miRNAs predicted to
target such genes, identifying several possible miRNA/target
gene pairs likely to play a role in melanoma development.
Ingenuity network analysis identified with a high statistical
confidence deregulated pathway around the transcription
factors microphthalmia-associated transcription factor
(MITF), SRY-related HMG box (SOX10), and T-box transcrip-
tion factor 2.

Materials and Methods

Cell lines and cell culture. In total, nine melanoma cell
lines were analyzed: Wm9 (Dr. M. Böhm, Münster, Germany),
Cancer Res; 70(10) May 15, 2010
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FM55-M1 (European Searchable Tumor Line Database
and Cell Bank), IGR39 and IGR37 (Deutsche Sammlung von
Mikroorganismen und Zellkulturen), A375 (American Type
Culture Collection), 1102 (Dr. M. Kortylewski, City of Hope,
California), MeWo (Dr. Schadendorf, Essen, Germany),
and MelIm and MelJuso (Dr. A. Bosserhoff, Regensburg,
Germany). All cells were maintained in RPMI 1640 supple-
mented with 10% FCS, 50 μg/mL penicillin, 100 μg/mL strep-
tomycin, and 0.5 mmol/L L-glutamine. NHEMs from lightly
pigmented adult skin (PromoCell) were maintained in
serum-free and phorbol 12-myristate 13-acetate–free MGM-
M2 medium and were used at passage number 5 or 6. MCF-7
breast cancer cells (Dr. G. Vetter, Luxembourg) were grown
in DMEM supplemented with 10% FCS, 50 μg/mL penicillin,
and 100 μg/mL streptomycin. All cells were grown in a hu-
midified atmosphere with 5% CO2 supply and were routinely
PCR tested to be Mycoplasma negative.
Patient samples. Skin tissue samples from patients with

either benign nevi or melanoma were collected at the Der-
matology Department of University Hospital of Freiburg
(Germany) and histopathologically examined to confirm
clinical diagnoses. Upon excision, tissues were fixed in FFPE
according to standard dermatohistopathologic techniques.
In total, 3 pools of benign nevi (RNAs of two different do-
nors each) and 17 primary and subcutaneous melanoma
metastasis patient samples were analyzed (age and gender
information is included in Supplementary Table S1). Addi-
tionally, four breast cancer FFPE samples from two patients
were included in this study. The study was approved by the
ethical review board of EK Freiburg (reference 196/09), and
written informed consent was obtained from healthy con-
trols and live patients.
Total RNA extraction and quality control. Total RNA of

cell lines was extracted using TRIsure (Bioline USA, Inc.)
and treated with DNaseI (New England Biolabs) following
each manufacturer's instructions. For miRNA and whole-
genome microarray analyses, total RNA was extracted using
the miRNeasy kit (Qiagen) according to the manufacturer's
protocol with additional on-column DNaseI digestion. In
FFPE samples, for total RNA extraction, five scalpel-scraped
slices of FFPE tissue were pooled and processed using the
RT2-FFPE RNA Extraction kit (SABiosciences) according to
the supplied protocol. Quantity and purity of RNA samples
were assessed using a NanoDrop ND-100 Spectrophotome-
ter. For FFPE tissues, in particular, when RNA quantity or
quality was insufficient, samples were further processed by
standard ethanol precipitation and resuspended in appro-
priate volumes of DEPC-H2O to achieve total RNA concen-
trations of >350 ng/μL and absorbance ratios of > 1.8 (260/
280) and > 1.7 (260/230).
miRNA and whole-genome microarrays. Total RNA from

NHEM, IGR39, and IGR37 cells was subjected to (a) ge-
nome-wide miRNA expression profiling (miRBase, version
11.0) using the μParaflo microarray technology (LCSciences)
and (b) whole-genome expression profiling using GeneChip
Human Gene 1.0 ST arrays (Affymetrix). Gene network anal-
yses were performed with the Ingenuity Pathway Analysis
(IPA) software (Ingenuity Systems). Detailed methodologies
Cancer Research
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Figure 1. A, top 25 gradually upregulated and downregulated miRNAs in metastatic (IGR37) versus primary (IGR39) melanoma cell lines established from the
same patient. AFUs were derived from at least duplicate miRNA microarrays (LCSciences). AFUs of >500 were selected and sorted, and log2 values of
AFU ratios were plotted. miRNAs marked with an arrow were further validated; the ones marked with an asterisk were confirmed by RT2 Profiler results.
B, relative expression of selected miRNAs in primary human melanocytes (NHEM, passage no. 5), a panel of nine melanoma cell lines, and MCF-7 breast
cancer cells (relative to SCARNA17 expression). Results are depicted as mean of biological triplicates ± SEM. Statistical analysis was performed using
a one-way ANOVA test, comparing results for each cell line to NHEM cells. ***, P < 0.001; **, P = 0.001–0.01; *, P = 0.01–0.05; no star, not significant
at P > 0.05.
Cancer Res; 70(10) May 15, 2010www.aacrjournals.org 4165
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Figure 2. A, miRNA expression
profiling in melanoma patients (RT2

Profiler). Clustergram generated
from average miRNA Ct values of
individual FFPE patient samples
from nevi (3), primary melanoma
(7), metastatic melanoma (10), and
breast cancer samples (4). For
each patient group, average Ct

values were normalized to a panel
of four different housekeeping
genes (Supplementary Table S1).
The range of 2−ΔCt values is given
below the color scale. miRNAs that
were further validated by qPCR
are marked by an asterisk.
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Figure 2. Continued. B, miRNA
signatures for stages of melanoma
progression. miRNAs of
>2.0-fold upregulated (bold) or
downregulated relative to nevi
are shown for each patient group.
C, box plots showing triplicate
qPCR validations for nine selected
miRNAs of individually analyzed
patient samples (as in A).
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and bioinformatic analyses are described in Supplementary
Materials and Methods.
Real-time PCR-based miRNA expression profiling. FFPE

patient samples were analyzed for the presence and differen-
tial expression of a panel of 88 cancer-related miRNAs using
cancer RT2 miRNA PCR arrays (called RT2 Profiler; SABios-
ciences) according to the manufacturer's instructions. Data
analysis was performed with the web-based software package
for the miRNA PCR array system (20).
www.aacrjournals.org
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miRNA and gene expression validation by real-time
qPCR. Briefly, 250 and 100 ng of total RNA from cell lines
and FFPE tissues, respectively, were reverse transcribed in
a 10-μL reaction volume with the miScript System (Qiagen)
following the manufacturer's instructions. To quantify ma-
ture miRNAs, real-time qPCR was carried out on a CFX96
Detection System (Bio-Rad) using 5 ng RNA input, 2× iQ
SYBR Green Supermix (Bio-Rad), and 10× miRNA-specific
primer assay (Qiagen). For the detection of cKIT and MITF,
Cancer Res; 70(10) May 15, 2010 4167
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50 ng RNA input, 2× iQ SYBR Green Supermix, and 5 pmol
gene-specific primer pairs were used. Thermal cycling condi-
tions for all assays were 95°C for 3 minutes, 40 cycles at 95°C
for 10 seconds, and 60°C for 30 seconds, followed by melting
curve analyses. RNA input was normalized to endogenous
controls: SCARNA17 for miRNAs and TATA-binding protein
for protein encoding genes. The 2−ΔCt method was used to
calculate the fold relationships in miRNA or gene expression
among the tested samples (21).
miRNA target gene prediction. Three publicly available

databases, TargetScanHuman 5.1 (4), DIANA-microT v3.0
(22), and MicroCosm Targets Version 5 (3), were used for
miRNA target gene predictions. Predicted target genes in
combination with miRNA and whole-genome microarray da-
ta were used to visualize possible biological miRNA/mRNA
processes correlating to melanoma development and/or
progression.
Results

