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Zusammenfassung 
 
Die vorliegende Doktorarbeit beschäftigt sich mit zytotoxischen T-Lymphozyten 

(Andersen et al., 2006), einer Zellpopulation des Immunsystems. Sie gehören zur 

zellulären Immunabwehr und erkennen mit ihren T-Zellrezeptoren (TCR) 

körpereigene Zellen, die von Bakterien oder Viren infiziert wurden. Nach der 

Erkennung erfolgt die Ausbildung einer Immunologischen Synapse zwischen 

Zielzelle und CTL. Am Ort der Synapse werden aus den CTL lytische Substanzen 

(i.e. Perforin, Granulysin und verschiedene Granzyme) exozytotisch ausgeschieden, 

die in der Zielzelle Apoptose auslösen und so die Infektion bekämpfen. Während der 

Reifung der lytischen Vesikel laufen intrazellulär verschiedene Fusionsereignisse 

unterschiedlicher Vesikel-populationen ab. Letztlich fusioniert das reife Vesikel mit 

der Plasmamembran und gibt seine lytischen Substanzen frei. Es wird vermutet, 

dass, wie in anderen Zellsystemen auch, die Fusionsereignisse von SNARE 

Proteinen gesteuert werden. 

In der vorliegenden Arbeit wird speziell die Funktion des SNARE Proteins Syntaxin7 

untersucht. Ein von uns durchgeführter PCR Screen nach verschiedenen SNAREs 

hatte das Vorhandensein von Syntaxin7 gezeigt. Außerdem wurde die Expression 

von Syntaxin7 nach Aktivierung der CTLs hochreguliert. Syntaxin7 erschien deshalb 

als aussichtsreicher Kandidat für eine funktionelle Beteiligung an der Immunfunktion 

von CTLs. Speziell sollte geklärt werden (1) wo in der Zelle Syntaxin7 lokalisiert ist, 

(2) ob es tatsächlich an der Exozytose von lytischen Vesikeln beteiligt ist und (3) 

welchen Schritt bei der Vesikelreifung und Exozytose es steuert. 

Im Wesentlichen wurden zur Klärung dieser Fragen zwei experimentelle Ansätze 

verwendet - Überexpression einer dominant negativen Form von Syntaxin7 und 

Hemmung der Syntaxin7 Expression mit siRNAs. Daten wurden in der Studie mit 

Hilfe von Populations- und Einzelzell-Zytotoxizitäts-Assays, gentechnischen (PCR) 

und proteinbiochemischen (Western Blot) Verfahren und Hochauflösungs-

lichtmikroskopie (TIRF, SIM) erhoben. 

Es konnte belegt werden, dass die Anreicherung und Freisetzung lytischer Vesikel 

durch Hemmung der Syntaxin7 Funktion unterbunden werden kann. 

Lokalisationsstudien haben gezeigt, dass Syntaxin7 überraschender Weise nicht auf 

den lytischen Vesikeln vorkommt. Weitere Untersuchungen ergaben, dass in 

Syntaxin7 defizienten CTLs neben dem Sekretionsdefekt auch das übliche Recycling 
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des TCR zur immunologischen Synapse weitgehend ausblieb. Daraus wurde die 

Hypothese gebildet, dass Syntaxin7 nicht direkt an der Exozytose lytischer Vesikel 

beteiligt ist. Vielmehr spielt es eine Rolle bei der Ausbildung eines funktionellen 

cSMAC, wozu die Migration und das Recycling des TCR Voraussetzung sind. Mit 

Hilfe hochauflösender Fluoreszenzmikroskopie wurde anschließend der Schritt des 

TCR Recyclings identifiziert, der durch Syntaxin7 geregelt wird. Dazu wurden 

verschiedene endosomale und lysosomale Marker verwendet und ihre Kolokalisation 

zu Syntaxin7 bzw. dem TCR untersucht. Wir fanden, dass Syntaxin7 sowohl in 

späten Endosomen als auch an der Plasmamembran vorkommt. Außerdem konnte 

gezeigt werden, dass TCRs mit Rab7, einem Markerprotein für späte Endosomen, 

kolokalisieren. Diese Kolokalisation nahm nach Transfektion mit Syntaxin7 siRNA ab, 

während die Kolokalisation mit EEA, einem Marker früher Endosomen, zunahm.  

Diese Ergebnisse machen deutlich, dass Syntaxin7 bei der Reifung früher zu späten 

Endosomen eine entscheidende Rolle spielt. Ist dieser Schritt durch Blockierung oder 

Herunterregulation von Syntaxin7 inhibiert, wird der Aufbau des cSMAC und damit 

die Exozytose lytischer Vesikel gestört. 
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1. Introduction 

1.1 The immune system – the basics 

The immune system is the defense system that functions to preserve the integrity of 

the host organism by protecting it against invading pathogenic organisms or any sort 

of injury. It has evolved in vertebrates and comprises of a dynamic network of a 

variety of cells that work together with different proteins to specifically recognize and 

eliminate any foreign antigen. The immune cells are migratory in nature and therefore 

continuously move between and within tissues for immune surveillance and defense 

against bacteria, viruses and damage (Gowans and Knight, 1964). The immune 

system has both non specific (innate immunity) and specific components (adaptive 

immunity). Components of the innate immune system do not show any specificity to a 

particular pathogen for its elimination. The cells of the innate immune system 

therefore offer the first line of defense against invading pathogens. All the specific 

components of the immune system come under the adaptive immune system. They 

generate specific immune responses such as the production of antibodies against a 

particular pathogen. The adaptive immune system sometimes confers lifelong 

protection to infection against the same pathogen or generates a more heightened 

and rapid response (memory response) to ensure quicker elimination of the 

pathogen. Adaptive immunity therefore is different from innate immunity as it occurs 

during the lifetime of an individual as an adaptation to infection with a pathogen and 

requires time to generate an immune response. The adaptive immune system 

consists of a cellular and humoral branch. Innate and adaptive immunity depend on 

each other to elicit effective immune responses (Eisenbarth and Flavell, 2009). 

