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Zecken zählen zu den wichtigsten Überträgern von Krankheitserregern die ernsthafte 

Infektionen bei Mensch und Tier auslösen können. Sie haben eine weltweite Verbreitung und 

sind in tropischen, subtropischen und gemäßigten Klimaten beheimatet. Nach Stechmücken 

sind Zecken die wichtigsten Überträger zoonotischer Infektionen des Menschen und 

verursachen jährlich mehr als 100.000 Erkrankungen weltweit (42). Zudem sind sie die 

wichtigsten Überträger von Infektionskrankheiten auf Wild- und Haustiere mit jährlichen 

wirtschaftlichen Verlusten in Milliardenhöhe (160, 226).  

In Europa sind die wichtigsten von Zecken übertragenen Infektionskrankheiten des Menschen 

die Lyme Borreliose und Frühsommer-Meningoenzephalitis (FSME), die zusammen im Jahr 

mehrere zehntausend Neuinfektionen hervorrufen (46, 94, 127). Auf dem afrikanischen 

Kontinent stellen Zecken insbesondere für den Viehbestand eine große Bedrohung dar. 

Insbesondere die vier Infektionskrankheiten Anaplasmose, Herzwasserkrankheit, Babesiose 

und Theileriose verursachen dabei die größten wirtschaftlichen Verluste (10). 

 

Im Rahmen der vorliegenden Dissertation untersuchten wir die Prävalenz von 

Krankheitserregern in Zecken aus Westeuropa (Luxemburg), Osteuropa (Weißrussland, 

Bulgarien und der russischen Enklave Kaliningrad) und Westafrika (Nigeria). 

In Luxemburg sammelten wir im Laufe der Jahre 2007, 2008 und 2009 in der Aktivitätsphase 

der Zecken insgesamt 8.104 Larven, Nymphen und Adulttiere des Gemeinen Holzbockes 
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(Ixodes ricinus) von der Vegetation. Von Mai bis Oktober wurden dazu insgesamt 33 

Probestellen einmal monatlich nach Zecken abgesucht. In den drei Untersuchungsjahren 

konnten wir signifikante Unterschiede in der Zeckendichte von Jungstadien, nicht jedoch von 

Adulttieren feststellen. Wir vermuten, dass das Zusammenspiel abiotischer und biotischer 

Faktoren ausschlaggebend für die beobachtete Populationsdynamik von Ixodes ricinus ist. 

Insgesamt wurden 5.638 Nymphen und Adulttiere auf das Vorhandensein aller in Europa 

relevanten, durch Zecken übertragenen Humanpathogene mittels spezifischer PCRs 

untersucht. Die durchschnittliche Infektionsrate der Zecken lag bei 16,3% für Borrelia 

burgdorferi sensu lato, 6,7% für Fleckfieber-Rickettsien, 1,8% für Babesia-Arten, 0,9% für 

Anaplasma phagocytophilum und 0,1% für Bartonella-Arten. Zusätzlich detektierten wir in 

einer Zecke das nicht-endemische Pathogen Hepatozoon canis, welches beim Hund die 

Hepatozoonose auslösen kann. Dieser Erreger wurde möglicherweise versehentlich durch 

einen infizierten Hund aus dem südlichen Europa nach Luxemburg eingeschleppt (6). In allen 

drei Jahren wurden weder das FSME-Virus, noch Coxiella burnetii oder Unterarten von 

Francisella tularensis in Zecken aus Luxemburg detektiert. Koinfektionen wurden in 3,3% 

der Zecken nachgewiesen und setzten sich hauptsächlich aus den vorherrschenden Borrelia- 

oder Rickettsia-Arten zusammen. Saisonale Veränderungen in der Zeckeninfektionsrate durch 

Borrelia-Arten konnten für jedes Jahr für nachgewiesen werden, obwohl diese am 

deutlichsten im Jahr 2007 ausfielen. Die von uns aufgestellte Hypothese, dass der in den 

Sommermonaten beobachtete Rückgang der Zeckeninfektionsrate auf Verhaltensänderungen 

infizierter Zecken zurückzuführen ist, scheint von den Ergebnissen einer aktuellen Studie zur 

Überlebensrate von Borrelia-infizierten Ixodes ricinus Zecken unterstützt zu werden (89). Des 

Weiteren konnten wir eine positive Korrelation zwischen dem Urbanisierungsgrad der 

Probestellen und der dortigen Zeckeninfektionsrate mit Borrelien zeigen, was auf einen 

möglichen etablierten Zyklus urbaner Zoonosen schließen lässt.   

Die signifikanten jahresübergreifenden, saisonalen und regionalen Unterschiede sowohl in der 

Zeckendichte als auch der Zeckeninfektionsrate deuten darauf hin, dass nachfolgend auch 

signifikante Unterschiede des Zeckenstich- und Infektionsrisikos für den Menschen zu 

erwarten sind. Obwohl diese beobachteten Veränderungen durch abiotische und biotische 

Faktoren bedingt zu sein scheinen, sind jedoch weitere Studien notwendig, um die 

Populationsdynamiken von Zecken und Krankheitserregern aufzudecken.  

Zur Abschätzung des Gesundheitsrisikos durch Lyme Borreliose in beruflichen 

Risikogruppen führten wir eine Seroprävalenzstudie an 280 Waldarbeitern aus Luxemburg 

durch und konnten in über 35% der untersuchten Waldarbeiter spezifische IgG 
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Serumantikörper gegen Borrelien nachweisen. Die Seroprävalenz von Borrelien stieg mit 

zunehmendem Alter, längerem berufsbedingtem Aufenthalt im Freien, sowie höherer Anzahl 

an Zeckenkontakten und Zeckenstichen. Die Anwendung von Präventivmaßnahmen wie 

Zeckenrepellentien, regelmäßige Körperinspektion und frühzeitiges Entfernen von saugenden 

Zecken schien keine Auswirkung auf die Seroprävalenzrate zu haben, nur das Tragen 

schützender, heller Kleidung schien einen leicht positiven präventiven Effekt auszuüben. Die 

regionale Verbreitung der Seroprävalenzrate bei Waldarbeitern stimmte bis zu einem 

gewissen Grad mit der regionalen Verbreitung der Borrelienprävalenz in Zecken überein, 

wobei ein direkter Vergleich jedoch dadurch erschwert ist, dass IgG Antikörper über Jahre 

hinweg persistieren können und die Infektion nicht notwendigerweise am Arbeitsplatz 

erfolgte.  

In Nigeria wurden insgesamt 836 Zecken von der Vegetation und von Rindern gesammelt, die 

vier Zeckenarten zugeordnet werden konnten (Rhipicephalus (Boophilus) annulatus, 

Amblyomma variegatum, Hyalomma impeltatum, Rhipicephalus evertsi). Vorherrschende 

Krankheitserreger waren eine Rickettsienart, die mit der humanpathogenen Art Rickettsia 

africae verwandt zu sein scheint, sowie das Rinderpathogen Anaplasma marginale. Als 

weitere Krankheitserreger von Wiederkäuern wurden Theileria mutans und Coxiella burnetii 

in saugenden Zecken detektiert, wohingegen eine potentielle neue Borrelienart aus der 

Gruppe Borrelia burgdorferi s.l. nur in Zecken aus der Vegetation nachgewiesen werden 

konnte. Basierend auf unseren Ergebnissen einer erhöhten Diversität von Krankheitserregern 

in saugenden als in lauernden Zecken, vermuteten wir, dass entweder Rinder wichtige 

Reservoirwirte dieser Erreger darstellen könnten. Die Bedeutung dieser durch Zecken 

übertragenen Infektionskrankheiten für die Gesundheit von Mensch und Tier in Nigeria und 

die daraus resultierenden wirtschaftlichen Verluste müssen zukünftig ermittelt werden. 

In Weißrussland führten wir eine Studie an insgesamt 553 Ixodes ricinus und Dermacentor 

reticulatus Zecken durch und stellten eine hohe Prävalenz von Rickettsien (24,4%) fest. Die 

vornehmlich in Zecken der Gattung Dermacentor gefundene, nicht näher identifizierbare 

Rickettsienart aus der Rickettsia rickettsii-Gruppe (43,8%) ließ auf eine hohe Rate 

transovarialer Transmission schließen. Borrelien wurden in 9,4% der Zecken gefunden, 

während andere Pathogene wie Anaplasma phagocytophilum, Coxiella burnetii, Bartonella 

henselae, Unterarten von Francisella tularensis und Babesia-Arten seltener detektiert wurden. 

In unserer Studie konnten wir zeigen, dass lauernde und saugende Zecken in Weißrussland zu 

einem hohen Maße mit Krankheitserregern infiziert sind und ein Infektionsrisiko für Mensch 

und Tier darstellen. Die von uns identifizierten Hotspots mit hohen Zeckeninfektionsraten 
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sollten in zukünftige Surveillance-Studien eingebunden werden, insbesondere bei Beteiligung 

der hochinfektiösen, auch durch Aerosole übertragenen Bakterien Coxiella burnetii und 

Francisella tularensis.  

In einer weiteren Studie wurden aus in Bulgarien gesammelten Zecken Endosymbionten 

isoliert, die eine große Ähnlichkeit mit humanpathogenen Francisella-Arten haben. Durch 

weitere molekulare Charakterisierung konnte gezeigt werden, dass diese isolierten Bakterien 

fakultative sekundäre Endosymbionten von Zecken zu sein scheinen. Nichtsdestotrotz ist eine 

Bestimmung des pathogenen Potentials dieser neuen Arten angebracht. 

Um die Rolle von Zugvögeln auf die Ausbreitung von Fleckfieber-Rickettsien und Babesia-

Arten zu untersuchen, wurden 126 Zecken von Zugvögeln aus der Kurischen Nehrung in der 

Enklave Kaliningrad, Russland gesammelt. Unsere Funde von Rickettsien in 15,1% und 

Babesien in 1,6% der Zecken zeigen, dass auch Zugvögel für die Verbreitung dieser 

Krankheitserreger verantwortlich sein könnten. Weitere Studien sind jedoch nötig, um die 

Auswirkungen des Vogelzugs auf die Verbreitung dieser beiden von durch Zecken 

übertragenen Krankheitserregern zu ermitteln. 

Die von uns durchgeführten Untersuchungen heben die Notwendigkeit andauernder 

Surveillance-Studien zur Prävalenz, Verbreitung und Ausdehnung von Zeckenarten und 

Krankheitserregern hervor. Im Zuge des klimatischen Wandels könnten permanente 

Veränderungen abiotischer Faktoren wie Temperatur und relative Luftfeuchtigkeit die 

Überlebenschancen nicht-endemischer Zeckenarten positiv beeinflussen. Da eine zeitnahe 

Entdeckung invasiver Zeckenarten möglicherweise die Etablierung exotischer Zoonosen 

verhindern könnte, ist die Beobachtung der Zeckenbestände von großer Bedeutung. Zu 

diesem Zweck sollten zukünftig einheitliche Richtlinien zum Studiendesign etabliert werden. 
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Ticks are important vectors of human and animal pathogens and are endemic in tropical, 

subtropical and temperate regions throughout the world. After mosquitoes, ticks are the 

second most important vector of human diseases worldwide, responsible for more than 

100,000 cases of tick-borne diseases annually (42). Furthermore, ticks are the main arthropod 

vector of disease in wild and domestic animals throughout the world with estimated minimal 

economic losses of US$ 7 billion annually (160, 226). 

In Europe the most important tick-borne diseases in humans are Lyme Borreliosis and Tick-

Borne Encephalitis (TBE), both causing tens of thousands of severe infections in humans 

annually (46, 94, 127). In Africa, the most important health threat caused by tick-borne 

pathogens is to livestock animals and major economical losses have been associated with the 

four tick-borne diseases anaplasmosis, heartwater, babesiosis and theileriosis (10). 

 

In the framework of the present dissertation we analysed the prevalence of tick-borne 

pathogens in questing and feeding ticks from Western Europe (Luxembourg), Eastern Europe 

(Belarus, Bulgaria and the Kaliningrad enclave) and sub-Saharan Africa (Nigeria).  

In Luxembourg, 8,104 larval, nymphal and adult Ixodes ricinus ticks were collected from the 

vegetation during the activity period of ticks in the years 2007, 2008 and 2009. A total of 33 

collection sites were visited on a monthly basis from May to October. Significant variations of 

density of immature tick instars were observed in the three consecutive years, whereas the 
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density of adult ticks remained similar. We hypothesized that the interplay of abiotic and 

biotic parameters is responsible for the observed population dynamics of Ixodes ricinus. 

Altogether 5,638 nymphal and adult ticks were analysed for the presence of all human tick-

borne pathogens relevant in Europe using specific detection PCRs. The mean infection rate of 

ticks were 16.3% for Borrelia burgdorferi sensu lato, 6.7% for Spotted Fever Group (SFG) 

Rickettsia species, 1.8% for Babesia species, 0.9% for Anaplasma phagocytophilum and 0.1% 

for Bartonella species. We also found the non-endemic dog pathogen Hepatozoon canis in a 

female Ixodes ricinus tick, which possibly was introduced accidentally by the import of an 

infected dog from Southern Europe (6). Neither Tick-Borne Encephalitis (TBE) virus, nor 

Coxiella burnetii nor Francisella tularensis subspecies were detected in Luxembourgish ticks. 

Mixed infections were detected in 3.3% of all ticks and mainly involved the predominant 

Borrelia and Rickettsia species. Seasonal variations of tick infection rates were observed for 

the different Borrelia species each year, albeit most clearly in 2007. Our hypothesis that the 

observed decrease of the tick infection rate during summer months reflects a behavioural 

adaptation strategy of infected questing ticks seems to be supported by a recent study on the 

influence of Borrelia infection on the survival rate of ticks (89). Furthermore, we observed a 

positive correlation between the grade of urbanization and the Borrelia infection rate of ticks, 

suggesting an established urban zoonotic cycle. The significant interannual, seasonal and 

regional variations in the density of ticks and the prevalence of Borrelia burgdorferi s.l. and 

the other tick-borne pathogens entail that likewise significant changes in the risk of tick bites 

and infection are to be expected. The observed variations seem to be linked to abiotic and 

biotic factors, but further studies on the dynamics of ticks and tick-borne pathogens are 

warranted. 

A seroprevalence study was conducted on samples from 280 forestry workers from 

Luxembourg and 35.4% displayed specific anti-Borrelia burgdorferi s.l. IgG antibodies. 

Evaluation of questionnaires revealed that age, hours spent outdoors, the number of tick 

encounters and the number of tick bites per year were important risk factors for exposure to 

spirochetes. The use of preventive measures like tick repellents, frequent body inspection and 

early removal of ticks did not seem to reduce the risk of exposure, whereas protective clothing 

seemed to have a slight beneficial effect. The regional variations in the seroprevalence rate of 

forestry workers matched to a certain extent with the Borrelia infection rate of questing ticks. 

However, comparison of the two distributions is difficult, as IgG antibodies can persist for 

years and infection was not necessarily obtained during working hours. According to our 
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findings, Lyme Borreliosis is a major health concern in professional risk groups in 

Luxembourg. 

In Nigeria, 836 ticks were collected from the vegetation and cattle. Four tick species were 

found to infest cattle (Rhipicephalus (Boophilus) annulatus, Amblyomma variegatum, 

Hyalomma impeltatum, Rhipicephalus evertsi), whereas only the latter species was collected 

from the vegetation. Predominant pathogens were the Rickettsia species closely related to the 

human pathogenic Rickettsia africae and the cattle pathogen Anaplasma marginale. Theileria 

mutans and Coxiella burnetii, which both are known to infect ruminants, were detected only 

in feeding ticks, whereas a potentially new member of the Borrelia burgdorferi s.l. group was 

detected only in questing ticks. Based on our finding that the diversity of pathogens was 

significantly higher in feeding than in questing ticks we hypothesized that Nigerian cattle may 

serve as an important reservoir for at least some of the detected pathogens. The impact of tick-

borne infections on human and animal health and the resulting economic losses need to be 

further assessed. 

In Belarus, 553 Ixodes ricinus and Dermacentor reticulatus ticks were collected from the 

vegetation and cattle and the pathogen diversity was found to be higher in questing than in 

feeding ticks. Rickettsia species were detected in 24.4%, predominantly a species related to 

the Rickettsia rickettsii group were found. This species was responsible for the high Rickettsia 

infection rate of 43.8% in D. reticulatus ticks, suggesting high rates of transovarial 

transmission. Borrelia burgdorferi s.l. was detected in 9.4% of ticks, whereas the other 

pathogens Anaplasma phagocytophilum, Coxiella burnetii, Francisella tularensis subspecies, 

species of Babesia and Bartonella were less frequently detected. We identified hotspots with 

high tick infection rates, which should be included in future surveillance studies, especially 

when Francisella tularensis and Coxiella burnetii are involved. Our survey revealed a high 

burden of tick-borne pathogens in questing and feeding I. ricinus and D. reticulatus ticks in 

different regions in Belarus, indicating a potential risk for humans and animals.  

We also reported on the identification of two new Francisella-like endosymbionts (FLE), 

found in three different tick species from Bulgaria. The FLEs were molecularly characterized 

and seem to be facultative secondary endosymbionts of ticks. However, further studies are 

necessary to determine the pathogenic potential of these species. 

In order to investigate the role of migratory birds in the spread of SFG Rickettsiae and 

Babesia species, 236 wild birds comprising of 8 species of Passeriformes were collected at 

Curonian Spit in Kaliningrad enclave of North-Western Russia. In total, 126 ticks were 

removed and analysed for the two pathogens. Rickettsia species were detected in 15.1% and 
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Babesia species in 1.6% of ticks. The survey indicates that migratory birds may become a 

reservoir for Babesia spp. and SFG Rickettsiae and are involved in their geographic dispersal. 

Future investigations need to characterize the role of birds in the epidemiology of these 

human pathogens in the region. 

Our studies highlight the need for continuous surveys on the prevalence, distribution and 

spread of tick species and tick-borne pathogens. In the course of climatic change permanent 

changes in abiotic prerequisites like temperature and relative humidity may enhance survival 

of non-endemic tick species. Timely detection of invasive tick species and application of 

countermeasures can possibly prevent the establishment of exotic zoonoses. Tick surveillance 

is an important measure for the better understanding of the epidemiology of tick-borne 

pathogens and the population dynamics of the main vector ticks. However, the establishment 

of guidelines for the design of future studies is warranted. 
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1.1 Ticks and Diseases  

Ticks are important vectors of human and animal pathogens and are endemic in tropical, 

subtropical and temperate regions throughout the world. After mosquitoes, ticks are the 

second most important vector of human diseases, responsible for more than 100,000 cases of 

tick-borne diseases annually (42). Furthermore, ticks are the main arthropod vector of disease 

in wild and domestic animals throughout the world with estimated minimal economic losses 

of US$ 7 billion annually (160, 226). Due to the enormous amounts of blood that ticks can 

ingest, heavy tick infestation in livestock reduces live-weight gain, milk production and 

causes anemia (41, 159, 169). In addition, tick bites can lead to severe allergic reactions, 

toxicoses and even lethal paralysis (53, 126, 228). Skin lesions at the tick feeding sites cause 

major damage to the hide and commonly these are also loci of secondary infections by fungi, 

bacteria and macroparasites (170). More importantly, ticks are competent vectors of a variety 

of pathogens including eubacteria, viruses and protozoans causing serious human and animal 

diseases (7, 102, 170). Especially in tropical and subtropical countries the impact of ticks on 

livestock production is severe and control programs concentrating on tick eradication and 

vaccines against tick-borne diseases have been initiated (217).  

In Europe the most important tick-borne diseases in humans are Lyme Borreliosis and Tick-

Borne Encephalitis (TBE), both causing tens of thousands of clinical cases annually (46, 94, 

127). Other human tick-borne diseases like spotted fever rickettsioses, anaplasmoses and 

babesioses have more or less been neglected in Europe due to the relatively low prevalence of 

the causative agents in ticks. Currently human vaccines are available only against TBEV; a 

vaccine against Lyme Borreliosis was withdrawn from the market due to poor market 

performance (148). In Africa, the most important health threat caused by tick-borne pathogens 

is to livestock animals and major economical losses have been associated with the four tick-

borne diseases anaplasmosis, heartwater, babesiosis and theileriosis (10). Tick-borne 

infections affecting humans are spotted fever rickettsioses, Q-fever and tick-borne relapsing 

fever, but so far only little is known about the prevalence of the causative agents in West 

African ticks (231). 

In the past years, the awareness of medical doctors and scientists for tick-borne diseases 

increased especially in western Europe due to reports on a potential spread of tick vectors as a 

result of climatic change (79, 87, 88, 213). It is hypothesized that an increase of the annual 

mean temperature in Europe might lead to a spread of non-endemic tick species further to the 

North, thus at the same time introducing exotic tick-borne diseases. As most tick-borne 
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pathogens are highly adapted to a certain vector tick species, the maintenance of exotic 

pathogens in non-endemic areas highly depends on the survival and fecundity of its competent 

vector species (7, 170). 

1.2 The tick vector  

Taxonomically ticks are classified as arachnid arthropods of the order Acari. Three families 

are currently recognised, the hard ticks Ixodidae, the soft ticks Argasidae and the 

Nutalliellidae. More than 900 tick species have been described worldwide, all of which are 

obligatory haematophagous ectoparasites of vertebrates (7). Ixodid or hard ticks are 

characterised by the hard shell-like scutum that covers the anterior (females, immature instars) 

or the complete part (males) of the dorsal surface. The more flexible alloscutum posterior to 

the scutum expands during feeding, enabling immature and female ticks to dramatically 

increase their body weight by 200 to 600 times, whereas in males the expansion of the 

alloscutum is limited by the full scutum (169). 

1.2.1 Life cycle  

The hemimetabolous life cycle of ixodid ticks is characterised by three developmental stages 

of larva, nymph and adult. In order to develop into the next stages all instars of ixodid ticks 

need to feed once and take up large blood meals. Most commonly ticks display a three host 

life cycle in which all stages quest for a suitable vertebrate host (Figure 1). Questing larvae 

attach to a suitable host and drop off after engorgement. Moulting into nymphs takes place in 

a sheltered spot on the ground. Nymphal ticks quest and feed in the same way as larvae and 

will moult into a male or female adult tick. Female ticks take up large quantities of blood 

during their final feeding, whereas males rarely feed at all. Mating usually occurs on the final 

blood-meal host and engorged females will lay between 2,000 and 20,000 eggs in a single 

batch on the ground. Female ticks die after depletion while male ticks can mate repeatedly 

(58). Depending on climatic conditions the life cycle is completed in 6 months to several 

years, but generally three-host ticks spend more than 90% of their life span off-host (36). 

Some tick species display a modified life cycle which is characterised by feeding on either 

one or two individual hosts. Larval ticks find their host by questing and after engorgement 

they will remain attached to the host, where moulting occurs. Nymphs feed on the same host 

and either drop off to moult into adult ticks on the ground (two-host life cycle) or remain 

attached (one-host life cycle). The life cycle of these tick species is shorter and usually 

completed within few months. 
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Figure 1: Three-host life cycle of Ixodes ricinus. Illustrated after Estrada-Pena et al, 2004 

(58). 

 

1.2.2 Host seeking 

Ticks have developed different host finding strategies. Exophilic species seek hosts in the 

open environment, either by questing passively on the vegetation for passing hosts or by 

actively foraging the ground (36). Host recognition is triggered by body heat, mechanical 

stimuli and chemical compounds such as CO2, ammonia, H2S, butyric acid, lactic acid and 

urea which are detected by chemosensilla localised in the sensory fields of the palps and the 

Haller’s organ on the tarsi of the front legs (26, 120, 201). 

Ticks displaying questing behaviour are usually separated vertically according to their 

developmental stage. Larval ticks are found close to the ground, e.g. on leaf litter, where they 
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are likely to attach to small vertebrate hosts like mice and where microclimatic conditions are 

more stable. Nymphs quest at heights of up to 50cm and adults can climb the vegetation as 

high as 150cm. The questing period is interrupted when high temperature and low relative 

humidity create an unfavourable microclimate. Some tick species prevent desiccation by 

retreating periodically to the base of the vegetation, where they restore their lost body water. 

A hygroscopic salt solution is secreted by the salivary glands and the atmospheric water 

condensing on the mouthparts is ingested (17, 201). Other, more desiccation-tolerant tick 

species are able to rehydrate during the cool and humid periods of the night without having to 

retreat to the basis of the vegetation (201). In contrast, endophilic or nidicolous ticks complete 

their life cycle in the burrows and nests of vertebrates, where microclimatic conditions are 

relatively stable throughout the year (36). Some ticks display a so called domestic behaviour 

and have adapted to housings of humans, where they mainly feed on domestic animals (234).  

1.2.3 Feeding 

The mouthparts of the tick consist of chelicerae, hypostome and palps. The chelicerae are 

used to cut the dermis and break the capillary blood vessels close to the skin to form a feeding 

lesion. The toothed hypostome serves as an anchor to attach to the host, but it also forms a 

feeding channel for the uptake of blood. Saliva is released into the wound via the same route 

immediately after tick attachment to overcome the host’s defensive reaction, e.g. haemostasis, 

cellular and humoral responses of the immune system (70, 112). Many tick species produce 

and excrete cement by the salivary glands to glue hypostome and palps to the dermis of the 

host. The feeding process is slow as the alloscutum needs to grow accordingly. Larval ticks 

generally feed for three to five days, nymphs for four to eight days and adult females can 

remain attached for five to twenty days (234). During the feeding process, nutrients are 

filtered from the blood and excess water is excreted back into the host by the salivary glands. 

In the midgut, the blood meal is taken up into digestive cells by endocytosis or phagocytosis 

(whole cells) and digested intracellularly. The midgut lumen can absorb amino acids, 

monosaccharides, free fatty acids, water and salts directly. Digestion is slow and can take 

weeks (71). 

1.2.4 Seasonal Activity 

Exophilic ticks display seasonal activity which is highly influenced by temperature, relative 

humidity and day length (48, 78, 171). Larval activity usually peaks in summer months and 

nymphs moulting from fed larvae emerge in late summer or early fall. Normally these new 
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nymphs overwinter, feed in the following spring and moult into adults during the summer. 

Adults begin questing in the autumn months of the same year, but can also be found on the 

vegetation in the following spring (171). In temperate regions diapausing ticks occasionally 

re-emerge during warm (non-freezing) winter days and can be found questing on the 

vegetation (48).  

1.2.5 Role as vector 

Ticks are ideal vectors of pathogens as all instars are obligatory haematophagous parasites 

feeding on different vertebrate hosts. Pathogen transmission is facilitated by the long duration 

of the blood meal, the continuous release of tick saliva and excess fluids into the host and the 

modulation of the host’s immune response by tick saliva (16, 70). In addition, the long-term 

co-evolution with pathogens and the relatively long life span of ticks further enhance 

transmission of pathogens (71). A variety of pathogens is transmitted by ticks which usually 

are acquired from reservoir hosts during the first blood meal, transstadially maintained during 

development into the next instar and horizontally transmitted to other vertebrate hosts during 

subsequent blood meals. Some pathogens have the ability to be vertically (transovarially) 

transmitted from females to offspring (15, 130). In order to be successfully transmitted, 

pathogens need to prevent digestion, escape the tick’s innate immune system and pass from 

the midgut into the salivary glands. These adaptations of tick-borne pathogens are oftentimes 

tick species-specific and it was shown that immunotolerance to pathogens is a crucial feature 

of competent tick vectors, whereas incompetent vectors are immunocompetent (139). Even 

competent tick vectors may suffer from the infection with a tick-borne pathogen and negative 

effects on the survival rate of ticks, fecundity and feeding time have been described (139). 