miRNA expression profiling of primary human
melanocytes (NHEM) and melanoma cell lines. As a first
step, we analyzed the miRNome of two melanoma cell lines
from a single patient representing primary (IGR39) and me-
tastatic tumors (IGR37) and compared them to NHEM using
LCSciences microarray data and RT2 Profiler PCR arrays, fol-
lowed by individual qPCR validations for selected miRNAs
(Fig. 1, Supplementary Table S1). Figure 1A depicts the top
25 miRNAs upregulated and downregulated with tumor pro-
gression as detected by miRNA microarray. Sixteen miRNAs
(asterisk-marked) were also present on RT2 Profiler assays.
Of those, 12 had matching expression ratios (except for
miR-10a, miR-7, miR-181b, and miR-21) following tumor pro-
gression in cell lines (Supplementary Table S1) and melano-
ma patients (see Fig. 2A). This suggests that cell lines give
some indication of relevant expression patterns, but individ-
ual results may change in patient-derived samples. Complete
array-based expression profiles of all miRNAs (miRBase ver-
sion 11.0) served as a first base for selection of miRNAs to be
investigated further. Comparison of microarray results with
data from the RT2 Profiler revealed that 66 of the 88 common
miRNAs (75%) showed comparable results, with both of the
assays being clearly positive [Ct < 30 or arbitrary fluorescence
unit (AFU) > 500] or negative.
The expression levels of several miRNAs were further

validated by qPCR, extending the cell line panel to nine
different melanoma cell lines, NHEMs, and MCF-7 breast
cancer cells (Fig. 1B). qPCR results for NHEM, IGR39,
and IGR37 correlated with microarray-measured expression
levels for all tested miRNAs except let-7i, wherein levels
were lower in NHEM compared with IGR39 and IGR37.
Figure 1B further illustrates that some miRNAs have con-
siderably different expression levels in individual cell lines,
suggesting that profound variations would also be apparent
when analyzing the entire miRNomes of such cell lines.
Nevertheless, a few robustly regulated miRNAs seemed to
be useful candidates to distinguish between NHEMs and
Cancer Res; 70(10) May 15, 2010
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melanoma cell lines in general: miR-155 and miR-146a with
decreased expression levels in all melanoma lines tested
and miR-25 and miR-23b (as well as miR-23a; data not
shown), which were consistently upregulated.
miRNA expression profiling of FFPE melanoma patient

samples. Due to the small amplicon size of miRNAs, FFPE
samples represent useful sources to analyze miRNA expres-
sion even when some degree of RNA degradation is apparent
(18). In total, 24 FFPE samples were analyzed by RT2 Profiler
arrays (Fig. 2A) followed by qPCR for selected miRNAs
(Fig. 2B). The heat map (Fig. 2A) depicts expression values
for 88 cancer-relevant miRNAs of four donor groups relative
to four different house-keeping genes (Supplementary
Table S1). Nevi (consisting of pools of RNAs extracted from
five healthy volunteers) showed very similar Ct values across
85% of analyzedmiRNAs. The primarymelanoma group repre-
sents mean expression values from seven individual primary
tumors, whereas the metastatic melanoma group consisted
of 10 different patient samples. The breast cancer group (four
samples from two patients) was included to allow for identifi-
cation of miRNAs that were distinct between the two cancer
types. miRNA-16, miRNA-27a, miRNA-125b, 199a-3p, 199a-21,
and 199a-205 were highly expressed in melanoma having
greater RNA levels than the four housekeeping genes (U6,
SNORD44, SNORD46, and SNORD47), whereas the breast
cancer group was characterized by highest expression of
miRNA-16, miRNA-100, miRNA-21, and let-7b (Supplemen-
tary Table S1). Figure 2B shows that each melanoma stage
bore a distinct miRNA signature. Considerable interpatient
variability (>2.0 Ct) among the different melanoma patient
groups was detected for <10% of the analyzed 88 cancer-
related miRNAs (Supplementary Table S1).
qPCR validation on duplicate RNAs extracted from individ-

ual FFPE samples revealed a generally good correlation when
compared with expression patterns achieved with averaged
values for the different patient groups. Figure 2C shows box
plots for nine selected miRNAs. Most striking were the levels
of miR-200c, miR-205, and miR-23b, which were strongly
downregulated in melanoma patients when compared with
nevi. miR-200c is further interesting, as it allows for discrimi-
nation between melanoma and breast cancer samples.
miR-363, miR-146a, and miR-155 were clearly upregulated

in all melanoma patients but not in breast cancer samples.
Interestingly, the latter two were consistently low or unde-
tectable in cell lines. In this context, it has recently been sug-
gested that miR-155 was a negative regulator of melanoma
proliferation, as its expression was downregulated or lost
in the majority of melanoma cell lines (23). Here, we also
monitored an almost complete loss of miR-155 in our panel
of cell lines (Fig. 1B); however, miR-155 was clearly detectable
in all of the 17 patient-derived samples, indicating that the
loss of miR-155 expression may be a tissue culture–related
phenomenon. Taken together, miR-155, miR-205, miR-146a,
and miR-23b emerged as useful markers to distinguish
between melanoma cell lines and patient samples relative
to human melanocytes and nevi, respectively.
Correlation of expression levels of selected miRNAs with

their predicted target genes. Whole-genome cDNA arrays
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were performed on melanoma cell lines and melanocytes to
obtain a pattern of transcriptionally regulated candidate
genes that could serve as possible targets of some of the iden-
tified differentially regulated miRNAs. Scatter plots with
highlighted genes known to be important formelanoma devel-
opment and/or progression are shown in Fig. 3. Interestingly,
melanoma-associated antigen C2, a predicted (although non-
conserved) target of miR-200a, miR-200b, and miR-200c fam-
ily, was strongly expressed inmostmelanoma cell lines but not
in MCF-7 breast cancer cells, whereas inversely miR-200c ex-
pression was undetectable in all tested melanomas (Figs. 1B
and 2A; Supplementary Fig. S1). Expression of the receptor
tyrosine kinase cKIT, a confirmed target of miR-221/miR-222
(24), was augmented in IGR37, which showed correspondingly
low levels of miR-221. An inversely and perfectly correlated
expression pattern of miR-221 and cKIT was also confirmed
for all nine melanoma cell lines but interestingly not for the
MCF-7 cell line (Supplementary Fig. S1). miR-23a and miR-
23b, upregulated in melanoma cell lines, are predicted to tar-
get many genes, of which several were found to be reciprocally
downregulated in this data set [MITF (Supplementary Fig. S1),
TYR (tyrosinase), TRPM1 (transient receptor potential cation
channel 1), MLANA (Melan-A), and others]. All of these genes
have previously been implicated in melanoma development
(25–27). We further validated and confirmed the array-based
expression levels for four additional genes [CDKN1B (p27),
CDK6, E-cadherin, and N-cadherin] for NHEM, IGR39, and
IGR37 (Supplementary Fig. S2).
www.aacrjournals.org
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Using differentially expressed gene lists of NHEM and
IGR39, Ingenuity analysis identified 33 pathways with statis-
tical scores of >10 (score = −log (P value) from Fisher's exact
test analysis). Network no. 3 “skin development and function”
(score = 37) was selected based on statistical and biological
relevance for the study (Fig. 4A). We then prompted Ingenu-
ity to include miRNAs that were predicted to target the
strongly regulated and melanoma-relevant genes. The result-
ing network shows some of the known key players in mela-
noma development and progression with MITF regulating
the expression of several genes known to be involved in pig-
mentation and skin development, such as TYR, tyrosinase-
related protein 1, SILV (melanocyte protein Pmel 17), and
TRPM1, whose expression is inversely correlated with mela-
noma metastasis (25).
To evaluate the robustness of the interactions predicted by

