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1 GENERAL PART 

1.1 INTRODUCTION 

1.1.1 3,4-Methylenedioxymethamphetamine 

3,4-Methylenedioxymethamphetamine (MDMA), commonly named as Ecstasy, is a 

ring-substituted amphetamine with structural similarities to methamphetamine and 

mescaline. As other amphetamines, MDMA is a chiral compound carrying an 

asymmetric carbon atom in the side chain. It was first synthesized in Germany by 

Merck in 19141,2 and, although patented as an appetite suppressant, never marketed 

as a therapeutic drug.3 Since 1985, MDMA is scheduled in the Controlled Drugs and 

Substances Act as a restricted drug in the United States and since 1986, in 

Germany. It has become popular in the beginning of the 1990s as a drug of abuse 

among young people, especially in the dance scene.4,5 After decreasing numbers of 

MDMA users in recent years, most likely due to its non-availability on the illicit drug 

market, the Substance Abuse and Mental Health Services Administration has 

reported on increasing MDMA consumption in the United States again since 2010.6 

Usually it is consumed recreationally on weekends (1 to 2 pills of 75 to 120 mg every 

1 to 4 weeks) in form of tablets or pills.7 Preparations available on the illicit drug 

market usually contain the 1:1 racemate of R- and S-enantiomers. 

 

1.1.2 Pharmacology and Toxicology 

Similar to amphetamine or methamphetamine, MDMA acts in the central nervous 

system (CNS) as a stimulant through indirect release of monoamine 

neurotransmitters from presynaptic nerve terminals into the synaptic cleft where 

postsynaptic receptors can be stimulated.3,7 Mainly serotonergic (5-HT), 

noradrenergic (NA), and with a smaller effect dopaminergic (DA) neurotransmission 

is enhanced.  

The distinctive effects are described as an altered state of consciousness, euphoria, 

energy and a desire to socialize.3,8 However, MDMA also can induce severe acute 
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toxic symptoms, such as tachycardia, hypertension, hyperthermia, and 

hepatotoxicity. Severe and even fatal intoxications were described.3  

Concerning chronic toxicity, preclinical animal data suggest that MDMA causes 

irreversible damage to serotonergic nerve terminals in the CNS.3,9-11 In humans, 

chronic MDMA toxicity is still controversially discussed, as some recent publications 

suggest that animal doses may be too high compared to human 

pharmacokinetics.12,13 Other studies with recreational MDMA users, found decreased 

levels of 5-hydroxyindoleacetic acid, the main metabolite of 5-HT in the cerebrospinal 

fluid14 and a reduced density of serotonin transporters in the brain as determined by 

positron emission computed tomography with a ligand selective for these 

transporters.15 Unfortunately, these studies were performed with recreational users, 

so it cannot be excluded that the indicated neurotoxicity might also be due to use of 

other recreational drugs especially since polydrug use is not uncommon. Admittedly, 

direct MDMA injection into rat brain failed to reproduce neurotoxic effects seen after 

systemic administration.16 Furthermore, alteration of cytochrome P450 (CYP)-

mediated MDMA metabolism influenced MDMA-induced neurotoxicity.16,17 Therefore, 

MDMA metabolism may be an important contributor to neurotoxicity.18-21 Metabolites 

such as 3,4-dihydroxymethamphetamine (DHMA) can easily be oxidized to their 

corresponding quinones which can form adducts with glutathione and other thiol-

containing compounds.18-20 Recently, such adducts have been implicated in MDMA 

neurotoxicity.22,23 

For the two enantiomers, different pharmacological properties were observed.3 While 

S-MDMA is generally more potent and responsible for the described psychostimulant 

and empathic effects, the R-isomer exhibits more hallucinogenic-type properties.10 R- 

and S-MDMA also differ in their dose-response curves for changes in serotonergic 

function and neurotoxicity and their in vivo kinetics are known to be different.3,8,24-27 

 

