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Maintenance of genome integrity is a dynamic process involving complex regulation systems. Defects in one or more of these
pathways could result in cancer. The most important tumor-suppressor is the transcription factor p53, and its functional
inactivation is frequently observed in many tumor types. The tumor suppressive function of p53 is mainly attributed to its
ability to regulate numerous target genes at the transcriptional level. While the mechanism of transcriptional induction by p53
is well characterized, p53-dependent repression is not understood in detail. Here, we review the manifold mechanisms of p53
as a transcriptional repressor. We classify two different categories of repressed genes based on the underlying mechanism, and
novel mechanisms which involve regulation through noncoding RNAs are discussed. The complete elucidation of p53 functions is
important for our understanding of its tumor-suppressor activity and, therefore, represents the key for the development of novel
therapeutic approaches.

1. Introduction

Complex regulatory systems govern the process of genomic
integrity maintenance. Intracellular and extracellular stress
signals can lead to induction of central signalling proteins
which generate different downstream effects. The tran-
scription factor p53 is the most important known tumor
suppressor, and functional inactivation of p53 is frequently
associated with loss of genomic stability [1]. Originally
thought to be an oncogene due to its binding to the SV40
T-antigen [2, 3], p53 later turned out to be a very potent
apoptosis inducer and inhibitor of cell-cycle progression [4].
p53 knockout mice are susceptible to different tumor types
[5] and restoration of p53-function leads to the regression
of tumors in vivo [6, 7]. The tumor suppressive function of
p53 is mainly attributed to its ability to regulate numerous
target genes at the transcriptional level. Functions both as a
transactivator and as a repressor have been described for p53.

The mechanism of transcriptional induction of p53 is
well characterized. It involves DNA-binding to the p53

consensus site [8]. Transactivation is achieved by interactions
with components of the general transcription factor TFIID
like the TATA box binding protein (TBP) [9, 10] and TAFII31
[11]. Numerous target genes upregulated by p53 have been
characterized so far. Well-known targets are involved in
apoptosis like Bax [12] and in cell-cycle control like the
cyclin dependent kinase (CDK) inhibitor p21CIP1 [13] or the
inhibitor of Cyclin B/Cdc2 nuclear import, 14-3-3σ [14]. For
all known upregulated target genes DNA-binding of p53 is
essential for regulation of gene transcription.

In addition to transcriptional induction, p53 has been
shown to repress various target genes, but obviously by
different mechanisms [15]. Many of them are involved in
cell-cycle control (Figure 1) and contribute to p53-induced
cell-cycle arrest. Gene expression analyses showed that p53-
dependent repression of target genes is associated with
apoptosis after hypoxia treatment, whereas transactivated
genes were clearly underrepresented [16]. Therefore, gene
repression by p53 contributes to its tumor suppressive
activity. In this paper we will summarize the wide diversity
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Figure 1: The tumour suppressor protein p53 can interfere in multiple ways with cell-cycle progression. All of the cell-cycle regulators shown
in this figure are transcriptionally downregulated by p53 (black lines with horizontal bars). Inhibition (dotted lines) and activation (dotted
arrows) of a subset of regulation between different p53 target genes is indicated.

of molecular mechanisms of p53-dependent repression
described to date. In principle, two categories of p53-
repressed target genes can be classified: (I) genes that are
regulated by direct interaction of p53 with target gene
promoters or bound cofactors, (II) genes that are indirectly
regulated by other p53 target genes. But most (if not all) of
the mechanisms of transcriptional repression by p53 require
its intact DNA-binding domain. Whether the DNA-binding
domain is always needed for direct DNA binding to target
gene promoters or interaction of p53 with other proteins
through this domain can evoke p53-dependent repression,
remains to be elucidated.

2. Diversity of p53-Binding Sites

The classical consensus site of a p53 binding element consists
of two repeats of the palindromic sequence RRRCWW-
GYYY (in which R is a purine, Y is a pyrimidine and
W is an adenine or thymine) which are separated by a
spacer of 0–13 base pairs. p53-binding sites which match
this consensus sequence are extensively described in p53-
dependent transactivation. Hundreds of p53 target genes
(encoding both proteins and noncoding RNAs) have been
discovered up to date [17–19] and this number still increases.
Among the endogenous human p53 response elements that
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have been validated by p53 binding and corresponding
gene expression, nearly 95% have mismatches from the
consensus sequence [20]. However, these mismatches were
not considered significant to result in a change of the
transcriptional activation function of p53 [21].

Analogous to transcriptional activation, p53 may repress
target genes by binding to a consensus element in the
promoter region. In most cases they differ from the canonical
consensus sequence. Recently, a specific variation in the
central dinucleotide core within the p53-response element
was identified to determine whether p53 acts as a tran-
scriptional activator or as a repressor on the target gene
[21]. The p53 binding site mediates strong activation of
the respective promoters when the central dinucleotide is
AT, AA or TT, matching the classical consensus sequence.
Core dinucleotide combinations of TG, CA, CC, CG, GG
or GC are found in repressive p53 response elements [21].
The function of the remaining dinucleotides depends on the
flanking nucleotides of the response element and can either
mediate p53-dependent activation or repression whereas the
position nearest to the CWWG core motif has the strongest
positional effect [21]. In addition to variations within the
two decamers of the p53 binding site, the spacer between
both half sites also influence the p53 effect. Recent analyses
of validated repressor sites demonstrate often longer spacers
than activator sites [17].