the software, we analyzed gene levels of MITF and its tenta-
tive targeting miRNA-23a and miRNA-23b, as well as four
genes that have previously been shown to be regulated by
MITF (Fig. 4B; refs. 26, 28, 29). In IGR39 cells, wherein miR-
23a/miR-23b expression was highest, MITF levels were al-
most undetectable. Correspondingly, the expression patterns
of three of the four tested and potentially MITF-regulated
genes (miR-146a, let-7I, and cKIT) matched the expression
trends of the transcription factor, indicating that they could
indeed be regulated by MITF. miRNA-363, which is also reg-
ulated by MITF (28), was however an exception as such that
IGR37 had reproducibly undetectable levels of miR-363.
Figure 3. Mapping of potential miRNA targets in gene expression profiles. Scatter graphs were generated by plotting normalized log expression data
obtained with IGR39 or IGR37 cells against those found with NHEM control cells. Each gray dot in the graphs corresponds to the expression value of a
particular gene found to be significantly differentially expressed (FDR < 0.05). Selected genes previously implicated in melanoma are highlighted in red
or blue (upregulated or downregulated in melanoma versus melanocytes, respectively). miRNAs computationally predicted to target some of the highlighted
genes are depicted in italics: red or blue (upregulated or downregulated in the respective melanoma cell line versus melanocytes, respectively), or
black (unchanged expression). Underlined are miRNAs that have been experimentally confirmed to regulate the respective target genes. For some genes, no
targeting miRNA was predicted by Targetscan or MicroCosm Targets.
Cancer Res; 70(10) May 15, 2010 4169
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Figure 4. A, miRNA target map illustrating parts of the “skin development and function” network, which IPA identified to be highly significant in our
experimental data set (IGR39 versus NHEM). Central to this network is MITF and its predicted interactions with pigmentation-relevant and
melanoma-relevant proteins together with their subcellular localization. The node color intensity indicates the expression level of genes: red, upregulated;
green, downregulated in the comparison IGR39 versus NHEM. IPA-predicted miRNAs and their relative expression levels in our primary melanoma
patients are also shown (red, up; blue, down). B, relative expression levels of MITF of biological triplicates of NHEM, IGR39, and IGR37. Inverse expression
levels for miR-23a and miR-23b, which are predicted to target MITF, are shown above. Expression patterns for miRNA-363, miRNA-146a, let-7i, and
cKIT, suggested to be regulated by MITF, are shown in the bottom, all of which (except miR-363) show MITF-concordant expression trends.
Cancer Res; 70(10) May 15, 2010 Cancer Research
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Taken together, computational pathway analysis proved to
be a useful tool to select key-regulated genes. Inversely cor-
related expression patterns of such selected genes and their
predicted miRNAs in an extended number of biological sam-
ples can point to regulatory relationships between miRNAs
and their tentative target genes.

Discussion

Recent years have seen a tremendous number of miRNA
profiling studies aiming at identifying unique miRNA
signatures for many diseases, for different stages thereof,
or for prediction of disease risks (9, 11). These efforts have
been paralleled by continuous discovery of new miRNAs
and by rapidly changing developments and improvements
in miRNA detection techniques. Given the different techni-
cal approaches applied to miRNA profiling (various micro-
array chemistries and real-time PCR quantifications)
together with the plethora of different biological samples
that are being profiled, it is not surprising that there is
often little correlation between data sets coming from differ-
ent laboratories. Here, we have addressed this question by
comparing miRNA expression patterns in well-characterized
melanoma cell lines with patient-derived samples of different
melanoma stages by applying microarray and qPCR profiling
techniques.
A key issue for comparability or lack thereof of different

expression data sets is the selected reference line or tissue,
whose basal miRNA expression levels will determine the cal-
culated fold expressions in the tested samples. We have ob-
served that primary human melanocytes (NHEM), which are
commonly used as calibrators for melanoma studies, consid-
erably change their absolute levels of several important miR-
NAs with increased passage number (data not shown).
Therefore, great care should be taken in choosing negative
controls for comparative and consecutive studies. In this
context, we noted very little agreement between our miRNA
expression patterns of NHEM melanocytes and melanoma
cell lines with a recent study by Mueller and colleagues
(17), who have used Agilent miRNA microarrays. Of the 76
listed miRNAs associated with melanoma development and
progression, we only identified six to be correspondingly reg-
ulated in our data set (miR-27b, miR-92b, miR-10a, miR-182,
miR-26b, and miR-379), with the latter four being only weakly
expressed. This indicates that the use of different profiling
platforms together with the negative control cells and likely
even their passage number may result in strikingly different
conclusions drawn from the data. On the other hand, our
miRNA expression profiles of FFPE-extracted nevi was in
good agreement with results recently reported by Glud and
colleagues, who used Invitrogen arrays to profile miRNA
expression in 15 nevi (18). Taking into account the different
array platforms and miRBase versions that were used, we
found a remarkable 81% (68 of 84) of miRNAs to be similarly
expressed in both studies. Although FFPE samples represent
useful sources for miRNA profiling, it is important to keep in
mind that variable handling conditions as well as lengths and
conditions of storage may directly influence the degree of
www.aacrjournals.org
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RNA degradation, which in turn could affect expression levels
of some miRNAs.
Another source for intrinsic data variability stems from

the various biological sources that are used in miRNA pro-
filing studies. Several miRNAs, such as miR-155, miR-146a,
miR-23b, and miR-205, showed divergent expression pat-
terns in cell lines and patient samples, indicating tissue
culture–induced adaption processes that likely lead to
the loss or upregulation of certain miRNAs, which are
not present in patient material. Nonetheless, we identified
miR-25 to be upregulated in our samples, and this was in
line with a recent observation made in melanoma (30).
miR-200c was reproducibly downregulated in patients rela-
tive to nevi and was absent in normal human melanocytes
and cell lines. The loss or reduced expression of miR-200c
in melanoma cell lines has also been reported previously
(15). The miR-200 family (miR-200a, miR-200b, miR-200c,
miR-141, and miR-429) is clearly emerging as a key regula-
tor of differentiation in various cell types, and a marked
downregulation with tumor progression has been noted
for several cancers (31–33). The loss of E-cadherin expres-
sion in our melanoma cell lines is consistent with absent
miR-200c expression, which releases repression of the tran-
scription factor ZEB1, which in turn suppresses E-cadherin
gene transcription (34). In doing so, the miR-200 family be-
comes an important regulator of epithelial-to-mesenchymal
transition (EMT), a key process for initializing metastasis,
and might therefore represent one of the most promising
miRNA candidates for therapeutic intervention (35). Inter-
estingly, downregulation of miR-205 has also been impli-
cated in the EMT processes (33). Reduced amounts of
miR-205 with tumor progression were detected in all of
our melanoma patients, although melanoma cell lines
showed slightly increased expression of this miRNA.
Olson and colleagues showed that miR-25 was upregulated

2.6-fold in hyperproliferative stages of pancreatic tumors
whereas miR-146a was downregulated 8.4-fold in metastatic
lesions, a pattern that we have also observed in melanoma
patient samples (36). It is noteworthy that miRNA-15b has
recently been suggested to be a prognostic marker for mela-
noma progression (37). Although melanomas have indeed
high levels of miR-15b, we also detected these elevated levels
in nevi, questioning the usefulness of this miRNA as a bio-
marker for melanoma.
Taken together, miRNA-205, miRNA-200, and let-7 family

(-125b, -146a, -155, -21, -25, -23a, -29b) have repeatedly been
shown to become deregulated with tumor progression in
general and in melanomas in particular (this study and refs.
12, 38). Although this is by no means an exclusive list, it cer-
tainly contains some of the most promising miRNAs for ther-
apeutic intervention or to be further evaluated for their
biomarker potential in larger patient cohorts.
Having identified several miRNAs that could be of value

for the understanding of melanoma development, we set
out to find potential target genes by analyzing mRNA expres-
sion patterns in primary melanocytes (NHEM) and two mel-
anoma cell lines. As expected, many genes previously linked
to melanoma development were found to be deregulated,
Cancer Res; 70(10) May 15, 2010 4171
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and several were differentially regulated when comparing
IGR39 cells (primarymelanoma) with the cell line derived from
a metastatic tumor of the same patient (IGR37; Fig. 3). For
example, cKIT was slightly downregulated in IGR39 whereas
its levels were augmented with disease progression in IGR37.
It has been shown that miR-221/miR-222 downregulates cKIT
and p27 in melanomas, thus favoring a malignant phenotype
(30), and another study suggested that melanoma subgroups
exist, which overexpress mutated and active cKIT (39). qPCR
for miR-221 and cKIT confirmed this by a perfect inversely
correlated expression pattern on all our melanoma cell lines
(Supplementary Fig. S1).
Inverse correlation of miRNA expression with their ten-

tative target genes is a useful approach to reduce the gen-
erally extensive number of computationally predicted
target genes for further analysis. In combination with ex-
amination of biological pathways targeted by the deregu-
lated miRNAs, Ingenuity analysis indicated that the
regulatory network around MITF was most prominent in
melanoma cell lines (Fig. 4A). MITF is critically involved
in regulation of melanocyte growth, maturation, apoptosis,
and pigmentation (40, 41). Over 20% of metastatic melano-
mas have been found to carry genetic alterations in the
MITF pathway (MITF or SOX10 mutations; ref. 42), and
amplification of MITF has been linked to poor patient sur-
vival (26). By nucleosome mapping and chromatin struc-
ture analysis, Ozsolak and colleagues have identified
several miRNA promoters that were occupied by MITF
(28). Of those, miR-146a, miR-221, and miR-363 were exper-
imentally confirmed to be regulated by MITF. qPCR anal-
ysis of candidate miRNA-23a and miRNA-23b levels
predicted to target MITF, as well as of cKIT and miRNAs,
Cancer Res; 70(10) May 15, 2010
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which are transcriptionally regulated by MITF, supported
the central part of the predicted pathway (Fig. 4B).
Although altered expression of the miRNome has been well

documented in many cancers, it remains to be shown how
single and/or groups of miRNAs or the whole of the miR-
Nome drives or allows for neoplastic transformation. A key
prerequisite to these analyses is, however, an accurate and
standardized quantification of the miRNA expression levels
in a sufficient number of clinical samples and matching cell
lines, as effects seen in one cell line or patient might be quite
different from those found in another, in which other poten-
tial target genes and also other modulators of miRNA activity
may be present. This is even more so as minute changes in
miRNA levels may have profound consequences for the cell
(2). Accurate and extensive measurements of miRNA levels
together with improved computational target gene predic-
tions and pathway analyses will surely be necessary before
miRNAs make their way into the clinic as robust biomarkers
and/or as therapeutic targets.
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Introduction

