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  SUMMARY	
  

The synapses are the major site of interneuronal communication in the nervous 

system. Synaptic transmission provides the neurons with highly focal and fast 

signalling capabilities. Conventional and Ribbon synapses are two types chemical 

synapses in the nervous system. Conventional synapses are found in various types of 

neurons. However, the ribbon synapses, a specialized subclass of chemical synapses, 

have a more restricted distribution. They are found in photoreceptors and bipolar cells 

of retina, cochlear and vestibular hair cells and in pinealocytes. Physiologically, 

ribbon synapses are characterized by the tonic neurotransmitter release mediated by 

continuous exocytosis of synaptic vesicle. The defining feature of the ribbon synapses 

is the presence of an electron dense presynaptic specialization called the synaptic 

ribbon which is anchored perpendicular to the presynaptic plasma membrane at the 

active zone.  

The protein RIBEYE, identified by Schmitz et al., (2000), is the main component of 

the synaptic ribbons. RIBEYE consists of a unique amino terminal A-domain and a 

carboxy terminal B-domain which is identical to protein CtBP2. Identification of 

other interaction partners of RIBEYE can help us understand how the synaptic 

ribbons work on molecular level. In this concern, the main aim of my experimental 

work is focused on the characterization and localization of Caskin1 and Intersectin1 in 

the mammalian retina. Retina provides a simple approach to identify ribbon synapses 

in the outer plexiform layer as well as the conventional synapses present primarily in 

the inner plexiform layer. 

Caskin1 contains protein-protein interaction domains and is demonstrated to be 

present only in the conventional synapses of brain. For my thesis work, Caskin1 was 

selected to study its interaction with RIBEYE, because Caskin1 contains putative 

interacting motifs with PxDLS consensus sequence (EBI interaction database). In my 

experimental work, I studied that Caskin1 is predominantly expressed in the inner 

plexiform layer of retina. Moreover, in the outer plexiform layer Caskin1 is expressed 

only specific to the cone photoreceptor synapses of the retina. 

In the second part of my thesis work, I used five different Intersectin1 antibodies 
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raised against GST fusion proteins of Intersectin1. On the basis of mass YTH, Stelzl 

et al., 2005 found a preliminary evidence for an interaction between Munc119 and 

Intersectin1 by automated Yeast 2 hybrid interaction. In the present study, I analysed 

the physiological significance of this finding by localizing Intersectin1 in the retina.  

In my studies, I demonstrated the presence of Intersectin1-L (200 kDa) and 

Intersectin1-S (145kDa) in bovine retina. Munc119 is an essential interacting partner 

of RIBEYE. The co-immunoprecipitation experiment has shown an interaction 

between Munc119/Intersectin1. The binding of Intersectin1 to synaptic terminals in 

the outer plexiform layer is highly specific because the presynaptic Intersectin1 

signals are completely blocked with Intersectin1-GST but not by control protein GST 

alone. Immunolabelling with Intersectin1 and RIBEYE shows co-localization of 

Intersectin1 with RIBEYE in outer plexiform layer of bovine retina. Surprisingly, one 

Intersectin1 antibody (Intersectin 229) labelled the synaptic ribbons in outer plexiform 

layer of retina. The same antibody has also expressed an additional lower molecular 

band (45kDa) in the western blot. In conclusion, the data obtained from this research 

work provides a better understanding of the morphological analysis of localization of 

Intersectin1 in the retina.   
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                                      SUZAMMENFASSUNG 

Synapsen stellen die Hauptkomponenten der interneuralen Kommunikation im 

Nervensystem dar. Synaptische Transmission verleiht den Neuronen die Fähigkeit zur 

stark fokussierten und schnellen Signalübermittlung. Konventionelle und Ribbon-

Synapsen sind 2 Arten von chemischen Synapsen im Nervensystem.  Konventionelle 

Synapsen findet man in vielen verschiedenen Arten von Neuronen, während die 

Ribbon-Synapsen, eine spezialisierte Unterart der chemischen Synapsen,  eine 

begrenzte Verteilung haben. Man findet sie in den Photorezeptoren und Bipolarzellen 

der Retina, des Innenohrs, der vestibulären Haarzellen sowie in den Pinealocyten. 

Physiologisch werden Ribbon-Synapsen durch ihre tonische Freisetzung von 

Neurotransmittern charakterisiert, welche durch die kontinuierliche Exocytose von 

synaptischen Vesikeln herbeigeführt wird. Das besondere Merkmal der Ribbon-

Synapsen ist das Vorhandensein einer elektronendichten präsynaptischen 

Spezialisierung, die als synaptischer Ribbon bezeichnet wird, welcher  rechtwinkelig 

zur präsynaptischen Membran in der aktiven Zone der Synapse verankert ist. 

Das Protein RIBEYE, identifiziert durch Schmitz et al., (2000), ist der Hauptbestandt-

eil der synaptischen Ribbons. RIBEYE besteht aus einer amino-terminalen A- 

Domäne und einer carboxyterminalen B-Domäne, welche identisch mit dem Protein 

CtBp2 ist. Die Identifizierung der Interaktionspartner von RIBEYE kann uns helfen 

die Funktion des synaptischen Ribbons auf der molekularen Ebene zu verstehen.Vor 

diesem Hintergrund war das Hauptziel meiner experimentellen Arbeit die 

Charakterisierung und Lokalisation der Proteine Caskin1 und  Interleukin 1 in der 

Retina von Säugetieren. Retina stellt einen einfachen Ansatz zur Identifizierung der 

Ribbon-Synapsen, welche in der äußeren plexiformen Schicht vorkommen, als auch 

der konventionellen Synapsen, welche primär in der inneren plexiformen Schicht 

vorkommen, dar. 

Caskin1 enthält Protein-Protein Interaktionsdomänen und kommt soweit bisher 

bekannt im Gehirn vor. Da Caskin1  ein putatives Interaktionsmotiv mit der PxDLS 

Konsensussequenz (EBI interaction database) enthält, wurde es in meiner Arbeit 

ausgewählt um eine  mögliche Interaktion mit RIBEYE zu untersuchen. In meiner  



	
   13	
  

experimentellen Arbeit habe ich gezeigt, dass Caskin1 hauptsächlich in der inneren 

plexiformen Schicht der Retina exprimiert wird. Desweiteren wird es in der äußeren 

plexiformen Schicht der Retina spezifisch in den Zapfen exprimiert. 

Im zweiten Teil meiner Arbeit habe ich fünf verschiedene Intersetin1 Antikörper 

gerichtet gegen GST-Intersectin1 Fusionsproteine genutzt. Auf  der Grundlage des 

Quantitatven-Yeast-Two-Hybrid-Screens fanden Stelzl et al. (2005) einen ersten 

Hinweis auf eine Interaktion zwischen Munc 119 und Intersectin1  durch Interaktion 

im automatisierten Yeast 2 hybrid Screen. In der vorliegenden Studie habe ich durch 

Lokalisierung von Intersectin1 in der Retina die physiologische Signifikanz dieser 

Ergebnisse untersucht. In meinen Versuchen habe ich gezeigt, dass Intersectin1-L 

(200 kDa) und Intersectin1-S (145 kDa) in Rinder-Retina vorkommen. Munc119 ist 

ein essentieller Interaktionspartner von RIBEYE. Die Co-Immunoprecipitation zeigte 

eine Interaktion zwischen Munc119 und Intersectin1. Die Bindung des Intersectin1- 

Antikörpers an synaptischen Terminalen der  äußeren plexiformen Schicht ist hoch 

spezifisch, da das präsynaptischen Intersectin1-GST komplett blockiert wird, aber 

nicht durch das Kontrollprotein GST allein. Immunfärbungen mit Intersectin1 und 

RIBEYE zeigen eine Co- Lokalisation der beiden Proteine in der äußeren plexiformen 

Schicht der Rinder-Retina. Überraschenderweise markierte ein Intersectin1-

Antikörper (Intersectin 229) die synaptischen Ribbons in der äußeren plexiformen 

Schicht der Retina. Der gleiche Antikörper zeigte auch im Western-Blot eine 

zusätzliche tiefere Bande bei 45kDa. 

Zusammengefasst tragen die durch  diese Arbeit erlangten Daten zu einem besseren 

Verständnis der morphologischen Deutung und der Lokalisation von Intersectin1 in 

der Retina bei. 
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.                                         CHAPTER 1 

INTRODUCTION 
 

The visual system is an extraordinary system in the quantity and quality of information 

it supplies about the world. The eye, a vital organ for vision, can detect a single photon 

and transmits its signal to higher brain centers which can extrapolate the signals 

conveyed from retina to build a precise image of the external environment. The retina 

offers an excellent source of material for detailed anatomical, physiological and 

pharmacological analyses of the neural mechanisms underlying basic information 

processing by the vertebrate brain. 

1.1. STRUCTURE AND FUNCTION OF EYE: 
The eye is the most important human sense organ as it receives the light and forms an 

image on the photosensitive layer called the retina. The eye is a fluid filled sphere 

enclosed by three layers or tunicae (Fig.1). The outer fibrous layer consists of sclera and 

cornea. The middle vascularised layer includes the iris, ciliary body and the choroid. 

The inner most nervous layer includes the retina which contains the photosensitive rod 

and cone cells and associated neurons. Once the light passes through the cornea and 

pupil, it travels to the lens which changes its accommodation by varying its convexity. 

After passing through the vitreous humor (a clear jelly-like substance), the light falls on 

the retina where photosensitive cells, the rods and the cones, are responsible for light 

detection. The rod cells respond to the condition of dim light. The cone cells can 

distinguish colour from wavelength of light being reflected off the viewed object. Each 

colour has its own unique wavelength. The rods and cones convert the light wavelength 

into electrical signals and send these signals to the inner retina and finally to the optic 

nerve. The optic nerve transmits the electrical signals to the lateral geniculate nucleus 

and the visual fields of the occipital lobe in brain where the signals are translated into 

what we perceive as light. 
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                     Figure 1. Section through the adult human eye: en.wikipedia.org/wiki/Uvea 

                                                                                                                                                                              
1.2. The structural organisation of retina: 
There is a complex network of higher order sensory neurons in the retina. A variety of 

visual signals e.g. brightness, darkness, contrast, colour and motion, all process side by 

side by these neurons in the retina (Wässle et al., 2004). The retina  and the optic nerve 

develop as an out growth of the brain, therefore , retina or the neural part of the eye is a 

part of central nervous system (for review, see Purves et al., 2001). Similar to the other 

structures of central nervous system, a large number of different neurons are present in 

the retina (Masland, 2001). The eye is derived from three types of embryonic tissue: the 

neural tube (neuroectoderm), from which the proper retina and its associated pigment 

epithelium arise; the mesoderm of the head region, which produces the corneoscleral 

and uveal tunics; and the surface ectoderm, from which the lens develops. The mature 

mammalian retina consists of two distinct components: the retinal pigmented epithelium 

(RPE) and the neural retina, which is composed of neurons and glial cells.  
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Figure 2. Ribbon synapses of the mammalian retina. A.. Toluidine blue-stained vertical cryostat section of a 
mammalian retina showing the various retinal layers (OS/IS outer and inner segments of the rod and cone 
photoreceptors, ONL outer nuclear layer containing the somata of the photoreceptors, OPL outer plexiform layer 
or first synaptic region, INL inner nuclear layer containing the somata of the second order neurons, i.e. horizontal, 
bipolar and amacrine cells, IPL inner plexiform layer or second synaptic region, GCL ganglion cell layer 
containing the somata of the ganglion cells and of displaced amacrine cells). B. Confocal laser scanning 
micrograph of a vertical cryostat section through the mouse retina stained with an antibody against 
CtBP2/RIBEYE, which labels the ribbon synapses in the two synaptic layers of the retina (cell somata in the INL 
and the GCL are also CtBP2-immunoreactive). The rod (cell a) and cone (cell b) photoreceptors make ribbon 
synaptic contacts onto postsynaptic bipolar cells in the OPL. The bipolar cells (cell c), in turn, transmit the signals 
at their ribbon synapses onto amacrine and ganglion cells in the IPL. Bar 20 µm (A, B) (adapted from tom Dieck 
et al., 2006). C. Diagrammatic representation of the retina (Purves et al., 2001). 

 

The neural retina is a highly organized structure and is composed of ten clearly defined 

cellular layers (Fig. 2 A, C) which are  

1. Inner limiting membrane 
2. Nerve fibre layer 
3. Ganglionic cell layer 
4. Inner plexiform layer 
5. Inner nuclear layer 
6. Outer plexiform layer 
7. Outer nuclear layer  
8. External limiting membrane 
9. Outer and inner segments of photoreceptors 

          10.  Pigment epithelium 
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1.2.1. The retinal pigment epithelium: 

The retinal pigment epithelium (RPE) is composed of a single layer of hexagonal cells 

that are densly packed with pigment granules and is situated just internal to the Bruch’s 

membrane. This layer has a close anatomical and functional relation with the retina. It 

plays a central role in retinal physiology by forming the outer blood-retinal barrier and 

controls the transportation of ions and metabolites. The RPE cells are indispensible for 

the maintenance of neural retina as they participate in visual pigment regeneration, 

phagocytosis and digestion of photoreceptor wastes and maintenance of retinal 

adhesion. 

1.2.2. Photoreceptors: 

The photoreceptor cells in the vertebrates are specialized and highly photosensitive 

neurons that are responsible for the transduction of light into an electrical signal. The 

process of vision is initiated when the photoreceptors transmit the electrical signal to 

other neurons in the retina (Kwok et al., 2008). There are two types of photoreceptor 

cells: rods and cones. The rods are responsible for scoptopic or nocturnal vision. The 

cones are employed for photopic or diurnal colour vision and are much less sensitive to 

light than rods, but have a higher temporal resolution. Both of these photoreceptors 

consist of five basic principle subcellular regions: the outer segment where the process 

of phototransduction takes place. It contains the visual pigment. A thin cilium joins the 

outer segment to the inner segment and allows the passage of proteins and other 

molecules between the inner and outer segments. The inner segment is packed with the 

cell organelles involved in metabolic activities to meet the high energy demands 

associated with phototransduction of the cell. The cell body/soma contains the nucleus. 

