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LIST OF ABBREVIATIONS 
 
AD Alzheimer’s Disease 
Aβ Amyloid beta 
ADMA Asymmetric dimethylargenin 
ApoE Apolipoprotein E 
APP Amyloid precursor protein 
APS Ammonium persulfate 
ATP Adenosine-5-triphosphate  
BACE Beta secretase 
BHMS Betaine homocysteine methyl transferase 
BBB Blood brain barrier 
BCA Bicinchoninic acid 
BSA Bovine serum albumin 
CAA Cerebral amyloid angiopathy 
CAMCOG Cognitive and self-contained part of the Cambridge Examination for 

Mental Disorders of the Elderly 
CAMDEX Cambridge Examination for Mental Disorders of the Elderly 
Cbl Cobalamin 
CβS Cystathionine beta synthase 
CERAD Consortium to Establish a Registry for Alzheimer’s disease 
CHF Cardiac heart failure 
CI Confidence intervals 
CIND Cognitive impairment non demented 
CNS Central nervous system 
CSF Cerebrospinal fluid 
CV Cofficient of variation 
CVD Cerebrovascular disorder 
CVLT California Verbal Learning Test 
Cys Cystathionine 
DMG Dimethylglycine 
DSM Diagnostic and Statistical Manual of Mental Disorders 
DRIs Dietary reference intake 
DS Down Syndrome 
DTT Dithiothreitol 
DZA 3-Deazaadenosine 
EDTA Ethylenediaminetetra acetic acid 
FAD Flavin adenine dinucleotide 
FAD Familial Alzheimer’s disease 
FBS Fetal bovine serum 
GCMS Gas Chromatography Mass Spectrometry 
GFR Glomerular filtration rate 
GSK Glycogen synthase kinase 
hICH Hypertensive intracerebral hemorrhage 
HDL High density lipid 
Hcy Homocysteine 
HHcy Hyperhomocysteinemia 
HMG CoA Hydroxymethylglutaryl CoA 
HPLC High Performance Liquid Chromatography 
ICD-10 International Statistical Classification of Diseases and Related 

Health Problems 10th Revision 
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IF Intrinsic factor 
IgG Immunglobulin G 
KD Kilo dalton 
LC MS/MS Liquid Chromatography Tandem Mass Spectrometry 
LDL Low density lipid 
MAC Membrane attack complex 
Mattis DRS Mattis Dementia Rating Scale 
MAP Microtubule associated protein 
MAPK Mitogen activated protein kinases 
MCI Mild cognitive impairment 
MMA Methylmalonic acid 
MMSE Mini-Mental State Examination 
MRI Magnetic resonance imaging 
MS Multiple sclerosis 
MS Methionine synthase 
MTHF Methylenetetrahydrofolate 
NAC N-acetyl-L-cystein 
NINCDS-ADRDA National Institute of Neurological and Communication Disorders 

and Stroke/Alzheimer’s Disease and Related Disorders Association 
NFTs Neurofibriallary tangles 
NMDA N-methyl-D-aspartate 
NO Nitrogen species 
OR Odds ratio 
P value Probability 
PARP Poly ADP-ribose receptor 
PD Parkinson’s Disease 
PHF Paired helical filament 
PMLT Post methionine loading test 
PP2A Protein phosphatase-2A 
PS Presenilin 
PVDF Polyvinylidinefluoride 
ROS Reactive oxygen species 
SAH S-adenosylhomocysteine 
SAM S-adenosylmethionine 
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SHM Serine hydroxylmethyltransferase 
SIDAM Structured Interview for Diagnosis of Dementia of Alzheimer type, 

Multi-Infarct Dementia, and Dementia of other Etiology according 
to ICD-10 

SPE Solid phase extraction 
TBS Tris buffered saline 
TEMED Tetramethylethylendiamin 
tHcy Total homocysteine 
TNF Tumor necrosis factor 
TG Triglyceride 
THF Tetrahydrofolate 
TC Transcobalamin 
UPDRS Unified Parkinson’s Disease Rating Scale 
VaD Vascular dementia 
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SUMMARY 
 
Background: Hyperhomocysteinemia (HHcy) is a risk factor for neurodegenerative and 

psychiatric disorders, but causal relationship remains elusive. Vitamin B12 and folate play an 

important role in homocysteine (Hcy) metabolism. Although several studies have provided 

evidence for a significant inverse correlation between plasma total Hcy (tHcy) concentrations 

and plasma folate and vitamin B12 concentrations, the impact of B vitamins treatment on the 

cognitive performance remains controversial. The pathological hallmarks of Alzheimer’s 

disease (AD) consist of amyloid plaques and neurofibrillary tangles in affected brain areas. 

Amyloid beta (Aβ) is formed from the amyloid precursor protein (APP) by a consequent 

splitting by means of β- and γ-secretases. Results from different studies suggest that alteration 

of the Hcy metabolism is related to increased accumulation of Aβ and may contribute to the 

amyloid pathology in normal aging and in AD. Our study aimed at investigating the 

relationship between markers of methylation and that of neurodegeneration and at 

investigating the effect of B vitamins treatment on cognitive performance in elderly subjects. 

In addition, we aimed at testing whether the methyl group metabolism affects APP level 

and/or its processing through the amyloidgenic pathway.  

Materials and methods: The first part of this study included 182 patients with different 

neurological disorders. Concentration of Aβ (1-42) was measured in cerebrospinal fluid (CSF) 

samples. The second part was a double blind placebo controlled study on 69 patients who 

were randomly allocated to receive a vitamin or a placebo. Cognitive function was 

investigated by using the Mini-Mental State Examination test (MMSE) and the Structured 

Interview for Diagnosis of Dementia of Alzheimer Type, Multi-infarct Dementia and 

Dementia of other ethiology according to ICD-10 (SIDAM) test. Concentrations of S-

adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM) were measured using Liquid 

Chromatography Tandem Mass Spectrometry (LC-MS/MS).  

The third part of the study is addressed to Down syndrome fibroblasts used as a culture model 

with enhanced risk for neurodegeneration. Cells were cultured either in a vitamin-rich or in a 

vitamin-free medium. Cells were treated with different concentrations of Hcy, SAH, SAM, 

lovastatin, and 3–deazaadenosine (DZA) and the expression of APP and its subunit (C99) 

were tested by westernblotting in the presence or absence of β- and γ-secretase inhibitors.  

Results: The first study showed that aging was associated with higher concentrations of tHcy 

and SAH in the CSF, in addition to lower concentrations of CSF-folate and SAM/SAH ratio. 

No significant association between Aβ (1-42) concentration and quartiles of SAM, SAH, and 

folate was found in the total study subjects.  
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The second study showed that, at base line, higher methylmalonic acid (MMA) concentrations 

were associated with lower scores of intellectual abilities and higher SAM concentrations 

were associated with higher orientation scores. Both of the treatment arms showed 

improvement in total SIDAM scores at the end of the therapy.  

The third study showed that while treating with SAM caused decreased APP expression, SAH 

caused increased APP expression and decreased C99 expression in vitamin free conditions. 

Hcy in a vitamin-free medium caused increased C99 protein expression. Inhibitors of β- and 

γ-secretases reversed the effect of SAH and that of SAM on protein expression of APP and 

C99 and the effect of Hcy on C99 protein.  Lovastatin inhibited APP expression especially in 

a vitamin-rich medium and DZA reduced APP only in cells grown in a vitamin-rich medium.  

Disscusion: Our first study has shown that concentrations of folate decreased and that of tHcy 

increased in CSF with age. Therefore, elevation of tHcy in the blood may indicate its 

elevation in the brain where tHcy can have many neurotoxic effects. Concentrations of Aβ (1-

42) are lower in CSF from patients with dementia when compared to non-demented patients. 

The accumulation of Aβ is a long term process that is thought to start at a young age. We 

found no association between Aβ (1-42) and methylation markers, vitamins, or tHcy in the 

total group or in patients with dementia.  

A relationship between the status or intake of B vitamins and dementia is not consistent. We 

found that, at baseline, MMA and SAM concentrations were related to some cognitive tests 

and, at the end of the study, both of the tested arms showed similar improvement in most of 

cognitive function tests. We suggest that sufficient B vitamins intake might be more effective 

in disease prevention rather than in disease treatment.  

The effects of the one-carbon metabolites on APP processing and Aβ accumulation have been 

reported in many cell culture and animal model studies. Our findings showed that the 

presence of β- or γ-secretase inhibitors reverse the effects of SAM and SAH on APP 

expression suggesting that while SAH increased Aβ accumulation via enhancing the 

enzymatic activity of the secretases affecting the amyloidgenic pathway, SAM may decrease 

Aβ accumulation via inactivating these secretases. In addition, the contradicting effect of Hcy 

on the expression of C99 in the absence and the presence of β- or γ-secretase inhibitors, 

suggest that Hcy stimulates APP processing to C99 by enhancing both β- and γ-secretases. 

Moreover, our observations suggest that DZA may affect APP generation and/or processing 

via mechanisms not related to its role as an inhibitor of SAH hydrolase and the proposed 

protective effect of lovastatin against dementia seems to depend on methylation status. In-

vivo studies are warranted. 
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ZUSAMMENFASSUNG 
 
Hintergrund: Hyperhomocysteinämie (HHCY) ist ein Risikofaktor für neurodegenerative 

und psychische Erkrankungen, aber ein kausaler Zusammenhang bleibt bislang ungeklärt. 

Vitamin B12 und Folat spielen eine wichtige Rolle im Homocystein- (Hcy) Metabolismus. 

Obwohl mehrere Studien Hinweise für eine signifikant inverse Korrelation zwischen Plasma-

Gesamt-Hcy-Konzentrationen und Plasma-Folat- und Vitamin B12-Konzentrationen gezeigt 

haben, bleibt die Bedeutung einer Vitamin B12-Behandlung auf die kognitive Leistung 

kontrovers. Die pathologischen Kennzeichen der Alzheimer-Krankheit (AD) bestehen aus 

Amyloidplaques und neurofibrillären Tangles in betroffenen Hirnregionen. Amyloid beta 

(Aβ) wird aus dem Amyloid-Precursor-Protein (APP) durch konsequentes Splitting durch β- 

und γ-Sekretasen gebildet. Ergebnisse von verschiedenen Studien deuten darauf hin, dass 

Veränderungen des Hcy-Kreislaufs mit einer erhöhten Akkumulierung von Aβ im 

Zusammenhang stehen und zur Amyloid-Symptomatik bei normalem Altern und bei AD 

beitragen können. Das Ziel unserer Studie ist die Untersuchung des Zusammenhangs 

zwischen Methylierungsmarkern und Markern der Neurodegeneration und die Untersuchung 

der Auswirkung einer B-Vitaminbehandlung auf die kognitive Leistung in älteren Menschen. 

Zusätzlich untersuchen wir, ob der  Methylgruppenmetabolismus das APP-Level und/oder 

seine Prozessierung durch den amyloidogenen Kreislauf beeinflusst. 

Materialien und Methoden: Der erste Teil dieser Studie schließt 182 Patienten mit 

verschiedenen neurodegenerativen Erkrankungen ein. Die Konzentrationen von Aβ(1-42) 

wurden in CSF-Proben gemessen. Der zweite Teil beinhaltet eine doppelblinde 

placebokontrollierte Studie an 69 Patienten, die zufällig verteilt entweder Vitamine oder 

Placebo erhielten. Die kognitive Funktion wurde durch Mini-Mental-Status-Tests (MMSE) 

und durch Strukturierte Interviews für die Diagnose einer Demenz vom Alzheimer Typ, der 

Multiinfarkt-Demenz und Demenzen anderer Ätiologie nach ICD-10 (SIDAM) untersucht. 

Konzentrationen von SAH und SAM wurden mittels Flüssigkeitschromatography-Tandem-

Massenspektrometrie (LC-MS/MS) bestimmt.  

Der dritte Teil der Studie beschäftigt sich mit Down Syndrom Fibroblasten als 

Zellkulturmodell mit erhöhtem Risiko für Neurodegeneration. Die Zellen wurden entweder in 

vitaminreichem oder in vitaminfreiem Medium kultiviert. Die Zellen wurden mit 

verschiedenen Konzentrationen von Hcy, S-Adenosylhomocystein (SAH), S-

Adenosylmethionin (SAM), Lovastatin und 3-Deazaadenosin (DZA) behandelt und die 

Expression von APP und seiner Untereinheit (C99) wurde mittels Westernblotting in An- oder 

Abwesenheit von β- und γ-Sekretaseinhibitoren untersucht. 
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Ergebnisse: Die Studie hat gezeigt, dass das Altern mit höheren Konzentrationen von Hcy 

und SAH im CSF und niedrigeren Konzentrationen von CSF-Folat und der SAM/SAH Ratio 

assoziiert war. In allen Studiensubjekten konnten keine signifikanten Korrelationen zwischen 

Aβ(1-42)-Konzentrationen und Quartilen von SAM, SAH und Folat nachgewiesen werden. 

Die zweite Studie zeigte, dass vor Behandlungsbeginn höhere Methylmalonsäure- (MMA) 

Konzentrationen mit niedrigeren Punktzahlen bei intellektuellen Fähigkeiten und höhere 

SAM-Konzentrationen mit höheren Orientierungspunktzahlen assoziiert waren. Beide 

Behandlungsarme zeigten am Ende der Therapie eine Verbesserung in den Gesamt-SIDAM-

Punktzahlen. 

Die dritte Studie zeigte, dass eine Behandlung mit SAM eine erniedrigte APP-Expression 

verursachte, während SAH unter vitaminfreien Bedingungen eine erhöhte APP-Expression 

und eine erniedrigte C99-Expression verursachte. Hcy verursachte im vitaminfreien Medium 

eine erhöhte C99-Proteinexpression. Inhibitoren von β- und γ-Sekretasen kehrten den Effekt 

von SAH und SAM auf die Proteinexpression von APP und C99 und den Effekt von Hcy auf 

das C99-Protein um. Lovastatin inhibierte vor allem im vitaminreichen Medium die APP-

Expression, wohingegen DZA APP nur bei Zellen, die im vitaminreichen Medium wuchsen, 

reduzierte.  

Diskussion: Unsere erste Studie zeigte, dass sich im Alter die CSF-Konzentrationen von 

Folat erniedrigen und die von Hcy erhöhen. Aus diesem Grund können Erhöhungen von tHcy 

im Blut darauf hinweisen, dass tHcy im Gehirn, wo es viele neurotoxische Effekte haben 

kann, ebenfalls erhöht ist. Konzentrationen von Aβ(1-42) sind im CSF bei Patienten mit 

Demenz niedriger als bei nicht-dementen Patienten. Die Akkumulation von Aβ ist ein 

Langzeitprozess, von dem man annimmt, dass er bereits im jungen Alter beginnt. Wir fanden 

keine Assoziation zwischen Aβ(1-42) und Methylierungsmarkern, Vitaminen oder Hcy in der 

Gesamtgruppe oder bei Patienten mit Demenz. 

Ein Zusammenhang zwischen dem Status oder der Einnahme von B-Vitaminen und Demenz 

ist nicht widerspruchsfrei. Wir fanden, dass vor Behandlungsbeginn die MMA- und SAM-

Konzentrationen mit einigen kognitiven Tests im Zusammenhang standen und dass am Ende 

der Studie beide untersuchte Arme eine ähnliche Verbesserung in den meisten kognitiven 

Funktionstests zeigten. Wir sind der ansicht, dass eine ausreichende B-Vitamineinnahme 

effektiver in der Prävention von Erkrankungen ist als bei der Behandlung von bereits 

bestehenden Erkrankungen.   

Die Auswirkung von Einkohlenstoffmetaboliten auf die APP-Prozessierung und die Aβ-

Akkumulierung konnte bereits in vielen Zellkultur- und Tiermodellstudien gezeigt werden. 
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Unsere Ergebnisse zeigten, dass die Präsenz von β- oder γ-Sekretaseinhibitoren die Wirkung 

von SAM und SAH auf die APP-Expression umkehrt. Dies suggeriert, dass SAH die Aβ-

Akkumulierung über die Verstärkung der enzymatischen Aktivität der Sekretasen erhöht und 

somit den amyloidogenen Pathway beeinflusst. SAM hingegen kann die Aβ-Akkumulierung 

über eine Inaktivierung der Sekretasen vermindern. Zusätzlich weist die widersprüchliche 

Wirkung von Hcy auf die Expression von C99 in An- oder Abwesenheit von β- oder γ-

Sekretaseinhibitoren darauf hin, dass Hcy die Prozessierung von APP zu C99 durch die 

Verstärkung der β- oder γ-Sekretasen stimuliert. Darüber hinaus deuten unsere 

Beobachtungen darauf hin, dass DZA die Bildung von APP und/oder die Prozessierung über 

Mechanismen beeinflusst, die nicht mit dessen Rolle als Inhibitor der SAH-Hydrolase in 

Zusammenhang steht. Der beabsichtigte protektive Effekt von Lovastatin gegen Demenz 

scheint vom Methylierungsstatus abhängig zu sein. In vivo-Studien sind gerechtfertigt. 
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1. INTRODUCTION 
 

 
1-1. Dementia, cognitive dysfunction, and hyperhomocysteinemia: 
Dementia is a clinical syndrome characterized by a progressive deterioration of cognitive 

skills that are severe enough to interfere with daily activities, including social and 

professional functioning. The World Health Organization estimated that in 2005, 0.379% of 

people worldwide had dementia, and that the prevalence would increase to 0.441% in 2015 

and to 0.556% in 2030 (www.who.int/mental_health/neurology/neurodiso/en/index.html), 

mainly because of large increase in the old segment of the population. Two categories of 

dementia: Alzheimer’s disease (AD) and vascular dementia (VaD) account for the vast 

majority of dementia cases and the coexistence of both categories may be the most common 

cause (Erkinjuntii and Sulkava, 1991). Alzheimer’s disease, a degenerative disease and 

terminal illness, was first described by the German psychiatrist Alois Alzheimer in 1906. 

Generally it is diagnosed in people over 65 years of age and accounts for 50-70% of the total 

dementia prevalence (Small et al., 1997). Vascular dementia, the second most common type 

of dementia after AD, accounting for 15-30% of all dementia cases, is usually defined as an 

acquired intellectual deficit resulting from brain injury due to a cerebrovascular disorder 

(CVD) (Tatemichi et al., 1994). Mild cognitive impairment (MCI) is clinically defined as 

impairment in one or more cognitive domains (typically memory) and represents a transitional 

state between normal aging and mild dementia. Results from longitudinal studies indicate that 

subjects with MCI are likely to develop AD at an accelerated rate (Morris et al., 2001).  

Age and years of education are among the most relevant risk factors for dementia, but in 

recent years the role of homocysteine (Hcy) as a risk factor for cognitive dysfunction, 

including AD and VaD has also been investigated. The link between hyperhomocysteinemia 

(HHcy) and neurological disorders was first described in patients suffering from mental 

retardation and cognitive dysfunction in addition to severely elevated plasma total Hcy (tHcy) 

(Mudd et al., 1985). Over the past two decades, numerous epidemiologic studies have 

confirmed the correlation between HHcy and dementia. In 2007, Obeid and colleagues 

reviewed evidence from 4 prospective follow-up studies and 7 retrospective cross sectional 

studies and concluded that there is good evidence to suggest that HHcy is positively related to 

cognitive dysfunction (Obeid et al., 2007b).  

A causal role of tHcy in dementia is contro versial. On one hand, a number of studies have 

demonstrated a marked correlation between tHcy concentration and severity of cognitive 

decline. In a prospective follow-up study of 180 participants, over a mean of 2.3 years, results 
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indicated that at baseline participants with elevated tHcy concentrations had lower stroop 

scores than did participants with normal tHcy concentrations. At follow-up, stroop scores 

decreased by 22% in participants whose tHcy concentrations increased by 40% from baseline 

(Garcia et al., 2004a). Clarke and colleagues examined 164 patients with histological 

confirmed AD and found that those with baseline tHcy ≥14 µM had significantly more 

temporal lobe atrophy after 3 years than those with tHcy ≤11 µM, suggesting that elevated 

tHcy concentrations may causally related to the progression of the disease (Clarke et al., 

1998). In addition, in the Framingham Study, a follow-up study of eight years, results showed 

that the risk of dementia increased by 40% for each 5 µM increase in plasma tHcy (Seshadri 

et al., 2002).  

On the other hand, Miller and collegues suggested that elevated plasma tHcy concentrations 

are not a causative factor in dementia and AD but are only a marker for concomitant vascular 

disease, independently of cognitive status (Miller et al., 2002). Moreover, other studies 

showed no correlation between Hcy and cognitive functioning. For example, in the Rotterdam 

study, a follow-up study of 2.7 years, no association between baseline tHcy and decreases in 

the Mini-Mental Status Examination test (MMSE) score was found. However, the short 

follow-up time is a major limitation of this study (Kalmijn et al., 1999). 

 

1-2. Pathophysiology of dementia and Alzheimer disease: 
One of the most intriguing aspects of neurodegenerative diseases is protein misfolding and 

aggregation. One century ago, Alois Alzheimer described the typical neuropathological 

hallmarks of the disease takes his name; neuritic amyloid plaques and neurofibrillary tangles 

(NFTs). Amyloid in senile plaques is the product of cleavage of a much larger protein, the 

amyloid precursor protein (APP), by β- and γ-secretases (Hutton et al., 1998). The γ-

secretases, in particular, appear to be responsible for generating amyloid peptides Aβ (1-42) 

and Aβ (1-40). Aβ (1-42) is 42 amino acids in length and has pathogenic importance, as it 

forms insoluble toxic fibrils and accumulates in senile plaques (Esler and Wolfe, 2001).   

NFTs are mainly paired helical filaments (PHF) found in cell bodies and dendrites.  The core 

protein of these filaments is tau, a microtubule-associated protein. Under physiological 

conditions, tau is a phosphoprotein, but it is phosphorylated to a higher degree under 

pathological conditions such as AD. Hyperphosphorylated tau tends to dissociate from 

microtubules, self-aggregates, and participates in NFTs formation (Alonso et al., 1996). 