The prevalence of pathogens in ticks of a given region depends on the density of competent 

tick vectors, reservoir hosts as well as the availability of larger mammals which serve as a 

final blood meal host of female ticks and are crucial for successful reproduction.  

1.2.6 Important Tick Species 

Ticks of the genus Ixodes are the predominant vectors of human diseases in the temperate 

zones of the Northern hemisphere. In Western Europe, the sheep tick or castor bean tick 

Ixodes ricinus is the main vector of Lyme Borreliosis and Tick-Borne Encephalitis, whereas 

in Eastern Europe these diseases are mainly transmitted by I. persulcatus (92, 212). In 

addition, I. ricinus is a competent vector for several human pathogens such as Anaplasma, 

Ehrlichia and Rickettsia species. Host seeking behaviour of I. ricinus is exophilic and 
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therefore these ticks are often found to infest humans. The nidicolous I. hexagonus is 

predominantly parasitizing on wild, nest-building animals like the European hedgehog, but it 

also feeds on foxes, martens or pet animals like cats and dogs (162). Tick bites in humans are 

scarcely reported (100, 125). Another nidicolous tick species is the highly specialised 

I. frontalis, which exclusively feeds on birds (136).  

The ornate dog tick Dermacentor reticulatus is distributed in Western and Eastern Europe and 

although local populations display a high focality, its range seems to be expanding (39, 150). 

Only adults are found on the vegetation questing for large blood meal hosts (e.g. deer, dogs), 

the immature stages feed on rodents (79). D. reticulatus is a competent vector of Coxiella 

burnetii and certain Babesia and Anaplasma species (21, 113, 238). 

The most wide-spread tick species throughout subtropical and tropical regions is the kennel 

tick or pan-tropical dog tick Rhipicephalus sanguineus as it is highly adapted to domestic 

dogs (58). Rh. sanguineus transmits the agents of canine ehrlichiosis (Ehrlichia canis), canine 

babesiosis (Babesia canis, B. gibsoni) and hepatozoonosis (Hepatozoon canis) to dogs (58). It 

is also a competent vector Rickettsia conorii, the causative agent of tick typhus or 

boutonneuse fever in humans (38). Rhipicephalus (subgenus Boophilus) annulatus is mainly 

distributed in West and North Africa and predominantly infests cattle causing damage to hide 

and probably reducing cattle growth (234). It can transmit the agents of bovine babesiosis 

(Babesia bigemina, Babesia bovis) and bovine anaplasmosis (Anaplasma marginale) (234). 

Another tick species commonly infesting cattle is Rhipicephalus evertsi. The saliva of this 

tick species is toxic and heavy infestation causes paralysis in calves, lamb and adult sheep 

(75). Diseases transmitted by this tick species mainly affect horses (equine piroplasmosis 

caused by Babesia caballi and Theileria equi) and cattle (bovine anaplasmosis) (234).  

The tropical bont tick Amblyomma variegatum is one of the most widespread tick species 

parasitizing on livestock in Africa. This tick is a competent vector for the causative agents of 

heartwater (Ehrlichia ruminantium), bovine ehrlichiosis (Ehrlichia bovis) and benign bovine 

theileriosis (Theileria mutans, Theileria velifera) (234). Heavy infestations can reduce live-

weight gain and promote secondary bacterial infections like dermatophilosis (206). The main 

human diseases transmitted by A. variegatum are rickettsioses (21). 

Hyalomma impeltatum ticks are predominantly found in Mediterranean, steppe and desert 

climates of Africa, mainly parasitizing on cattle and camels (56, 185). Its role as a disease 

vector is only partially understood, but it seems to be transmission competent for Theileria 

annulata to cattle and Crimean-Congo Haemorrhagic Fever Virus (CCHFV) to humans (234). 
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Hyalomma marginatum subspecies marginatum is widely distributed in the humid 

Mediterranean climate of northern Africa, southern Europe and in steppe climates further 

eastwards (234). It feeds on ungulates like cattle, sheep, goats, camels and horses and is a 

competent vector of Babesia caballi and Theileria annulata. Hy. marginatum marginatum 

also transmits CCHFV to humans and may be the main European vector of this virus (234). 

Hyalomma aegyptium is distributed in the Mediterranean area and feeds on a variety of 

vertebrates, the main host for adult ticks are tortoises. Its vector competence has been 

experimentally proven for Coxiella burnetii (195).  

Most of these tick species have a three-host life cycle except for the one-host tick Rh. 

(Boophilus) annulatus and the two-host ticks Rh. evertsi and Hy. marginatum marginatum. 

1.2.7 Tick collection techniques 

The most commonly used technique for tick collection is the so called cloth dragging method 

or flagging, which targets questing exophilic ticks. Generally, a white towel is dragged over 

the vegetation, mimicking the movements of a potential blood meal host and attached ticks 

are removed regularly. Modifications of this method are strip blankets, leggings and foot flags 

(48, 221). CO2 traps which attract ticks questing in close proximity are rarely used (76). 

Another method is the direct removal of feeding ticks from domestic and wild animals or 

humans. Also nests and burrows of nest building animals can be searched for presence of 

nidicolous ticks. The main difference between these collection methods is that questing ticks 

are unfed and pathogens detected in these ticks will originate from the tick. Thus, the 

prevalence of a pathogen in a questing tick is a direct measure of the risk of infection after a 

tick bite for humans and animals, given that the tick is a competent vector. Feeding ticks, 

however, have already ingested blood of their current host and molecular detection of 

pathogens in these ticks does not yield information about the origin of infection (host or tick). 

Nevertheless, analysis of pathogen prevalence in feeding ticks can give valuable information 

on the presence of pathogens and their contact to vertebrate hosts. Moreover, the tick species 

diversity generally is higher when collecting ticks from wild animals and therefore also the 

diversity of pathogens may be higher in these ticks. 

1.3 Tick-borne pathogens 

The prevalence of tick-borne pathogens can be analysed in various ways, e.g. by the detection 

of pathogens in the tick vector or in the blood of vertebrate hosts using PCR or culture. 

Additionally, pathogens can indirectly be detected by measuring the specific antibody 
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response of the host using ELISA or immunoblots. Pathogen detection by PCR is more 

sensitive than culture, although it does not give information about the vitality and viability of 

the agent. Investigation of blood samples by PCR and culture can yield false negative results 

when the concentration of pathogens is too low or when the infection has manifested itself in 

other tissues. Measuring the serum antibody prevalence in hosts gives information about 

previous contacts with this agent, yet distinction between acute and past infections cannot be 

made with confidence. Important tick-borne pathogen species, the associated diseases, tick 

vector and reservoir host species and the geographical distribution are shown in Table 1. 

1.3.1 Distribution and spread of tick-borne pathogens 

Ticks play no direct role in the geographic distribution of a pathogen, as all vector species are 

quite immobile. The short-range distribution of pathogens is determined by the territory size 

of its respective reservoir host or its vector tick. Wild birds are believed to be responsible for 

the wide geographic distribution of various pathogenic microorganisms (104), which they 

carry either as a reservoir host or by dispersing infected arthropod vectors (93). Migratory 

birds are of special importance, since they cross national and intercontinental borders and can 

become long-range vectors for any pathogen they carry. Avian mobility is a crucial 

epizootiologic factor, since even sedentary birds sometimes move as far as 50-100km and 

migratory birds can transport pathogens to extremely distant sites, e.g. the arctic tern Sterna 

paradisaea, travels 50,000km between Antarctica and northern Scandinavia (93, 104). New 

endemic foci of disease can be established along the migration routes of birds given the 

availability of suitable vectors and reservoir hosts (177). 

1.3.2 Borrelia burgdorferi s.l. 

Lyme Borreliosis is the most commonly reported tick-borne disease in Europe. It was first 

described in 1970 in the US-American town Lyme, Connecticut. Twelve years later, Willy 

Burgdorfer discovered the causative agent of the disease: a gram-negative bacterium 

belonging to the Spirochaetaceae, subsequently named Borrelia burgdorferi.  

Currently eighteen Borrelia-species are recognized as members of the Borrelia burgdorferi 

sensu lato group, including at least three human pathogenic species, namely B. burgdorferi 

sensu stricto, B. garinii, and B. afzelii (211). There are four more species, B. valaisiana, 

B. lusitaniae, B. bissettii and B. spielmanii suspected to be pathogenic in humans (65). 

B. valaisiana and B. lusitaniae were detected in patients with suspected Lyme Borreliosis.  
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Table 1. Tick-borne pathogens, associated disease, vectors, reservoir host species and distribution 

(modified from (40)) 

 
Pathogen Disease Tick Vector Main End 

Hosts 

Geographical 

Distribution 
 
Bacteria: Borrelia  

    

B. afzelii Lyme Borreliosis Ixodes species Human Europe, Asia, 
Northern Africa 

B. burgdorferi 

sensu stricto 

Lyme Borreliosis Ixodes species Human Europe, Asia,  
Northern Africa,  
North America 

B. bissettii Suspected pathogenicity Ixodes species Human Europe, USA 
B. garinii Lyme Borreliosis Ixodes species Human Europe, Asia, 

Northern Africa 
B. lusitaniae Suspected pathogenicity Ixodes species Human Europe 
B. spielmanii Suspected pathogenicity Ixodes species Human Europe 
B. valaisiana Suspected pathogenicity Ixodes species Human Europe, Asia 
 
Bacteria: Rickettsia 

    

R. aeschlimannii Unnamed disease Hyalomma species, 
Rhipicephalus species 

Human Europe, Africa 

R. africae African tick-bite 
fever 

Ambylomma species Human Africa,  
Reunion Island, 
West Indies 

R. helvetica Suspected pathogenicity Ixodes ricinus Human Europe 
R. massiliae Unnamed Rhipicephalus species Human Europe, Asia,  

Argentina, USA 
R. monacensis Unnamed Ixodes ricinus Human Europe 
R. slovaca TIBOLA Dermacentor species Human Europe, Asia 
 
Bacteria: Anaplasma 

    

A. phagocytophilum Human Granulocytic 
Anaplasmosis 

Ixodes species,  
Dermacentor species 

Human Europe, USA 

A. marginale Bovine Anaplasmosis Various Cattle Worldwide 
A. centrale Bovine Anaplasmosis Various Cattle Worldwide 
 
Bacteria:  Ehrlichia 

    

E. chaffeensis Human Monocytic Ehrlichioses Amblyomma species,  
Dermacentor species 

Human USA, Africa 

E. ewingii Human Ehrlichiosis, 
Canine Granulocytic Ehrlichiosis 

Amblyomma species Human, dogs USA, Africa 

E. ruminantium Heartwater Amblyomma species Cattle Africa, Caribbean 
 
Bacteria: Bartonella 

    

B. henselae Cat Scratch Disease Ixodes species Human, Cats Worldwide 
 
Bacteria:  Coxiella 

    

C. burnetii Q-Fever (Ixodes species, 
Dermacentor species, 
Hyalomma species) 

Human, 
ruminants 

Worldwide 

Bacteria: Francisella     
F. tularensis Tularaemia (Ixodes species,  

Dermacentor species) 
Human, rodents Europe, Asia,  

North America 
Protozoa: Babesia     
B. divergens Cattle Babesiosis Ixodes species,  

Dermacentor species 
Human, cattle Europe 

B. microti Unnamed Ixodes species Human, rodents Europe,  
Northern America 

Babesia sp. EU1 Unnamed Ixodes species Human Europe 
 
Protozoa:  Theileria 

    

T. mutans Benign Theileriosis Amblyomma species Cattle Africa 
 
Protozoa: 

Hepatozoon 

    

H. canis Hepatozoonosis Rhipicephalus species,  
Haemaphysalis species 

Dogs Southern Europe, Middle 
East, Far East, Africa 

Virus:  
Flavivirus 

    

Tick-Borne 
Encephalitis Virus 

Tick-Borne Encephalitis Ixodes species, 
Haemaphysalis species 

Human Europe, Asia 

TIBOLA, Tick-Borne Lymphadenopathy; Tick species in brackets are not the main vectors of these pathogens. 
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Pathogenicity of B. bissettii was not proven, although isolates from erythema migrans of 

patients with high phenotypic and genotypic similarities to B. bissettii were cultured. (45). B. 

spielmanii represents a new species which was first described in 1993 (229) and classified in 

2004 (182). 

Lyme Borreliosis is a multisystem disorder that can affect skin, heart, nervous system, and to 

a lesser extent the eyes, kidneys and liver, but may also remain asymptomatic. During the 

early course of the disease an expanding skin lesion (erythema migrans, EM) develops around 

the tick bite site in about 60% of cases. Unspecific symptoms, such as headache, chills, fever 

and fatigue, have also been reported during this stage. As many tick bites remain unnoticed 

the early stage of Lyme Borreliosis is not recognized occasionally and the disease may 

progress to the next phase. The haematogenous dissemination of the bacteria can cause 

secondary skin lesions (multiple EM, Acrodermatitis chronica atrophicans) and 

extracutaneous manifestations, such as Lyme Arthritis and Neuroborreliosis (e.g. encephalitis, 

polyradiculitis, facial palsy). In most cases, treatment with antibiotics successfully prevents 

progression of the disease but the diagnosis can be complicated (212). The known three 

pathogenic Borrelia-species appear to be responsible for different symptoms in the late phase 

of the disease, but firm evidence is still lacking. B. burgdorferi s.s. is associated with Lyme 

Arthritis, B. garinii with Neuroborreliosis, and B. afzelii is suspected to cause Acrodermatitis 

chronica atrophicans (ACA) (45, 235).  

The mean prevalence of Borrelia-infested ticks is about 10-20% in Europe, although the tick 

infection rates vary extremely between the different European countries and also within a 

country itself (25, 219). Seroprevalence studies have been performed in some European 

countries and a high prevalence of anti-Borrelia antibodies has been observed in occupational 

risk groups like forestry workers. Since the seroprevalence of Borrelia burgdorferi s.l. in 

humans depends on the density of infected ticks, significant regional variations are observed. 

In Europe, the seroprevalence in the general population ranges from 2.6% to 13.7% and in the 

risk groups from 8% to 25% (23, 109, 115, 175, 224).  

1.3.3 Spotted Fever Group Rickettsiae  

Rickettsiae belong to the order Rickettsiales and are mostly obligate intracellular, gram-

negative alpha-proteobacteria. They have a global distribution and cause several diseases in 

humans and animals (98). Rickettsia species are transmitted by several arthropod vectors like 

ticks, mites and blood feeding insects. However, ixodid ticks seem to be competent vectors 

only for the Spotted Fever Group (SFG) Rickettsiae (203). The two main human pathogenic 
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SFG Rickettsia species in Europe are R. helvetica and R. slovaca. The first of these species is 

suspected to cause non-specific fever and endocarditis (47), whereas the latter causes tick-

borne lymphadenopathy (TIBOLA) (20). Prevalences of Rickettsia species in field ticks vary 

extremely from 4% to 66% for R. helvetica (83, 166, 178, 203, 210, 237). 

In Africa, several human pathogenic tick-borne Rickettsia species have been found including 

the causative agents of Mediterranean spotted fever (Rickettsia conorii conorii), Astrakhan 

fever (Rickettsia conorii caspia), rickettsial pox (R. akari), African tick bite fever (R. africae) 

and three emerging species R. aeschlimannii, R. massiliae, and R. sibirica mongolotimonae 

(69, 140, 158). 

1.3.4 Anaplasma and Ehrlichia species 

Ehrlichiosis is a generic name for infections caused by obligate intracellular, gram-negative 

bacteria of the family Anaplasmataceae. Affected by these emerging, potentially fatal 

infectious diseases are humans (human ehrlichiosis or human anaplasmosis), livestock 

(heartwater and bovine anaplasmosis), canines (canine ehrlichiosis) and horses (Potomac 

horse fever) (108). Five members of the Anaplasmataceae are known to infect humans: 

Anaplasma phagocytophilum, Ehrlichia chaffeensis, E. ewingii, E. canis, and Neorickettsia 

sennetsu (52, 143, 145). Of these, only the first 3 species have been studied in detail. The 

respective diseases are often named according to the leukocyte type infected by the different 

species. The human monocytic ehrlichiosis (HME) is caused by E. chaffeensis, which infects 

monocytes, while A. phagocytophilum targets granulocytes, causing the human granulocytic 

anaplasmosis (HGA) (51). 

Studies in Northern and Southern Europe showed a prevalence of Anaplasma species of 6.6% 

to 25% in I. ricinus nymphs (64). In Africa, the most recognized diseases caused by 

Anaplasma and Ehrlichia species are infections of livestock. Bovine anaplasmosis is caused 

by the highly pathogenic species Anaplasma marginale sensu stricto and the naturally 

attenuated A. marginale subspecies centrale (2, 44). Heartwater is a fatal disease of livestock 

in sub-Saharan Africa and the eastern Caribbean and is caused by Ehrlichia (Cowdria) 

ruminatium, which infects endothelial cells (161). Its distribution is directly linked to that of 

its main vector Amblyomma sp. and the prevalence in ticks can be as high as 25% (22, 227). 

1.3.5 Bartonella species 

Eight species of Bartonella, gram-negative and fastidious bacteria, have been isolated from 

humans as the causative agents of several diseases (124). In Europe, two species are of 
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medical importance. B. henselae causes the Cat Scratch Disease and is usually transmitted by 

infected cats (232) and B. quintana is causing trench fever, a disease with symptoms like 

relapsing febrile illness, headache, leg pain, endocarditis and, in HIV-infected persons, 

bacillary angiomatosis (155). 

Little is known about the prevalence of B. henselae and B. quintana in European ticks. In 

Italy, ticks were found to have an infection rate of 1.4% for B. henselae (186). In a Dutch 

study, more than 70% of the ticks investigated carried Bartonella species or species closely 

related, but the human pathogens B. henselae and B. quintana could not be detected (188). 

1.3.6 Coxiella species 

Coxiella burnetii, an obligate intracellular bacterium, is the causative agent of Q fever in 

animals and humans. Coxiella burnetii has a worldwide distribution, with the exception of 

New Zealand (37). Usually the infection is acquired via milk, faeces, urine, and birth products 

from infected ruminants or via aerosols. The acute state presents as a febrile illness with 

headache, chills, and respiratory symptoms. Recovery usually appears between 1-4 weeks, 

although 5% of the patients develop a chronic course of disease (215). In most cases the 

infection remains sub-clinical, but sometimes can cause severe and life-threatening 

complications, predominantly through endocarditis (37).  

Approximately 100 human cases are reported in Britain yearly, most cases in man follow 

exposure to livestock, rather than tick exposure (37). The role of ticks in the transmission of 

the pathogen is probably minimal, which corresponds to the low prevalence found in 

European ticks, ranging from 0.09% to 0.4% (167, 200, 216). Seroprevalence studies show 

that Coxiella burnetii is widely distributed in West Africa; however, due to the close contact 

of humans with potential reservoir hosts the role of ticks in the transmission of this pathogen 

to humans is unclear (13, 132). 

1.3.7 Francisella species 

Tularemia is a pneumonic or ulceroglandular disease caused by the highly infectious 

bacterium Francisella tularensis. The mortality rate in humans may be as high as 30 to 60% 

without treatment (8). Several subspecies of F. tularensis have been identified. Of these F. 

tularensis ssp. tularensis, occurring mainly in North America, and F. tularensis ssp. 

holarctica, occurring throughout the Northern Hemisphere, are the most important (29). 

Humans contract the disease most commonly from arthropod bites, consumption of 

contaminated food or water, contact with infected animals or via aerosols (30, 114). In the 
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Czech Republic and neighbouring Austria, a prevalence ranging between 0.6 and 3.5% for 

Francisella-infected ticks (Dermacentor reticulates) was found (95). Francisella species do 

not seem to be endemic in Africa. 

1.3.8 Babesia, Theileria and Hepatozoon species 

Babesiosis is a malarialike illness, caused by a parasitic protozoan of the genus Babesia, an 

intraerythrocytic piroplasm. At least two Babesia species, namely B. divergens and B. microti, 

are known to infect humans. Babesia sp. EU1 was first described in 2003 after being isolated 

from two patients in Austria and Italy, and since then has been detected in Ixodes ricinus in 

Slovenia and Switzerland (14). In Europe, the prevalence of Babesia species in questing 

I. ricinus ticks is highly variable, ranging from 1% to 16.3% (86, 164, 198). The most 

important African piroplasms are the causative agents of bovine babesiosis (Babesia 

bigemina) and theileriosis (Theileria velifera, Theileria mutans) (10). The prevalence of these 

pathogens in questing African ticks remains unclear. 

1.3.9 Tick-Borne Encephalitis Virus 

The tick-borne encephalitis virus (TBEV) is a RNA-virus of the family Flaviviridae and the 

causative agent of the tick-borne encephalitis, an infection of the central nervous system. 

TBEV is endemic in wide parts of the northern hemisphere covering Europe, northern Asia, 

China and Japan (151). TBEV is a generic expression, which refers to three different 

subtypes: the European (FSME, Frühsommer-Meningoencephalitis), the Siberian (RSSE, 

Russian spring-summer encephalitis), and the Far-Eastern subtype (233). The European 

subtype is transmitted by Ixodes ricinus, while the Siberian and Far-Eastern subtypes are 

carried by Ixodes persulcatus (196). These three subtypes differ in their pathogenicity, with 

the Far Eastern subtype being the most virulent leading to mortality rates of up to 50% (151). 

While there is no causative treatment for the tick-borne encephalitis, it can easily be prevented 

by vaccination (117). TBEV is believed to cause at least 3,000 human cases in western 

Europe annually, the prevalence of infected ticks in endemic areas in Europe usually varies 

from 0.5 – 5% (179). 
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1.4 Objectives of this study  

 

Despite the growing interest in ticks and tick-borne diseases, the underlying dynamics 

regulating the prevalence, distribution and spread of the vectors and pathogens remain largely 

unknown. A variety of pathogens can be transmitted by many tick species throughout the 

world, complicating surveillance, risk assessment and diagnosis of tick-borne diseases. 

Research mainly focuses on the main tick-borne diseases like Lyme Borreliosis and TBE for 

humans and Babesiosis and Anaplasmosis for livestock. However, studies on neglected 

pathogens are important in order to monitor changes in their prevalence and distribution in 

ticks. A central aspect of disease control is prevention of infection, which can be achieved by 

control of ticks, reservoir and blood meal hosts, but also by informing the public how to 

effectively avoid tick bites.  

 

Surveillance of seasonal and annual variations in the prevalence of ticks and pathogens 

provide important aspects for a better understanding of the short-term impact of climatic 

conditions on disease dynamics. The impact of climate on ticks has been investigated under 

experimental and natural conditions for some tick species; however, the lack of reliable 

quantitative data makes it difficult to predict the long-term effects of climatic changes in the 

different ecologies of the world. Furthermore, the establishment of exotic species of ticks and 

tick-borne pathogens in new areas depends not only on abiotic conditions, but also on the 

availability of suitable blood meal hosts for ticks and reservoir hosts for pathogens. In order to 

measure changes in the abundance of ticks and the prevalence of pathogens, baseline 

prevalence data of vectors and pathogens in different ecological niches of a country is crucial.  

 

The aim of this project was to study the diversity and prevalence of ticks and tick-borne 

pathogens known to cause disease in humans and animals in European and African countries 

and provide thorough baseline data for future surveillance projects. Specifically the following 

points were investigated: 
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Luxembourg 

• Regional distribution of ticks and tick-borne pathogens 

• Influence of habitat structures on tick abundance and infection rate  

• Annual and seasonal variations in the prevalence of ticks and pathogens  

• Determination of the rate of coinfections 

• Seroprevalence of Borrelia burgdorferi s.l. in a risk cohort  

• Identification of risk factors for Borrelia infection 

• Implications for human health 

 

Nigeria 

• Infection status of questing and feeding ticks 

• Implications for human and animal health 

 

Belarus 

• Regional distribution of ticks and tick-borne pathogens 

• Infection status of questing and feeding ticks 

• Implications for human health 

 

Bulgaria 

• Prevalence of Francisella species in ticks 

• Genetic characterization of a new Francisella-like endosymbiont 

 

Kaliningrad enclave 

• Tick infestation status of migratory birds 

• Role of birds in spread of ticks and tick-borne pathogens 
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2 Materials 
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2.1 Chemicals 

 

Compound Company 

Agarose Lonza 

Ampicillin Sigma 

Dithiothreitol (DTT) 0.1 M Invitrogen 

Dimethylsulfoxide (DMSO) Sigma 

Ethanol 96-100% Merck 

Ethidium bromide Invitrogen 

Ethylendiaminetetraacetic Acid (EDTA) Biorad 

Kanamycin Sigma 

Luria Broth Base (LB) Invitrogen 

Magnesium Chloride (MgCl2) Invitrogen 

Nucleotides (dNTPs) Invitrogen 

Oligonucleotides/Primers Eurogentec 

Orange G Invitrogen 

PCR Buffer without MgCl2 (10x) Invitrogen 

Sodium Acetate Merck 

Sucrose Sigma 

SYBR®GreenTM nucleic acid stain (10,000x) Molecular Probes 

SYBR®SafeTM DNA Gel Stain (10,000x) Invitrogen 

Tris(hydroxymethyl)aminomethane (Tris) Sigma 
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2.2 Buffers and solutions 

 

Buffer/solution Reagent Volume/concentration 

DNA loading dye (6x) Orange G 25mg 

 Sucrose (40%) 4g 

 ddH2O  fill up to 10ml 

 store at 4°C  

TAE-Buffer (50x) Tris 2M 

 Sodium Acetate 25mM 

 EDTA  0.5M 

 Adjust to pH 7.8  

S.O.C. Medium (Invitrogen) Tryptone 2% 

 Yeast Extract 0.5% 

 NaCl 10mM 

 KCl 2.5mM 

 MgCl2 10mM 

 MgSO4 10mM 

 Glucose 20mM 

Phosphate-Buffered-Saline (PBS)  NaCl 8g 

 KCl 0.2g 

 Na2HPO4 1.44g 

 KH2HPO4 0.24g 

 ddH2O fill up to 800ml 

 Adjust pH to 7.4 with HCl  

 ddH2O fill up to 1l 

 

2.3 DNA markers 

1kb plus DNA ladderTM Life Technologies 
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2.4 Enzymes 

Enzyme Company 

OneStep® RT-PCR Enzyme Mix  
(Omniscript Reverse Transcriptase, Sensiscript Reverse 
Transcriptase, HotStarTaq DNA Polymerase) 

Qiagen 

Platinum® Taq DNA polymerase Invitrogen 

RNaseOUTTM (Recombinant Ribonuclease Inhibitor) Invitrogen 

SuperScriptTM III Reverse Transcriptase Invitrogen 

  

 

2.5 Commercial Kits 

Kit name Company 

Big Dye® Terminator v3.1 Cycle Sequencing Kit Applied Biosystems 

B. afzelii + VlsE IgG Europe ELISA Testkit Genzyme Virotech 

Borrelia Europe plus TpN17 LINE IgG Immunoblot Genzyme Virotech 

InviMag® Tissue DNA Mini Kit/KF 96 Invitek 

Jet Quick PCR Purification Spin Kit Genomed 

MagMAXTM-96 Total Nucleic Acid Isolation Kit Ambion 

MagMAXTM-96 Viral RNA Isolation Kit Ambion 

NucleoSpin® RNA II Macherey&Nagel 

NucleoSpin® RNA/DNA Buffer Set Macherey&Nagel 

QIAamp® viral RNA Mini kit Qiagen 

QIAamp® DNA Blood Mini Kit Qiagen 

QIAamp® RNeasy Mini Kit Qiagen 

QIAGEN® OneStep RT-PCR Kit Qiagen 

QIAprep® Spin Mini Kit Qiagen 

QIAquick® Gel Extraction Kit Qiagen 

TOPO TA Cloning® Kit Invitrogen 

TURBO DNA-freeTM Kit Applied Biosystems 
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2.6 Primers used for screening of pathogens in European ticks 

Pathogen Primer name 
Primer 

orientation 
Target gene 5’-3’ Sequence Ref. 