The synaptic terminal transmits the light signal to the second order neurons: the bipolar 

and horizontal cells. An organized stack of more than 1000 discs which are separated by 

the plasma membrane is present in the outer segment of the rod photoreceptor cells. 

Identical organizations of closely packed membrane discs which are continuous with 

the plasma membranes are located in the outer segment of the cone photoreceptors 

(Kwok et al., 2008). There is a continuous process of regeneration in the outer 

segments. In this process, addition of new disc membranes occurs at the base of the 

outer segments. The old discs from the distal end are broken down and finally disappear 
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by phagocytic process carried out by the neighbouring retinal pigment epithelial cells 

(Young et al., 1967; Young et al., 1969). In this manner, a complete renewal of outer 

segment takes place within a period of 10 days (Kwok et al., 2008). Rhodopsin is an 

important visual pigment and is present in high concentration in the outer segment of 

rod photoreceptors (Liang et al., 2003; Nickell et al., 2007). Photo-activation of 

rhodopsin results in the activation of G-protein transducin. This results in activation of 

phosphodiesterase 6 which in turn causes hydrolysis of cGMP in the plasma membrane, 

and hyper-polarization of the cell (Hamer et al., 2005; Kiel et al., 2011). This 

phototransduction is followed by inactivation of rhodopsin and other components of the 

visual cascade, resynthesis of cGMP, regeneration of rhodopsin from 11-cis-retinal and 

opsin (Lamb and Pugh, 2004; Kwok et al., 2008). After these reactions, the rod cell 

goes back to its dark state. The outer segments of cone photoreceptors have almost 

similar photo-excitation and recovery process. However, different but related genes 

encode the participating proteins in the cone outer segment (Kwok et al., 2008).    

For the initiation of transmitter release, both rod and cone photoreceptors utilize 

voltage-dependent L-type calcium channels and specialized ribbon synapses 

(Heidelberger et al., 2005). Transmission of signals from the ribbon synapses of 

photoreceptors takes place through their connection with the dendrites of the bipolar 

and horizontal cells in the outer plexiform layer. In the inner plexiform layer, signal is 

transmitted through the synaptic contacts between the bipolar cells, amacrine cells and 

ganglion cells (tom Dieck et al., 2006) and finally the higher centers in the brain receive 

that signal.    

1.2.3. The retinal bipolar cells: 

The bipolar cell, being the second order retinal neuron, occupies a pivotal position in 

the retina as a major neuron that bridges the gap between the two synaptic layers of 

retina. Their dendrites reside in the outer plexiform layer and the synaptic terminals are 

in the inner plexiform layer. The major task of the bipolar cells is to transmit spatially 

and temporally filtered signals from the OPL to five anatomically defined strata present 

in the second synaptic layer (IPL) of the retina (Ghosh et al., 2004). Ribbon synapses 

are also present in the bipolar cells.  The bipolar cells respond to light stimulus by 

relatively slow changes of membrane potential and these responses are unusual in being 
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non-spiking (Heidelberger et al., 2005). There are two basic types of bipolar cells 

(Dowling &Werblin, 1969): ON bipolar cells and OFF Bipolar cells and the two types 

can be distinguished both their functions and morphology. From the anatomical studies, 

it is found out that mouse, cat, rat, rabbit and primate retinae have almost 10 different 

types of cone bipolar cell and one type of rod bipolar cells (Fig. 3) (Haverkamp et al., 

2008). A typical mammalian retina is known to have 9-10 different types of cone driven 

bipolar cells (Masland, 2001).  

 
Figure 3. Schematic diagrams of different type bipolar cells of the mouse retina. The dashed horizontal lines 
dividing the IPL represent the border between the OFF- (upper) and the ON- (lower) sub layers. Bipolar cells with 
axons terminating above this line represent OFF-bipolar, those with axons terminating below this line represent 
ON-bipolar. Abbreviations:  RB, rod bipolar cell; 1-9, cone bipolar cells (modified from Haverkamp et al., 2008). 

1.2.4. The retinal horizontal and amacrine cells:  

Retinal interneurons, i.e. amacrine cells and horizontal cells, have their cell bodies in 

the inner nuclear layer of the retina. The processes of amacrine cells are projected into 

the inner plexiform layer (Vigh et al., 2000). In the mammalian retina, AII amacrine 

cells receive synaptic signals from depolarizing and hyperpolarizing bipolar cells and 

are important relay stations for rod- mediated signals. In addition, they receive input 

signals from other amacrine cells (Pang et al., 2007). The interaction between 

horizontal cells and photoreceptor terminals, known as “lateral elements”, is post-

synaptic to photoreceptor terminals (Hirano et al., 2011). These lateral interactions 

between receptors, horizontal cells and bipolar cells in the outer plexiform layer play a 

vital role in the visual system's sensitivity to luminance contrast over a broad range of 

light intensities. The neuronal circuits between photoreceptors, ganglionic cells and 

optic nerve play an organised functional role in neural processing that a message is 

transmitted to brain along the optic nerve. 
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1.2.5. The outer and inner limiting membranes:  

The inner and outer limiting membranes are the architectural supports for the retina and 

are formed by the principal glial cells of the retina called the Müller cells. Müller cells 

bodies are located in the inner nuclear layer and they project irregularly thick and thin 

processes in either direction to the outer limiting membrane and inner limiting 

membrane. The inner limiting membrane is formed by the conical end feet of the Müller 

cells. The junctions forming the outer limiting membrane are between the Müller cells 

and other Müller cells and photoreceptor cells as zona adherens. 

1.2.6. The outer nuclear layer (ONL): 

This layer contains the cell bodies of rods and cone photoreceptors which are grouped 

parallel to each other and spread their light sensitive processes, the outer segments, in 

the direction of the retinal pigment epithelium.  

1.2.7 The outer plexiform layer (OPL): 

The OPL is the first synaptic layer in the retina which interconnects the dendrites of 

horizontal and bipolar cells with the terminals of photoreceptors forming the first level 

of intra-retinal information processing.  

1.2.8. The inner nuclear layer (INL): 

The inner nuclear layer contains the cell bodies of bipolar, amacrine and horizontal cells 

for the processing of signals. The neuronal cell bodies of supporting Müller glial cells 

are also located here.  

1.2.9. The inner plexiform layer (IPL): 

The inner plexiform layer contains the dendrites of the ganglion cells, amacrine cells 

and the axon terminals of bipolar cells and forms a dense plexus. The bipolar cells 

transmit the signals of photoreceptors from the outer retinal layers. These signals are 

modulated by synaptic interactions with amacrine and ganglion cells and finally 

transferred to the ganglion cells. 

 

 



	
   21	
  

1.2.10. The ganglion cell layer (GCL): 

This layer contains the ganglion cell bodies and it transmits the visual information via 

optic nerve to the lateral geniculate ganglion in the brain. Almost 10-15 different 

ganglion cells receive the signals from the bipolar cells (Masland, 2001).  

1.2.11. The nerve fibre layer: 

This nerve fibre layer contains axons of the ganglion cells and they receive their myelin 

sheaths after exit from the eyeball. The fibre density is lowest in the fovea. The optic 

nerve connects all axons of ganglion cells and this bundle of more than a million fibres 

(in humans) then passes information to the next relay station in the brain for sorting and 

integrating into additional information processing channels. 

1.3. Synapses in mammalian retina: 
 The retina receives light signals over several orders of magnitude. The processing of 

visual signals requires a range of synapses with different kinetics in signal transmission. 

There are two main types of structurally and functionally suited synapses in the retina 

and these include conventional chemical synapses and the ribbon synapses (for review, 

see tom Dieck, 2006). These synapses in the retina are present in two layers that can be 

easily recognised morphologically: the thin outer plexiform layer (OPL) which contains 

the photoreceptor ribbon synapses and the more complex inner plexiform layer (IPL) 

containing mainly the conventional synapses (Ullrich et al., 1994).   

1.4. Ribbon synapse of retina: 
Information is encoded by the conventional neurons by involving a change in the rate of 

action potential which is supposed to limit the amount of information transfer (for 

review, see tom Dieck and Brandstätter, 2006). On the contrary, the ribbon synapse 

constitutes a distinct type of chemical synapses (for review, see Schmitz, 2009).  The 

ribbon synapses present in the photoreceptors and bipolar cells of the retina and 

saccular and vestibular hair cells in the inner ear (Morgans, 2000; Schmitz, 2009) are 

capable of transmitting light and sound signals respectively , over a broad range of 

several orders of magnitude in intensity (for review, see tom Dieck., 2006). The ribbon 

synapses have presynaptic, sheet-like organelles called synaptic ribbons which consist 
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of a lamellar organization (Sterling et al., 2005). The synaptic ribbon is an electron-

dense structure of considerable size. It is located perpendicular to the active zone of the 

plasma membrane where exocytosis of the synaptic vesicles takes place (Schaeffer et 

al., 1982; Schmitz et al., 2000). A thin stalk-like connection whose composition is not 

known, maintains the connection between the synaptic vesicles and the ribbon (Wagner, 

1996).The synaptic ribbon is anchored along its base to archiform density. The 

archiform density is an electron dense structure, localized within a small evagination of 

the presynaptic membrane which is called synaptic ridge. The synaptic ridge contains 

clusters of L-type voltage gated Ca2+ channels (Schmitz., 2009). 

 
Figure 4. Electron Micrograph of the photoreceptor ribbon synapse. Abbreviations: sr, synaptic ribbon; sv, 
synaptic vesicle; bc, postsynaptic dendrites of bipolar cell; hc, postsynaptic dendrites of horizontal cells; black 
arrows-Synaptic vesicle; bold arrow head-endocytosis ; arrow head -post synaptic density (Schmitz, 2009).                    

1.5. Ultrastructural characteristics of ribbon synapses:  
The shape of the ribbon and the number tethered vesicles differs among various types of 

photoreceptors and bipolar cells. In mammals, rod synapses contain a small terminal 

and a single large synaptic ribbon which consists of a total of almost ~770 synaptic 

vesicles (Sterling and Matthews 2005). The synaptic ribbon bends at four deep 

invaginating postsynaptic elements, dendrites of bipolar cells and processes of 

horizontal cells. As a result, the synaptic ribbon attains a horseshoe shape structure 

which can be easily seen at light microscopic level (tom Dieck et al., 2006). As 

compared to the rods, cone synapses contain more synaptic ribbons (10-12 ribbons per 
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terminals). The size of individual ribbons in the mammalian retina is shorter in cones 

than in rods, but the total ribbon surface and the number of vesicles that are tethered to  

ribbon is considerably larger in cones than in rods (for review, see Sterling and 

Matthews 2005; Heidelberger et al., 2005). Likewise, ribbon synapses are also present 

in retinal bipolar cells (Schmitz, 2009). In mammals, 30-40 ribbons are present in 

bipolar cells. For instance, a rod bipolar cell contains 30-40 ribbons (Sterling et al., 

2005).   

1.6. Functions of retinal ribbon synapses:  
 Ribbon synapses are considered as specialized chemical synapses because they are 

capable of maintaining rapid exocytosis of synaptic vesicles for a long period of time 

(for review, see Fuchs, 2005; Heidelberger et al., 2005; Prescott and Zenisek, 2005; 

Sterling and Matthews, 2005; Nouvian et al., 2006; Singer, 2007). This could only be 

achieved by a very rapid transportation of synaptic vesicles to the active zone of ribbon 

in a manner that resembles a conveyor belt (see review, Sterling & Matthews, 2005; 

tom Dieck et al., 2006). The ribbon has the capacity to accommodate a large reservoir 

of primed releasable vesicles. A small rapidly releasable pool is formed by the vesicles 

that are in closest contact with the presynaptic plasma membrane at the base of the 

ribbon. However, the rest of the vesicles tethered to the ribbon make the large slower 

releasable pool (von Gersdorff et al., 1996; Heidelberger et al., 2002, 2005; Parson and 

Sterling 2003). High Ca2+ stimulation at ribbon synapse, triggers release of the entire 

pool of vesicles tethered to the ribbon on a millisecond frame (von Gersdorff et al., 

1996). Then, the primed vesicles move down the ribbon in a rapid way and reach the 

active zone and are readily available for the fusion for exocytosis (for review, see 

Heidelberger et al., 2005). 

1.7. Molecular composition of retinal ribbon synapses:  
RIBEYE is identified as a major component specific for the synaptic ribbons (Schmitz 

et al., 2009). In addition to RIBEYE, the photoreceptor ribbons also contain clusters of 

CtBP1/BARS (tom Dieck et al., 2005). Other protein recognized to be present in 

synaptic ribbons of ribbon synapses include kinesin isoform KIF3A (Muresan et al., 

1999), the cytomatrix protein RIM1 and Piccolo. The protein RIM2, Bassoon, 
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CAST/ELKS and L-type Ca2+ channel-1 subunit are also found to be localized in the 

active zone of synaptic ribbons. Bassoon, a cytomatrix protein, is responsible to anchor 

the synaptic ribbon at the base of active zone (tom Dieck et al., 2005). Synaptic vesicle 

protein SV2B appears to be present at all ribbon synapses in the retina. However, SV2A 

is present in the terminals of cones but not in rods (Wang et al., 2003). Detailed analysis 

of the distribution of different presynaptic proteins in ribbon synapses have 

demonstrated that they possess the same proteins in general, which are present in the 

conventional synapses (for review, see Sterling and Matthews, 2005; Schmitz, 2009). 

However, minor differences were observed, as for example, the use of syntaxin3b 

instead of syntaxin 1 for fusion  and of L-type Ca2+ channels instead of N-, P/Q-, or R-

type channels in some but not all species (for review, see Sterling and Matthews, 2005).  