MicroRNAs (miRNAs), a class of small non-coding RNAs (~22 
nt), were initially discovered in Caenorhabditis elegans almost 
two decades ago1 and have attracted much attention as major 
regulators of gene expression since.2 The biogenesis of miRNAs 
from miRNA genes has been extensively studied in recent years 
and is reviewed in references 2 and 3. Most miRNAs are encoded 
in intergenic regions, but some are also hosted within introns 
of pre-mRNAs.4,5 Approximately 50% of mammalian miRNA 
loci are located in close proximity to those of other miRNAs. 
So-called miRNA clusters are usually composed of two or three 
miRNAs, which may share similarity in sequence but which are 
not necessarily identical.6 Accumulating evidence suggests that 
most clustered miRNAs are transcribed from single but complex 
transcription units, even though there might be exceptional 
cases in which clustered miRNAs are transcribed individually 
from separate gene promoters.7 Although the precise localization 
of promoter regions of the majority of autonomously expressed 
miRNAs has not been fully mapped, it has been shown that these 
regions are highly similar to those of protein-coding genes.8 In 
general, intergenic miRNAs are believed to be transcribed by 
their own promoters, whereas intronic miRNAs are coordinately 
transcribed with their host gene.9

MicroRNAs are major players in post-transcriptional gene regulation. even small changes in miRNA levels may have 
profound consequences for the expression levels of target genes. hence, miRNAs themselves need to be tightly, albeit 
dynamically, regulated. here, we investigated the dynamic behavior of miRNAs over a wide time range following 
stimulation of melanoma cells with interferonγ (IFNγ), which activates the transcription factor sTAT1. By applying 
several bioinformatic and statistical software tools for visualization and identification of differentially expressed miRNAs 
derived from time-series microarray experiments, 8.9% of 1105 miRNAs appeared to be directly or indirectly regulated 
by sTAT1. Focusing on distinct dynamic expression patterns, we found that the majority of robust miRNA expression 
changes occurred in the intermediate time range (24–48 h). Three miRNAs (miR-27a, miR-30a and miR-34a) had a delayed 
regulation occurring at 72 h while none showed significant expression changes at early time points between 30 min 
and 6 h. expression patterns of individual miRNAs were altered gradually over time or abruptly increased or decreased 
between two time points. Furthermore, we observed coordinated dynamic transcription of most miRNA clusters while 
few were found to be regulated independently of their genetic cluster. Most interestingly, several “star” or passenger 
strand sequences were specifically regulated over time while their “guide” strands were not.

Dynamic regulation of microRNA expression 
following interferonγ-induced gene transcription
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In recent years, miRNAs have emerged as key post-
transcriptional regulators of gene expression as they are predicted 
to directly control the expression of at least 50% of all protein-
coding genes in mammals.2 A single miRNA may control the 
expression levels of several hundred mRNA targets and on 
the other hand, a given mRNA can be regulated by several 
miRNAs.10,11 Due to the fact that deregulation of miRNAs is 
often implicated in human diseases, precise control of miRNA 
amounts is crucial in order to maintain normal cellular 
functions. An initial point of regulation in miRNA biogenesis 
is transcription of miRNA genes, which is a tightly controlled 
multi-step process. Levels of gene expression are often controlled 
by auto-regulatory feedback loops in which miRNAs participate 
together with transcription factors (TFs).2,3,12 However, only few 
examples of TF-mediated miRNA expression have been described 
so far: the oncogenic TF c-myc and the hypoxia-induced factor 
(HIF) have been shown to regulate the expression of individual 
or clustered miRNAs positively or negatively in a tissue-specific 
manner.13-15 Also, STATs (signal transducer and activator of 
transcription) do not only induce protein-encoding target genes 
(like SOCS1, IRF1 and many others) but also appear to drive 
transcription of miRNA genes.16-18 The few known interactions 
include a positive feedback loop between STAT1 and miR-155, 
where STAT1 upregulates miR-155, which in turn downregulates 
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for 12 h while P-STAT1 signals began to gradually wane after 
18 h. Functional activity of the TF was assured by analyzing 
two target genes of STAT1. In line with previous reports in 
reference 36, STAT1 itself and IRF-1 were both upregulated 
by STAT1, albeit with different kinetics. Furthermore, differ-
ent concentrations of the JAK-specific kinase inhibitor JII were 
tested in order to define a minimum concentration to prevent 
activation of STAT1 (Fig. 1B). Lower concentrations (200 nM 
and 1 μM) were not sufficient to fully suppress STAT1 acti-
vation. Pre-incubation with 5 μM JII was adequate to almost 
completely inhibit STAT phosphorylation (right) and this con-
centration was used in the time-course experiments. Figure 1C 
shows STAT1 activation status of samples that were subjected to 
microarray and/or RT-qPCR analyses.

Analysis of time-series microarrays. In total, 20 microarrays 
(two samples for every time point including the untreated and 
the JII pre-treated samples at 72 h) were included in the study. 
Quality control scatter plots illustrated good reproducibility 
of the expression data (Fig. S3A and S3B). Reproducibility of 
array experiments was evaluated by calculating coefficients of 
determinations (r2) between expression data (Fig. S4). Overall, 
the coefficient of determination between duplicate RNA samples 
was high (mean r2 ~ 0.967) and was enhanced even more (mean 
r2 ~ 0.989) after filtering out lowly expressed miRNAs. This 
indicates that most variability between arrays was detected in the 
very low expression range close to the detection limit. Mean r2 
values for biological replicates were significantly higher than r2 
for non-replicate samples: 0.989 vs. 0.890, respectively (p-value 
is 9.45 × 10-8), indicating a good reproducibility for the biological 
replicate samples considered in the study.

To obtain a global view of the time evolution of the miR-
Nome, all miRNAs were analyzed by GEDI (Fig. 2). Each 
sample exhibits a characteristic color pattern, reflecting the tran-
scriptional behavior over time. Although IFNγ treatment has 
shifted global miRNA expression patterns already after 30 min, 
overall expression changes were small (note the color bar: maxi-
mum change range 0.7, with all values normalized to the mean 
of the untreated control). Candidates that were upregulated 
between 0.5 h and 12 h (upper right corners of self organizing 
maps (SOMs)-based mosaics) included miRNAs present in the 
complete data set only, which were removed after threshold filter-
ing for downstream analyses (see below). The majority of robust 
expression changes were scored after 24 h of IFNγ treatment 
and after 48 h a clear separation between up and downregulated 
miRNAs became evident.