In addition new p53 binding elements have been found
allowing direct interaction of p53 with promoter DNA
(Figure 2, panel I). One example is transcriptional repression
of the MDR promoter [22], where p53 can repress tran-
scription directly by binding to a novel head-to-tail (HT)
site within the MDR1 promoter. A similar element was
found in the CD44 promoter which is efficiently repressed
by p53 in a DNA-binding-dependent manner [23]. Work
from Marks et al. showed that the rat Bradykinin B2 promoter
harbours two binding sites and one of them was responsible
for p53-dependent induction while the other mediated
transcriptional repression by p53. Intriguingly, the function
of the repressive element was strongly dependent upon the
promoter context as it turned into an activating element
when cloned in front of a TATA-Luc minimal promoter [24].
This mechanism of p53-dependent repression therefore may
involve other factors, recruited to the target gene promoters
dependent on sequence binding motifs or epigenetic modifi-
cations of chromatin.

3. Repression by Direct Interactions with Target
Gene Promoters or Bound Cofactors

3.1. DNA-Binding-Dependent Mechanisms. Different mech-
anisms which are dependent on a direct DNA binding of
p53 have been described (Figure 2). One possibility involves
binding of p53 to an element which overlaps binding sites
from coactivator molecules (Figure 2, panel II). But direct
DNA-binding of p53 to such an element and subsequent
interference with the activity of other transcription fac-
tors is rarely the exclusive mechanism for p53-dependent
repression. Instead, in most cases manifold distinct molec-

ular mechanisms contribute concertedly to p53-dependent
response of its repressed target genes. However, in this
section we will mention those p53 target genes, whose
transcriptional repression is achieved at least in part by direct
binding of p53 to their respective promoters. Additional
mechanisms described for these p53 target gene will be
discussed in detail in later sections.

The expression of the alpha-fetoprotein (AFP) has
been shown to be governed by hepatic nuclear factor 3
(HNF3) which binds to a sequence called the developmental
repression domain of the promoter. Due to its higher
binding affinity, p53 is able to displace HNF3 from the AFP
promoter. Furthermore, it was demonstrated that p53 can
interfere actively with transcription of AFP independently
of HNF3 most likely through recruitment of a corepressor
complex [25]. However, this mechanism occurred exclusively
in liver cells [24]. Wilkinson et al. proved that SnoN is
the corepressor whose interaction with histone deacetylases
(HDACs) is promoted by p53 [25]. Furthermore, they
demonstrated additional crosstalk between the TGF-β and
p53 signalling pathways. Both, p53- and TGF-β-activated
SMAD transcription factors are able to bind to an intercalat-
ing response element in the AFP promoter. The interaction
of this complex with SnoN and the corepressor mSin3A is
essential for repression of AFP transcription [26]. mSin3A is
a mediator of HDAC recruitment which induce changes in
chromatin structure. Therefore, the protein complex needed
for the repression of the AFP promoter contains several
proteins which act on the local chromatin structure. These
results indicate that different mechanisms govern repression
of the AFP promoter by p53 and that tissue-specificity
is achieved through recruitment of specific corepressor
proteins.

Recently a further p53 target was identified to be reg-
ulated by p53 through a similar mechanism. Activity of
the human polycystic kidney disease-1 (PKD-1) promoter
was shown to be repressed by direct binding of p53 to
four p53-response elements (BS1-4) [27]. One of these
sites (BS1) dictates active repression in association with an
HDAC/mSin3A repressor complex. However, BS1 requires all
three other p53-binding sites for full activity, and the authors
suggest a model whereby p53 exerts a biphasic control on
PKD1 gene transcription, depending on cellular context and
the cognate cis-acting element.

A mechanism involving direct binding of p53 to a
promoter element which overlaps a binding site from a
coactivator molecule was also shown for the human AP-
endonuclease (APE1/Ref-1) promoter. APE1 is an essential
multifunctional protein, and plays a central role in the
repair of oxidative base damage via the DNA base excision
repair (BER) pathway. A recent study demonstrated that
endogenous p53 is bound to the APE1 promoter region that
includes a SP1 site, and that this binding of p53 interferes
with SP1 binding to the APE1 promoter [28].