Primer 
concentration 

MgCl2 

concentration 
Annealing 

step 
Elongation 

step 
Anaplasma  EL(569)F forward groEL gene  ATGGTATGCAGTTTGATCGC  
phagocytophilum EL(1193)R reverse groEL gene TCTACTCTGTCTTTGCGTTC  

0.8 µM 2 mM 61°C 30s 72°C 45s 

 EL(569)F forward groEL gene  ATGGTATGCAGTTTGATCGC  
 EL(1142)R reverse groEL gene TTGAGTACAGCAACACCACCGGAA (3) 

0.8 µM 2 mM 56°C 30s 72°C 45s 

Babesia sp. BJ1 forward 18S rRNA GTCTTGTAATTGGAATGATGG  
 BN2 reverse 18S rRNA TAGTTTATGGTTAGGACTACG (28) 

0.8 µM 3 mM 61°C 30s 70°C 60s 

Bartonella sp. 321s forward 16S-23S AGATGATGATCCCAAGCCTTCTGC  
 983as reverse 16S-23S TGTTCTYACAACAATGATGATG (124) 

0.8 µM 1.5 mM 60°C 30s 72°C 45s 

Borrelia  Outer1 forward flaB gene AARGAATTGGCAGTTCAATC  
burgdorferi s.l. Outer2 reverse flaB gene GCATTTTCWATTTTAGCAAGTGATG  

0.8 µM 2 mM 59°C 30s 72°C 30s 

 Inner1 forward flaB gene ACATATTCAGATGCAGACAGAGGTTCTA  
 Inner2 reverse flaB gene GAAGGTGCTGTAGCAGGTGCTGGCTGT (31) 

0.8 µM 2 mM 59°C 30s 72°C 30s 

 V1a forward OspA gene GGGAATAGGTCTAATATTAGC  
 V1b forward OspA gene GGGGATAGGTCTAATATTAGC  
 R2 reverse OspA gene CATAAATTCTCCTTATTTTAAAGC  
 R37 reverse OspA gene CCTTATTTTAAAGCGGC  

0.8 µM 2 mM 50°C 45s 72°C 60s 

 V3a forward OspA gene GCCTTAATAGCATGTAAGC  
 V3b forward OspA gene GCCTTAATAGCATGCAAGC  
 R2 reverse OspA gene CATAAATTCTCCTTATTTTAAAGC  
 R37 reverse OspA gene CCTTATTTTAAAGCGGC (134) 

0.8 µM 2 mM 52°C 45s 72°C 60s 

Coxiella sp. Q5 forward htpB gene GCGGGTGATGGTACCACAACA  
 Q3 reverse htpB gene GGCAATCACCAATAAGGGCCG  

0.4 µM 1.5 mM 58°C 30s 72°C 30s 

 Q6 forward htpB gene TTGCTGGAATGAACCCCA  
 Q4 reverse htpB gene TCAAGCTCCGCACTCATG (225) 

0.8 µM 2 mM 56°C 30s 72°C 30s 

Francisella  Fr153F0.1 forward 16S rRNA GCCCATTTGAGGGGGATACC  
tularensis ssp. Fr1281R0.1 reverse 16S rRNA GGACTAAGAGTACCTTTTTGAGT (8) 

0.4 µM 2 mM 60°C 30s 72°C 60s 

Rickettsia sp. Rr17k.1p forward 17-kDa TTTACAAAATTCTAAAAACCAT  
 Rr17k.539n reverse 17-kDa TCAATTCACAACTTGCCATT  

0.8 µM 2 mM 55°C 30s 72°C 45s 

 Rr17k.90p forward 17-kDa GCTCTTGCAACTTCTATGTT  
 Rr17k.539n reverse 17-kDa TCAATTCACAACTTGCCATT (98) 

0.8 µM 2 mM 54°C 30s 72°C 45s 
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Tick-borne  283F1 forward E protein GAGAYCAGAGTGAYCGAGGCTGG  
Encephalitis Virus 827R1 reverse E protein AGGTGGTACTTGGTTCCMTCAAGT  

0.4 µM 2 mM 57°C 30s 72°C 45s 

 349F2 forward E protein GTCAAGGCGKCTTGTGAGGCAA  

 814R2 reverse E protein TTCCCTCAATGTGTGCCACAGG (196) 
0.8 µM 2 mM 58°C 30s 72°C 30s* 

 Pp1 forward C protein GCGTTTGCTTCGGACAGCATTAGC  

 Pm1 reverse C protein GCGTCTTCGTTGCGGTCTCTTTCG  
0.8 µM 1.5 mM 64°C 30s 72°C 30s 

 Pp2 forward C protein TCGGACAGCATTAGCAGCGGTTGG  

 Pm2 reverse C protein TGCGGTCTCTTTCGACACTCGTCG (189) 
0.4 µM 2 mM 58°C 30s 72°C 30s 

* only 25 PCR cycles 

 

 

2.7 Primers used for screening of pathogens in African ticks 

 

Pathogen Primer name 
Primer 

orientation 
Target gene 5’-3’ Sequence Ref. 

Primer 
concentration 

MgCl2 

concentration 
Annealing 

step 
Elongation 

step 
Anaplasmataceae EHR1 forward 16S rRNA GAACGAACGCTGGCGGCAAGC  
 newEHR2* reverse 16S rRNA CACGCTTTCGCACCTCAGTGTC  

0.4 µM 2 mM 63°C 30s 72°C 45s 

 EHR3 forward 16S rRNA TGCRTAGGAATCTRCCTAGTAG  
 newEHR2* reverse 16S rRNA CACGCTTTCGCACCTCAGTGTC (174) 

0.8 µM 2 mM 59°C 30s 72°C 45s 

Borrelia species newLDf* forward 16S rRNA GTAAACGATGCACACTTGGTG  
 newLDr* reverse 16S rRNA TCCGRCTTATCACCGGCAGTCT (128) 

0.4 µM 2 mM 61°C 30s 72°C 30s 

Coxiella Q5 forward htpB GCGGGTGATGGTACCACAACA  
 Q3 reverse htpB GGCAATCACCAATAAGGGCCG  

0.4 µM 1.5 mM 58°C 30s 72°C 30s 

 Q6 forward htpB TTGCTGGAATGAACCCCA  
 Q4 reverse htpB TCAAGCTCCGCACTCATG (225) 

0.8 µM 2 mM 56°C 30s 72°C 30s 

Rickettsiaceae Rr17k.1p forward 17-kDa TTTACAAAATTCTAAAAACCAT  
 Rr17k.539n reverse 17-kDa TCAATTCACAACTTGCCATT  

0.8 µM 
 

2 mM 
 

55°C 30s 
 

70°C 45s 
 

 Rr17k.90p forward 17-kDa GCTCTTGCAACTTCTATGTT  
 Rr17k.539n reverse 17-kDa TCAATTCACAACTTGCCATT (98) 

0.8 µM 
 

2 mM 
 

54°C 30s 
 

72°C 45s 
 

Piroplasmidae BJ1 forward 18S rRNA GTCTTGTAATTGGAATGATGG  
 BN2 reverse 18S rRNA TAGTTTATGGTTAGGACTACG (28) 

0.8 µM 
 

3 mM 
 

61°C 30s 
 

72°C 60s 
 

* primer sequence modified 
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2.8 Bacterial strain 

E. coli OneShot® TOP10 
(Provided with the TOPO TA Cloning® Kit)  

Invitrogen 

  

 

2.9 Vector 

pCR® 4-TOPO®  cloning vector  Invitrogen 

 

2.10 Random Primers 

Random Hexamers  Invitrogen 

 

2.11 Bioinformatics 

Software Reference 
BioEdit http://www.mbio.ncsu.edu/BioEdit 
BLAST http://ncbi.nlm.nih.gov/BLAST 
CFX Manager BioRad 
CLUSTAL W Thompson, JD et al, 1994 (223) 
FastPCR v.3.7.8 R. Kalender, University of Helsinki, Finland 
MEGA 3.1 http://www.megasoftware.net/mega3/mega.html (116) 
MEGA 4.0 http://www.megasoftware.net/mega4/mega.html (222) 
Opticon MonitorTM v3.1 BioRad 
SeqScape Applied BioSystems 
 

2.12 Additional Software 

Software Reference 
Adobe Photoshop and Illustrator Adobe Systems Incorporated 
ArcGIS 9.3.1 with ArcGIS Spatial Analyst ESRI Inc. 
Google Earth Google Inc. 
Microsoft® Office Suite 2003 Microsoft Corporation 
SigmaPlot Systat Software, Inc. 
SigmaStat Systat Software, Inc. 
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2.13 Instruments 

Instrument Reference 
Balance SARTORIUS Precision Balance 
Centrifuges  Pico 17, Heraeus®  

Biofuge Stratos, Heraeus® 

UNIVAPO 150H, UniEquip 
Electroporation apparatus Pulse Controller Plus, Capacity Extender 

Plus, Gene Pulser II  Plus, Biorad 
Electrophoresis power supply E835, Consort 
Fluorescence reader GENios Plus, Tecan 
Gel Tank and Casting Form Biozyme 
Gel Documentation System InGenius, Syngene 
GPS Navigator eTrex Garmin (Europe) Ltd 
Heating Block  Thermomixer Comfort, Eppendorf 
Incubator HERAcell® 150, Heraeus  

Binder Incubators, Binder 
KingFisher Flex ThermoScientific®, Thermo Fisher Scientific 
NanoDrop ND-1000 Spectrophotometer Isogen 
PCR Machine Mastercycler® Gradient, Eppendorf 
PRO200 Rotor-Stator Homogenizer PRO Scientific Inc. 
Real Time PCR Machines Opticon® 2 DNA Engine, Chromo4TM, CFX, 

MiniOpticon, Biorad 
Safe ImagerTM 2.0 Invitrogen 
Sequencer ABI PRISM® 3130xl Genetic Analyzer, 

Applied Biosystems 
Shaker  Multitron 2, INFORS-HT 
Stereomicroscope Eschenbach 
TissueLyser II Qiagen 
Vortex Vortex-Genie® 2, Scientific Industries 
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3 Methods 
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3.1 Determination of Collection Sites 

Sites for tick collection throughout Luxembourg were chosen using maps (scale 1:50.000) and 

the online mapping tool Google Earth. On the field, the precise location of each collection site 

was chosen based on criteria of suitability of habitat (regarding vegetation and relative 

humidity) and accessibility. Different habitats were chosen such as broad leaved forest, 

coniferous forest, mixed forest, agricultural and urbanized areas in order to represent the 

landscape structure of Luxembourg. Each of the 33 collection sites was mapped and GPS 

coordinates were taken using a GPS navigator. Coordinates were downloaded and used for 

positioning of the collection sites in Google Earth and ArcView 9.3.1. 

Collection sites in Belarus, Bulgaria and Nigeria were selected by our collaborating partners 

based on similar criteria and GPS coordinates were taken. Collection of ticks was coordinated 

by our collaborating partners. 

3.2 Tick collection 

3.2.1 Collection of questing ticks 

In Luxembourg, each of the 33 collection sites was visited once per month from May to 

October in the years 2007, 2008 and 2009. Questing ticks were collected from the vegetation 

using the cloth dragging method. In the process a white towel was dragged over the lower 

vegetation (up to 1m in height), mimicking the movements of a potential vertebrate host for 

ticks. The towel was frequently checked for attached ticks. Each tick was removed with 

forceps and stored separately in a 1.5ml Eppendorf tube containing fresh grass to provide 

sufficient humidity. Tubes were labelled with collection site, date and serial number. At each 

collection site about 100m2 were flagged and in case of unsuccessful flagging the area was 

extended to up to 1000 m2. Abiotic parameters (temperature, relative humidity) were recorded 

at each visit.  

3.2.2 Collection of feeding ticks 

In Luxembourg, feeding ticks were sent in by medical doctors, veterinarians, hunters, 

foresters, ornithologists, Centre de Soins pour la Faune de Sauvage (CdS-LNVL) and the 

general public who removed the parasites from various vertebrate hosts, e.g. humans, 

domestic and wild animals. A guide to the labelling and sending of ticks was available on the 

homepage of the Institute of Immunology, but also distributed together with collection tubes 
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to doctors, veterinarians and foresters. Required parameters were date of collection and host 

species. Only intact ticks with sufficient information were integrated into the tick data base. 

3.2.3 Nigeria 

In 2009, questing ticks were collected from the vegetation at seven locations (Elepo, Alowo-

nle, Fuleni, Orisunbare, Lanlate, Maya, Igbo-Ora) and feeding ticks were obtained from cattle 

at four other locations (Moniya, Alakia, Bodija, Mokola) in southwestern Nigeria.  

3.2.4 Belarus 

In April and May 2009, ticks were collected from the vegetation and cattle at 32 collection 

sites in the regions Brest (n=8), Gomel (n=7), Grodno (n=2), Minsk (n=3), Mogilev (n=7) and 

Vitebsk (n=5). One tick was removed from a dog in Minsk region. Collection of questing 

ticks was performed as described in 3.2.1 and feeding ticks were removed with forceps. 

3.2.5 Bulgaria 

In the years 2005-2008, ticks were collected from the vegetation and human or animal hosts at 

rural or urban areas of nine major districts in Bulgaria (see also Figure 18). 

3.2.6 Russia 

In Russia, wild birds were caught in ornithological nets during the annual ringing season 2008 

at the Rybachy Biological Station (Zoological Institute, Russian Academy of Sciences) at the 

Curonian Spit in Kaliningrad enclave. Any feeding ticks were removed from birds during the 

ringing procedure and stored individually in tubes.  

3.3 Tick identification and storage 

Ticks were identified using standard taxonomic keys for European and African tick fauna (58, 

234), in ambiguous cases tick species was confirmed by mitochondrial 12S rDNA partial gene 

sequencing. Ticks from Luxembourg were directly identified and stored individually in sterile 

1.5ml tubes at -80°C until further processing. Ticks from our collaborating partners were 

stored in 70% Ethanol at 4-8°C directly after collection, shipped to Luxembourg and 

identified to species level at the Institute of Immunology.  
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3.4 Serum Collection and Storage  

Blood was drawn from forestry workers in April and May 2010 by the Inspection Sanitaire of 

the Ministry of Health in Luxembourg using 8ml Vacuette Serum Sep Clot Activator 

collection tubes (Greiner, Bio-One) and Vacutainer Safety Lock Blood Collection Set (BD 

Medical, Temse, Belgium). The blood was allowed to clot for 30 min at 37°C before 

centrifugation (3000 rpm for 10 min) and the serum was aliquoted and stored in individual 

tubes at -80°C. Questionnaires regarding place of work, age, gender, number of tick 

encounters, tick bites, protective measures and history of Lyme Borreliosis were completed 

by each participant on the day of blood drawing (see annex 7.1 and 7.2). This part of the study 

was approved by the competent ethical committee of Luxembourg (Comité National 

d'Éthique de Recherche, CNER). In addition a notification and authorisation was submitted 

and accepted by the Commission nationale pour la protection des données (CNPD). 

3.5 Extraction Kit Comparison  

An extensive kit comparison was performed on six commercial kits, namely KingFisher Total 

Nucleic Acid Kit, KingFisher Viral RNA Kit, QIAamp Viral RNA Mini Kit, QIAamp DNA 

Blood Mini Kit, QIAamp RNeasy Mini Kit, and the Macherey&Nagel Total RNA&DNA Kit.   

For each kit, single ticks (nymph, male, and female) and pools comprising of three ticks each 

(nymph, male, female) were tested. Samples were processed according to the manufacturer’s 

protocol of the respective kits. The pooled ticks were disrupted in 750µl PBS and evenly 

distributed in different tubes, one for each kit. As a RNA extraction control a pool comprising 

of 20µl of each sample was spiked with Measles virus (RNA virus). DNA extraction was 

confirmed by using Ixodes specific primers. Negative controls were also included in the 

extraction comparison. Directly after total nucleic acid extraction a reverse transcription (RT) 

PCR was performed on the raw sample. On an aliquot of each sample a DNase I digestion 

using the TURBO DNA-freeTM Kit was carried out to eliminate all DNA. This step was 

confirmed by specific PCR and RT-PCR was performed on these DNA-free samples. An 

Ixodes specific PCR on the cDNA on DNase I digested samples was performed as an 

additional RNA extraction control. 

Of these kits, initially the QIAamp DNA Blood Mini kit was chosen based on its good 

cost/performance ratio and all questing ticks from 2007 were extracted with this kit. Due to 

the high number of ticks that were collected, the ticks of the following years were extracted 

using the automated KingFisher 96 Magnetic Particle Processor and either the KingFisher 
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Total Nucleic Acid Kit (ticks stored at -80°C) or the InviMag DNA Tissue kit (ticks stored in 

70% Ethanol). 

3.6 Total Nucleic Acid extraction with QIAamp® DNA Blood Mini Kit  

The manufacturer’s protocol was modified as follows: 300µl of lysis buffer AL was pipetted 

into a 2ml round-bottom safe-lock tube and the frozen tick was added. The tick was disrupted 

using the PRO200 Rotor-Stator Homogenizer with changeable probes or using the Tissue 

Lyser II with 5mm stainless steel beads at 25Hz for 6min. The lysates were centrifuged at 

8,000rpm for 1min to remove any foam. 300µl of 96-100% Ethanol was added to each tick 

lysate, mixed thoroughly and centrifuged briefly. The lysate was applied to a spin column and 

centrifuged at 8,000rpm for 1min. The filtrate was discarded, 500µl of wash buffer AW1 was 

added and centrifuged at 8,000rpm for 1min. After discarding the filtrate, 500µl of wash 

buffer AW2 was added and centrifuged at full speed for 3min. The spin column was placed in 

a new collection tube and centrifuged dry at full speed for 1min. For elution, the spin column 

was placed in a 1.5ml Eppendorf tube, 200µl of elution buffer AE was added and incubated at 

room temperature for 1min. The final centrifugation step was carried out at 8,000rpm for 

1min and each sample was split into four 50µl aliquots, which were stored at -80°C until 

further processing. The changeable probes were cleaned in several washing steps using 

bidistilled water, RNA/DNA Remover and 70% Isopropyl alcohol and autoclaved before next 

usage. 

3.7 Total Nucleic Acid extraction with MagMAXTM-96 Total Nucleic Acid 

Isolation Kit 

Ninety-four samples were processed at a time and 2 RNA extraction controls were included 

on each plate. A mix of nucleic acid (NA) binding beads and lysis/binding enhancer at a ratio 

of 1:1 was prepared and 17.4µl was distributed onto a KingFisher 96 well processing plate. 

Two plates each with 150µl of either Wash Solution 1 or Wash Solution 2 in each well were 

prepared. Into the elution plate 100µl of Elution Buffer was dispensed. Tick disruption was 

performed in 66µl of Lysis/Binding Solution and 49µl of nuclease free water using the Tissue 

Lyser II as described in 3.6. For the RNA extraction control, 8µl of a 1:10 diluted Measles 

virus culture was added to 92µl of lysis buffer and nuclease free water mix. The tick lysates 

(100µl of the total volume) and the controls were transferred into the processing plate 

containing the magnetic bead mix. To each sample, 56.5µl of isopropyl alcohol was added 
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and all plates were placed into the KingFisher Flex (automated magnetic particle processor) 

and processed according to the program in Table 2. 

After elution, samples were split into four aliquots (25µl each), transferred to sterile 96 well 

PCR plates and stored at -80°C until further processing.  

 

Table 2: KingFisher 96 program for MagMAXTM-96 Total Nucleic Acid Isolation Kit 

Step Procedure Time 
Binding Automatically sample mixing 5min 
 MAP separation  
 Moving MAP into Washing Plate 1  
Washing 1 Automatically sample mixing 50s 
 MAP separation  
 Moving MAP into Washing Plate 2  
Washing 2 Automatically sample mixing 50s 
 MAP separation  
 Moving MAP into Washing Plate 3  
Washing 3 Automatically sample mixing 50s 
 MAP separation  
 Moving MAP into Washing Plate 4  
Washing 4 Automatically sample mixing 50s 
 MAP separation  
 Drying the MAP outside the plate 2min 
 Moving MAP into Elution Plate  
Elution Incubation of MAP by mixing 3min 
 MAP separation  
 Automatically remove MAP  

 

3.8 Total Nucleic Acid extraction with InviMag® Tissue DNA Mini Kit/KF96 

Ticks that were stored in 70% ethanol were washed in PBS and RNase/DNase free water and 

were dried on sterile filter paper before DNA extraction. Homogenization and disruption of 

ticks was performed in 120µl of Lysis Buffer G using the Tissue Lyser II as described in 

section 3.6. A mix of Binding Buffer T (50µl) and MAP solution A (20µl) was dispensed into 

each well of the binding plate and 120µl of tick lysate was added. Three washing plates 

containing 150µl of Wash Buffer and one elution plate containing 100µl of Elution Buffer D 

were prepared. All plates were placed into the KingFisher Flex and processed according to the 

program in Table 3. After elution, samples were split into four aliquots (25µl each), 

transferred to sterile 96 well PCR plates and stored at -80°C until further processing.  
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Table 3: KingFisher 96 program for InviMag® Tissue DNA Mini Kit/KF96 

Step Procedure Time 
Binding Automatically sample mixing 3min 
 MAP separation  
 Moving MAP into Washing Plate 1  
Washing 1 Automatically sample mixing 50s 
 MAP separation  
 Moving MAP into Washing Plate 2  
Washing 2 Automatically sample mixing 50s 
 MAP separation  
 Moving MAP into Washing Plate 3  
Washing 3 Automatically sample mixing 50s 
 MAP separation  
 Drying the MAP outside the plate 6min 
 Moving MAP into Elution Plate  
Elution Incubation of MAP by mixing 3min 
 MAP separation  
 Automatically remove MAP  

 

3.9 Reverse Transcription 

Reverse transcription was performed on total nucleic acid extracts from ticks collected in 

Luxembourg and on RNA extraction controls. Two mixes were prepared, one containing 

random primer, dNTPs, and RNAse free water, the other containing DTT, RNaseOUT, 5x 

First-Strand Buffer, RNase free water and SuperScript III (Table 4). After adding the template 

RNA to mix 1, nucleic acids were denaturated at 65°C for 5min and placed on ice. Mix 2 was 

added to mix 1 and incubated at 50°C for 80min. The reaction was heat inactivated at 70°C 

for 15min.  

 

Table 4: Conditions for Reverse-Transcription PCR 

Reagent Mix Volume (µl) Concentration 
Random primer  1 5 150ng 
dNTP mix 1 1 10 mM each 
RNA 1 5 10pg-5µg 
RNase free water 1 1  
DTT 2 2 5mM 
RNaseOUT™ 2 0.5 20 units 
5x First-Strand Buffer 2 4 1x 
SuperScript® III 2 1 200 units 
RNase free water 2 0.5  

 

3.10 PCR Optimisation  

Primers for the pathogen detection PCRs applied in this study were taken from the literature 

and some published primers were modified in order to detect a broader range of species. 

Primer name, sequence, target gene, reference and any modifications are listed in section 2.6. 
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All primer pairs were subjected to an extensive optimisation using positive controls provided 

by research colleagues. Variable conditions in the optimisation PCRs were MgCl2 

concentration, primer concentration and annealing temperature of primers (Table 5). Optimal 

annealing temperatures were calculated using the software FastPCR 3.7.8 and three 

temperatures within the given range were tested. Based on cycle threshold (Ct) values, 

melting curve and agarose gel the best PCR conditions were chosen. The optimised PCR 

conditions are also given in section 2.6. For most detection PCRs, nested or semi-nested 

protocols were used in order to increase sensitivity and specificity. 

 

Table 5: Variable and fix conditions for PCR optimisation 

Reagent Volume (µl) Concentration 
PCR Buffer (10x) 2.5 1x 
MgCl2 0.5 - 1.5 0.99 - 2.98 mM 
dNTP's 0.5 0.2 mM 
primer fw 1 - 2 0.8 - 1.6 µM 
primer rv 1 - 2 0.8 - 1.6 µM 
SYBRGreen® (100x stock) 0.25 1x 
Platinum Taq® polymerase 0.1 0.5 units 
DNA template 5  
RNase/DNase free water 11.15 - 14.15  

 

3.11 Agarose Gel Electrophoresis 

Amplified PCR products were size separated on a 1.5% agarose gel. This gel was prepared by 

completely dissolving 1.5g of powdered agarose in 100ml of 1x TAE buffer using a 

microwave oven. The mixture was cooled down to approximately 55°C, 10µl of SYBR® Safe 

was added, the hot gel was poured into a casting form (14x12cm) and combs were inserted. 

Also, big gels containing 300ml of TAE-buffer and 30 µl of SYBR® Safe were used in the 

respective casting form (25x25cm). After polymerization, the tray was placed into a gel 

chamber filled with sufficient 1xTAE buffer to cover the complete gel and the combs were 

removed. 5µl of amplified DNA was mixed with 1µl of 6x Loading Dye and loaded onto the 

gel. The outer two pockets of each row were loaded with a standardized size marker (1kb plus 

DNA ladderTM). The gel was run at an electrical current of 130V for 40min. After completion, 

DNA bands were visualized under ultraviolet light (300nm) and pictures were taken with the 

InGenius Gel documentation System.  

3.12 PCR Product Purification 

PCR products were purified before subjecting them to downstream application such as 

cloning or sequencing in order to remove unspecific PCR products and/or residual primers 
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and non-incorporated nucleotides. The Jetquick PCR product Purification Spin kit (Genomed) 

was used for samples in which a specific DNA fragment was amplified (one clear band on 

gel). 20µl of PCR product were mixed with 175µl of buffer H1, transferred to a Jet Quick 

Spin® column placed in a 2ml collection tube and centrifuged at 10,000rpm for 1min. The 

filtrate was discarded; 500µl of buffer H2 was pipetted onto the spin column and centrifuged 

at 10,000rpm for 1min. The filtrate was discarded and the spin column was centrifuged dry at 

10,000rpm for 1min. The spin column was placed into a sterile 1.5ml Eppendorf tube, 30µl of 

elution buffer TE was added and the column was incubated at room temperature for 1min. 

After centrifugation (10,000rpm for 1min) the eluted DNA was stored at -20°C until further 

processing. 

In case of unspecific DNA amplification, the remaining 20µl of PCR product were mixed 

with 4µl of 6x Loading Dye and separated on a fresh 1.5% agarose gel. Bands of interest were 

excised using Safe ImagerTM and a scalpel. Purification of DNA was performed using the 

QIAquick® Gel Extraction Kit. The gel slice was weighed and three volumes of Buffer QG 

were added to one volume of gel (100mg ~ 100µl). The gel was completely dissolved at 50°C 

for 10min in a heating block and one gel volume of isopropyl alcohol was added. After 

mixing the solution was applied to a QIAquick spin column and by centrifuging at 10,000rpm 

for 1min the DNA was bound to the membrane. The filtrate was discarded and 0.5ml of 

Buffer QG was added to remove all traces of agarose and centrifuged at 10,000rpm for 1min. 