Selective neuronal loss, synaptic alterations, and neuroinflammation are typical features of 

neurodegenerative diseases. Neuronal loss occurs by programmed cell death or apoptosis 
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(Mattson, 2000). Many studies have suggested that protein misfolding and aggregation might 

be involved in neuronal apoptosis by different mechanisms. The most widely accepted 

mechanism is that misfolded aggregates have a neurotoxic activity that operates in different 

pathways. Extracellular aggregates, such as Aβ plaques, cause membrane disruption and 

depolarization mediated by ion-channel formation, resulting in alteration of ion homeostasis 

and dysregulation of cellular signal transduction, leading to cell death (Arispe et al., 1993). In 

addition, aggregates might induce oxidative stress by producing reactive oxygen species 

(ROS), resulting in protein and lipid peroxidation, elevation of intracellular calcium, and 

mitochondrial dysfunction (Behl et al., 1994).  

Another proposed mechanism is that protein misfolding causes lack of its biological activity. 

Tau hyperphosphorylation and NFTs formation result in loss of tau main function in 

stabilizing axonal microtubules. This process causes impairment in microtubule-dependent 

axonal transport and cognitive decline (Vandebroek et al., 2006).  

The brain inflammation hypothesis is another mechanism by which misfolded-aggregated 

proteins are involved in neuronal death. In this hypothesis, abnormal protein aggregates act as 

irritants and cause a chronic inflammatory reaction in the brain that leads to neuronal death 

and synaptic changes (Wyss-Coray and Mucke, 2002). The presence of early components of 

the complement cascade in association with senile plaques and NFTs of AD has been reported 

(Bergamaschini et al., 1999). Consequently, membrane attack complex (MAC) are formed 

and inserted into cell membranes, causing lysis and death of the neuronal cells. A recent 

study, including 691 cognitively intact community-dwelling participants, showed that higher 

production of interleukin 1 or tumor necrosis factor alpha (TNFα) by peripheral blood 

mononuclear cells may be a marker of future risk of AD in older individuals (Tan et al., 

2007).  

In addition to neuritic plaques and NFTs, many studies suggest that different microvascular 

disorders contribute to AD pathogenesis. Cerebral amyloid angiopathy (CAA) is now well 

understood in terms of deposition of Aβ in the vessel wall and degeneration of smooth muscle 

cells causing blood vessel rupture and hemodynamic change (Alonzo et al., 1998). It has been 

shown that macrophages in AD patients appear to shuttle Aβ from neurons to vessels causing 

fibrillar Aβ production which contributes to CAA (Zaghi et al., 2009).  

Aβ is cleared physiologically across the blood brain barrier (BBB) by low-density lipoprotein 

receptor-related protein-1. The vascular deposition of Aβ is likely to be related to the lack of 

clearance (Weller et al., 1998). Irrespective of the mechanism of CAA, it is likely that the 

characteristic vascular deposition in AD compromises BBB function and promotes chronic 
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hypoperfusion (De Jong et al., 1997). In addition, the phenomenon characterized by selective 

degeneration of the endothelium in capillary profiles was observed in virtually all Aβ-laden 

cortical lobes of almost all AD patients (Kalaria and Hedera, 1996).  

White matter lesions, microvascular brain injury marker, are found to be present in more than 

60% of AD patients (Barber et al., 1999). Plasma Aβ concentration is independently 

associated with extent of white matter hyperintensity in subjects with AD (Gurol et al., 2006). 

These findings support the role of Aβ deposition in the vascular phenomenon along with 

microangiopathy and its implication in the potency of the brain microvasculature in AD. 

Pathogenic mechanisms of dementia are summerized in Figure 1. 

 

 
 

Figure 1: Pathophysiology of dementia 
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1-3. Risk factors for dementia: 
1-3-1. Genetic risk factors: 

Early-onset AD, before the age of 60 to 65 years, is uncommon and make up about 6% to 7% 

of all AD cases. About 7% of early-onset cases are familial (Nussbaum and Ellis, 2003). 

Familial Alzheimer’s disease (FAD) is inherited in an autosomal dominant manner. Three 

genes have been identified to be involved in FAD: APP gene on the chromosome 21, 

presenilin-1 (PS-1) gene on chromosome 14, and presenilin-2 (PS-2) gene on chromosome 1.  

Mutation in one of these genes can shift the cleavage of APP to favour the γ-secretase site and 

increased production of the toxic Aβ (1-42) peptide over the shorter, less toxic Aβ (1-40) 

peptide (Borchelt et al., 1996). The DNA from 34 families with FAD (obtained from all over 

France) was analyzed for causative mutations (Campion et al., 1999). Half of the patients had 

mutation in PS-1, whereas approximately 16% of the families had mutation in APP gene.   

PS-2 mutation was not found, and the genes responsible for the remaining cases were 

unknown. 

The human ApoE gene is located on chromosom 19 and has three different alleles: ε4 allele, 

ε2 allele, and ε3 allele. ApoE is a protein with roles in lipid metabolism and tissue repair. Its 

primary site of biosynthesis is the liver, but the second major site of synthesis is the brain. For 

late-onset AD, apolipoprotein E-ε4 (ApoE-ε4) has been confirmed as a genetic risk factor in 

large population-based studies (Hsiung and Sadovnick, 2007). The frequency of ApoE-ε4 in 

patients with AD has been found to be greater than that in age-matched controls (Strittmatter 

et al., 1993). It has been reported that ApoE-ε4 facilitates the deposition of Aβ in the brain 

(Bogdanovic et al., 2002) and increases the rate of atrophy in the brain (Wahlund et al., 1999).  

In addition, there is evidence that cognitive function is lower in individuals possessing the 

ApoE-ε4 allele in combination with a second factor that may be related to brain pathology. 

For example, greater cognitive deficits have been observed in ApoE-ε4 carrying older adults 

who also suffered from peripheral vascular disease or atherosclerosis (Haan et al., 1999). 

 

1-3-2. Non-genetic risk factors:  

Demographic factors:  

Age is considered the most important risk factor for the development of AD. The prevalence 

as well as the incidence of AD increases with advancing age and the occurrence doubles every 

five years after 65 up to 90 years of age, and remains stable after the age of 90 years 

(Fratiglioni et al., 2000).  
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Furthermore, female gender has been found to be significantly at higher risk of AD than male 

gender (Andersen et al., 1999).  

In addition, different longitudinal cohort studies showed that the risk of AD is increased 

among people with low education level. For example, participants who had more than 15 

years of education, had a reduced risk of AD when compared with those who had less than 12 

years of education (Kukull et al., 2002).  

 

Vascular risk factors:  

Many studies have suggested a strong association between different vascular risk factors and 

AD. For example hypertension may cause AD through causing cerebrovascular lesions. The 

results of a follow-up study of 2 years showed that in elderly people with isolated systolic 

hypertension, antihypertensive treatment was associated with a lower incidence of dementia 

(Forette et al., 1998).  

Heart disease is linked with the ApoE-ε4 allele and is known to be a risk factor for AD. In 

line with this, the Rotterdam Study observed a 1.8 fold increased risk for AD in patients with 

arterial fibrillation (Breteler, 2000).  

Smoking is an important cardiovascular and cerebrovascular risk factor and could therefore 

increase the risk of AD. For example, current smoking was found to be strongly related to a 

higher risk of AD (Luchsinger et al., 2005).  

Casserly and Topol have summarized the common risk factors for AD and atherosclerosis 

including hypercholesterolemia, hypertension, diabetes mellitus, systemic inflammation, 

increased fat intake, obesity, and hyperhomocysteinemia (Casserly and Topol, 2004).  

The role of HHcy as an independent risk factor for neurodegeneration has been established in 

many studies and this will be discussed separately.  

Figure 2 summarizes the risk factors for dementia. 
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Figure 2: Risk factors for dementia 
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al., 2007). According to the Hordaland Homocysteine Study, a prospective study of 7031 

subjects who constituted 2 age groups at baseline (41–42 and 65–67 years), the risk of 

memory deficit increased according to quartiles of tHcy both at baseline and at follow-up 

period of 6 years. A decline in tHcy or an increase in folate was associated with a higher 

memory test scores and vice versa (Nurk et al., 2005). 

Some studies have suggested that HHcy is not a causative factor in dementia and AD but it is 

only a marker for concomitant vascular disease, independently of cognitive status (Mooijaart 

et al., 2005). However, results from other investigations including the Framingham study 

argue against this proposition suggesting different mechanisms by which HHcy causing 

cognitive dysfunction (Ravaglia et al., 2005).  

On the other hand, in a prospective analysis of elderly participants in the Rotterdam Study, no 

significant association between elevated tHcy concentrations and cognitive decline was found 

(Kalmijn et al., 1999). In this study, however, a plasma concentration of tHcy was assayed in 

non-fasting samples and the average study follow-up of 2.7 years was probably insufficient to 

detect significant changes in the cognitive score. Similar observation by the Washington 

Heights-Inwood Columbia Aging Study showed nonsignificant association between the 

highest tHcy quartile and risk for AD after adjustment for age and sex (Luchsinger et al., 

2004). Insufficient statistical power and methodological issues related to prolonged time 

between sample collection and processing are major limitations of this study.   

It has been hypothesized that the magnitude of association between tHcy concentrations and 

cognitive performance increases with advancing age. An association between concentrations 

of tHcy and cognitive performance for subjects in the seventh, but not the sixth, decade of age 

has been reported (Duthie et al., 2002). Wright and collegues found an inverse association 

between tHcy concentrations and MMSE scores among individuals aged ≥ 65 years, but not 

among individuals aged 40 to 64 years (Wright et al., 2004).  

 

Data on the association between elevated tHcy concentrations and MCI are inconsistent. Mean 

plasma Hcy concentrations were higher in elderly subjects with MCI than in normal non-

demented elderly subjects (17.6 ± 7.4 vs. 15.7 ± 4.8 µM) (Kim et al., 2007). In addition, the 

lowest folate tertile and HHcy (≥14.6 µM) showed a significant association with MCI 

(adjusted OR=3.1 and 2.6 respectively) (Quadri et al., 2005). In contrast, plasma Hcy 

concentrations did not differ between normal and MCI elderly subjects, as assessed by the 

Mayo Clinic criteria in a group of Polish subjects (Religa et al., 2003). 
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Table 1: Selected studies investigating the relation between Hcy and dementia 

Study Study population Study design Tests Results 

(McCaddon et al., 
1998) 

60 patients with DMS-III-R  
criteria for AD 

Case-control CAMDEX tHcy levels inversely related to scores of cognitive testing 

(Clarke et al., 1998) 164 demented patients  
aged > 55 y 
 

Case-control CERAD 
CAMDEX 
MMSE 

tHcy >14 µM associated with AD (OR: 4:5, 95% CI: 2.2-
9.2). In a 3 years follow-up, radiological evidence of 
disease progression was greater among patients with 
higher tHcy concentrations at entry.    

(Leblhuber et al., 
2000)  

31 patients aged 74.8±8.8 y 
(19 with AD, 12 with VaD) 
+19 age matched normal 
controls 

Case-control MMSE Inverse correlation between the degree of cognitive 

impairment and Hcy concentrations (r=-0.43) and a 
correlation between MMSE and folic acid (r=0.37) were 
found.  

(Seshadri et al., 
2002) 
 Framingham Study 

1092 dementia free patients in 
Framingham cohort  
aged 68-97 y 

Prospective 
cohort (median 
follow-up 8 
years) 
 

DSM IV criteria, 
MMSE  
Clinical Dementia 
Rating Scale  
NINCDS-ADRDA 

AD risk for subjects with tHcy >14 µM was nearly 
doubled. 

(Nurk et al., 2005) 
The Hordaland 
Homocysteine Study 

2189 subjects  
aged 65-67 y  

Prospective 
cohort (median 
follow-up 6 
years) 

Kendrick Object 
Learning Test 
(Memory 
performance) 

At base line, subjects with memory deficit had higher 
concentrations of tHcy and lower concentrations of folate 
comparing with those without memory deficit.  
The risk of memory deficit increased according to 
quintiles of tHcy both at baseline and at follow-up. A 
decline in tHcy or an increase in folate over a 6-year 
period was associated with a higher memory test score and 
vice versa. 

(Ravaglia et al., 
2005) 
 

816 subjects  
(mean age= 74 y) 

Prospective 
cohort (median 
follow-up 4 
years) 

MMSE Subjects with tHcy >15 µM had hazard ratio (HR) 2.08 for 
dementia and 2.11 for AD. 
Subject with folate < 11.8 nM had HR 1.87 for dementia 
and 1.98 for AD. 

(Garcia et al., 2004a) 180 normal community-
dwelling people aged ≥65 y  

Prospective 
cohort (median 
follow-up 2.3 
years) 

Stroop 
Mattis DRS 
CVLT 

tHcy levels were significantly correlated with the stroop 
scores both at base-line and follow-up. Increasements 
greater than 40% in tHcy levels from base-line to follow-
up were associated with a 22% reduction in the stroop 
scores. 
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Table 1: Continued 

Study Study population Study design Tests Results 

(Haan et al., 2007) 1779 subjects  
aged 60-101 y 

Prospective 
cohort (median 
follow-up 4.5 
years) 

Neuropsychological 
test battery 
MRI 
DSM 
NINCDS-ADRDA 
 

High tHcy concentrations were associated with a greater 
risk of dementia or CIND (HR: 2.39). Plasma vitamin B12 
modified the association between tHcy and the outcome. 
The rates of dementia or CIND associated with tHcy were 
significantly higher (HR: 1.61, P=0.04) for those in the 
lowest tertile of vitamin B12 and significantly lower (HR: 
0.94, P=0.015) for those in the highest tertile of vitamin 
B12 comparing to those in the middle terttile.  

(Wright et al., 2004) 
The Northen 
Manhaten Study 

2871 strock free subjects 
older than 40 y 
Three ethnic populations 

Retrospective 
cross-sectional 
study 

MMSE tHcy was associated with lower mean MMSE scores with 
a drop of 3.5 points among those over 65 y and almost 2.0 
points for those under 65 y. Subjects over 65 y, with tHcy 
>15 µM had 1.5 MMSE points lower than those with tHcy 
< 10 µM. This correlation was not found in subjects less 
than 65 y old. 

(Stewart et al., 2002) 238 African-Caribbean 
adults aged 55-75 y 

Retrospective 
cross-sectional 
study 

CERAD 
MMSE 

Raised tHcy (highest quartile >13.85 µM) was 
significantly associated with cognitive impairment  
(OR= 2.86)  
 

(Quadri et al., 2004) 228 patients (81 with MCI, 
74 with AD, 18 with VaD 
and 55 non demented) 

Retrospective 
cross-sectional 
study 

MMSE Subjects with low folate status had significantly higher 
adjusted OR for mild cognitive impairment (OR: 3.1; 
95%CI: 1.2, 8.1) and dementia (3.8; 1.3, 11.2). HHcy 
was significantly associated with dementia (adjusted OR: 
4.3; 1.3, 14.7) and AD (adjusted OR: 3.7; 1.1, 13.1). 

(Ravaglia et al., 
2003) 

650 community-dwelling 
people (mean age 73 y) 
with normal cognitive 
function in Conselice Study 

Retrospective 
cross-sectional 
study 

MMSE Inverse relation between OR of tHcy >15 µM and MMSE 
scores 

AD: Alzheimer’s disease, CERAD: Consortium to Establish a Registry for Alzheimer’s disease, DSM: Diagnostic and Statistical Manual of Mental Disorders, MMSE: Mini-Mental Status 

Examination, NINCDS-ADRDA. National Institute of Neurological and Communication Disorders and Stroke/Alzheimer’s Disease and Related Disorders Association, MRI: Magnetic 

Resonance Imaging, Mattis DRS: Mattis Dementia Rating Scale, CVLT: California Verbal Learning Test, CAMDEX: Cambridge Examination for Mental Disorders of the Elderly, CIND: 

Cognitive impairment non Demented, CAMCOG: Cognitive and self-contained part of the Cambridge Examination for Mental Disorders of the Elderly,  CI: Confidence Intervals, OR: odds 

ratio, HR: hazard ratio.  
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Substantial evidence is accumulating suggesting that HHcy is a risk factor for stroke. In a 

prospective nested case-control study, tHcy concentrations were significantly higher in stroke 

cases than controls and a graded increase in the relative risk of stroke in the second (10.3-

12.49 µM) , third (12.5-15.39 µM), and fourth (≥15.4 µM) quartiles of tHcy concentrations 

comparing to the first (<10.3 µM) was reported (Perry et al., 1995). In a follow-up study of 5 

years, lowering of Hcy with folic acid and vitamins B6 and B12 did reduce the risk of stroke, 

but not stroke severity or disability (Saposnik et al., 2009). 

In addition to dementia, Parkinson’s disease (PD) is primarily a degenerative disorder of the 

central nervous system (CNS) with average age of onset of 55 to 66 years. It is considered the 

second most common neurodegenerative disease next to AD and characterized by 

bradykinesia, rigidity, tremor, and postural instability. Long-term treatment of levodopa in 

patients with PD  is known to cause elevation in plasma concentrations of tHcy (Muller et al., 

1999). A positive correlation between HHcy and unified Parkinson’s disease rating scale 

(UPDRS) motor section was reported (Ozer et al., 2006). In this study, the subgroup with 

concentrations of Hcy >14 µM had a significantly poorer performance in frontal and memory 

tests comparing to individuals with concentrations of Hcy <14 µM . In addition, markers of 

neurodegeneration, APP and alpha-synuclein, were found to be related to markers of 

methylation, S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH), in patients 

with PD. Better cognitive function was related to higher SAM/SAH ratio (Obeid et al., 2009).   

1-5. Homocysteine metabolism and regulation: 
Hcy is a thiol-containing amino acid derived primarily from proteins of animal origin 

(methionine). Hcy is produced entirely from the methylation cycle as it is totally absent from 

any dietary source (Finkelstein, 1998). Hcy occurs in blood in three forms, 80-90 % of it is 

bound to albumin through disulfide bonds, 1-2% occurs as a free thiol, whereas the remain 

occur in non-protein bound forms, predominantly with cysteine or as the Hcy dimer, 

homocystine (Refsum et al., 2004).  

Methionine is converted to SAM in Mg+2, K+2, and adenosine triphosphate (ATP) requiring 

reaction catalyzed by methionine-S-adenosyltransferase, which occurs in most tissues. SAM 

donates its methyl group to a large variety of substrates resulting in different compounds, 

which are vitally essential in many important physiological functions, for example nucleic 

acid (DNA and RNA), phospholipids, myelin, catecholamins, neurotransmitters, and proteins. 

When methyl groups are transferred from SAM, SAH is formed, which is then hydrolyzed in 
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a reversible reaction by the widely distributed SAH hydrolase to release the adenosine and 

results in the formation of Hcy. The reverse reaction forming SAH is favored over that 

forming Hcy  (Finkelstein, 1998). Hcy is metabolized further in two pathways: remethylation 

and transulfuration (Figure 3).  

The re-methylation pathway is comprised of two biochemical pathways; the first reaction 

occurs in all tissues and is directly dependent on the enzyme methionine synthase (MS) that 

requires B12 as a co-factor and 5-methyltetrahydrofolate (5-MTHF) as a substrate. This 

reaction is indirectly regulated by the activity of 5-MTHFR, which in turn uses flavin adenine 

dinucleotide (FAD; a biologically active form of vitamin B2) as a co-factor (Guenther et al., 

1999). In the alternative re-methylation route, which is mainly expressed in the liver and 

kidney, betaine is used as a methyl donor by the enzyme betaine-homocysteine 

methyltransferase (BHMT).  

Under conditions in which excess of methionine is present or if cysteine synthesis is required, 

Hcy enters the transsulfuration pathway by which it condenses with serine to form 

cystathionine (Cys). This reaction is catalysed by cystathionine β-synthase (CβS), an enzyme 

that depends on vitamin B6 as a cofactor. Cys is broken down by another vitamin B6 

requiring enzyme, γ-cystathionase, forming α-oxobutyrate and cysteine, which is a precursor 

of glutathione, the major cellular redox buffer (Finkelstein, 1990). 

Hcy metabolism in the brain undergoes the same steps as described before with two major 

exceptions. Firstly, BHMT is not expressed in neural tissue; therefore MS represents the only 

enzyme in the brain capable of Hcy remethylation to methionine (Chadwick et al., 2000). 

Secondly, Hcy catabolism by the transsulfuration pathway is probably incomplete and 

substantially blocked beyond the formation of Cys (Finkelstein, 1998).  

Hcy in the brain can be either produced in the brain itself, or it can be imported from the 

plasma to the brain and vice versa probably via specific, bi-directional cellular transporters 

(Grieve et al., 1992).  

Hcy metabolism is tightly controlled via several mechanisms. SAM is an inhibitor of BHMT 

(Finkelstein and Martin, 1984) and an activator of CβS (Finkelstein et al., 1975). When SAM 

concentration is low, the synthesis of 5-MTHFR will be activated whereas Cys synthesis will 

be suppressed thus stimulating the methionine synthesis from Hcy to deliver more SAM. 

Conversely, when SAM concentration is high, Hcy is diverted through the transsulfuration 

pathway because of the inhibition of 5-MTHFR synthesis. Thus, the ability of SAM to act as 

an enzymatic effector of Hcy metabolism provides a mechanism by which remethylation and 

transsulfuration pathways can be coordinated (Selhub, 1999).  
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Figure 3: Homocysteine metabolism 
 

CβS: cystathionine β synthase; MS: methionine synthase; 5;10-MTHFR: 5,10-methylene tetrahydrofolate 
reductase; SAM: S-adenosylmethionine; SAH: S-adenosylhomocysteine; THF: tetrahydrofolate; BHMT: 
betaine- homocysteine methyltransferases; DMG: dimethyl glycine. 
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Hcy post-methionine loading (PML) concentrations: 

The methionine loading test was originally introduced to detect the heterozygous for CβS 

deficiency, especially in affected families (Brenton et al., 1966). Currently, it is also used to 

detect mild abnormalities of methionine metabolism. Furthermore, several studies showed 

that post methionine loading test (PMLT) may identify HHcy in more than 50% of subjects 

who have not been diagnosed by screening with fasting plasma tHcy (van der et al., 2002). 