1.1.3 Metabolism 

In vivo and in vitro MDMA studies revealed two main metabolic pathways as shown 

in Figure 1. The predominant pathway in humans involves multiple CYP enzyme-

catalyzed O-demethylenation of MDMA to DHMA, followed by catechol-O-

methyltransferase (COMT)-catalyzed O-methylation, primarily to 4-hydroxy-3-

methoxymethamphetamine (HMMA). DHMA and HMMA also may be conjugated by 
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uridine diphosphate glucuronyltransferases (UGT) to DHMA 3-glucuronide, DHMA 4-

glucuronide, and HMMA glucuronide, or by sulfotransferases (SULT) to DHMA 3-

sulfate, DHMA 4-sulfate, and HMMA sulfate. A minor pathway includes 

demethylation to 3,4-methylendioxyamphetamine (MDA) followed by 

demethylenation to 3,4-dihydroxyamphetamine (DHA), O-methylation to 4-hydroxy-3-

methoxyamphetamine (HMA), and respective conjugation.10,28-30 The catechols 

DHMA and DHA, formed via metabolic demethylenation of MDMA, are suspected to 

be oxidized to their corresponding ortho-quinones which in turn can form adducts 

with glutathione and other thiol-containing compounds.19,31  

 

 
 
Fig. 1 Metabolic pathways of MDMA in humans 

 

Different pharmacokinetic properties have been observed for the two MDMA 

enantiomers. The S-enantiomer is eliminated from plasma at a higher rate than the 

R-enantiomer3,8,24-27 most likely explained by stereoselective metabolism. In vitro 

experiments concerning CYP-N-demethylation, CYP-O-demethylenation, and COMT-
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methylation of DHMA to HMMA indeed revealed metabolic preferences for the S-

enantiomers.32,33 
 

1.1.4 Phase II Metabolizing Enzymes 

Numerous enzymes are capable to metabolize xenobiotics, usually resulting in 

decreased toxicity and increased hydrophilicity compared to the parent compounds, 

which promotes their excretion. Generally, these biotransformations can be divided in 

two steps: phase I and phase II metabolism. Phase I metabolism is referred to as 

functionalization which mainly involves oxidation, reduction, or hydrolysis. Phase II 

type reactions are conjugative reactions, catalyzing among others, the transfer of 

hydrophilic residues such as glucuronic acid or activated sulfate. However, 

conjugation is not necessarily a secondary phase reaction as many endogenous 

compounds or xenobiotics can be directly glucuronidated or sulfated.  

 

1.1.4.1 UDP-Glucuronyltransferase (UGT) 

UGTs represent a superfamily of endoplasmic reticulum membrane-bound enzymes, 

postulated to reside on the luminal surface. Based on primary amino acid identity, 

they are divided into two families, UGT1 and UGT2. At present, 15 different 

isoenzymes are known in humans: UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, 

UGT1A7, UGT1A8, UGT1A9, and UGT1A10 and UGT2B4, UGT2B7, UGT2B10, 

UGT2B11, UGT2B15, and UGT2B17,34-36 whereas UGT1A1, 1A3, 1A4, 1A6, 1A9, 

2B7, and 2B15 are considered to be of greatest importance in hepatic drug 

elimination.36 Although the liver is recognized as the major site of glucuronidation, 

numerous organs, e.g. small intestine, lung, kidney, brain, etc. significantly contribute 

to the overall glucuronidation capacity.  

 

 

 

- 4 -



 

 
 

Fig. 2 Schematic of the glucuronidation reaction 

 

UGTs catalyze the transfer of glucuronic acid from the co-substrate uridine 5’-

diphosphoglucuronic acid (UDPGA) to a multitude of functional groups as shown 

schematically in Figure 2. The underlying mechanism is a SN2 reaction where the 

configuration of the glucuronic acid changes from α- to β-anomer. Virtually all classes 

of drugs are substrates for UGTs, hence about 35% of phase II drug metabolism are 

estimated to underlie this pathway.37 Although, glucuronidation generally results in 

the formation of water-soluble, inactive metabolites, it is known that also active and 

reactive glucuronides exist. For example, morphine 6-O-glucuronide shows greater 

pharmacologic activity than its parent compound morphine35 and glucuronides of 

carboxylic acids exhibit electrophilic reactivity associated with cytotoxic, carcinogenic, 

and idiosyncratic hypersensitivity reactions.35 

A number of polymorphisms have been described for different UGT isoenzymes and 

significant pharmacological impact have been demonstrated.37 However, the clinical 

outcome of many polymorphisms is still controversial and additional studies are 

needed to promote the understanding of interindividual variations in the 

glucuronidation pathway.  