  

 

Figure 5. Representation of a retinal ribbon synapse. The differential distribution of CAZ proteins defines two 
presynaptic compartments at the ribbon synapse. The ribbon-associated compartment includes RIBEYE/CtBP2, 
CtBP1/BARS, KIF3A, Piccolo and RIM1. The active zone compartment includes RIM2, Munc13-1, 
ERC2/CAST1, and a L-type calcium channel α1 subunit. At the photoreceptor ribbon synapse, Bassoon localizes 
at the border between the two compartments. Various types of postsynaptic and/or presynaptic metabotropic 
(mGluR) and ionotropic (iGluR) glutamate receptors mediate the action of glutamate, which is released at the 
retinal ribbon synapses (S. tom Dieck et al., 2006). 
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1.8. RIBEYE the major component of synaptic ribbons: 

1.8.1. Structural organization of RIBEYE: 

RIBEYE, a novel protein, is identified as a main element of the synaptic ribbons of 

retina (Schmitz et al., 2000). RIBEYE consists of two domains which include: an N-

terminal A domain (563 aa) and a C-terminal B domain (425 aa). The A domain is not 

significantly homologous to any currently described protein and it consists of a relative 

abundance of serine and proline residues. On the other hand, the RIBEYE(B) domain 

bears resemblance to CtBP2 sequence except the 20 N-terminal amino acids of CtBP2 

(Schmitz et al., 2000). There is absence of RIBEYE(A)-domain in D. melanogaster C-

elegans and other lower vertebrates and invertebrates. This supports the idea that 

RIBEYE and retinal synaptic ribbons are an evolutionary characteristic of vertebrates 

(Schmitz et al., 2000). Several studies have demonstrated that RIBEYE is the major 

component of synaptic ribbons (Schmitz et al., 2000; Zenisek et al., 2004; Wan et al., 

2005; Magupalli et al., 2008). Hence, it is supposed that RIBEYE has a vital influence 

on the function of synaptic ribbons. 

 

 
Figure 6. Schematic structure of RIBEYE. RIBEYE contains of a large amino-terminal A-domain and a 
carboxyterminal B-domain. The B-domain of RIBEYE contains the NADH-binding subdomain (NBD, depicted in 
yellow) and the substrate-binding subdomain (SBD, denoted in red). 

 

1.8.2. Structure of RIBEYE (B) domain: 

There are two main globular sub-domains contained by RIBEYE(B)-domain. These 

include a NADH-binding sub-domain (NBD) and a substrate-binding sub-domain 

(SBD) (Fig. 6). The dinucleotide-binding domain bears an evolutionarily conserved 

structure and it forms the core homology domain among these proteins (Chinnadurai, 

2003). The B-domain of RIBEYE is known to bind nicotinamide adenine dinuleotide 

(NAD+ or NADH [NAD (H)]) with high affinity. It belongs to the family of D- isomer-
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specific 2-hydroxy acid dehydrogenases (Schmitz et al., 2000). It is demonstrated that 

CtBPs, CtBP1, CtBP2 and RIBEYE(B)-domain (Kumar et al., 2002; Nardini et al., 

2003, Magupalli et al., 2008) homodimerize through the dinucleotide-binding domain. 

This results in the formation of an extensively large hydrophobic dimerization interface. 

From the topographical and functional aspects, the docking site of RIBEYE(A) for 

RIBEYE(B) is different from that of RIBEYE(B) homodimerization interface. 

Moreover, it is negatively regulated by nicotinamide adenine dinucleotide (Magupalli et 

al., 2008). In addition, the nicotinamide adenine dinucleotide coenzyme (NAD and 

NADP) plays not only a central pivotal role in metabolism as a carrier of reducing 

equivalent, but is also equally vital for cellular signalling (for review, see Chinnadurai, 

2002 and 2003). The homology of RIBEYE(B) domain/ CtBP2 to NAD+ domain- 

dependent 2-hydroxyacid dehydrogenases has functional importance, and the domain 

may serve as an enzyme participating in synaptic vesicle priming on synaptic ribbon 

and in transcriptional repression (Schmitz et al., 2000; Schwarz et al., 2011).  

 

                      
 Figure 7. Predicated structure of RIBEYE(B) domain using homology model of CtBP2. (A, B) Structure 
model of the B-domain of RIBEYE based on the crystal structure of tCtBP1 (Kumar et al., 2002; Nardini et al., 
2003; see also Magupalli et al., 2008; Alpadi et al., 2008). The structure model covers large parts of the B-domain 
(RE(B)575-905). The B-domain of RIBEYE consists of a NAD(H)-binding subdomain (NBD) and a substrate-
binding subdomain (SBD) which are connected by two flexible hinge regions, hinge 1 and hinge 2 (colored in 
blue). 

1.8.3. Functional role of RIBEYE in the ribbon synapses: 

The RIBEYE(A)-domain seems to have a predominantly structural position. But the B-

domain is important for the cytoplasmic face of the synaptic ribbon. A possible model 

for the function of RIBEYE is proposed by Schmitz et al., 2000. According to this 

model, the N-terminal A-domain is responsible primarily for the formation of 
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aggregates of assembled ribbons. But it is not sufficient for RIBEYE alone to organize 

the ribbons, therefore, at least one additional protein, as an inner core component, is 

needed in this mode. The presence of such a protein component is suggested by the 

finding of a second unique protein in the biochemically purified ribbon fraction 

(Schmitz et al., 2000).  

RIBEYE being a scaffold protein consists of ideal properties which could explain the 

assembly of synaptic ribbons from RIBEYE subunits (Magupalli et al., 2008). In 

addition, a multistep process is involved in the assembly of synaptic ribbons from 

RIBEYE. This multistep process includes the synaptic spheres, spherical synaptic 

ribbon like structures (Schmitz et al., 2000). The RIBEYE(B) domain serves as an 

enzyme and this domain can bind with NAD+ with high affinity. This points towards the 

fact, that its homology with NAD+-dependent dehydrogenases is functionally relevant 

(Schmitz et al., 2000; Schwarz et al., 2011). Interestingly CtBP1, a close homolog of 

CtBP2, was also proposed to participate in membrane traffic as “BARS” (brefeldin A-

ADP ribosylated substrate). It has a unique role in membrane fission in the Golgi 

complex because it functions as a lysophosphatidic acid coenzyme A acyltransferase 

(Weigert et al., 1999). The structural relationship of CtBPs with NAD+ dependent 

dehydrogenases goes well with the argument that CtBP is ADP ribosylated in an NAD+_ 

dependent reaction which occurs in parallel with  GAPDH (another NAD+-dependent 

dehydrogenase) (Di Girolamo et al., 1995). Because a little chemical similarity is found 

between the reaction mechanisms of acyltransferases and dehydrogenases, questions are 

raised regarding the precise enzymatic role of CtBP1 in Golgi membrane traffic 

(Schmitz et al., 2000). In transcription, CtBPs do not function by directly binding DNA. 

In fact, specific DNA binding proteins are needed for this interaction (Schaeper et al., 

1995; Turner and Crossley, 1998). The binding sequences for CtBPs bear a consensus 

sequence which is characterized by a PXDLS motif. It is proposed that B-domain of 

RIBEYE (which is identical with CtBP2) is displayed on the surface of ribbons and 

RIBEYE interacts with a target sequence containing the consensus motif PXDLS of 

CtBPs (Schmitz et al., 2000). On the basis of this model, it is suggested that this 

interaction of the target sequence protein in the synaptic vesicle may be involved in 

docking and/or translocation of vesicles and an unknown enzymatic reaction of the B- 
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domain may be involved in priming (Schmitz et al., 2000). This model would give an 

explanation for how ribbons are evolved and how do they work. In this concern, 

identification of the binding partners for the B domain on the ribbon surface and the 

role of NAD binding in their function will give a valuable insight about how this 

domain might perform this proposed function (Schmitz et al., 2000). In this connection, 

Munc 119 a mammalian ortholog of C. elegans protein unc119 is identified as a 

RIBEYE interacting protein at photoreceptor ribbon synapses and NADH binding 

domain of RIBEYE  is found to be responsible for the interaction with Munc119 

(Alpadi et al., 2008).  

1.9. Munc119-a novel photoreceptor protein: 
Munc119, also known as Retina Gene 4 protein (RG4), is highly enriched synaptic 

protein at photoreceptor cells. It is the mammalian ortholog of Caenorhabditis elegans 

proteins Unc-119 (Maduro et al., 1995). Munc119/HRG4 has been present in the 

photoreceptor synapses in the outer plexiform layer of the retina, (Higashide et al., 

1996), and also in the inner segments of the photoreceptors to a certain degree. It is 

predominantly associated with synaptic vesicles (Higashide et al., 1998). A 

characteristic developmental pattern regarding the expression of HRG4/Munc119 in 

both rod and cone photoreceptors has been found which shows a relationship with the 

maturation of the photoreceptors in the rat retina. This supports the fact that Munc119 

may be a functionally important protein for the photoreceptors (Higashide et al., 1999). 

In the developing rat retina, the gene for Munc119 is significantly expressed around 

post natal day 5. This correlates with the time when the differentiation begins to takes 

place with the formation of the outer plexiform layer, outer nuclear layer, inner and our 

segments (Higashide et al., 1996). Afterward, the expression level is rapidly increased 

through the rest of the period of photoreceptor maturation. It attained the maximum 

level by post natal day 23, when the retina was fully developed. Finally, it remained 

constant thereafter and this gene is expressed by both rods and cone photoreceptors. 

This developmental pattern of expression is identical to other photoreceptor specific 

genes such as rhodopsin. Thus, highlighting that HRG4/RRG4 may play a significant 

role in mature photoreceptors (Higashide et al., 1996). 
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1.9.1. Molecular structure of Munc119: 

Munc119 contains 240 amino acids and shows a two domain structure. There is a 

proximal N-terminal terminal, containing 77 amino acids, rich in proline and glycine, 

forming turns. It is moderately conserved (67%) between human and rat. The Carboxy 

terminal consists of 163 amino acid residues and α- helices, β sheets and turns. It bears 

a significant sequence homology to Prenyl binding protein PrBP/δ (previously design-

nated as δ-subunit of photoreceptor cGMP dependent Phosphodiesterase (PDE6). It is 

100 % conserved between the human and rat species (Higashide et al., 1996, 1998). 

 

  
Figure 8. Schematic domain structure of Munc119. The proline-rich domain (PRD, aa1-77) is shaded in blue, 
the PrBP/_-homology domain of Munc119 (aa78-240) in green. The lysine K57 indicates the site of a premature 
stop mutation that causes cone-rod-dystrophy in a human patient (Higashide et al., 1998). 

 

The C-terminal PrBP/δ homology HRG4 bears homology to C.elegans protein 

UNC119. Disorganised neural architecture and paralysis in the worm was observed 

when there is loss of C.elegans protein UNC119 (Maduro & Pilgrim, 1995). UNC119 

has also been found to be essential for normal development of zebrafish nervous system 

(Manning et al., 2004). An interaction between HRG4 and ARF-like protein 2 (ARL-2) 

by yeast two hybrid strategy has been detected. (Kobayashi et al., 2003). HRG4 is a 

synaptic protein enriched in the photoreceptors. It could be associated with synaptic 

vesicles which are present in the cytoplasm and on the pre-synaptic membrane during 

docking and exocytosis (Higashide et al., 1998). 

1.9.2. Important role of Munc119 in photoreceptor synaptic transmission: 

Munc119, one of the abundant proteins in the retina, is consistent with its functional 

importance in the retina (Wistow et al., 2002). On the basis of the homology of HRG4 

with UNC119, it could be suggested that HRG4 may play an important role in synaptic 
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vesicle cycle. In addition, Munc119 also shares several molecular features which are in 

common with a number of known synaptic proteins that take part in endocytosis and 

exocytosis (Higashide et al., 1998). Munc119 also contains proline rich sequence and 

the proline-rich regions in proteins are important for protein-protein interactions, most 

of which also include phosphorylation (Williamson et al., 1994).  

On the basis of novel structural composition, UNC 119 is a lipid binding protein found 

to be necessary for proper trafficking of G-protein which is a subunit in mammalian 

photoreceptors and C.elegans sensory neurons (Zhang et al., 2011). It is demonstrated 

that the visual G protein, Transducin undergoes translocations in both direction, 

between the outer segment (OS) and the inner segment (IS) of rod photoreceptors and 

this translocation is dependent on light (Gopalakrishna et al., 2011). In this regard, 

UNC119 has occupies a main position as a protein needed for Transducin transport in 

darkness (Zhang et al., 2011). UNC 119 was reported to interact with the N- terminus of 

GTP-bound Gαt1 (rod transducin-α subunit) in an acylation-dependent manner. 

Importantly, there is a disturbance of the return of rod G protein transducin (Gt) to the 

outer segment in dark in UNC119 knock out mice (Zhang et al., 2011). Since, the 

GTPase activity of Gαt1 (rod transducin-α subunit) was found to be inhibited by 

UNC119, therefore it could be concluded that the return of transducin to outer segment 

in darkness is based on diffusion of stable UNC119-Gαt1 GTP complex (Zhang et al., 

2011). The interaction of human UNC119 (HRG4) with transducin is dependent on the 

N-acylation, however, it does not require the GTP-bound form of Gαt1 (Gopalakrishna 

et al., 2011).  

The essential function of Munc 119 for synaptic transmission at photoreceptor synapses 

and for vision has been demonstrated in a cone-rod dystrophy patient with a premature 

termination codon mutation. This truncation mutation resulted in Munc119 that deletes 

the PrBP/δ homology domain. Severe synaptic degeneration has been detected in a 

transgenic mouse model of this human mutation (Kobayashi et al., 2000). Likewise, a 

knock out mouse model of UNC119 (MRG4) has also demonstrated a different 

dysfunction at distal IS/OS regions. This dysfunction has been characterized by a slow 

and progressive degeneration of retina (Ishiba et al., 2007). The recent proteomic has 
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reported to observe a decrease in UNC119 expression as one of the possible factors that 

contribute to retinal degeneration in a transgenic mouse model (Posokhova et al., 2011). 