This test is performed by giving oral methionine as L-isomer (0.1 g/Kg body weight) after an 

over night fasting. tHcy is usually measured after a time interval of 4 or 6 hours. Subjects 

with PML values more than 38 μM are considered to have elevated PML tHcy concentrations 

(Graham et al., 1997). 

 
1-7. Causes of hyperhomocysteinemia: 
 

1.7.1. Acquired conditions: 

 

B vitamins deficiency: 

B vitamins: folic acid, vitamin B12 (cobalamin)(Cbl), and vitamin B6 affect Hcy 

concentrations through their roles as cofactors for the enzymes involved in methionine 

metabolism (Figure 3). Several studies have provided evidence for a significant inverse 

correlation between plasma concentrations of tHcy and plasma concentrations of folate and 

Cbl even within the normal range (Jacques et al., 2001;Stabler et al., 1988).  

In a randomized, placebo-controlled pilot study of treatment with monthly injections of Cbl 

for 6 months, tHcy concentrations were significantly lower in the treatment group than in the 

placebo group (Garcia et al., 2004b). In the general population, oral folic acid 

supplementation have stronger effect on tHcy concentrations than does Cbl supplementation, 

therefore, the concentration of serum folate is a stronger predictor of HHcy than that of Cbl. 

However, co-administration of folic acid and Cbl results in a greater reduction in plasma tHcy 

concentrations than does folic acid alone (Ubbink et al., 1994).  

Vitamin B6 is a cofactor in the metabolism of Hcy through the transsulfuration pathway. The 

impact of vitamin B6 treatment on tHcy concentrations is controversial. In one study, high- 

dose vitamin B6 therapy (100-200 mg/day) was reported to be effective in reducing 

cardiovascular events in patients with elevated tHcy concentrations (Wilcken and Wilcken, 

1998); however, such treatment was not effective in reducing tHcy concentrations in adults 

with mild HHcy (van der et al., 2000; van der et al., 2000). 
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Renal function: 

A normal kidney plays a major role in the clearance and metabolism of most of amino acids. 

The amount of urinary Hcy excretion in healthy subjects is 3.5–10 µM daily, that is about 

0.1% of the total production of Hcy (Ueland and Refsum, 1989). The rest of Hcy is 

reabsorbed in the tubules and then oxidatively catabolized to carbon dioxide and sulfate in the 

kidney cells (House et al., 1998). Plasma Hcy concentrations are strongly correlated with 

glomerular filtration rate (GFR) and this association seems to be linear (Veldman et al., 2005). 

The precise mechanism by which GFR is related to plasma Hcy concentrations is not 

definitively established. One  possible mechanism is the imbalance between the remethylation 

and transsulfuration of Hcy (Henning et al., 1999). Improved folate status has been shown to 

induce considered decrease in Hcy concentrations in dialysis patients (Sunder-Plassmann et 

al., 2000). In addition, tHcy concentrations decreased significantly by 51% in dialysis patients 

supplemented with a combination of folic acid, vitamin B12, and vitamin B6 for 4 weeks 

(Obeid et al., 2005). In the same study, twenty weeks after vitamin withdrawal, tHcy 

concentrations returned to values comparable to baseline.  

Further factors that affect tHcy concentrations are summarized in Table 2. 

 
Table 2: Physiologic and lifestyle determinants of plasma tHcy level 

Factor Effect Reference 
Physiologic factors 

Male sex 
Body weight 

Postmenopausal women 
Old age 

Pregnancy 

 

↑ 
↑ 
↑ 
↑ 
↓ 

 

(Silberberg et al., 1997) 
(Nurk et al., 2004) 
(Hak et al., 2000) 

(Herrmann et al., 1999) 
(Walker et al., 1999b) 

Lifestyle factors 

Vegetarian diet 
Alcohol consumption 

Smoking 
Coffee consumption 

Acute exercise 

 

↑ 
↑ 
↑ 
↑ 
↑ 

 

(Herrmann et al., 2001)            
(Jacques et al., 2001) 

(de et al., 2001) 
(Nygard et al., 1997) 

(Herrmann et al., 2003) 

Drugs 

Lipid lowering drugs 
Nitrous oxide 

 

↑ 
↑ 

 

(Desouza et al., 2002) 
(Ermens et al., 1991)  

 

1.7.2. Genetic polymorphisms: 

Remethylation of Hcy to methionine requires the enzyme 5,10-methylene tetrahydrofolate 

reductase (5,10-MTHFR). A common MTHFR gene mutation (C-to-T substitution at codon 

677 (C677T) results in increased thermolability and decreased activity of the MTHFR. People 
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homozygous for the C677T variant exhibit significantly reduced MTHFR activity and higher 

tHcy concentrations than heterozygous and normal subjects do (Frosst et al., 1995). There is 

evidence to suggest that the effects of this mutation on tHcy concentrations may be most 

evident when they are combined with low concenrations of folate (Jacques et al., 1996), and 

possibly also with low riboflavin concentrations, in the younger subject (Skoupy et al., 2002). 

The MTHFR C677T mutation has been described in patients with cardiovascular disease (Ma 

et al., 1996). In addition, this mutation has been found to increase the risk of stroke and 

vascular dementia (McIlroy et al., 2002).  

 

CβS is the enzyme that catalyzes the conversion of Hcy to Cys, using vitamin B6 as a 

cofactor. Homozygosity for CβS is one of the rare autosomal recessive genetic disorders of 

Hcy metabolism that causes homocystinuria and severe HHcy (>100 μM)) (Kozich et al., 

1995). Heterozygous CβS mutations occur in 0.5-1.5 % of the general population and can be 

associated with normal plasma concentrations of tHcy, but the PML tHcy may be elevated 

(Tsai et al., 1996).  

CβS deficiency is characterized biochemically by severe HHcy, hypermethioninemia, and 

hypocysteinemia. Among the pathological manifestations of human CβS deficiency, which 

include mental retardation, ectopia lentis, and osteoporosis, vascular complications remain the 

major cause of morbidity and mortality in untreated CβS-deficient patients. The first therapy 

choice in CβS deficient patients is administration of supraphysiological doses of vitamin B6. 

About 44% of subjects with CβS deficiency respond to vitamin B6 therapy (Mudd et al., 

1985). Certain mutations of CβS are vitamin B6 responsive, whereas others are non-

responsive. Those patients can be treated with a combination of folic acid, hydroxycobalamin, 

and betaine to stimulate the remethylation of Hcy to methionine (Kraus et al., 1999).  

 

1-8. Homocysteine as a risk factor for diseases: 
By the early 1990s, elevated concentration of plasma tHcy was considered an independent 

risk factor for cardiovascular disease. In a prospective-cohort study following 5066 

participants for over 4 years, HHcy was directly related to higher mortality (Vollset et al., 

2001). In total, nearly 100 retrospective and prospective clinical studies link HHcy with 

increased risk of cardiovascular outcomes (Herrmann, 2001;Ford et al., 2002). According to a 

recent meta-analysis, a causal relationship between Hcy and cardiovascular disease is highly 

likely (Wald et al., 2002). This study estimated that lowering plasma tHcy by 3 µM would 



 26

reduce the risk of stroke by 24%, deep vein thrombosis by 25%, and ischemic heart disease by 

16%.  

Chronic heart failure (CHF) is a major public health problem causing considerable morbidity 

and mortality (Kannel and Belanger, 1991). A major clinical impact of HHcy in CHF was 

first reported in the Hordaland Homocysteine Study (Ueland et al., 2001). Although several 

studies have later demonstrated that HHcy is significantly associated with the incidence and 

the severity of CHF (Vasan et al., 2003;Herrmann et al., 2005a), the mechanisms by which 

HHcy involves in CHF pathology remain unclear. 

Early abortion, pregnancy complications, and poor pregnancy outcomes have been linked to 

HHcy and low folate or vitamin B12 status. Preeclampsia is a pregnancy condition in which 

high blood pressure and protein in the urine develop after the 20th week. Findings in pregnant 

women have demonstrated that higher concentrations of tHcy and Cys and lower 

concentrations of folate were observed in the preeclamptic group than in the asymptomatic 

group (Herrmann et al., 2005c). 

Osteoporosis is a disease of bone that leads to an increased risk of fracture at higher age. The 

underlying mechanism in all cases of osteoporosis is an imbalance between bone resorption 

and bone formation. Bone is resorbed by osteoclast cells; after which new bone is deposited 

by osteoblast cells (Raisz, 2005). Osteoporosis was found to be associated with  

homocysteinuria in children with cystathionine synthase deficiency (Tamburrini et al., 1984). 

The effect of Hcy on osteoclast activity has been tested in vitro. Higher tHcy concentrations 

induced increased activity of enzymes involved in bone remodeling and resorption (tartrate-

resistant acid phosphatase and cathepsin K) suggesting enhanced bone resorption (Herrmann 

et al., 2005b). In an intervention study, combined treatment with folate and vitamin B12 

resulted in a reduced risk of a hip fracture in elderly stroke patients (Sato et al., 2005). 

 

1-9. Folates and vitamin B12: 
 

1.9.1. Folates: 

Folates are essential cofactors for one-carbon transfer reactions in most living organisms. 

Unlike plants and microorganisms, humans cannot synthesize folates de novo and must 

acquire them from the diet, primarily from plant foods. Folates occur almost exclusively in 

food as polyglutamyl derivatives of tetrahydrofolic acid and they can be easily oxidized and 

lose their biological effect by cooking or by preservation processes. Therefore, folates intake 

and bioavailability depend not only on the food folates content, but also on the preparation of 
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the food. Folic acid is a stable synthetic product that is frequently used in fortified foods or 

multivitamin tablets (Lucock, 2000). Most folates in food are polyglutamate derivatives and 

must be deconjugated to monoglutamate forms in the gut by enzymatic cleavage prior to 

absorption, which occurs in the jejunum. After extensive jejunal resection, the transport 

system can be induced in the ileum. The liver is the principal storage site of folates.  

Distribution of folates to other tissues occurs in a methylated form, which is reabsorbed from 

the bile into the serum (Mason et al., 1990). Most of folates are bound unspecifically to low-

affinity proteins (albumin, transferrin, α2-macroglobulin) or specifically to high-affinity folate 

binding proteins (Holm et al., 1992). The bioavailability of folates is approximately 50% from 

naturally occurring folates in food, whereas, the bioavailability of synthetic folic acid is about 

85%. This difference should be considered for the current dietary reference intakes (DRIs) 

(Gregory, III, 1997) 

Folate coenzymes participate in single carbon group transfers, including two reactions of 

particular importance. The first reaction is the synthesis of purines and pyrimidines that are 

incorporated into DNA and RNA. The failure of this reaction in case of folates deficiency 

ultimately leads to the characteristic megaloblastic anemia. The second reaction is the 

remethylation of Hcy to methionine (Lucock, 2000). 

 

1.9.2. Vitamin B12:  

Humans are unable to synthesize vitamin B12 (Cbl), therefore, food sources in human 

nutrition are limited to animal source products (Herbert, 1988). Cbl is sensitive to light and 

heat. Cooking meat or boiling milk for long time may considerably reduce their contents of 

Cbl. Cyanocobalamin is the form of the vitamin commonly used for fortification of foods and 

in nutritional supplements.  

Cbl presented in human food binds usually with food proteins. Cbl high affinity protein (R-

binder) and some enzymes in saliva stimulate releasing of Cbl (Seetharam, 1999). Arriving 

the stomach, the presence of food stimulates the secretion of intrinsic factor (IF), a 

glycoprotein produced by gastric parietal cells. IF, in the neutral pH of the duodenum, 

displaces the R-binder with the aid of pancreatic enzymes. The IF-Cbl complex is taken up by 

a specific IF receptor in the terminal ileum. In the enterocytes, Cbl is transferred to another 

binding protein transcobalamin (TC); a non-glycoprotein produced by many cell types and is 

known for its role in delivering Cbl into all DNA-synthesing cells. Holotranscobalamin 

(holoTC), a TC-Cbl complex, enters the cell through a specific receptor, the holoTC receptor 

(Seetharam and Li, 2000). In the cell, after dissociation of the TC-Cbl complex in the 
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lysosomes, Cbl is transformed to the coenzymes methyl- and adenosyl-Cbl (Ado-Cbl) in the 

cytoplasm and in the mitochondria, respectively. Ado-Cbl is required for the conversion of 

methylmalonic acid (MMA) to succinyl-Co A and methylcobalamin is the cofactor for 

methionine synthase that mediates the conversion of Hcy to methionine (Carmel, 2000). 

Cbl in blood is either bound to the TC which account for only 6-20% of the total serum Cbl 

concentrations, or to haptocorrin that binds approximately 80% of the total serum Cbl and 

thought to be a circulating storage protein that reflects the liver stores (Seetharam, 1999).  

 

1.9.3. B vitamins and cognitive function: 

 Folate, cobalamin, and vitamin B6 play important roles as co-factors for specific enzymes in 

one-carbon metabolism. Epidemiologic evidence linking low B vitamins status or intake with 

decline in cognitive function in elderly people was first described by Goodwin and collegues 

(Goodwin et al., 1983). This linking has been later confirmed by other studies (Table 3).  

Since cell replication is of low order in the adult brain (Eriksson et al., 1998), purine and 

pyrimidine synthesis are minimal. Therefore, the principal mechanism whereby B vitamins 

influence brain function is probably through the methylation cycle.  

The hypomethylation hypothesis assumes that, the disruption of the one-carbon metabolism 

interferes with the synthesis of SAM. Methylation reactions in the brain include synthesis of 

neurotransmitters and methylation of phospholipids and myelin. Hence, it is obvious that a 

disturbance in SAM availability in the CNS may impact cognitive functioning as well as on 

other psychological statuses (Brosnan et al., 2004;Calvaresi and Bryan, 2001).  

The Hcy hypothesis suggests that cognitive deterioration, associated with low status of B 

vitamins, is caused by increased concentrations of tHcy. The mechanisms by which HHcy 

causes neurodegenerative events are different and this will be disscused in the next paragraph. 

Ellinson and colleagues have reviewed a total of six studies and found that the relationship 

between serum folate and vitamin B12 status with cognitive impairment in older adults was 

heterogeneous. Only one case control study reported decreasing cognitive scores with 

increasing serum vitamin B12 (Ellinson et al., 2004). Further research to clarify mechanisms 

linking vitamin B12 and folate deficiency to cognitive impairment before supplementation are 

recommended.  

 



 29

Table 3: Selected studies investigating the relation between  B vitamins and cognitive function in elderly people 

Study Study population Study design Tests Results 

(Li et al., 2008) 191 subjects 
mean age= 72.2y 

Cross-sectional  MMSE Inverse relationship between MMSE scores and 
plasma tHcy concentrations (p=0.024). This relation 
became non-significant after adjustment for plasma 
concentrations of vitamin B12 and folate (p=0.136). 

(Kim et al., 2008)  518 elderly (≥ 65 y) Prospective 
cohort (follow-up 
2.4 years) 
 

MMSE 
Clinical dementia rating scale 
Instrumental activities of daily 
living scale 

Only baseline lower folate concentrations predicted 
incident dementia. The onset of dementia was 
significantly associated with low folate status, 
higher tHcy concentrations, and weaker increase in 
vitamin B12 concentrations over the follow-up 
period.  

(Morris et al., 
2007) 

1302 subjects  (≥ 60 y) Retrospective  Digit symbol coding subtest of 
the Wechsler adult intelligence 
scale II 

Low versus normal vitamin B12 status was 
associated with cognitive impairment (OR: 2.5). In 
the group with low B12, serum folate>59 nM; as 
opposed to ≤ 59 nM, OR for cognitive impairment 
was 2.6. 

(Kado et al., 2005) 499 community-dwelling, 
aged (70-79 y)  

Cross-sectional 
longitudinal 
cohort (follow-up 
7 years) 

Test of multiple cognitive 
domains 

Subjects with lowest folate status had worst 
cognitive decline.  

(Duthie et al., 
2002) 

2 cohorts, the first one 
(ABC 36) contained 150 
subjects aged ≥ 63 y and 
the second one (ABC 21) 
contained 150 subjects 
aged ≥ 78 y 

Cross-sectional MMSE  
RPM  
AVLT 
DS  
BD 

MMSE, RPM, AVLT, DS, and BD scores were 
higher in ABC36 comparing to ABC21. In the 
ABC21, folate, vitamin B12, and MMSE score were 
positively correlated and homocysteine was 
negatively correlated with RPM, DS, and BD 
scores. In the ABC36, folate was positively 
correlated with BD score.  

(Clarke et al., 
1998) 

164 subjects  
with confirmed AD  
age≥ 55 y 

Case-control MMSE 
CAMDEX 
CAMCOG 

Concentrations of folate and vitamin B12 were 
lower in patients than in controls. Corresponding 
OR for the lower third with the upper third was 3.3 
for folate and 4.3 of vitamin B12. 

AD: Alzheimer’s disease, MMSE: Mini-Mental Status Examination, CAMDEX: Cambridge Examination for Mental Disorders of the Elderly, OR: Odds Ratio, CAMCOG: Cambridge 

Examination for Mental Disorders. RPM: Raven's Progressive Matrices, AVLT:  Auditory Verbal Learning Test, DS: digit symbol subtest, BD:  block design subtest.
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1-10. Pathomechanisms of homocysteine neurotoxicity: 
 

1-10-1. Direct effects of homocysteine on the nervous system: 

 

Protein N-homocysteinylation: 

Hcy is metabolized to the cyclic thioester Hcy-thiolactone when remethylation or 

transsulfuration reactions are impaired by genetic alterations of enzymes involved in Hcy 

metabolism (Jakubowski, 2004). Hcy-thiolactone is a reactive intermediate that causes N-

homocysteinylation through the formation of amide bonds with ε-amino groups of protein 

lysine residues. Recently, it has been shown that Hcy-thiolactone is detectable in human 

vascular endothelial cells, where Hcy is incorporated into proteins and the extent of 

thiolactone formation and protein-homocysteinylation depends on the extracellular 

concentrations of Hcy and folate (Jakubowski et al., 2000). Hcy-thiolactone is also known to 

be acutely toxic to the CNS in experimental animals. Hcy-thiolactone, injected intravenously 

in 1 dose into mice and rats as a possible radioprotectant in studies of tumor therapy, is 

extremely neurotoxic (Spence et al., 1995). For example, at 200 mg/kg Hcy-thiolactone, many 

mice developed immediate seizures followed by death within minutes. At 350 mg/kg, all 

animals developed seizures and died. At doses of 100 mg/kg or below, mice developed only 

mild somnolescence, and no long-term effects were observed within 30 day.  

 

N-methyl-D-aspartate (NMDA) receptors and excitotoxcity: 

The N-methyl-D-aspartate (NMDA) receptor, a glutamate receptor, has critical roles in 

synaptic transmission, plasticity, and excitotoxicity in the CNS. Hcy acts as a partial 

antagonist of the glycine site of the NMDA and therefore inhibits NMDA receptor-mediated 

activity. In addition, Hcy is also an agonist at the glutamate site of the NMDA receptor and is 

therefore a potential excitotoxin. Under conditions of normal glycine concentrations, the 

agonist action of Hcy would only occur if its level approached millimolar concentrations. In 

case of elevated glycine levels, such as ischemia or head injury, a relatively low Hcy 

concentrations can stimulate NMDA receptors (Lipton et al., 1997).  

NMDA receptor stimulation leads to transient rise in intracellular calcium concentrations, 

which in turn activate calcium-activated proteases and cause potentially damaging effects on 

neuronal cells. At their worst, these effects can include cell death by apoptosis, and it is 

possible that they can have localized function limited to dendrites (Gilman and Mattson, 

2002). In cultured neurons, Hcy treatment increases cytosolic calcium and treatment with 
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calcium-channel blockers attenuates this increase (Ho et al., 2002). Hcy potentiates glutamate 

neurotoxicity, and the toxicity of Hcy itself is attenuated by antagonists of metabotropic 

glutamate receptors (Kruman et al., 2000). 

 

1-10-2. Indirect effects of homocysteine on the nervous system: 

 

Homocysteine and hypomethylation: 

Methylation reactions in the brain, including synthesis of phospholipids, nucleic acids, 

neurotransmitters, regulation of gene expression, and modification of protein function can not 

occur without the proper function of methyltransferases. Under conditions of Hcy excess, 

reversibility of the hydrolytic reaction causes accumulation of SAH, a potent inhibitor of 

methyltransferases (Mudd et al., 1995). Thus, it has been suggested that one of the basic 

biochemical mechanisms of HHcy toxicity is a hypomethylation through SAH accumulation 

(Hultberg et al., 2000).  

Disturbed SAH, SAM, or their ratio have been reported in patients with dementia or AD 

(Bottiglieri et al., 1990;Kennedy et al., 2004). In addition, depressed patients with raised tHcy 

concentrations were found to have significantly lower concentrations of CSF-folate, CSF-

SAM and all CSF monoamine metabolites (Bottiglieri et al., 2000a). 

Myelin forms the myelin sheath around the axon of the neuron. It is essential for the proper 

function of the nervous system. Methylation is essential for myelin formation and function 

since 19% of myelin basic proteins are methylated (Baldwin and Carnegie, 1971). Subacute 

combined degeneration of the cord and brain, occured as a result of demyelination, was 

reported in children with inborn errors of the one-carbon transfer pathway (Surtees et al., 

1997).  