 

1.1.4.2 Sulfotransferase (SULT) 

In the mammalian organism, SULTs occur membrane-bound or soluble in cytosol. 

Membrane SULTs, localized in the Golgi apparatus, are responsible for the sulfation 

of endogenous structures, such as carbohydrates and proteins. Only cytosolic SULTs 

play a role in xenobiotic metabolism, as well as in the biotransformation of thyroid 

hormones, steroids, and neurotransmitters. Considerable numbers of cytosolic 

SULTs have been characterized and divided into several gene families based on 

similarity of their amino acid sequences.38,39 Out of 13 human SULTs currently 
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known, the major isoforms responsible for human xenobiotic metabolism are 

SULT1A1, SULT1A3, SULT1B1, SULT1E1, and SULT2A1.40 The widest tissue 

distribution was shown for the SULT1A subfamily, with SULT1A1 as the major 

isoform present in human liver, but also in the gastrointestinal tract, brain and 

placenta.39,40 SULT1A3 is known to be only scarcely expressed in human liver, 

however highly expressed in the small intestine, brain and fetal liver.39,40 

SULTs catalyze the transfer of a sulfonate group from 3’-phosphoadenosine-5’-

phosphosulfate (PAPS) to nucleophilic sites of their substrates. Sulfation is a high 

affinity and low capacity phase II reaction, with overlapping substrates spectra for 

glucuronidation. Sulfation predominates at low substrate concentrations and 

glucuronidation at high substrate concentrations, when sulfation is saturated.39 The 

limiting factor for sulfation is the availability of PAPS. Although it can be rapidly 

synthesized, it depends on the hepatic sulfate concentrations, which are largely 

dependent on equilibrium with circulating inorganic sulfate.39 
 

 
 
Fig. 3 Schematic of the sulfation reaction 

 

Generally, sulfation is a detoxification process, however, labile and chemically 

reactive intermediates are sometimes formed, which can undergo DNA binding, 

leading to mutagenicity and carcinogenicity. Some sulfate esters including minoxidil, 

triamterene and morphine were reported to be more pharmacologically active than 

the corresponding parent drugs.41 At least some endogenous sulfate conjugates 

seem to play a role in the CNS. For example, dopamine 4-sulfate demonstrated 

vasopressor activity in the peripheral and central nervous system, whereas dopamine 

3-sulfate acted as a central depressor.41 Several xenobiotics, among them dietary 

and environmental chemicals, therapeutic drugs, etc. were shown to inhibit one or 

more SULT isoenzymes and may cause adverse effects on human health.41 
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1.1.5 Synthesis of Phase II Metabolites 

Reference standards of metabolites are needed for in vitro and in vivo kinetic studies. 

However, the number of commercially available glucuronide or sulfate standards is 

limited, hence it usually requires their synthesis prior to kinetic studies. 
 

1.1.5.1  Glucuronides 

Synthesis of glucuronides can be achieved either by chemical42,43 or enzymatic 

methods.44 Chemical synthesis requires multiple steps, most commonly via acyl-

protected intermediates. Hydrolytic stability of the aglycones is therefore a 

prerequisite necessary for the removal of protecting groups. α-Anomers and other 

byproducts in addition to the desired β-anomer can occur leading to more 

complicated purifications and low yields. In the case of aglycones that contain 

several possible glucuronidation sites, without further protecting groups mono- and 

polyglucuronides can be formed.42,43,45 Shima et al.46 previously synthesized HMMA 

O-glucuronide by chemical synthesis achieving yields of 6%, which seems rather low. 