Again, the filtrate was discarded and 0.75ml of Buffer PE was added to wash the sample. The 

spin column was placed in a new 2ml collection tube and centrifuged dry at 13,000rpm for 

1min. To elute the purified DNA, the spin column was placed in a clean 1.5ml Eppendorf 

tube, 30µl of Buffer EB was added to the center of the membrane and incubated at room 

temperature for 1min before centrifugation (10,000rpm for 1min). 

3.13 Cloning and M13 PCR 

Purified PCR products were cloned into TOPO® vector and transformed into TOP10 E. coli 

electrocompetent cells using the TOPO TA Cloning® Kit for Sequencing. Briefly, 4µl of 

fresh PCR product are mixed with 1µl of diluted salt solution (1:10) and 1µl of TOPO® 

vector, incubated for 5min at room temperature and placed on ice. Electrocompetent E. coli 

were diluted with 50µl of sterile water and 50µl were pipetted into a pre-chilled electro-

cuvette. Carefully 2µl of the cloning reaction were added to avoid formation of bubbles and 

samples were electroporated at 2,25kV, 200 Ohm and 25uF. Warm S.O.C. medium (37°C) 

was added directly after the electroporation the solution was transferred into a 2ml Eppendorf 
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tube and incubated at 37°C for 1 hour. For blue and white screening of the colonies, 40µl of 

X-Gal was spread onto LB agar plates containing 30µg/ml Kanamycin. These plates were also 

incubated at 37°C for 1 hour. After incubation, 60µl and 200µl of the same S.O.C. and 

bacteria solution were spread on two agar plates and incubated at 37°C overnight. White 

colonies were picked with sterile pipette tips and transferred on a new agar plate (master 

plate) and into a M13 PCR reaction (25µl reaction containing 2.5mM MgCL2, 200µM 

dNTPs, 0.8µM of each M13 primer, 0.5 units Platinum Taq Polymerase). Standard PCR 

parameters were used with an annealing temperature of 58°C and an elongation time of 1min 

for 35 cycles. PCR products were checked on a 1.5% agarose gel and only clones with right 

insert size were subjected to PCR product purification and sequencing. 

3.14 Plasmid Mini Prep 

In order to prepare large quantities of plasmids containing inserts of DNA fragments used as 

positive controls, liquid bacterial cultures were grown. A single white colony from the cloning 

plate (see section 3.13) was picked with a sterile pipette tip and used to inoculate 5ml of 

liquid LB medium containing 30µg/ml Kanamycin. The culture was incubated at 37°C 

overnight (maximum of 16 hours) with vigorous shaking. Cells were harvested by 

centrifuging at 1,500rpm for 10min. The pellet was resuspended in 250µl of Buffer P1 and 

transferred into a 1.5ml Eppendorf tube. 250µl of Buffer P2 was added and the solution mixed 

thoroughly by inverting the tube 5 times before adding 350µl of Buffer N3 and mixing again. 

The solution was centrifuged at 13,000rpm for 10min and the supernatant was transferred to a 

QIAprep spin column. After centrifuging at 13,000rpm for 1min, the filtrate was discarded 

and the membrane washed with 0.75ml of Buffer PE by centrifuging at 13,000rpm for 1min. 

The filtrate was discarded and the column was centrifuged dry at 13,000rpm for 2min. The 

purified plasmid was eluted with 50µl of Buffer EB (incubation 1min at room temperature, 

centrifugation at 13,000rpm for 1min) and stored at -20°C. Before usage, the plasmids were 

checked for correct insert by subjecting them to PCR following the pathogen detection 

protocol and sequencing the obtained DNA fragment. 

3.15 Sequencing 

Chain termination sequencing PCR was performed with the BigDye Terminator® v3.1 Cycle 

Sequencing kit using a mixture of dNTPs and fluorescently labelled, chain terminating 

dideoxynucleotides ddNTPs (Table 6). The PCR reaction was initially denaturated at 96°C for 
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1min, followed by 25 cycles of denaturation at 96°C for 10s, annealing at 50°C for 5s and 

elongation at 60°C for 2min.  

 

Table 6: Sequencing PCR using the BigDye Terminator® v3.1 Cycle Sequencing kit 

Reagent Volume (µl) Concentration 
BigDye Terminator® Mix  1 1x 
TE buffer 1.5 0.75 
Primer fw 1 0.5µM 
Primer rv 1 0.5µM 
DNA template 5 (maximum) 10ng 

 

The final PCR products were purified using 5µl of 125mM EDTA and 10mM of distilled 

water per sample. After mixing, 60µl of 96-100% Ethanol was added, the samples were mixed 

and incubated in the dark for 15min at room temperature. The samples were centrifuged at 

3,000rpm for 30min (4°C) and the solution was removed. Washing was repeated as before 

using 70% ethanol. The samples were dried for 15min in a UNIVAP 150 H and stored at 4°C 

until further processing. Sequencing was performed on the capillary sequencer ABI PRISM® 

3130xl Genetic Analyzer with 80cm capillaries. Samples were heated to 95°C for 5min, 

supplemented with 10µl HI-DI and incubated at 95°C for 5min before loading onto the 

capillary sequencer.  

3.16 Phylogenetic Analysis 

The generated electropherograms were imported into the SeqScape® program and aligned to a 

reference sequence that was downloaded from NCBI. The quality of each sequence was 

checked individually and in case ambiguous nucleotides suggested mixed infections, the 

samples were cloned and 16 clones per sample were sequenced and analysed. Further 

reference sequences were integrated and the alignment was exported. Quality control and 

further editing of the alignment was done with BioEdit software. Phylogenetic trees were 

constructed by applying bootstrap test of phylogeny with Neighbor-Joining algorithm, Kimura 

2-parameter model and 1,000 bootstrap replicates using the MEGA 3.1 and 4.0 software. 

Neighbour-Joining is a simplified method based on the minimum evolution criterion, in which 

the topology with the minimum total branch length is used to estimate the correct tree. The 

widely used Kimura 2-parameter model takes transitional and transversional substitution rates 

into account while assuming that the substitution rate of all nucleotides is the same. 

Generally, the number of nucleotide substitutions reflects the evolutionary distance of 

sequences and is a valuable tool for molecular species identification. Bootstrap values give an 

estimate of the reliability of the topology of an inferred phylogenetic tree by calculating 
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multiple topologies based on a sub-sample of the alignment and comparing these to the 

original phylogenetic tree. Bootstrap values express the percentage of times in which the re-

calculated trees display exactly this interior branch node. The higher the bootstrap value of a 

branch node the more reliable the resulting topology of the tree. Generally, nodes with values 

above 70% are considered reliable and those with values above 95% as correct. 

3.17 Enzyme-Linked-Immuno-Sorbent-Assay (ELISA) 

Serum samples from forestry workers were analysed for the presence of IgG serum antibodies 

against Borrelia burgdorferi sensu lato using the B.afzelii + VlsE IgG Europe ELISA IgG 

Test Kit on all samples. The tests were performed according to manufacturer’s instructions. 

Each test run included blank, positive, negative and two cut-off controls. Serum samples were 

prepared in a 1:100 dilution. 100µl of each control and sample were pipetted into the antigen 

coated 96-well plate and the closed plate incubated at 37°C for 30min. The liquid was 

aspirated and the plate was washed four times with 400µl of diluted washing solution and the 

plate was completely dried on a cellulose paper. 100µl of Conjugate IgG containing anti-

human antibodies linked to horseradish peroxidase was added to each well and the closed 

plate incubated in the dark at 37°C for 30min. The conjugate incubation was stopped by 

washing four times with diluted washing solution. As an enzyme substrate 100µl of 3,3’,5,5’-

Tetramethylbenzidine (TMB) was added, which reacted in the following incubation period 

(37°C, 30min) with the peroxidase, resulting in a colour change. The reaction was stopped 

using 50µl of Citrate Stopping Solution leading to another colour change from blue to yellow. 

The extinction of each sample is measured at 450nm/620nm; optical density (OD) value of 

the blank control was deducted from each sample. Test results were validated using the test 

specific validation criteria.  

3.18 LINE Immunoblot 

The more specific LINE immunoblot is used to validate the obtained equivocal and positive 

ELISA results. Two-tier testing is generally used to reduce the costs as pre-screening is 

performed with low-cost ELISA and only a subset of samples is submitted to the expensive 

immunoblot analysis. The Borrelia Europe plus TpN17 LINE IgG Line Immunoblot kit 

provides nitrocellulose strips that are coated with antigens of the pathogen. A test strip was 

placed into a channel of an incubation tray and soaked with 1.5ml of dilution/wash buffer for 

1min. 100µl of positive, negative or cut-off controls or 15µl of patient serum were added to 

each strip and incubated for 30min on a rocking platform. Liquid was aspirated, strips were 
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washed three times in 1.5ml of dilution/wash buffer for 5min and the liquid was aspirated. 

The conjugate dilution containing anti-human antibodies linked to alcaline phosphatase was 

added to the dry strips and incubated for 30min on a rocking platform. Afterwards the liquid 

was aspirated; the strips were washed three times in 1.5ml of dilution/washing buffer for 5min 

and rinsed with deionised distilled water for 1min. Dry strips were incubated with 1.5ml of 

substrate solution containing BCIP/NBT for 10min on a rocking platform. The reaction was 

stopped by aspiration and the strips washed three times with deionised distilled water without 

incubation. After drying, the strips were analysed according to manufacturer’s instructions. 

3.19 Weather Data 

Temperature and relative humidity data from 16 weather stations in Luxembourg was 

obtained from the Administration des Services Techniques de l’Agriculture (ASTA) for the 

years 2006 to 2009. Parameters were recorded automatically every ten minutes. Monthly 

mean temperature and relative humidity were determined for each weather station. In order to 

measure the drying power of the atmosphere, the saturation deficit as a function of 

temperature and relative humidity was calculated according to Randolph and Storey (172). 

3.20 Statistical Analysis 

For statistical analyses one way Analysis of Variance (ANOVA) tests (SigmaStat3.1, Systat 

Software, Erkrath, Germany) were performed. Kruskal-Wallis one-way analysis of variance 

on ranks was performed when Normality Test or Equal Variance Test failed using either the 

suggested Tukey Test or the Holm-Sidak method as an All Pairwise Multiple Comparison 

Procedure. Fisher’s exact test or Pearson's goodness of fit chi-square (GFX) test were used for 

two by two analyses. 

3.21 Habitat Categories 

The habitat of each collection site from Luxembourg was characterized by the percentage of 

forest, agricultural plains, water bodies and urbanised areas (buildings, sealed surfaces) in a 

1km2 area with the collection site as centroid using aerial photographs (Google Earth). Thus, 

four ecological categories were defined (category I: 0-4%, II: 5-9%; III: 10-24%; IV: 25-60% 

of urbanised area) with 6-11 collection sites per category Table 7. 
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3.22 Geographic Groups 

In order to test for differences in the tick infection rates among geographic regions in 

Luxembourg, the data of 4-8 collection sites in the North, Northeast, East, South, West and 

Centre were pooled Table 7. In 2008 and 2009, these geographic groups were changed 

according to the administrative regions of the Eaux et Forêts of Luxembourg in order to match 

the seroprevalence data from Luxembourgish forestry workers. 

In Belarus, the 32 collection sites were grouped according to the respective administrative 

regions of Brest (n=8), Gomel (n=7), Grodno (n=2), Minsk (n=3), Mogilev (n=7) and Vitebsk 

(n=5). 

3.23 Georeferencing Tools 

Geographic Information Systems (GIS) are tools for analysing, manipulating and visualizing 

georeferenced data in their geographic context. Spatial information is obtained from Global 

Positioning Systems (GPS) which use the space-based Global Navigation Satellite System 

(GNSS) to provide information about geographic location and time. The GPS receives time 

signals from satellites that are transmitted by radio and calculates its exact position based on 

the signal propagation delay. Remote Sensing (RS) provides surface information of the Earth 

in images taken from satellites, aircrafts, helicopters and ships. These images give valuable 

information on e.g. landscape features, vegetation types, land surface temperature, 

atmospheric moisture and rainfall. As a GIS tool for mapping the spatial distribution of 

Borrelia burgdorferi s.l. in ticks and its seroprevalence in forestry workers, ArcGIS 9.3.1 

(ESRI) and ArcGIS Spatial Analyst extension was used. GPS coordinates were uploaded and 

each collection site was mapped using shape files provided by ESRI. Point data from 

collection sites was interpolated using the inverse distance weighted model and a cell size of 

100m. 
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4.1 Prevalence and seasonality of tick-borne pathogens in questing Ixodes 

ricinus ticks from Luxembourg 
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In Western Europe, the hard tick Ixodes ricinus is the main arthropod vector of various human 

and animal pathogens, causing several tens of thousands severe infections in humans every 

year (94, 127). The most common tick-borne infection is Lyme borreliosis. This multi-

systemic disorder is caused by spirochetes of the Borrelia burgdorferi sensu lato (s.l.) 

complex which is comprised of at least 12 species worldwide (181). Among the 6 European 

species, only B. garinii, B. afzelii and B. burgdorferi sensu stricto (s.s.) are known as human 

pathogens, whereas the significance of B. valaisiana, B. spielmanii and B. lusitaniae for 

human health is not clear (91).  In a metaanalysis of 154 European studies, a mean of 13.7% 
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of ticks were found to be infected with Borrelia sp., predominantly with B. afzelii and B. 

garinii. However, the prevalence of Borrelia species varies from 2 to 49% between different 

regions (176). 

Other tick-borne bacteria which cause disease in humans are Rickettsia sp.,  Anaplasma 

phagocytophilum, Bartonella henselae and B. quintana, Coxiella burnetii and Francisella 

tularensis ssp., all of which show only relatively low prevalence rates of 0.1-4.8% in 

European ticks (63, 86, 95, 167, 192, 200). In addition, three species of the parasitic 

protozoan Babesia are known to infect humans, namely B. divergens, B. microti and the 

newly described Babesia sp. EU1 (11). In Western Europe, also Tick-borne encephalitis virus 

(TBEV) has a relatively low prevalence; however, this pathogen deserves special attention 

because of the severe disease it causes in humans. Tick-borne encephalitis affects at least 

10,000 humans in Europe annually (46, 127) and up to 5% of ixodid ticks are infected in 

endemic areas (179, 213).  

As a result of climatic changes and human impact on the environment, the prevalence of ticks 

and tick-borne infections in Central Europe are expected to be increasing (79, 232). 

Nevertheless, recent studies on human pathogens are rare in Central Europe (49, 61, 65, 110, 

135, 192, 193) and comprehensive surveys to assess risks to human health are warranted. 

Here we present such a comprehensive study in Central Europe which investigates all relevant 

human tick-borne pathogens in questing nymphal and adult ticks from 33 representative 

collection sites throughout the 2007 season. 

 

 

4.1.1 Results 

Tick numbers. A total of 1,500 ticks including 106 larvae, 752 nymphs and 642 adults (320 

males, 322 females) were collected. All ticks belonged to the species Ixodes ricinus. Tick 

density ranged from 3.7 ticks per 100m2 in the West to 9.3 in the East. Higher densities were 

found in habitats of categories II and III (8.7 and 7.8 ticks) in comparison to the others (Table 

7). The nymphal and adult tick activity was highest in May and June (Figure 2A). Larvae 

showed their main activity in August (9 sites, 1-56 larvae/site). Despite considerable 

variability in tick numbers per collection site (14-134 ticks/site, mean 46), geographic region 

and habitat category, highest numbers of nymphs and adults were always observed in spring 

(data not shown).   
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Tick infection rates. Of the 1,394 adult and nymphal ticks, a total of 19.5% (n=272) were 

infected with at least one pathogen. Nymphs had a significantly lower overall infection rate 

(16.4%) than adults (23.2%, p<0.01), with females showing a significantly higher infection 

rate (26.7%) than males (19.7%, p<0.05). A comparison of the infection rates by geographic 

regions and habitat categories revealed considerable variations (Table 7).  

Borrelia. B. burgdorferi s.l. was the predominant pathogen group and was detected in 11.3% 

(n=157) of all ticks. As expected, the tick infection rate was significantly higher in adults 

(15.0%; males 14.7%; females 15.2%) than in nymphs (8.1%) (p<0.01). Borrelia infection 

rates were highest in the Northeast (21.9%) and lowest in the West (2.8%) (Table 7). The  

 

 

 

Figure 2: Overall seasonal activity of the developmental stages of I. ricinus. Number of ticks collected at 33 
collection sites from May to October 2007 (A) and Borrelia infection rates of ticks (B). 
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habitat classification showed a positive correlation between infection rates and the extent of 

urbanisation, ranging from 8.9% in category I to 14.6% in category IV (Table 7). 

Six different Borrelia species were identified based on the flagellin B (FlaB) gene (Figure 

3A). B. afzelii (33.1%; n=52) and B. garinii (29.9%; n=47) were the most prevalent species, 

followed by B. valaisiana (19.1%; n=30), B. burgdorferi s.s. (14.6%; n=23), B. spielmanii 

(2.5%; n=4), and B. lusitaniae (0.6%; n=1). Sequences for the outer surface protein A (OspA) 

were obtained for 133 FlaB-positive samples, resulting in 9.3% B. burgdorferi s.s., 37.7% B. 

afzelii, 31.8% B.garinii (serotypes 3-7: 2.6%; 0%; 2.6%; 10.6%; 3.3% and 11.9% of 

sequences in three distinct clusters most closely related to B. garinii strains) (Figure 3B). 

OspA sequences of B. valaisiana and B. spielmanii formed distinct clusters. The OspA  
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Figure 3: Phylogenetic trees for speciation of pathogens in Luxembourg. For detailed legend see next page. 
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Figure 3:  Phylogenetic trees for speciation of pathogens in Luxembourg. Phylogenies are 
based on (A) 209 nucleotides of the FlaB gene of B. burgdorferi s.l. (nucleotides 151-359 of 
GQ918147.1) including 157 samples and 71 reference sequences; (B) 462-465 nucleotides of 
the OspA gene of B. burgdorferi s.l. (nucleotides 9441-9905 of CP001433.1) including 133 
samples and 59 reference sequences; (C) 190 nucleotides of the 17kDa antigen gene of 
Rickettsia species (nucleotides 140-329 of GU292313.1) including 72 samples and 14 
reference sequences; (D) 343-370 nucleotides of the 18rRNA of Babesia species (nucleotides 
481-850 of EF413181.1) including 36 samples and 32 reference sequences; (E) 293 
nucleotides of the 18rRNA of Hepatozoon species (nucleotides 171-461 of FJ608736.1) 
including 1 sample and 34 reference sequences; (F) 466 nucleotides of the groEL gene of 
Anaplasma species (nucleotides 45-510 of GQ988761.1) including 26 samples and 55 
reference sequences; (G) 313 nucleotides of the 16S-23S region of Bartonella species 
(nucleotides 1782-2094 of AJ749669.1) including 4 samples and 26 reference sequences. 
Bootstrap values above 60 are shown. Stars represent (clusters including) our sequences.  
 

Infection rates of adult ticks with B. garinii and B. valaisiana were significantly higher 

(p<0.01) than those for nymphs. A higher adult infection rate was found in habitat category II 

to IV, whereas in category I both infection rates were similar (data not shown).  

Rickettsia. In 5.1% (n=71) of ticks Rickettsia species were detected. These were identified as 

R. helvetica (n=70) and R. monacensis (n=1). No clear trend in the seasonal variation of 

infected tick activity was observed (data not shown). Highest tick infection rates were found 

in the South, lowest rates in the Centre (Table 7). All habitats had similar infection rates 

(Table 7). Nymphal and adult tick infection rates were similar (4.9% versus 5.3%), but the 

prevalence of Rickettsia infected females (7.8%) was significantly higher than that of males 

(2.8%) (p<0.01). 

Babesia. Babesia species were detected in 2.7% (n=37) of ticks, with B. sp. EU1 being 

predominant (59.5%) and B. microti being the second most common species (35.1%). B. 

divergens and Hepatozoon canis were each detected in a single tick only (2.7%). The highest 

prevalence was found in September (data not shown). Tick infection rates ranged from 1.4% 

in the South to 4.5% in the Northeast and from 1.1% to 3.0% in the different habitat 

categories (Table 7). B. microti infection rates were twice higher for adults (1.3%) than for 

nymphs (0.7%), whereas B. sp.EU1 was more prevalent in nymphs (1.9%) than in adults 

(1.3%). 

Anaplasma phagocytophilum.  1.9% (n=27) of ticks were infected with A. phagocytophilum. 

There was a clear unimodal seasonality for infected adult ticks with a peak in September, but 

no such pattern was found for nymphs (data not shown). The highest infection rate of A. 

phagocytophilum was found in ticks collected in the East (4.5%) (Table 7). Tick infection  
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sequence derived from tick #172 (FlaB sequence clustered with B.lusitaniae) clustered 

distinctly from all reference and sample sequences, suggesting the OspA sequence also to be 

from B. lusitaniae. 24 samples (1.7%) with nucleotide ambiguities were cloned and 19 mixed 

infections were confirmed. In 2 additional samples the FlaB- and the OspA-fragments 

corresponded to different Borrelia species.  The most frequent combinations were B. 

valaisiana and B. garinii (10/21) (Table 8).  

Seasonal evolution of Borrelia infections in ticks showed a bimodal seasonal activity 

beginning with high numbers in May and a second peak in September (Figure 2B). On a 

species level different patterns of seasonality were observed (Figure 2B).  

Regional differences in the prevalence of Borrelia species were also observed. B. afzelii was 

predominant in the North (59.5%) and South (35.7%), whereas B. garinii was most prevalent 

(53.6%) in the East. B. valaisiana was the predominant species in the Northeast (29.4%). In 

the West, B. garinii, B. afzelii and B. burgdorferi s.s. were equally prevalent (33.3%). 

Species composition varied between habitat categories (Figure 4): B. afzelii and B. garinii 

were equally prevalent in all categories except in IV, where B. afzelii was predominant. In 

category III, B. garinii, B. afzelii, B. burgdorferi s.s. and B. valaisiana showed similar 

prevalence rates (23.4 to 25.5%). Tick infection rates of B. garinii were similar in all 

categories (3.0-4.0%), whereas B. afzelii seemed to prefer category IV (6.7%) to the others 

(2.7-3.8%). The 1.6-fold higher infection rates of categories III and IV (14.3%) in comparison 

to I and II (9.0%) are caused by B. valaisiana and B. burgdorferi (III) and B. afzelii (IV), 

respectively.  

 

 
 

Figure 4: Borrelia species composition by habitat category. 
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rates were lowest in habitat category IV (0.8%) and highest in II (2.5%) (Table 7). Female 

ticks seem to be more often infected (3.4%) than male (1.6%) or nymphal ticks (1.5%). 

Bartonella. B. henselae was detected in 0.3% of all ticks and the 4 infected ticks were found 

at different collection sites and in different months (data not shown). B. henselae was only 

found in the North, East and South and in habitat categories I and II (Table 7). 

Coxiella, Francisella tularensis and TBEV were not detected in any of the 1,394 ticks 

analysed. 

Mixed infections. Infections with more than one pathogen occurred in 3.2% of all ticks 

(n=44), most of which were coinfections with 2 pathogens (n=42) (Table 8). Combinations of 

B. burgdorferi s.l. and Babesia sp. (22.7%) and B. burgdorferi s.l. and R. helvetica (18.2%), 

were most frequent. All coinfections involving Babesia microti were exclusively with B. 

afzelii (n=6). Additionally, no Anaplasma infected tick was coinfected with B. afzelii. Almost 

half of the observed coinfections (n=21) involved different Borrelia species (also see above). 

Two coinfections with 3 pathogens (B. garinii, A. phagocytophilum and Babesia sp. EU1 as 

well as B. garinii ST6, B. valaisiana and B. sp.EU1) were found in a male and nymph 

respectively. The adult coinfection rate (4.5%) was twice as high as the nymphal (2.0%) 

(p<0.01) and the great majority of multiple infected ticks (75%) were collected in May and 

June (data not shown).  

 

Table 7. Tick infection rates for geographic groups and habitat categories in Luxembourg. 

 
Geographic groups 

CS TD Total TIR Borrelia Rickettsia Babesia Anaplasma Bartonella 

North 6 7.7 17.6% 12.1% 4.6% 3.9% 0% 0.7% 
Northeast 4 5.9 27.1% 21.9% 6.5% 4.5% 0.6% 0% 

East 6 9.3 20.1% 9.1% 7.8% 1.6% 4.5% 0.3% 
West 4 3.7 10.3% 2.8% 4.7% 1.9% 2.8% 0% 

Centre 8 8.1 15.6% 10.3% 2.4% 2.9% 1.3% 0% 
South 5 4.4 20.7% 10.0% 7.9% 1.4% 2.1% 0.7% 

         
Habitat categories         

I 6 5.5 16.9% 8.9% 4.7% 3.0% 1.3% 0.8% 
II 11 8.7 18.1 9.0% 5.3% 1.1% 2.5% 0.4% 
III 10 7.8 22.9 14.0% 5.1% 2.7% 2.4% 0% 
IV 6 6.1 20.6 14.6% 5.1% 2.8% 0.8% 0% 

 

CS, number of collection sites per group; TD, tick density; TIR, Tick infection rate. Note that for the total tick 
infection rates mixed infected ticks were counted only once. 
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4.1.2 Discussion 

The present study is the most complete survey of all relevant tick-borne human pathogens in 

Central Europe. Additionally, it is among the very few studies with a monthly sampling of 

multiple collection sites.  

The densities of I. ricinus at most collection sites (3.6 to 9.5 ticks/100m2) correspond to the 

category “low tick abundance” (3-10 ticks/100m2)  according to Schwarz et al. (190). The 

observed infection rates of B. burgdorferi s.l. (11.3%), R. helvetica (5.1%), and A. 

phagocytophilum (1.9%) in Luxembourg are comparable to those reported from the  

neighbouring countries Germany (2002-2005: Borrelia 13.9-24%, Rickettsia 8.9%, 

Anaplasma 1.0% (86, 123, 152)), Belgium (1998: Borrelia 23% (135)) and France (2006: 

Borrelia 20.4%, Anaplasma 0.5%, Rickettsia 16% of tick pools, (63, 83)).  

In Europe, the most prevalent Borrelia species are either B. afzelii (27, 101, 123) or B. garinii 

(12, 135). We observed marked differences in the prevalence of Borrelia species in both, the 

geographic regions and the habitat categories, which may be related to the specific host 

preference of the different Borrelia species. Based on their sensitivity to reservoir host 

complement, Borrelia species have been divided into three ecological groups (118). Thus, B. 

afzelii and certain B. garinii strains (OspA serotype 4) are mainly associated with rodents, B. 

valaisiana and other B. garinii strains (OspA serotypes 3,5,6 and 7) with birds, whereas B. 

burgdorferi s.s. is found in both rodents and birds (118). In categories III and IV, higher 

Borrelia infection rates are caused by B. burgdorferi s.s., B. valaisiana and B. afzelii, 

suggesting an established urban zoonotic cycle with synanthropic rodents and songbirds as 

main hosts. Urban zoonoses have been described for other arthropod- and tick-borne 

pathogens, e.g. Bartonella, Coxiella, Ehrlichia and Rickettsia, and their increasing incidence 

has been linked to various extrinsic and intrinsic factors (32). 

The prevalence rates of Babesia species in our study are similar to reports from Germany 

(1%) (28, 86), but are much lower than in France (20.0%) (82). However, in Germany B. 

divergens is by far the most prevalent species (86), whereas in Luxembourg B. sp. EU1 and B. 

microti are predominant. We also detected H. canis, which has never been found in questing I. 

ricinus ticks from Central Europe before. The causative agent of canine hepatozoonosis is 

endemic in Southern Europe, Africa, and the Middle and Far East, where it is transmitted to 

dogs by oral uptake of infected Riphicephalus sanguineus ticks during grooming (6). 