It is demonstrated that Munc119 interacts with CaBP4 (Haeseleer et al., 2008). Munc 

119 could activate Src-type signalling kinases in the photoreceptor synapses and this is 

recently noticed for Munc119 in various cells of the immune system (Cen et al., 2003; 

Gorskka et al., 2004). Munc119 has high homology to PrBP/δ which binds and 

dissociates prenylated proteins from membranes (Zhang et al., 2004, 2007).This 

enzymatic activity plays an important role in intercellular membrane and protein 

trafficking (Zhang et al., 2004, 2007). In photoreceptors, the trafficking role of PrBP/δ 

predominantly takes place in the inner and outer segments. It is suggested that Munc119 

performs same tasks in the terminals of photoreceptor ribbon synapses (Alpadi et al., 

2008). Munc119 has been identified as a RIBEYE interacting protein at photoreceptor 

ribbon synapses (Alpadi et al., 2008). A unique RIBEYE protein is characterized to be a 

major component of synaptic ribbons (Sterling et al., 2005; Heidelberger et al., 2005; 

tom Dieck et al., 2006). The PrBP/δ homology domain of Munc119 is essential for 

interaction with the NADH binding region of RIBEYE(B) domain. But RIBEYE- 

Munc119 interaction does not depend on NADH binding. Munc119 is a synaptic ribbon 

associated component and it could be recruited to synaptic ribbons via its interaction 

with RIBEYE (Alpadi et al., 2008).  

1.10. Caskin1, a scaffold protein: 
Caskin1 (CASK interacting protein 1) is a novel multidomain protein. On the basis of 

the presence of multiple domains in Caskin1, it was suggested that Caskin1 act as an 

adaptor protein (Tabuchi et al., 2002). This is further supported by the observation that 

adaptor proteins usually contain multiple domains and are capable of forming molecular 

scaffolds resulting in large signalling networks by forming links between proteins 

(Tsunoda and Zuker, 1999; Pawson and Nash, 2000).  Moreover, adaptor proteins play 

a vital role at the synapses, where they participate as scaffolds of presynaptic and 

postsynaptic signalling machines (for review, see Garner et al., 2000; Sheng and Sala, 

2001).    
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A strong interaction has been found between Caskin1 and CASK protein (Tabuchi et 

al., 2002). CASK is a member of the family of membrane associated guanylate kinase 

(MAGUK) proteins. CASK is evolutionary conserved in Caenorhabditis elegans. In 

contrast, Caskin1 homolog was not detected in C. elegans. There are two isoform of 

Caskin which include Caskin 1 and Caskin 2. The two Caskins resemble each other and 

each Caskin isoform is highly conserved evolutionary (Tabuchi et al., 2002). In 

humans, Caskin2 homolog is also expressed. There is a similar overall domain 

organization for both Caskins but no interaction has been found between Caskin2 and 

CASK (Tabuchi et al., 2002). 

1.10.1. Molecular structure of Caskin1: 

Based on databank searches, it observed that Caskin1 and its isoform Caskin2, both are 

composed of two major regions. These include an N-terminal half and a C-terminal 

half. The N-terminal half demonstrates a multidomain organization which consists of 

six ankyrin repeats, a single SH3 domain, and two sterile α motifs-SAM domains (Fig. 

9) (Tabuchi et al., 2002). The three dimensional structure of these domains has also 

been demonstrated (Li et al., 2005; Mayer et al., 2001; Kim et al., 2003; Stafford et al., 

2011). On the other hand, the C-terminal half is composed of a long proline rich 

sequence and a unique C-terminal domain (CTD). It is already proposed that Proline is  

incompatible with repetitive secondary structural elements (Williamson et al., 1994) and 

is found  to be highly enriched in IDPs (intrinsically disordered proteins) (Tompa et al., 

2002). Hence, it could be assumed that the C-terminus (amino acids 603- 1430) of 

Caskin1 might be intrinsically disordered (Balázs et al., 2009). Although the N- 

terminal halves of Caskin1 and 2 resemble each other but the C-terminal regions exhibit 

considerable divergence. Moreover, they still demonstrate identical patches that are 

usually organised around proline residues (Tabuchi et al, 2002). 
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Figure 9. Domain structures of Caskins. The domain structures of Caskin1 and 2 are shown schematically. 
Numbers between the Caskin1 and 2 structures indicate percentage identity between the various domains. Tabuchi 
K et al. J. Neurosci. 2002; 22:4264-4273. 

The structure of Caskins is similar to that of SHANKs which is a family of postsynaptic 

scaffolding proteins. SHANKs interact with the guanylate kinase-associated protein, 

glutamate receptor-interacting protein homer and Cortactin (for review, see Sheng and 

Sala, 2001). It is found that SHANKs and Caskins both are composed of N-terminal 

ankyrin repeats. The N-terminal is followed by a SH3 domain and a large C-terminal 

which consists of a proline-rich sequence. On the basis of the similarity in domain 

structure between Caskins and SHANKs, it could be proposed that they bear convergent 

evolution and may perform an identical function (Gundelfinger et al., 2006; Baron et 

al., 2006). However, SHANKs are characterized by the presence of a PDZ domain that 

follows SH3 domain. This PDZ domain is not present in Caskins. Furthermore, in 

SHANKs, there is a single SAM domain located at the end of the C terminus, whereas 

two SAM domains are localized in the middle of the Caskins (Fig. 9). A small sequence 

identity has been noticed among the ankyrin repeats, SH3 and SAM domains of Caskins 

and SHANKs (Tabuchi et al., 2002). Moreover, this identical domain structure of 

Caskins and SHANKs does not show an evolutionary connection but instead point 

toward a similar scaffolding function (Tabuchi et al., 2002). 

1.10.2. Tissue distribution of Caskin1: 

Caskin1 is expressed only in brain. It has been demonstrated that Caskin1 was located 

mainly in the neuropil. It was found to be specifically enriched in synaptic areas. This 

pattern of distribution is similar to that of synaptic vesicle proteins (Tabuchi et al., 

2002).  
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1.10.3. Interactions of Caskin1: 

Caskin1 is specific in the vertebrate, but CASK and the rest of other CASK interacting 

proteins are evolutionary conserved in invertebrates (Tabuchi et al., 2002). It has been 

demonstrated that there is an interaction between the proline-rich region of Caskin1 and 

the adaptor protein Ab1-interactor-2 (Abi2) (Balázs et al., 2009). Abi2 is an adaptor 

protein identified by its binding with Ab1 tyrosine kinase (Dai & Pendergast et al., 

1995). Moreover, the C-terminal part of Caskin1 protein contains a long proline rich 

region and it is stated that because this proline rich region is required in protein-protein 

interactions (Dyson and Wright, 2002). Interestingly, an interaction between Caskin1 

and Synaptotagmin has been determined through a yeast two hybrid assay (Balázs et al., 

2009). It is already proved that Liprin occupies a pivotal position in presynaptic 

scaffolding (for review, see Spangler & Hoogenraad 2007). Recently, it is documented 

that Caskin1 competes with liprin in order to bind to LAR (leukocyte common antigen 

related receptor protein), and motor axon guidance in Drosophila is entirely based on 

the presence of LAR (Weng et al., 2011). On the basis of this study it could be proposed 

that Caskin1, as a neuronal adaptor protein, might be required for axon growth and 

guidance (Weng et al., 2011).Caskin1 directly competes with Mint1 for binding with 

CASK protein (Tabuchi et al., 2002).	
  

A close relationship has been identified between Caskin1 expression and maternal 

ingestion of ethanol.  In these experiments it was found that there is a considerable 

decrease in the level of Caskin1 mRNA in rats who were exposed to ethanol during the 

intrauterine life (Middleton et al., 2009). Similarly, another interesting study has 

demonstrated that Caskin1 may play a significant role in infantile myoclonic epilepsy 

(Ala et al., 2008).  

Cerebral ischemia or stroke is a major cause of death in the world but this acute 

neurological injury still lacks an effective and absolute therapy. Hence it is very 

important in stroke research, to discover major targets and to explain their mechanism 

and precise role during the temporal evolution of ischemia/ reperfusion (I/R) injury. 

Very recently, several proteins (Caskin1, Shank3) that are important in stroke are 

discovered (Datta et al., 2011). It is demonstrated that during the first 24 hours of 

cerebral I/R (ischemia/reperfusion) injury, a generalized downward trend has been 
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observed for the synapse related proteins (Caskin1, Shank) and this could be referred 

towards a compromised synaptic function. A direct association has been found between 

the down regulated proteins like Caskin1 and the synaptic scaffolding protein, CASK. 

Caskin1 and Shank3 both were located in the post synaptic density and their domain 

structure also bears a close resemblance. Therefore, on this observation, the down 

regulation observed in the current model could be justified (Tabuchi et al., 2002; Datta 

et al., 2011). A generalized decrease in the normal synaptic function might be related 

with the down regulation of these proteins (Caskin1, Shank3) at 24 hours post ischemia/ 

reperfusion (I/R) injury (Datta et al., 2011).  The B-domain of RIBEYE is identical to 

CtBP2 (Schmitz et al., 2000), and it is suggested that RIBEYE interacts with other 

proteins through this target sequence containing the consensus motif PxDLS of CtBP2 

(Schmitz et al., 2000). Caskin1 contains short motifs with the consensus PxDLS (EBI 

interaction database). Therefore, it could be possible that Caskin1 might interact with 

RIBEYE through this motif with the consensus PxDLS. 

1.11. Intersectin 1: 
Stelzl et al., (2005) demonstrated interaction between Munc119 and Intersectin by 

automated yeast two hybrid interaction. Munc119 is an interacting partner of Ribbon 

protein RIBEYE (Alpadi et al., 2008). Based on this, in the present study, I analysed the 

distribution of Intersectin1 in mammalian retina. Intersectins are considered as 

adaptor/scaffold proteins on the basis of the presence of a unique structural organization 

which consists of multiple domains. Adaptor/scaffold proteins are responsible for the 

regulation of various cellular activities which include proliferation, differentiation, cell 

cycle control, cell survival and migration (Pawson and Scott, 1997; Szmkiewicz et al., 

2004; Zeke et al., 2009). In this regard, the function of Intersectin proteins as adaptors 

have been analysed in different cell types and organisms (Tsyba et al., 2011). There are 

two Intersectin genes in humans. These genes are located on human chromosome 

21(q22.1-q22.2) and 2(pter-p25.1) respectively. The domain structure of Intersectin1 

and Intersectin 2 is identical (Pucharcos et al., 2000). Both have long and short 

isoforms. These isoforms are produced as a result of alternative splicing (Guipponi et 

al., 1998; Pucharcos et al., 2001). Intersectin1 and Intersectin2 genes of vertebrates bear 

very similar organization (Pucharcos et al., 1999, 2001). They are composed of more 
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than 40 exons in vertebrates, but orthologous Intersectin genes of nematodes 

(C.elegans) and arthopods (D. melanogaster) contain 8 and 11 exons, respectively. In 

addition, in vertebrates most of the exon boundaries are conserved between Intersectin1 

and Intersectin2. For the paralogous genes, the mechanisms of generation of the two 

major spliced variants are similar (Pucharcos et al., 2001). This predicts that, the long 

isoform is generated as a result of  alternative splicing of exon 30 and it appeared earlier 

in evolutions before gene duplication. However, no conservation between Intersectin1 

and Intersectin2 has been found for the remaining familiar alternative splicing events 

are (Pucharcos et al., 2001; Tsyba et al., 2004). Intersectin1 transcripts which contain 

exon 20 are specific for the neurons and their expression is regulated during 

development (Tsyba et al., 2004, 2008). There is an increase in the expression of + exon 

20 variant of Intersectin1 during development of fetal brain.  In contrast to this, the 

level of the transcript lacking exon 20 follows a corresponding decline. It is found that 

the ratio of Intersectin1 isoforms with and without exon 25 and 26 (the SH3 domain), is 

variable in fetal and adult brain (Pucharcos et al., 2001; Tsyba et al., 2004). 

1.11.1. Isoforms of Intersectin1: 

There are two isoforms of Intersectin/EHSH1 protein which include the long Isoform 

(Intersectin/EHSH1-L) and the short Isoform (Intersectin/EHSH1-S) (Ning et al., 2008). 

These isoforms are formed by alternative splicing of exon 30 that results in the 

termination codon for the short isoform (Guipponi et al., 1998, Pucharcos et al., 2001; 

Sengar et al., 1999). In the vertebrates, a longer isoform (Intersectin-1) is produced 

when the Intersectin gene undergoes alternative splicing. The neurons contain mainly 

this long isoform (Hussain et al., 1999; Ma et al., 2003; Tsyba et al., 2004; Yu et al., 

2008).    

 It has been analysed that after birth, there is an increase in the ratio of mRNA of 

Intersectin/EHSH1-L to Intersectin/EHSH1-S expression in the brain. Hence, it could 

be concluded that the expressions of these two isoforms of Intersectin are precisely 

regulated in every cell or tissue (O’Bryan et al., 2001). Studies conducted on the brains 

taken from rats of different age groups have demonstrated that Intersectin/EHSH1 

appeared during embryogenesis and then it is permanently present for the rest of the 

life. However, as the developmental process is further continued, there is a significantly 
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prominent change in the ratio of EHSH1-L to that of EHSH1-S isoforms. The long 

isoform expression is increased rapidly after birth. It is followed by a decline after 

postnatal day 18. On the other hand, the expression of short isoform gradually becomes 

less prominent after postnatal day 4 (Okamoto et al., 1999). This observation could be 

well supported with the fact that there is an increase in the activity of synapses after 

birth , therefore , the expression of proteins which are associated with the endocytosis 

and exocytosis is also raised (Ning et al., 2008). Accordingly, it could be suggested that 

Intersectin-L isoform, enriched in neuron could participate in neuronal endocytosis, 

exocytosis and neurotransmitter release. Furthermore, the short isoform Intersectin-S 

which is predominantly present in glial cells, could be responsible for regulation of  

intracellular signalling process and performs an important function in cell division and 

proliferation (Verkhratsky et al.,2006, Bessis et al., 2007).   