After filtering out miRNAs whose maximum log
2
 expression 

values never exceeded 7.0 in all of the 9 different time points, 158 
miRNAs remained, which were then analyzed by unsupervised 
hierarchical clustering (Fig. 3A). The filtering threshold was 
chosen because we had previously established that miRNAs 
associated with hybridization signal intensities below log

2
 of 

7.0 using Affymetrix technology were not reliably detectable 
by RT-PCR (data not shown). The heatmap illustrates that 
the majority of differentially expressed miRNAs were either 
upregulated (~50 miRNAs) or downregulated (~80 miRNAs) at 
around 24 h of IFNγ treatment. Several miRNAs appeared to 

SOCS1, a negative inhibitor of JAK/STAT signaling.19 Further, 
STAT3-mediated regulation of miR-21, miR-181b, miR-17–92 
and miR-199a-5p has also been described in references 16 and 
20–22. Inactive STATs become activated by extracellular 
signals, mainly through cytokines and growth factors that bind 
to cell surface receptors.23,24 STAT1 responds to type I and 
type II interferons and has been implicated in host anti-tumor 
responses.25,26 In this context, Yang and colleagues have recently 
shown that type I interferon-induced upregulation of miR-21 was 
STAT3-dependent and resulted in inhibition of IFN-induced 
apoptosis.27 Here, we used IFNγ-induced activation of STAT1 to 
trigger miRNA transcription in a melanoma cell model. Although 
some TF-mediated miRNA activations have been documented, 
the dynamic nature of this transcriptional regulation has, to our 
knowledge, not been investigated much so far.

Microarray assays have become a widely used technology to 
study gene regulations by measuring global expression patterns of 
genes or miRNAs. The comparison of steady-state expression lev-
els of healthy vs. diseased states or treated vs. untreated samples 
has become a routine tool in many laboratories in recent years.28 
In a static experiment, the samples are obtained irrespective of 
time, providing only a “snapshot” of gene expression. However, 
gene expression is generally not considered a static process result-
ing in a steady-state level of transcripts, but is highly variable over 
time depending on cell types, environmental influences, cellular 
physiology, phenotypes and circadian rhythms and can as such be 
considered a “dynamic information processing system.”29-31 The 
aim of this study was the investigation of dynamic and global 
miRNA expression patterns following activation of miRNA gene 
transcription in a detailed time-course experiment. In the experi-
mental setup, the transcription factor STAT1 was activated by 
IFNγ stimulation of melanoma cells in order to identify STAT1-
regulated miRNAs over time. We chose the melanoma cell sys-
tem and the JAK/STAT signaling cascade as these experimental 
systems are well characterized in our laboratory32-34 and have pre-
viously been established to be suitable for specific activation of 
subsets of miRNAs.18,35 For analysis (clustering, visualization and 
identification of differentially expressed miRNAs) of time-series 
microarray data sets, we used and compared different biostatisti-
cal approaches in order to gain insights into global regulation of 
the miRNome as well as into the behavior of individual miRNAs 
after transcriptional activation.

Results

In a detailed time-course, A375 cells were stimulated with IFNγ 
and, in parallel, pre-treatment with JAK Inhibitor I (JII) was 
performed. Selected RNA samples were subjected to microar-
ray analysis, followed by identification of differentially expressed 
miRNAs using different statistical methods. Temporal expres-
sion changes of selected miRNAs were verified by RT-qPCR 
(Fig. S1).

Stimulation of A375 cells resulting in subsequent activation 
of STAT1 was confirmed by western blot analysis of protein 
lysates (Fig. 1). Strong STAT1 phosphorylation was already 
detectable after 15 min of IFNγ treatment and remained elevated 
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first cluster had no significant regulation, the sharp increase in 
between the two untreated control samples was likely due to the 
slightly higher variation of those duplicate data sets. Similarly, 
the larger positive and negative peaks for the 6 h time point also 
reflect higher variability among those duplicate samples.

Taken together, different clustering approaches revealed that 
during the analyzed time course reproducible dynamic changes 
in miRNA expression levels occurred. In samples from short 
periods of IFNγ stimulations (less than 12 h), small expression 
changes were detected for five individual miRNAs (Fig. 3A). 
However, after 24 h, levels of most of the expressed miRNAs 
were profoundly altered indicating that IFNγ-induced JAK/
STAT signaling takes approximately one day to result in measur-
able transcriptional expression changes of the miRNome.

Identification of groups of differentially expressed miRNAs 
over time. In order to elucidate the transcriptional responses 
to IFNγ-treatment in more detail, three statistical programs 
were used that were specifically designed to analyze replicated, 

be upregulated very rapidly after IFNγ stimulation (30 min–6 
h) however, these changes were not significant, rather small with 
maximum fold changes up to 1.5 relative to the untreated control 
and could also be unspecific fluctuations in expression changes. 
On the other hand, a clearly delayed upregulation, which only 
occurred after 48 h was detected for miR-34a, miR-30a and miR-
27a (Fig. 4).

Next, we subjected the filtered miRNA data set to soft 
clustering by Mfuzz (Fig. 3B). The upper part represents time 
evolution of individual miRNA expressions that were altered upon 
treatment, and in the lower panel the averaged expression profiles 
of all miRNAs in the respective cluster are displayed. Cluster 2 
and 3 were comprised of miRNAs with high membership values 
(colored in red) representing very similar expression profiles. 
Three major expression profiles were found with either very small 
randomly fluctuating changes (cluster 1) or pronounced up or 
downregulated miRNAs after 24 h of IFNγ treatment (cluster 
2 and 3, respectively). Although the averaged profile in the 

Figure 1. sTAT1 activation by IFNγ. (A) A375 cells were treated with human IFNγ (50 ng/mL) up to 96 h. proteins were detected with antibodies against 
psTAT1, sTAT1 and IRF1. Tubulin or actin served as loading controls. (B) Titration of JAK-Inhibitor I (JII). A375 cells were pre-treated with different JII con-
centrations followed by IFNγ (50 ng/mL) to monitor the inhibition of the Janus kinases. (c) All samples selected for microarray and/or RT-qpcR analysis 
were monitored for sTAT1 phosphorylation and the lack thereof following JII treatment.
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expression evolution for 158 filtered miRNAs, we identified four 
distinct dynamic patterns: (1) gradual upregulations, the most 
frequent type of activation model; (2) abrupt upregulations, where 
expression was sharply amplified between two time points; (3) 
delayed upregulations at around 72 h, which are possibly due to 
secondary effects and (4) gradual downregulations, which might 
be caused by indirect effects following STAT1 activation that 
result in suppression of these miRNAs. In addition, we observed 
very isolated events with an expression peak at one time point 
followed by a rapid return to baseline levels (miR-146b and miR-
367). Parallel duplicate treatments with JII (at 72 h) abrogated 
JAK/STAT signaling and therefore counteracted IFNγ-specific 
transcriptional regulation of all selected miRNAs (depicted by 
crosses, Fig. 4). This modeling approach documents the different 
dynamic courses of individual miRNA regulations, highlighting 
the importance to consider the parameters “time” and “dynamics 
of expression” when analyzing miRNA expression patterns.

Validation of individual miRNA expression patterns. For 
the validation of microarray results by RT-qPCR, 14 miRNAs, 
some of which had already been described to play a role in cancer, 
were chosen to represent up, down and non-regulated miRNAs 
as well as “star”-sequences and genetically clustered miRNAs. 
The majority of clustered miRNAs share a genome location in 
a region smaller than 10 kb, together with two or more other 
miRNAs. Table S3 lists those miRNAs and the correspond-
ing program(s) by which they were identified, their direction of 
regulation as well as information derived from miRBase (version 
17).38 Figure 6A illustrates that microarray-measured expression 
levels over time were confirmed for both strands of the selected 
miRNAs and irrespective of type, direction or time of regulation. 
In qPCRs, JII-treated control samples were analyzed for all time 
points (hatched bars), clearly demonstrating that regulations of 
miRNAs were averted when JAK signaling was interrupted, indi-
cating that observed modulations of miRNA levels were indeed 
caused by cytokine-induced activation of the JAK/STAT path-
way. Individual miRNAs differed considerably with regard to 
their temporal induction patterns. For example miR-21, a known 
target of STAT3,16 was upregulated 48 h after IFNγ stimulation 
and expression remained high up to 96 h. The same expression 
pattern, however, with a stronger upregulation (fold change of 
8.7 in microarray analysis and up to 4 fold change in RT-qPCR) 
was found for miR-424* while miR-149 was downregulated after 
24 h in response to IFNγ. MiR-25 remained unaffected by IFNγ 

time-series microarray data. The individual programs are 
described in more detail in Material and Methods and in the 
Supplements. In the current study, these programs were applied 
in order to generate a robust set of differentially expressed 
miRNAs over time, which were jointly identified by the different 
algorithms. For all calculations only expressed miRNAs (after 
the filtering step) served as input. The resulting 158 miRNAs 
(14.3% of all human and mature miRNAs on the chip) were 
used for further statistical analysis. Figure 5A summarizes the 
results of all three programs in a Venn diagram with a total of 
98 miRNAs being differentially expressed. EDGE returned 
a list of 95 differentially expressed miRNAs (60%), while the 
betr function identified 69 out of 158 miRNAs (~43%) with a 
probability of 1 to be differentially expressed. The timecourse 
package ranked all 158 miRNAs according to the Hotelling 
T2 statistics (see Sup. Materials and Methods). By setting the 
cut-off threshold to a FDR of 0.05, we identified 23 miRNAs 
(~15% of expressed miRNAs), which had also been detected by 
the other two programs (listed in Table S2). The heatmap (Fig. 
5B) visualizes expression levels of those 23 commonly identified 
miRNAs over time.