Enzyme-assisted synthesis represents a suitable alternative to chemical synthesis, 

especially when milligram scale yields are sufficient. Isolated purified UGT enzymes 

or liver microsomes might be applied as convenient catalysts for glucuronidation. 

However, liver microsomes of different species (rat, mouse, dog, monkey, human) 

seems most appropriate due to easy preparation and handling. Use of enzymes does 

not require multiple steps and results in the formation of the natural configuration. 

Mainly mono-glucuronides and even regio- and stereoselective glucuronides are 

obtained.45 Yields with up to 100% depending on the aglycone and the microsomal 

source used could be reached.44,45 Therefore, an enzyme-assisted synthesis was 

chosen to produce milligram amounts of the diastereomeric HMMA glucuronides as 

described in detail under 2.1. 
 

1.1.5.2 Sulfates 

Synthesis of sulfate conjugates is usually performed with chemical methods. Only 

few data using enzymatic synthesis are available.47-49 Although enzymatic sulfate 

synthesis bears the advantages of regio- and stereoselective conjugation, there are 

some major drawbacks limiting its usefulness. The main issue is the need for the co-

substrate. PAPS is rather expensive and unstable. The formed product 3’-
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phosphoadenosine 5’-phosphate (PAP) leads to product inhibition.49 Incubations with 

subcellular fractions and the addition of PAPS therefore provide only low sulfation 

capacities. Uutela et al used rat liver S9 fractions with the addition of PAPS for 

regioselective sulfation of 5-HT, 5-HIAA, DOPAC, and HVA. However, the yields 

were less than 3 mg (less than 10%) and hence too low for NMR confirmation of the 

sulfation side.47 Chemical synthesis seems to be the method of choice for sulfate 

synthesis of xenobiotics.47,48 Different strategies have been described, e.g. use of 

sulfuric acid47,48 or sulfur trioxide-amine complexes.46,48 As H2SO4 is not amenable to 

sulfation for many sensitive scaffolds considering the strong acidity of sulfuric acid, 

SO3 adducts with amine containing molecules link pyridine, trimethylamine, 

triethylamine, or DMF provide the most straightforward method.48 Usually, yields with 

up to 90% could be achieved. Sulfates of DHMA and HMMA were synthesized using 

a pyridine SO3 complex as described in detail under 2.2.  
 

1.1.6 (Enantioselective) In vitro Enzyme Kinetic Studies 

The characterization of humane enzymes involved in the metabolism of specific 

drugs and the determination of their enzyme kinetic parameters, such as KM and Vmax 

is an important aspect in toxicological risk assessment. They can be used as 

potential determinants of interindividual variability in pharmacokinetics, e.g. drug-drug 

interactions or genetic polymorphisms. KM and Vmax values represent descriptors of 

the enzyme kinetic behavior of a respective biotransformation reaction. Assuming 

simple kinetic systems, Vmax is the maximum enzyme velocity at an infinite substrate 

concentration and in general represents the capacity of an enzymatic reaction. The 

KM value is defined as the substrate concentration that will yield a reaction velocity 

that is half of Vmax and reflects the substrate affinity to a certain enzyme. The overall 

effectiveness of a respective reaction is usually described by the Vmax/KM ratio and 

should increase the higher this ratio is. This fact sounds reasonable, as the catalytic 

efficiency value is getting higher with increasing affinity (low KM) and increasing 

velocity (high Vmax). Concerning differences in metabolic clearance of R- or S-

stereoisomers, enantioselectivity can also be evaluated via the Vmax/KM values and 

marked enantioselectivity was previously defined as Vmax/KM(S-stereoisomer)/Vmax/KM(R-

stereomer) > 1.5 or < 0.67).32 
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1.1.6.1 Product formation approach 

Conventional determinations of enzyme kinetic parameters are made by assessing 

the rate of product (metabolite) formation at several substrate concentrations. 