The alternative pathway for the methylation of Hcy to form methionine is catalyzed by 

BHMT. Betaine, which is derived from dietary choline by the action of choline 

dehydrogenase, is the methyl group donor in this reaction and supplemental oral betaine can 

lower plasma tHcy concentrations (Steenge et al., 2003). Twelve patients (median age 6 

years), with neurologic disease due to remethylation defects, showed to have an isolated brain 

choline deficiency probably secondary to depletion of labile methyl groups produced by the 

transmethylation pathway (Debray et al., 2008).  

Hypomethylation of DNA and altered gene expression play critical roles in neuronal damage. 

DNA damage, caused by elevated Hcy, triggers a cell death pathway involving poly ADP-
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ribose polymerase (PARP) and the tumor suppressor protein p53, leading to mitochondrial 

dysfunction and activation of all death proteases called caspases (Kruman et al., 2000).  

 

Homocysteine and oxidative stress: 

Oxidative stress is an important event that has been implicated in the pathogenesis of 

neurodegenerative diseases. Many studies have elucidated Hcy neurotoxicity through 

generating a status of oxidative stress. It has been reported that HHcy leads directly to a rise 

in the formation of superoxide and hydrogen peroxide by Hcy autoxidation or by cysteine 

autoxidation (Hogg, 1999) and that excitotoxicity indirectly provokes intracellulary increase 

of free radical production. Similar consequences such as apoptosis and increased cytosolic 

calcium and  ROS were observed following direct addition of Hcy to cultured neuronal cells 

(Kruman et al., 2000). 

Cytoplasmic calcium influx, a consequence of both excitotoxicity and oxidative stress, is 

associated with Hcy exposure (Zieminska et al., 2003). Calcium can induce cell death by 

causing metabolic aberrations in the mitochondria and modulating gene transcription in the 

nucleus (Ermak and Davies, 2002).  

The generation of ROS in normal cells, including neurons, is under tight homeostatic control. 

Excessive ROS can lead to the destruction of cellular components including lipids, protein, 

and DNA, and ultimately cell death via apoptosis or necrosis (Kannan and Jain, 2000). Folate 

deprivation and consequently elevated Hcy concentrations have been found to increase ROS 

and induce mitochondrial degeneration in cultured cortical neurons (Ho et al., 2003).  

An interesting recent development is a proposed relation ship between HHcy and asymmetric 

dimethylarginine (ADMA), an inhibitor of endothelial nitric oxide (NO) synthase, and 

thereby reduces the synthesis of NO. A significant negative correlation was detected between 

the plasma concentrations of NO and both plasma concentrations of Hcy and ADMA in 

subjects with AD (Selley et al., 2002). 

 

Homocysteine and tau protein: 

Tau protein occurs predominantly in neuronal axons, where it binds to microtubules and 

regulates their length and activity. The biological activity of tau in stabilizing microtubules 

correlates inversely with its degree of phosphorylation. Tau hyperphosphorylation disrupts the 

normal colocalization of it with microtubules, leading to the probability of tau-tau interaction 

and the formation of PHF, and their subsequent aggregation into NFTs, a major hallmark of 

AD (Stoothoff and Johnson, 2005) (Figure 4). 
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                          A                                      B                                     C 

 
Figure 4: Tau immunostained microscopic sections 

A: Normal brain, B: Brain with mild dementia, C: Brain with severe dementia 

(Image is adapted from: www.bu.edu/alzresearch/cste) 

 

Phosphorylation of tau is regulated by a host of kinases and phosphatases. Glycogen synthase 

kinase 3β (GSK 3β), phosphatidyl nositol 3-kinase (PI3K), and mitogen-activated protein 

(MAP) kinases are among several kinases found to be activated by elevated Aβ status 

(Ferreira et al., 1997).  

Protein phosphatase-2A (PP2A), which is found in association with microtubules in the brain, 

plays an important role in tau dephosphorylation (Wang et al., 2007). Studies suggest that a 

decrease in PP2A activity, rather than an increase in kinase activity, is crucial for the elevated 

levels of tau phosphorylation associated with NFTs formation (Planel et al., 2001). 

Methylation is considered an important process in regulating PP2A activity. PP2A 

methylation is controlled by a specific SAM-dependent methyltransferase (Lee and Stock, 

1993). PP2A is a multimeric protein complex consisting of 3 subunits. A subunit acts as a 

scaffold for the association of catalytic C subunit and one of a variety of regulatory B 

subunits. B subunits control the substrate specificity and subcellular localization of PP2A 

(Sontag et al., 1999). The assembly of ABC heterotrimers proceeds as a multistep process 

with AC dimer methylation followed by binding of regulatory B subunit.  

The importance of SAM in regulating PP2A activity provided the link between HHcy and tau 

hyperphosphorylation, NFTs formation, and neurodegeneration (Vafai and Stock, 2002). 

Sontag and colleagues showed that incubation of neuroblastoma cells with SAH results in 

reduced methylation of PP2A, thereby affecting PP2A substrate specificity and accumulation 

of both phosphorylated tau and APP isoforms. Conversely, incubation of N2a cells with SAM 
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enhances PP2A methylation and accumulation of dephosphorylated tau (Sontag et al., 2007). 

After treatment of rat primary neuron cultures with a folate antagonist, methotrexate, levels of 

phosphorylated tau and APP were increased and the neuronal viability was reduced. 

Interestingly, levels of methylated PP2A were reduced. These novel findings indicate that 

folate deficiency increases the characteristic AD pathology including tau phosphorylation 

presumably by PP2A inactivation (Yoon et al., 2007).  

In addition, high plasma Hcy induced by vena caudalis injection for 2 weeks could induce 

AD-like tau hyperphosphorylation at multiple sites in rat brain hippocampus (Zhang et al., 

2008). A simultaneous supplement of folate and vitamin B12 restored partially the plasma 

Hcy concentrations and thus significantly antagonized the Hcy-induced tau 

hyperphosphorylation and as well as PP2A inactivation. These results suggest that Hcy may 

be an upstream effector to induce AD-like tau hyperphosphorylation through inactivating 

PP2A. 

 

1-11. Homocysteine and amyloid beta protein: 
 

1-11-1. Amyloid precursor protein: 

The human APP gene is located on chromosome 21 and spans approximately 240 Kb. APP is 

an integral membrane protein expressed in many tissues and concentrated in the synapses of 

neurons. Its normal functions are not fully understood, but increasing evidence suggests that it 

plays important roles in regulating neuronal survival, neuritis outgrowth, and synaptic 

plasticity (Mattson, 1997).  

APP consists of a membrane-spanning segment, a large extracellular N-terminal region, and a 

shorter intracellular carboxy terminus. The β-peptide consists of 42 amino acid stretch of APP 

that lies partially extracellular and partially within the plasma membrane. Proteolytic 

processing of APP occurs by three proteases (α-, β-, and γ-secretases) via two major 

pathways, amyloidogenic and non-amyloidogenic (Figure 5). The non-amyloidogenic 

cleavage occurs when α-secretase splits APP in the middle of the Aβ domain, precludes the 

release of the plaque-forming Aβ fragment and liberates sAPPα and C83, the latter being 

cleaved by γ-secretase to generate p3. β- and γ-secretases operate in the amyloidogenic 

cleavage thus liberating sAPPβ and C99 moieties. C99 is further cleaved within the 

transmembrane domain and two major forms of 40 and 42 amino acids with different C-

termini [Aβ (1-40) and Aβ (1-42)] are generated (Suh and Checler, 2002).  
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Mutations in three genes, each inherited in an autosomal dominant manner, can cause early 

onset forms of AD. One gene encodes APP, and the other two genes encode PS-1 and PS-2. 

PS mutations promote neuronal degeneration by enhancing γ-secretase cleavage of APP, 

thereby increasing production and accumulation of neurotoxic Aβ (Haass and De, 1999). 

 

 
Figure 5: Proteolytic processing of APP 

sAPPα: soluble APP after α-secretase cleavage; sAPPβ: soluble APP after β-secretase cleavage. 

 

1-11-2. The role of amyloid cascade in Alzheimer’s  disease: 

Studies of neuronal culture and mouse models identified that increased production, 

aggregation, and accumulation of Aβ initiate a cascade of events leading to neurotoxicity 

(Hardy and Selkoe, 2002). Exposure of cultured neurons to Aβ can induce apoptosis (Loo et 

al., 1993), and increase their vulnerability to death by oxidative stress and reduced energy 

availability that are known to occur in the brain during aging (Mattson and Pedersen, 1998).  

 

Aβ can sensitize neurons to death by different mechanisms (Figure 6). One major mechanism 

is disrupting calcium homeostasis. Calcium is a key second messenger capable of mediating 

fundamental processes in neuronal function, synaptic transmission, plasticity, and the 

regulation of various metabolic pathways (Kater et al., 1988). Disturbed processing of APP 

may destabilize calcium homeostasis in neurons by increased production of Aβ (1-42) and by 

decreased sAPPα levels. Aβ induced-oxidative stress impairs membrane calcium pumps and 

enhances calcium influx through voltage-dependent channels and ionotropic glutamate 

receptor (Mattson and Chan, 2003). Additionally, Aβ was shown to promote calcium influx 
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by forming channels in cell membranes or by activating cell surface receptors coupled to 

calcium influx (Hartmann et al., 1993). 

 

Another mechanism of Aβ neurotoxicity is via enhancing oxidative stress. Aβ enhances free 

radicals formation by binding metals such as zinc, copper, and iron (Huang et al., 1999). Aβ is 

believed to contact or insert into the neuronal and glial membrane bilayer and generate 

oxygen-dependent free radicals that can cause lipid peroxidation and protein oxidation 

(Varadarajan et al., 2000). Lipids are structural components of cell membranes and serve as 

intra- and intercellular signaling molecules. Aβ-induced lipid peroxidation impairs the 

function of ion-motive ATPases and glucose and glutamate transporters (Mattson, 1997).   

 

Aβ can be neurotoxic by stimulating neuroinflammation including glial activation which 

plays an important role in the pathogenesis of AD (Calingasan et al., 2002). A significant, 

dose-dependent, increase in the production of different inflammatory mediators was obtained 

in cultures of microglia from rapid (mean of 2 h 55 min) autopsies of patients with AD and 

non-demented elderly controls after exposure to Aβ (Lue et al., 2001). This increase was 

significantly higher in AD compared with microglia from controls. Moreover, the production 

of neurotrophic factors such as basic fibroblast growth factor increased in astrocytes 

associated with Aβ deposits (Cummings et al., 1993).  

 

Aβ might activate some intracellular signalling pathways thus enhancing the neurotoxicity. 

For example, Aβ was shown to induce sustained activation of the mitogen-activated protein 

kinases (MAPK) followed by hyperphosphorylation of tau protein in aging hippocampal 

neurons (Rapoport and Ferreira, 2000). Furthermore, in the same study, the blockage of 

MAPK activation using specific inhibitors prevented neurite degeneration in these cells. 

These results suggested that the MAPK signal transduction pathway could play a key role in 

Aβ-induced neuritis degeneration. 
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Figure  6: Amyloid cascade (Cummings, 2004) 
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1-11-3. Homocysteine and Aβ protein: 

Different studies have reported the synergistic influence of Hcy and Aβ (Table 4).   

 

Table 4: A: Selected studies on the association of Hcy and Aβ 

Study Subjects/cells Results 

(Irizarry et al., 2005) 465 patients 
(AD, MCI, PD, 
CAA, hICH) 

Plasma concentrations of tHcy were positively 
correlated to that of Aβ (1-42) and Aβ (1-40) after 
adjusting for age. 

(Flicker et al., 2004) 299 elderly  
mean age:78.9 y 

Plasma concentrations of tHcy and Aβ (1-40) were 
positively correlated after adjusting for GFR. Doubled 
tHcy levels were associated with 24% increase in Aβ 
(1-40) levels. 

(Sai et al., 2002) PS deficient 
fibroblasts 
HEK 293 cells 

Hcy increased Aβ levels by upregulating a presenilin-
interacting endoplasmic reticulum stress protein 
(HERP) (Hcy-induced protein). 

(Scarpa et al., 2003) Human 
neuroblastoma 

Deficient methylation upregulated PS gene function 
and Aβ generation. 

(Hasegawa et al., 2005) Cortical neurons Neuron exposure to HA enhanced Aβ (1-42) 
accumulation inside the cells. This was prevented by 
γ-secreatase inhibitor. 

B: Selected studies on the synergistic influence of Hcy and Aβ 

Study Cells  Results 

(Ho et al., 2001) SH-SY 
neuroblastoma 

Hcy potentiated the effects of Aβ on cytosolic calcium 
and neuronal apoptosis. 

(White et al., 2001) Primary mouse 
neuronal cultures 

Hcy generated high level of hydrogen peroxide in the 
presence of Cu and promoted Aβ/Cu mediated 
hydrogen peroxide production and neurotoxicity. 

(Kruman et al., 2002) Hippocampal and 
cortical cell 
cultures 

Cell exposure to Aβ (1-42) in control medium for 48 
hours caused 30% cell death versus 70% in methyl 
donor deficient medium via the impairement of DNA 
repair.  

(Ho et al., 2003) SH-SY 
neuroblastoma 

Cells cultured in folate deprivation conditions showed 
(mean±SD: 64±5%) increase in ROS versus cells 
cultured in the presence of folate, while Aβ treatment 
in the presence of folate induced 34±4% increase. 
However, Aβ treatment of folate-deprived cells 
induced a 144±10% increase. 

AD: Alzheimer’s disease, MCI: mild cognitive impairment, PD: Parkinson disease, CAA: cerebral amyloid angiopathy, 

hICH: hypertensive intracerebral hemorrhage, PS: presenilin, HA: homocysteic acid, GFR: glomerular filtration rate. 
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1-12. Prevention of dementia: 
Several studies confirmed the association between HHcy and cognitive function. The effect of 

lowering homocysteine concentrations on cognitive performance has been widely tested and 

inconclusive outcomes were obtained (Ellinson et al., 2004). 

 

In a systematic review of randomized trials in a variety of doses, route of administration, and 

population, one of three trials of folic acid found a benefit in cognitive function in people with 

cognitive impairment and low baseline serum folate levels. Six trials with combinations of B 

vitamins concluded that the supplementation had no effect on cognitive function (Balk et al., 

2007). However, major limitations of these studies and others preclude a firm conclusion that 

B vitamins supplementation has no effect on cognitive performance. Long-term duration, 

large participant’s number, standardized cognitive tests that distinguish different cognitive 

domains, adjusting for demographic factors such as age and gender, doses and forms of the 

vitamins, and start of the treatments are all critical factors that have to be considered for 

judging available results or for future studies. Table 5 summarizes some of B vitamins 

intervention studies related to cognitive function. 

 

3-deazaadenosine (DZA) is an adenosine analogue that reduces Hcy accumulation via the 

inhibition of SAH hydrolysis (Chiang et al., 1977). DZA exerts a number of biological 

properties, such as anti-human immunodeficiency virus (HIV) activity (Gordon et al., 2003) 

and immunosuppressive and anti-inflammatory effects (Fingerhuth et al., 2004). In addition, it 

has been shown that treatment with DZA provides neuroprotection in normal and ApoE 

deficient mice and in cultured neuronal cells deprived of folate and vitamin E and subjected to 

oxidative challenge (Tchantchou et al., 2004).  

The mechanisms underlying DZA actions are generally thought to be mediated through the 

inhibition of cellular methylation reactions (Walker et al., 1999a). Dietary supplementation 

with DZA prevented both the increase in oxidative damage and impaired cognition of ApoE 

deficient mice following folate deprivation (Shea et al., 2004). Folate deprivation induced 

Hcy accumulation, while addition of DZA prevented both this increase and the increased 

generation of ROS that normally accompanies folate deprivation (Ho et al., 2003). These 

findings demonstrate that DZA can provide neuroprotection effect via mechanism related to 

its antioxidant properties.  
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Table 5: Studies investigating the possible relation between B vitamin supplementation and improvement of cognitive function 

Study population Supplements and duration Tests Results 

(Durga et al., 
2007) 
 
 

818 subjects 
 

800 µg folic acid/placebo 
3 years 
 

Performance for memory 
Sensomotor speed 
Complex speed 
Word fluency 
Information processing speed 

Improvement in domains of cognitive function that 
tend to decline with age (change in memory, 
Information processing speed, and sensomotor speed). 
 

(Bryan et al., 
2002) 

211 women 
(aged 20-92y) 

750 µg folic acid 
15 µg vitamin B12 
75 mg vitamin B6/placebo 
5 weeks 

Information processing speed 
Working memory 
Executive function 
Verbal ability 
Mood measures 

Positive effects were seen mainly for memory 
performance but not for mood.  
Short time of supplementation, lack measures of B 
vitamins at baseline and testing effects of single 
nutrient are major limitations of this study. 

(La et al., 1997) 137 healthy, 
dementia free 
elderly  (aged 
66-90 y) 

vitamins A, E, B6, B12, C, 
and folate 
(Longitudinal study carried 
out over 6 years). 

Wechsler memory scale, 
Rey-Osterrieth complex 
figure 
Shipley-Hartford abstraction 
test 

Correlation between improved abstraction 
performance and high thiamine, riboflavin, niacin, and 
folate intakes was found.  

(McMahon et 
al., 2006) 

276 healthy, 
dementia free 
elderly 
(aged>65y) 

1000 µg folic acid 
500 µg vitamin B12 
10 mg vitamin B6/placebo 
2 years 

MMSE 
Rey-verbal learning test 
Paragraph-recall test 

Scores of cognition tests showed no significant 
differences after the supplementation.  
Relatively short duration, few numbers of participants, 
and the intact cognitive scores in placebo group are 
limitations of this study. 

(Aisen et al., 
2008) 

340 subjects 
with mild to 
moderate AD 

5 mg folate 
1 mg vitamin B12 
25 mg vitamin B6 
Placebo / 18 months 

Cognitive subscale of 
Alzheimer disease assessment 
scale (ADAS-cog) 

No beneficial effects on cognitive performance was 
found. 

(Eussen et al., 
2006) 

195 elderly 
subjects 
(aged>75y) 
with vitamin 
B12 deficiency 

1 mg vitamin B12 
 0.4 mg folic acid 
1 mg vitamin B12 / placebo 
24 weeks 

Neuropsychological test 
battery that included the 
domains of attention, 
construction, sensomotor 
speed, and memory 

No improvement in the cognitive status was obtained. 

(Lewerin et al., 
2005) 

195 elderly 
subjects (mean 
age=76y) 

3 mg vitamin B6 
0.8 mg folic acid 
0.5 mg vitamin B12 
Placebo / 4 months 

Movement and postural-
locomotor-manual test 
Battery of cognitive test 

Vitamins supplementation caused no improvement in 
tests scores.  
Short duration, relatively small sample size, and 
insufficient dosage are the limitations of this study. 
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Another important therapeutic strategy in dementia is cholesterol-altering drugs. Individuals 

that consume diets high in cholesterol and those with increased cholesterol levels may be at 

increased risk of AD, whereas those who take cholesterol–lowering drugs (statins) may be at 

reduced risk (Puglielli et al., 2003;Wolozin et al., 2000). Accumulating data suggest that 

cholesterol may contribute directly into the amyloid cascade by promoting amyloidogenic 

processing of APP. In culture and animal model systems, statins and other cholesterol-

lowering agents decrease Aβ levels and Aβ deposition (Fassbender et al., 2001), whereas 

high-cholesterol diets in APP transgenic mice increase Aβ deposition (Refolo et al., 2000). 

Lipid bilayer of plasma membranes, which are enriched in cholesterol and sphingomyelin, 

contain several molecular events implicated in AD pathogenesis, including signal 

transduction, initiation of apoptosis, and APP processing (Ehehalt et al., 2003). Cholesterol-

modulating drugs could directly influence Aβ deposition and production through alteration in 

secretase activity or indirectly influence Aβ deposition by altering levels of factors such as 

ApoE (Wolozin et al., 2000).  
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2. STUDY AIMS 
 
 

Study (1):  
Markers of methylation are related to that of neurodegeneration: 
HHcy is a risk factor for neurodegenerative and psychiatric disorders, but causal relationship 

remains elusive. Elevated concentrations of tHcy in plasma are associated with increased 

concentrations of tHcy and SAH in the brain. Vitamin B12 and folate play an important role 

for Hcy recycling to methionine, therefore participating in methyl group synthesis or 

metabolism.  Methylation reactions in the brain include methylation of myelin, synthesis and 

catabolism of neurotransmitters, methylation of phospholipids, and methylation of proteins, 

RNA, and DNA. 

Neurodegenerative diseases share a common feature, accumulation of misfolded proteins. Tau 

and Aβ are two examples of proteins that accumulate in brains of patients with dementia. Our 

study aimed at investigating the relationship between markers of neurodegeneration, and that 

of methylation in CSF samples from patients with neurological disorders.  