Bioinformatic analysis revealed distinct dynamic activation 
patterns for groups of seemingly co-regulated miRNAs. In 
contrast to a recent study where several miRNAs were found to 
be strongly upregulated after 30 min of IFNβ treatment,37 we 
found several miRNAs reacting slightly to our transcriptional 
stimulus in the early time periods, albeit none of these expression 
changes were significant (Figs. 3A and 4). The majority of strong 
miRNA alterations occurred in the intermediate (around 24 h) 
time ranges. In total, we identified 98 differentially expressed 
miRNAs, whose levels were either increased or attenuated in 
response to IFNγ (Fig. 5A). The three statistical programs used 
here commonly identified 23 differentially and significantly 
regulated miRNAs (all amplitudes of regulations > 2.3-fold). Of 
those, seven were downregulated at around 24 h while 16 were 
upregulated following STAT1 activation (Fig. 5B). The heatmap 
visualizes expression changes over time and further illustrates 
that the 24 h time point appears to be a transitional phase where 
most regulatory events are beginning to manifest.

Dynamic expression changes of individual miRNAs. In order 
to visualize time evolution of expression changes, we built smooth 
regression models (Fig. 4) by the logistic function described in 
Supplemental Materials and Methods. Analyzing the models of 

Figure 2. GeDI maps (mosaics) representing progression of expression profiles after IFNγ stimulation of A375 cells for the indicated time periods. Log2-
transformed expression levels were used for analysis of each miRNA relative to the untreated sample (ctrl), which served as a control. On the right, 
a sOM map color bar indicates log2 values: highest expression levels (red) and lowest expression levels (blue). GeDI maps are displayed for all 1,105 
miRNAs simultaneously for each treatment time point. The expression profiles of 18 arrays (duplicates) corresponding to 9 time points were visualized 
as 9 GeDI maps, each consisting of a 13-by-12 mosaic, representing 156 mini clusters.
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stimulation (Table S1) and therefore served as a non-regulated 
control miRNA in qPCR validations (Fig. 6A).

To examine whether clustered miRNAs are co-regulated, 
we compared profiles of members of several genetic clusters. 
For example, the miR-23 and miR-27 families are coordinately 
regulated with miR-23a~27a of the first cluster being upregulated 
while members of the second cluster (miR-23b- and -27b) were 
downregulated (Fig. 6B). Other clusters like miR-29a~29b1 and 
miR-29b2~29c also showed a very obvious co-regulation (data not 
shown), which was to be expected given that clustered miRNAs 
are generally (but not always) transcribed together. Adversely, 
some genetically clustered miRNAs like miR-92a~18a and miR-
93~25 appeared to be regulated independently showing completely 
divergent expression patterns over time (data not shown).

Apart from the different dynamic regulation patterns, biosta-
tistical analysis revealed another interesting and rather unexpected 
finding: passenger strands (so called “star” sequences, labeled 
with “*”) were often and specifically regulated. Surprisingly, four 
“star” sequences (miR-424*, miR-29b-1*, miR-27a* and miR-
23a*) were among the top 10 miRNAs displaying maximum fold 
changes > 4 in qPCR analyses and even higher values in micro-
array results. Examples of “star” strand regulations are given in 
Figure 6B with miR-23a* and miR-27a* being clearly increased 
between 12–24 h of IFNγ stimulation, while expression levels of 
the respective guide strands were largely unaffected. In contrast, 
both strands of miR-27b and miR-23a were similarly downregu-
lated over time.

In summary, detailed data analyses of this miRNA time 
course revealed several new findings: (1) in the melanoma cell 
model used here, 14.3% (158 of 1105 human and mature miR-
NAs) were detected to be expressed and of those 62% (98 of 158) 
were differentially expressed following IFNγ stimulation, which 
activated the STAT1 TF; (2) 23 differentially expressed miRNAs 
were commonly identified by three different statistical programs, 
which included gradual as well as abrupt up and downregulation 
events over time. (3) Most regulatory events occurred around 
24 h after IFNγ stimulation with only three miRNAs showing 
a delayed reaction at 72 h. (4) Inhibition of JAK/STAT signal-
ing (by JII treatment) abrogated most responses implying a spe-
cific JAK-dependent and likely STAT-mediated transcriptional 
induction. (5) Most genetically clustered miRNAs were tran-
scriptionally co-regulated. (6) Finally, several “star” strands were 
dynamically and strongly regulated while their guide strands 
remained unaffected.

Discussion

MicroRNAs are known to influence fundamental cellular activities 
in health and disease through their ability to post-transcriptionally 

Figure 3. (A) expression evolution of 158 miRNAs presented as a heat-
map. expression values were standardized (transformed to z-scores) 
and miRNAs were re-ordered by unsupervised hierarchical clustering 
using euclidean distance. colors for each miRNA represent z-scores and 
derive from “inter-miRNA-standardisations” with red corresponding to 
high standardised expression levels and blue representing low expres-
sion levels.
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of melanoma cells.42 Here, we asked if and which miRNA genes 
could be specifically targeted by IFNγ-induced STAT activation 
and which dynamic patterns these potential activation processes 
would follow.

Thus far, only a small number of studies have addressed inter-
actions between miRNAs and STAT factors and even fewer have 
investigated dynamic issues of miRNA regulation. Very recently, 
IFNα-induced upregulation of miR-21 has been demonstrated 
to be an early event (after 2 h of IFNα treatment), which was 
directly co-mediated by STAT3 and NFκB.27 Löffler and col-
leagues investigated the role of STAT3 in the regulation of miR-
21 by quantifying primary and mature miR-21 by RT-qPCRs. 
They showed that the induction of miR-21 was controlled by 
IL-6 and required STAT3 in myeloma cells. However, in contrast 
to the rapid induction of the primary miR-21 already after 1 h, 
the mature miR-21 levels increased slowly (up to 5 d),16 which is 
in line with our findings of miR-21 remaining upregulated for up 
to 96 h. At the same time, Pedersen et al. analyzed kinetic induc-
tion of miRNAs following IFNβ stimulation. They performed a 
short time-series experiment with 5 time points after stimulation 
of a human hepatoma cell line and primary hepatocytes for 0.5 h, 
2 h, 8 h, 24 h and 48 h. IFNβ rapidly and strongly modulated the 
expression of few miRNAs (among them miR-1 and miR-196) 

regulate gene expression of most genes. However, not much is 
known about the transcriptional activation and regulation 
of miRNA genes themselves. Transcription is a dynamic and 
well controlled process allowing the cell to respond flexibly to 
environmental stimuli and internal signals. Transcription factors 
(TFs), among other gene transcriptional regulators, mediate such 
responses in order to quickly adapt to changes by influencing the 
expression of relevant genes including those encoding miRNAs. 
In order to better understand the principles of these complex 
interactions and to investigate the dynamics of TF-mediated 
miRNA regulation, we chose the JAK/STAT pathway as a model 
system in A375 malignant melanoma cells, both well-established 
experimental systems in our laboratory, which furthermore, can 
be controlled at several steps.32,34,39 Cytokine signaling in general 
is of major importance for the mammalian immune system as it 
mediates cellular response to infections, inflammatory processes 
and transformation of normal into malignant cells.40 Almost all 
cell types can come into contact with surrounding cytokines, 
e.g., interferonγ, which is mainly secreted by activated T and 
NK cells.41 Interferons predominantly signal through the JAK/
STAT pathway culminating in STAT-mediated transcriptional 
activation of target genes. Interestingly, IFNγ-mediated STAT1 
activation has previously been shown to induce growth inhibition 

Figure 3. (B) soft clusters of miRNA expression data using Mfuzz. Temporal expression patterns obtained during the time-course experiment of A375 
cells treated with IFNγ for the indicated time points. Overall expression patterns (upper part) and average expression patterns (lower part) were dis-
played. profiles of three major clusters were found: small irregular regulations (cluster 1), up and downregulation of miRNAs over time (cluster 2 and 3, 
respectively). Light and dark blue colored lines correspond to miRNAs with low membership; red colored lines represent miRNAs with high member-
ship values. On the x-axis arrays for the replicated time points were placed next to each other, the y-axis represents standardised expression values.
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but also activated by IFNγ (e.g., via the MAPK pathway) could 
participate in the direct or indirect regulatory events we have 
observed here. Repressors of miRNA transcription, which are 
regulated by STAT1 or other IFNγ-regulated TFs could explain 
the delayed responses and downregulation events we have scored 
and might indicate that most of the late regulatory events are 
rather indirect effects of STAT1 activation (Figs. 5 and 6). Even 
though we and others have previously shown that JII specifically 
inhibits JAK/STAT signaling in melanoma cells and human 
retinal pigment epithelial cells,19,34,44 it cannot be entirely ruled 
out that JAK-independent factors also play a role in IFNγ-
induced miRNA transcription.