Therefore, methods are required for measurement of metabolite concentrations in in 

vitro matrices. Such analytical methods themselves require that metabolites have 

been definitely identified, suitable chromatographic separation has been established 

and authentic standards prepared.50 The simplest model to describe enzymatic 

biotransformation and hence to calculate KM and Vmax is fitting the initial rate velocities 

at various substrate concentrations to the Michaelis Menten equation (eq. 1).  

 

][
][max

SK
SVV

m +
×

=
 

 

A prerequisite are “initial” rate conditions, meaning protein concentrations and 

incubation time should be within the linear range of metabolite formation, and in total 

less than 20% of substrate should be consumed.  
 

1.1.6.2 Substrate depletion approach 

An alternative to the measurement of product formation is the determination of 

substrate depletion, which was successfully used for CYP reactions in both, human 

liver microsomes (HLM) and recombinant enzymes.50,51 Substrate consumption over 

time can be used to calculate initial substrate depletion rates (kdep) at various 

substrate concentrations. In theory, when substrate concentrations are well below 

KM, the depletion should follow first-order decay kinetics.52 As the substrate 

concentration is elevated through the KM value, the measured values for kdep should 

decline and become more zero-order in character. The infliction point of this 

relationship represents the KM value and should occur at a substrate concentration 

that yields a kdep value that is half of the theoretical maximum kdep at an infinitesimally 

low-substrate concentration (kdep([S]=0)).50 Plotting of kdep values versus substrate 

concentrations allows calculation of KM according to equation 2.50 
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The theoretical validity of this approach has been confirmed by Nath and Atkins,53 

who showed on a simulated data set that equation 2 can be derived from the 

Michaelis-Menten equation (eq. 1) and, as such, the kinetic parameters obtained 

should be comparable with those obtained by the traditional product-formation 

approach. The major advantage of the substrate-depletion approach is that reference 

standards of metabolites are not required. For some analytes, when 

(enantioselective) chromatographic separation of metabolites could not be 

accomplished sufficiently, (chiral) measurement of substrate consumption might be a 

versatile alternative to the conventional product formation. However, the substrate 

depletion approach possesses some practical limitations.50 Substrates exhibiting low-

intrinsic clearance will be difficult to examine, since measurement of substrate 

depletion requires a substantial consumption of the initial substrate concentration 

during the incubation period. Furthermore, enzyme kinetics of formation of individual 

metabolites cannot be determined, as the KM and Vmax values would only represent 

the sum of kinetic parameters for all single metabolic pathways.  
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1.2 AIMS AND SCOPES 

Phase II metabolism represents an important detoxification process.34,35,38 

Investigation of glucuronidation and sulfation as a secondary metabolic step is 

especially important concerning the detoxification of reactive phase I metabolites. 

Such metabolites are known to be formed in humans after ingestion of MDMA, 

mainly through demethylenation to the catecholic metabolite DHMA and are 

suspected to contribute to MDMA’s neurotoxic effects.18,19,19,20,54 The qualitative and 

quantitative phase I metabolism of MDMA was studied extensively in vitro and in 

vivo.10,28-30,32,33,55 Several pharmacokinetic studies in blood and urine following 

controlled MDMA administration to humans were performed, but DHMA, HMMA, 

and/or HMA urinary pharmacokinetic data were only obtained after conjugate 

cleavage. Only Shima et al. determined intact HMMA conjugates in 25 random urine 

samples and found that more than 70% of HMMA was eliminated as glucuronide or 

sulfate.30 However, neither systematic in vivo nor in vitro kinetic studies were 

available concerning glucuronidation and sulfation of MDMA’s phase I metabolites.  

Furthermore, different pharmacological and pharmacokinetic properties were 

observed for the two enantiomers of MDMA3,8,24-26 and enantiomeric preferences in 

the phase I metabolism were observed in vitro32,33 and in vivo.27 Elucidation whether 

the phase II metabolism also contributes to this phenomenon is important from the 

toxicological and pharmacological point of view. 