1.11.2. Distribution of Intersectin1: 

Various experimental studies have documented presence of Intersectin1 in neurons. 

Likewise, the Intersectin1 has been identified in the nervous system of C. elegans not 

only during the larva stages but in adult worms as well (Rose et al., 2007). Moreover, 

the research data has described that high levels of Dap 160 are present in the central and 

peripheral neurons of Drosophila larval during the entire process of development 

(Tomancak et al., 2004; Marie et al., 2004). An Increased expression of Intersectin1 

mRNA has been found out in the nervous system of mouse embryos during intrauterine 

development (Reymond et al., 2002). It has been observed that Intersectin1/EHSH1 is 

highly enriched in the mammalian tissues (Guipponi et al., 1998; Okamoto et al., 1999; 

Sengar et al., 1999). Intersectin1/EHSH1-L is predominantly present in neurons of brain 

(Pucharcos et al., 2000, 2001; Guipponi et al., 1998), specifically in the neurons of 

somatodendritic region of cortex, hippocampus, globus pallidus, subthalamic nucleus 

and substantia nigra (Ma et al., 2003; Ning et al.,2008). In contrast, Intersectin/EHSH1-

S is reported to be found mainly in astrocytes and microglia (Ning et al., 2008). 

Additionally, this short isoform of Intersectin1/EHSH1 is also detected in different 

other types of cells which include endocrine tissues of the pancreas, adrenal, thyroid 

and pituitary (Pucharcos et al., 2001; Ning et al., 2008).  
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 It is documented through studies carried out on the mammalian epithelial cell and rat 

hippocampus neurons, that Intersectin1 is localized in the cytoplasm and mainly in the 

perinuclear zone of Golgi like organelles (Hussain et al., 1999; Predescu et al., 2003; 

Ma et al., 2003; Pucharcos et al., 2000). Similarly, it was also observed that the 

Intersectin1 is enriched predominantly in CCPs (clathrin coated pits) at the plasma 

membrane (Hussain et al., 1999).  

1.11.3. Structural model of Intersectin1: 

Intersectin1/EHSH1 is highly conserved during evolution. It is composed of multiple 

domains (Ning et al, 2008). At the N-terminus, Intersectin1/EHSH1 is formed by two 

EH domains. After the EH domains, there is a central KLERQ domain. 

Figure 10. Domain structures of two isoforms of Intersectin1: The top is the Intersectin1-L isoform, and the 
bottom is Intersectin1-S isoform.  

This central domain is formed of a charged alpha-helix. Moreover, this domain is 

completely made up of lysine (11%), leucine (12%), glutamate (20%), arginine (13%) 

and glutamine (15%). The other C terminus of Intersectin/EHSH1 is characterized by 

the presence of five SH3 domains (SH3A-E) (Okamoto et al; 1999). In addition to 

these, three additional C-terminals domains in the long isoform (EHSH1-L) have also 

been revealed. These include a Dbl homology domain (DH), a Pleckstrin homology 

domain (PH) and a C2 domain (Guipponi et al., 1998, Sengar et al., 1999). 

1.11.4. Role of Intersectin1 in endocytosis and exocytosis: 

There has been sufficient data that could support the fact that proteins of Intersectin 

family are involved in endocytosis. Intersectin1 is composed of EH and SH3 domains 

and the presence of these domains is recognised well in the proteins involved in 

endocytosis (Tsyba et al., 2011). The EH domain at the N-terminal of Intersectin1 is 

found to interact with the endocytic accessory protein epsin (Yamabhai et al., 1998). 
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The Epsin1 binds with EH domain of Intersectin1 and is found in the presynaptic as 

well as postsynaptic sites (Yao et al., 2003). Furthermore the interaction between EH 

domains of Intersectin1 and stonin2 has also been recognised. Stonin2 is an endocytic 

sorting adaptor for identifying the synaptic vesicle cargo (Martina et al., 2001; Kelly 

and Phillips, 2005). Moreover, the EH domain of Intersectin1 also interacts with 

SCAMP1 which is known well as a secretory carrier membrane protein (Fernández-

Chacón et al., 2000). As far as the CCR (central coiled region) of intersectin1 is 

concerned, it is observed that it binds with high affinity with synaptosome associated 

proteins (SNAP-25 and SNAP-23) (Okamoto et al., 1999). CCR is reported to form 

heterodimers with the scaffolding adaptor Eps15 (Seneger et al., 1999; Koh et al., 

2007). Intersectin1 plays a key role as an active member of presynaptic endocytic 

complex associated with Synaptotagmin (Khanna et al., 2006). It is studied that the SH3 

domains of Intersectin1 can interact with Dynamin1 which participates in vesicle 

fission. The potential interacting partners of SH3 domain of Intersectin1 include a 

Synaptojanin 1, a synaptic protein synapsin, a membrane deforming protein SGIP1 and 

the AP2-binding protein connecdenn (Roos and Kelly, 1998; Yamabhai et al., 1998; 

Okamoto et al., 1999; Evergren et al., 2007; Dergai et al., 2010; Allaire et al., 2006). 

Recently, it is identified that Intersectin1 through its SH3 domain interacts with SHIP2 

(SH2 domain containing inositol 5-phosphatase2) and this interaction resulted in the 

recruitment of SHIP to CCPs (clathrin coated pits) (Xie et al., 2008; Nakatsu et al., 

2010). Evidence highlighting the participation of Intersectin1 in endocytosis is obtained 

from the study which demonstrated inhibition of clathrin-mediated endocytosis (CME) 

in response to over expression or knockdown of Intersectin1 (Sengar et al., 1999; 

Pucharcos et al., 2000; Martin et al., 2006; Thomas et al., 2009). It is also identified 

that the PH domain of Intersectin/EHSH1 interacts with phosophoinositides (Snyder et 

al., 2001). Moreover, the C2-domain is found to take part in phospholipid binding 

through Ca2+ dependent and Ca2+ independent pathways (Rizo and Südhof, 1998). 

Interestingly, Intersectins are also known to participate in caveolae endocytosis which is 

considered to be a vital process in carrying out transcytosis of proteins in endothelial 

cells (Predescu et al., 2003; Klein et al., 2009). Moreover, Intersectin1 long isoform has 

been recognized to carry out actin cytoskeleton rearrangements which are needed by 

neuroendocrine cells to perform exocytosis process (Malacombe et al., 2006). The DH 
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domain of long isoform of Intersectin1 exhibits GEF (guanine nucleotide exchange 

factor) activity. This DH domain of Intersectin1 is responsible to catalyse the release of 

GDP from Rho GTPases as well as its activation by binding with GTP (Rossman et al., 

2005). Various studies have demonstrated that Intersectin1 acts as a vital connection 

between endocytosis and intracellular signal transduction. It has been identified that the 

SH3 domain of Intersectin1 interacts with Sos1 (a guanine nucleotide exchange factor 

for Ras) and results in the formation of protein complexes. In this way stimulation of 

Ras is carried out by Intersectin1 (Tong et al., 2000; Mohney et al., 2003). The 

importance of Intersectin1 in synaptic vesicle recycling has been analysed. Intersectin1 

is involved in recycling of synaptic vesicles in Lamprey giant synapses (Evergren et al., 

2007). Very recently, it is suggested that Intersectin1 form homo and heterodimers. 

Moreover, Intersectin1 is shown to interact with c components of Arf6 GTPase and 

Rab5 GTPase pathways (Wong et al., 2012).  

1.12. Working hypothesis: 
Caskin1 and Intersectin1 are widely distributed in the conventional synapses of the 

central nervous system. However, the presence of these proteins in the retina has not yet 

been demonstrated. The main aim of the current study was to demonstrate the 

morphological analysis of the distribution of Caskin1 and Intersectin1 proteins in the 

retina that would help in a better understanding of the structure and composition of the 

retinal synapses.   
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                                                           CHAPTER 2 

                                                           MATERIALS AND METHODS 

 

2.1. Antibodies used for immunolabeling:   

            Antibody           Source Dilution 
used 

Secondary   
antibody 

Dilution 
used 

Intersectin1/EHSH1 227 

   (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1:500 

Goat anti-rabbit	
  
GAR Cy3 (ZYMED)	
  

Cat. No: 81-6115 

 

 

1:1000 

Intersectin1/EHSH1 229 

  (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1.500 

Goat anti-rabbit 
GAR Cy3 (ZYMED) 

Cat. No: 81-6115 

 

1:1000 

Intersectin1/EHSH1 750 

  (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1.500 

Goat anti-rabbit 
GAR Cy3 (ZYMED) 

Cat. No: 81-6115 

 

1:1000 

U2656 

(Schmitz et al.,2000) 

 

Rabbit polyclonal 

 

1:500 

Goat anti-rabbit 
GAR Cy3 (ZYMED) 

Cat. No: 81-6115 

 

1:1000 

RIBEYE/CtBP2 

 (BDTransduction 
Laboratories ) 

Cat.No: 612044 

 

Mouse monoclonal 

 

1:500 

GAM Cy2 (Jackson 
Immuno Research) 

Cat. No:115-096- 
146 

 

1:1000 

Intersectin1 (EH-HOM) 

Final Immune serum 
(raised against GST-EH-

HOM fusion protein) 

 

Rabbit polyclonal 

   (Lab- Made) 

 

1:500 

Goat anti-rabbit 
GAR Cy3 (ZYMED) 

Cat. No: 81-6115 

 

1:1000 

    Caskin (SY SY ) 

    Cat. No: 185-002  

 

 

Rabbit Polyclonal 

 

1:500 

Goat anti-rabbit 
GAR Cy3 (ZYMED) 

Cat. No: 81-6115 

 

1:1000 
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  Lecithin PNA 

Conjugates 

 

Molecular Probes 

 

1:200 

  

Caskin1control 
peptide(raised against 
1416 aa-1430 aa of rat 

Caskin1) 

 

SYSY Synaptic 
Systems 

 

5µg 

  

 

Goat anti-Rabbit Gold    
Conjugate (10nm) 

 

SIGMA; Brada et al 
1984 

 

1:100 

  

 

Synaptophysin(SIGMA) 

Cat. No: S5768 

 

Mouse monoclonal 

 Alexa 488 CAM 
(JacksonImmuno 
Research) Cat. No: 
115-096-146 

 

1:1000 

  

  LPH Control Peptide 

 

BioGenes 

   

15µg 

  

 

2.2. Antibodies used for western blot analysis: 

Antibody           Source Dilution 
used 

Secondary   
antibody 

Dilution 
used 

Intersectin1/EHSH1 227 

   (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 

Intersectin1/EHSH1 229 

   (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 

Intersectin1/EHSH1 750 

   (Okamoto et al., 1999) 

Rabbit polyclonal 

Prof. Thomas C.   
Südhof (Stanford) 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 
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Intersectin1 (EH-HOM) 

Final Immune serum 
(raised against GST-EH-
HOM fusion protein) 

Rabbit polyclonal 

Lab. made 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 

 

Anti-GST 

 

Mouse Monoclonal 
(SIGMA) 

 

1:5000 

Goat anti-mouse 
(GAM)-POX 

(SIGMA)            
Cat. No:A3673 

 

1:10,000 

Munc119(V2T2, 120IT)       

(Alpadi et al., 2008)	
  

 

 Rabbit polyclonal 

Lab. made 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 

Caskin (SY SY ) 

Cat. No: 185-002 

 

Rabbit polyclonal 

 

1:2000 

Goat anti-rabbit 
(GAR)-POX 

(SIGMA)            
Cat. No:A6154 

 

1:10,000 

 

Anti-Synptophysin 

Mouse Monoclonal 
(SIGMA) 

Cat. No: S5768 

 

1:2000 

Goat anti-mouse 
(GAM)-POX 

(SIGMA)            
Cat. No:A3673 

 

1:10,000 

 

2.3. Reagents and Chemicals: 
BSA (bovine serum albumin) Sigma 

EDTA Roth 

Sepharose A Beads  Sigma 

Sodium chloride Roth 

NPG (n-Propylgallate) Sigma 

Ponceau-S Roth 

Tris Roth 

Triton X-100 Fluka 

Beta-Mercaptoethanol Roth 
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Uranylacetate Merck 

Glutaraldehyde Sigma 

Bradford-Reagent Roti®-Quant Carl Roth 

Wide range protein standard Roti® Mark  Roth 

 

2.4. Buffers and Media: 

 

 

ECL-Solution 

 

ECL-I:  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
Tris 1M pH 8.5 10 ml                       
Luminol stock 1 ml                               
Para-hydroxy Coumarin Acid          
(PCA) 440 µl.                                                      
Make up to 100 ml with dd H2O 

 ECL-II :                                                 
Tris 1M pH 8.5 10 ml                        
H2O2 64µl                                        
Make up to 100 ml with dd H2O 

                                                        

Loading buffer 

                                                                 
10 µl 100mM EDTA                             
490 µl  dd H2O                                    
500 µl Glycerol 

 

Blocking buffer for immuno cyto-      
chemistry  

 

 

0.5% Bovine serum albumin in PBS (1x) 

 

Lysis  Buffer for 
(Coimmunoprecipitation) 

150mM Tris HCl PH7.9                 
200mM NaCl                                   
1.5mM EDTA                                            
1.5% Triton x-100 

 

5 X PBS 

40 g NaCl                                                    
1 g KCl                                                  
7.2 g Na2HPO                                      
41.2 g KH2PO4                                  
Make up to 1 litre with dd H2O 
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Polyacrylamide gel 10% 

Resolving Gel:                                             
1.5 ml dd H2O                                             
1.9 ml 1 M Tris pH 8.8                                     
2.5 ml 30% Acryl amide                               
75µl 10% SDS,                                                 
1.5 ml 50% Glycero                                       
l5 µl TEMED                                              
38 µl 10% APS 