To investigate the presence of potential STAT binding sites, 
we performed an overlay of a publicly available ChIP-Seq data set 
of IFNγ-stimulated HeLa cells45 with Jaspar-generated profiles 
of promoter regions of the 23 commonly identified miRNAs. 
All 23 miRNAs turned out to have 2 to 14 STAT binding sites 
within 50 kb upstream of their genomic location, while 15 miR-
NAs had 1–3 STAT binding sites within 10 kb (data not shown). 
Taken together, the presence of STAT binding sites in their pro-
moter regions, the dynamic regulation of these miRNAs as well 
as the abrogation of their transcriptional activation by JII are 
highly suggestive of a direct regulation of a subset of miRNAs by 
STAT TFs. The importance of these complex, but so far scarcely 

within 30 min.37 In the melanoma cell line used here, we did 
not observe any statistically significant regulations during early 
time periods (30 min–6 h). Expression level alterations for those 
few “early responders” were weak and not sufficiently reproduc-
ible between duplicate samples. Therefore, in our experimental 
setup, earliest and robust expression changes started to emerge 
well after 12 h.

Another interesting interaction between a miRNA (miR-155) 
and STAT factors (STAT1) in form of a positive feedback loop 
has recently been described by Kutty et al.19 who demonstrated 
that miR-155 expression levels in human retinal pigment 
epithelial (HRPE) cells gradually increased over a period of 24 h 
after exposure to inflammatory signals (cytokine mixture TNFα, 
IL-1β and IFNγ). Recently, Wang and colleagues identified 83 
active promoter regions of miRNA genes in IFNγ-treated HeLa 
cells, 41 of which contained STAT1 binding sites.43 In their in 
silico study, they used a bioinformatic approach to analyze high-
throughput functional genomic data. ChIP-Seq experiments 
provided TF as well as RNA Pol II binding sites, which were 
used to construct potential feedback loops containing regulatory 
cascades of TFs and miRNAs. They found that 51.4% of STAT1-
targeted miRNAs contained AP-1 binding sites suggesting that 
such interactions could also be involved in the regulation of 
miRNA transcription. In this context, TFs other than STAT1, 

Figure 4. Time evolution of log2 expression values for selected miRNAs exemplifying the four different dynamic expression patterns. Individual 
microarray-based expression results are illustrated by black dots in a natural timescale (hours). A smooth model was built using regression with a 
parameterised logistic function as detailed in Supplemental Materials and Methods. crosses represent JII-control experiments at 72 h. expression 
profiles of miRNAs highlighted with gray boxes have been validated by RT-qpcR.



www.landesbioscience.com RNA Biology 985

have been classified into two types: homo-clusters (composed 
of miRNAs from a single family) and hetero-clusters (miRNAs 
from multiple families).46 Usually members of the same miRNA 
family target a similar set of mRNAs because they share the same 
seed region,47 which predominantly determines the targets of 
miRNAs.48 Accordingly, we have identified a co-regulated homo-
cluster (miR-29a~29b1*, data not shown) and two hetero-clusters 
(miR-23a~27a and miR-23b~27b), which had reverse expression 
patterns: miR-23a~27a was upregulated, while miR-23b~27b 
was downregulated (Figs. 5 and 6) suggesting overlapping 
regulatory roles of these important miRNA clusters, which are 
often augmented in multiple types of cancers.49

Surprisingly, almost 10% of the 98 differentially expressed 
miRNAs were passenger strands (*). The co-accumulation of 
both “sister” strands of miRNA pairs does not necessarily imply 
that both are functional, however, functional roles of miRs* 
are being increasingly recognized and described. Tsang and 
Kwok showed that miR-18* may function as a potential tumor 
suppressive miRNA by targeting K-Ras.50 In contrast to let-
7, which targets both K-Ras and H-Ras, miR-18* only targets 
K-Ras mRNA. This specificity might be important for targeting 
the specific isoforms of Ras and therefore it was suggested that 
miR-18* could serve as therapeutic agent in future cancer therapy. 
Recently, it was demonstrated that well-conserved vertebrate 
miR* species such as miR-19* have an impact on regulatory 
networks and should be taken into account when studying 
functional roles of miRNAs and their contribution to disease.51 
In this context, “*”-designations have been removed in the latest 
version of miRBase (v18) and only 5'- and 3'-designations are 
used to describe the two opposite miRNA strands indicating 
equally important roles the two strands may have. Remarkably, 
among the 10 most upregulated miRNAs we noted four passenger 
strands (miR-424*, miR-29b1*, miR-27a* and miR-23a*). A 
possible tissue-specificity of passenger vs. guide strand sequences 
as well as the regulatory function of the miRs*-sequences will 
have to be investigated further in order to establish differential, 
similar or possibly synergistic roles of both miRNA strands.

Another aspect of this study was the grouping of miRNAs 
according to their temporal expression patterns. We applied 
several unsupervised learning techniques (GEDI, Mfuzz, 
heatmaps) and a modeling approach to reveal hidden structures 
in large expression data sets. Using only miRNAs which were 
detectable in our melanoma cells (filtered data set), most robust 
expression changes (either gradual or abruptly between two time 
points) became evident at around 24 h after stimulation with 
IFNγ. Later time intervals (48 h and later) produced a distinct 
separation in either up or downregulated miRNAs with only 
three examples showing a delayed activation type (72 h). Early 
expression changes (30 min–6 h) detectable in our melanoma 
cell line were few and negligible. Whether some of these rather 
small increases in miRNA levels may still have functional 
consequences for their respective target genes and as such for 
the cellular responses to IFN-induced signaling, remains to be 
investigated. In this context, Perry and colleagues52 have shown 
that two miRNAs (miR-146a and miR-146b) were induced 3 h 
after IL-1β treatment in A549 human alveolar lung epithelial 

described interactions between STAT factors and miRNAs has 
been highlighted in a recent review in reference 18.

It is generally assumed that genetically clustered miRNAs 
are coordinately transcribed.7 In this context, the TF c-Myc 
has been shown to directly regulate the miR-17 cluster, which 
comprises a region encoding six miRNAs.15 Here, we have found 
genetically clustered miRNAs to be regulated together as well as 
independently of one another. For instance, miR-23b and miR-
27b were both downregulated during the time-course experiment 
while miR-24-1, the third member of this cluster (Fig. 6B; Table 
S3), was not detected in A375 cells. Recently, miRNA clusters 

Figure 5. (A) Venn diagram displaying the overlay of results from three 
biostatistical programs. MiRNAs from each program are listed in Table 
S2. (B) heatmap displaying the expression of 23 miRNAs identified by all 
three statistical tools.
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Figure 6. For figure legend, see page 987.
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at the end of the course for further experimental analyses. Prior to 
this, optimal concentrations of JII, a potent JAK inhibitor, which 
prevents activation/phosphorylation of STAT1, were determined 
(Fig. 1).

RNA extraction and quality control. Two methods for RNA 
extraction were used according to the manufacturer’s instruc-
tions for different downstream applications: (1) miRNeasy 
Mini kit (Qiagen) with an additional on-column DNase I diges-
tion for microarrays and (2) TRIsure (Bioline) for downstream 
RT-qPCR validations. All RNA extractions were performed on 
three biological replicates each consisting of three technical rep-
licates for each of the stimulation time points. RNA quality and 
purity were assessed by a Nanodrop 2000 Spectrophotometer 
(Thermo Scientific) and with an Agilent 2100 Bioanalyser 
(Agilent Technologies).