1.1.1 Cellular components of the immune system 

All cells of the immune system arise from haematopoeitic stem cells in the bone 

marrow. These stem cells divide to generate two populations of stem cells – one is 

the myeloid progenitor that gives rise to granulocytes, macrophages, dendritic cells 

and mast cells and the second is the common lymphoid progenitor that gives rise to 

natural killer cells and lymphocytes. Granulocytes include eosinophils, basophils and 

neutrophils. They circulate in the blood and act as effector cells at sites of 
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inflammation and infection and are short lived. Macrophages are phagocytes and are 

critical for innate immunity. They are distributed widely in body tissues and are the 

mature form of monocytes which circulate in the blood and differentiate continuously 

into macrophages. Dendritic cells (DCs) are specialized to take up antigens, process 

it and display it for recognition by T lymphocytes. During the uptake and processing 

of antigens dendritic cells are activated and express co stimulatory molecules and 

migrate to the lymph nodes. Mast cells reside near small blood vessels and upon 

activation release substances affecting vascular permeability. They are best known 

for orchestrating allergic responses. Natural killer cells are large, granular cells that 

lack antigen specific receptors. They are important for innate immunity and can kill 

virus infected cells. Lymphocytes can generate an immune response against almost 

any antigen. This is possible because every individual lymphocyte matures with a 

unique variant of a receptor that can recognize antigens. Therefore collectively 

lymphocytes bear receptors that can recognize almost every antigen. Upon infection, 

there is selective activation and expansion of lymphocytes that bear receptors 

recognizing that particular antigen. This is how adaptive immune system is effective 

in eliminating all infections.  

 

1.2 Lymphocytes 

Lymphocytes are small, having a condensed chromatin indicating minimal 

transcriptional activity. Naïve lymphocytes have no known function and can only 

function after activation in adaptive immune responses. An adaptive immune 

response is generated when a specific antigen presenting DC is recognized by the 

lymphocyte leading to their activation. The adaptive immune system is mediated 

largely by lymphocytes and consists of a cellular and humoral branch. The former is 

mediated by T lymphocytes and the latter by B lymphocytes. B lymphocytes express 

cell surface immunoglobulin (antibody) molecules that act as receptors for antigen. 

When they are activated they secrete the soluble antibody that provides protection 

against the pathogens in the extracellular space. T cells have receptors that 

recognize peptide fragments of pathogens presented on the surface of antigen 

presenting by a set of glycoproteins called the Majorhistocompatability complex 
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(MHC). There are two classes of MHC molecules that present peptides on the 

surface of antigen presenting cells. The MHC class I molecules are present on 

almost all nucleated cells in the body and the MHC class II molecules are present on 

specialized cells such as dendritic cells. T lymphocyes are divided in two major 

subsets based on the presence of two receptors on their surface the CD4 and CD8 

receptor. Cells bearing the CD4 receptor (CD4 T cells) recognize peptides presented 

by MHC class II molecules and cells bearing the CD8 receptor (CD8 T cells) 

recognize peptides presented by MHC class I molecules. CD4 T cells when activated 

are called T helper cells and function in activating other cells of the immune system 

like macrophages and B cells. CD8 T cells upon activation differentiate into effector 

cytotoxic T lymphocytes. These cells function in the direct induction of cell death of 

the target cell and function in combating tumors, bacteria and virus infected cells.  

The importance of the adaptive immune system is evident in the form of life 

threatening diseases which result when the lymphocytes are not functional leading to 

immunodeficiency syndromes. While the innate immunity provides the immediate 

defense, it is not sufficient to combat all infections. For thorough and effective 

elimination of all pathogens in the body the proper functioning of the adaptive 

immune system is a must. There is still a lot to be discovered about the activation 

and killing function of CD8T cells which bring about the most direct elimination of 

infected cells. 

 

1.3. From naïve to effector CD8 T cells 

Naïve CD8T cells are generated in the thymus and migrate between the blood and 

lymph node in search of antigen (Goldschneider et al., 1986). Following their 

maturation in the thymus they move to the lymph node (Fig. 1) where they first 

encounter antigen presenting cells. The antigen presenting cells (APCs) include 

dendritic cells, B cells, macrophages, etc. This first encounter with APCs is essential 

for their conversion to effector status. Naïve CD8 T cells are much smaller in size and 

have different calcium signaling in comparison to effector CD8 T cells (Bromley and 

Dustin, 2002). They interact with antigen presenting dendritic cells in three sequential 

stages. In the first phase, which constitutes up to approximately 8 h after the entry of 
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T cells in to the lymph node, there are several short encounters of low signal intensity 

between the rapidly migrating cells with dendritic cells. These repetitive antigen 

independent interactions contribute to maintaining the T cell repertoire in the absence 

of activation (Pannetier et al., 1995). When a specific antigen presented by MHC 

class I molecules on the surface of dendritic cells is recognized by a naïve T cell a 

mature synapse between the naïve T cell and dendritic cells is formed. This process 

requires about 30 minutes (Lee et al., 2002). CD44 and CD69 which are early 

activation markers of T lymphocytes are upregulated during this phase.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. T cells can interact with antigen-bearing dendritic cells (DCs) in lymph nodes 
in multiple ways.  
Antigen recognition by T cells can occur through interactions with DCs that are short-lived, 
long-lived or in swarms. T cells can collect and integrate signals delivered, such as 
those from the T-cell receptor and co-stimulatory ligands, during each of these 
encounters. The collection of histories of T-cell–DC contact dynamics influences both the 
quality and the heterogeneity of the ensuing T-cell response (Bousso, 2008). 
 

The second phase of naïve T cell activation lasts 8 h until 24 h after T cell migration. 

During this phase stable T cell-DC cell conjugates are formed that last for about 1 h 

and there is abundant expression of CD25 (Tugores et al., 1992) but no cell division. 

The longevity of cell interactions in this phase is consistent with the formation of a 

mature contact zone. During this phase, clustering of CD8 T cells around single DCs 

occurs in a manner similar to that seen in CD4 T cells. One day after the initial 

homing leads to the third phase of T cell activation. This phase generates T cell 

blasts and comprises of serial engagements with different DCs. Provisional activation 
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and clonal expansion of CD8 T cells is provided by short lived interactions with 

immature DCs (Iezzi et al., 1998). A phase of sustained signaling with mature DCs 

seems to be crucial for supporting the survival of activated T cells and their 

commitment to full effector potential (Costello et al., 2002; Huppa et al., 2003; Hurez 

et al., 2003). 