Stacking Gel:                                         
4.73 ml dd H2O                                   
1.88 ml 1 M Tris pH 8.8                          
0.75 ml 30% Acryl amide                            
75µl 10% SDS                                   
7.5µl TEMED                                      
56.3 µl 10% APS 

 

Ponceau S-stain 

30 g Trichloroacetic acid                              
5 g Ponceau S                                       
Make up to 1 litre with dd H2O 

 

SDS-PAGE-Electrophoresis buffer 

3.03 g Tris                                                
14.4 g Glycine                                            
1.0 g SDS                                              
Make up to 1 litre with ddH20 

 

SDS-loading buffer 4 x 

1.6 g SDS                                                 
4 ml β-Mercaptoethanol                             
2 ml Glycerol                                            
2 ml 1M Tris pH                                               
74 mg Bromo phenol blue2 ml of ddH2O 

Stripping Buffer 1% SDS in PBS(1x)                                  
1ml ß-Mercaptoethanol 

Transfer Buffer (Western Blot) 
Tris 15.125 g                                            
Glycine 72.05 g                                   
Methanol 1 litre                                      
Make up to 5 litres with dd H2O 

PMSF-Stock solution 40mM in 100% Isopropanol 
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2.5. Laboratory Instruments: 

Fluorescence Microscope Axiovert 200M 
Camera Axiocam MRm 

Carl  Zeis 

Chemidoc XRS System Bio-Rad 

pH Meter Inolab 

SDS-PAGE electrophoresis apparatus Amersham Biosciences 

Power Supply EPS 301 Amersham Biosciences 

Rotator NeoLab 

Ultracentrifuge Beckmann 

Microtome-cryostat, Cryo-Star HM560MV 
SW40 rotor Microm Int. GmbH, Walldorf  Beckman 

Western Blot Transfer apparatus HOEFER Scientific Instruments 

Transmission Electron Microscope FEI; Tecnai G2 

Ultra Turrax IKA  RW16 Basic 

Vortex VWR International 

 

2.6. Immunolabeling experiments: 
For immunolabeling experiments, I used cryosections from bovine retinas. The bovine 

eyes were obtained from a local slaughter house. The bovine eyes were available 30 

minutes after post mortem and worked up immediately. 
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2.7. Cryopreservation of bovine retina/ Flash freezing of retinal   
tisssue:                             
The bovine eye was cut open at the equator of the eye. After removing the lens and 

vitreous, retina was peeled off gently and optic nerve was cut off. The specimen of 

retina was immersed into liquid nitrogen cooled isopentane for 30 seconds and then 

transferred into liquid nitrogen (-196ºC). This rapid freezing prevents formation of ice 

crystals during flash freezing process. The frozen specimen was kept in a pre-labelled 

aluminium foil package and stored at -80ºC before final use for preparing cryosections. 

2.8. Preparation of cryostat sections of bovine retina: 
The key instrument used for making cryosections is the Cryostat with a microtome. The 

frozen bovine retina was embedded in a tissue embedding medium (NEG-50, Thermo 

Scientific). After cutting off the excessive medium with a blade, the block of medium 

containing frozen retina was fixed on a specimen holder designed specially for this 

purpose. 

Then, the cryosections of 10µm thicknesses were cut with microtome and thawed on 

glass slides. The slides with cryosections of bovine retina were heated on a heating plate 

for 10 minutes at 60ºC. Finally; these heat fixed sections were kept at -20ºC till used for 

immunolabeling experiments. 

2.9. Single immunolabeling of cryostat sections from bovine retina: 
Immunolabeling experiment was performed as previously described (Schmitz et al., 

20000, 2006; Alpadi et al., 2008) using a Zeiss inverted Axiovert 200M microscope 

(Carl Zeiss) equipped for conventional epiflorescence microscopy. The tissue sections 

were heated on a hot plate at 60ºC for 10 minutes and then transferred to a wet chamber 

to cool down. The unspecific binding sites of the sections were blocked with 0.5% 

solution of BSA in PBS (phosphate buffered-saline) for 1 hour at room temperature. 

Incubation of the primary antibody (Intersectin1/EHSH1-227,750, 229, (Intersectin1-

EH-HOM) and Caskin1) was done at 1:500 dilutions in blocking buffer at 4ºC 

overnight. After overnight incubation, the sections were washed with PBS (1x) three to 

four times with gentle shaking on the shaker. Then secondary antibody GAR Cy3 was 

applied (1:1000 in blocking buffer) for 1 hour at room temperature. The sections were 
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again washed with PBS (1x) for 3 to 4 times. Afterwards, without letting the sections 

drying out, the immunolabelled sections were carefully embedded by adding 20µl of 

antifade NPG (containing 1.5% w/v n-propylgallate in 60% glycerol in PBS). Finally 

the sections were covered with cover slips without capturing the air bubbles beneath 

them. 

For negative controls, the whole procedure of immunolabelling was same as described 

above. However, the primary antibody was omitted and incubation of sections was 

carried out only with secondary antibody Goat anti rabbit (GAR) Cy3 (1:1000 dilution 

in blocking buffer). 

2.10. Double immunolabeling of cryostat sections from bovine 
retina: 
The protocol for double immunolabelling is same as that for single immunolabelling 

experiment (described above). However, the primary antibodies Intersectin1/EHSH1 

(227,229,750), Intersectin1/EHSH1-EH-HOM and Caskin1 were used with antibody 

against Ribeye and Synaptophysin (both serving as presynaptic markers), in dilution 

1:500 in blocking buffer. For secondary antibodies, I used Goat anti-rabbit (GAR) Cy3 

and Goat anti-mouse (GAM) Cy2 but to detect anti-Synaptophysin, Alexa488 Chicken 

anti-Mouse was used. All secondary antibodies were used in dilution 1:1000 in blocking 

buffer. 

2.11. SDS-PAGE: 
SDS-PAGE was done as described by Maniatis et al (2005). One dimension gel 

electrophoresis under denaturing conditions separates the proteins according to their 

molecular size, in the presence of 0.1% SDS. The polyacrylamide gel is casted as a 

separating gel topped by a stacking gel. The sample proteins were solubilized by boiling 

in 4x SDS loading buffer. Coomassie brilliant blue R-250 binds non specifically to 

almost all proteins which allow detection of protein bands in polyacrylamide gels. Then 

the gels were stained with Coomassie staining solution with gentle shaking for 30 

minutes at room temperature. The background was reduced by soaking the gel in 

acrylamide gel destaining solution. Then the gels were documented using either HP 

scanner or Bio RAD Gel Doc apparatus. 
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2.12. Western Blotting: 
Proteins were separated by SDS-PAGE and transferred from the polyacrylamide gel to a 

nitrocellulose membrane with a constant voltage (3 hrs; 50Volts at 4ºC). After 

electroblotting, the membrane was stained with Ponceau S for 2 minutes. The Ponceau 

S stained membrane was documented using a scanner. Then, the membrane was 

destained using PBS (1x) and blocked with 5% skimmed milk powder (MMP) for 1 

hour. For immunodetection of proteins, the primary antibodies were diluted in 5% 

skimmed milk and the membrane was incubated for over night in cold room with 

constant shaking of milk. Then the membrane was washed three times with PBS (1x). 

Afterwards, the secondary antibody was diluted in 5% MMP and the membrane was 

incubated at room temperature for 1 hour. Again, the membrane was washed with PBS 

(1x) for 3 times. Then, the membrane was incubated with ECL1 and ECL2 mixture (1:1 

ratio; Chemiluminescence detection solution) and the signals were documented with 

BIO RAD Doc apparatus. Also the intensity was quantified using BIO RAD Gel Doc 

apparatus and Gel Doc software. 

2.13. Bovine retina co-immunoprecipitation: 
All steps were performed at 4ºC if not denoted otherwise. For each 

immunoprecipitation, 1 bovine retina was immediately homogenised with ultra turrax in 

the presence of  2ml of Lysis Buffer (150mM Tris HCl pH7.9, 200mM NaCl,  1.5mM 

EDTA) containing 1.5mM Triton-X 100 at  4ºC, at 960 rpm for 3 minutes on ice . The 

sample was transferred to 5 ml syringe and forcefully ejected through 27 gauge needle 

to mechanically disrupt the retinal tissue. Mechanical crushing through 27 gauge needle 

was repeated 40-50 times. After mechanical crushing, lysis was allowed to proceed for 

30 minutes on ice. The sample was centrifuged at 13000 rpm for 30 minutes at 4ºC. The 

supernatant was incubated with 15µl of Munc119 V2T2 (120 IT) pre-immune serum 

and 20ml of washed protein A-sepharose beads for 1 hour at 4ºC on overhead rotator. 

Then, the samples were centrifuged at 13000 rpm, 4ºC for 15 minutes. Afterwards, the 

pre-cleared lysate was equally divided into two aliquots. Each aliquot, one with 15µl of 

Munc119 V2T2 (120 IT) immune serum and the second with Munc119 V2T2 (120 IT) 

pre-immune serum (IgG control), was incubated with 20µl of washed protein A-

sepharose beads, overnight at 4 ºC on overhead rotator. After overnight incubation, 
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samples were centrifuged at 3500 rpm for 2 minutes at 4ºC to pellet the protein A-

sepharose beads. The pellet was washed three times with 1ml of lysis buffer. The final 

pellet was boiled with SDS loading buffer and subjected to SDS-PAGE followed by 

Western Blotting. 

2.14. Stripping of nitrocellulose membrane: 
The nitrocellulose membrane was reprobed by stripping it off with boiled 1%SDS (in 

PBS) in the presence of 1ml ß-Mercaptoethanol. The incubation was carried out at room 

temperature for one hour with constant mild shaking. The excess of stripping solution 

was removed by washing the membrane with PBS (1x) for 3 times. Then the membrane 

was blocked as described earlier and reprobed with the desired antibody and the signals 

were detected as stated above. 

2.15. Measurement of protein concentration: 
The Bradford assay was used to estimate the protein concentration (Bradford, 1975). In 

the presence of acidic environment of the reagent, proteins bind to Coomassie dye. This 

results in a spectral shift from reddish brown form (absorbance at 465nm) of the dye to 

blue form (absorbance at 595nm) which gives a linear concentration for the soluble 

proteins in a distinct range of concentration. The standard calibration curve was 

obtained by using duplicates of a known concentration of BSA and unknown 

concentration was determined. 

2.16. Preabsorption analyses for Western Blotting: 
For preabsorption experiment, 50µl of Intersectin EH-HOM immune serum (final 

serum) was added to GST-EH-HOM (100µg) and GST(100µg) fusion protein bound to 

beads in a final volume of 70µl and incubated overnight at 4ºC in an overhead rotator. 

After incubation, samples were centrifuged at 13,000rpm for 3 minutes at 4ºC and the 

respective supernatants were taken for the subsequent experiments. For Western Blot 

analyses of bovine crude retinal extract, the two preabsorbed antisera described above 

were used at a dilution of 1:1000 in blocking buffer (5% skimmed milk powder in 

PBS). 
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2.17. Preabsorption analyses for immunolabelling experiments: 
Preabsorbance with fusion protein for immunofluorescence microscopy carried out as 

described above for Western Blotting. The preabsorbed antisera (preabsorbed either 

with GST or Intersectin1/EH-HOM-GST) were subsequently tested at identical 

dilutions for immunolabeling on cryostat sections of bovine retina. 

For Caskin1, Immunolabelling experiment was done using different dilutions of 

Caskin1to find out the dilution at which the immunosignals of Caskin1 were still 

visible. The single immunolabelling experiment was done with Caskin1 in various 

dilutions (1:500, 1:3500 and 1:5000).The dilution 1:3500 was used for blocking 

experiment because further dilutions resulted in complete disappearance of Caskin1 

immune signals. For preabsorption experiment, 1µl of Caskin1 antibody was added to 

5µg of Caskin1 peptide and 15µg of control (LPH) peptide in separate eppis, in a final 

volume of 3500µl and incubated overnight at 4ºC in an overhead rotator. After over 

night incubation, samples were centrifuged and the respective supernatants were used at 

identical dilutions for immunolabeling experiment on cryostat sections of bovine retina. 
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                                                                                      CHAPTER 3  

                                                                                       RESULTS- 1  

                                                                                                                              

 

3.1. Immunoblot analysis of Caskin1 in bovine retina: 
The immunoblotting of bovine retina with the antibody directed against Caskin1 

uncovered a single major polypeptide band with a typical molecular weight 180 kDa. 

This result suggested that the band observed in the crude bovine retina corresponds to 

Caskin1 and it is highly expressed in the bovine retina.  

	
  

Figure 11. Immunoblot analysis of Caskin1 from bovine retina lysate. The retinal proteins separated by 
sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) were transferred to nitrocellulose 
membrane and probed for Caskin1 with polyclonal Caskin1 antibody. Signals were visualized with ECL. A 
polypeptide band at approx. 180 kDa, the typical molecular weight of Caskin1, was recognized. The numbers at 
the left indicate the positions of the molecular weight markers. 
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3.2. Distribution of Caskin1 in the bovine retina: 

 Immunocytochemistry experiment was used to determine the localization of Caskin1 in 

bovine retina cryosections. The single immunolabeling experiments with antibodies 

against Caskin1 revealed strong immune signals in the inner plexiform layer of bovine 

retina. In contrast, few dot like immune signals were present in the outer plexiform 

layer of the bovine retina. The negative control experiments were performed by 

omitting the primary antibody i.e. Caskin1, and incubation was carried out with 

secondary antibody GAR-Cy3, only a discrete dark background was observed, with the 

absence of significant signals in different layers of retina (result not shown). The 

immunocytochemistry analyses showed that Caskin1 is differently distributed in the 

synaptic layers of bovine retinal synapses. 