 
 
Study (2):  
B vitamins may improve cognitive function in elderly: 
Age-related changes in absorption, metabolic pathways, and physiologic systems may result 

in older persons obtaining insufficient dietary intake of B vitamins. Poor folate status has been 

associated with depression and dementia in the elderly, and folate metabolism is linked to a 

variety of neurochemical processes. Vitamin B12 deficiency may induce neuropsychiatric 

complications in the absence of anaemia. Lower plasma concentration of vitamin B12 has 

been related to brain shrinkage and worse cognitive performance. Vitamin B6 status declines 

with age, and low blood concentrations of vitamin B6 have been associated with impaired 

cognitive function and AD. Results from intervention studies with B vitamins are not 

consistent. Several studies have suggested that early intervention is necessary to prevent 

cognitive decline. The aim of this part of our study was to investigate the effect of the 

therapeutic doses of B vitamins on cognitive performance in elderly subjects. 
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Study (3): 
 One-carbon cycle metabolites might affect APP level and/or its processing: 
A prominent feature of AD brain is the widespread cerebral deposition of Aβ within senile 

plaques and in cerebral and meningeal blood vessel. Deposits of amyloid fibrils cause 

neuronal death and memory decline in patients with AD. Aβ is formed from APP by a 

consequent splitting by means of β- and γ-secretases. Results from different studies suggest 

that alterations in Hcy metabolism are related to increased accumulation of Aβ and may 

contribute to the amyloid pathology in normal aging and in AD. In the current study, we 

aimed at testing the hypothesis that the methyl group metabolism affects APP level and/or its 

processing through the amyloidgenic pathway. We utilized Down syndrome fibroblasts as a 

culture model with enhanced risk for neurodegeneration. 
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3. SUBJECTS AND METHODS: 
 

3-1. Subjects and samples: 
The first part of this study included 182 patients who were administered to the department of 

neurology/university hospital of the Saarland during April 2002 and April 2004. The study 

included 31 patients with multiple sclerosis, 19 patients with stroke, 31 patients with dementia 

(8 had Alzheimer disease), and 36 patients with peripheral neuropathy. Additionally, a control 

group consisted of 65 patients with various neurological diseases other than dementia, PD, 

polyneuropathy, multiple sclerosis, AD, and depression. Exclusion criteria included renal or 

liver dysfunction and alcoholism. Patients with depression, brain tumor, and PD were not 

included in this study.  

CSF samples contaminated with peripheral blood or hemoglobin were excluded from the 

study. Non-fasting blood samples were collected from all patients. Serum and EDTA plasma 

were available. CSF samples were obtained during clinically indicated lumbar puncture. 

Blood and CSF samples were collected within 24 hours. Blood and CSF samples were 

directly centrifuged and several aliquots were prepared and stored at -70°C until analysis. 

Aliquots of the EDTA plasma and CSF were immediately deproteinized using perchloric acid 

(10%). The samples were stored at -70°C and were used for SAM and SAH assays. 

 

The second part of the study was triple-blind placebo controlled. Sixty-nine patients (mean 

age 78 years, 62 females) agreed to participate and were randomly allocated to receive 

vitamins (1000 µg B12) or placebo. The placebo or the vitamins were injected subcutaneous 

three times a week for 3 weeks. Additionally, participants received oral placebo or vitamins 

(20 mg B6, 500 µg B12, and 2.5 mg folic acid) from day 0 until the end of the intervention 

that lasted 45 days. Placebo and vitamins capsules were similar in shape and color. The 

injections had different colors but they were injected into the patients in a way that he/she 

could not see the color.  

During the first three weeks the patients were hospitalized (Geriatrische Rehabilitationsklinik 

St. Ingbert). At the end of the intervention, patients were interviewed at home and blood 

samples were collected. Sixty participants completed the whole treatment phase. Detailed 

study design is illustrated in Figure 7.  

Blood samples were stored at 4°C for no longer than one hour then centrifuged at 2000 g, for 

10 min, at room temperature. The plasma and serum were separated and stored at -70°C until 

analysis.  
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Figure 7: Study design 

Cognitive function was investigated by using MMSE and the Structured Interview for 

Diagnosis of Dementia of Alzheimer Type, Multi-infarct Dementia and Dementia of other 

ethiology according to ICD-10 (SIDAM).  

MMSE is a brief 30-point questionnaire test that is used to estimate the severity of cognitive 

impairment at a given point in time and to follow the course of cognitive changes in an 

individual over time, thus making it an effective way to document an individual's response to 

treatment. Any score over 27 (out of 30) is considered normal. A score between 20 and 26 

indicates mild cognitive impairment, 10 and 19 moderate to severe cognitive impairment, and 

below 10 dementia.  

SIDAM comprises a brief structured clinical interview, a range of cognitive tests (e.g. 

including the MMSE) which constitute a short neuropsychological battery and a section for 

clinical judgement. It is a brief (average of 28 min), practical and easily scored diagnostic 

instrument, which reliably separates subjects with Diagnostic and Statistical Manual of 

Inclusion criteria 
Age>65 

GFR>35 ml/min 
MMSE-scores>15 

No history of coronary or 
cerebral events in the last 

three months 

Patients screened, informed, 
agreed, and recruited 

69 subjects  
(34 vitamin/35 Placebo) 

Study design 

Admission (Day-1) 
 
                
 

Release (Day-21) 

Day-45 (at home) 
60 subjects completed 

s.c (daily)                Oral (daily) 
1 mg B12                 0.5 mg B12             
                                 2.5 mg folic acid 
                                 20 mg B6 

Oral (daily) 
0.5 mg B12             
2.5 mg folic acid 
20 mg B6 

9 subjects 
dropped out 
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Mental Disorders (DSM-III-R) and International Statistical Classification of Diseases and 

Related Health Problems 10th Revision (ICD-10) dementia from those without such a 

disorder. Furthermore, the SIDAM score allows a detailed measurement of even low levels of 

cognitive impairment and provides quantification of severity grading of cognitive 

dysfunction. In our study, we utilized one part of the SIDAM, which tested the cognitive 

performance in a standardized form with 55 questions, including MMSE. Furthermore, this 

test evaluates orientation, short term and long-term memory, global memory, intellectual 

performance, verbal/mathematical ability, ability for three dimensional design, aphasia and 

apraxia as well as higher cortical functions. 

The third part of the thesis included cell culture experiments that will be explained later. 

 

3-2. Methods: 

 
3-2-1. Homocysteine, cystathionine, and methylmalonic acid assays: 

This assay was performed by Gas Chromatography Mass spectrometry (GCMS), utilizing a 

slightly modified protocol as previously described (Stabler et al., 1993).                                                            

GCMS is an instrumental technique, comprising a gas chromatograph (GC) coupled to a mass 

spectrometer (MS), by which complex mixtures of chemicals may be separated, identified and 

quantified. In order for a compound to be analysed by GCMS it must be sufficiently volatile 

and thermally stable. In addition, functionalized compounds may require chemical 

modification (derivatization) prior to analysis, to eliminate undesirable adsorption effects that 

would otherwise affect the quality of the data obtained. The sample solution is injected into 

the GC inlet where it is vaporized and swept onto a chromatographic column by the carrier 

gas (usually helium). The sample flows through the column and the compounds comprising 

the mixture of interest are separated by virtue of their relative interaction with the coating of 

the column (stationary phase) and the carrier gas (mobile phase). The latter part of the column 

passes through a heated transfer line and ends at the entrance to ion source where compounds 

eluting from the column are converted to ions. Electron ionization is the most frequently used 

method for ion production. A beam of electrons ionize the sample molecules resulting in the 

loss of one electron. A molecule with one electron missing is called the molecular ion and is 

represented by M+ (radical cation). Due to the large amount of energy imparted to the 

molecular ion it usually fragments producing further smaller ions with characteristic relative 

abundances that provide a 'fingerprint' for that molecular structure. As the ions continue 
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through the MS, they travel through an electromagnetic field that filters the ions based on 

mass. The range of masses that should be allowed through the filter is specified by the 

analyst. After the ions are separated they enter a detector, and the output is amplified to boost 

the signal. The detector sends information to a computer that records all of the data produced, 

converts the electrical impulses into visual and hard copy displays.  

Materials: 

Mass spectrometry with electron ionizer system. 

Gas chromatography-column; HP 5MS (crosslinked 5% PH ME Siloxane). Column length 30 

m, film thickness 0.25 µm, phase ratio 250, column ID 0.25 mm. (Cat-N: 19091S-433. 

Agilent Technologies®). 

Poly-prep chromatography columns: Cat-N: 731-1550 (BIO-RAD®). 

Anionic resin: AG MP-1M Resin (BIO-RAD®). 
Derivatizing agent: N-methyl-butyldimethylsilyl-Tri-fluoroacetamide (MBDSTFA, Machery 

and Nagel®). 

Reducing agent: 1,4-Dithiothreitol (C4H10O2S2, MW=154.2; DTT) from ROTH® (Cat-

6908.1). Working concentration: 10 mg/mL (in 1 N; NaOH).  

Internal standards working concentrations were 392 µM for DL-Hcy (3,3,3 ,3 ,4,4,4 ,4, D-8) 

(MW=276.36), 413.36 pmol/50 µL (2-amino-2-carboxythyl) (MW=226.3) for DL-Hcy = DL-

Cys, and 1.635 nM for DL-MMA (MW=121.11). 

Acetonitril, methanol, acetic acid, and chromatography water were all from MERCK®. 

 

Sample preparation: 

Hcy and Cys were simultaneously assayed in serum as following: 

- Sample was prepared in 5 mL glass tube by adding 1 mL HPLC grade water + 250 µL 

serum + 15 µL DL-Hcy + 20 µL DL-Cys + 30 µL reducing agent.  

- Mixture was incubated for 35 min at 45˚C for Hcy reduction.  

- Sample was then loaded on the anionic resin containing 100 mg (dry weight) of an 

anion exchange resin, pre-equilibrated with 1 mL methanol, then 3 mL water (The 

anionic resin should be pre-washed with HCl (1N) and methanol and left to dry by 

heating 60˚C for 4 hours).  

- The column was washed three times with 3 mL water and once with 3 mL methanol. 

- Hcy and Cys were eluted with 1.1 mL of 0.4 N acetic acid/methanol solution.  
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- Eluates were dried at 45°C in an Eppendorf concentrator 5301(Eppendorf, Germany) 

for 2-3 hours. 

- Dried eluates were derivatized by adding 30 µL of derivatizing agent and acetonitril 

(1:2 V/V), mixed and left in a microwave oven at 440 volt for 5 min.  

- Samples were loaded into the GCMS for the final assay. 

MMA quantification was separately performed as described for Hcy and Cys assay with the 

following modifications: we added in a 5 mL glass tube 1mL water + 250 µL serum + 15 µL 

DL-MMA. After transferring to chromatography column, sample was washed once with 

water and three times with mixture of acetic acid (0.01N) and methanol. Elution was 

performed using 1.1 mL of elution solution containing 10 mL Hcl (1N) and 90 mL  acetic 

acid (4N). 

 

Chromatography conditions: 

- Column head pressure 53.3 Psi. Intial/Max temperature 80/310˚C with rise rate 

15˚C/min. 

-  Major ion fragments (mass/charge) (m/z) for Hcy, Cys, and MMA were respectively 

424/396, 366/625, 292/334 for the labeled molecules and 420/392/318, 362/621/303, 

289/331/189/147 for the main molecules.  

- The retention times were 13.4 min for Hcy, 17.2 min for Cys, and 9 min for MMA. 

-  Tested sample concentration was calculated as follows: 

Conc. (nmol/L) = (Area under the curve of the sample/area under the curve of the internal 

standard) × correction factor   

(Correction factor is 39.2 for Hcy, 600 for Cys and 4087.5 for MMA). 

 

Assay quality control: 

 

Day-to-day imprecision (CV%) 
 Serum CSF 

Hcy <5% (at level 8.0 and 16.0 µM) <10% (at level 0.30 µM)    

Cys <8% (at level 300 nM)                      <10% (at level 60 nM) 

MMA <6% (at level 290 nM)                      <6% (at level 290 nM) 
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Reference ranges:  

Serum/Plasma: Hcy: 2-12 µM 

                         Cys: 65-301 nM 

                         MMA: 73-271 nM 

 

CSF:                 Hcy: 0.007-0.020 µM (Blom et al., 1993) 

                         Cys: 18-28 µM (Calvani, Jr. et al., 2001) 

                         MMA: 0.14-0.73 µM (Stabler et al., 1991) 

 

3-2-2. SAH and SAM assay: 

Concentrations of SAH and SAM were measured by using modified Liquid Chromatography 

Tandem Mass Spectrometry (LC-MS/MS) method according to Gellekink and collegues 

(Gellekink et al., 2005).  

The mass spectrometer is an instrument designed to separate gas phase ions according to their 

m/z value. This is achieved by ionizing the sample and separating ions of differing masses 

and recording their relative abundance by measuring intensities of ion flux. MS/MS is the 

combination of two or more MS experiments. The aim is either to get structure information by 

fragmenting the ions isolated during the first experiments, or to achieve better selectivity and 

sensitivity for quantitive analysis. 

 

Materials: 

LC-MS/MS system; Waters 2795 Separation Module: E01SM9925N 

Liquid chromatography-columns; SymmetryShieldTMRP18 Column 3.5 µm 2.1×100 mm and 

SymmetryShieldTMRP18 Guard Column 3.5 µm 2.1×10 mm were from Waters. 

PH-Meter /INOLAB/.  

Solid-phase extraction (SPE) columns (BondElut®PBA).    
13C5-SAH was from the laboratory of Gellekink group (Laboratory of Pediatrics and 

Neurology, Radboud University, Netherlands). 
2H3-SAM, SAM, and SAH were from Sigma. 

Ammonium acetate was from Fluka (for mass spectroscopy, MW 77.08).  

HPLC grade water, Acetic acid, and Ammonia solution were from MERCK®. 

Mobile phase: Acqueous acetic acid (pH: 2.636). 
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Sample preparation: 

Acidified samples were neutralized with a mix (v/v) 5:1 of 20 mM ammoniumacetat and 1M 

NH3  (pH= 7.4-7.5). Calibrators were prepared by diluting the stock solutions of SAH and 

SAM in ammonium acetate (pH 7.4) to concentrations of 0, 5, 15, 25, and 50 nM for SAH 

and 0, 50, 100, 150, and 300 nM for SAM. Controls were prepared by diluting the stock 

solutions of SAH and SAM in ammonium acetate (pH 7.4) to concentrations of 32 nM for 

SAH and 160 nM for SAM for the high control and to concentrations of 8 nM for SAH and 

40 nM for SAM for the low control. 25 µL of internal standard (212.86 µM for 2H3-SAM and 

58.16 µM for 13C5-SAH) were added to 500 µL of neutralized samples, calibrators, and 

controls. Sample cleanup was performed with solid-phase extraction (SPE) columns 

preconditioned at 500×g for 1 min by addition of five 1 mL volumes of mobile phase and five 

1 mL volumes of 20 mM ammonium acetate (pH 7.4). SAM, SAH, and their internal 

standards bind to this column. Water-soluble impurities were removed by washing the column 

twice with 1 mL of ammonium acetate (pH 7.4), and SAM and SAH were eluted with 3×350 

µL of the mobile phase (250×g for 2 min at 8°C). Eluates were stored at -20°C until analysis. 

 

Samples measuring: 

The samples were injected on an equilibrated (mobile phase) SymmetryShieldTMRP18 column 

[3.5 µm 2.1×100 mm] and SymmetryShieldTMRP18 Guard Column [3.5 µm 2.1×10 mm] pre-

column. The sample injection volume was 20 µL. Column temperature was 25°C and the flow 

rate was 0.3 mL/min over a total run time of 3 min. The retention times were ~ 2 min and ~ 1 

min for SAH and SAM respectively. Optimal multiple-reaction monitoring conditions were 

obtained for 4 channels: SAM (m/z 399→250), 2H3-SAM (m/z 402→250), SAH (m/z 

385→136), and 13C5-SAH (m/z 3909→136). Data were acquired and processed by QuanLynx 

for Windows NT software. Calibration curves were obtained by plotting ratios of the peak 

area (calibrator/internal standard) against the concentration of the calibrator.  

 

Reference ranges:   

Plasma: SAH:  9.1-16.1 nM; SAM:  82.9-122.5 nM 

CSF: SAH:  8.9-14.1 nM; SAM:  137-385 nM (Struys et al., 2000) 

 

Assay quality control: 

A plasma pool was collected in our laboratory and one aliquot was used each run with the 

samples. Estimates of interassay imprecision (CV) for SAH (at level 15.6 nM) and SAM (at 
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level 103 nM) were 7.9% and 4.9% respectively (n=29) and the intraassay CVs were 6.1% 

and 2.5% respectively (n=9). 

 

3-2-3. Folate assay (ADVIA Centaur®): 

This is a competitive chemiluminescence immunoassay that depends on releasing folate in 

serum sample from its binding proteins. The released folate compensates with advidin-bound 

folate on limited amount of folate-binding protein (labeled with biotin). The amount of folate 

in the tested sample correlates inversely with the resulted signal. The CVs for low and high 

controls were <5%. 

Reference range (serum/plasma): 5-14.6 ng/mL 

                           (CSF): 14-42 nM (Blom et al., 1993) 

 

3-2-4. Vitamin B12 assay (ADVIA Centaur®): 

This is a chemiluminescence immunoassay that depends on vitamin B12 releasing from its 

binding proteins in serum to compensate with acridiniumester labeled-vitamin B12 on a 

limited amount of a solid-phase bound intrinsic factor. The amount of the labeled B12 bound 

is proportional to the B12 in the tested sample.  

The CVs for low and high controls were <5%. 

Reference range (serum/plasma): 211-900 pg/mL 

                           (CSF): 2.1-22.9 pM (Blom et al., 1993) 

 

3-2-5. Holotranscobalamin assay: 

This assay is based on Micro particle Enzyme Immunoassay technology and the reagents set 

was from Axis-Shield® (Norway).  The first step is the immobilization of holoTC from the 

serum sample using mouse anti-human TC monoclonal antibodies bound to magnetic micro 

spheres. The next step is releasing Cbl content of the sequestered holoTC under reducing and 

alkaline conditions. Released Cbl is converted to the stable cyano form with potassium 

cyanide, and quantified in a competitive binding assay with (57Co) Cbl as tracer. The 

competitive assay occurs on limited numbers of binding sites on intrinsic factor-bound to a 

solid support. Finally, the solid phase bound-Cbl is separated by centrifugation and the pellet 

is counted in a gamma counter. The concentration of Cbl in the sample is inversely correlated 

to the measured radioactivity and determined by interpolation from a calibration curve 

obtained using holoTC calibrators of known concentrations. Quality control sera are applied 
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by the manufacturer of the kit. CVs for this assay at 37 and 95 pmol/L were 6% and 8% 

respectively. 

Reference range (serum/plasma): 40 pM as the lower cut point (Hvas A-M & Nexo E, 2005). 

 

3-2-6. Vitamin B6 assay (Immundiagnostik®): 

The first step in vitamin B6 determination includes the sample preparation with additional 

derivatization. This was done by addition of 200 µL tested sample (serum, calibrator or 

controls) in 1.5 mL Eppendorf tube with 50 µL precipitating reagent. The samples were well 

mixed and left for 10 min at 2-8°C, and then they were centrifuged at 14.000 rpm for 5 min. 

After centrifugation, 100 µL of the supernatant were taken apart and 250 µL of the 

derivatizing agent was added. The mixture was incubated for 20 min in a water bath at 60°C, 

then 15 min at 2-8°C, and finally samples were centrifuged for 5 min at 14000 rpm. 

Supernatants were transferred into glass vials and loaded on an auto sampler connected with a 

reverse phase HPLC with a fluorescence-detector. An external standard was used in this 

method. The quantification is performed by the calibrators; the concentration is calculated via 

integration of the peak areas. 

Chromatographic conditions: 

Column material: Bischoff Prontosil Eurobond, 5 µm (125 mm, 4 mm); flow rate: 1.0-1.5 

mL/min; temperature: 30°C; injection volume: 20 µL; run time for each sample: 10 min; 

excitation/ emission wave lengths: 320/415 nm. The HPLC-system was provided by Agilent, 

(BIO-RAD, Germany). Mobile phase, calibrators, controls, precipitating reagent, and 

derivatization solution were provided with the kit. The CVs for low and high controls were 

<5%. 

Reference range (serum/plasma): 4.3-17.5 ng/mL                                                 

 

3-2-7. Aβ assay: 

The INNOTESTTM β-AMYLOID (1-42) is a solid-phase enzyme immunoassay in which the 

amyloid peptide is first captured by a monoclonal antibody (21F12) bound on the solid phase. 

CSF samples were added in 25 μL volumes and subsequently incubated with a biotinylated 

antibody (3D6). This antigene-antibody complex is then detected by a peroxidase-labeled 

streptavidine. After addition of substrate working solution, positive samples developed a blue 

color. The reaction is stopped by the addition of sulfuric acid which produces a yellow color. 

The absorbance is then measured within 15 minutes at 450 nm. 