When they come in contact with APCs through the MHC peptide that is present on 

the membrane of APCs an immunological synapse (IS; see also section1.5) is 

formed. The IS which refers to the contact zone between the two cell types is stable 

and lasts for several hours. During this time the entire transcription machinery is 

activated and several genes are up-regulated. Most importantly the calcium signals in 

the T cells are increased and the cytotoxic machinery required for effector function 

are synthesized since naïve T cells lack perforin and granzymes (Chattopadhyay et 

al., 2009). Naïve T cells cannot function as killer cells (O'Keefe et al., 2004) and need 

to be activated in order to be killing competent, therefore the activation process of 

naïve T cells is very important in determining the effector function of T cells. 

After T cells emigrate from the thymus, their homeostasis involves short lived serial 

contacts of low signal intensity. Recirculating naïve T cells constitutively interact with 

high numbers of DCs as they migrate through the perifollicular regions of the lymph 

node. These repetitive antigen independent interactions could contribute to 

maintaining the T cell repertoire in the absence of activation and clonal expansion. 

These short interactions increase calcium signaling and also lead to up-regulation of 

early activation markers CD25 and CD69. Serial signaling by different APCs induces 

the provisional activation of T cells that allow stabilization and commitment towards 

differentiation and effector function. Once T cells are activated, they need low doses 

of antigen for killing by forming an unsegregated synapse by interactions between 

CD95 (also known as FAS) and CD95 ligand (Purbhoo et al., 2004). Segregation of 

the IS that occurs in response to high doses of antigen, leads to the recruitment of 

components important for the secretory pathway of killing towards the IS enabling the 

polarized release of granzymes and perforin into the target cell (O'Keefe et al., 2004). 
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1.4 Effector CD8 T cells- killer Cytotoxic T lymphocytes 

When naïve CD8T cells are activated and reach the effector status they are called 

Cytotoxic T lymphocytes (CTLs) because of their ability to directly induce death in 

their target cells. Segregation of the immunologicaI synapse (IS; see also section 1.5) 

that occurs in response to high doses of antigen, leads to the recruitment of 

components important for the secretory pathway of killing towards the IS enabling the 

polarized release of granzymes and perforin into the target cell (O'Keefe et al., 2004). 

Cytotoxic T lymphocytes use different pathways to kill target cells. One pathway is 

mediated by cytokines (Andersen et al., 2006) such as Interferon-gamma (IFN-γ) and 

tumor necrosis factor-alpha (TNF-α), which are produced and secreted as long as the 

T-cell receptor (TCR; see also section 1.5) stimulation continues. These cytokines 

affect the opposed target cell or cells distal to the effector T cell. TNF-α engages its 

receptor on the target cell and triggers the caspase cascade, leading to target cell 

apoptosis. IFN-γ however induces transcriptional activation of the MHC class I 

antigen presentation. Two pathways involve cell-cell contact dependent interaction 

between effector and target cells. They use two different mechanisms to result in 

apoptosis of target cells (Lowin et al., 1994b). In one case, the Fas ligand which is 

expressed on the surface of CTLs, binds to the Fas receptor (Fas, CD95) on the 

target cell. This binding triggers apoptosis through the classical caspase cascade 

(Nagata, 1996). Low doses of antigen are needed for killing by this pathway. An 

unsegregated synapse (see 1.5) between the CTL and target cell is formed by 

interactions between CD95 (also known as FAS) and CD95 ligand (Purbhoo et al., 

2004). The Fas pathway is important in CTLs for self tolerance and survival by 

regulating responses to self and foreign antigens (Van Parijs et al., 1998). It protects 

T cells against activation induced cell death (Kataoka et al., 1998). In the other case, 

CTLs release perforin and granzymes into the intercellular cleft between the CTL and 

target cell to induce target cell death (Lowin et al., 1995). These proteins are highly 

cytotoxic and the CTLs have devised an elaborate mechanism to protect themselves 

and neighbouring cells from being killed accidentally (see also section 1.6.1) while 

still ensuring that the attacked cell can show a rapid and efficient cytotoxic response 

upon triggering the TCR. CTLs have the major lytic proteins pre-synthesized to 
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ensure rapid responses upon encountering a target cell. The lytic proteins are stored 

in regulated secretory lysosomes which polarize themselves to the cell surface and 

expose their content only upon contact with a target.  

1.4.1 Granule mediated cell death pathway using Perforin and Granzymes 

Granule mediated cytolysis is the most important effector function of CD8 T cells. 

After a killer cell recognizes its target cell, the cytotoxic granules move to the 

immunological synapse, where their membranes fuse with the killer cell plasma 

membrane and they release their contents to induce target cell apoptosis. The 

principal death effectors are the serine proteases called granzymes and the 

membrane perturbing proteins, perforin and granulysin. Studies using a perforin 

knock out mouse have shown the importance of the granule exocytosis pathway for 

controlling viral infections and tumors (Kagi et al., 1994; Kojima et al., 1994; Lowin et 

al., 1994a). Moreover, perforin knock out mice are also easily susceptible to tumors 

and infections (Smyth et al., 2000; van den Broek et al., 1996). The same basic 

mechanisms are used by all killer cells whether they are CD8 cytotoxic T cells or 

natural killer cells. Both cytotoxic T cells and natural killer cells from perforin knock 

out mice show a great impairment in target cell killing even though the Fas mediated 

killing is normal.  

These cytolytic molecules need to be sorted and stored in secretory lysosomes which 

are specialized lysosomes. Secretory lysosomes are the only lysosomes present in 

CTLs and have a dual function (Burkhardt et al., 1990; Peters et al., 1991). They act 

as the store of acid hydrolases for the digestion of endocytosed macromolecules, and 

they contain the cytotoxic components that are necessary for killing. 

The key soluble component of the lytic granules, perforin was identified by the 

homology to the C9 of complement system (Shinkai et al., 1988; Tschopp et al., 

1986). Perforin was found to form pores of size 15-16 nm in the membrane of red 

blood cells and so was also functionally similar (Sauer et al., 1991). There are other 

components that are crucial for target cell apoptosis, the serine proteases called 

granzymes. The action of both perforin and granzymes is required for target cell 

killing (Nakajima et al., 1995; Shiver and Henkart, 1991). Independent experiments 

have shown that the pores made by perforin are needed for the granzymes to enter 

the target cell. There are several forms of granzymes that mediate different modes of 
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target cell death. Granzyme B cleaves caspase and brings rapid cell death and 

Granzyme A generates single stranded nicks in the DNA of the target cell leading to 

its death (Beresford et al., 2001). Studies using effector cells deficient in Granzyme A 

have shown that both granular killing and Fas mediated killing is normal (Ebnet et al., 

1995). However, effector CTLs deficient in Granzyme B show impaired rapid DNA 

fragmentation, occurrence of late DNA fragmentation and normal Fas mediated killing 

(Trambas and Griffiths, 2003). 