International tourism including the importation of pet animals (6) may explain the 

introduction of non-endemic pathogens. The finding of H. canis in a questing female I. ricinus 



Results and Discussion 

 57 

suggests the successful transmission from an infected dog to a feeding instar in Luxembourg 

that maintained the infection transstadially. Whether I. ricinus is a competent vector and 

whether ecological factors favour the establishment and spread of this pathogen in Central 

Europe requires further attention.  

Bartonella henselae (0.3%) has not been found in questing I. ricinus ticks in Central Europe 

before. This pathogen is commonly transmitted by infected cats and causes the Cat Scratch 

Disease in humans. Only recently the role of I. ricinus as a competent vector for B. henselae 

has been confirmed experimentally (33).  

Although no TBEV infected tick was found in this study, findings from France and recently 

also from Luxembourg’s two neighbouring German states Saarland and Rhineland-Palatinate 

(183, 224)  suggest a further spread of this virus.  

Since transovarial transmissions are rare, coinfections in I. ricinus ticks may shed some light 

on the route of infection, e.g. consecutive feedings, coinfected hosts or cofeeding. 

Interestingly, analysis of reservoir host preferences of each pathogen (Table 8) revealed that 

pathogen combinations which normally do not occur in the same host were about eight times 

more frequent in adults (0.8%) than in nymphs (0.1%). In contrast, pathogen combinations 

that occur in the same host had slightly higher rates for adults (1.4%) than for nymphs (0.8%). 

This suggests that coinfections of nymphs are acquired during larval feeding on coinfected 

hosts, while in adults consecutive feedings are the main source of coinfections. 

Only few studies have taken the seasonal variations of tick infection rates into account. 

Intriguingly, tick infection rates of Borrelia sp. and Babesia sp. were low in summer (July and 

August) and significantly increased in September (6.7% to 14.1% (p<0.05) and 1.7% to 3.9% 

(p<0.05), respectively). For A. phagocytophilum, a similar pattern was observed (1.4% 

to 5.1%) that may reflect a behavioural adaptation strategy of ticks. Aridity can force ticks to 

undergo quiescence in order to avoid critical loss of energy, which may be exacerbated by 

pathogen infections (72, 111, 157, 197) and thus contribute to preferential collection of 

uninfected ticks and to the observed seasonal variations in the tick infection rates.  

In conclusion, the habitat does not only influence tick densities and vertebrate host 

population, but also the prevalence of Borrelia species. The observed seasonality of Borrelia, 

Anaplasma and Babesia species has not been reported before and together with the possibility 

of urban zoonoses it has major implications for human health. In addition, imported or 

neglected pathogens like H. canis and B. henselae, as well as coinfections with various 

pathogen combinations may represent new potential threats to human and animal health.  
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Table 8. Coinfections of Ixodes ricinus in Luxembourg in 2007. Information on potential reservoir hosts 

and mode of acquisition is given. 

 

Pathogen species Developm. 
stage/sex  
of ticks 

Borrelia Borrelia Rickettsia Babesia Anaplasma 

Reservoir 
host 

preferences 

Acquisition of  
coinfection 

F afzelii - - microti - R + R SIM 

F afzelii - - microti - R + R SIM 

F afzelii - helvetica - - R + R/D SIM or CON 

F valaisiana - helvetica - - R + R/D SIM or CON 

F valaisiana - helvetica - - R + R/D SIM or CON 

F valaisiana - helvetica - - R + R/D SIM or CON 

F valaisiana - - - phagocytophilum R + B/D CON 

F - - helvetica - phagocytophilum R/D + B/D SIM or CON 

F - - helvetica sp. EU1 - R/D + D SIM or CON 

F garinii ST3 garinii ST7 - - - B + B SIM 

F garinii ST6 valaisiana - - - B + B SIM 

F garinii ST6 valaisiana - - - B + B SIM 

F garinii DC valaisiana - - - unclear + B SIM or CON 

F burgdorferi s.s. species unclear - - - R/B + unclear SIM or CON 

M afzelii - - Microti - R + R SIM 

M afzelii - - sp. EU1 - R + D CON 

M afzelii - - sp. EU1 - R + D CON 

M garinii - helvetica - - R/B + R/D SIM or CON 

M garinii - helvetica - - B + R/D CON 

M garinii - - sp. EU1 phagocytophilum B + D + B/D CON 

M afzelii burgdorferi s.s. - - - R + R/B SIM or CON 

M afzelii spielmanii - - - R + R SIM 

M afzelii spielmanii - - - R + R SIM 

M garinii burgdorferi s.s. - - - R/B + R/B SIM or CON 

M garinii valaisiana - - - R/B + B SIM or CON 

M garinii valaisiana - - - R/B + B SIM or CON 

M garinii ST7 valaisiana - - - B + B SIM 

M garinii DC valaisiana - - - unclear + B SIM or CON 

M valaisiana burgdorferi s.s. - - - B + R/B SIM or CON 

N afzelii - helvetica - - R + R/D SIM or CON 

N afzelii - helvetica - - R + R/D SIM or CON 

N afzelii - - microti - R + R SIM 

N afzelii  - microti - R + R SIM 

N afzelii - - microti - R + R SIM 

N garinii ST6 valaisiana - sp. EU1 - B + B + D CON 

N - - helvetica - phagocytophilum R/D + B/D SIM or CON 

N - - helvetica - phagocytophilum R/D + B/D SIM or CON 

N - - helvetica sp. EU1 - R/D + B/D SIM or CON 

N afzelii garinii - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. - - - R + R/B SIM or CON 

N garinii ST3 valaisiana - - - B + B SIM 

N garinii ST5 garinii ST6 - - - B + B SIM 

N garinii ST5 garinii ST6 - - - B + B SIM 

N garinii DC valaisiana - - - unclear + B SIM or CON 
 

N, nymph; M, male; F, female; ST, serotype; DC, distinct cluster; R, rodents; B, birds; D, deer; SIM, 
simultaneously; CON, consecutively. Reservoir host preferences were taken from the literature (9, 43, 66, 107, 
118, 203). 
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4.2 Interannual, Seasonal and Regional Variations in the Prevalence of Borrelia 

burgdorferi sensu lato and other Tick-Borne Pathogens in Ixodes ricinus 

Ticks 
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Annual dynamics of questing activity of exophilic ticks are regulated by seasonal variation of 

temperature, interannual population dynamics of ticks are driven by abiotic and biotic factors 

(84). Suitable temperature and relative humidity are crucial for the survival of ticks. 

Especially dry and hot conditions during the summer months and very cold and dry conditions 

throughout the winter can lead to increased mortality rates of ticks (171, 172). In addition, 

blood meal host abundance and suitability of habitat are important biotic factors regulating the 

survival of ticks. The risk of contracting a tick-borne disease is closely linked to the survival 

rate of ticks, since the abundance of ticks determines the frequency of contact with humans.  
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The seroprevalence of tick-borne pathogens in humans is a marker for the rate of exposure to 

bites of infected ticks. In many cases infections will resolve without disease manifestation, 

thus the prevalence of serum antibodies against a pathogen is not a marker of disease. 

Forestry workers have been identified as a risk group for tick-borne pathogens as they spent 

most of their professional time working outdoors. It has been found that infection rates of 

forestry workers can be two to six times higher than in the general population (23, 109, 115, 

175, 224).  

In this study the interannual, seasonal and regional variations in the prevalence of tick-borne 

pathogens based on data from a three year survey conducted in Luxembourg are investigated. 

A combined questionnaire and seroprevalence study on forestry workers reveals risk factors 

for contracting Lyme Borreliosis in Luxembourg. 

 

4.2.1 Results 

2007. In 2007, 1500 Ixodes ricinus ticks comprising of 320 females, 322 males, 752 nymphs 

and 106 larvae were collected at 33 collection sites throughout Luxembourg. Details of this 

study are presented in chapter 4.1 and were published by Reye et al, 2010 (180). 

2008. In 2008, 3578 I. ricinus ticks consisting of 343 females, 367 males, 1645 nymphs and 

1223 larvae were collected at the same collection sites in Luxembourg. All nymphal and adult 

ticks (n=2355) were analysed for presence of tick-borne pathogens. The most prevalent 

pathogens belonged to the Borrelia burgdorferi s.l. complex (19.4%; n=458), with B. afzelii 

(6.8%; n=160) and B. garinii (5.0%; n=117) being the most prevalent, followed by 

B. valaisiana (3.6%; n=84), B. burgdorferi s.s. (2.7%; n=64) and B. lusitaniae (0.04%; n=1). 

Few pathogens could not be identified to species level (0.5%, n=12). The second most 

prevalent pathogen were Spotted Fever Group (SFG) Rickettsiae, which were detected in 

6.5% of ticks. R. helvetica was the predominant species (6.2%; n=145); three other species 

were rarely detected, namely R. monacensis (0.3%; n=6), R. slovaca (0.04%; n=1) and a 

species most closely related to Rickettsia sp. “male killing” (AJ269517) (0.04%, n=1). 

A. phagocytophilum was detected in 0.2% (n=4) of ticks and not further identifiable Babesia 

and Bartonella species in 1.49% (n=35) and 0.2% (n=4), respectively. TBEV, C. burnetii and 

F. tularensis were not detected. The tick infection rate of adults was at least 1.1 times higher 

than that of nymphs, except for Bartonella and Babesia species (factor 0.8). 

Coinfections were detected in 73 ticks (3.1%), mainly in adults (4.5%; n=32) but also in 

nymphs (2.5%; n=41; Table 9). The majority of these were formed by Borrelia and Rickettsia 
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species (53.4%, n=39), but also combinations of different Borrelia species, including different 

serotypes of B. garinii were frequently detected (30.1%; n=22). 

2009. In 2009, 3027 Ixodes ricinus ticks comprising of 179 females, 166 males, 1543 nymphs 

and 1139 larvae were collected at the same collection sites as the years before. In addition, 

one female Dermacentor reticulatus tick was collected in southern Luxembourg. In total, 

1889 nymphal and adult ticks were subjected to pathogen detection procedures. 

Predominantly members of the Borrelia burgdorferi s.l. complex were detected (16.0%; 

n=302) with B. afzelii (4.8%; n=90), B. valaisiana (3.8%; n=71) and B. garinii (3.4%; n=64) 

being the most prevalent species. B. burgdorferi s.s. (0.8%; 16), B. spielmanii (0.1%; n=2) 

and B. lusitaniae (0.1%; n=1) were only rarely detected. Few pathogens could not be 

identified to species level (1.3%, n=24). SFG Rickettsiae were detected in 8.1% (n=153) of 

ticks, predominantly identified as R. helvetica (7.1%; n=134). R. monacensis was detected in 

one tick (0.1%) and pathogens from 18 ticks (1.0%) could not be identified to species level. 

Low tick infection rates were found for A. phagocytophilum (1.2%; n=22), Babesia sp. EU1 

(1.4%, n=26) and Babesia microti (0.1%; n=1). TBEV, C. burnetii and F. tularensis were not 

detected. Tick infection rate of adults was at least 1.4 times higher than that of nymphs, 

except for A. phagocytophilum (factor 0.9). 

Coinfections were found in 71 ticks (3.8%) with higher rates in adults (7.2%; n=25) than 

nymphs (3.0%; n=46;Table 10). Combinations of different Borrelia species formed most of 

the mixed infections (47.9%; n=34) although double infections including Borrelia and 

Rickettsia species were also frequently detected (31.0%; n=22). 

Comparison of tick numbers and tick infection rates of 2007-2009. In 2007, 57.2% of all 

collected ticks were immature stages (50.1% nymphs, 7.1% larvae). In 2008 and 2009, the 

percentage of immature ticks increased to 80.2% (46.0% nymphs, 34.2% larvae) and 88.6% 

(51.0% nymphs, 37.6% larvae), respectively. The overall tick density for Luxembourg was 

lower in 2007 (4.0 ticks/100m2) than in 2008 (10.1 ticks/100m2) and 2009 (14.2 ticks/100m2), 

respectively (Figure 5). As the population of adult ticks remained somewhat stable at 1.8 

ticks/100m2 (+/-0.2) in all three years, immature instars were responsible for the significant 

increase in tick density (p<0.05).  

The three year tick infection rates were 16.3% for B. burgdorferi s.l. (n=918), 6.7% for 

Rickettsia species (n=377), 1.8% for Babesia species (n=99), 0.9% for A. phagocytophilum 

(n=53) and 0.1% for Bartonella species (n=7). The total tick infection rate of Borrelia 

burgdorferi s.l. in 2007 was significantly lower than in 2008 (p<0.01) and 2009 (p<0.01) and 

also the difference between 2008 and 2009 was statistically significant (p<0.01). B.afzelii was 
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the predominant Borrelia species (mean prevalence rate of 5.4%), followed by B. garinii 

(mean rate 3.7%) and B. valaisiana (mean rate 3.3%). Infection rates of nymphs were 

significantly lower than that of adults for B. garinii, B. burgdorferi s.s. and B. valaisiana 

(p<0.05), but not for B. afzelii (nymphs 5.1%; adults 5.9%). Both, Rickettsia and Bartonella 

infection rates were significantly higher in 2009 than in the preceding years (p<0.05). 

Throughout the study, R. helvetica was always the predominant Rickettsia species (mean rate 

6.2%). In 2008, significantly less ticks were infected with A. phagocytophilum than in 2007 or 

2009 (p<0.01). Significantly more Babesia species were detected in ticks from 2007 than in 

the other two years (p<0.05). Predominantly Babesia sp. EU1 was identified (mean rate 

0.9%). 
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Figure 5. Interpolated density maps of questing ticks. Data derives from 33 collection sites that were 

visited monthly from May to October 2007, 2008 and 2009. Colours visualize the density of ticks per 

100m2. 
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Seasonality of ticks and tick-borne pathogens 2007-2009. Aggregation of data from all 

years revealed seasonal changes in the numbers of ticks. Highest numbers of nymphal and 

adult ticks were collected in May and June, whereas larval ticks displayed a peak in August 

(Figure 6A). Throughout the season a similar ratio between female and male ticks was 

observed, while the ratio between nymphs and adults increased significantly over the months, 

displaying its peak in autumn (Figure 6B). 

 
Figure 6. Seasonality of abundance and density of Ixodes ricinus instars. (A) Seasonal changes in the 

abundance of Ixodes ricinus instars and (B) in the ratio of immature to mature and female to male ticks. 
 

In 2007 a bimodal seasonality of the ticks infected with Borrelia burgdorferi s.l., Babesia 

species and A. phagocytophilum was observed (see chapter 4.1).  

In 2008, the Borrelia tick infection rates were stable around 20.0% (±1%) except in August, 

where it significantly decreased to 14.3% (Figure 7A). On Borrelia species level, the bimodal 

seasonality was again visible: ticks infected with B. afzelii and B. burgdorferi s.s. were 

frequently found during the early collection period, the number of which dropped in 

August/September, but increased again in October. Also B. garinii and B. valaisiana infected 

ticks were most often collected in September. For Babesia species the bimodal seasonality 

was also observed, whereas the overall A. phagocytophilum infection rates were too low to 

monitor seasonal changes.  

In 2009, Borrelia tick infection rate was more or less stable at 15.6% ±2.2%, with the highest 

rate in July (17.7%) and lowest in October (13.5%; Figure 7A). On species level, B. garinii 

and B. valaisiana displayed the bimodal seasonality observed in the preceding years. B. afzelii 

was predominantly detected in spring ticks, making up 39.0% of all detected Borrelia species, 

but tick infection numbers steadily decreased until October (0%). Infection rates of B. 

burgdorferi s.s. were too low to monitor seasonality. A. phagocytophilum infected ticks were 

predominantly found later in the season (August to October). 
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 Table 9. Coinfections of Ixodes ricinus in Luxembourg in 2008. Information on potential reservoir hosts and mode of acquisition is given.  

Developmental Pathogen species Reservoir Host Acquisition of 
stage/sex of ticks Borrelia Borrelia Rickettsia Babesia Anaplasma Bartonella Preferences Coinfection 

F afzelii - monacensis - - - R + unclear SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - - spec. - - R + unclear SIM or CON 

F afzelii burgdorferi s.s. - spec. - - R + R/B + unclear SIM or CON 

F afzelii garinii helvetica - - - R + R/B + R/D SIM or CON 

F afzelii valaisiana - spec. - - R + B + unclear CON 

F burgdorferi s.s. valaisiana - - - - R/B + B SIM or CON 

F burgdorferi s.s. garinii  ST6, ST5, ST unclear - - - - R/B + B + B + R/B SIM or CON 

F garinii ST6 - helvetica - - - B + R/D CON 

F garinii ST6 garinii ST unclear - - - - B + R/B SIM or CON 

F garinii - helvetica - - - R/B + R/D SIM or CON 

F garinii ST6 garinii ST3 helvetica - - - B + B + R/D CON 

F garinii ST unclear valaisiana helvetica - - - R/B + B + R/D CON 

F garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

F garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

F valaisiana - helvetica - - - B + R/D SIM or CON 

F valaisiana - helvetica - - - B + R/D SIM or CON 

F - - helvetica spec. - - R/D + unclear SIM or CON 

M afzelii - - spec. - - B + unclear SIM or CON 

M afzelii - - spec. - - B + unclear SIM or CON 

M afzelii - - - phagocytophilum - B + B/D SIM or CON 

M garinii ST6 garinii ST3 - - - - B + B SIM 

M garinii ST6 garinii ST5, ST unclear - - - - B + B  + R/B SIM or CON 

M garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

M garinii - helvetica - - - R/B + R/D SIM or CON 

M valaisiana - helvetica - - - B + R/D CON 

M valaisiana - - spec. - spec. B + unclear + unclear SIM or CON 

N afzelii garinii - - - - R + R/B SIM or CON 

N afzelii garinii - - - - R + R/B SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 
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N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - - spec. - - R + unclear SIM or CON 

N afzelii - helvetica spec. - - R + R/D + unclear SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - helvetica - - - R + R/D SIM or CON 

N afzelii - - - phagocytophilum - R + B/D SIM or CON 

N burgdorferi s.s. garinii ST6 - - - - R/B + B SIM or CON 

N burgdorferi s.s. - helvetica - - - R/B + R/D SIM or CON 

N burgdorferi s.s. - helvetica - - - R/B + R/D SIM or CON 

N burgdorferi s.s. - helvetica - - - R/B + R/D SIM or CON 

N burgdorferi s.s. - helvetica - - - R/B + R/D SIM or CON 

N burgdorferi s.s. - helvetica - - - R/B + R/D SIM or CON 

N garinii ST6 garinii ST unclear - - - - B + R/B SIM or CON 

N garinii ST6 garinii ST5, ST7, ST unclear - - - - B + B + B + R/B SIM or CON 

N garinii valaisiana - - - - R/B + B SIM or CON 

N garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

N garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

N garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

N garinii - helvetica - - - R/B + R/D SIM or CON 

N garinii - helvetica - - - R/B + R/D SIM or CON 

N garinii - helvetica - - - R/B + R/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - monacensis - - - B + unclear SIM or CON 

N spec. - helvetica - - - unclear + R/D SIM or CON 

N - - monacensis - - spec. unclear + unclear SIM or CON 

N - - helvetica spec. - - R/D + unclear SIM or CON 
  

N, nymph; M, male; F, female; ST, serotype; R, rodents; B, birds; D, deer; SIM, simultaneously; CON, consecutively. Reservoir host preferences  

  were taken from the literature (9, 43, 66, 107, 118, 203) 
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Table 10. Coinfections of Ixodes ricinus in Luxembourg in 2009. Information on potential reservoir hosts and mode of acquisition is given.  

 

Developmental Pathogen species Reservoir Host Acquisition of 
Stage/sex of ticks Borrelia Borrelia Rickettsia Babesia Anaplasma Bartonella Preferences Coinfection 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii - helvetica - - - R + R/D SIM or CON 

F afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

F burgdorferi s.s. valaisiana - - - - R/B + B SIM or CON 

F garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

F garinii ST6 - helvetica - - - B + R/D SIM or CON 

M afzelii - - spec. EU1 - - R + D CON 

M afzelii - - spec. EU1 - - R + D CON 

M afzelii - - microti - - R + R SIM 

M afzelii - spec. - - - R + unclear SIM or CON 

M afzelii - helvetica - - - R + R/D SIM or CON 

M afzelii - helvetica - - - R + R/D SIM or CON 

M afzelii valaisiana - - - - R + B CON 

M burgdorferi s.s. garinii ST6 - - - - B + B SIM 

M burgdorferi s.s. valaisiana - - - - B + B SIM 

M burgdorferi s.s. valaisiana - - - - B + B SIM 

M garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

M garinii - helvetica - - - R/B+ R/D SIM or CON 

M garinii - monacensis - - - R/B+ unclear SIM or CON 

M garinii - spec. - - - R/B + unclear SIM or CON 

M garinii - spec. - - - R/B + unclear SIM or CON 

N afzelii - - - phagocytophilum - R + B/D SIM or CON 

N afzelii - - spec. EU1 - - R + D CON 

N afzelii - - spec. EU1 - - R + D CON 

N afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. - - - - R + R/B SIM or CON 

N afzelii burgdorferi s.s. helvetica - - - R + R/B + R/D SIM or CON 

N afzelii garinii - - - - R + R/B SIM or CON 
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N afzelii garinii - - - - R + R/B SIM or CON 

N afzelii garinii - - - - R + R/B SIM or CON 

N afzelii garinii - - - - R + R/B SIM or CON 

N afzelii garinii ST6 - - - - R + B CON 

N afzelii valaisiana - - - - R + B CON 

N afzelii valaisiana - - - - R + B CON 

N afzelii valaisiana - - - - R + B CON 

N burgdorferi s.s. - rickettsii group - - - R + unclear SIM or CON 

N burgdorferi s.s. garinii ST6 - - - - R/B + B SIM or CON 

N burgdorferi s.s. garinii ST6 - - - - R/B + B SIM or CON 

N garinii ST5 garinii ST6, ST unclear - - - - B + B + R/B SIM or CON 

N garinii ST5 garinii ST6 - - - - B + B SIM 

N garinii ST5 garinii ST6 helvetica - - - B + B + R/D SIM or CON 

N garinii ST5 garinii ST7 helvetica - - - B + B + R/D SIM or CON 

N garinii ST6 garinii ST unclear - - - - B + R/B SIM or CON 

N garinii ST6 garinii ST unclear - - - - B + R/B SIM or CON 

N garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

N garinii ST unclear valaisiana - - - - R/B + B SIM or CON 

N garinii ST unclear valaisiana spec. - - - R/B + B SIM or CON 

N garinii ST5 valaisiana - - - - B + B SIM 

N garinii valaisiana - - - - R/B + B SIM or CON 

N garinii valaisiana - - - - R/B + B SIM or CON 

N garinii valaisiana - - - - R/B + B SIM or CON 

N garinii valaisiana - - - - R/B + B SIM or CON 

N garinii - helvetica - - - R/B + R/D SIM or CON 

N garinii ST unclear - helvetica - - - R/B + R/D SIM or CON 

N garinii ST unclear - helvetica - - - R/B + R/D SIM or CON 

N garinii ST3 - - spec. EU1 - - B + B/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - helvetica - - - B + R/D SIM or CON 

N valaisiana - spec. - - - B + unclear SIM or CON 

N - - - spec. EU1 phagocytophilum - B/D + B/D SIM or CON 

N - - helvetica - phagocytophilum - R/D + B/D SIM or CON 

N - - helvetica - phagocytophilum - R/D + B/D SIM or CON 

N - - helvetica spec. EU1 - - R/D + B/D SIM or CON 

  N, nymph; M, male; F, female; ST, serotype; R, rodents; B, birds; D, deer; SIM, simultaneously; CON, consecutively. Reservoir host preferences  

  were taken from the literature (9, 43, 66, 107, 118, 203). 
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Figure 7. Seasonality of Borrelia burgdorferi s.l. infection rates in ticks. (A) Overall Borrelia burgdorferi s.l. 

infection rates in ticks collected in 2007, 2008 and 2009.  (B) Mean seasonal changes in the tick infection 
rate of the four predominant Borrelia species. 

 

Aggregation of the seasonal data revealed that B. afzelii and B. burgdorferi both display 

highest rates in spring months, which decrease towards autumn. B. garinii and B. valaisiana 

in contrast both show increased prevalence in ticks in September (Figure 7B). 

 

 

Figure 8. Borrelia burgdorferi s.l. infection rate of ticks in the habitat categories in the years 2007, 2008 

and 2009.  

 

Habitat categories 2007-2009. The mean tick densities were highest in habitat category (HC) 

I and II (9.1 and 9.6 ticks/100m2) and lowest in HC IV (6.5 ticks/100m2). In all years the 

Borrelia infection rate was highest in category IV (Figure 8). Overall, B. afzelii was the 

predominant species in all habitat categories, followed by B. garinii, B. valaisiana and B. 

burgdorferi s.s., however changes in the prevalence rates were observed during the years 
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(Figure 9). The habitat categories did not have a significant influence on the prevalence of 

Rickettsia species in ticks. A. phagocytophilum infected ticks were less prevalent at collection 

sites assigned to category IV. In 2007, the habitat categories did not have an influence on the 

prevalence of Babesia infected ticks; however in 2008 and 2009, ticks of HC III displayed 

lower rates of infection. Ticks from HC IV were not infected with Bartonella species. 
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Figure 9. Borrelia species composition in the habitat categories in the years 2007, 2008 and 2009. 

 

Regionality of ticks and tick-borne pathogens 2007-2009. Tick densities were highest in 

Central East (14.8 ticks/100m2) and lowest in the East (4.2 ticks/100m2) of Luxembourg. 

Adult tick densities were more stable throughout the collection period (1.0-2.6 ticks/100m2) 

than nymphal (1.9-6.1 ticks/100m2) or larval (0.6-6.8 ticks/100m2) densities (see also Figure 

6B).  

Regional differences in the Borrelia infection rate were observed in all three years. In 2007, 

the north-eastern and south-eastern parts of Luxembourg displayed high prevalence rates of 

more than 20% in ticks (Figure 10A). In the following year, these regions expanded towards 

northern and central Luxembourg (Figure 10B) and in 2009, the North was still a region with 

high Borrelia prevalence in ticks, whereas in the south-eastern part moderate tick infection 

rates were observed (Figure 10C). Overall, the mean Borrelia tick infection rate was highest 

in the regions South (19.5%), North (19.0%) and East (18.8%) and significantly lower in 

Central East (13.8%; p<0.01) and Central West (14.4%; p<0.05; Figure 10D). B. garinii was 

the only species detected at all collection sites, B. afzelii and B. valaisiana were each absent 

from two and B. burgdorferi s.s. from six sites. B. spielmanii was found at three sites in the 

regions North and Central East and the prevalence of B. lusitaniae was restricted to a single 

site in the East. Ten hotspots of Borrelia infected ticks with rates above 20% were observed in 

all regions except the Central West with a peak value of 35.8% at a site in the Central East. 

Two collection sites with very low prevalence rates of Borrelia species in ticks (<5%) were 

found.  
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Rickettsia infected ticks were most prevalent in the East (10.3%) and least in the North 

(4.6%). All collection sites were populated by Rickettsia infected ticks and 

A. phagocytophilum were found at 22 collection sites located in all regions, but predominantly 

in East (1.7%) and Central East (1.5%). Babesia species were found at 28 sites, highest tick 

infection rates were found in the North (2.5%). Bartonella species were detected in ticks from 

seven sites located in all regions. 