Such an interference of direct p53 DNA-binding with
function of general transcription factor SP1 is described to
contribute to p53-dependent repression of several other p53
target genes, including Cdc25C and Cyclin B1. Repression
of both genes were found to be carried out at least in part
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Figure 2: DNA-binding dependent mechanisms. Mechanisms of p53-dependent repression which involve direct binding of p53 to the DNA.
Binding of p53 to a new p53 binding element leading to direct transcriptional repression by p53 (panel I), displacement of other transcription
factors due to overlapping DNA-binding sites (panel II) and concomitant binding of p53 and a second transcriptions factor with interaction
of these two factors leading to repression of the gene (panel III) belong to this group.

by binding of p53 in vicinity to an adjacent SP1-binding
site and interaction of these two factors (Figure 2, panel III)
[29, 30]. However, several further mechanisms have been
described to contribute to p53-dependent repression of both
genes. For Cdc25C, intact CDE/CHR elements (cell-cycle-
dependent element/cell-cycle genes homology region) [30]
or CCAAT boxes of the promoter [31–33] are found to
be required and/or recruitment of histone- and promoter-
modifying enzymes is demonstrated [34, 35]. In addition, for
Cdc25C indirect mechanism of p53-dependent repression via
the target gene p21CIP1 was described [36]. These different
types of mechanisms are discussed below.

p53 activity has also been shown to interfere with the
transcription of viruses. The HIV-LTR region was shown to
be bound by p53 with partial displacement of SP1 leading
to transcriptional repression [37]. Another example for
overlapping transcription factor binding sites is the survivin
gene [38]. The mechanism of p53-dependent repression
involves direct binding of p53 to the promoter to a sequence
which includes an E2F binding site. Hoffman et al. showed
that increasing levels of p53 are able to overcome E2F-
induced survivin expression, suggesting a displacement of
E2F from the promoter [38]. Later experimental work by
Löhr et al. found that direct binding of p53 is not essential
for repression [36]. Instead, an indirect mechanism was
proposed involving the p53 target gene p21CIP1 which is
discussed in detail below. Raj and coworkers showed that
the regulation of survivin in melanocytes is carried out by
different mechanisms also under nonstress conditions [39].
One of these involves direct p53-binding to the promoter
and disruption of this interaction is sufficient to induce
basal survivin expression. While it has been reported that
p53 also affects survivin expression via the p21CIP1-Rb-E2F

pathway mediated by E2F1 and E2F3 [36, 38, 40], Raj and
coworkers also demonstrated binding of E2F2 to a newly
identified E2F-binding site within the survivin promoter
[39]. This implicates a novel role for E2F2 rather than
E2F1 or E2F3 [41] in the negative regulation of survivin
expression in human melanocytes. Moreover, in this cell
system, p53-dependent repression of the survivin promoter
appeared to be independent of the retinoblastoma protein
Rb [39]. Furthermore, a recent study demonstrated that
hypermethylation of the survivin promoter in endometrial
tumors is correlated with increased survivin expression. The
authors speculated that DNA-methylation could inhibit the
direct binding of p53 to the survivin promoter. In addition
microarray data were presented, which suggested that de-
repression by methylation is a general mechanism of p53
regulation [42]. In conclusion, there seem to be different
mechanisms governing p53-dependent regulation of survivin
expression which might be dependent on the cell type
employed for the studies as well as on stress conditions
affecting the cells.

In addition to these primary p53 target genes, for a
couple of genes direct DNA-binding of p53 to the promoter
region in vivo was demonstrated for example for the p202-
[43], PTTG1- [44], PRC1- [45], CHEK- [44], RAD51-
[46, 47], hDDA3- [48], Hsp90β- [49], and LASP1-gene
[50]. Here interaction of p53 with its consensus sequence
leads to transcriptional repression. However, the underlying
mechanisms were not investigated further.

3.2. DNA-Binding-Independent Mechanisms. Beside the
mechanism relying on direct DNA-binding numerous
target genes have been described where p53 regulates
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Figure 3: DNA-binding independent mechanisms. Mechanisms of p53-dependent repression independent of DNA-binding of p53. We
classified these mechanisms roughly into two groups: one comprising interaction with other transcription cofactors (panel I), the second
covering interaction of p53 with the basal transcription machinery (panel II). p53 has been shown to interact with TBP, TFIIA, TFIIB and/or
diverse TAFs.
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promoter activity but direct DNA-binding is not required.
We classified these mechanisms roughly into two groups:
one comprises interaction with other transcription cofactors
(Figure 3, panel I) or interaction with the basal transcription
machinery (Figure 3, Panel II), the second covers regulation
of chromatin structure and promoter methylation (Figure
4).

Different evidences show that p53 is able to bind to a
variety of coactivators and interferes with their transactivator
function. Promoter regulation of the hTERT- [51], insulin
receptor- [52], IGF-I receptor- [53], VEGF- [54] and hGR1-
genes [55] depends on binding of p53 to SP1. This protein-
protein interaction impairs binding of SP1 to promoter DNA
leading to decreased promoter activity. Binding of p53 to the
promoter was not detected for these target genes.

It has been known for some time, that matrix met-
alloproteases are repressed by p53 [56] and mechanistic
investigations had been carried out showing that p53
interacts with promoter-bound AP-1. Although p53 did
not modulate AP-1 binding to its consensus sequence, the
repressive effect was completely abrogated after deletion of
the AP-1 binding site [57]. Thus, this repression mechanism
seems to depend rather on the modulation of AP-1 activity
than on competitive promoter-binding.