Perforin activity is acutely dependent on pH and so drops rapidly at a pH of 4.5 (the 

pH of endosomal compartments). Therefore perforin does not disrupt the membrane 

of the endosomal compartments where it is stored (Kuta et al., 1989). Upon release 

in the synaptic cleft where the pH is no longer acidic, the activity of perforin is 

restored. It integrates into the membrane of the target cell through its lipid binding C2 

domain. Another molecule that has been shown to play an important role in self 

protection is cathepsin B. Cathepsin B is present on the granule membrane of CTLs 

and upon exocytosis gets incorporated into the membrane of the CTL. This cathepsin 

B can cleave perforin that binds to the target cell membrane and thereby prevents 

pore formation in the membrane of the target cell (Balaji et al., 2002). 

Killer T cells are also protected from granzyme B mediated killing by the expression 

of serpins which are serine protease inhibitors on their membrane (Hirst et al., 2003). 

 

1.5 The immunological synapse 

Synapse means connection and the term neuronal synapse was used to describe 

connections between neurons. It is evident that the formation of cell-cell contact is 

very important for mediating and regulating immune responses as well and so the 

term immunological synapse (IS) to describe connections between immune cells and 

their specific target cells was coined in the 1990s by N. Norcoss and also by W. Paul 

and colleagues (Norcross, 1984; Paul et al., 1987). There are various types and 

functions of immunological synapses depending on the type of cells they connect. 

The synapse that is important for us is the one that is formed between CTLs and 

target cells. It is called the secretory immunological synapse (Fig. 2) and is a variant 

of the mature or fully segregated synapse whose formation consists of different 
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phases of signaling (Bossi et al., 2002; Potter et al., 2001; Stinchcombe et al., 

2001b). 

The first phase leads to a stop signal that causes migrating T cells to come to a 

transient arrest when they recognize cognate peptide MHC complexes (Dustin et al., 

1997). This is followed by the phase of signal induction which is very crucial as it 

determines the fate of the cell-cell contact. The first few seconds of contact induces 

calcium signaling followed by recruitment of signaling molecules such as CD3ζ, LCK, 

ZAP70 and phosphatidylinositol 3-kinase (PI3K), followed by phosphorylation of LCK 

and ZAP70. TCR, CD8 and CD28 move to the contact area of dynamic signaling 

within 30-60 s of contact formation (Horejsi et al., 2004; Stradal et al., 2004; Zal et al., 

2002). TCR generates signals that induce the activation of several tyrosine kinases of 

the Src and Syk families, followed by the assembly of a platform of signaling and 

adaptor proteins. This signaling platform is required for the activation of downstream 

effectors, including PI3K (Robertson et al., 2005) and Rho GTPases. PI3K via its Src 

homology 2 domain, binds to phosphotyrosine residues in the platform and generates 

a local increase in phosphatidyl inositol–triphosphate which clusters in the inner 

leaflet of the plasma membrane. The Rho GTPases rac1 and Rho control the 

assembly of actin filaments and cytoskeletal dynamics close to the cell-cell junction 

(Villalba et al., 2001). After 5-30 minutes of continuous T cell-APC contact defines the 

third phase of the IS formation which is defined by molecular segregation. A central 

zone containing TCR, CD3 as well as associated protein kinase C is formed called 

the central supramolecular activation cluster (cSMAC). It is persistence of TCR 

signaling at the IS that leads to the accumulation of surface TCRs at the cSMAC. 

This is mediated by actin and endosomal vesicles (Das et al., 2004). Surrounding this 

zone is the peripheral Supramolecular activation cluster (pSMAC) comprising Talin, 

lymphocyte function associated antigen 1 (LFA1), CD2 and CD11a (O'Keefe et al., 

2004; Stinchcombe et al., 2001b). Adjacent to the TCR enriched cSMAC is the 

secretory domain that contains the microtubule organizing centre (MTOC), 

polymerized tubulin. It is at this secretory domain that the release of lytic granules 

takes place (Kuhn and Poenie, 2002). 

If the segregation of molecules is arrested before the complete clustering of TCR 

molecules or signaling molecules, an unsegregated IS is formed. In this case, the 



----------Introduction---------- 

 15 

TCR and signaling molecules show a diffused pattern at the contact zone. Naïve CD8 

T cells form an unsegregated IS (see 1.5) during their initial phase of contact with 

numerous DCs and have shown to become activated without a discrete cSMAC. An 

unsegregated synapse was seen in CTLs in the cases of low antigen stimulation and 

resulted in vesicle exocytosis and target cell killing (Faroudi et al., 2003).  

The fourth phase after sustained signaling leads to the internalization of TCR and 

sorting to the lysosomes for degradation. This downregulation of TCR is thought to 

be important for terminating the IS thereby leading to IS resolution resulting in the 

separation of the two cells (Liu et al., 2000). This marks the final phase of CTL-target 

cell interaction. 

 

               
Figure 2. The secretory immunological synapse (IS) in CTLs.  
Clustering of the TCR/CD3 complex to form the cSMAC is followed by fusion of lytic granules 
at the secretory domain adjacent to the immunological synapse (Lieberman, 2003). 

IS 
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1.6 Intracellular trafficking through endosomes 

Trafficking in eukaryotic cells involves the transport of cargo from a donor 

compartment to a target compartment and is essential for the normal functioning of 

cells. Trafficking includes both the sorting of newly synthesized proteins from the ER 

and golgi to their respective destination and the transfer of proteins from the plasma 

membrane either to the lysosomes for degradation or for to recycling endosomes for 

recycling them back to the plasma membrane. Proteins that are endocytosed from 

the plasma membrane have three possible destinations – the plasma membrane, the 

trans-golgi network (TGN) or the lysosomes (Seaman, 2004). 

The first branch point from the plasma membrane in the endocytic pathway is the 

early endosome which matures into the late endosome. The mechanism by which 

late endosomes are formed from early endosomes has been a subject of dispute. 