Gréngewald. In total 336 Ixodes ricinus ticks comprising of 29 females, 20 males, 177 

nymphs and 110 larvae were collected in the Gréngewald. Borrelia burgdorferi s.l. was 

detected in 17.3% of ticks (females: 24.1%; males: 25.0%; nymphs: 15.3%) with Borrelia 

garinii being the most prevalent (10.2%), followed by B. valaisiana (3.1%), B. afzelii (2.7%), 

B. burgdorferi s.s. (0.9%) and B. spielmanii (0.4%). Rickettsia helvetica was detected in 6.2% 

of ticks (females: 13.8%; males: 10.0%; nymphs: 7.9%), Anaplasma phagocytophilum in 

3.1% (females: 6.9%; males: 5.0%; nymphs: 4.0%) and Babesia sp. EU1 in 0.9% (nymphs: 

1.1%). Four ticks were found to harbour mixed infections, all involving R. helvetica together 

with either A. phagocytophilum, B. afzelii, B. burgdorferi or B. garinii. The adult tick 

infection rate was found to be at least 1.2 times higher than the nymphal for all pathogens, 

except for B. garinii (factor 0.6).  

Ticks from Hosts. In total, 1767 ticks were removed from eleven host taxa, namely humans 

(n=202), dogs (n=936), cats (n=309), deer (n=111), foxes (n=60), hedgehogs (n=58), horses 

(n=36), cattle (n=14), birds (n=39), marten (n=1) and shrews (n=1). Predominant tick species 

was Ixodes ricinus (89.8%; n=1587), followed by Ixodes hexagonus (9.2%; n=163), Ixodes 

frontalis (0.6%; n=10) and Dermacentor reticulatus (0.4%; n=7). I. ricinus was the only tick 

species found on humans, I. hexagonus was removed from cats (n=63), hedgehogs (n=50), 

foxes (n=42), dogs (n=7) and marten (n=1), D. reticulatus only from dogs (n=7) and 

I. frontalis only from birds (n=10). The first ticks from humans were collected in March 

(0.5%) and April (6.0%), but humans were predominantly at risk in May and June (53.2%). 

During summer, 30.8% of encounters were observed and in September and October 9.5%. 

Some of the ticks from humans (n=44) were analysed upon request for the presence of 

Borrelia burgdorferi s.l. and 15.9% (n=7) were positive. 
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Figure 10. Interpolated tick infection rate of Borrelia burgdorferi s.l. (A) in 2007, (B) 2008, (C) 2009 and 

(D) for all three years. 
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Serology Forestry Workers. 280 forestry workers participated in the seroprevalence study 

on Lyme Borreliosis, consisting of 270 men and 10 women. The majority of forestry workers 

(42.9%; n=120) were between 30 and 39 years old, followed by the group of 40-49 years old 

(25.4%; n=71); only 2.9% (n=8) were 60 years or older (Figure 11A). 35.4% (n=99) of 

forestry workers were clearly anti-Borrelia antibody positive and 2.5% (n=7) were equivocal 

in the immunoblot. In total, 12.9% of forestry workers had a history of diagnosed and treated 

Lyme Borreliosis. Age was identified as a significant risk factor (p<0.01), as 68.9% of 

forestry workers older than 40 years were seropositive, as compared to 22.0% of those 

younger (Figure 11A). Spending eight or more hours working outdoors also increased the risk 

of infection, even though not statistically significant (Figure 11B). More than 60% of forestry 

workers had contact to five or more ticks per year (Figure 11C) and the majority of forestry 

workers (51.1%; n=143) reported one to five tick bites per year (Figure 11D). The 

seroprevalence rate of Borrelia burgdorferi s.l. was highest in the groups which reported 

contact to 21-50 mobile or attached ticks (55.3%; n=38; Figure 11C). With further increasing 

tick contact (more than 51 ticks per year), the seroprevalence decreased to 22.7% (n=22). In 

the group of forestry workers reporting between 11 to 20 tick bites, the seroprevalence rate 

was highest (50%; Figure 11D). A similar seroprevalence rate of 40.0-40.8% was observed in 

those reporting either 6-10, 21-50 or more than 100 tick bites per year. There were no 

beneficial effects of tick repellents, frequent body inspection or early removal of ticks on the 

seroprevalence rate (Figure 12A-D). 

In fact the rates were slightly increased in the group applying these measures (repellent group: 

38.1% vs. 35.2%; body inspection group: 36.8% vs. 33.7%; early tick removal group: 40.0% 

vs. 31.4%). A small beneficial effect was observed in the group wearing protective clothing 

(trousers into socks, long-sleeves, light colours): the seroprevalence was reduced by 9% 

(30.2% vs. 39.2%; Figure 12D).  

On a regional level highest seroprevalence rates were observed in the East (43.6%; n=78), and 

North (41.2%; n=51) and significantly lower seroprevalence rates were observed in forestry 

workers from the South (23.6%; n=63; p<0.05; Figure 13). The mean age of forestry workers 

in the different regions ranged from 43 to 45 years (median: 42-47). In the North more than 

80.4% of the forestry workers were older than 40 years, whereas in the Central East and South 

only 65.1% were older than 40 years. History of Lyme Borreliosis was reported by 21.8% of 

forestry workers from the East, 11.8% from the North, 11.1% from South, 9.3% from Central 

West and 4.5% from Central East. 
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Figure 11. Seroprevalence of Borrelia burgdorferi s.l. in forestry workers. (A) Age distribution of forestry 

workers (left) and the seroprevalence rates of Borrelia burgdorferi s.l. according to the age groups (right). 

(B) Distribution of outdoor working time (left) and respective seroprevalence rates (right). (C) 

Distribution of total tick numbers (mobile and attached) found on body per year (left) and respective 

seroprevalence rates (right). (D) Distribution of numbers of tick bites observed per year (left) and 

respective seroprevalence rates (right). White bars indicate seronegative, shaded bars seropositive and 
black bars borderline immunoblot results. 
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Figure 12. Protective measures against Lyme Borreliosis. (A) Usage of tick repellents (left) and the 

seroprevalence rates of Borrelia burgdorferi s.l. according to the groups (right). (B) Body inspection (left) 

and respective seroprevalence rates (right). (C) Early removal of attached ticks (left) and respective 

seroprevalence rates (right). (D) Usage of protective clothing (left) and respective seroprevalence rates 

(right). White bars indicate seronegative, shaded bars seropositive and black bars borderline immunoblot 
results. 

A

B

C

D

0

50

100

150

200

250

yes no n.a.

Use of Tick Repellent

0%

20%

40%

60%

80%

100%

yes no n.a.

Use of Tick Repellent

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Body Inspection

0%

20%

40%

60%

80%

100%

yes no n.a.

Body Inspection

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Early Removal

0%

20%

40%

60%

80%

100%

yes no n.a.

Early Removal

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0%

20%

40%

60%

80%

100%

yes no n.a.

Clothing

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Clothing

A

B

C

D

0

50

100

150

200

250

yes no n.a.

Use of Tick Repellent

0%

20%

40%

60%

80%

100%

yes no n.a.

Use of Tick Repellent

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Body Inspection

0%

20%

40%

60%

80%

100%

yes no n.a.

Body Inspection

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Early Removal

0%

20%

40%

60%

80%

100%

yes no n.a.

Early Removal

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

F
o

re
s
tr

y
 W

o
rk

e
rs

0%

20%

40%

60%

80%

100%

yes no n.a.

Clothing

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Clothing

F
o

re
s
tr

y
 W

o
rk

e
rs

0%

20%

40%

60%

80%

100%

yes no n.a.

Clothing

F
o

re
s
tr

y
 W

o
rk

e
rs

0

50

100

150

200

250

yes no n.a.

Clothing



Results and Discussion 

 76 

  

 
Figure 13. Interpolated seroprevalence rate of Borrelia burgdorferi s.l. in the five arrondissements (A) and 

triages (B). N, North; CE, Central East, CW, Central West, E, East, S, South. 
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4.2.2 Discussion 

The most prevalent tick species in Luxembourg was the sheep tick Ixodes ricinus, making up 

99.9% of ticks collected from the vegetation and almost 90% of ticks collected from hosts. 

Cloth dragging is a useful method to collect exophilic ticks like I. ricinus, while nidicolous 

ticks or species closely related to their hosts are neglected (163). Although the collection of 

ticks from hosts, especially wild animals, is deemed to better reflect tick diversity and density 

(76), the risk for humans to contract a tick-borne disease is best assessed by collecting ticks 

from the vegetation, as this resembles the typical human-tick-contact. In Luxembourg all of 

the ticks that were found on humans were I. ricinus, predominantly nymphs (73.8%), but also 

adults (22.3%) and larva (4.0%). The recorded tick bites in humans were primarily caused by 

nymphs (79.5%) but also females (20.5%). This is in line with reports from Western Europe, 

where mainly nymphal and female I. ricinus are responsible for tick bites in humans and only 

few infestations with other instars and tick species have been reported (99, 125). The high 

rates of contact between ticks and humans in May and June is in line with the high numbers of 

questing ticks observed at this time. In the summer months the tick-human contact rate is 

higher than the questing tick density implies, probably caused by an increase of recreational 

outdoor activities.  

Borrelia burgdorferi s.l. was the most important tick-borne pathogen in Luxembourg, as it 

had a wide regional distribution, a high prevalence in questing Ixodes ricinus ticks and also a 

high seroprevalence in forestry workers. The Borrelia infection rate of ticks in the 

Gréngewald, a former secluded hunting area, was comparable to the rest of Luxembourg and 

also the significant predominance of B. garinii over B. afzelii had been observed at some sites 

outside of this forest. The second most prevalent pathogen in questing ticks from Luxembourg 

was the Spotted Fever Group Rickettsiae R. helvetica, a human pathogen known to cause non-

specific fever, whereas its potential to cause endocarditis remains unclear (47). Other tick-

borne human pathogens like Rickettsia slovaca, Anaplasma phagocytophilum, Babesia sp. 

EU1, B. microti, B. divergens and Bartonella henselae are prevalent in Luxembourg only at 

very low rates and therefore seem to be of minor threat to public health. The infection rates of 

nymphs (21.0%) were significantly lower than that of adults (30.0%; p<0.01), as questing 

adults have completed an additional blood meal as compared to nymphs. Interestingly, B. 

afzelii was similarly prevalent in nymphal and adult ticks (5.1% and 5.9% respectively), 

suggesting that nymphal ticks preferably feed on other blood meal hosts than larvae. In the 

three consecutive years, neither Tick-Borne Encephalitis Virus, nor Coxiella burnetii nor 
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Francisella tularensis were detected in questing ticks, suggesting that they are not endemic at 

least at the collection sites. Since an additional route of transmission of the two bacteria is via 

contaminated aerosols it is possible that these pathogens would be detectable in different 

biological sources (5, 67). 

 

 
Figure 14. Interstadial periods of Ixodes ricinus based ticks collected from May to October in 2007, 2008 

and 2009 in Luxembourg. Ticks feeding in spring/summer are either found questing as the next instar in 

autumn of the same year or in spring of the next year (red lines). Ticks feeding in autumn delay their 
development and are found questing in autumn of the following year (blue lines). 

 

Our study revealed significant annual variations of the population dynamics of I. ricinus, 

visible in tick numbers and the ratio of developmental stages. In 2007, almost half of the ticks 

collected were adults, whereas in the following years it was less than 20%. Density 

calculations revealed that the numbers of adults per 100m2 remained comparatively stable in 

the three years, while the number of immature instars increased significantly (Figure 5). The 

biological expectations of 100 larvae to 10 nymphs to 2 adults (48) were not matched, as 

immature stages were considerably underrepresented (3.5 : 5.3 : 2). Although cloth dragging 

yields highest numbers of nymphal and adult ticks, which are mainly involved in disease 

transmission, this method is not always representative of the actual abundance of larvae due to 

the vertical separation of questing positions (73, 133, 220). Even when assuming that the 

underrepresentation of immature instars is partially caused by sampling parameters, it should 

have introduced the same bias into the data of all years. The significant increase in counts of 

immature ticks in 2008 and 2009 is therefore likely to be caused by additional parameters. 

Abiotic factors (climate, landcover) play an important role for the survival of ticks during 
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their off-host phase. Significantly higher mean temperatures were recorded in the first four 

months of 2007, possibly triggering earlier questing activity in overwintering ticks and 

explaining the low numbers of collected ticks from May onwards. Although larvae usually 

display a single peak of questing activity in mid-summer (59, 77, 103, 171, 190), analysis of 

the inter-stadial periods between questing instars according to Randolph et al. (171) revealed 

that a proportion of the high nymphal counts in 2008 must derive from a larval population 

questing unusually early before the start of collection in 2007 (Figure 14).  

April 2007 was marked not only by higher mean temperature but also by a significantly lower 

relative humidity, resulting in an unusually high saturation deficit (Figure 15). Although ticks 

have adapted to transitory unfavourable microclimatic conditions (172), high saturation 

deficits especially in the spring months after overwintering may cause increased mortality 

rates, especially in immature instars. This may explain the absence of larvae and the relatively 

low numbers of nymphs found on the vegetation during the early collection season of 2007. 

Regardless of the density of immature instars in preceding years we observed that the density 

of adult ticks remained stable throughout the three years, suggesting a regulation of the tick 

population independent of variations of annual climatic conditions. It has been reported for 

several animal species that in regularly infested hosts the immune response influences the 

efficacy of tick feeding, leading to reduced engorgement weights (153). After moulting, these 

ticks suffer from reduced energy reserves, making them more susceptible to unfavourable 

microclimatic conditions and possibly leading to increased mortality rates (48, 172, 214) and 

thus restricting the density of adult ticks. Interestingly, in mice increasing tick infestation does 

not reduce the efficacy of feeding (19). As small rodents are the main hosts of larval ticks, this 

might explain why the density of nymphs was not regulated in the same way as that of adult 

ticks. As the interplay between abiotic and biotic factors is extremely complex and cannot be 

explained by data deriving from a three year survey, this hypothesis needs further 

confirmation from laboratory and long-term population studies. 

We also observed regional variations in the density of developmental stages of ticks. Some 

collection sites were characterized by higher numbers of immature instars than others, 

indicating the presence of suitable hosts of adult ticks (e.g. deer) in this area. The distribution 

of I. ricinus is directly linked to the movements of its host, meaning that hatched larvae will 

quest in proximity to the site of egg laying. The preferential hosts of larvae are small 

vertebrates, which usually have a limited territory also restricting the distribution of engorged 

larvae. Therefore, nymphs are likely to be found at sites with high numbers of larvae. 
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Figure 15. Monthly temperature, relative humidity and saturation deficit from 16 weather stations in Luxembourg for the years 2006 to 2009 (data obtained from 
ASTA). The red rectangle marks the significant increase of temperature measured in the first four months of 2007 and the significant decrease in relative humidity 

in April 2007. Saturation deficit as a function of temperature and relative humidity increased significantly in April 2007. 
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Interestingly, the adult tick density was not higher at these sites, suggesting that a proportion 

of feeding nymphs were transported to other areas by their hosts. 

Annual, seasonal and regional variations could also be observed in the prevalence of tick-

borne pathogens in questing ticks were observed, albeit most clearly for B. burgdorferi s.l., 

the predominant pathogen. Borrelia-infected ticks displayed a bimodal seasonality, with 

peaks in spring and autumn and lower tick infection rates during summer in all three years. In 

2007 this pattern was more clearly visible than in the following years. We hypothesized that 

the presence of spirochetes may have a negative influence on the energy reserves of questing 

ticks, resulting in prolonged quiescence phases during unfavourable microclimatic conditions 

and leading to an increase of the infection rate in autumn, when conditions become less harsh. 

In a recent laboratory study, the survival rate of field collected ticks infected with Borrelia 

species was significantly higher under thermohygrometric stress conditions than that of 

uninfected (89). The authors hypothesized that the spirochetes might be able to modify 

physiology and/or metabolism of ticks as a response to unfavourable conditions, thus having a 

beneficial influence on tick survival. This is in line with our field observations and the 

assumption of behavioural adaptations to harsh conditions. The finding that B. afzelii 

infection in particular has a beneficial effect on the survival rate might explain the observed 

decrease of B. afzelii infections in questing ticks throughout the season. If B. afzelii infected 

ticks suffered less from unfavourable microclimatic conditions, they would be able to quest 

for longer intervals and thus have a higher rate of host-finding than those ticks undergoing 

early quiescence. 

Although Borrelia infected ticks were found at each collection site, differences in the 

prevalence rate were observed on a regional level. In a small country like Luxembourg, the 

ecological characteristics of each collection site (e.g. presence of reservoir host species) will 

have a more important influence on the infection rate of ticks than its geographic location. 

This will apply also to other tick-borne pathogens and indeed highest Anaplasma 

phagocytophilum infection rates are found in ticks collected in areas with high deer density, a 

competent reservoir host.  

However, as the same collection sites were visited during the study period the maps visualize 

the annual variations of Borrelia prevalence. In 2008, a higher Borrelia infection rate was 

observed together with an increase density of immature ticks, suggesting that infected blood 

meal hosts for larvae were more abundant in 2007 than in the year before, causing an 

amplification of Borrelia infection. This may also explain the decrease of Borrelia 

coinfections found in questing nymphs in 2008 (0.5%) as compared to the other years (0.9% 



Results and Discussion 

 82 

and 1.9%), although the rate of mixed infections did not vary significantly during the three 

years. The acquisition of coinfections in larvae mainly occurs by feeding on mixed infected 

hosts or cofeeding with infected ticks. An increase in blood meal host abundance is likely to 

reduce the number of cofeeding events, thus also reducing the chance of acquiring 

coinfections via cofeeding.  

 

Forestry workers are considered a high risk group for tick-borne infections, as they spent most 

of their occupational time in tick infested areas. In our seroprevalence study, we found that 

35.4% of forestry workers displayed IgG antibodies against Borrelia species. This rate seems 

high compared to other studies, where IgG seroprevalence rates between 8% to 25% were 

measured in forestry workers (23, 109, 115, 175, 224). These studies also showed that the 

seroprevalence rate of the general population was two to six times lower than in the 

professional risk groups, suggesting a seroprevalence rate of 5.9% to 17.7% in the general 

population of Luxembourg.  

Of the seropositive forestry workers, only a proportion of these had previously been 

diagnosed for Lyme Borreliosis. This is in line with reports of several infections with borrelial 

spirochetes remaining asymptomatic (54, 60). The seroprevalence rate was found to increase 

expectedly with age as IgG antibodies can persist for years after an infection (34, 35). 

Potential risk factors of Lyme Borreliosis were identified, such as hours spent outdoors, 

number of tick encounter and the number of tick bites per year. Interestingly, some 

individuals reported extremely high numbers of tick encounters or bites but were found to be 

seronegative, suggesting either high awareness and early removal of any attached ticks or 

personal exaggeration of actual tick numbers. The benefit of certain protective measures was 

investigated, however application of tick repellents, frequent body inspection and early tick 

removal seemed to have rather a negative effect, as the seroprevalence rates in these groups 

were always slightly increased. We found that these protective measures are applied 

significantly more often by individuals with a history of Lyme Borreliosis, who seem to be 

more aware of the risk after a tick bite but already display IgG antibody titers. Only protective 

clothing is applied by those with and without a history of Lyme Borreliosis at similar rates 

and here a small beneficial effect is observed.  

Comparison of the regional distribution of seroprevalence of B. burgdorferi s.l. and its 

prevalence in ticks revealed that in most cases the regions with high prevalence of infected 

ticks also displayed high seroprevalence rates in the forestry workers. In the central West of 

Luxembourg, higher seroprevalence rates were observed than suggested by the interpolated 
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tick infection rates, probably caused to some extent by low sampling numbers (n=3 and n=4, 

respectively) and high age of seropositive forestry workers in these regions. However, 

drawing the link between seroprevalence in humans and prevalence in ticks is difficult, as 

point data on the prevalence of Borrelia infected ticks cannot be used to predict the infection 

rate of ticks without taking landscape features and microclimatic conditions into account. 

More importantly, the origin of infection in forestry workers cannot confidently be linked to a 

certain region or time, as it is the case for infected ticks.  

In conclusion, Lyme Borreliosis is a major health concern for professional risk groups in 

Luxembourg and also the impact on the general population may be high. The significant 

interannual, seasonal and regional variations in the density of ticks and the prevalence of 

Borrelia burgdorferi s.l. and the other tick-borne pathogens entail that likewise significant 

changes in the risk of tick bites and infection are to be expected. The observed variations 

seem to be linked to abiotic and biotic factors, but further studies on the dynamics of ticks and 

tick-borne pathogens are warranted. 
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4.3 Pathogen prevalence in ticks collected from the vegetation and livestock in 

Nigeria 
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Ticks are important disease vectors that can cause considerable economic losses by affecting 

animal health and productivity, especially in tropical and subtropical regions (169, 205, 231). 

In Africa, the tick fauna is remarkably diverse with about 50 endemic tick species that are 

known to infest domestic animals (234). However, the highest impact on livestock health is 

caused by species belonging to only three genera, namely Amblyomma, Hyalomma and 

Rhipicephalus (169). Damage is either direct (skin lesions, impairment of animal growth) or 

indirect by transmission of a variety of pathogens (205). Major economical impact has been 

associated with the four tick-borne diseases anaplasmosis, heartwater, babesiosis and 

theileriosis, all of which are prevalent in Africa (10).  

Bovine anaplasmosis is caused by the highly pathogenic species Anaplasma marginale sensu 

stricto and the naturally attenuated A. marginale subspecies centrale (2, 44). Anaplasma 
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species are commonly detected in cattle and seroprevalence rates between 4.6% (Kenya) to 

98% (South Africa) from different sub-Saharan countries are reported (10, 138, 156, 194). 

The causative agents of bovine babesiosis and theileriosis have been frequently detected in 

blood smears of cattle in Ghana, with prevalences as high as 97% for Theileria mutans, 87% 

for Theileria velifera and 61% for Babesia bigemina (10). Tick-borne human ehrlichiosis of 

varying severity are caused by E. chaffeensis and E. ewingii (145). Several human pathogenic 

tick-borne Rickettsia species have been found in Africa including Rickettsia conorii conorii, 

R. conorii caspia, R. africae, R. aeschlimannii, R. massiliae, R. akari and R. sibirica 

mongolotimonae (69, 140, 158). Humans are frequently infected with Rickettsia species in 

Senegal, Burkina Faso, Cameroon, Mali and the Ivory Coast, where seroprevalence rates from 

17-36% have been reported (131). Coxiella burnetii causes Q fever in humans and high 

serological prevalences have been reported from West African countries (132). Although 

transmission mainly occurs via contact with infected reservoir hosts (domestic goats, sheep 

and cows) also ticks transmit this bacterium. The most important borrelial infection in Africa 

is relapsing fever transmitted either by lice (louse-borne relapsing fever) or soft ticks (tick-

borne relapsing fever, TBRF).  TBRF is caused by at least 16 Borrelia species, of which 

Borrelia crocidura seems to be of increasing importance in West Africa (230). In Ghana, 15% 

of blood smears from cattle were positive for Borrelia species (10). 

Pathogens belonging to the genera of Anaplasma, Ehrlichia, Coxiella, Rickettsia, Babesia, 

Theileria and Borrelia have been reported in ticks from some West African countries. In 

Mali, Niger, Mauretania and Cameroon feeding ticks from cattle were analysed for the 

prevalence of Rickettsia species (142, 158). In Cameroon the prevalence of Ehrlichia species 

was investigated in ticks removed from dogs (145). However it is important that these studies 

on feeding ticks are complemented by pathogen prevalence studies in naïve (questing) ticks 

collected from the vegetation to estimate the risk of infection after tick bites during the next 

blood meal. So far throughout West Africa only a single study investigated questing ticks in 

Burkina Faso for Ehrlichia ruminantium in Amblyomma variegatum ticks (1).  

Thus, studies on tick-borne pathogens in ticks are fairly limited in West Africa. Here we 

present the first comprehensive study on the diversity of bacterial and protozoal tick-borne 

pathogens in questing and feeding ticks from Nigeria. 
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4.3.1 Results 

 

Tick numbers. The 836 analysed ticks comprised of four species. The predominant species 

on cattle were Rhipicephalus (Boophilus) annulatus (37.5%, n=51) and Amblyomma. 

variegatum (33.8%, n=46), followed by Hyalomma impeltatum (14.7%, n=20) and 

Rhipicephalus evertsi (13.9%, n=19).  From the vegetation only Rh. evertsi (n=700) was 

collected. Mainly adult ticks were collected from both environmental sources (males: 45.1%, 

females: 53.5%, nymphs: 1.4%). 

Anaplasmataceae. Members of the Anaplasmataceae were detected in 11% (15/136) of ticks 

removed from cattle, with Anaplasma marginale subspecies being the most prevalent (53.3%; 

8/15 ticks). The second most abundant was a not further identifiable Ehrlichia species 

(33.3%; 5/15 ticks). Both Ehrlichia ewingii and Ehrlichia chaffeensis were detected in a 

single tick only (Figure 16A). All four tick species were found to harbour Anaplasmataceae 

(Rh. [Bo.] annulatus: A. marginale ssp. [n=7] and E. ewingii [n=1]; Hy. impeltatum: A. 

marginale ssp. [n=1], E. chaffeensis [n=1] and Ehrlichia sp. [n=1], Am. variegatum: Ehrlichia 

sp. [n=1] and Rh. evertsi: Ehrlichia sp. [n=3]). Ticks from the vegetation were not found to be 

infected with Anaplasmataceae bacteria. However, two sequences with highest similarity to 

an uncultured alpha proteobacterium (GenBank accession number AY254690) were 

recovered from two questing Rh. evertsi ticks collected in Lanlate (Figure 16A).  

Rickettsiaceae. Rickettsia species were detected in 13.2% (18/136) of ticks from cattle and in 

3.1% (22/700) of ticks from the vegetation. In feeding ticks, a Rickettsia africae-like species 

(RAL) was predominant (83.3%; 15/18) followed by Rickettsia aeschlimannii (16.7%; 3/18). 

In at least one tick of each species Rickettsiaceae was detected: Am. variegatum (RAL, n=11; 

R. aeschlimannii, n=1), Rh. (Bo.) annulatus (RAL, n=1; R. aeschlimannii, n=1), Rh. evertsi 

(RAL, n=1; R. aeschlimannii, n=1) and Hy. impeltatum (RAL, n=2). Questing Rh. evertsi 

ticks were mainly infected with Rickettsia massiliae (95.5%; 21/22). In one tick (4.5%) a 

Rickettsia species belonging to the Rickettsia rickettsii group was detected (Figure 16B).  

Piroplasmidae. Only Theileria mutans was detected in 2.9% (4/136) of feeding Rh. (Bo.) 

annulatus (n=3) and Hy. impeltatum (n=1) ticks (Figure 17A). Questing ticks were not found 

to be infected with members of the Piroplasmidae. 
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Figure 16. Phylogenetic trees for speciation of pathogens in Nigeria.  Neighbour-Joining trees based on (A) 

a 263 nt fragment of the 16S rRNA gene of Anaplasmataceae (nt 246466 - 246728 of CP001079.1), (B) a 

339 nt fragment of the 17-kDa gene of Rickettsiaceae (nt 1194686 - 1195024 of CP000766.2) Nigerian 
sequences are named with their unique identifier, tick species, geographic location and biological source. 