Besides this, MDMA is known to be a potent mechanism-based inhibitor of 

CYP2D656 which is also assumed to influence MDMA-induced neurotoxicity.16,17 

DHMA was also shown to inhibit its own metabolism as well as the methylation of 

dopamine.33 The inhibition potential of MDMA and/or its metabolites on other 

metabolic enzymes, such as UGTs or SULTs, is still unknown.  
 

- 11 -



 

Therefore, the aims of the presented studies were: 

 

- (Bio)Synthesis of MDMA’s main phase II metabolites as reference standards for 

quantitative in vitro and in vivo kinetic studies 

 

- Investigation of stereoselective enzyme kinetic data in vitro for HMMA 

glucuronidation in HLM and recombinant UGTs, and DHMA and HMMA sulfation 

in human liver cytosol (HLC) and recombinant SULT 

 

- Determination of the inhibition potential of MDMA, DHMA, and HMMA on SULT 

 

- Development and full validation of gas chromatography-mass spectrometry (GC- 

MS) and liquid chromatography-mass spectrometry (LC-MS) methods allowing 

the stereoselective analysis of MDMA, its phase I and phase II metabolites in 

human urine 

 

- Evaluation of MDMA’s phase II metabolites elimination kinetics in human urine 

following controlled oral MDMA administration 

 

- Determination of stereoselective elimination kinetics of MDMA and its phase I and 

II metabolites in human urine following controlled oral MDMA administration 
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2 PUBLICATIONS OF THE RESULTS 

The results of the studies were published in the following papers: 
 

2.1 THE ROLE OF HUMAN UGT-GLUCURONYLTRANSFERASES ON THE 

FORMATION OF THE METHYLENEDIOXYMETHAMPHETAMINE (ECSTASY) 
PHASE II METABOLITES R- AND S-3-METHOXYMETHAMPHETAMINE 4-O-
GLUCURONIDES57 (DOI: 10.1124/DMD.109.029215) 
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2.2 SULFATION OF THE 3,4-METHYLENEDIOXYMETHAMPHETAMINE (MDMA) 
METABOLITES 3,4-DIHYDROXYMETHAMPHETAMINE (DHMA) AND 4-
HYDROXY-3-METHOXYMETHAMPHETAMINE (HMMA) AND THEIR 

CAPABILITY TO INHIBIT HUMAN SULFOTRANSFERASES58 
(DOI: 10.1016/JTOXLET.2011.01.026) 
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2.3 INVESTIGATION ON THE ENANTIOSELECTIVITY OF THE SULFATION OF THE 

METHYLENEDIOXYMETHAMPHETAMINE (MDMA) METABOLITES 3,4-
DIHYDROXYMETHAMPHETAMINE (DHMA) AND 4-HYDROXY-3-
METHOXYMETHAMPHETAMINE (HMMA) USING THE SUBSTRATE 

DEPLETION APPROACH59 (DOI: 10.1124/DMD.111.041129) 
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2.4 DEVELOPMENT AND VALIDATION OF LC-HRMS AND GC-NICI-MS 

METHODS FOR STEREOSELECTIVE DETERMINATION OF MDMA AND ITS 

PHASE I AND II METABOLITES IN HUMAN URINE60 
(DOI: 10.1002/JMS.1929) 

- 19 -



 

 



 

2.5 HUMAN MDMA AND PHASE I AND PHASE II METABOLITE URINARY 
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3 CONCLUSIONS 

The studies presented here provided systematic data on the in vitro glucuronidation 

and sulfation kinetics of the designer drug 3,4-methylenedioxymethamphetamine, 

(MDMA, Ecstasy). These data suggested, that sulfation was the predominant 

conjugation step with regioselective sulfation of the catecholic metabolite DHMA in 

position 3.57,58 Inhibition studies performed with MDMA, DHMA, and HMMA towards 

typical sulfation reactions clearly indicated a mixed-type or competitive inhibition of 

dopamine sulfation by DHMA and HMMA, respectively, with IC50 values likely to 

cause significant inhibition in vivo after recreational MDMA doses.63 In the author’s 