One model suggests that the late endosomes are formed from the early endosomes 

by gradual addition of late endosome components and removal of early endosome 

components. Rab5 which is a marker for early endosomes has been shown to 

gradually disappear with the subsequent acquisition of Rab7 marking the progression 

from early to late endosomes (Rink et al., 2005). The pH is also supposed to be a 

factor for marking the progression of early to late endosomes as Bafilomycin A1- a 

vacuolar H+-ATPase inhibitor slows the progression from early to late endosomes 

(Aniento et al., 1996). Late endosomes contain more lumenal vesicles than early 

endosomes and are often described as multivesicular bodies (MVBs) (Russell et al., 

2006) a characteristic that is promoted by lipids (Matsuo et al., 2004).The formation 

of lysosomes from MVBs has been studied in cell free content mixing assays 

providing evidence that late endosomes or MVBs fuse directly with the lysosomes 

(Bright et al., 1997; Mullock et al., 2000; Ward et al., 2000b). Endosome lysosome 

fusion events have several characteristics. Content mixing was only observed when 

the organelles were in physical contact. Organelles either transiently fuse (kissing 

events) or undergo permanent fusion. Kissing events often, but not always, precede 

full fusion. Third, contents were sometimes exchanged between organelles by 

tubules that occurred from either type of organelle. Tubules facilitate the exchange of 

contents between organelles by both kissing and full fusion events (Bright et al., 

2005). Fusion of late endosomes and lysosomes as with other fusion events in the 
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secretory and endocytic pathways requires the presence of SNARE proteins and a 

small GTPase of the Rab family, Rab7 (Mullock et al., 1998). The route from the 

sorting endosome back to the plasma membrane can be either by direct fusion (Hao 

and Maxfield, 2000) or though the endocytic recycling compartment which is a long 

lived organelle (Sheff et al., 1999). 

 

 
Figure 3. The clathrin mediated endocytic pathway.  
Recruitment of AP2 and clathrin to the cell membrane causes this to deform and invaginate. 
The accessory protein amphiphysin recruits the GTPase dynamin, which acts as a 
“pinchase” to release the clathrin-coated vesicle. Upon shedding of the clathrin coat, the 
cargo containing vesicle fuses with the sorting endosome by action of Rab5 and the aid of 
accessory endosomal proteins such as EEA1. Cargo can then be recycled via the recycling 
endosome (RE), an event mediated by Rab4 or Rab11, or transported to late 
endosomes/multivesicular bodies (MVBs) with the aid of Hrs and the ESCRT machinery. 
From late endosomes proteins can be recycled via the Golgi or degraded in the lysosome. 
The diagram also shows how proteins internalized in a caveolin dependent manner can join 
the clathrin endocytic pathway at the level of the sorting endosome and are also dependent 
on dynamin activity. 
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1.7 Soluble N-ethylmaleimide Sensitive Factor Attachment 

Receptors (SNAREs)  

SNAREs belong to a family of membrane proteins that have been implicated as the 

conserved core protein machinery required for all intracellular membrane fusion 

events that mediate intracellular trafficking (Chen and Scheller, 2001; Jahn et al., 

2003). The synaptic proteins syntaxin (STX1), SNAP-25 (25 kDa synaptosome-

associated protein) and VAMP1 (vesicle-associated membrane protein) were the first 

SNAREs to be discovered (Bennett et al., 1992; Oyler et al., 1989; Trimble et al., 

1988). The hallmark of all SNARE proteins is that they contain a conserved SNARE 

motif of about 60 residues that mediates SNARE-SNARE protein interaction. Most 

SNAREs contain only one SNARE motif near the C-terminus except three SNAREs 

(SNAP-23, SNAP-25 and SNAP-29) which contain two SNARE motifs separated by a 

linker region. The crystal structure of the synaptic SNARE complex consisting of one 

SNARE domain of STX1 and VAMP2 and two SNARE domains of SNAP25 reveal 

that the four SNARE domains form a twisted parallel 4 helical bundle with each 

SNARE domain contributing one helix. It is the four helical bundle that drives fusion 

(Fig. 4). SNAREs were initially classified functionally as v-SNAREs and t-SNARES 

based on their localisation on the vesicle or target membrane respectively (Sollner et 

al., 1993a). The terms R SNAREs (arginine containing SNAREs) and Q SNAREs 

(glutamine containing SNAREs) were introduced later to classify SNAREs based on 

their structure (Fasshauer et al., 1998b). There are at present 38 known members of 

the mammalian SNARE family. This core SNARE complex which mediates the 

SNARE-SNARE protein interactions that are pivotal to the function of these proteins 

is extremely heat stable up to 90°C, resistant to SDS denaturation, protease 

digestion and clostridial neurotoxin cleavage (Fasshauer et al., 1998a; Hayashi et al., 

1994; Poirier et al., 1998). Within the SNARE complex the four helices are connected 

by 16 layers of interacting surfaces mediated by the side chain of the residues and 

which are mostly hydrophobic and are arranged perpendicular to the axis of the four 

helical bundle. The middle of the bundle (see Figure 4) is characterized by a layer 

(the 0 layer) of interaction mediated by three Glutamine (Q) residues (one contributed 

by STX1 and two by SNAP-25), and one Arginine (R) residue (contributed by 

VAMP2). 
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Figure 4. SNARE proteins form a four helical complex that drives membrane 
fusion.  
(a) VAMP (blue) on the vesicle interacts with syntaxin (red) and SNAP-25 (green) on 
the plasma membrane to form a four helical bundle that zips up concomitant with 
bilayer fusion. (b) Back bone of the SNARE complex with the central ionic layer (red) 
and 15 hydrophobic layers (black) that mediate the core interactions. The ball and 
stick structures represent the indicated amino acids and the dotted lines represent 
hydrogens or salt bridges stabilizing the interaction (Chen and Scheller, 2001). 
 