The CCAAT-Box binding factor NF-Y has been impli-
cated in the repression of several cell-cycle genes. In addition
to the Cyclin B1 gene mentioned before, repression of its
homologue, Cyclin B2 [58], has been attributed to NF-Y
function, too [31]. p53 binds to the NF-YC subunit of NF-
Y which is recruited to cell-cycle promoters of the Cyclin
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Figure 5: Indirect repression through regulation of other target genes. Indirect repression mechanisms are characterised by complete absence
of p53 at the target gene promoters. It binds neither at the promoter itself nor at the periphery through protein-protein interactions. p53
regulates expression of numerous transcription factors and changes in their expression should have an impact on their target genes, too
(panel I). Furthermore, the CDK-Inhibitor p21CIP1 has been implicated in the repression mechanism of several genes (panel II). Increased
expression of p21CIP1 protein due to p53-dependent transactivation leads to inhibition of several CDKs. Consequently the retinoblastoma
protein remains hypophosphorylated. Hence, instead of releasing E2F which can act as a transcriptional activator, hypophosphorylated RB
remains complexed with E2F and functions as a repressor.

B2, Cdc25C and Cdc2 genes. Following DNA-damage, p53
is acetylated and induces changes in chromatin structure
through recruitment of histone deacetylases HDAC1, 4 and
5 [31, 34]. The NF-Y binding sites are essential for both,
p53-dependent repression and HDAC-recruitment. These
results indicate that repression of at least some cell-cycle
promoters is dependent on intact binding of NF-Y to
CCAAT-Boxes and in this context NF-Y bound p53 is part
of a large chromatin remodelling repressor complex. Other
experiments showed, however, reduced basal activity after
mutation of the CCAAT-Boxes of the Cyclin B2 promoter.
Repression by p53, however, was only moderately impaired
[58], which implies that there are different mechanisms
leading to Cyclin B2 repression. Another group showed
that NF-Y binding to the Cyclin B1 and Cdc2 promoters
itself is impaired after overexpression of p53 [59]. In
addition, the transcriptional repression of the Cdc2-gene
whose gene product interacts with Cyclin B to form the
mitosis promoting factor (MPF) [60], depends essentially
on NF-Y [61], too. Also the Checkpoint kinase Chk2 [62]
and the securin gene [63] are repressed by p53 in a NF-Y
dependent manner. This mode of repression has also been
demonstrated for the topoisomerase IIα gene [64, 65].

Further transcription factors bound by p53 to induce
transcriptional repression are c-myc [66], CBF [67], STAT5
[68], HIF1α, [69], Estrogen Receptor [70] and the hepatic
nuclear factors (HNF) 4α1 and 6α [71, 72]. Transcriptional
repression of target genes is mostly achieved through pre-
venting the activating transcription factors from binding
to the respective promoter. It applies to HNF4α1, that p53

also binds directly to the HNF4α1 promoter and represses
its activity which was in part relieved by inhibition of
HDACs. In addition, p53 binds to the ligand binding
domain of HNF4α1 and inhibits its transactivating function.
Therefore, the regulation of the HNF4α promoter involves
different mechanisms. This illustrates a well-known feature
of p53-function: p53 represses its targets often by interfering
with their expression on multiple ways. In conclusion, the
prevention of transactivators from binding to promoters by
p53, either through protein-protein interaction or through
competition for DNA binding, is a widespread mechanism
which has implications on the expression of numerous genes.

Apart from the interaction with coactivators, different
studies have shown that p53 interacts with the basal tran-
scription machinery and thereby represses promoter activity
[73–76] (Figure 3, panel II). For some target genes this
mechanism was assumed, such as MCL-1 [77], Bcl-2 [78] and
Cox-2 [79]. Binding of p53 to TBP was shown to counteract
its association to other components of the basal transcription
machinery like TFIIA [80] and TFIIIB [81]. The functional
significance of this interaction of p53 and TBP was elucidated
by Crighton et al. [81]. They found that p53 specifically binds
to TBP and disrupts TBP-TFIIIB interactions. This prevents
TFIIIB from binding to TFIIIC2 which is a critical step
for the assembly of transcription machinery on tRNA gene
promoters. Additionally, the interaction between TFIIIB and
RNA polymerase III is also impaired. Finally, the amount of
tRNA is markedly decreased after expression of p53 which is
not bound to tRNA promoters thereby raising the question of
how specific this repression mechanism is. The authors also



Journal of Biomedicine and Biotechnology 7

showed that TBP promoter occupancy after p53 expression
is indeed lower at tRNA promoters but increased on the
p21CIP1 promoter region. So, p53-TBP interaction is involved
in repression and transactivation as well. Another study,
however, showed that p53-TBP interaction is not sufficient
for repression of stimulated promoters. p53 was able to
repress promoter activity stimulated by different coactivators
in Drosophila Schneider cells, but overexpression of TBP
did not rescue the inhibition of activated promoters [82].
Therefore, it is likely that there are other, maybe basal,
transcription cofactors which are involved in the repression
by transcription machinery interference. One proof of this
principle was demonstrated by Gridasova and Henry who
investigated repression of small nuclear RNAs U1 and U6
by p53 [83]. Intriguingly, they found that p53 is in fact
recruited to the snRNA promoters but their repression
is not dependent on that interaction. p53 binds to TBP
and to snRNA-activating protein complex (SNAPC), a basal
transcription factor specific for snRNA genes which binds
to proximal sequence elements [84]. Therefore, SNAPC

might guide p53 to snRNA promoters and cooperate in the
repression mechanism.