	
  
Figure 12: Distribution of Caskin1 in cryostat sections of bovine retina labeled with antibody against 
Caskin1. (A, B) show strong immunoreactivity in IPL (arrow heads) as well as dot like immunofluorescent 
structures in OPL (long arrows). (C) shows dot like immunoflorescent structures in OPL. The section analysed 
with conventional florescence microscope. Abbreviations: OS,outer segment; IS, inner segment; ONL, outer 
nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale bar: 10µm.	
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  3.3. Caskin 1 is present in the synapses of inner plexiform layer: 
Double immuno-florescence experiment was performed with mouse monoclonal 

antibody against Synaptophysin and rabbit polyclonal antibody against Caskin1. 

Synaptophysin is a membrane protein of synaptic vesicles (Wiedenmann and Franke, 

1985). This experiment demonstrated that Caskin1 is co-localized with anti 

Synaptophysin in the inner plexiform layer of the mammalian retina (Fig.13. A, B). 

For double immunofloresence experiment, mouse monoclonal CtBP2/RIBEYE(B) was 

used. CtBP2/RIBEYE(B) is identical to RIBEYE(B) domain. RIBEYE (B)/CtBP2 is 

distributed in the IPL as well as the OPL layers in the retina where it labels the synaptic 

ribbons. The double immunofloresence experiments demonstrated that the signals of 

Caskin1 co-localized with RIBEYE (B) in the inner plexiform layer of the mammalian 

retina plexiform layer of retina (Fig.14). The few dot like signals of Caskin1 in outer 

plexiform layer were co-localized with the immunosignals of RIBEYE (B) in bovine 

retina (Fig.14. A, B, C and D). This analysis demonstrated the presence of Caskin1 in 

the ribbon synapses and conventional synapses of bovine retina. 

 

 

Figure 13: The immunosignals of Caskin1 co-localize with the immunosignals of Synaptophysin in IPL in 
bovine retina cryosections. The sections (arrow heads in A, B) analysed with the conventional florescence 
microscope (A, B). Abbreviations: OS,outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale bar: 10µm. 
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Figure 14: The immunosignals of Caskin1 co-localize with the immunosignals of RIBEYE (B) in IPL in 
bovine retina cryosections: A, B show respective images of inner plexiform layer (arrow heads) of the bovine 
retina. The merge shows co- localization of Caskin1 and RIBEYE. The cone photoreceptors (long arrows) in OPL 
labelled for Caskin1 (Red) and RIBEYE (green).  The dot like signals of Caskin1 in OPL also colocalize with 
RIBEYE (B) (long arrows) in (A, B, C, D). The sections analysed with conventional florescence microscope (A, 
B, C, D) Abbreviations: OS,outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform 
layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale bar: 10µm. 

3.4. Caskin1 is expressed in the cone photoreceptor ribbon              
synapses: 
The dot like immuno signals of Caskin1 in the outer plexiform layer of the bovine retina 

suggested an association with the cone photoreceptors synapses. Therefore, PNA 

agglutinin was used as a specific marker for the cone synapses. In Fig.15, cone synapses 



	
   56	
  

were identified with fluorescently labelled peanut agglutinin (PNA) (Wang et al., 2003; 

Morgans et al., 2009). In these incubations, Caskin1 immunosignals co-localized with 

PNA agglutinin (Fig.15, A, B). 

 

	
  

Figure 15: Co-localization of Caskin1 with PNA agglutinin: A, B show respective images of outer plexiform 
layer of the bovine retina. The cone photoreceptors (long arrows) double labelled for Caskin1 (Red) and PNA 
agglutinin (green). The merge shows co- localization of Caskin1 and PNA. Abbreviations: OS,outer segment; IS, 
inner segment; ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;IPL, inner 
plexiform layer. Scale bar: 10µm.  

 

3.5. Labelling of Caskin1 immunosignals can be blocked by    
preabsorption with Caskin1 peptide and not by control peptide: 
The minimum working concentration of Caskin1 at which immunosignals are still 

detectable is 1: 3500 (Fig.16 B). However, further dilution of Caskin1 did not reveal 

any immunosignals (Fig.16C) in the inner plexiform layer. Therefore, for blocking 

experiment, the dilution for Caskin1 used was 1:3500.  
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Figure 16: Caskin1 immunosignals in different dilutions. Cryostat sections immunolabeled with polyclonal 
Caskin1 antiserum showed immunosignals in inner plexiform layer (B) when used in dilution 1: 3500. The 
Caskin1 immunolabeling in the IPL did not demonstrate immunosignals in IPL (C) when dilution of Caskin1 was 
further increased. Abbreviations:OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 10 µm. 

 

The Caskin1 immune signals were specific because the signals could be completely 

blocked by preabsorbing the polyclonal antiserum with Caskin1 peptide (Fig. 17A) but 

not with control peptide (Fig.17B). After pre-absorption of the Caskin1 polyclonal 

antiserum with Caskin1 peptide, immune signals disappeared from inner plexiform 

layer of bovine retina (Fig.17A). On the contrary, for preabsorption with LPH control 

peptide, the immune signals remained unchanged (Fig. 17B).  
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Figure 17: Labeling of Caskin1 immunosignals can be blocked by preabsorption with Caskin1 peptide but 
not by LPH control peptide pre-absorption. Cryostat sections immunolabeled with polyclonal anti-Caskin1 
antiserum pre-absorbed with Caskin1 peptide (A) and  LPH control peptide (B). The Caskin1 immunolabeling in 
the IPL cannot be blocked by pre-absorption with LPH control peptide (B) but by pre-absorption with Caskin1 
peptide (A). Abbreviations:OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer plexiform 
layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 10 µm. 
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     RESULTS- 2 

 

3.6. Detection of Intersectin1 in bovine retina by Western Blot 
analysis:  
The immunoblotting of bovine retinal lysate with antibodies directed against GST 

fusion proteins of EHSH1 (Intersectin 750, 227, 229 and EH-HOM) detected a strong 

band of~200kDa. In addition, another band typical for the short isoform of 

EHSH1/Intersectin 145kDa was also recognised by these antibodies (Fig.18A, B; 

Fig.19C, D). In contrast, Western blot for EHSH1 229 detected an additional lower 

molecular weight band of almost 43kDa (Fig.19D) which is not present in Western blots 

for Intersectin-227,750 and EH-HOM. 

 
Figure 18. Immunoblot analysis of Intersectin1 from bovine retina.The retinal proteins separated by sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was transferred to nitrocellulose membrane 
and probed for Intersectin1 with polyclonal Intersectin 227, Intersectin EH-HOM antibody. Signals were 
visualized with ECL. A polypeptide band at approx. 200 kDa, the typical molecular weight of Intersectin1, was 
recognized. The numbers at the left indicate the positions of the molecular weight markers.  
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Figure 19. Immunoblot analysis of Intersectin1 from bovine retina .The retinal proteins separated by sodium 
dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) was transferred to nitrocellulose membrane 
and probed for Intersectin1 with polyclonal Intersectin 750 and Intersectin 229 antibody. Signals were visualized 
with ECL. A polypeptide band at approx. 200 kDa, the typical molecular weight of Intersectin1, was recognized. 
The numbers at the left indicate the positions of the molecular weight markers. For Intersectin 229, an additional 
low molecular weight band (Fig.19D) was also recognized. 

 

3.7. Detection of Intersectin1 in bovine retina can be blocked by 
Intersectin1-GST preabsorption but not by GST preabsorption: 
Intersectin1 is highly specific because the detection of Intersectin1 in the bovine retina 

was completely blocked when the nitrocellulose membrane blot was incubated with 

polyclonal Intersectin EH-HOM antiserum preabsorbed with EH-HOM-GST fusion 

protein (Fig. 20A, lane 2). In contrast to this, Intersectin1 was still detectable in the 

bovine retinal lysate when the blot was incubated with GST fusion protein alone and in 

the crude bovine retina (Fig.20A, lane 3, 4). In Fig. 20B, the same blot as in Fig. 20A 

was stripped off and reprobed with mouse monoclonal antibody against Synaptophysin. 
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This blot (Fig. 20B) demonstrated the presence of Synaptophysin (Fig. 20B, lane1, 2, 

3and 4) thus indicating the specificity of Intersectin1 (EH-HOM) preabsorption. 

 
Figure 20. Detection of Intersectin1 (EH-HOM) in bovine retina can be blocked by Intersectin1(EH-HOM)-
GST but not by GST preabsorption. The polyclonal Intersectin EH-HOM antibody specifically detected 
Intersectin1 in a crude retinal extract as a band of the expected molecular weight of approx. 200kDa (lane 4). This 
band is specific because it is completely blocked if our EH-HOM antiserum was pre-absorbed with its antigen 
(EH-HOM-GST, lane 2) but not by GST alone (lane 3). Intersectin1 can be detected in crude bovine retina (lane4) 
as a positive control. Lane 1 shows loading control by anti Synaptophysin in bovine retina. In Fig.20 B., the same 
blot was stripped off and re-incubated with anti Synaptophysin antibody. It indicated the detection of 
Synaptophysin in all lanes (1, 2, 3, and 4). 

3.8. Intersectin1 and Munc 119 can be co-immunoprecipitated 
from bovine   retina: 
Co-immunoprecipitation experiment was done using extracts from bovine retina.  

Munc119 (V2T2, 120IT) immune serum co-immunoprecipitated Intersectin1 (EHSH1-

227) from bovine retinal lysate (Fig. 21b, lane 2) while Munc119 (V2T2, 120 IT) pre-

immune serum did not co-immunoprecipitate Intersectin1 (EHSH1 227) (Fig. 21b, lane 
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1). Munc119 immune serum co-immunoprecipitated Munc119 from the bovine retina 

lysate (Fig.21a, lane 2). However, Munc119 preimmune serum did not co-

immunoprecipitate Munc119 (Fig.21a, lane 1) and Intersectin1 (EHSH1 227) (Fig. 21b, 

lane 1). Hence, this experiment demonstrates a certain extent interaction between 

Munc119 and Intersectin1 (EHSH1 227) in the bovine retina. 

 

 
Figure 21. Co-immunprecipitation of Munc119 and Intersectin1 from the bovine retina. Munc119 immune 
serum and Munc119 pre-immune serum were tested for their capability to co-immunoprecipitate Intersectin1. Fig. 
21 a) Munc119 is immunoprecipitated by Munc119 immune serum (lane 2, Fig. 21a) but not by Munc119 pre-
immune serum (lane 1, Fig.21a). Asterisks indicate the immunoglobulin heavy chains (lanes2). Fig. 21b shows the 
same blot (as in Fig. 21 a) but reprobed with rabbit polyclonal Anti Intersectin 227 antibody. This blot shows the 
presence of Intersectin 227 precipitated by the Munc119 immune serum (lane 2) but not by the pre-immune serum 
(lane 1). Asterisks indicate the immunoglobulin heavy chains (lanes2). In the input lanes, 3% of total input was 
loaded. 
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3.9. Intersectin1 is present in the OPL of bovine retina: 
The single immunolabelling experiments with rabbit polyclonal Intersectin1 (EH-HOM, 

EHSH1-227,750 and 229) revealed very strong immune signals in the outer plexiform 

layer of the bovine retina (Fig.22, 23). Interestingly, EHSH1 229 demonstrated puncted 

immune signals in the OPL under lower magnification and with higher magnification 

these immunosignals from EHSH1 229 antibody, labeled the synaptic ribbons (Fig. 23 

C, D, E). 

 

Figure 22: Distribution of Intersectin1 in cryostat sections of bovine retina labelled with antibody against 
Intersectin 227 and Intersectin 750. (A, B, C, D) show strong immunoreactivity in OPL (long arrows).The 
sections analysed with conventional florescence microscope. Abbreviations: OS,outer segment; IS, inner segment; 
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale 
bar: 10µm. 
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Figure 23: Distribution of Intersectin1 in cryostat sections of bovine retina labelled with antibody against 
Intersectin EH-HOM and Intersectin 229. Intersectin EH-HOM (A, B) show strong immunoreactivity in OPL 
(long arrows). Intersectin 229 (C, D, and E) show the puncted signals labelling the synaptic ribbons. The section 
analysed with conventional florescence microscope. Abbreviations: OS, outer segment; IS, inner segment; ONL, 
outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bar: 
10µm. 
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3.10. Intersectin1 partly co-localizes with the synaptic ribbons in 
the photoreceptor synapses: 
The double immunofloresence experiments with rabbit polyclonal antibodies EHSH1-

227, 229, 750 and EH-HOM generated very strong immune signals in the OPL (outer 

plexiform layer) of the bovine retina and these signals were co-localised with the 

synaptic ribbons which were labelled with RIBEYE (B)/CtBP2 antibodies (Fig. 24, 25 , 

26 and 27). 

 

Figure 24: The immunosignals of Intersectin (EH-HOM) co-localize with the immunosignal of RIBEYE 
(B)/CtBP2 in bovine retina cryosection (arrows in A, B, C). The sections analysed with conventional florescence 
microscope (A,B,C):Abbreviations: OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bar: 10µm. 
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Figure 25: The immunosignals of Intersectin 227 co-localize with the immunosignals of RIBEYE (B)/CtBP2 
in bovine retina cryosections (arrows in A, B, C, D).The sections analysed with conventional florescence 
microscope (A, B) and with confocal microscope (C, D). Abbreviations: OS,outer segment; IS, inner segment; 
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale 
bar: 10µm. 
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Figure 26: The immunosignals of Intersectin 229 co-localize with the immunosignals of RIBEYE (B)/CtBP2 
in bovine retina cryosections (arrows in A, B, C, D). The sections analysed with conventional florescence 
microscope (A, B) and with confocal microscope (C, D). Abbreviations: OS, outer segment; IS, inner segment; 
ONL, outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale 
bar: 10µm. 
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Figure 27: The immunosignals of Intersectin 750 co-localize with the immunosignals of RIBEYE (B)/CtBP2 
in bovine retina cryosections (arrows in A, B, C).The sections analysed with conventional florescence 
microscope (A, B) and with confocal microscope (C). Abbreviations: OS,outer segment; IS, inner segment; ONL, 
outer nuclear layer; OPL, outer plexiform layer; INL, inner nuclear layer;IPL, inner plexiform layer. Scale bar: 
10µm. 