SNAREs are thus classified as Q and R SNAREs based on the presence of either Q 

or R at this position. R SNAREs are single transmembrane proteins that contribute 

one SNARE motif to the trans SNARE complex. Individual Q SNARE proteins are 

classified as Qa, Qb, Qc or Qbc SNAREs on the basis of the relative position of their 

SNARE motifs in the assembled trans SNARE complex. Q SNAREs are present on 

the target membrane and form a complex with the vesicular R SNARE present on the 

donor membrane. The Q SNARE functions as a complex that is composed of two or 

three polypeptides which together contribute three SNARE motifs to the trans 

SNARE complex. Most of the Q SNAREs are single SNARE motif, transmembrane 

polypeptides. The main exceptions to this are the Qbc SNAREs (SNAP-23, 25, 29 

and 47), which are peripheral membrane proteins that lack a transmembrane domain. 
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A functional trans SNARE complex therefore draws from the subsets described to 

form R-Qa-Qb-Qc or R-Qa-Qbc configurations to provide for selective membrane 

fusion at different sites in the cell. The interaction of R and Q SNAREs in the 

transient trans SNARE complex serves to pull the vesicle and target membrane 

together. Crystallographic studies have shown that twisting or zippering of the four 

alpha helices of the SNARE motifs in an assembled trans SNARE complex has the 

potential to generate the force required to fuse the lipid bilayers (Fasshauer, 2003; 

Sutton et al., 1998). Once fusion has occurred, the vesicle membrane is in continuity 

with the target membrane and the SNAREs are atleast transiently in the formation of 

the cis SNARE complex in the same membrane. After fusion, the SNAREs are 

rapidly disassembled so that the R-SNARE and the Q SNARE components can be 

reused for subsequent membrane fusion events. The R SNAREs must be reloaded 

into carriers for transport back into their original site on a donor compartment. The 

disassembly of the cis SNARE complex is mediated by a soluble complex containing 

the ubiquitous cytoplasmic ATPase NSF (N ethyl maleimide sensitive factor) and 

alpha SNAP (Furst et al., 2003; Hohl et al., 1998; Sollner et al., 1993b). 

 

1.8 Genetic defects in killing  

Many human diseases and their mouse counterparts are caused by defects in the 

secretory pathway required for cytotoxicity (Arico et al., 2002; Feldmann et al., 2003; 

Menasche et al., 2000). Several of these diseases show an unusual combination of 

immunodeficiency and albinism reflecting similarities in the cell biology of secretory 

machinery used by immune cells and melanocytes. Some genetic defects affecting 

melanocyte secretion have no effect on CTL killing indicating that some components 

may differ between the two cell types. Griscelli syndrome is characterized by albinism 

and loss of CTL activity. The defective gene encodes a small GTP binding protein 

Rab 27a (Menasche et al., 2000). A similar loss of Rab 27a expression has been 

identified in ashen mice. CTLs from ashen mice cannot kill their targets through the 

granule pathway. Although they have normal number of granules with normal 

morphology a clear defect in secretion leads to the phenotypic defect in killing. Live 

cell imaging revealed that the granules polarize to the IS but do not reach the IS and 
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therefore the secretory process is not completed. Notably in CTLs missing the 

geranyl geranyl transferase required for Rab prenylation, lytic granules fail to polarize 

which suggests that other Rab proteins are involved in earlier phases of granule 

trafficking. 

Chediak-Hegashi Syndrome (CHS) is another rare autosomal recessive disorder that 

is characterized by partial albinism and NK and CTL killing defect (Ward et al., 

2000a). The most prominent morphological feature is that the lysosomes are big in 

size but are not secreted. The gene that is mutated in this disorder is CHS or LYST 

(Barbosa et al., 1996). The early biogenesis of the granules is normal in patients with 

CHS and both perforin and granzymes are sorted correctly to the lysosome (Baetz et 

al., 1995). However later during development the granules fuse to form giant 

organelles. This is because there is a defect in the membrane fusion or fission which 

occur during the biogenesis of the organelles (Stinchcombe et al., 2000). The 

enlarged organelles in CTLs can polarize and dock normally at the immunological 

synapse. CHS interacts with the SNARE complex (Tchernev et al., 2002) consistent 

with a role in membrane fusion or fission. 

Familial Hemophagocytic lymphohistiocytosis (FHL) represents another set of genetic 

disorders associated with secretory defects in CTLs but not melanocytes 

(Voskoboinik et al., 2006). It is a devastating disease where lymphocytes (especially 

CD8 T cells) proliferate uncontrollably and infiltrate into tissues. The production of 

excessive cytokines and infiltration into tissues leads to massive tissue necrosis and 

organ failure (Henter et al., 1998). Without bone marrow transplant, FHL is usually 

fatal till the first year of life. Killer lymphocytes from patients with FHL are deficient in 

their ability to deliver perforin to the IS. FHL type 2 is caused by a loss of perforin 

itself. Several mutations in perforin cause FHL (Arico et al., 2002; Feldmann et al., 

2002; Goransdotter Ericson et al., 2001; Suga et al., 2002). FHL type 3 results from 

mutations in the gene encoding Munc13-4 (Feldmann et al., 2003). In CTLs derived 

from patients with FHL type 3, lytic granules dock at the IS but fail to fuse. FHL type 4 

which is clinically similar to but less severe than FHL type 3 is caused by defects in 

Syntaxin11, a SNARE protein (Albayrak et al., 2009; zur Stadt et al., 2005). This 

deficiency impairs granule exocytosis without affecting polarization which suggests 

an important function downstream of the recruitment of granules to the IS. FHL type 5 
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is reported to be due to mutations in Munc18-2 that impair its binding with Syntaxin11 

giving further insight into the molecular mechanism of CTL mediated killing (Cote et 

al., 2009; zur Stadt et al., 2009). 

The perforin mediated cell death pathway is also important for immune homeostasis 

as is revealed in FHL where the function of CTL killing another CTL is lost. It has 

been reported that CTLs acquire membrane from dying target cells and this leads to 

the acquisition of MHC class I molecule on the surface of CTLs which are in turn 

recognized by other CTLs and thus an immunological synapse is formed between 

two CTLs which results in lytic granule polarization and death. This explains the 

uncontrollable proliferation of CTLs when perforin gene is not functional. When 

homeostasis is impaired CTLs begin to proliferate more in order to kill more 

efficiently. 

 

1.9 Syntaxin7 

Since SNAREs are important for the specificity of vesicular transport we were 

interested in the role of SNARE proteins in CTL mediated cytotoxicity. The functions 

of some SNARE proteins have been identified in other immune cell types such as 

mast cells, macrophages and natural killer cells (Murray et al., 2005b). Most SNAREs 

are membrane proteins that have a C terminal hydrophobic tail through which they 

bind to their respective membrane (Fasshauer, 2003). 

Syntaxin7 is a widely expressed SNARE protein containing 261 amino acids (aa). 