opinion, a part of the described neurotoxicity of MDMA3,9-11 could be explained by 

inhibition of the dopamine sulfation in the CNS. As MDMA and related drugs are able 

to increase the concentration of dopamine and other neurotransmitters in the CNS64 

and as they additionally could inhibit the inactivation of these compounds,33 the 

described dopamine induced neurotoxicity might be enhanced.65  

Additionally, evaluation with respect to a possible enantioselective phase II 

metabolism was performed. It could be shown, that HMMA glucuronidation by 

UGT1A9 was markedly stereoselective with preferences for the formation of the S-

diastereomer whereas its glucuronidation by UGT2B7 favored the R-isomer. 

UGT2B15 and UBT2B17 revealed only slight preferences for S-HMMA. In human 

liver microsomes, which contain a physiological mixture of all liver UGT isoenzymes, 

and should therefore reflect the in vivo situation, slight preferences for S-HMMA were 

observed. Sulfation of HMMA was mainly catalyzed by SULT1A3 and to a minor 

extent by SULT1E1. Neither for SULT1A3 nor in human liver cytosol enantiomeric 

preferences could be observed. On the other hand, the efficiency for S-DHMA 3-

sulfate formation was twice as high as for its R-enantiomer, both in SULT1A3 and 

human liver cytosol. One reason for this difference in enantioselectivity might be the 

position for sulfation. DHMA was mainly sulfated in position 3, whereas HMMA could 

only be sulfated in position 4.  

To further obtain systematic in vivo data on MDMA’s phase II metabolism and its 

enantioselectivity, liquid chromatography-high resolution mass spectrometry (LC-

HRMS) and gas chromatography-negative ion chemical ionization- mass 

spectrometry (GC-NICI-MS) methods were successfully developed and validated.60 

These methods were shown to be applicable for the analysis of urine samples of 10 
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human subjects collected for up to 7 days following controlled oral placebo, low, and 

high dose MDMA administration.61,62 Human MDMA urinary metabolites are primarily 

sulfate and glucuronide conjugates, with sulfates present in higher concentrations 

than glucuronides. HMMA sulfate was shown to be the major urinary metabolite 

providing the longest detection time for MDMA consumption with up to 168 h. All 

metabolites exhibited changes in enantiomeric disposition over time. MDMA, DHMA, 

and HMMA sulfate revealed preferences for the R-stereoisomers, all other 

metabolites showed conversely more S-isomer within the first 24 h after ingestion. 

Generally, initial stereoisomer preferences mimicked those observed in previous in 

vitro experiments.32,33,57,59 In the later excretion phase (after 24 h), R/S ratios were >1 

for all compounds. This is quite remarkable, as the enantiomeric ratios of at least one 

metabolite should be reversed from that of MDMA. However, it must be considered 

that urinary analysis reflects not only metabolite formation, but also distribution and 

elimination processes. Metabolism is represented mainly within the first 12 to 24 h, 

whereas later on, elimination is more relevant. One explanation for the observed 

time-dependency could be substrate availability. With increasing time, the amount of 

R- relative to S-enantiomers could increase, leading to increased metabolism of R-

enantiomers, although affinity for S-enantiomers is higher. However, this only applies 

for analytes with initial preferences for S-enantiomers. On the other hand, distribution 

processes, including transport protein availability, could play a major role in 

enantioselective disposition and metabolite excretion. Changes in the R/S ratios over 

time could be used for estimation of ingestion time and to distinguish between recent 

(within 24 h) or earlier ingestion MDMA consumption. R/S cut-offs ≥ 2 for MDMA, 

HMMA sulfate, and HMMA glucuronide, and ≥ 1 for MDA, HMMA, and DHMA sulfate 

correctly predicted time of ingestion in more than 87% of all samples. However, so 

far these calculations were only performed after administration of a single MDMA 

dose. Recreational users might ingest repeated MDMA doses which would require 

further studies to show the applicability of such an estimation model after multiple 

doses.  
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4 SUMMARY 

In the presented studies, the phase II metabolism of MDMA was investigated in vitro 

and in vivo. Furthermore, evaluation with respect to a possible stereoselective phase 