Real-time qPCR. A total of 14 miRNAs were selected for 
real-time quantitative PCR (RT-qPCR, Bio-Rad CFX96 system, 
Bio-Rad Laboratories) in order to validate the microarray results. 
Reverse transcription (RT) of triplicate RNAs from IFNγ and 
JII-treated cells was performed for all time points using the miS-
cript Reverse Transcription kit and miScript Primer assays (both 
from Qiagen) as described in reference 32. For miRNA expres-
sion analysis, three endogenous reference controls were included: 
RNU1A, RNU5A and SCARNA17, which are small non-coding 
RNA species expressed in the A375 cell line and which had pre-
viously been tested not to be differentially regulated by IFNγ 
stimulation or JII pre-treatment (data not shown). Based on the 
geometric mean of the three reference genes, a normalization fac-
tor was calculated for each sample using geNorm, a VBA applet 
for Microsoft Excel.53 The relative amount of each miRNA in 
each sample was then corrected by dividing its amount with the 
corresponding normalization factor. Finally, the fold change of 
each miRNA for each time point after IFNγ stimulation with 
or without JII pre-treatment, was calculated by dividing its 
normalized relative amount by the normalized relative amount 
of the untreated sample that served as control. All RT-qPCRs 
were performed in technical triplicates on each of the biological 
replicates.

Western blot. Western blots were performed as described 
before in reference 34, to detect phosphorylation of STAT1 and 
upregulation of STAT1 target genes using the following pri-
mary antibodies: anti-(pY701)-STAT1 (dilution 1:1,000, BD 
Transduction Laboratories), anti-STAT1 (dilution 1:1,000, BD 
Transduction Laboratories), anti-IRF1 (dilution 1:1,000, Santa 
Cruz), anti-α-tubulin (dilution 1:4,000, Santa Cruz) and anti-
actin (dilution 1:4,000, Millipore).

miRNA microarray expression profiling. The global 
expression patterns of miRNAs after IFNγ stimulation were 

cells with their expression levels remaining elevated until the end 
of the time-course at 24 h. In contrast, we found miR-146b to 
have a strong expression peak at 24 h but then it immediately 
returned to baseline levels (data not shown). Although the 
regulation of miRNA stability may play an important role in the 
control of gene expression, very little is known about the decay 
and the half-lives of individual miRNAs. Further, it remains to 
be shown whether distinct dynamic miRNA expression behaviors 
are specific to certain cell types and transcriptional stimuli.

The current study aimed at investigating dynamic expression 
changes of miRNAs following transcriptional activation. Detailed 
microarray time-course experiments were performed to globally 
analyze miRNA expression patterns. A computational analysis 
pipeline consisting of several tools for efficient biostatistical inves-
tigation of dynamic data sets has been generated. Examination of 
the microarray-based results revealed distinct temporal groups of 
miRNA activation with most expression changes taking place at 
around 24 h. Individual miRNAs were found to follow highly 
diverse dynamic expression profiles emphasizing the importance 
of the parameter “time” when studying miRNAs. Furthermore, 
we observed that several miRNA passenger strands (miR*) were 
also specifically regulated and that genetically clustered miR-
NAs were often but not always co-regulated. Future elucidation 
of transcriptional regulation of miRNAs over time following 
diverse cellular or environmental stimuli will be necessary to 
obtain a more complete systems-biological view of complex regu-
latory networks in cells.

Materials and Methods

Cell culture. The human malignant melanoma cell line, 
A375 (ATCC, CRL-1619TM), was maintained in RPMI 1640 
medium supplemented with 10% fetal bovine serum (FCS, PAA 
Laboratories), 50 μg/mL penicillin, 100 μg/mL streptomycin 
and 0.5 mmol/L L-glutamine (all from Lonza) at 37°C in a 
humidified atmosphere with 5% CO

2
. Cells were tested routinely 

to be Mycoplasma negative. For all experiments described below, 
50,000 cells/well were seeded in 6-well plates.

Time-course experiments. To investigate a possible dynamic 
regulation of miRNAs, time-series experiments were performed 
as summarized in Figure S1. During the course of the experiment, 
biological triplicates of A375 cells were stimulated with human 
interferon gamma (IFNγ, PeproTech Inc., final concentration 
of 50 ng/mL) for the indicated periods of time or were left 
untreated (ctrl). In parallel, a second time-course experiment was 
performed including a pre-treatment step with 5 μM of Janus 
kinase inhibitor I (JII; Calbiochem), added one hour before 
commencing IFNγ stimulation. Cells were collected all together 

Figure 6. (See opposite page) Quantitative RT-pcR validation of selected miRNAs. Fold changes were calculated for each miRNA relative to the 
untreated control. Results are depicted as mean of biological triplicates plus standard deviation. Grey bars and lines illustrate “*” sequences while 
black bars and lines show guide strands. (A) Microarray-measured expression levels of miRNAs exemplifying no regulation over time (miR-25), 
upregulation of “star” strands only (miR-424*), of both strands (miR-21) and gradual downregulation (miR-149) are shown in the top graphs. Duplicate 
microarrays are plotted by two circles for each time point. expression values for the JII-control measurements at 72 h (72J) are shown on the far right 
of the graphs. In the graphs below, qpcR validations are depicted with hatched bars showing JII-treated controls. (B) co-regulations of genetically 
clustered miRNAs. All RT-qpcR expression levels were normalized to reference genes RNU1A, RNU5A and scarna17. statistical significance was 
determined by one-way ANOVA followed by a Dunnett’s Multi comparison test with ***p < 0.001, **p: 0.001–0.01, *p: 0.01–0.05.
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of heatmaps were performed using the heatmap.2 function of the 
R package gplots.

(C) To identify differentially expressed miRNAs statistical 
analyses were performed using three different approaches. The 
Extraction of Differential Gene Expression (EDGE) measures 
statistical significance of genome-wide studies based on the con-
cept of false discovery rate (FDR).57 The Bayesian Estimator of 
Temporal Regulation (BETR) algorithm58 calculates the prob-
ability of differential expression for each miRNA in the microar-
ray time-course data set. Finally, the timecourse package59 uses 
a multivariate empirical Bayes (MB) approach to rank differen-
tially expressed miRNAs according to the Hotelling T2 statistics. 
Additional and more detailed information on bioinformatics and 
statistical analyses is provided in the Supplemental Materials 
and Methods.
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analyzed using the Affymetrix GeneChip miRNA 2.0 Arrays and 
the FlashTag Biotin HSR RNA labeling kit (Genisphere, USA) 
according to the manufacturer’s instructions. The Affymetrix 
chip was designed based on the miRBase version 15 to target 
1,105 human precursor and mature RNAs as well as 32 scaRNAs 
and 2302 snoRNAs (Affymetrix Datasheet P/N EXP00180). 
Duplicate RNAs of samples were analyzed, which were selected 
to represent different periods of IFNγ stimulations and the 72 
h time point samples that were pre-treated with JII. Microarray 
data are available at ArrayExpress (ebi.ac.uk/arrayexpress) under 
accession number E-MEXP-3544.

Analysis of time-series-derived data. The workflow of biosta-
tistical analyses is outlined in Figure S2.

(A) Data pre-processing: Microarray data were pre-processed, 
quality was controlled and a filtering step was performed. Pre-
processing of microarray data was performed with Partek 
Genomics Suite (version 6.5) using the robust multi-chip analy-
sis (RMA) algorithm, which performs background adjustment, 
quantile normalization and probe summarization as described 
before in reference 54. Since low expression estimates are unre-
liable, a filtering step was included to remove all miRNAs, for 
which maximum expression over all arrays did not reach a thresh-
old of 7.0 in a log

2
 scale. We have previously established that 

microarray-measured log
2
 values < 7.0 are generally not detect-

able by RT-qPCR (data not shown).
(B) Visualization and clustering: Microarray data were 

visualized before and after the filtering step. Gene Expression 
Dynamics Inspector (GEDI) analysis was performed to obtain 
an overall picture of all miRNAs before filtering55 whereas the 
Mfuzz package56 was applied to cluster and visualize dynamic 
expression patterns of the remaining miRNAs after filtering. 
Hierarchical cluster analysis and expression visualization in form 
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