The region of Syntaxin7 that is most related all other syntaxins lies between residues 

157 and 235, just before its C terminal domain (Wong et al., 1998). It shares the 

highest homology to Syntaxin1. The C terminal hydrophobic domain is important as it 

serves as a membrane anchor. In addition it contains di-leucine based motifs that are 

sorting signals and therefore necessary for their intracellular localization and 

trafficking via distinct transport pathways (Kasai and Akagawa, 2001). The N terminal 

region of Syntaxin7 has a three helical bundle consisting of Ha, Hb and Hc regions 

that precede the N terminal domain. The Habc 3-helical bundle in some Qa SNAREs 

such as Syntaxin1 and Syntaxin7 can fold back to interact with the C terminal 

SNARE motif to generate a closed conformation (Antonin et al., 2002a; Fasshauer, 
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2003; Misura et al., 2000). The SNARE motif in the closed conformation cannot bind 

to other SNAREs and therefore the closed conformation downregulates the capability 

of Syntaxin to form SNARE complexes. The regulation of neuronal Syntaxin1 by the 

N-terminus has been well studied. Munc18-1, a member of the Sec1/Munc18 (SM) 

family, binds tightly to the closed conformation of Syntaxin1 and stabilizes it 

(Dulubova et al., 1999). Munc18-1 may serve as a negative regulator preventing 

Syntaxin1 from forming SNARE complexes, although it has an essential role in 

exocytosis. The N terminal region of Syntaxin7 also decreases the rate of SNARE 

complex assembly 7-fold, thus playing a regulatory role (Antonin et al., 2002a).  

Syntaxin7 is known to be an endosomal SNARE. However, the localization of 

Syntaxin7 has been controversial. It was first identified to be a member of the early 

endosome compartment (Nakamura et al., 2000; Prekeris et al., 1999; Wong et al., 

1998). However later studies have shown that it is also localized to late endosomes 

(Collins et al., 2002; Mullock et al., 2000; Ward et al., 2000b) and lysosomes (Wang 

et al., 1997). Syntaxin7 has also shown to be the only endosomal SNARE apart from 

Syntaxin8 to be constantly recycling between the endosomes and the plasma 

membrane (Prekeris et al., 1999). Syntaxin7 forms a SNARE complex with Vti1b, 

Syntaxin8 and VAMP7 (other endosomal SNAREs) and the structure of this complex 

has been crystallized (Antonin et al., 2002b), revealing conserved structural features 

with the neuronal SNARE complex.  

In macrophages, Syntaxin7 has been shown to be important for phagocytosis and 

TNF secretion (Murray et al., 2005a). It has been found to be enriched in the 

secretory lysosomes of NK cells implicating a role in exocytosis (Casey et al., 2007). 

The importance of the endosomal trafficking pathway was especially highlighted in a 

study where HIV1 infected lymphocytes have a severe defect in intracellular 

trafficking and signaling (Thoulouze et al., 2006). Further studies in the importance of 

the endocytic pathway and endosomal proteins might give new insight in to the 

function of CTLs.  
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1.10 Aim of the work 

Immune responses are dependent on effective cell-cell communication. One effective 

way of communication is by forming necessary contacts between the cells. Cytotoxic 

T lymphocytes function in killing infected cells in the body and to do so they must first 

come in contact with the target cell. Once contact is formed, cytotoxic components 

that are stored in lytic granules are released at the contact zone. This constitutes the 

granule mediated pathway of target cell killing. Although there are other pathways 

used by CTLs for killing target cells the granule mediated pathway is the most 

important (Trapani and Smyth, 2002). Most of the molecular players important for the 

fusion of lytic granules have not been identified. The function of some of the 

molecules such as Rab27a (Menasche et al., 2000; Stinchcombe et al., 2001a) and 

Munc13-4 has been studied in lytic granule fusion (Feldmann et al., 2003). However, 

the SNARE proteins (essential mediators of almost all fusion events) that are 

important for CTL function and lytic granule release still remain unknown. Mutations 

in the SNARE protein Syntaxin11 lead to defective degranulation in lymphocytes 

(Albayrak et al., 2009; Arneson et al., 2007; zur Stadt et al., 2005). This ascertains 

the importance of SNAREs in CTL function. The identification of specific SNARE 

proteins involved in lytic granule release is necessary for understanding the 

underlying molecular mechanism behind the killing process. 

The work presented here is aimed to study the importance of SNAREs for the fusion 

of lytic granules at the IS. Syntaxin7, a Qa SNARE protein is a key component of NK 

cell secretory lysosomes (Casey et al., 2007) whose precise function in CTL 

mediated killing if at all is unknown. We present our results on the detailed functional 

analysis of Syntaxin7 in CTLs, a work that was performed to better understand CTL 

effector function. 
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2. Materials and Methods 

2.1 Materials 

2.1.1 Reagents 

Agarose                                                                                                Roth 

Aprotinin                                                                                                Sigma 

BSA (Bovine Serum Albumin)                                                               Sigma 

Chloroform                                                                                             Roth 

Diethylpyrocarbonate (DEPC)                                                               Sigma 

Dithiothreitol (DTT)                                                                                Sigma 

ECL reagent                                                                                          GE Healthcare 

EDTA (Ethylenediaminetetraacetate)                                                    Sigma 

Ethanol                                                                                                   Roth 

Ethidium Bromide                                                                                   Invitrogen 

FCS (Fetal Calf Serum)                                                                         Invitrogen 

Ficol                                                                                                        GIBCO  

Formaldehyde (16%)                                                                              Polysciences 

Glucose                                                                                                   Merck 

Glycine                                                                                                    Roth  

HBSS (Hanks balanced salt solution)                                                     PAA 

N-(2-Hydroxyethyl)-1 piperazine-N’-(ethanesulfonic acid)  

(HEPES)                                                                                                 Sigma 

H20                                                                                                         Sigma 

Nitrocellulose membrane                                                                        Roth 

PBS (Phosphate Buffered Saline)                                                           GIBCO 

Propanol                                                                                                  Roth 

Skimmed milk powder                                                                             Naturaflor 

TritonX100                                                                                               Roth 

TRIzol® reagent                                                                                      Invitrogen 

 
All other chemicals if not specified otherwise were from Sigma. 
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2.1.1.1 Antibodies  

Alexa488 anti-CD3                                                                            Biolegend 

Alexa647anti-CD3                                                                             Bioscience 

CD3                                                                                                 Euroclone 