3.3. Regulation of Chromatin Structure and Promoter Methy-
lation. Regulation of epigenetic modifications on histones
or promoters is a common mechanism for transcriptional
control. p53 downregulates target genes by recruitment of
histone- and promoter-modifying enzymes or mediators of
these. A high number of genes were shown to be regulated,
at least in part, by altering chromatin structure rendering
the promoter regions inaccessible for the transcription
machinery and cofactors (Figure 5). The survivin [85], PSA
[86], c-myc [87], AFP [88–91] and HNF4α genes [71, 72]
are regulated in part by recruitment of histone deacetylases
(HDACs). In addition numerous cell-cycle genes like Cdc2
[31], Cyclin B2 [31, 34], Microtubule associated protein 4
(Map4)[92, 93], Snk/Plk-akin kinase (SAK) [94], Mitosis
Arrest Deficiency 1 (MAD1) [95] and Cdc25C [31] are
downregulated by this mechanism. Cdc2 and Cyclin B are
important for G2/M progression and their expression levels
depend on NF-Y. As described above, p53 was shown to
interact with promoter-bound NF-Y. After DNA-damage p53
becomes acetylated at the C-terminal domain and recruits
HDAC1, 4 and 5 followed by decreased histone acetylation
and promoter repression [31, 34]. In addition to chromatin
modification, also promoter methylation by DNMT1 is
involved into the repression of the Cdc2 and Cdc25C
gene [96]. Chromatin immunoprecipitations of Doxorubicin
treated cells showed that the repressor complex which
mediates downregulation of promoter activity contains p53,
HDAC1, DNMT1 and correlated with dimethylated histone
H3 (H3K9me2) but no NF-Y was detected. Furthermore,
these promoters displayed internal CpG methylation in the
vicinity of the p53 binding sites after DNA-damage and this
methylation was dependent on p53 [35].

Depending on the target gene, the repressor protein
complexes assembled may show different components. The
repression of the Map4 and MAD1 genes [93, 95], for

example, is carried out by a complex including p53, HDACs
and the corepressor mSin3a, which was shown to mediate
the interaction between p53 and HDAC [92]. mSin3A
also plays a pivotal role in the p53-dependent repression
of other genes like AFP [26] and c-myc [87]. Ho et al.
[87] observed that p53-induced G1-arrest is dependent on
functional c-myc repression and this regulation is sensitive
to the HDAC-inhibitor trichostatin A (TSA). Accordingly,
the corepressor mSin3a is recruited on the c-myc promoter
possibly for mediating the interaction with HDACs. In
conclusion the repressor complexes which control chromatin
structure of repressed target genes contain different com-
ponents depending on the gene to be silenced. p53 is often
directly associated with the promoter but may also be bound
indirectly through interactions with other promoter-binding
proteins.

4. Indirect Repression through Regulation of
Other Target Genes

For indirect repression, p53 binding to the promoter or to
cofactors is not required (Figure 5). Indeed, p53 regulates
expression of numerous transcription factors like TCF4 [97],
ATF3 [98] or c-fos [99], and changes in their expression
influence transcription of their target genes, too (Figure 5,
panel I). One example of indirect p53-dependent repression
is the regulation of the Cyclin D1 gene by crosstalk with the
NF-κB pathway [100]. A NF-κB p52/Bcl3-complex controls
expression from the Cyclin D1 gene and p53 inhibits expres-
sion of the Bcl-3 coactivator unit. Interestingly, the p52-
subunit was required for Cyclin D1 repression, suggesting
that it acts as a repressor when Bcl-3 is absent. The p52-
subunit is able to recruit HDAC1 to the Cyclin D1 promoter
and interactions of these proteins increase significantly
after p53 induction [100]. So, this repression mechanism
ultimately culminates in changes in chromatin structure
which leads to transcriptional repression.