Reference range (Sjogren et al., 2001):    >500 ng/L 
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3-3. Cell culture: 
 

3-3-1. Equipments: 

Analytical balance 

Bench Top Centrifuge 

CO2 Tank 

Culture dishes 10 cm2 

Eppendorf table centrifuge 

Eppendorf tubes 

Hypercassette™ Autoradiography 

HyperfilmTM ECL 

Image Scanner 

Incubator 

Inverted Microscope 

Liquid Nitrogen Tank 

Microplate Reader 

96 Microwell Plates  

Mini-PROTEIN® 3 Cell 

Mini Trans-Blot®  

Neubauer-counting chamber 

Pipette 

Shaker 

Sterile bench 

Sterile filter 

Sterile syringe 

Tissue culture flasks 75 cm2  

Tissue culture plate 24-well 

15 ml/ 50 ml Tubes 

Ultra centrifuge 

Ultrasonic bath  

METTLER TOLEDO, Switzerland 

SIGMA 3 K12, Germany 

Air Liquide, Germany 

NUNC, Denmark 

Heraeus Pico 21, Germany  

SARSTEDT, USA 

Amersham Biosciences, UK 

Amersham Biosciences, UK 

Amersham Biosciences, UK 

Heraeus Instruments, Germany 

Leica DMIL, Wetzlar GmbH, Germany 

Thermolyne, USA 

POLARstar OPTIMA, BMG Labtech, Germany 

NUNC, Denmark 

BIO-RAD, USA 

BIO-RAD, USA 

Cryos International, Denmark 

BIOHIT, Germany 

ROTAMAX 120, Heidolph GmbH, Germany 

Heraeus, Germany 

Sartorius 

Ecoject 

SARSTEDT, USA 

SARSTEDT, USA 

SARSTEDT, USA 

OPTIMA LE-80K, Beckman Coulter, Germany 

BRANSONIC 12, Germany  
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3-3-2. Chemicals and laboratory materials: 

 

Reagent 

Albumin, BOVINE (BSA) 

ALPHA MEDIUM (×1) (Normal Medium) 

ALPHA MEDIUM (×1) mod. (Deficient 

 Medium) 

Amyloid Precursor Protein β-Secretase Inhibitor 

Ammonium Persulfate (APS) 

Bicinchoninic Acid (BCA) 

Bromophenol Blue  

CompleteTM -Protease inhibitor  

Copper(II) sulfate CuSO4.5H2O  

3-Deazaadenosine 

Developer 

DL-Homocysteine 

Dulbecco's Phosphate Buffered Saline (×1)  

ECL Plus Western Blotting Detection Reagents 

Fixer 

Fetal Bovine Serum (FBS) 

Glycine 

Glutamine 

Human beta amyloid 1-42 (ELISA KIT) 

LactaAlbumin Enzymatic Hydrolysate 

Liquid Nitrogen 

2-Mercaptoethanol  

Methanol 

Mevinolin (Lovastatin) 

Okadaic acid  

Penicillin/Streptomycine 

Phenylmethylsulfonyl Fluoride  

Precision Plus Protein  

Polyvinylidene fluoride (PVDF) membranes 

RIPA Lysis Buffer (×10) 

Company / catalogue number 

Sigma / A-7906 

BIOCHROM AG / F0915 

BIOCHROM AG / FZ0915 

 

Calbiochem / 171601 

Sigma / A-3678 

Sigma / B-9643 

Merck / 11746 

Roche / 11 836 153 001  

Merck / 1.02790 

Sigma / D8296 

Sigma / P7042 

Sigma / H4628 

PAA Laboratories / H21-002  

Amersham / RPN2132 - RPN2133 

Sigma / P7167 

GIBCO / 10270-106 

ROTH / 3908 

Sigma / G7513 

Wako / 296-64401 

Sigma / L9010 

Air Liquide 

Sigma / M-3148 

Merck / 1.06007 

Sigma / M 2147 

Fluka / 75320 

BIOCHROM AG / A2213 

Sigma / P-7626 

BIO-RAD / 161-0374 

Roche / 03010040001 

UPSTATE / 20-188 
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Rotiphorese® Gel 40 

S-adenosyl-L-homocysteine 

S-adenosyl –L-methionine chloride 

γ-Secretase Inhibitor XXI, Compound E 

Sodium Bicarbonate 

Sodium chloride 

Sodium dodecyl sulfate (SDS) 

Sodium fluoride  

Sodium orthovandate  

Sodium pyrophosphate 

Tetramethylethelenediamine (TEMED) 

Tris  

Trypan blue stain 4% 

Trypsin/EDTA Solution (×10) 

Tween 20 

ROTH / T802.1 

Sigma / A9384 

Sigma / A7007 

Calbiochem / 565790 

Sigma / S6297 

Saarland University Pharmacy 

SERVA / 20765 

Sigma / 71519 

Sigma / 450243 

Sigma / 71515 

Sigma / T-9281 

Merck / 1.08382 

Gibco / 15250-061 

BIOCHROM AG / L2153 

SERVA / 37470  

 

3-3-3. Cell line and antibodies: 

 

Cell line name: Detroit 532  

Human Caucasian skin Down syndrome  

(DS fibroblasts ) 

Western blot antibodies: 

Mouse anti –Alzheimer precursor protein A4  

(first antibody against APP) 

Polyclonal rabbit anti-mouse Immunoglobulins/HRP 

(secondary antibody against APP) 

Polyclonal antibody to amyloid precursor protein/APP 

(first antibody against C99) 

Polyclonal antibody to rabbit IgG (H&L)-HRP  

Beta actin (first antibody) 

Goat polyclonal to rabbit IgG-H&L (HRP) 

(secondary antibody against beta actin) 

 

 

ECACC, UK / 87032602 

 

 

Chemicon / MAB348 

 

DakoCytomation / P0161 

 

ACRIS/SP7016P 

 

ACRIS/R1364HRP 

Abcam / Ab8227 

Abcam / Ab6721 
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3-3-4. Mediums, buffers and solutions: 

 Vitamin-rich medium  

 

 

 

 

 

 

 

Vitamin-free medium  

 

 

 

 

 

 

APS-solution 

 

Blocking buffer 

 

Copper(II) sulfate-solution 

 

 

Collecting gel 

 

 

 

 

 

 

Electrophoresis buffer (×10) 

 

 

 

500 mL ALPHA MEDIUM (×1) 

500 µg lactalbumin enzymatic hydrolysate (this amount is 

solubilized in 20 mL medium and sterilized using sterile filter) 

50 mL inactivated FBS (prepared by heating FBS at 65°C for 1 

hour) 

100 µL glutamin (final concentration 2 mM) 

5 mL penicillin/streptomycine 

 

500 mL ALPHA MEDIUM (×1) mod.  

500 µg lactalbumin enzymatic hydrolysate (this amount is 

solubilized in 20 mL medium and sterilized using sterile filter) 

50 mL inactivated FBS 

100 µL glutamin (final concentration 2 mM) 

5 mL penicillin/streptomycine 

 

10% (w/v) ammonium persulfat 

 

1% (w/v) BSA in trisbuffered saline-tween (TBST) 

 

4% CuSO4.5H2O in dH2O 

This solution must be kept in dark and at 4°C 

 

100 µL 0.6 M Tris Hcl (pH 6.8) + SDS 0.4% 

760 µL dH2O 

140 µL acrylamid (Rotiphorese® Gel 40) 

10 µL bromophenol blue 

5 µL APS 10% 

0.5 µL TEMED 

 

30.3 g Tris base 

144 g Glycine 

10 g SDS 

Completing to 1L with dH2O  
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Extraction buffer  

 

 

 

 

 

 

 

 

Laemmli ×4 buffer 

 

 

 

 

 

 

 

Resolving gel (8%)  

 

 

 

 

 

Transfer buffer (x10)  

 

 

 

 

Tris buffered saline (TBS) 

 

 

Wash and diluent buffer 

(TBST)TBS-Tween  

1 mL RIPA buffer 

20 mM sodium fluoride  

1 mM sodium orthovandate 

10 mM sodium pyrophosphate 

1 mM phenylmethylsulfonyl fluoride 

1 mM okadaic acid 

Completing with dH2O to 10ml; adding one-tablet protease 

inhibitors and mixing well. 

 

5 mL  0,5 M Tris Hcl (pH 6,8) 

0.6 mL SDS 10% 

4g Glycerol  

0.4 mL bromophenol blue 1% 

Completing with dH2O to 10 mL 

Final buffer: 800 µL of the previous mixture + 200 µL  

β-mercaptoethanol  

 

1 mL 1.875 M Tris Hcl (pH 8.8) + SDS 0.4% 

1.4 mL acrylamid (Rotiphorese® Gel 40) 

2.6 mL dH2O 

25 µL APS 10% 

2 µL TEMED 

 

Stock solution:  30.3 g tris + 144 g glycine 

Completing  to 1L with dH2O  

Working solution: 70 mL stock solution + 140 mL methanol + 

490 mL H2O 

 

8 g NaCl + 20 mL 1 M Tric Hcl (pH 7.6) 

Diluting to 1L with dH2O 

 

0.1% Tween-20 in TBS 
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3-3-5. Treatment of the cells with different materials and cell lysate preparation: 

Detroit 532 cells (passage 14) were seeded at density (2-4×10.000) cells/cm2 in 75 cm2 

culture flasks containing vitamin-rich medium and incubated at 37°C and 5% CO2 in moist 

atmosphere. Cells, at 70-80% confluency, were trypsinized and splited at a ratio 1:2 every 

four to seven days until passage 23. 

Cells at passage 23 were harvested and seeded at density 3000 cells/cm2 in petri dishes using 

7 mL culture medium (vitamin-rich or vitamin-free medium). After 24 hours, the culture 

medium was sucked and replaced with a fresh medium without FBS. Then we added different 

materials at different concentrations [Hcy: 50, 100, or 150 µM; SAH: 50, 100, or 150 µM; 

SAM: 100, 200, or 300 µM; DZA: 50, 100, or 150 µM; lovastatin: 5, 10, or 20 µM]. In each 

run, we left double dishes without adding any material to be used as controls and double 

dishes of each concentration were prepared. In trials, where β- or γ-secretase inhibitors were 

used, they were added at the same time with the additive drug using 30 nM of each. After 24 

hours medium was discarded. Cells were washed twice with ice-cold PBS. 250 µL of ice-cold 

lysis buffer were added and cells were scraped off the dish. Cell suspension was gently 

transferred into an Eppendorf tube and placed on ice. Cell lysates were sonicated on ice for 20 

seconds five times with 5 seconds intervals. Lysates were centrifuged at 14000 g and 4°C for 

15 minutes. Aliquots of the supernatant were immediately stored at –70°C. 

 

Cell viability was tested in both control and treated cells using trypan blue and calculated as 

following: 

 

Cell viabilty % =  

 

We found no difference between cell viability in treated cells and in control cells. 

 

3-3-6. Total protein assay (Bicinchoninic acid method): 

This is a two-step assay, in which Cu2+ is first reduced to Cu forming a complex with protein 

amide bonds. In the next step, bicinchoninic acid (BCA) forms a purple complex with Cu 

which is detectable at 562 nm. The color intensity is directly proportional to the amount of 

protein. A 7-point standard curve (1000, 800, 600, 500, 400, 250, and 125 μg/mL) was 

prepared by using a stock solution of BSA (1 mg/mL). 10 μL of samples, standards, and 

blanks (dH2O) were then mixed with 200 mL working solution (BCA, 4 % CuSO4-5H2O 50:1 

v/v). These mixtures were then incubated for 30 min in a water bath at 37°C, cooled to room 

number of viable cells

number of total cells
× dilution rate × 100 
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temperature, centrifuged for 30 seconds, and then applied to a 96 well plate. The absorption 

was measured at 562 nm using spectrophotometer.   

 

3-3-7. SDS-polyacrylamide gel electrophoresis (SDS-PAGE): 

Cell lysates were mixed with Laemmli ×4 buffer (7:1). This mixture was heated for 5 min at 

95°C, sonicated, and centrifuged briefly.  

The resolving gel and collecting gel were prepared as described before and they were used 

immediately or stored in moist atmosphere in a refrigerator. A fresh electrophoresis buffer 

was used. Samples containing 5 µg protein and 10 µL of a protein marker were loaded into 

the gel. Electrophoresis was performed for 90 min at 200 V; next blotting was done using 

freshly prepared transfer buffer. The blotting, using PVDF, was run for one hour at 350 mA 

and 100 V. Blots were used immediately or stored in a desiccators at 2-8°C for a few days. 

 

3-3-8. Westernblot 

Membranes were blocked in a blocking buffer (1% BSA in TBST) for one hour at room 

temperature to prevent non-specific binding. The membrane was briefly rinsed twice with 

TBST and incubated with the primary antibody diluted with TBST as follows: 

Mouse anti –Alzheimer precursor protein A4: 1:1500 

Polyclonal antibody to amyloid precursor protein/APP: 1:1000 

Beta actin antibody: 1:6000 

The incubation was made overnight at 4°C, then the membrane was washed three times for 5 

min each with TBST at room temperature. Next, it was incubated with HRP labeled 

secondary antibody diluted with (1% BSA in TBST) as follows: 

Polyclonal rabbit anti-mouse immunoglobulin’s: 1:1500 

Polyclonal antibody to rabbit IgG (H&L): 1:5000 

Goat polyclonal to rabbit IgG-H&L: 1:5000 

Subsequently membrane was washed three times for 5 min each with TBST at room 

temperature. 

 

3-3-9. ECL Plus detection:  

ECL Plus TM Western Blotting Reagents (GE Healthcare® formerly Amersham Biosciences) 

utilizes chemiluminescence for the detection of target proteins. It consists of a lumigen PS-3 

acridian substrate, which is converted to an acridinium ester intermediate when catalyzed by 

HRP (horseradish pyroxidase). The ester intermediate reacts with peroxide in alkaline 
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conditions and emits light, which can be detected by autoradiography (film). The kit includes 

Solution A (substrate solution containing tris buffer) and Solution B (acridian substrate 

solution in dioxane and ethanol).  

Washed membranes were incubated in the detection buffer [solutions A and B 40:1(v/v)] for 5 

min at room temperature. Autoradiography films of the drained membranes were made in a 

dark room. Photo films were developed immediately and proceeded to test bands by 

densitometry with Image Labscan (Amersham Biosciences). Bands density was measured 

using ImageQuant TL program (Amersham Biosciences). Intensity of APP band was 

normalized for the corresponding beta-actin band. 

 

3-3-10. Human Aβ (1-42) ELISA assay: 

Aβ (1-42) was detected in extracts of cells cultured in the vitamin-free medium and treated 

with SAH or SAM. This kit is constructed as a sandwich ELISA format with two kinds of 

antibodies. The monoclonal antibody BAN50, which epitope is human Aβ (1-16), is coated on 

96 well surfaces of separable microplate and acts as a capture antibody for N-terminal portion 

of human Aβ (1-42). Captured human Aβ (1-42) is recognized by another antibody, BC05 

(Fab’ fragment), which specifically detects C-terminal portion of Aβ (1-42), labeled with 

HRP. After addition of TMB solution, positive samples will develop a blue color. The 

reaction is terminated by the addition of a stop solution, which produces a yellow color. The 

absorbance is then measured at 450 nm. 
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4- RESULTS 
 
4-1. Study (1): Markers of methylation are related to that of neurodegeneration:  

This part of the study included 117 patients of whom 31 had multiple sclerosis (MS), 19 had 

stroke, 31 had dementia (8 had Alzheimer disease), and 36 had peripheral neuropathy.        

The control group consisted of 65 subjects with different neurological disorders presented in 

Table 6.  

 

Data summerized in Table 7 showed that stroke, dementia, and peripheral neuropathy patients 

were significantly older than control patients. In addition, patients with peripheral neuropathy 

had higher concentrations of blood markers (tHcy, Cys, SAH, and SAM) and CSF markers 

(tHcy and SAH) in addition to lower median concentration of CSF-folate compared to the 

controls. Nevertheless, these results seem to be related to the older age of patients because 

these differences were no more significant after adjusting for age.  

Patients with MS had higher serum concentrations of holoTC in addition to a lower 

concentration of CSF-SAH and a higher CSF-SAM/SAH ratio compared to the controls.  

Despite the marked age differences, patients with stroke showed no significant differences in 

any blood or CSF marker as compared to the controls.  

As patients with dementia were much older than the control patients, comparison between 

CSF and blood markers was not performed, because adjustment for age was not possible in 

this case.  

Table 6: Neurological disorders of the control group patients 

Diagnosis Number Diagnosis Number 

Peripheral facial pareses 4 Recurrent transient ischemic attack 1 

Chronic fatigue syndrome 1 Ataxia (cerebral/hereditary) 1/1 

Chronic pain syndrome 4 Meralgia paresthetica 1 

Pseudo-tumour 5 Spatial spinal paralysis 1 

Migraine 4 Parkinson (untreated at diagnosis) 4 

Meningitis (basal, viral) 2/4 Cervical myelopathy 1 

Myasthenia gravis 1 Somatisation disorder 1 

Atypical face pain 1 No pathological findings 7 

Cerebral or focal convulsions 5 Unknown diagnosis 8 

Arterial hypertension 8   
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Table 7: Concentrations of serum/plasma and CSF vitamins and methylation markers according to disease status  
 All 

(n=182) 
Controls 
(n=65) 

MS 
(n=31) 

Stroke 
(n=19) 

Peripheral 
neuropathy (n=36) 

Dementia 
(n=31) 

Age, years  46 (22-68) 49 (31-63) 
 

63 (38-79)* 
 

66 (36-74)* 
 

72 (55-81)* 

Plasma/serum markers  
      

tHcy, µM 10.7 (7.4-18.0) 9.4 (7.3-16.2) 10.7 (7.6-14.4) 10.2 (7.0-17.4) 11.9 (7.0-19.1)*† 12.9 (8.2-28.2) 
Cys, nM 372 (180-886) 329 (150-661) 355 (157-1146) 420 (154-874) 415 (199-1038)*† 491 (247-1764) 
MMA, nM 197 (128-394) 186 (109-300) 197 (116-366) 176 (144-510) 189 (142-340) 293 (149-681) 
Total B12, pM 249 (166-419) 242 (158-403) 266 (181-402) 253 (162-485) 270 (183-630) 195 (145-364) 
Folate, nM 19.6 (9.9-41.1) 19.3 (11.4-42.2) 21.1 (9.5-41.6) 20.3 (12.6-42.0) 22.3 (9.9-43.8) 16.1 (5.4-27.1) 
Vitamin B6, nM 36.9 (13.8-100.8) 37.9 (17.8-90.6) 10.6 (16.1-168.4) 33.3 (12.2-115.6) 42.0 (15.3-199.7) 19.5 (8.0-45.4) 
HoloTC, pM 70 (32-136) 63 (32-128) 89 (35-156)* 64 (32-154) 81 (44-143) 58 (20-133) 
SAM, nM 123 (89-218) 116 (87-171) 114 (74-236) 130 (93-206) 138 (88-228)*† 159 (95-369) 
SAH, nM 18.1 (10.0-37.9) 16.2 (9.3-27.4) 13.5 (9.9-51.5) 18.2 (10.9-48.2) 19.6 (11.0-37.2)*† 25.1 (11.1-61.7) 
SAM/SAH ratio 7.0 (3.8-13.0) 6.8 (3.8-13.8) 8.2 (3.0-14.4) 7.7 (3.4-11.9) 6.7 (4.1-10.1) 6.9 (1.6-12.3) 

CSF markers  
      

tHcy, µM 0.10 (0.06-0.17) 0.09 (0.06-0.16) 0.08 (0.05-0.16) 0.08 (0.06-0.15) 0.11 (0.07-0.18)*† 0.10 (0.06-0.32) 
Cys, nM 49 (22-98) 54 (17-108) 42 (22-105) 48 (18-105) 34 (18-75) 47 (25-125) 
MMA, nM 359 (267-552) 359 (266-574) 367 (281-525) 426 (333-600) 326 (214-511) 419 (267-746) 
Folate, nM 19.5 (13.9-26.6) 20.7 (14.1-27.7) 20.5 (14.6-29.5) 19.2 (14.2-26.4) 18.6 (12.9-23.5)*† 18.4 (12.3-27.4) 
HoloTC, pM 16 (4-27) 16 (6-23) 16 (3-26) 17 (4-73) 17 (7-39) 11 (4-23) 
SAM, nM 267 (180-356) 268 (197-355) 305 (151-389) 273 (172-339) 268 (187-385) 250 (180-356) 
SAH, nM 13.5 (8.4-24.1) 13.2 (7.7-24.0) 10.2 (7.4-16.7)* 13.5 (7.1-24.8) 15.5 (9.1-22.5)*† 15.2 (9.7-30.0) 
SAM/SAH ratio 19 (10-34) 20 (11-39) 28 (13-42)* 22 (10-30) 18 (12-24) 17 (7-29) 
Aβ (1-42) pg/mL   651 (374-1060) 739 (444-1092) 552 (340-737)* 587 (327-919) 606 (520-1000) 666 (290-1090) 
Data are median (10th-90th) percentiles. * p<0.05 compared to the control group (ANOVA and post hoc Tamhane-T tests).  
† Differences are no more significant after adjusting for age and CSF/serum albumin.
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Concentrations of plasma/serum and CSF metabolites in our study seemed to be affected by 

age. To test this, we pooled the data from all study populations and divided our patients into 4 

groups according to quartiles of age (Table 8). On the one hand, advanced age was associated 

with higher blood concentrations of tHcy, Cys, MMA, SAH, and SAM and lower 

concentrations of serum folate and holoTC. On the other hand, concentrations of CSF-tHcy and 

that of CSF-SAH increased with age. Moreover, levels of CSF-folate and CSF-MMA, and the 

ratio of SAM/SAH in CSF decreased with increasing age. CSF-holoTC and CSF-SAM did not 

differ significantly with age.  

In addition, we found that CSF-folate was a stronger predictor (beta = -0.403) of CSF-tHcy 

than age (beta = 0.298). 

 

 
 
 
 
 

Table 8: Blood and CSF markers according to age 
Quartile of age Q1 Q2 Q3 Q4 P 
Age, years 17-40 41-55 56-68 69-86  
Plasma/serum 
markers 

     

tHcy, µM 9.0 (6.0-12.7) 10.2 (7.8-20.2)* 11.0 (7.9-15.0)* 14.0 (8.1-28.4)* < 0.001 
Cys, nM 246 (129-472) 388 (188-844)* 362 (197-877)* 510 (283-1950)* < 0.001 
MMA, nM 166 (90-294) 179 (133-299) 196 (147-370)* 253 (146-621)* < 0.001 
Total B12, pM 253 (165-433) 259 (173-435) 243 (162-424) 246 (162-422) 0.699 
Folate, nM 18.8 (11.9-42.8) 21.9 (10.5-43.7) 21.3 (12.7-42.8) 15.2 (7.4-25.8)* < 0.001 
HoloTC, pM 70 (26-128) 71 (41-128) 73 (39-163) 57 (26-139) 0.077 
SAM, nM 106 (73-143) 116 (89-179) 132 (97-219)* 164 (105-327)* < 0.001 
SAH, nM 12.8 (8.6-27.0) 16.4 (10.4-29.2) 19.8 (11.8-37.3)* 25.6 (13.8-79.7)* < 0.001 
SAM/SAH ratio 8.3 (3.4-14.1) 7.3 (4.1-12.2) 7.5 (3.8-12.7) 6.1 (2.8-11.2) 0.079 
Creatinine,  µM 66.3  

(53.0-88.4) 
70.7  
(53.0-97.2) 

79.6  
(53-106.1) 

88.4  
(53.0-189.2)* 

 
<0.001 

CSF markers      
tHcy, µM 0.07 (0.05-0.12) 0.10 (0.06-0.17) 0.10 (0.06-0.14) 0.13 (0.09-0.24)* < 0.001 
Cys, nM 53 (17-110) 42 (19-97) 33 (18-70) 65 (27-131) 0.002 
MMA, nM 392 (251-776) 359 (289-509) 348 (261-522) 359 (258-554) 0.188 
Folate, nM 21.0 (16.3-28.9) 19.8 (12.3-27.4) 19.7 (15.3-23.1) 16.9 (11.9-21.8)* < 0.001 
HoloTC, pM 14 (5-25) 17 (3-23) 18 (6-38) 14 (4-29) 0.204 
SAM, nM 254 (174-332) 270 (154-375) 259 (181-356) 274 (190-374) 0.464 
SAH, nM 10.5 (6.5-14.4) 12.7 (7.9-20.2) 15.3 (9.1-25.4)* 16.7 (10.3-30.0)* < 0.001 
SAM/SAH ratio 26 (16-40) 19 (11-36) 16 (8-31)* 17 (8-29)* < 0.001 
Data are median (10th-90th) percentiles.  * p<0.05 according to the post hoc Tamhane-T2 test compared to the first 
quartile.  