Compressed clusters containing sequences from Nigeria are marked with an asterisk. Only bootstrap 

values above 70 are shown. 
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Figure 17. Phylogenetic trees for speciation of pathogens in Nigeria. Neighbour-Joining trees based on (A) 

a 226 nt fragment of the 18S rRNA gene of Piroplasmidae (nt 656 - 881 of HQ184411.1), (B) a 317 nt 

fragment of the htpB gene of Coxiella (nt 273435 - 273751 of CP000733.1), (C) a 323 nt fragment of the 

16S rRNA gene of Borrelia species (nt 444099 - 443777 of CP002228.1) and (D) a 321 nt fragment of the 

16S rRNA gene of Conexibacter woesei (nt 834 - 1151 of NR_028979.1). Nigerian sequences are named 

with their unique identifier, tick species, geographic location and biological source. Compressed clusters 
containing sequences from Nigeria are marked with an asterisk. Only bootstrap values above 70 are 

shown. 
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Coxiella burnetii. In 14.0% (19/136) of feeding ticks Coxiella burnetii was detected (Figure 

17B). The only Coxiella burnetii infected questing tick (0.1%; 1/700) was collected in 

Orisunbare. Again, at least one tick of each species was found to harbour C. burnetii (Am. 

variegatum, n=9; Rh. (Bo.) annulatus, n=5; Hy. impeltatum, n=2; Rh. evertsi, n=4). 

Borrelia species. Borrelia species were only found in questing Rh. evertsi ticks (0.4%; 

3/700). Borrelia species identification was not possible with the sequence obtained from the 

16S rRNA (Figure 17C). Further characterization of the Borrelia species using primers 

directed against the flagellar gene was also unsuccessful. In addition, 16S rRNA sequences 

from unknown organisms were detected in 9 questing Rh. evertsi DNA extracts. Three of 

which had highest sequence similarity to the soil bacterium Conexibacter woesei, the 

remaining six sequences formed a separate cluster (Figure 17D).  

Mixed Infections. All mixed infections (1.3%; 11/836) were detected in feeding ticks and 

were predominantly formed by RAL and C. burnetii (36.4%; 4/11) as well as T. mutans and 

A. marginale ssp. (18.2%; 2/11). Pathogen combinations found only once were E. chaffeensis 

and C. burnetii, Ehrlichia sp. and C. burnetii, as well as Ehrlichia sp. and RAL. Two triple 

infections formed by C. burnetii, T. mutans and A. marginale ssp. as well as C. burnetii, RAL 

and Ehrlichia sp. were found. Involved tick species were Am. variegatum (n=5), Hy. 

impeltatum (n=3), Rh. (Bo.) annulatus (n=2) and Rh. evertsi (n=1). 
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4.3.2 Discussion 

 

The tick species found in this study are known to commonly infest life stock in West African 

countries (234). Surprisingly Rh. evertsi was the only tick species collected from the 

vegetation, either suggesting a collection bias or different habitat requirements of other tick 

species. This is the first comprehensive study on the diversity of bacterial and protozoal tick-

borne pathogens in both questing and feeding ticks not only in Nigeria but sub-Saharan 

Africa. All of the investigated pathogens are widespread throughout Africa and represent a 

threat to both human and animal health (10, 140-146, 158).  

As expected the infection rate for most of the pathogens was significantly higher in feeding 

than in questing ticks (Table 11), suggesting that a number of these pathogens originated from 

the cattle blood ingested before tick collection rather than from transstadially maintained 

infections acquired during earlier blood meals. Therefore, the detection of pathogens in 

feeding ticks cannot establish vector competence whereas infected naïve ticks have 

maintained the pathogen transstadially. Although the latter are more likely to serve as vectors 

of live pathogens, detection of residual DNA from dead pathogens in the tick cannot be totally 

excluded.  

 

Table 11. Infected ticks from the vegetation and cattle in Nigeria. Statistical significant differences are 

given. Fisher's exact test was performed on all except for the total infection rate, where Pearson's 

goodness of fit chi-square (GFX) test was used. Only P values smaller that 0.05 are shown. 

 
Pathogens Vegetation Cattle P value 

Anaplasma marginale/centrale 0 8 <0.01 

Ehrlichia chaffeensis 0 1  

Ehrlichia ewingii 0 1  

Ehrlichia sp. 0 5 <0.01 

alpha proteobacterium 2 0  

R.aeschlimannii 0 3 <0.01 

R.africae-like 0 15 <0.01 

R.massiliae 21 0 <0.01 

R.rickettsii group 1 0  

Borrelia sp. 3 0  

unknown bacteria 9 0  

T.mutans 0 4 <0.01 

C.burnetii 1 19 <0.01 

Total 37 43* <0.01 

 
*Note that the total number of infected ticks is lower than the sum of all pathogens detected as ticks with mixed 
infections were only counted once. 
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The only study on the prevalence of Coxiella burnetii in ticks was conducted in Senegal, 

where 0.7-6.8% of feeding ticks from cattle were found to be infected (132). This rate is 

considerably lower than the 14.0% of feeding ticks that we found to be infected. Interestingly, 

C. burnetii was frequently detected in multiple ticks collected from the same cow. This 

observation and the difference between infection rates in questing and feeding ticks (0.1% vs. 

14%, p<0.01) may be a reflection of cattle as reservoir hosts of C. burnetii. In Nigeria, C. 

burnetii seems to represent a considerable risk factor for those in contact with cattle. In 

Senegal, where the prevalence of C. burnetii in cattle is relatively low (3.6%), seroprevalence 

rates in humans can be as high as 21.4-51.0% (105, 132) , suggesting even higher prevalence 

rates in Nigeria, where an estimated 27.4% (17/62) of cattle were infected. Thus both ticks 

and cattle must be considered as a considerable source of Q fever and a significant threat to 

human health in the region.  

Eight Anaplasma marginale/centrale positive ticks were collected and the estimated 

prevalence in cattle was 4.4%. The available sequences did not allow to distinguish between 

the highly pathogenic bovine A. marginale sensu stricto and the naturally attenuated A. 

marginale subsp. centrale, which is sometimes used as a vaccine (44). As the cattle in this 

study were not vaccinated, they must have been naturally infected with either one of these 

subspecies but the risk of disease cannot be estimated.  

Theileria mutans, the causative agent of benign bovine theileriosis, was detected in four Rh. 

(Bo.) annulatus and Hy. impeltatum ticks removed from three cows of the same herd in 

Moniya, but not from questing Rh. evertsi, suggesting that this tick species may not be a 

competent vector for this pathogen. It seems that the estimated prevalence rate in Nigerian 

cattle (4.8%; 3/62) is much lower than e.g. in Ghana, where 97.0% of cattle are infected with 

T. mutans (10).  

Different SFG Rickettsia species have been reported in ticks from cattle in Mali (16.2%), 

Niger (16.3%), Mauretania (0%) and Cameroon (74.7%). We detected R. massiliae and a 

member of the R. rickettsii group only in questing ticks (p<0.05). This is compatible with the 

minor role of vertebrates in the perpetuation and survival of R. massiliae (130). In contrast, 

RAL and R. aeschlimannii were only detected in feeding ticks, indicating a potential role of 

cattle as hosts. All ticks infected with the predominant RAL were collected from 13 cows, 

corresponding to an estimated prevalence rate of 9.6% of infected cows (13/136).  

Different Borrelia species have been described in Africa, most of which are transmitted by 

soft ticks (230). Ticks of the genus Rhipicephalus are known to transmit Borrelia theileri to 
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cattle, causing bovine borreliosis. The 16S rRNA sequences of the Borrelia species detected 

in this study differed at least in 3 nucleotide positions from all known Borrelia sequences. 

These new sequences form a separate cluster within the Borrelia burgdorferi s.l. group, 

possibly belonging to a so far unknown Borrelia species. Unfortunately, further 

characterization based on other genes was unsuccessful.  

Several sequences from unknown bacteria were obtained in the Anaplasmataceae and 

Borrelia detection PCRs. They were most likely derived from bacteria from the outside rather 

than the inside of the ticks, as they were most closely related to a soil bacterium. 

We also report here for the first time mixed infections in feeding ticks from West Africa 

involving mainly RAL and C. burnetii. Mixed infections involving C. burnetii may originate 

either from subsequent blood meals, co-feeding events, or feeding on co-infected hosts. In 

mixed infections involving Rickettsia species also transovarial transmission may play a role. 

Coinfections with multiple pathogens may complicate the diagnosis and treatment.  

 

The diversity of tick-borne pathogens in Nigeria was higher in feeding than in questing ticks, 

suggesting that cattle serve as reservoirs for at least some of the studied pathogens in 

particular Coxiella burnetii. The impact of these infections on human and animal health and 

the resulting economic losses require further attention to assess the cost benefit of vaccination 

against Anaplasma marginale sensu stricto and other preventive measures.  
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4.4 Prevalence of Tick-Borne Pathogens in Ixodes ricinus and Dermacentor 

reticulates Ticks from Different Environmental Sources in Belarus 
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In Eastern Europe, Lyme Borreliosis is considered a major threat to human health, the annual 

incidence of this disease ranges from 4.8 to 35 cases per 100.000 population (121). In 

neighbouring countries of Belarus, the prevalence in questing ticks ranges from 3.3% to 

37.6%. Other bacterial and protozoal tick-borne pathogens of interest are Rickettsia species 

with a prevalence from 2.9% to 15.1%, Anaplasma species (2.3%-20.8%), and Babesia (3%-

11%; (57, 81, 129, 137, 168, 174, 200, 208, 236, 239). Not much is known about the 

prevalence of Coxiella, Francisella and Bartonella species in Eastern Europe (174, 200).  

This is the first comprehensive study on the prevalence of bacterial and protozoal tick-borne 

pathogens of questing and feeding ticks in Eastern Europe and Belarus. 
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4.4.1 Results 

Tick numbers. In total 553 ticks belonging to Ixodes ricinus (n=327; 59.1%) and 

Dermacentor reticulatus (n=226; 40.9%) were collected from the vegetation (n=453), cattle 

(n=99) and a dog (n=1). Most ticks were collected in Gomel (n=297), followed by Brest 

(n=82) and Minsk region (n=79). Only few ticks were collected in Grodno (n=45), Mogilev 

(n=31) and Vitebsk (n=19). Adults were the predominant instars (n=551; 59.5% females; 

40.1% males), only two nymphal I. ricinus (0.4%) were collected from the vegetation. In 

Brest, Gomel and Minsk region, both tick species were equally prevalent (50 ±5%), whereas 

in Mogilev, Grodno and Vitebsk I. ricinus was predominant (67.7 - 97.8%). The total tick 

infection rate for Belarus (counting mixed infections only once) was 36.8%. On a regional 

level considerable differences in the total tick infection rates were observed, ranging from 

10.5% in Vitebsk to 46.3% in Brest, and 34.4 ±3% in the other regions (Figure 18). 

Rickettsiaceae. The most prevalent pathogen detected in 24.4% of ticks belonged to the 

Spotted Fever Group (SFG) Rickettsia. The Rickettsia infection rate was significantly higher 

(p<0.01) in D. reticulatus (43.8%, n=99) than I. ricinus (11.0%, n=36). In questing and 

feeding D. reticulatus ticks 99% of the infections were caused by a single Rickettsia species 

of the R. rickettsii group (RRG) ( 

 

Figure 19A). Interestingly, 57.1% of RRG-infected D. reticulatus derived from the same 

collection site in Gomel region. The only D. reticulatus tick harbouring R. helvetica was 

feeding on a dog. The infection rate of I. ricinus ticks was 8.9% for R. helvetica (n=29), 1.5% 

for a species belonging to the cluster R. monacensis/R. tamurae (n=5) and 0.6% for members 

of the RRG (n=2) ( 

 

Figure 19A). R. helvetica and R. monacensis/R. tamurae were only detected in questing, 

whereas RRG was only found in feeding I. ricinus ticks. On a regional level, Rickettsia 

species displayed highest prevalence rates in Brest (28%) and Gomel (26.6%), medium rates 

in Grodno (17.8%), Minsk (21.5%) and Mogilev (22.6%) and lowest rates in Vitebsk (5.3%). 

Borrelia species. Borrelia burgdorferi sensu lato was the second most prevalent pathogen and 

detected in 9.4% (n=52) of all ticks. The Borrelia infection rate was significantly higher 

(p<0.05) in I. ricinus (14.1%, n=46) than in D. reticulatus (2.7%, n=6). I. ricinus ticks were 

infected with B. afzelii (6.1%), B. garinii (3.4%), B.valaisiana (2.5%), B. burgdorferi s.s. 

(1.8%) and B. lusitaniae (0.3%) ( 
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Figure 19B). In D. reticulatus ticks only B. burgdorferi s.s. (1.8%), B. afzelii (0.4%) and B. 

valaisiana (0.4%) were detected ( 

 

Figure 19B). The infection rate of ticks from the vegetation (10.4%, n=47) was significantly 

higher (p<0.05) than from cattle (5.1%, n=5). Interestingly, the Borrelia tick infection rate 

was significantly higher in  

Minsk region

34.2%

Vitebsk region

10.5%

Grodno region

33.3%

Brest region

46.3%

Gomel region

37.4%

Mogilev region

32.3%

 

 

Figure 18. Administrative regions of Belarus showing the 32 collection sites and the tick infection rates. 

 

Grodno (15.6%) and Brest (15.9%) than in Gomel (7.7%; p<0.05) and the remaining regions 

(5.3% - 9.7%; not significant). Borrelia species diversity was highest in ticks from Gomel (all 

5 species detected) and lowest in Vitebsk region (only B. garinii).  

Low prevalent pathogens. The other pathogens were exclusively detected in questing ticks. 

Anaplasma phagocytophilum (2.2%; n=12), Coxiella burnetii (0.9%; n=5), Francisella 

tularensis ssp. (0.7%; n=4), Babesia sp. EU1 (0.4%; n=2) and B. microti (0.5%; n=3) were 

only detected in I. ricinus ticks ( 

 

Figure 19C,  
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Figure 20A-D), whereas both tick species harboured Bartonella henselae (0.7%; n=4) ( 

 

Figure 20D). A. phagocytophilum was detected in three regions and the tick infection rate was 

significantly higher in Minsk (6.3%) than in Gomel (2.0%; p<0.05) and Grodno (2.2%, not 

significant). Ticks from Brest and Gomel region were infected with B. henselae and both 

Babesia species, whereas only ticks from Gomel harboured F. tularensis ssp. and C. burnetii.  
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Figure 19. Phylogenetic trees for speciation of pathogens in Belarus. Neighbour-Joining trees based on (A) 

a 344 nt fragment of the 17-kDa gene of Rickettsia species (nt 1194706 - 1195039 of CP000766.2), (B) a 348 

nt fragment of the FlaB gene of Borrelia burgdorferi s.l. (nt 97 - 444 of HM345909.1), (C) a 352 nt 

fragment of the groEL gene of Anaplasma species (nt 732 - 1083 of HQ629903.1). Sequences from Belarus 

are named with their unique identifier, tick species, geographic location, biological source and WHO 
country code. The number of pathogens from Belarus in a compressed cluster and the tick species are 

given in brackets. Veg = Vegetation. Solid circle = Ixodes ricinus. I.r. = Ixodes ricinus; D.r. = Dermacentor 

reticulatus. Only bootstrap values above 60 are shown. 
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Figure 20. Phylogenetic trees for speciation of pathogens in Belarus. Neighbour-Joining trees based on (A) 
a 319 nt fragment of the htpB gene of Coxiella burnetii  (nt 320 - 638 of EU888863.1), (B) a 894 nt 

fragment of the 16S rRNA gene of Francisella species (nt 8 - 898 of HM371361.1), (C) a 516 nt fragment of 

the 18S rRNA gene of Babesia species (nt 1 - 516 of GQ856653.1) and (D) a 320 nt fragment of the 16S-23S 

gene of Bartonella species (nt 14 - 333 of GU827129.1). Sequences from Belarus are named with their 

unique identifier, tick species, geographic location, biological source and WHO country code. The number 

of pathogens from Belarus in a compressed cluster and the tick species are given in brackets. Veg = 
Vegetation. Solid circle = Ixodes ricinus; solid triangle = Dermacentor reticulatus. Only bootstrap values 

above 60 are shown. 



Results and Discussion 

 99 

Questing and feeding ticks. Overall, the pathogen species composition was more diverse in 

questing as compared to feeding ticks (14 vs. 4 species) and in I. ricinus as compared to D. 

reticulatus ticks (13 vs. 5 species). Interestingly, the I. ricinus infection rate was significantly 

lower in feeding than in questing ticks (13.2% vs. 32.9%; p<0.01), whereas it was similar in 

D. reticulatus ticks (42.6% vs. 46.3%). Mixed infections were detected in 2.7% (n=14) of 

ticks, the majority of which were formed between members of the two most prevalent 

pathogen genera Rickettsia and Borrelia (n=8). Also, mixed infections occurred more often in 

I. ricinus than in D. reticulatus ticks (3.4% vs. 1.3%). 

 

A. phagocytophilum (n=12) 
Bb. microti (n=3)
Bb. sp. EU1(n=2)
Bo. garinii (n=11)
Bo. lusitaniae (n=1)
C. burnetii (n=5)
F. tularensis ssp. (n=4)

R. helvetica (n=29)

Bo. afzelii (n=18 vs. n=1)
Bo. valaisiana (n=7 vs. n=1)

Bo. burgdorferi s.s. (n=6 vs. n=2)
Ba. henselae (n=3 vs. n=1)

R. rickettsii group RRG (n=73)

Ixodes ricinus

(n=289)

Dermacentor reticulatus

(n=164)

 
Figure 21. Venn diagram of pathogen diversity in questing I. ricinus and D. reticulatus ticks. Each tick 

species is represented by an oval. A, Anaplasma; Bb, Babesia; Bo, Borrelia; C, Coxiella; F, Francisella; R, 

Rickettsia; Ba, Bartonella. 
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4.4.2 Discussion 

This is the first comprehensive study on tick-borne bacterial and protozoan pathogens of 

human and veterinary interest in Eastern Europe. We observed a higher total tick infection 

rate of 24.4% for Rickettsia species as compared to Russia (15.1%), Poland (2.9 - 8.7%) and 

Slovakia (8.8%) (137, 200, 208). The overall Borrelia infection rate of ticks was 9.4%, which 

is on the lower range of infection rates of 3.3-37.6% reported from Eastern Europe (57, 119, 

174, 176, 209, 239). The low prevalent pathogens Anaplasma, Babesia, Bartonella, Coxiella 

and Francisella were found only at few sites in southern and central regions of Belarus with 

rates comparably low as in other Eastern European countries (95, 137, 168, 174, 200, 236, 

239), although sometimes higher tick infection rates have been reported (80, 174, 239). 

Interestingly, hotspots of infection were discovered at sites in Minsk and Gomel region for A. 

phagocytophilum (12.5-17.2%), F. tularensis ssp. (5.5%) and C. burnetii (9.1%). As an 

important route of transmission of F. tularensis ssp. and C. burnetii is the inhalation of 

contaminated aerosols (5, 67), their focal finding suggests a rather high prevalence in 

reservoir hosts at these sites. Therefore, tick surveillance at the identified hotspots and 

neighbouring regions are warranted in order to predict and perhaps avoid outbreaks of 

tularemia and Q-fever.  

The observed regionality of the low prevalent pathogens Anaplasma, Bartonella, Babesia, 

Coxiella and Francisella is likely to be influenced considerably by the numbers of ticks 

collected. Gomel region with highest tick numbers, displayed also the highest pathogen 

diversity in the country, since also low prevalent pathogens were detected. This suggests that 

Gomel region may best reflect the infection status of ticks in Belarus. Interestingly, this 

hypothesis only partially holds true as the Borrelia infection rate in this region was 

significantly lower than in the western regions Grodno and Brest. Even when focusing only 

on the known Borrelia competent vector species I. ricinus, Gomel region still displayed 

significantly lower infection rates. However, habitat features of each collection site are more 

likely to have a significant impact on the local prevalence of Borrelia species than regional 

aspects. 

Questing ticks give more information about possible vector competence than feeding ticks, as 

an infection must have been at least transstadially maintained. We found that pathogen 

diversity in questing ticks was higher in I. ricinus than in D. reticulatus ticks (Figure 21). 

Also, the infection rate was significantly higher in questing than in feeding I. ricinus but 

similar in D. reticulatus. This is interesting as feeding adult ticks were removed during their 
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third blood meal, whereas questing adults only fed twice. Lower numbers of feeding tick 

(n=38 for I. ricinus and n=61 for D. reticulatus) could be responsible for this observation, as 

well as the limited host diversity. Removal of feeding ticks from a single host species is likely 

to bias the actual burden of tick-borne pathogens toward an adapted species. Since livestock 

herds are kept in defined areas, tick populations in these regions may predominantly feed on 

these hosts. Amplification or dilution of pathogen prevalence in ticks can occur depending on 

the reservoir competence of the involved vertebrates (154). The stable RRG prevalence in 

D. reticulatus seems to be caused by a high rate of transovarial transmission, which often 

occurs in Rickettsia species (130, 165), whereas cattle does not seem to play a role for 

pathogen maintenance. In congruence with our observation are findings from Poland, where 

40.7% of D. reticulatus were infected with a Rickettsia species closely related to R. slovaca, 

R. sibirica, R. honei and other SFG rickettsiae (207). It indeed seems likely that the Rickettsia 

species from Poland and the RRG from Belarus represent the same species, which is highly 

adapted to D. reticulatus. 

Our survey revealed a high burden of tick-borne pathogens in questing and feeding I. ricinus 

and D. reticulatus ticks in different regions in Belarus, indicating a potential risk for humans 

and animals. The pathogenic potential of RRG and the role of D. reticulatus as its arthropod 

vector require further attention. Identified hotspots of infected ticks especially when 

Francisella tularensis and Coxiella burnetii are involved should be included in future 

surveillance studies. 
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4.5 Detection of new Francisella-like tick endosymbionts in Hyalomma spp. 

and Rhipicephalus spp. (Acari: Ixodidae) from Bulgaria 

 
 

 

 

 

 

This manuscript is accepted for publication in Applied and Environmental Microbiology as: 

 
Detection of new Francisella-like tick endosymbionts in Hyalomma spp. and Rhipicephalus 

spp. (Acari: Ixodidae) from Bulgaria 

 
I. N. Ivanov, N. Mitkova, A. L. Reye, J. M. Hübschen, R. S. Vatcheva-Dobrevska, E. G. 
Dobreva, T. V. Kantardjiev, C. P. Muller 
 

 

A. L. Reye contributed to the experimental setup, supervision of the visiting scientist and writing of the 

manuscript. 

 

 

 

 

 

 

Francisella is an expanding genus of closely related Gram-negative coccobacilli. During the 

past two years at least three new taxa have been described that are pathogens either in fish or 

humans (96). Yet the classification of many so called Francisella-like endosymbiotic (FLE) 

bacteria found both in hard and soft ticks remains unresolved (147, 191, 218). 

FLEs seem to replicate intracellularly, they are transmitted transovarially and to date there is 

no evidence of horizontal transmission through tick bites. FLEs have been mainly found in the 

female’s reproductive tissues (191) but recently a Dermacentor variabilis endosymbiont 

(DVF)  was detected in the hemolymph, potentially suggesting colonization of the salivary 

glands (74). The pathogenic potential of FLEs remains unknown although sequences 

homologous to iglC and mglA genes of F. tularensis implicated in pathogenicity have been 
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detected (24, 122). Studies involving FLEs are hampered by their inability to grow on cell-

free media. Hence most of the molecular studies have been performed with total DNA 

extracts from ticks or tissues rather than on FLE cultures. This together with the fact that 

FLEs have never been detected outside of ticks suggested that they represent secondary 

endosymbionts. FLEs seem to be widely distributed and during the last decade a number of 

diverse FLEs have been reported in various tick genera in at least four continents (122, 149, 

191, 204, 218). To date, the only FLE ever reported from Europe is from Dermacentor 

reticulatus in Hungary (204), Portugal (40) and Serbia (GenBank accession numbers 

HM629448 and HM629449). The discrimination between FLEs and F. tularensis without 

gene sequencing is difficult and the validation of new specific molecular markers is important 

(114).  

Here we report on the detection and molecular characterization of two new, so far undescribed 

FLEs in three different tick species that seem to lack RD1, an important molecular marker for 

the discrimination of pathogenic F. tularensis subspecies. 

 

4.5.1 Results and Discussion 

A total of 472 ticks removed from human (n=32) or animal (n=264) hosts or collected from 

the environment (n=176) during 2005-2008 were screened for the presence of F. tularensis 

and FLEs. The ticks originated from rural or urban areas of nine major districts in Bulgaria. In 

total, 12 tick samples or pools including H. m. marginatum (9 pools containing 16 ticks), H. 

aegyptium (1 tick), R. sanguineus (1 pool containing 2 ticks) and D. reticulatus (1 pool 

containing 3 ticks) were positive for Francisella spp. 16S rRNA amplicons. All 16S rRNA 

sequences clustered within the monophyletic clade of previously described FLEs rather than 

with F. tularensis (Fig.1A) (191).  

Three distinct FLE genotypes were distinguished in total. Two of them were found to be 

without a homologue in GenBank. The 16S rDNA FLE sequences from the H. m. marginatum 

and R. sanguineus ticks were identical and comprised a distinct genotype (subsequently 

referred to as HMF). HMF was detected in both H. m. marginatum males (6 samples) and 

females (3 samples) that were removed from various domestic animals or collected from the 

environment as well as in one pool of three R. sanguineus males. The closest related GenBank 

entries were FLEs of the soft ticks Ornithodoros moubata and O. porcinus with 99% 

sequence identity, corresponding to 11 and 13 differing nucleotides, respectively (Fig. 1A). 
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As reported for other FLEs this new FLE was also detected in two different tick species 

supporting the hypothesis of an independent evolution of FLEs and tick hosts (122, 191). The 

prevalence of HMF in H. m. marginatum ticks ranged from 32% (assuming 1 positive tick per 

pool) to 57% (assuming 16 positive ticks in the 9 pools). In R. sanguineus the HMF 

prevalence ranged from 0.7% (1 positive tick) to 1.4% (2 positive ticks). 

The second new FLE genotype was detected in a single female H. aegyptium tick 

(subsequently referred to as HAF) removed from a human. Phylogenetic analysis showed that 

HAF was more closely related to FLE of O. moubata (99% and seven nucleotide differences) 

than HMF (Fig.1A). As only one H. aegyptium tick was collected, the prevalence of HAF 

cannot be estimated with confidence. 

The third FLE genotype (subsequently referred to as DRF) was found in a pool of three D. 

reticulatus males removed from an animal host. DRF differed in only two nucleotide 

positions from the previously reported D. reticulatus FLE from Hungary and Portugal (Figure 

22) (40, 204). The prevalence of DRF in D. reticulatus ticks ranged from 5.8% (assuming 1 

positive tick per pool) to 17.6% (assuming 3 positive ticks per pool). 

The detected FLEs showed a specific geographic distribution. All HMF samples were from 

the same two neighboring regions in Central and South Bulgaria, whereas HAF and DRF 

originated from one Eastern and one Northern region, respectively. Interestingly, FLEs were 

only detected in a fraction of ticks collected in the same region suggesting that FLEs are 

facultative and non-essential for the survival of the tick host and probably have diverged from 

a transmissible ancestor in the recent geologic past (191).  

To further characterize the new FLEs the two additional molecular markers RD1 and tul4 

were analyzed (18, 191). tul4 was successfully amplified from six of the 12 FLE positive 

samples (Fig 1B). The tul4 sequences of HMF and HAF clustered separately from all known 

FLEs and further supported the 16S rRNA assay results (Fig. 1B). Despite the high sensitivity 

of the assay (106) no RD1 amplicons were obtained from any of the FLE positive samples, 

suggesting that they lack this region or at least have a significantly different RD1 sequence. 