Special importance to gene repression by p53 has the
target gene p21CIP1. This CDK inhibitor protein has been
implicated in the repression mechanism of several genes like
CHK1 [101], survivin [36, 39], topoisomerase IIα [102, 103],
Cyclin B1 [36, 103–105], Cyclin A2 [36, 103], Cdc2 [36,
103, 104], Cdc25A [106, 107], Cdc25C [36], hTERT [108],
PLK1 [109], Rad51 [103], the MCM genes [110] and BRCA1
[36]. The p21CIP1 protein was shown to inhibit several
CDKs which are essential for cell-cycle progression. Usually,
the retinoblastoma protein gets hyperphosphorylated by
CDKs in G1/S-Phase of the cell-cycle which leads to release
of bound E2F transcription factor complexes mediating
transcriptional regulation of numerous genes during the
cell-cycle. p21CIP1 causes decreased CDK-activity leading to
hypophosphorylated Rb which in turn remains complexed
with E2F [111, 112] (Figure 5, panel II). Expression of E2F-
dependent genes is therefore decreased as a consequence
of p21CIP1 expression. When p21CIP1 is involved in the
molecular mechanism, p53-dependent repression at the
promoter level should depend on E2F-binding sites, which in
fact was demonstrated for survivin [39], hTERT [108], Cdc2
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[103, 104, 113], Cyclin A [114] and also suggested for Cyclin
B1 [103, 104].

Analyses of the cdc2 promoter showed that its repression
is dependent on both p21CIP1 and the retinoblastoma
proteins (Rb, p130 and p107). p21CIP1 activity induces a
p130/E2F4 complex which is recruited to the CDE/CHR
elements of the cdc2 promoter. Mutation of these elements
impairs p53-dependent repression [113]. The remaining
potential of p53 to repress the promoter independent of the
CDE/CHR elements may be attributed to other repression
mechanisms, for example the recruitment of chromatin
remodelling enzymes with subsequent alterations in the
chromatin structure. So cdc2 is another example of a p53-
target gene, where many different molecular mechanisms act
together for mediation of p53-dependent repression.

Beside cdc2, p53-dependent repression of several genes
is considered to rely on the presence of CDE/CHR tandem
elements within the respective promoters [115]. Plk1 and
topoisomerase IIa genes were shown to be downregulated
through CDECHR sites upon p21CIP1 overexpression [103].
The CDE/CHR tandem element and p21CIP1 are also found
to be responsible for mediation of p53-dependent repres-
sion of the Cdc20 promoter [116]. However, these results
have been challenged by a recent study, demonstrating
that under physiological levels of p53, neither p21CIP1 nor
the CDECHR elements are required for p53-dependent
repression. Instead, the authors identified a p53-binding
element further upstream in the Cdc20 promoter as the
major regulatory site [117].

Nevertheless, consistent with the findings of Kidokoro
et al. [116] is the mechanism of transcriptional repression
of G2/M genes after DNA damage postulated by Mannefeld
et al., which require functional p21CIP1 [105]. As described
above, p21CIP1 inhibits activity of CDK complexes, thereby
triggering hypophosphorylation of retinoblastoma proteins
and formation of repressive pocket protein-E2F complexes
on E2F-dependent promoters. Mannefeld and coworkers
found that in response to DNA damage binding of E2F4 and
p130 to the recently identified E2F-pocketprotein complex
LINC/DREAM is induced and displaces transcription factor
B-Myb from this complex. It is postulated, that the switch
of LINC/DREAM associated proteins depends on the phos-
phorylation level of p130 and thereby on p21CIP1 activity.
The G2/M genes Cyclin B1, CDC2, BIRC5 and UBCH10
were shown to be regulated by this mechanism [105]. In
addition to these G2/M genes participation of E2Fs and
pocket proteins, especially p130, in DNA damage-induced
inhibition of several other cell-cycle regulators is described
[109, 113, 118, 119] suggesting that this mechanism is
another widespread mode of p53-dependent repression.

A further example for p21CIP1-dependent downregula-
tion is the telomerase (hTERT) gene. Mutational analyses of
the promoter showed that an atypical E2F site in the 5′UTR
region is responsible for the repression of this promoter.
Cotransfection experiments with a dominant-negative E2F
mutant showed that p53 is not able to repress hTERT
promoter after inhibition of E2F activity. Furthermore, the
knockdown of the Rb, p130 and p107 proteins significantly
reduced the p53-mediated repression [108]. Therefore, the

p21CIP1-Rb-E2F axis controls repression of the telomerase
gene after p53 expression. As the Rb-proteins were shown to
recruit HDACs to target gene promoters which is critical for
specific gene repression [120], the hTERT downregulation
was investigated after trichostatin treatment. The inhibition
of HDACs attenuated the repression effect of p53, indicating
that histone deacetylation is involved in the repression of
hTERT promoter [108]. As described above, the repression
of hTERT was also demonstrated to be dependent on an
interaction of p53 with the SP1 coactivator [51]. Again, there
are different mechanisms which may act together to repress
hTERT gene expression.

The expression of the cell-cycle phosphatase Cdc25A
is also repressed by p53 [106]. We observed that Cdc25A
repression after DNA-damage is abrogated after p21CIP1-
knockdown. In consistence with that we and others found
that translation is essential for transcriptional repression.
Inhibition of translation via cycloheximide abrogates repres-
sion of Cdc25A and other target genes [121] indicating that
other proteins have to be synthesised during p53 expression
to take part in the repression mechanism (unpublished
results). This suggests contribution of the p21CIP1-Rb-E2F
pathway in the p53-dependent repression of Cdc25A. It was
also suggested that p21CIP1 directly binds as a transcriptional
regulator to Cdc25A promoter DNA [107]. Its presence on
DNA is associated with an inhibition of the recruitment of
the p300 histone acetylase and with a downregulation of
histone H4 acetylation [107].