 64

To investigate the association between concentrations of CSF-SAH and that of other vitamin 

biomarkers we divided concentrations of CSF-SAH into quartiles (data from all patient 

groups) (Table 9).  

In plasma/serum samples, higher concentrations of CSF-SAH were related to higher 

concentrations of tHcy, Cys, SAH, and SAM. Moreover, higher CSF-SAH was associated 

with lower concentrations of serum folate. CSF data showed that higher concentrations of 

SAH were associated with higher tHcy and Cys, lower folate, and lower SAM/SAH ratio. 

Consequently, CSF-SAH and concentrations of other vitamin biomarkers associated in CSF 

and in plasma/serum in the same way. 

Table 9: Concentrations of plasma/serum and CSF biomarkers of B vitamins according 
to CSF-SAH      
Quartile of CSF SAH Q1 Q2 Q3 Q4 P  
SAH, nM 4.7-10.1 10.2-13.4 15.5-17.4 17.5-39.3 - 
Age, years 41 (16) 44 (18) 57 (15)* 64 (13)* < 0.001

Plasma/serum markers   
     

tHcy, µM 10.2 (3.1) 10.0 (8.1) 12.1 (9.6) 12.6 (5.0)* 0.019 
Cys, nM 308 (320) 388 (686) 451 (644)* 491 (571)* 0.007 
MMA, nM 201 (117) 188 (94) 214 (138) 262 (256) 0.018 
Total B12, pM 279 (1159) 280 (506) 274 (1111) 254 (90) 0.851 
Folate, nM 22.3 (16.2) 21.4 (11.8) 17.8 (13.1) 16.5 (10.2)* 0.036 
HoloTC, pM 68 (37) 56 (40) 62 (44) 69 (42) 0.349 
SAM, nM 110 (34) 130 (128) 134 (62) 157 (101)* 0.002 
SAH, nM 15.2 (6.8) 17.0 (11.8) 22.2 (41.7)* 24.4 (39.9)* 0.001 
SAM/SAH ratio 7.3 (3.5) 7.7 (3.1) 6.1 (4.5) 6.4 (3.7) 0.162 
Creatinine, µM 69.8 (14.4) 73.3 (16.9) 97.0 (94.3) 93.9 (56.3) 0.032 

CSF markers  
     

tHcy, µM 0.08 (0.04) 0.10 (0.26)* 0.10 (0.03)* 0.14 (0.19)* < 0.001
Cys, nM 42 (27.5) 46 (33) 46 (22)* 49 (35)* 0.666 
MMA, nM 414 (318) 372 (130) 363 (111) 372 (127) 0.334 
Folate, nM 20.8 (4.2) 20.2 (5.3) 18.4 (4.4) 17.1 (4.8)* 0.003 
HoloTC, pM 11 (12) 13 (24) 13 (7) 14 (20) 0.431 
SAM, nM 247 (71) 270 (58) 260 (61) 258 (72) 0.450 
SAM/SAH ratio 29.6 (9.4) 23.3 (6.1)* 17.1 (4.3)* 11.1 (3.9)* < 0.001
Aβ(1-42) pg/mL   606 (188) 566 (237) 630 (250) 702 (239) 0.135 
Geometric mean (SD).  * p<0.05 compared to the first quartile (post-hoc Tamhane-T2 test).  



 65

CSF-Aβ (1-42) concentration in all study populations decreased with advanced age but the 

association was not significant. We found no association between Aβ (1-42) and methylation 

markers, vitamins or tHcy in the total group or in patients with dementia. The median 

concentrations of CSF-Aβ (1-42) according to tertiles of SAM/SAH ratio in non-demented 

patients are shown in Figure 8. We found that subjects within the higher tertile of CSF-

SAM/SAH ratio had lower concentrations of CSF-Aβ (1-42) comparing to subjects within the 

lower tertile. This association remained significant after adjustment for age. 

 

 

Figure 8: Concentrations of Aβ (1-42) accordiong to CSF-SAM/SAH ratio  

 

In addition, in non-demented patients aged 30-60 years, higher concentrations of CSF-Aβ (1-

42) associated with higher CSF concentrations of tHcy and SAH as well as lower 

concentrations of CSF-SAM (Figure 9).  
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Figure 9: The correlation between concentrations of Aβ (1-42) and that of Hcy, SAH, and SAM 
in CSF of non-demented patients 
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4-2. Study (2): B vitamins may improve cognitive function in elderly: 

This part of the study included 69 subjects (mean age 78 years, 62 females), who were 

allocated to receive a vitamin supplements or a placebo. 

 

We have tested the correlation between different markers at baseline. We found that higher 

concentrations of tHcy were associated with lower SAM/SAH ratio (Figure 10.A) and MMSE 

scores were not related to SAM/SAH ratio (Figure 10.B). In addition, we found that SAM 

concentrations were positively correlated with orientation test scores (Figure 10.D) and scores 

indicating intellectual abilities (abstract thinking, judgement) were negatively related to serum 

concentrations of MMA at start  

 (Figure 10.C). 
 

 

 

  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 10: The correlation between different markers at baseline 
A: Median SAM/SAH ratio according to tHcy concentrations in serum. 
B: The correlation between MMSE scores and plasma SAM/SAH ratio. 
C: The relation between serum MMA tertiles and intellectual abilities scores. 
D: The correlation between plasma SAM concentrations and orientation scores. 
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Data summurized in Table 10 shows serum concentrations of different metabolites at 

baseline, day 21, and day 45 in both placebo and vitamin groups.  

At baseline, no significant differences in serum concentrations of tHcy or MMA were 

detected between the two treatment arms. Cys concentrations were higher in the treatment 

group as compared to the placebo group. At the end of the intervention, concentrations of 

tHcy, Cys, and MMA were lower in the vitamin treated group compared to the placebo group.  

Data are mean (SD); * p values are according to Mann-Whitney test.   
 

The SIDAM tests were done at baseline, at day 21, and at day 45. At day 21, both of the 

treatment arms showed improvement in total SIDAM scores (Figure 11.B). Nevertheless, 

scores indicating higher cortical functions (aphasia, apraxia, and agnosis) improved 

significantly only in the vitamin group (Figure 11.A). Furthermore, in the vitamin group, 

subjects who showed improved intellectual function abilities (n=9) had higher baseline 

concentrations of MMA and higher reduction in MMA (Δ-MMA) and tHcy (Δ-tHcy) 

compared to subjects who showed no improvement (Table 11).    

 

 

 

Table 10:  Serum concentrations of the metabolites at baseline, day 21, and day 45 
according to treatment allocation 
 Placebo Vitamin *p 
at start    

tHcy, µM 17.5 (8.3) 18.4 (6.6) 0.273 
Cys, nM 534 (804) 669 (407) 0.007 
MMA, nM 336 (192) 323 (237) 0.442 
SAH, nM 25 (12) 30 (17) 0.186 
SAM, nM 170 (54) 184 (54) 0.361 
SAM/SAH ratio 6.7 (1.9) 6.1 (1.8) 0.253 
 
at day 21  

      

tHcy, µM 18.0 (5.8) 9.1 (2.3) <0.001 
Cys, nM 471 (386) 367 (206) 0.257 
MMA, nM 429 (247) 237 (77) <0.001 
SAH, nM 28 (23) 34 (22) 0.202 
SAM, nM 155 (68) 186 (61) 0.064 
SAM/SAH ratio 6.4 (1.8) 5.6 (2.2) 0.849 
 
at day 45  

      

tHcy, µM 18.4 (7.0) 9.9 (2.5) <0.001 
Cys, nM 654 (799) 410 (222) 0.037 
MMA, nM 529 (531) 248 (93) 0.001 



 69

 
 

 

 

 

 

 

 

Table 11: Intellectual function correlation to MMA and tHcy in the vitamin group 
 Intellectual function 

improved (n=9) 
Intellectual function did 
not improve (n=24) 

P* 

Baseline intellectual function scores  4.3 (1.2) 4.9 (0.3) <0.001 
Intellectual function scores (day 21) 4.7 (0.5) 4.9 (0.3) 0.174 
        
Baseline tHcy, µM 21.7 (7.7) 17.7 (5.7) 0.157 
Δ-tHcy, µM 12.2 (7.7) 8.9 (4.8) 0.306 
        
Baseline MMA, nM 326 (244) 262 (113) 0.016 
Δ-MMA, nM 216 (365) 52 (66) 0.057 
Data are mean (SD); * p values are according to Mann-Whitney test.  
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Figure 11: Scores of total SIDAM and higher cortical function tests 
in placebo and vitamin groups  

(I: at baseline, II: at day 21) 
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At the end of the intervention, both of the treatment arms showed improvement in total 

SIDAM scores (Table 12). 

 

Data are median (10th-90th) percentiles. * p<0.05, ** p<0.01 (ANOVA). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12: Scores of different dementia tests at baseline and at day 45 in both placebo 
and vitamin groups 
  baseline (0) day 45 p 

Placebo 26 (17-29) 27.5 (22-30) 0.001** MMSE 
Vitamin 24 (17-28) 27 (20.5-29.5) 0.001** 

Placebo 9 (5-10) 10 (7-10) 0.006** Orientation 
Vitamin 9 (6.5-10) 9.5 (7.5-10) 0.045* 

Placebo 14 (10.3-18) 16.5 (12.6-19.7) 0.001** Memory function 
Vitamin 11.5 (9-16.5) 15 (11.5-17) 0.008** 

Placebo 5 (4-5) 5 (5-5) 0.186 Intellectual abilities 
Vitamin 5 (3-5) 5 (4.5-5) 0.328 

Placebo 16 (11-19) 16 (13-19) 0.050 Higher cortical function 
Vitamin 14.5 (9-17.5) 15.5 (10.5-19) 0.178 

Placebo 44 (31-51) 48 (38-54) 0.001** Total SIDAM scores 
Vitamin 39 (29-48) 45 (37-50.5) 0.002** 
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4-3. Study (3): One-carbon cycle metabolites might affect APP level and/or its 

processing: 

 

4-3-1. Incubation in a vitamin-rich or in a vitamin-free medium: 

We tested the effect of Hcy, SAM, and SAH on full length APP in DS fibroblasts grown in a 

vitamin-rich or in a vitamin-free medium. Figure 12.B shows that in both mediums, the three 

different concentrations of Hcy (50, 100, 150 µM) did not significantly affect the full length 

APP. We used concentrations of Hcy similar to those found in moderate HHcy or in patients 

with homocysteinuria. Within the range of Hcy concentrations used in this study, there was no 

sufficient evidence supporting a dose-dependent effect on APP expression.  

The effect of SAM (100, 200, 300 µM) on APP in fibroblasts grown in a vitamin-rich or in a 

vitamin-free medium is shown in figure 13.B. SAM caused no significant change in full 

length APP in cells grown in a vitamin-rich medium. In contrast, SAM significantly lowered 

total APP in cells grown in a medium free of the B vitamins compared to those grown in the 

vitamin-rich medium.  

We further tested whether the postulated neurotoxic effect of Hcy can be related to its toxic 

hydrolysis byproduct, SAH. Fibroblasts grown in a vitamin-free medium and then incubated 

for 24 hours with 3 different concentrations of SAH, showed a significant increase in the 

immunoreactivity of full length APP (Figure 14.B). This effect seemed to occur in a non-

concentration-dependent manner. In contrast to this, fibroblasts incubated with SAH in a 

vitamin-rich medium showed rather lowered total APP.  

Compared to cells incubated with SAM or Hcy, those incubated with SAH showed a 

significant increase in the immunoreactivity of APP in a vitamin-free medium. 

 

4-3-2. Effect of Hcy, SAH, and SAM on C99 protein in cells incubated in a vitamin-free 

medium: 

While Hcy did not change full length APP as mentioned before, it caused a significant 

increase in C99 immunoreactivity that was not dose-dependent. In contrast, SAH, which 

enhanced the accumulation of APP, caused rather lower C99 protein expression. SAM 

markedly lowered full length APP, but had no remarkable effect on C99 (Figure 15.B).  
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Figure 12.A: Westernblot of APP and β-actin proteins in fibroblast cell extracts 
treated with Hcy in either vitamin-rich medium or vitamin-free medium for 24 
hours. Panels (1-2) are from control samples (cells not treated with Hcy). Panels (3-
4) are cell extracts treated with Hcy 50 µM. Panels (5-6) are cell extracts treated 
with Hcy 100 µM. Panels (7-8) are cell extracts treated with Hcy 150 µM. 
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  Figure 12.B: The effects of Hcy on APP expression in DS fibroblasts incubated in a 
vitamin-rich or in a vitamin-free medium. Total number of experiments ranged 
between 4 and 6 for each concentration. Results are presented as average and 
standard deviation. 
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Figure 13.A: Westernblot of APP and β-actin proteins in fibroblast cell extracts treated 
with SAM in either vitamin-rich medium or vitamin-free medium for 24 hours. Panels 
(1-2) are from control samples (cells not treated with SAM). Panels (3-4) are cell 
extracts treated with SAM 100 µM. Panels (5-6) are cell extracts treated with SAM  
200 µM. Panels (7-8) are cell extracts treated with SAM 300 µM. 
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  Figure 13.B: The effects of SAM on APP expression in DS fibroblasts incubated in a 
vitamin-rich or in a vitamin-free medium. Total number of experiments ranged 
between 4 and 6 for each concentration. Results are presented as average and standard 
deviation. 
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Figure 14.A: Westernblot of APP and β-actin proteins in fibroblast cell extracts 
treated with SAH in either vitamin-rich medium or in a vitamin-free medium for 24 
hours. Panels (1-2) are from control samples (cells not treated with SAH). Panels (3-
4) are cell extracts treated with SAH 50 µM. Panels (5-6) are cell extracts treated 
with SAH 100 µM. Panels (7-8) are cell extracts treated with SAH 150 µM.  

APP (106-130 KD) 

β-actin (47 KD) 

APP (106-130 KD) 

β-actin (47 KD) 

0 

100 

200 

300 

400 

SAH, μM 

To
ta

l A
PP

 %
 o

f t
he

 c
on

tro
ls

 

Vitamin-rich medium Vitamin-free medium 

100

<0.01 

50 150 10050 150 00 

  Figure 14.B: The effects of SAH on APP expression in DS fibroblasts incubated in a 
vitamin-rich or a vitamin-free medium. Total number of experiments ranged between 
4 and 6 for each concentration. Results are presented as average and standard 
deviation. 
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Figure 15.A: Western blot of C99 and β-actin in Down syndrome fibroblasts incubated in a vitamin-free 
medium and treated with different concentrations of Hcy, SAH, or SAM 
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  Figure 15.B: The effects of Hcy, SAH, and SAM on APP expression in DS fibroblasts incubated in a 
vitamin-free medium. Total number of experiments ranged between 5 and 6 for each concentration. 
Results are presented as average and standard deviation. φ: p=0.027 compared to SAH. 

Figure 15: Effect of Hcy, SAH, and SAM on C99 expression 
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4-3-3. Effect of adding β-or γ-secreatse inhibitors on protein levels of APP and C99: 

We were further interested to test whether the effect on total APP was 

related to an effect on APP processing by means of β-or γ-secretases that process APP via the 

amyloidogenic pathway. For this purpose, we used β-or γ-secretase inhibitors to try to antagonize 

the effect of the added substances. The following experiments were all conducted in a vitamin-

free medium.  

As the effects of Hcy, SAH, and SAM on APP and C99 levels were not dose-dependent as shown 

before, the possible role of β-or γ-secretase inhibitors on full length APP and C99 was tested 

using only one concentration of each substance. We observed that either β- or γ-secretase 

inhibitors antagonized the effect of Hcy (100 µM) on C99. No change in the protein expression 

of total APP was obtained under these conditions (Figure 16.A). 

The effect of SAH (100 µM) on total APP was prevented by the addition of 

either β-or γ-secretase inhibitors (Figure 16.B). Furthermore, protein expression of APP and C99 

in the presence of SAM (200 µM) and β-or γ-secretase inhibitors seemed to be in contrast to that 

caused by adding SAH. Both inhibitors reversed the effect of SAM on total APP and C99 (Figure 

16.C).  

 

4-3-4. Effect of SAH and SAM on the intra-cellular concentrations of Aβ (1-42): 

Concentrations of the final product of the amyloidogenic pathway, Aβ (1-42), were tested in 

extracts of cells grown in a vitamin-free medium and treated with either SAM or SAH. At least 

three independent experiments of each condition were tested. The results were adjusted for total 

protein content. We found that the intracellular concentrations of Aβ (1-42) were decreased by 

62% in the presence of SAM (200 µM) and increased by 22% in the presence of SAH (100 µM) 

comparing to cells incubated only in a vitamin-free medium. 
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  Figure 16: The effect of Hcy (100 µM) (A), SAH (100 µM) (B), and SAM (200 µM) (C) on total APP and 
C99 expression in DS fibroblasts incubated in a vitamin-free medium in the presence or absence of β-or γ-
secretase inhibitors. Total numbers of experiments were 6 for each applied condition. Results are presented as average 
and standard deviation. 
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4-3-5. Effect of adding lovastatin on protein expression of APP and C99 in DS fibroblasts in the 

absence and presence of β-or γ-secretase inhibitors: 

DS fibroblasts incubated with 3 concentrations of lovastatin (5, 10, 20 µM), in either a vitamin-

rich or a vitamin-free medium, showed less immunoreactivity of full length APP compared to the 

control cells incubated in the same medium without lovastatin. However, the reduction of APP in 

cells incubated with lovastatin in a vitamin-rich medium was significantly higher than that in 

cells incubated with the drug in a vitamin-free medium (Figure 17.A). Moreover, the APP-

lowering effect of lovastatin in both mediums occurred in a dose-dependent manner.  

In addition, cells grown in a vitamin-free medium and treated with lovastatin, showed reduced 

immunoreactivity of C99 protein comparing to control cells (Figure 17.B).  

The effect of lovastatin (20 µM) on both APP and C99 protein levels was reversed in the 

presence of β-or γ-secretase inhibitors (Figure 17.C).  

 

4-3-6. Effect of adding DZA on protein expression of APP and C99 in DS fibroblasts: 

We tested the effect of three different concentrations of DZA (50, 100, 150 µM) on the 

immunoreactivity of full length APP in DS fibroblasts grown in either a vitamin-rich or a 

vitamin-free medium. In a vitamin-rich medium, DZA reduced APP immunoreactivity in a dose-

dependent manner (Figure 18). In a vitamin-free medium, DZA did not cause any significant 

change in either APP or C99 levels comparing to control cells (Figure 19). However, in the 

presence of 150 µM DZA, the immunoreactivity of full length APP in cells grown in a vitamin-

rich medium was significantly lower than that in cells grown in a vitamin-free medium 

(p=0.014). 
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Figure 17: Effect of lovastatin on protein expression of APP and C99 in DS fibroblasts 
(A): Effect of lovastatin on protein expression of APP in cells incubated in a vitamin-free or in a 
vitamin-rich medium. Total number of experiments ranged between 8 and 11 for each concentration and 
condition.  * p<0.05 compared to vitamin free medium.  
(B): Effect of lovastatin on protein expression of C99 in cells incubated in a vitamin-free medium. Total 
number of experiments ranged between 5 and 6 for each concentration.  
(C): Effect of lovastatin (20 µM) on protein expression of APP and C99 in cells incubated in a vitamin-
free medium and in the absence or the presence of β- or γ-secreatase inhibitors. Total number of 
experiments ranged between 5 and 11 for each concentration and condition. * p<0.005 and § p≤0,05 
compared to cells treated only with lovastatin. Results are presented as average and standard deviation. 
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Figure 19: The effect of DZA on APP and C99 expression in DS fibroblasts 
incubated in a vitamin-free medium.  
Total number of experiments ranged between 6 and 8 for each concentration. Results are 
presented as average and standard deviation.  

Figure 18: The effect of DZA on APP expression in DS fibroblasts incubated in a 
vitamin-rich medium.  
Total number of experiments ranged between 5 and 6 for each concentration. Results are 
presented as average and standard deviation.  
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4- DISCUSSION 
 

4-1. Study (1): Markers of methylation are related to that of neurodegeneration: 
 
There is body of evidence in the literature that markers of methylation are related to 

neurodegenerative diseases. Previous reports documented higher serum or plasma concentrations 

of tHcy and MMA in patients with dementia when compared to non-demented subjects (Clarke et 

al., 1998). Folate deficiency is associated with elevated levels of Hcy, cerebrovascular and 

neurological diseases, and mood disorders (D'Anci and Rosenberg, 2004). In the adult, 

epidemiological studies have linked lack of folate to neurodegenerative and neuropsychiatric 

diseases, including stroke, PD, dementia, and depression (Reynolds, 2002;He et al., 

2004;Lamberti et al., 2005). Our study has shown that patients with peripheral neuropathy had 

higher concentrations of blood markers (tHcy, Cys, SAH, and SAM) and CSF markers (tHcy and 

SAH) in addition to lower median concentration of CSF-folate compared to the controls. 