 

3.11. Labelling of Intersectin1 immunosignals can be blocked by   
preabsorption with Intersectin-GST and not by GST alone: 
The Intersectin/EH-HOM immune signals were specific because the signals could be 

completely blocked by preabsorbing the polyclonal antiserum with EH-HOM-GST 

fusion protein but not with GST fusion protein alone (Fig.28). After pre-absorption of 

the EH-HOM polyclonal antiserum with EH-HOM-GST protein, immune signals were 

disappeared from outer plexiform layer of bovine retina (Fig.28B). On the contrary, for 

preabsorption with GST fusion protein alone, the immune signals remained unchanged 

(Fig. 28A). Preabsorption of EH-HOM antiserum with GST (Fig. 28D) does not 

influence the Intersectin EH-HOM as well as the RIBEYE (B)/ CtBP2 immune signals 

in the ribbon synapses of OPL (Fig.28D). Conversely, when preabsorption was carried 

out with EH-HOM-GST protein it abolished the EH-HOM immune signals without 
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affecting the RIBEYE (B)/CtBP2 signals in outer plexiform layers of the bovine retina 

(Fig:28C). 

 

Figure 28. Labeling of presynaptic Intersectin1(EH-HOM) immunosignals can be blocked by EH-HOM-
GST but not by GSTpre-absorption. Cryostat sections immunolabeled with polyclonal anti-EH-HOM antiserum 
pre-absorbed with GST (A, D) and EH-HOM-GST (B, C). The Intersectin EH-HOM immunolabeling in the OPL 
cannot be blocked by pre-absorption with GST (A) but EH-HOM immunosignals are blocked by pre-absorption 
with EH-HOM-GST (B). After preabsorption of the Intersectin EH-HOM polyclonal antiserum with EH-HOM-
GST, the Intersectin EH-HOM immunosignals is gone (C) whereas after pre-absorption with GST the EH-HOM 
immunosignals remained unchanged (D).  Pre-absorption of EH-HOM antiserum with GST does not influence the 
EH-HOM as well as the RIBEYE immunosignal in ribbon synapses of the OPL (D). However, pre-absorption of 
the EH-HOM antiserum with EH-HOM-GST (C) abolishes EH-HOM immunosignals but not the RIBEYE 
immunosignals. Abbreviations:OS, outer segment; IS, inner segment; ONL, outer nuclear layer; OPL, outer 
plexiform layer; INL, inner nuclear layer; IPL, inner plexiform layer. Scale bars: 10 µm. 
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                                                                          4. DISCUSSION 

 

Proper function of the mammalian brain relies on the establishment of highly specific 

synaptic connections among billions of neurons. In order to understand the structural 

basis of the synaptic functions, it is crucial to precisely describe the morphology and 

molecular composition of the synapses. The ribbon synapses of retina are highly 

specialized tonically active synapses. The typical landmark of ribbon synapses is the 

synaptic ribbon, a highly dynamic organelle suggested to be involved in exocytosis, 

membrane trafficking and endocytosis (Schmitz, 2009; Sterling and Matthews, 2005). 

RIBEYE, a major component of synaptic ribbons, appears to be involved in the synaptic 

ribbon formation (Magupalli et al., 2008; Schmitz, 2009).  Although a lot is known 

about the physiology of ribbon synapses, the functional role of synaptic ribbons in the 

ribbon synapses is unclear. Hence, analyses of other synaptic proteins in the retinal 

synapses would provide more information about the protein machinery and functional 

aspects which could further highlight the differences between the conventional and 

ribbon synapses. In my experimental work, I have demonstrated the presence of 

Caskin1 and Intersectin1 in the synaptic layers of mammalian retina. 

4.1. Characterization Caskin1 in mammalian retina: 

 Caskin1, a CASK [calcium/calmodulin-(CaM)-activated serine-threonine] interacting 

protein, belongs to scaffolding protein group and it consists of multiple domains which 

interact with different proteins (Balázs et al., 2009). In brain, Caskin1 is present in 

presynaptic active zones of conventional synapses (Tabuchi et al., 2002). Caskin1 has 

been demonstrated to interact with Synaptotagmin and neurexins2 and it is a strong 

interacting partner of CASK protein (Balázs et al., 2009, Weng et al., 2011, Tabuchi et 

al., 2002). CASK is identified as an important protein involved in synaptic protein 

targeting, synapse formation, brain development and regulates gene expression (for 

review, see Hsueh et al., 2006). It is suggested that in brain, CASK and Caskin1 

constitute a part of the fibrous mesh of proteins and help in organizing the active zone 

of neuronal synapses (Stafford et al., 2011). The interaction between CASK and 
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Caskin1 takes place when CASK binds to a region known as CASK interacting domain 

(CID) of caskin1 (Stafford et al., 2011). Caskin1 consists of a short linear EEIWVLRK 

peptide motif and this peptide motif is very essential for the binding of Caskin1 with 

Cask protein (Stafford et al., 2011). Presence of a binding pocket on the CASK CaMK 

domain has been identified and autophsphorylation of CASK takes place adjacent to the 

binding pocket which regulates binding of Caskin1 to CASK (Stafford et al., 2011). 

Caskin1 is specifically present in brain (Tabuchi et al., 2002).  In the present study, it is 

demonstrated for the first time that Caskin1 is highly enriched in the mammalian retina. 

This finding is further supported by the immunocytochemistry experiments that Caskin1 

is predominantly expressed in the inner plexiform layer of the retina and it is present in 

the outer plexiform layer but it is not labeling all terminals of the photoreceptors. The 

bovine retina is a mixed retina that contains both rods and cones photoreceptors. The 

rod synapses contain a single synaptic ribbon, and the cone synapses can be 

discriminated from the rod synapses based on their larger size and the presence of 

numerous synaptic ribbons (Schmitz et al., 1996; 2000). By light microscopy, the 

ribbons in a cone terminal appear like a chain of dots (tom Dieck et al., 2006). On the 

basis of co-localization of Caskin1 with RIBEYE(B) in the OPL, we assumed that 

Caskin1 might be present in cone photoreceptor synapses. To verify Caskin1 cone 

specific labeling, PNA (Peanut agglutinin) was used as a specific marker for cone 

synapses (Wang et al., 2003; Morgans et al., 2009). Co-localization of Caskin1 with 

PNA confirmed that Caskin1 is present only in the cone photoreceptor synapses of the 

bovine retina. However, the rod photoreceptor synapses do not contain Caskin1. This 

further explains diversity of protein components among different types of ribbon 

synapses of bipolar cells, rod photoreceptor cells and cone photoreceptor cells 

((Matthews et al., 2005). The precise function of Caskin1 in cone photoreceptor 

synapses	
   is not known at present. This experimental work has demonstrated that 

Caskin1 is absent in rod synapses , therefore, it could be possible that other proteins 

might be responsible to perform the same function in the rod photoreceptor synapses 

that is carried out by Caskin1 in non ribbon synapses and in the ribbon synapses of the 

cone photoreceptors. Caskin1 and Mint1 are expressed predominantly in brain (Tabuchi 

et al., 2002). Moreover, both of these proteins compete with each other to bind with the 

same CaM kinase domain of CASK protein. This could be explained because of the 
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presence of common peptide motifs in both Caskin1 and Mint1 proteins (Stafford et al., 

2011). In brain, CASK forms alternate stable complexes with Mint1/CASK/neurexin1 

and also with Caskin1/CASK/neurexin1 (Tabuchi et al., 2002). From these findings we 

can suppose that a similar function might take place in retinal synapses but it needs 

more evaluation. In short, this data suggested that Caskin1 appeared to be a component 

of synaptic cytoskeleton in conventional synapses and the cone ribbon synapses but not 

the rod ribbon synapses. Further experiments are needed to elucidate the precise role of 

Caskin1 in mammalian retina 

Caskin1 strongly interacts with CASK (Tabuchi et al., 2002). And, in humans 

association of CASK with X-linked mental retardation and microcephaly has been 

demonstrated (Hackett et al., 2010; Tarpey et al., 2009; Hsueh, 2009; Najm et al., 

2008). Moreover, other CASK interacting proteins neurexin1 and Mint1 are associated 

with autism and Alzheimer’s disease (Lisé and El-Husseini, 2006; Miller et al., 2006). 

A decline in the function of GABAergic synapses was noticed in the CASK knockout 

mice (Atasoy et al., 2007). Hence, it could be speculated that Caskin1 could also be 

associated in these pathological conditions but it is still not proven. However, future 

studies on Caskin1 knockout mouse might enlighten the role of Caskin1 in these 

pathologies.  

4.2. Characterization of Intersectin1 in mammalian retina:  

In the present study, I have identified that Intersectin1 is highly enriched in retina. 

Intersectin1 is an evolutionary conserved scaffold protein (O’Bryan et al., 2001). 

Intersectin1 consists of two Eps15 homology and five Src homology 3 domains 

(Yamabhai et al., 1998).	
  It is a multidomain protein and these domains are involved in 

different phases of membrane trafficking (Okamoto et al., 1999). At the presynaptic 

plasma membrane, vesicles are inserted by exocytosis while, endocytosis results in the 

regeneration and recycling of the vesicles (for review see, Bennet et al., 1994). In 

neurons, clathrin coat mediated endocytosis is very important for the recycling of the 

synaptic vesicles (Pucharcos et al., 2001). There are more than 20 different proteins 

which are involved in clathrin mediated endocytosis (Okamoto et al., 1999). 

Intersectin1 has been found to play an important role in clathrin mediated endocytosis 
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in humans (Guipponi et al., 1998; Pucharcos et al., 1999). Intersectin1 interacts with 

various endocytic proteins as well as with the proteins associated with exocytosis 

(Okamoto et al., 1999; Sengar et al., 1999; Yamabhai et al., 1998; Fernández-Chacón et 

al., 2000). Functional mutations in Intersectin1 is associated with defects in endocytosis 

(Marie et al, 2004; Koh et al., 2004; Yu et al., 2008) and impaired recruitment of 

endocytic proteins (Henne et al., 2010). The short isoform of Intersectin1 is present in 

glial cells and the long isoform is neuron specific (Okamoto et al., 1999). In my study, it 

is shown that Intersectin1 is diffusely distributed in the presynaptic terminals of 

photoreceptors and it has shown co-localization with the RIBEYE(B) immunosignals. 

Remarkably, one Intersectin1 antibody (Intersectin 229) showed labeling of synaptic 

ribbons. The labeling of Intersectin1 (Intersectin EH-HOM) was specific as it could be 

blocked by GST-Intersectin. An interaction between RIBEYE and Munc119 has already 

been demonstrated (Alpadi et al., 2008). Munc119 directly interacts with RIBEYE (B) 

as the NADH-binding domain of RIBEYE interacts with PrBP/δ homology domain of 

Munc119. Presence of Munc119 in the presynaptic terminals of OPL of retina has been 

documented (Alpadi et al., 2008). In my study, an interaction between Munc119 and a 

small part of Intersectin1 (Intersectin 227) has been observed by co-

immunoprecipitation.	
   Munc119 appears to be a peripheral protein component of 

synaptic ribbon (Alpadi et al., 2008) and is essential for the synaptic vesicle trafficking 

at the photoreceptor ribbon synapses (Higashide et al., 1998). Although, the physiologic 

importance of Munc119 has been well documented, it is not yet clear how Munc119 

works at the molecular level in the ribbon synapse. Therefore, more experiments are 

needed to address the possible functional significance of the presence of Intersectin1 in 

retina. Intersectin1, a membrane associated protein (Okamoto et al., 1998), strongly 

binds with SNAP25 (important member of Q-SNARE family) and Dynamin1 protein in 

brain. These proteins are involved in exocytosis and endocytosis respectively (Okamoto 

et al., 1998). It has been analyzed that SNAP25 and Dynamin1 are highly enriched in 

ribbon synapses in retina (Ullrich et al., 1994). A recent research has implicated that the 

multidomain scaffolding and adaptor protein Intersectin1 acts as a central regulator of 

synaptic vesicle cycling	
   (Pechstein et al., 2010). However, the question how does 

Intersectin1 interact with Dynamin1 and SNAP25 in retinal synapses is unknown at 

present. The tonically active ribbon synapse requires a fast membrane trafficking 
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machinery to keep the pace constant for a prolonged period. Future advances regarding 

the functional role of Intersectin1 in retina will help to produce a more detailed picture 

of synaptic transmission in the retinal synapses.	
  

Association of Intersectin1 with Down’s syndrome and neurodegenerative diseases such 

as Huntington’s disease, Alzheimer’s disease has been documented (Guipponi et al., 

1998; Scappini et al., 2007; Wong et al., 2012). Intersectin 1 gene is localized on 

human chromosome 21, which is considered to be the critical region for Down 

syndrome (Guipponi et al., 1998). It has been studied that there is an increased 

expression of ITSN1 gene in the individuals with Down syndrome as compared to the 

normal individuals (Pucharcos et al., 1999; Skrypkina et al., 2005). A clear relationship 

has been observed between the pathology of Down syndrome and abnormal endocytosis 

process (Keating et al., 2006). The neurons in Down syndrome patients are 

characterized by the presence of large sized early endosomes and also there is an 

increase in the total number of endosomes of various sizes (Cataldo et al., 2008). To 

explain the relationship between Intersectin1 and endocytic defects of Down syndrome, 

Yu et al., (2008) generated Intersectin1 null mice. It was found that in this mice model, 

not only the process of endocytosis was slowed down but there was an increase in the 

size of endosomes also. Moreover, the spatial regions of the brain contained decreased 

levels of nerve growth factor (Yu et al., 2008). This study suggested that Intersectin1 

participates in endocytosis and a disturbance in its expression could disrupt vesicle 

trafficking and endocytosis process in the brain (Yu et al., 2008). Considerably less is 

known about the precise role of Intersectin1 in retina. Further research in future would 

provide a better understanding regarding the importance of Intersectin1 in the 

pathophysiology of retinal diseases. 
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