Our finding suggests that F. tularensis can be readily distinguished from the three FLEs 

described in this study by RD1. If RD1 is absent also in other FLEs, this marker could be of 

interest for a sequence-independent broad differentiation of F. tularensis from FLEs (114).  

Further studies are needed to assess the pathogenic potential of FLEs, e.g. by comparing the 

genomes of non-pathogenic endosymbionts with their pathogenic relatives as was recently 

done for Rickettsia species (62). Symbionts that were previously considered non-pathogenic 
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may thus turn out to be pathogenic, as was shown for Rickettsia helvetica and R. slovaca 

(173). 

 

In conclusion, our findings add two new FLEs, found in three different ticks namely in 

Hyalomma marginatum marginatum, Hyalomma aegyptium and Rhipicephalus sanguineus to 

an increasing diversity of Francisella species. These two new taxa seem to be facultative 

secondary endosymbionts of ticks. 
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Figure 22. Phylogenetic trees for speciation of FLEs in Bulgaria. Neighbor-joining trees of the 16S rRNA 

(A) and tul4 (B) genes of various Francisella spp.. Bootstrap values (1000 replications) above 60 are 

shown. GenBank accession numbers are given in brackets. The sequences characterized in this study are 

designated with symbols (HMF=square, HAF= triangle and DRF= circle). 
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4.6 Detection of Babesia sp. EU1 and Members of Spotted Fever Group 

Rickettsiae in Ticks Collected from Migratory Birds at Curonian Spit, 

North-Western Russia 
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The tick Ixodes ricinus is a common ectoparasite in Europe. It is a well-known vector for 

many pathogenic human viruses, bacteria, and protozoa, causing zoonoses and circulating in 

the natural foci. Birds, mainly passerines (order Passeriformes), often host subadult ticks and 

represent a reservoir for human tick-borne pathogens (93). Migratory birds can act as long-

distance vectors for several microbial agents of human disease. Borrelia garinii was detected 

in ground dwelling and sea birds in Eurasia, whereas Borrelia valaisiana and Borrelia 

burgdorferi sensu stricto were identified in different passerine birds in Europe (50). The 
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human pathogenic members of the family of Anaplasmataceae, spotted fever group (SFG) 

rickettsia, Coxiella burnetii, and Tick-borne encephalitis (TBE) virus have been detected in 

ticks from different species of migratory birds collected in Europe (4, 55, 97, 187, 202, 233). 

However, the involvement of birds in the ecology and epidemiology of babesiosis has so far 

been little studied. Skotarczak et al. (2006) investigated by PCR the prevalence of Babesia in 

ticks’ and birds’ blood from West-Central Poland (199).  

In this study, the prevalence of SFG rickettsiae and Babesia sp. in I. ricinus ticks collected 

from the migratory birds at Curonian Spit, North-Western Russia, was investigated. 

 

4.6.1 Results 

Altogether, 236 birds were captured, representing 8 species of Passeriformes: Turdus 

philomelos (n=59), Fringilla coelebs (n=68), Troglodytes troglodytes (n=28), Parus major 

(n=17), Sturnus vulgaris (n=26), Fringilla montifringilla (n=18), Sylvia borin (n=6), and 

Phylloscopus trochilus (n=14). Eighty-six of the captured birds (36.4%) hosted 126 nymphs 

(Table 12). All ticks were identified as I. ricinus. The DNA was successfully isolated from all 

of the tested ticks. Babesia spp. were detected in two cases of 126 (1.6%) analyzed ticks 

collected from two specimens of T. philomelos (Table 12). The partial sequence of 18S rDNA 

had 100% similarity to human pathogenic Babesia sp. EU1. The SFG rickettsiae were 

detected in 19 of 126 (15.1%) ticks (Table 12). BLAST analysis of SFG rickettsiae gltA 

assigned sequences to human pathogenic Rickettsia helvetica (10.4%), Rickettsia monacensis 

(3.4%), and Rickettsia japonica (0.8%) with 98%–100% sequence similarity. The R. helvetica 

was detected in ticks detached from the three species of birds, T. philomelos, P. major, and 

F. coelebs, whereas R. monacensis and R. japonica were revealed in F. coelebs and 

S. vulgaris, respectively (Table 12). 

 

Table 12. Prevalence of Babesia and SFG Rickettsiae ticks from Curonian Spit. 

 
     No. of ticks with pathogen (%) 

   Rickettsia 

Bird species 
Common 

name 

No. of infested 
by ticks/no. of 

collected 

Total no. of 
tested ticks 

No. of 
positive 
ticks (%) 

Babesia 

sp. EU1 
helvetica monacensis japonica 

Turdus philomelos Song thrush 46/59 78 10 (7.8) 2 (1.6) 8 (6.3) 
0 
 

0 

Fringilla coelebs Chaffinch 14/68 22 6 (4.8) 0 1 (0.8) 5 (3.9) 0 

Parus major Great Tit 11/17 11 4 (3.2) 0 4 (3.2) 0 0 

Sturnus vulgaris Starling 15/26 15 1 (0.8) 0 0 0 1 (0.8) 

Total  86/170 126 21 (16.6) 2 (1.6) 13 (10.3) 5 (3.9) 1 (0.8) 
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4.6.2 Discussion 

To the best of our knowledge, this is the first report describing SFG rickettsiae and Babesia 

sp. EU1 in ticks collected from the passerines in the North-Western part of Russia. It was 

previously shown that the tick I. ricinus represents a potential vector and natural reservoir of 

R. helvetica and R. monacensis in Russia (184); however, the SFG rickettsiae-infected ticks 

have never been found in birds captured in Russia. The R. helvetica had the highest 

prevalence among the above-listed pathogens and was found in 10.4% of infected ticks. The 

R. helvetica-infected ticks were found only in three of eight captured passerine species (T. 

philomelos, F. coelebs, and P. major). The R. monacensis was detected only in ticks collected 

from F. coelebs. Only one tick detached from starling was infected by R. japonica. The 

identification of R. japonica in bird-feeding I. ricinus ticks is perhaps the most significant 

finding. This member of SFG rickettsiae is commonly associated with the tick species 

Dermacentor taiwanensis, Haemaphysalis flava, and, perhaps, Haemaphysalis longicornis 

from parts of Asia and Japan (68). In North Europe, SFG rickettsiae were detected only in 

ticks collected from migratory birds in Sweden (55). Babesia sp. EU1 was found only in two 

ticks collected from the two exemplars of song thrush birds. Babesia spp. are piroplasmid 

protozoan parasites of human and animal red blood cells (28). In Europe, human cases of 

babesiosis have been reported over the past years and have been traditionally attributed to 

infections with the bovine parasite Babesia divergens transmitted by I. ricinus (28, 90). 

However, Herwaldt et al. (2003) reported the first molecular characterization of a new 

Babesia sp., Babesia sp. EU1, isolated from patients in Southern Europe (90). Until now, tick-

transmitted Babesia sp. EU1 has only been detected in roe deer, sheep, goats, and humans 

(28, 90). Skotarczak et al.(2006) were the first who tried to reveal Babesia sp. in I. ricinus 

ticks collected from nine passerine bird species as well as from questing ticks (199). They 

additionally tested blood samples of 84 bird specimens, from which ticks were detached. 

Specific DNA was not detected in any samples of either ticks or birds’ blood. The detection of 

Babesia sp. EU1 in tick species that is frequently found on humans and that have only fed on 

passerines suggests that some bird species may represent another reservoir with a potential 

risk for humans. Interestingly, only nymphs were detached from birds within a time of tick 

collection. This unusual situation was detected for the first time. Our previous studies 

indicated that larvae and nymphs are parasitizing together on birds in this region (4). From the 
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literature published to date, it seems that some birds such as Parus caeruleus and Sitta 

europea (199) or F. coelebs (85) can be the hosts only for I. ricinus nymphs, for at least 

within some periods of their migration. Dubska et al. (2009) reported about lower prevalence 

of larvae in song thrushes and dunnocks (50).  

 

Our survey indicates that wild birds may play a significant role as a reservoir of babesiae and 

SFG rickettsiae and that ticks being infected by these pathogens may transmit them to 

humans. Future investigations are necessary to further characterize the role of birds in the 

epidemiology of these human pathogens. 
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Ticks are important vectors of human and animal pathogens throughout the world. We found 

that in Western and Eastern Europe, ticks were predominantly infected with members of the 

complex Borrelia burgdorferi sensu lato and of the Spotted Fever Group Rickettsiae. In 

Nigeria the predominant pathogen species were the cattle pathogen Anaplasma marginale and 

a Rickettsia species most closely related to the human pathogenic Rickettsia africae.  

 

The current study shows that the prevalence of ticks and tick-borne pathogens is subjected to 

significant interannual, seasonal and regional variation, which seem to be tightly linked to 

abiotic (temperature, relative humidity) and biotic (vector and host density) parameters. These 

dynamics entail that likewise significant changes in the risk of tick bites and infection are to 

be expected. Habitat structure also influences the abundance of ticks and vertebrate hosts, 

consequently affecting also the prevalence of tick-borne pathogens, as we show for Borrelia 

burgdorferi sensu lato. In addition, we show that Lyme Borreliosis is a major health concern 

for risk groups who are highly exposed to ticks. Our findings suggest that also the general 

population is at risk of contracting Lyme Borreliosis as the prevalence of Borrelia species in 

ticks can be as high as 35.8% at certain sites and urbanized collection sites tend to have higher 

tick infection rates than natural sites. The occurrence of coinfections with two or more 

pathogens can complicate diagnosis after an infective tick bite and knowledge on the most 

frequent pathogen combinations may be of assistance. The surveillance of neglected or 

imported pathogens like Anaplasma phagocytophilum, Bartonella henselae and Hepatozoon 

canis, but also of those tick-borne pathogens that were not detected in questing ticks from 

Luxembourg (Coxiella burnetii, Francisella tularensis subspecies and Tick-Borne 

Encephalitis Virus) is of importance to monitor the potential impact of climate change on 

human health.  

In Nigeria we found that the diversity of both, tick and pathogen species in feeding ticks was 

significantly higher than in ticks collected from the vegetation. Cattle seem to be an important 

reservoir host for many tick-borne pathogens and the infections are likely to be spread within 

animals of one herd. The impact of these infections on the Nigerian population as well as 

animal health and the resulting economic losses require further attention to assess e.g. the cost 

benefit of vaccination against the cattle pathogen Anaplasma marginale sensu stricto.  

On the contrary we found that questing ticks in Belarus displayed a significant higher 

diversity of tick-borne pathogens than feeding ticks from cattle, suggesting that both dilution 
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and amplification processes determine the diversity and prevalence of pathogens in nature. 

The high overall tick infection rate in Belarus indicates a significant risk for humans and 

animals to contract a tick-borne disease. Especially the identified hotspots of ticks infected 

with Francisella tularensis and Coxiella burnetii, two highly human pathogenic agents, 

necessitate further surveillance. 

The need for continuous surveys of tick-borne pathogens is also highlighted by the detection 

of potentially new species of the Borrelia burgdorferi sensu lato complex in Nigeria and the 

Francisella-like endosymbiont in ticks from Bulgaria. Also the detection of the exotic dog 

pathogen H. canis in Luxembourg further underlines this need. Exotic pathogens are often 

introduced to non-endemic areas by international tourism, importation of pet and domestic 

animals and also by natural dispersal of pathogens along flight routes of migratory birds, 

which are believed to play a major role as reservoirs for some Borrelia species. Our results 

indicate that they may also be reservoirs for other human pathogens like Babesia species and 

Spotted Fever Group Rickettsiae and therefore may be involved in their geographic 

distribution.  

In order to enable establishment of exotic pathogens at new loci, various vector and reservoir 

host related criteria need to be met. In the course of climatic change permanent changes in 

abiotic prerequisites like temperature and relative humidity may enhance survival of non-

endemic tick species. Timely detection of invasive tick species and application of 

countermeasures can possibly prevent the establishment of exotic zoonoses. 

Tick surveillance is an important measure for the better understanding of the epidemiology of 

tick-borne pathogens and the population dynamics of the main vector ticks. However, 

guidelines for the selection of collection sites, collection methods, frequency of collection, 

tick species identification and molecular detection of pathogens are required, in which 

interannual, seasonal and regional variations as well as habitat characteristics are be taken into 

account.
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7.1 Fragebogen zur Ermittlung des Infektionsrisikos für Waldarbeiter nach 

einem Zeckenstich 

 

 

Geschlecht: � männlich � weiblich          Geburtsjahr:_______________ 
Wohnort (Kanton):__________________________      Arbeitsort + Kanton: _____________________________ 
Beschäftigt seit:_________________  als _________________________________________________________ 
 

 
Jahr des Wechsels: ___________________________________________________________________________ 
Vorheriger Arbeitsort (Kanton):_________________________________________________________________ 
Vorheriger Wohnort (Kanton):__________________________________________________________________ 
 

 
Dienstlich:__________ (Stunden pro Tag)   Privat:__________ (Stunden pro Tag) 
 

 
� keine Zecke     � 1-5 Zecken     � 6-10 Zecken     � 11-20 Zecken     � 21-50 Zecken     � 51-100 Zecken     
� >100 Zecken      
 

 
� keine Zecke     � 1-5 Zecken     � 6-10 Zecken     � 11-20 Zecken     � 21-50 Zecken     � 51-100 Zecken     
� >100 Zecken      
 

 
�  Entfernung durch einen Arzt  
 
Wie entfernen Sie die Zecken, wenn sie keinen Arzt aufsuchen?   
� von Hand     � mit Pinzette     � mit Zeckenzange     � mit Zeckenkarte     � mithilfe von Klebstoff oder Öl  
� mit Drehbewegung beim Herausziehen     �  ohne Drehbewegung beim Herausziehen      
 

 
� Zeckenabwehrmittel 
� Körperinspektion nach Aufenthalt in Zeckengebieten 
� Frühes Entfernen festgebissener Zecken 
� Kleidung als Schutz (helle Farben, lange Hosen, Strümpfe über die Hosenbeine gestülpt) 
� Andere (genaue Angaben)___________________________________________________________________ 
 

 
� Ja, für ca. _______________ Tage    � Nein 

Allgemeine Angaben 

1. Wurde seit Ausübung des Berufes das Revier oder der Wohnort gewechselt?  

2. Durchschnittliche Aufenthaltsdauer im Freien von März bis Oktober (Zeckenaktivitätsperiode) 

3. Wieviele Zecken sammeln Sie jährlich von sich ab? (inkl. derjenigen, die sich noch nicht festgebissen hatten) 

4. Wieviele Zeckenstiche stellen Sie jährlich an sich fest? 

5. Wie entfernen Sie die Zecke? (Mehrfachnennungen möglich) 

6. Ergreifen Sie regelmäßig Präventionsmassnahmen? (Mehrfachnennungen möglich) 

7. Beobachten Sie die Einstichstelle nach Entfernung der Zecke? 



Annex 

 

 131 

 

 
� Ja, aufgrund einer Reise nach _____________________________________________Impfung im Jahr______ 
� Ja, aus anderen Gründen (genaue Angaben)__________________________________Impfung im Jahr______ 
� Nein  
 

 
� Lyme Borreliose    � Babesiose  
� Frühsommer-Meningoenzephalitis  � Q-Fieber  
� Anaplasmose    � Tularämie (Hasenpest) 
� Rickettsiose     � Katzenkratzkrankheit, Wolhynisches Fieber oder Fünftagefieber 
 

 
� Lokal beschränkte Rötung      ____% der Zeckenstiche 
� Lokale Entzündung       ____% der Zeckenstiche 
� Wanderröte (Erythema migrans)     ____% der Zeckenstiche 
� Kopfschmerzen      ____% der Zeckenstiche 
� Fieber        ____% der Zeckenstiche 
� Müdigkeit        ____% der Zeckenstiche 
� Gelenkschmerzen      ____% der Zeckenstiche 
� Hautveränderungen (ACA)      ____% der Zeckenstiche 
� Neuronale Schäden (halbseitige Gesichtslähmung, etc.) ____% der Zeckenstiche 

� Andere Symptome (genaue Angaben)     ____% der Zeckenstiche 
 

 
� Ja, nach einem Zeckenstich mit Symptomen 
� Ja, nach einem Zeckenstich ohne Symptome (Postexpositionsprophylaxe) 
� Nein, trotz Auftreten von Symptomen nach einem Zeckenstich 
� Nein, es sind noch nie Symptome nach einem Zeckenstich aufgetreten 
 

 
Aufgrund welcher Symptome wurde die Therapie begonnen? Bitte kreuzen Sie in der Tabelle die zutreffenden 
Symptome für den jeweiligen Zeckenstich (1.- 3.) an. Wenn bei Ihnen häufiger als 3 Mal Symptome für Lyme 
Borreliose diagnostiziert wurden, erweitern Sie die Tabelle bitte dementsprechend. 
 
Symptome 1. 2. 3. 

Lokal beschränkte Rötung    
Lokale Entzündung    
Wanderröte (Erythema migrans)    
    
    
Kopfschmerzen    
Fieber    
Müdigkeit    
    
    
Gelenkschmerzen    
Hautveränderungen (ACA)    
Neuronale Schäden    
    
    

8. Sind Sie gegen Frühsommer-Meningoenzephalitis (FSME), Gelbfieber oder Japanische Enzephalitis geimpft? 

9. Wurde bei Ihnen bereits eine der folgenden Krankheiten diagnostiziert? 

10. Haben Sie oder ein Arzt folgende Symptome nach einem Zeckenstich festgestellt? Wenn ja, in wieviel  
       Prozent der Zeckenstiche traten diese Symptome auf? 

11. Wurden Sie in der Vergangenheit nach einem Zeckenstich mit Antibiotika behandelt? 

12. Falls Lyme Borreliose bei Ihnen diagnostiziert wurde und Sie daraufhin mit Antibiotika behandelt wurden,  
      machen Sie bitte einige Angaben zur Therapie.  
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� Vollständige Heilung (genaue Angaben zu Antibiotikum und Zeitraum)_______________________________ 
     ________________________________________________________________________________________ 
 
� Vollständige Heilung, jedoch erst nach Verlängerung der Antibiotikatherapie (genaue Angaben zu   
     Antibiotikum und Zeitraum)_________________________________________________________________ 
     ________________________________________________________________________________________ 
 
� Vollständige Heilung, jedoch erst nach Wechsel des Antibiotikums (genaue Angaben zu den verabreichten 
     Antibiotika)______________________________________________________________________________ 
     ________________________________________________________________________________________ 
 
� Zunächst vollständige Heilung, später erneutes Auftreten von Symptomen (genaue Angaben zu Symptomatik  
    und Zeitraum)_____________________________________________________________________________ 
     ________________________________________________________________________________________ 
 
� Keine vollständige Heilung, verbliebene Symptome sind (genaue Angaben zur Symptomatik)_____________ 
     ________________________________________________________________________________________ 
 
� Therapie schlug fehl, Symptome sind (genaue Angaben zur Symptomatik)____________________________ 
     ________________________________________________________________________________________ 
 
Weitere Kommentare:________________________________________________________________________ 
__________________________________________________________________________________________
__________________________________________________________________________________________
__________________________________________________________________________________________ 
 
 

 
� Die Symptome klangen selbständig ab, es konnten keine neuen Symptome festgestellt werden (genaue     
    Angaben zu Symptomatik und Zeitraum)_______________________________________________________ 
    ________________________________________________________________________________________ 
 
� Die Symptome klangen zunächst selbständig ab, es wurden jedoch neue Symptome festgestellt (genaue     
    Angaben zu Symptomatik und Zeitraum)_______________________________________________________ 
    ________________________________________________________________________________________ 
 
� Die Symptome verstärkten sich und/oder es traten neue Symptome auf (genaue Angaben zu Symptomatik und  
     Zeitraum)________________________________________________________________________________ 
     ________________________________________________________________________________________ 
 
     Wurde in diesem Fall eine Antibiotikatherapie begonnen?   � Ja  � Nein 
 

13. Wie erfolgreich wurde die Lyme Borreliose behandelt?  

14. Wenn Sie trotz Auftreten von einem oder mehreren Symptomen der Lyme Borreliose nicht mit  
      Antibiotika behandelt wurden, machen Sie bitte folgende Angaben: 
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7.2 Questionnaire pour la détermination du risque d’infections après une piqure 

de tiques pour les forestiers  

 

 

 
Sexe: � masculin   � féminin          Année de naissance:_______________ 
Domicile (canton):_________________________  Lieu de travail + canton: _____________________________ 
Occupé(e) depuis: _________________  en tant que : _______________________________________________ 
 

Année du changement: _______________________________________________________________________ 
Lieu de travail précédent (canton):_______________________________________________________________ 
Domicile précédent (canton):___________________________________________________________________ 
 

Raisons professionnelles:__________ (heures par jour)        Privé(e):__________ (heures par jour) 
 

� Aucune tique     � 1-5 tiques    � 6-10 tiques     � 11-20 tiques     � 21-50 tiques    � 51-100 tiques  
� >100 tiques      
 

� Aucune piqure     � 1-5 piqures    � 6-10 piqures     � 11-20 piqures     � 21-50 piqures    � 51-100 piqures 
� >100 piqures     
 

� enlèvement fait par un médecin  
Si vous ne consultez pas un médecin, comment enlevez vous la/les tique(s) ?   
� A la main     � A l’aide d’une pincette     � A l’aide d’une pince à tiques     � A l’aide d’une carte à tiques      
� A l’aide d’huile ou de colle  
� Avec mouvement rotatif lors de l’enlèvement     �  Sans mouvement rotatif lors de l’enlèvement      
 

� Répulsifs de tiques 
� Inspection corporelle après un séjour  en pleine air 
� Enlèvement précoce des tiques fixées 
� Habits comme protection  (couleurs claires, pantalons longs, retourner les bas sur l’inférieur du pantalon) 
� Autres (indications précises)_________________________________________________________________ 
 

� Oui, pour environ _______________ jours    � Non 
 

� Oui, à cause d’un voyage en/au  ______________________________________________________________ 
Vaccination en (année) _________ 
� Oui, pour des raisons différentes (indications précises) ____________________________________________  
Vaccination en (année) _________ 

Données générales 

1. Le lieu de travail (district) ou le domicile ont-ils changé depuis le début de votre travail?  

2. Durée moyenne de séjour  à l’air libre pendant la période de mars – octobre (période actives des tiques) 

3. Combien de tiques avez-vous détecté par an sur votre corps ? (y compris les non fixés) 

4. En moyenne, combien de piqures de tiques avez-vous eu par an? 

5. Par quelle méthode enlevez-vous la/les tiques(s) ? (plusieurs réponses sont possibles) 

6. Est-ce que vous adoptez régulièrement des mesures préventives? (plusieurs réponses sont possibles) 

7. Observez-vous l’endroit de piqure fait par la tique? 

8. Etes-vous vacciné(e)s contre la méningo-encéphalite à tiques (MET), la fièvre jaune ou contre l’encéphalite 
japonaise ? 
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� Non 
 
 

� Borréliose de Lyme    � Babesiose  
� Méningo-encéphalite à tiques (MET) � Q-Fieber  
� Anaplasmose    � Tularämie (Hasenpest) 
� Rickettsiose     � Katzenkratzkrankheit, Wolhynisches Fieber oder Fünftagefieber 
 

 
� Rougeur locale et limitée      ____% des piqures de tiques 
� Inflammations locales       ____% des piqures de tiques 
� Érythème chronique migrant (Erythema migrans)   ____% des piqures de tiques  
� Maux de tête         ____% des piqures de tiques 
� Fièvre                          ____% des piqures de tiques 
� Fatigue       ____% des piqures de tiques 
� Arthralgie                          ____% des piqures de tiques  
� Manifestations cutanées (ACA)     ____% des piqures de tiques 
� Manifestations neurologiques  (hémiplégie faciale, etc.)     ____% des piqures de tiques 
� Autres symptômes (indications précises)     ____% des piqures de tiques 
 

� Oui, après une piqure de tiques  accompagnée de symptômes  
� Oui, après une piqure de tiques non accompagnée de symptômes (Postexpositionsprophylaxe) 
� Non, malgré l’apparition de symptômes après une piqure de tiques 
� Non, je n’ai encore jamais observé de symptômes après une piqure de tiques 
 

En vertu de quelles symptômes, la thérapie a-t-elle était lancée? Cochez les symptômes correspondants aux 
différentes piqures de tiques (1. – 3.). Si des symptômes étaient apparentes dans plus que 3 piqures de tiques, 
agrandissez le tableau ci-contre.  
 
Symptômes 1. 2. 3. 

Rougeur locale et limitée    
Inflammations locales    
Érythème chronique migrant (Erythema migrans)     
    
    
Maux de tête        
Fièvre    
Fatigue    
    
    
Arthralgie    
Manifestations cutanées (ACA)      
Manifestations neurologiques  (hémiplégie faciale, etc.)    
    
    
 
 
 
 
 

9. Est-ce qu’une des maladies suivantes a été dépistée chez vous? 

10. Après une piqure de tiques, les symptômes suivants ont-ils été détectés par un médecin ou vous même? Si 
oui, pour combien de cas (pourcentage) avez-vous eu un ou plusieurs de ces symptômes ? 

11. Dans la passé, avez-vous subit un traitement aux antibiotiques suite à une piqure de tiques? 

12. Si la borréliose de Lyme a été diagnostiquée chez vous et si vous étiez traité à l’aide d’antibiotiques, précisez 
s’il vous plait la thérapie.  
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� Guérison complète (indications précises sur l’antibiotique et la durée du traitement) _____________________ 
     ________________________________________________________________________________________ 
� Guérison complète, mais seulement après  une prise prolongée des antibiotiques (indications précises sur 
l’antibiotique et la durée du traitement) __________________________________________________________ 
     ________________________________________________________________________________________ 
� Guérison complète, mais seulement après la prise d’un autre antibiotique (indications précises sur 
l’antibiotique et la durée du traitement) __________________________________________________________ 
     ________________________________________________________________________________________ 
� Dans un premier temps, guérison complète, mais nouvelles survenances de symptômes ultérieurement 
(indications précises sur les symptômes et l’espace de temps)_________________________________________ 
     ________________________________________________________________________________________ 
� Pas de guérison complète, les symptômes restants sont  (indications précises sur les symptômes)  __________ 
     ________________________________________________________________________________________ 
� La thérapie a échouée, les symptômes sont (indications précises sur les symptômes)   ___________________ 
     ________________________________________________________________________________________ 
Commentaires supplémentaires: ________________________________________________________________ 
__________________________________________________________________________________________ 
 

 
� Les symptômes ont décru indépendamment, de nouveaux symptômes n’ont pas pu être dépistés (indications 
précises sur les symptômes et l’espace de temps) ___________________________________________________ 
    ________________________________________________________________________________________ 
 
� Les symptômes ont décru indépendamment, de nouveaux symptômes ont pu être dépistés (indications précises 
sur les symptômes et l’espace de temps) __________________________________________________________ 
    ________________________________________________________________________________________ 
 
� Les symptômes se sont aggravées et étaient accompagnés ou non de nouveaux symptômes (indications 
précises sur les symptômes et l’espace de temps) ___________________________________________________ 
     ________________________________________________________________________________________ 
 
    Dans ce cas-ci, une thérapie sous antibiotiques a-t-elle été lancée?   � Oui  � Non 
 

13. Avec quel succès a-t-on traité la borréliose de Lyme?  

14. Si vous n’aviez pas subit de  traitement antibiotique, malgré la manifestation d’un ou plusieurs symptômes de 
la borréliose de Lyme, veuillez répondre aux questions suivantes: 
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