However, these differences were no more significant after adjusting for age.  

Concentrations of tHcy or related biomarkers in CSF have been tested in only a few studies 

(Hansson et al., 2006;Regland et al., 2004). Human studies demonstrated a lowered SAM or an 

increased tHcy or SAH in brains or CSF from patients with certain disorders of the CNS 

(Bottiglieri et al., 1990;Surtees and Hyland, 1990). Moreover, lower concentrations of CSF- 

folate were observed in late-onset dementia when compared to non-demented patients (Serot et 

al., 2001). We have shown that concentrations of folate decrease and that of tHcy increase in CSF 

with age (Table 8). This is in line with Bottiglieri et al. findings where highly significant decline 

in CSF folate with advanced age was shown (Bottiglieri et al., 2000b). In addition, we found that 

CSF-folate was a stronger predictor (beta = -0.403) of CSF-tHcy than age (beta = 0.298). The 

positive correlation between plasma and CSF concentrations of tHcy has been confirmed by a 

previous study (Selley et al., 2002). Therefore, elevation of tHcy in the blood may indicate its 

elevation in the brain where tHcy can have many neurotoxic effects.  

 

Disturbed methyl group metabolism in the brain might be closely related to age and to methyl 

group metabolism in other parts of the body. As suggested by our results, elevation of CSF-SAH 

with age might be related to increased concentrations of tHcy in the plasma or in the CSF (Table 

8). Hcy is converted into SAH via SAH hydrolase. The reaction in the SAH direction is favoured 
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in case of excess tHcy. This is in line with results on animals showing that dL-Hcy administration 

led to increased brain SAH (Gharib et al., 1983). Because SAH is a potent inhibitor of many 

transmethylases, the lower ratio of SAM/SAH in the CSF indicates a hypomethylation state in the 

brain and may affect several important biological pathways. It is of interest, that aging was 

related to higher CSF concentrations of tHcy and SAH, in addition to a lower folate and 

SAM/SAH ratio in the CSF (Table.8). These metabolic changes with age may be very important 

factors that play a paramount role in the genesis of age-related-disorders. In addition to the role of 

age as a significant modulator of CSF-SAH, our data demonstrated that a lower folate status (in 

the circulation or in the CSF) is related to an increased concentration of SAH in the CSF (Table 

9). It is plausible that aging is associated with a higher concentration of SAH in CSF via lowering 

CSF-folate.  

 

In AD brains, the intracerebral deposition of Aβ (mainly 1-42) is the most important pathologic 

process leading to dementia. In contrast to Aβ (1-40), Aβ (1-42) is insoluble and can accumulate 

in the plaques. Concentrations of Aβ (1-42) are lower in CSF from patients with dementia when 

compared to non-demented patients. The accumulation of Aβ is a long-term process that is 

thought to start at a young age. We found no association between Aβ (1-42) and methylation 

markers, vitamins, or tHcy in the total group or in patients with dementia. However, in non-

demented patients, aged 30-60 years, our results showed that higher CSF-Aβ (1-42) 

concentrations associated with higher CSF concentrations of Hcy and SAH as well as with lower 

concentrations of CSF-SAM (Figure 9). In addition, subjects within the higher CSF tertile of 

SAM/SAH ratio had lower concentrations of CSF-Aβ (1-42) than subjects within the lower 

tertile. Our patients, other than those with dementia, were not tested for cognitive performance 

and we cannot exclude that some of elderly people were slightly demented which might affect 

concentrations of CSF-Aβ (1-42).  

 

Available in-vitro evidence has suggested that tHcy accelerates dementia by stimulating Aβ 

deposition in the brain (Fuso et al., 2005). In line with this, a positive association between plasma 

concentrations of tHcy and that of Aβ has been documented in patients with neurodegenerative 

disease (Irizarry et al., 2005). Another clinical study demonstrated that folate treatment lowered 

concentrations of plasma Aβ (1-40) (Flicker et al., 2007).  
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The effect of SAM or B vitamin treatments on the insoluble Aβ (1-42) protein in CSF has not 

been tested. SAM treatment protects the neurons from degeneration by several mechanisms (Rao 

et al., 1997;Villalobos et al., 2000). The protective effect of SAM was suppressed by 

simultaneous administration of SAH (Sato et al., 1988).  

These results in addition to our current one suggest that an increased SAH, rather than a reduced 

SAM may be a more important mediator in neurodegeneration. Because we demonstrated that 

CSF-tHcy is an important determinant of CSF-SAH (regression analysis), keeping tHcy and SAH 

at a low level may be important for preventing or slowing the deposition of Aβ.  

 

In summary, our current study demonstrated that Hcy metabolism in the circulation is closely 

related to that in the brain. This relation seems to extend beyond a simple exchange of tHcy, 

SAH, SAM, or the vitamins across the blood brain barrier. Higher SAH can cause Aβ 

accumulation thus increasing the risk for neurodegenerative diseases. Testing the response of β-

amyloid to B vitamin treatment in deficient subjects needs to be investigated.  

 

4-2. Study (2): B vitamins may improve cognitive function in elderly:  
 

In our study, at baseline, we have shown that higher concentrations of SAM were significantly 

associated with higher orientation scores. In addition, higher concentrations of MMA were 

significantly associated with lower scores of intellectual abilities (Figure 10).  This results are 

inline with Lewerin and collegues results that showed that tHcy and MMA correlated 

independently with movement and cognitive performance in elderly subjects (Lewerin et al., 

2005). HHcy is associated with an increased risk of cognitive dysfunction. In the Framingham 

Study, subjects with elevated concentrations of tHcy at baseline were more likely to develop 

dementia after several years compared with subjects with normal concentrations of tHcy 

(Seshadri et al., 2002). 

 

As the association between cognitive function and tHcy and B vitamins is supported by more and 

more evidence, several teams are studying the effects of supplementation. In our study, we found 

that at day 21, total SIDAM scores were improved in both placebo and vitamin groups but scores 

indicating higher cortical function and intellectual function were improved only in the vitamin 

group (Figure 11) and this improvement was related to higher reduction in MMA and tHcy 



 84

concentrations (Table 11). At day 45, both of treatment arms showed improvement in total 

SIDAM scores (Table 12). We assume that the study patients, during hospitalization for the first 

three weeks, were subjected to more social interaction; enrolling in different cognitive tests and 

social events, consequently their cognitive status was improved. Additionally, between day 21 

and 45, patients were at home and it might be possible that they did not correctly apply the 

supplementation course. Moreover, the short period time of B vitamins supplementation in our 

study might be not sufficient to obtain significant improvement in the cognitive status of the 

vitamin group in comparing to the placebo group.  

  

On one hand, examinations of association between single nutrients and cognitive outcomes have 

found improvement in domains of cognitive function that tend to decline with age after 

administration of folic acid for 3 years (Durga et al., 2007). Other studies have investigated the 

effect of combined administration of folate and B vitamins on the cognitive status.  Clinical 

improvement in all cases and cognitive scores improvement in 5 cases were found in 7 tested 

cases after administration of B vitamins and N-acetylcysteine (McCaddon, 2006). Bryan and 

colleagues found improvement in some measures of memory function in older women but no 

effect on mood after 35 days of folate and B vitamins administration (Bryan et al., 2002). Both of 

placebo and vitamin groups showed improved memory function.  

 

On the other hand, several vitamin intervention studies document no improvement in measures of 

cognitive function. In a systematic review of randomized trials, Balk and colleagues analysed 14 

trials and found that three trials of vitamin B6 and six of vitamin B12 found no effect overall in a 

variety of doses, route of administration, and population. One of three trials of folic acid found a 

benefit in cognitive function in people with cognitive impairment and low baseline serum folate 

levels. Six trials of combinations of the B vitamins all concluded that the supplementation had no 

effect on cognitive function (Balk et al., 2007). Likewise, another study found no improvement in 

cognitive function in elderly people with vascular events who were treated for 1 year with folic 

acid plus vitamin B12, even though the treatment effectively lowered plasma tHcy concentrations 

(Stott et al., 2005). However, major limitations of these studies and others preclude a firm 

conclusion that B vitamins supplementation has no effect on the cognitive performance.  
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Long-term duration, large participant’s number, standardized cognitive tests that distinguish 

different cognitive domains, adjusting for demographic factors such as age and gender, doses and 

forms of the vitamins, and start of the treatments are all critical factors that have to be considered 

for judging available results or for future studies. One fact that should also be recognized is that 

the turnover of cells in the nervous system is negligible, whereas blood cells divide very rapidly. 

Therefore, vitamin treatment is known to improve hematological symptoms, while neurological 

symptoms may take longer to improve and may be only partially reversible. This is unsurprising 

given that the progression of dementia may extend over several decades. Therefore, it is currently 

believed that ensuring sufficient B vitamin intake might be more effective in disease prevention 

rather than in disease treatment. 

 

4-3. Study (3): One-carbon cycle metabolites might affect APP level and/or its processing: 
 

DS is the most common genetic cause of human mental retardation (Krivchenia et al., 1993). The 

excessive synthesis of multiple gene products derived from overexpression of the genes present 

on chromosome 21, such as APP (Glenner and Wong, 1984), superoxide dismutase, CβS, and β-

secretase (BACE2) genes, is thought to underlie both the dysmorphic features and the 

pathogenesis of the neurological abnormalities that are characteristic of DS. A 157% increase in 

CβS enzyme activity has been previously documented in individuals with DS (Chadefaux et al., 

1985). Cultured skin fibroblasts have been used successfully to elucidate the molecular and 

biochemical basics of many inborn errors of metabolism that cause neurological disease. 

Therefore, we used DS fibroblasts in our study as a model representing hypomethylation, 

oxidative stress, and neurodegeneration conditions.  

 

HHcy is a recognized risk factor for neurodegenerative diseases. Elevated concentration of tHcy 

or low concentrations of  folate are strongly associated with an increased risk of AD and 

cognitive dysfunction (Seshadri et al., 2002;Quadri et al., 2004). Furthermore, disorders of the 

transmethylation pathway have been observed in patients with DS (Pogribna et al., 2001). Low 

SAM/SAH ratio is a metabolic milieu that is associated with the accumulation of several 

neurodegenerative proteins (Obeid et al., 2007a).  

One possible mechanism by which Hcy plays as neurotoxin is potentiating neurotoxicity induced 

by Aβ. Elevated plasma Aβ in DS patients has been reported by recent studies (Mehta et al., 
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2007). Folate deprivation induced a marked increase in Hcy and ROS and increased Aβ-induced 

apoptosis, while folate supplementation prevented the generation of ROS by Aβ (Ho et al., 2003). 

In addition, folate deficiency was found to increase APP catabolism via the amyloidgenic 

pathway. One of the mechanisms tested was DNA-hypomethylation causing overexpression of a 

major γ-secretase, PS-1 (Fuso et al., 2005).  

 

In the current study, we have shown that while SAM caused decreased protein expression of APP 

in cells incubated in a vitamin-free medium compared to cells incubated in a vitamin-rich 

medium, SAH enhanced the expression of APP in cells incubated in a medium free of B 

vitamins. The expression of C99 protein also seemed to be differently affected by SAH and 

SAM. SAH enhanced APP degradation into Aβ via C99 thus causing lowered protein expression 

of C99 and 22% increase of the intracellular concentrations of Aβ (1-42). The later was reduced 

by 62% in the presence of SAM (200 µM) comparing to cells incubated only in a vitamin-free 

medium. 

 

To understand more the previous effects of SAH or SAM on APP immunoreactivity, we were 

further interested to test whether these effects were related to an effect on APP processing via the 

amyloidgenic pathway by means of β- and/or γ-secretases. For this purpose, we tested the effects 

of β- and γ-secretase inhibitors on APP and C99 expression in DS fibroblasts cultured in a 

vitamin-free medium and treated with SAH (100 µM) or SAM (200 µM). We found that the 

presence of β- or γ-secretase inhibitors reversed the effects of SAM and SAH on APP processing 

suggesting that while SAH increased Aβ accumulation via enhancing the enzymatic activity of 

the secretases affecting the amyloidgeneic pathway, SAM inhibits these secretases causing less 

production and accumulation of Aβ. These results seem in accordance with the study of 

Cavallaro and collegues, in which SAM has been shown to silence the PS-1 gene thus reducing 

Aβ (Cavallaro et al., 2006). One mechanism that might link methylation to APP processing is 

APP phosphorylation at Thr668 by means  of PP2A that facilitates its cleavage (Lee et al., 

2003;Pierrot et al., 2006).  

Recent findings in neurons suggest that inhibition of PP2A promotes the axonal accumulation of 

β-CTF APP fragments by inducing microtubule destabilization and deficits in APP transport 

(Yoon et al., 2006). The formation of active PP2A depends on the methylation of its B subunit 

that is controlled by a specific SAM-dependent methyltransferase (Lee and Stock, 1993). PP2A 
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mediates the de-phosphorylation of tau protein affecting its accumulation. It has been reported 

that exogenous Hcy and folate deficiency in cultured neurons can increase SAH and/or decrease 

SAM levels and promote tau phosphorylation (Ho et al., 2003). Vafai and Stock provided 

experimental proof for the hypothesis that PP2A methylation links Hcy metabolism with tau 

hyperphosphorylation in AD (Vafai and Stock, 2002). Incubation of neuroblastoma cells with 

SAH caused reduced methylation of PP2A, a major brain Ser/Thr phosphatase, and this enhanced 

accumulation of phosphorylated APP and increased production of β-secretases-cleaved APP 

fragments and Aβ (Sontag et al., 2007). Therfore, one can spectulate that cells incubated with 

SAH might have shown reduced PP2A activity, enhanced phosphorylated forms of APP and 

thereby increased APP processing into Aβ.  

 

Hcy in the concentrations used in this study showed no effect on APP expression in cells grown 

in a vitamin-rich or a vitamin-free medium suggesting that either the exposure time or the 

concentrations used were not sufficient to show this effect. However, Hcy caused enhanced 

protein expresion of C99 in cells grown in a vitamin-free medium. This effect was reversed using 

β- or γ-secretase inhibitors. Moreover, the mild effect of Hcy comparing to that of SAH might be 

due to increased catabolism of Hcy in DS fibroblasts expressing an additional copy of CβS. Our 

results suggest that Hcy enhances both β- and γ-secretases and therefore stimulating APP 

processing to C99. This suggestion corresponds with a recent observation that Hcy can induce 

mRNA and protein level of PS-1 and folate and vitamin B12 injection antagonized this elevation 

suggesting that HHcy can affect several key steps in APP processing (Zhang et al., 2009). In 

addition, our results can be related to the fact that DS subjects have enhanced amount of BACE2 

(expressed on chromosome 21) that catabolize APP to C99. HHcy and B vitamins deprivation 

enhanced gene and protein expression of β- and γ-secretases and Aβ production in mice brain 

(Fuso et al., 2009). Our findings show that the effect of Hcy on C99 was reversed in the presence 

of γ-secretase inhibitors suggesting that Hcy enhanced PS-1 activity.   

 

HHcy and B vitamins deficiency have been recognized as risk factors for neurodegenerative 

diseases. The hypothesis that lowering Hcy concentrations would improve cognitive performance 

has been widely tested and inconclusive results were obtained. Hcy concentrations could be 

reduced via manipulation of the methionine cycle with different factors such as B vitamins, 

SAM, and DZA. Combined folate, B12, and B6 dietary deficiency induced Aβ overproduction 
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via up-regulation of enzymes that mediate APP processing in the amyloidgenic pathway (Fuso et 

al., 2008). Folate deprivation induced Hcy accumulation, while DZA addition prevented this 

effect in addition to the increased generation of ROS that normally accompanies folate 

deprivation (Ho et al., 2003).  

In the current study, we showed that DZA reduced protein expression of APP in DS fibroblasts 

incubated in a vitamin-rich medium in a dose-dependent manner. This suggests that vitamin 

availability contributed into the mechanism by which DZA may affect APP generation and/or 

processing. Furthermore, we showed that in vitamin-free conditions, DZA had no effect on the 

immunoreactvity of full length APP and C99. However, in the presence of the highest 

concentration of DZA (150 µM), a significant difference between the reduction of APP in a 

vitamin-rich medium and that free of vitamins was observed (p=0.014). We assume that higher 

concentrations of DZA are necessary to show its effect in vitamin-free conditions. In addition, the 

effects obtained in cells grown in a vitamin-rich medium support the hypothesis that DZA might 

affect the neurodegeneration process probably via mechanisms related to its role as anti-oxidants 

(Shea et al., 2004;Ho et al., 2003).  

Oxidative stress is an early event in the development of neurodegeneration diseases (Nunomura 

et al., 2001). Oxidants including the aldehydic end product of lipid peroxidation, 4-

hydroxynonenal, found to up-regulate BACE-1 expression and activity in differentiated neuronal 

NT2 cells (Tamagno et al., 2002). A number of studies have shown that antioxidants, both 

endogenous and dietary, can protect nervous tissue from damage by oxidative stress (Behl, 

1999;Zandi et al., 2004). The molecular mechanisms by which antioxidants might protect the 

nervous system from damage caused by ROS are however not clear. In one study, the antioxidant 

N-acetyl-L-cystein was found to lower gene expression of  APP in human neuroblastoma cells 

(Studer et al., 2001). The nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) 

is a protein complex that controls the transcrition of DNA (Mattson et al., 2000) was found to be 

activated by Aβ-mediated oxidative stress (Schreck et al., 1991). Animal studies have shown that 

folate and vitamin E deficiency led to increased PS-1 expression that was later attenuated by 

apple juice concentrate administration in a genetic model of AD (Chan and Shea, 2006).  

 

Disturbaces in one-carbon metabolism might show interaction with other risk factors like 

hypercholesterolemia. Epidemiological studies indicate that high serum cholesterol levels 

increase the risk of AD, and it has been proposed that the homeostatic regulation of cholesterol 
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metabolism may be altered in AD (Knebl et al., 1994). Moreover, recent reports show a 

significant reduction in AD risk for patients treated with statins [competitive inhibitors of 3-

hydroxy-3-methylglutaryl (HMG)-CoA reductase], the enzyme that catalyzes the rate limiting 

step in cholesterol biosynthesis. Taken together, these suggest that the reduction of cholesterol 

levels may inhibit AD pathogenesis.  

In our study, we found that adding lovastatin to DS fibroblasts lowered APP expression in cells 

cultured in a vitamin-rich medium or in a vitamin-free medium. The reduction in the presence of 

vitamins was significantly higher than it in the absence of vitamins (Figure 17.A). This difference 

might be related to an effect of lovastatin on the ratio of methylated and non-methylated 

phospholipids that determine the fluidity of the cellular membrane and thereby APP processing. 

In addition, in a vitamin-free medium, we found that lovastatin lowered C99 expression in a 

dose-dependent manner (Figure 17.B). Moreover, in cells grown in a vitamin-free medium, the 

addition of β- or γ-secretase inhibitors reversed the effect of lovastatin on both APP and C99 

expression. Therefore, we assume that lovastatin inhibits the activity of both β- and γ-secretases 

enhancing APP processing in the non-amyloidgenic pathway.  

Studies on the effect of statins on amyloid processing are not consistent. For example, lovastatin 

lowered Aβ (1-42) by approximately 70% in mixed rat cortical neurons (Fassbender et al., 2001). 

Additionally, (1-10 µM) lovastatin caused increased cellular APP level in extracts of primary 

hippocampal neurons, but lowered APP in low-density lipid rafts (Won et al., 2008). The authors 

suggested that lovastatin might act via mechanisms not related to cholesterol lowering.  

Over the last decade, it has been established an increasing insight into the molecular mechanisms 

involved in the role of cholesterol as a highly potent regulator for Aβ generation. The study of 

Grimm and collegues analyzed the cellular mechanism by which cellular cholesterol levels 

influence intracellular Aβ production and found that cholesterol depletion results in a parallel and 

additive inhibition of the β- and γ-secretase activities and this inhibition can be partly separated 

from each other and therefore appears to be independent of each other (Grimm et al., 2008). 

Other studies have shown increased α-secretase activity because of cholesterol depletion (Kojro 

et al., 2001).  

One hypothesis of the postulated statin-induced shift from β- to α-cleavage is that the inhibition 

of HMG CoA reduction by statins results in reduction in mevalonate and isoprenylation of small 

GTPases, which is essential for internalization and sorting of early endosomes (de et al., 2003). β 

-secretase activity depends on endocytic membrane recycling and the endosomal system (Cataldo 
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et al., 2000). Therefore, reduction of endosomal re-internalization is expected to reduce Aβ 

formation in favour of α-cleavage. The other hypothesis is the effect of statins directly on 

cholesterol transport among endocellular compartments and cholesterol content within the plasma 

lemma. The cellular membrane contains many different kinds of lipids, including phospholipids, 

sphingomyelin, and cholesterol. The distribution of these components of any given part of the 

membrane is not uniform. Some patches of membrane, termed lipid rafts, contain high amounts 

of sphingolipids, which are orderly packed by cholesterol molecules. Since cholesterol is a rigid 

molecule and lipid rafts have high content of cholesterol, lipid rafts are considered to be regions 

of low membrane fluidity. Increasing evidence suggests that the enzymes that generate Aβ, 

particularly β-secretase, function best in a high-cholesterol environment (Fassbender et al., 2001). 

In contrast, Kojro and collegues showed that sites of APPsα production occur in membrane 

regions with low cholesterol content and high fluidity (Kojro et al., 2001). 

  

In summary, our investigations on DS fibroblasts showed that disorders in the methylation status 

could affect APP production or degradation. DZA may improve cognitive function via 

mechanisms not related to its role as SAH hydrolase inhibitor and the proposed protective effect 

of lovastatin against dementia seems to depend on methylation status. In-vivo studies are 

warranted.  
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