In conclusion, gene regulation by indirect mechanisms
is a common feature of p53 activity. In particular, p21CIP1

is an important mediator of p53-dependent repression of
many target genes, mainly by inhibition of cyclin dependent
kinases provoking subsequent interference with the Rb-E2F-
pathway.

5. p53-Dependent Repression by Regulation of
Noncoding RNAs

In recent years, nonprotein coding RNAs (ncRNA) have
emerged as novel regulators of different signalling pathways.
Notably, ncRNAs regulate the p53 pathway upstream and
downstream of p53. A transcript located antisense to the p53
gene (Wrap53) is induced after DNA damage and directly
interacts and stabilizes the p53 mRNA [122]. Interestingly,
the p53 mRNA itself acts as a ncRNA by interaction with E3
Ubiquitin Ligase MDM2 [123]. This interaction contributes
to inactivation of MDM2-mediated p53 degradation after
DNA damage. Together, ncRNAs are an integral component
of the p53 signalling network.

Regulation of ncRNAs by p53 has been investigated in
detail for a class of small RNAs called miRNAs. Different
groups showed that p53 upregulates genes of the miRNA-
34 family [124–128]. MicroRNAs are small 21–25 nucleotide
long noncoding RNAs which can regulate gene expression
posttranscriptionally by interference with mRNA-translation
or by induction of mRNA-decay [129, 130]. By proteomic
studies it was demonstrated that one miRNA may have
hundreds of targets [131, 132]. The p53 mediated repression
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of gene expression by miRNAs is not carried out at the
promoter level but leads to changes in mRNA- and protein-
levels. Only recently, it was demonstrated that miRNAs
primarily act through induction of mRNA decay and not
through translation inhibition alone as anticipated earlier
[133]. Interestingly, miRNA-34 induction promotes apopto-
sis and leads to repression of diverse genes involved in cell-
cycle progression, apoptosis, DNA repair, and angiogenesis
[127]. The regulation of miRNA-192 and -215 by p53 also
influences cell-cycle progression [134, 135]. This function
has been attributed, in part, to the miRNA-mediated induc-
tion of p21CIP1 in cells after overexpression of miRNA-192
and -215. On the other hand, miRNA-mediated repression
of cell-cycle genes may also contribute to cell-cycle arrest.
miRNA-107 is transcriptionally induced by p53 and represses
CDK6 and the Rb Related 2 (p130) [136]. Overexpression
of this miRNA has been shown to induce a G1/S cell-cycle
arrest [137]. An interesting aspect of miRNA-107 regulation
is that this miRNA also influences the angiogenesis pathway
by interfering with HIF1β expression [138]. This shows
that p53-dependent regulation of one miRNA may have an
impact on different signaling pathways. The miRNA-25, -
93, -106b cluster, which is intronic to the MCM7 gene, was
shown to be repressed by p53. This repression is mediated
by inhibition of E2F1 activity, which controls expression
of the host gene MCM7. Overexpression of these miRNAs
promotes cell proliferation and delays senescence [139].
Another example is the proto-oncogene c-myc which is
repressed by different p53-dependent mechanisms. In one
of these pathways p53 transcriptionally induces miRNA-145
which then represses c-myc expression [140]. In addition, c-
myc is regulated by interference of p53 with components of
the basal transcription machinery, as described above [80].
miRNA genes are also downregulated by this mechanism.
The miR-17-92 cluster is transcriptionally downregulated
under hypoxic conditions. p53 binds at a response element
in the proximal promoter region in which this site overlaps
with the TBP binding site. Thus, p53 displaces TBP at the
miR-17-92 cluster promoter to repress transcription. Lower
expression of these miRNAs assists in hypoxia mediated p53-
dependent apoptosis induction [141].

In contrast to miRNAs, long noncoding RNAs are
a heterogeneous class of transcripts which have diverse
functions in different processes. Genome wide investigation
of RNA expression and chromatin modifications has shown
that there are over a thousand long intergenic ncRNAs
(lincRNAs) in the human genome [142, 143]. A subset
of these lincRNAs is regulated by p53. Only recently,
lincRNA-p21 was discovered as a global regulator of p53-
dependent repression in mouse. This RNA interacts with the
heterogeneous nuclear ribonucleoprotein K (hnRNP-K) and
is needed for recruitment of this complex to specific genomic
sites of repressed genes [144]. Knock down of lincRNA-p21
prevented p53-dependent repression of many genes and also
attenuated induction of apoptosis. These results show that
regulated noncoding RNAs also have a great impact on gene
repression by p53. It can be assumed that in the near future
a multitude of other ncRNAs, which are involved in the p53-
pathway, will be discovered.