I and II metabolism was performed. The in vitro data indicated that sulfation is the 

major conjugation step with regioselective preferences for position 3 of DHMA. Both 

MDMA phase I metabolites, DHMA and HMMA, showed inhibition potential towards 

dopamine sulfation with IC50 values likely to be reached after recreational MDMA 

doses. Inhibition of dopamine degradation occurring in the central nervous system 

could be another reason for the drug-induced irreversible damage to central nerve 

terminals associated with MDMA consumption. Enantioselectivity was observed for 

DHMA sulfation and HMMA glucuronidation, but not for HMMA sulfation. In vivo 

urinary data obtained from 10 participants following controlled placebo, low and high 

dose MDMA administration supported the results from the in vitro experiments. 

HMMA sulfate was shown to be the major urinary metabolite providing the longest 

detection time for MDMA consumption. Enantiomeric ratios of all metabolites showed 

steady increases of R-isomers as a function of ingestion time allowing distinguishing 

between recent or earlier MDMA ingestion.  
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6 ABBREVIATIONS 

MDMA 3,4-methylenedioxymethamphetamine 

NA noradrenaline 

5-HT serotonin 

DA dopamine 

CNS central nervous system 

CYP Cytochrome P450 

DHMA 3,4-dihydroxymethamphetamine 

COMT catechol-O-methyltransferase 

HMMA 4-hydroxy-3-methoxymethamphetamine 

UGT uridine diphosphate glucuronyltransferase 

SULT sulfotransferase 

MDA 3,4-methylenedioxyamphetamine 

DHA 3,4-dihydroxyamphetamine 

HMA 4-hydroxy-3-methoxyamphetamine 

UDPGA uridine 5’-diphosphoglucuronic acid 

PAPS 3’-phosphoadenosine-5’-phosphosulfate 

PAP 3’-phosphoadenosine-5’-phosphate 

HLM human liver microsomes 

HLC human liver cytosol 

GC gas chromatography 

MS mass spectrometry 

LC liquid chromatography 
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7 ZUSAMMENFASSUNG 

Im Rahmen dieser Dissertation wurde der Phase II Metabolismus von MDMA in vitro 

und in vivo untersucht. Darüber hinaus wurden die Daten auf einen möglichen 

stereoselektiven Phase I und II Metabolismus hin ausgewertet. Die in vitro 

Experimente haben gezeigt, dass die Sulfatierung die Hauptkonjugationsreaktionen 

darstellt, wobei für DHMA eine Regioselektivität für die 3 Position beobachtet wurde. 

Es wurde ebenfalls gezeigt, dass DHMA und HMMA die Sulfatierung von Dopamin 

hemmen können, mit IC50- Werten wie sie nach üblichem Gebrauch von MDMA 

erwartet werden. Diese Inhibition könnte, wenn sie im Zentralnervensystem auftritt, 

eine weitere Ursache für die MDMA-induzierte irreversible Schädigung von Neuronen 

sein. Die Sulfatierung von DHMA und die Glucuronidierung von HMMA, nicht aber 

die HMMA Sulfatierung waren enantioselektiv. Die Ergebnisse der in vitro-

Experimente wurden bestätigt durch in vivo Daten von 10 Teilnehmern, die im 

Rahmen einer kontrollierten MDMA-Studie jeweils ein Placebo, eine Niedrig- oder 

eine Hochdosis erhalten haben. HMMA-Sulfat war in vivo der Hauptmetabolit, der die 

längste Nachweisbarkeit einer MDMA Einnahme ermöglicht. Die 

Enantiomerenverhältnisse aller untersuchter Verbindungen zeigten eine stetige 

Zunahme der R-Enantiomere über die Zeit, was es erlaubt zwischen einem rezenten 

und einem länger zurückliegenden MDMA Konsum zu unterscheiden.  
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