6. Conclusion

Several genome wide expression analyses show that repressed
genes make up a large proportion of p53-regulated tar-
gets [16, 121]. For example, 5-FU treatment of HCT116
cells results in p53-dependent regulation of 230 of 19,000
genes screened, only 41 of them were activated but 189
were repressed [44]. Results of another study suggest, that
p53-induced repression plays a decisive role in cell-cycle
control, as nearly half of repressed p53 targets are cell-
cycle related [121]. However, genes affected by p53-mediated
repression cover a wide range of cellular functions [145].
In addition to cell-cycle control and induction of apoptosis,
metabolism, infection and immune response, adhesion,
DNA replication and repair, cytoskeleton organization and
cell signalling are affected [145]. However, the observed
spectrum of target genes depends on the stimulus used
[16].

As demonstrated here, the mechanisms leading to p53-
dependent transcriptional repression are diverse. Generally,
in contrast to activation there are many ways of p53-
dependent repression. Direct mechanisms of target gene
repression comprise DNA-binding-dependent mechanisms
and DNA-binding independent mechanisms. In these cases,
p53 acts directly on the target gene promoter by displace-
ment of coactivators or general transcription factors. p53
can also be bound to the promoter through interaction
with other DNA-binding proteins. A lot of target gene
promoters are downregulated by changes in chromatin
structure which leads to inaccessibility of the promoter
region. The second large class of repression mechanisms
comprises the indirect modes, that is, downregulation of
promoter activity where p53-interactions at the target gene
promoters are completely absent. Particularly, the relevance
of the p53 target gene p21CIP1 for this mechanism is
often published. p21CIP1 is thought to contribute to the
p53-dependent repression mainly by inhibition of cyclin
dependent kinases provoking subsequent interference with
the Rb-E2F-pathway. In many cases there is more than one
repression mechanism influencing the promoter activity of
a target gene. It is likely that different mechanisms work
synergistically together and that they may also compensate
for each other.

This is an intriguing difference to p53-dependent trans-
activation which is carried out in most cases by a similar
mechanism. Why are there such diverse repression mech-
anisms? First of all, this diversity may contribute to a
higher flexibility in terms of cell type and tissue-dependent
regulation of target genes after cellular stress. p53 up-
and downregulates different target genes in different tissues
which leads to different physiological outcomes [146]. These
tissue-specific adjustments of the p53 signalling pathway
are achieved through modulation or binding to tissue-
specific coactivators (e.g., liver specific downregulation of
the AFP gene). Another reason for such a diversity of
repression mechanisms may be the enhanced robustness in
the signalling network in response to cellular stress. Aberrant
changes in expression or mutation of single components
of these pathways might have only a minor impact on the
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stability of the whole system. However, mutation of p53 is
widely observed in different tumors and some mutants may
have even oncogenic functions. In conclusion, care has to
be taken in respect to the different cell systems used for
investigations, as this may have influences on the repression
mechanisms. The heterogeneity and the mechanistic diver-
sity of transcriptional repression is an interesting feature of
p53 function making it impossible to assign one mechanism
to one target gene. However, up to date there are a lot of other
candidate genes that are repressed by p53, including SDF-
1 [147], Interleukin-2 and Interleukin-4 [148], Interleukin-
6 [149], stathmin and FKBP25 [150], PCNA [151], MGMT
[152], Ets1 and Ets2 [153], Cks1 [154], Cks2 [155], BRCA1
[156, 157], PIK3CA [158], hGR1 [55], p202 [43], RECQ4
[159], Clusterin [160], PIQ [161], TCF4 [97], and HMMR
(RHAMM) [162], but the detailed mechanisms of their
regulation are not yet clear. As expression of p53 leads to
cell-cycle changes it is difficult to determine for some genes
whether their regulation is the cause or the consequence of
cell-cycle arrest. As outlined above, several cell-cycle genes
are efficiently repressed by p53 and their expression pattern
might additionally be influenced by cell-cycle arrest.

In addition to proteins, noncoding RNAs have evolved as
important components of the p53 network. Many miRNAs
are regulated by p53 and may have an impact on hundreds
of other proteins in the cell. The mechanisms leading
to transcriptional repression mediated by long noncoding
RNAs are only beginning to emerge. Many of them interact
with chromatin modifying complexes and target them to
specific sites in the genome. p53-induced lincRNA-p21
recruits hnRNP-K to genes which are repressed in a p53-
dependent manner and this pathway is important for
apoptosis induction. To date, the underlying mechanisms
of this regulation pathway for specific targets are not clear
and more research is needed in order to elucidate the
contribution of many other ncRNAs to the p53-dependent
gene regulation.

The knowledge of repressed target genes and the com-
plexity of the signalling pathways leading to transcriptional
downregulation is rapidly expanding due to new data
provided by genome-wide transcriptome profiling and ChIP-
Seq methods. More insights into the different mechanisms
may enable the researchers in the future to predict repression
mechanisms on the basis of promoter sequences. The
elucidation of the complete p53-“regulome” is important
for our understanding of its tumor suppressor function and
understanding its mechanisms of gene regulation represent
also the key for therapeutic approaches like the reconsti-
tution of wild-type functions in tumors where p53 was
mutated.
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