CD28                                                                                               BD 

EEA1                                                                                               BD 

GranzymeA                                                                                     Biolegend 

Perforin                                                                                           Biolegend 

Rab7                                                                                               AbCam 

SNAP-23                                                                                         Synaptic System 

Syntaxin3                                                                                        Synaptic System 

Syntaxin4                                                                                        Synaptic Systems 

Syntaxin7                                                                                        Synaptic System 

Syntaxin7                                                                                        Osenses  

Syntaxin10                                                                                      BD 

Syntaxin17                                                                                      BD 

Talin                                                                                                AbCam 

VAMP3                                                                                            Synaptic System 

VAMP4                                                                                            Synaptic System 

 

2.1.2 Plasmids 

Perforin-mCherry 

Perforin was amplified from human cDNA with primers 5’ TAT ATA AGA TCT CCA 

CCA TGG CAG CCC GTC TGC TCC and 5’ TAT ATA TAC CGG TGG CCA CAC 

GGC CCC ACT CCG G to add BglII and Age1 restriction sites.. The mCherry 

construct was obtained as a gift from Roger Tsien. After AgeI and BglII restriction 

digestion, perforin was ligated to mCherry to yield a C-terminal tagged perforin.-

mCherry. 

 

Syntaxin7-mTFP1 and Syntaxin7∆C-mTFP1 

Syntaxin7 was amplified from human cDNA with primers 5’ TAT ATA AGA TCT CCA 

CCA TGT CTT ACA CTC CAG GAG TTG and 5’ TAT ATA ACC GGT GGG TGG 
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TTC AAT CCC CAT ATG ATG to add BglII and BsH TI restriction sites.The mTFP 

construct was obtained from Allele Biotech, San Diego. After BglII and BshTI 

restriction digestion, Syntaxin7 was ligated to mTFP to yield a C-terminal tagged 

Syntaxin7. For the dominant negative mutation of Syntaxin7 (Syntaxin7∆C) only the 

first 200 amino acids without its transmembrane was amplified from human cDNA 

with primers 5’ TAT ATA AGA TCT CCA CCA TGT CTT ACA CTC CAG GAG TTG 

and 5’ TAT ATA ACC GGT GGC AGG GTT TTT CTG GAT TTG CG to add Bgl2 and 

BsH T1. The mTFP construct (obtained from Allele Biotech, San Diego). After Bgl2 

and BshT1 restriction digestion, Syntaxin7∆C was ligated to mTFP at the C-terminus. 

2.1.3 Media and Solutions 

2.1.3.1 Solutions for CTL preparation 

   - Ficol 

   - HBSS 

   - Erythrocyte lysis buffer: 

           155 mM NH4 Cl 

           10 mM KHCO3 

            0,1 mM EDTA 

            pH 7.3     

   - Buffer 1: PBS (GIBCO) supplemented with 0.5% BSA 

   - Buffer 2: RPMI medium (Invitrogen) with 0.1% FCS 

   - AIMV medium supplemented with 10% FCS (Invitrogen) 

 

2.1.3.2 Solutions for CTL fixation and Immunostaining 

    - Polyornithine (0.1mg/ml) 

    - PBS (GIBCO) 

    - 4% PFA in PBS (Diluted from 10%PFA in PBS stock solution) 

    - PBS in 0.1M Glycine 

    - PBS 2% BSA 0.1% Triton 

    - PBS 0.1% Triton 
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- Mounting medium 

           Mowiol 4-88                                    

           Glycerol                                           

           ddH20                                               

           0.2MTris-Buffer (pH8.5)                                     

  2.1.3.3 Solution for TIRFM experiments 

- 10 mM extracellular Calcium solution 

        140 mM NaCl 

        4.5 mM KCl 

        5 mM HEPES 

        2 mM MgCl2 

        10 mM CaCl2 

        pH: 7.4 and Osmolarity: 300-310 mOsm. 
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2.2 Methods 

2.2.1 Peripheral blood mononuclearcells (PBMCs) Isolation 

The starting material for the isolation of PBMCs was Leukocyte reduction chambers 

(LRCs) containing whole blood obtained from the clinic of the department of 

Haematology and Transfusion medicine, University of Saarland. All the steps for the 

isolation were carried out at room temperature (RT). 15-17 ml Ficoll was added 

before the isolation in special leukocyte separation tubes and spun at 1000 g for 30 

seconds. Shown in figure 5 is a picture of the cone shaped LRC containing blood 

from a healthy donor. The hose was cut at the two points marked 1 and 2 in figure 5a 

with sterile scissors cleaned with 70% ethanol. First, the lower hose was cut and 

made to point to the inside of the leukocyte separation tube as shown in figure 5. 

Then the top tube was cut to allow the flow of blood through the cone. A 20 ml 

syringe containing HBSS was used to rinse the blood flowing through the cone into 

the LRC as shown in figure 5b. 

 

 

Figure 5. Isolation of PBMCs.  

Depicted are the cone shaped leukocyte reduction chambers used for isolation. See 

text for details. 

 

The leukocyte separation tubes were then carefully mixed and spun at 450 g for 30 

min at RT without any brake or special settings. The leukocyte containing ring that 

was obtained after centrifugation was removed very carefully with a 5 ml pipette and 

transferred to a 50 ml falcon tube and then filled with HBSS. This was followed by 

centrifugation at 250 g for 15 min at RT. The red pellet obtained after centrifugation 

was resuspended in 1-3 ml erythrocyte lysis buffer (see Reagents for details) for the 
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erythrocyte lysis process. After 60-120 s, 50 ml HBSS was added to the pellet to stop 

the lysis process and the tubes were spun at 200 g for 10 min. 

The white pellet obtained was devoid of erythrocytes and was resuspended in 20 ml 

cold PBS/0.5%BSA. A small amount of the cells was taken to make a 1:10 dilution in 

PBS. Trypan blue staining was used for checking the viability of the purified PBMCs 

before using them for isolating naïve CD8T cells or for stimulation with 

Staphylococcus enterotoxin A. 

 

2.2.2 Negative isolation of naïve CD8 T cells 

Naïve CD8+ T cells were negatively isolated from PBMCs with a CD8 negative 

isolation kit (Invitrogen). The percentage of CD8+ T cells obtained by this method 

from PBMCs was usually 10-12% and so the intial number of PBMCs for all the 

isolations varied according to the number of CD8+ T cells required. PBMCs were 

resuspended at a concentration of 100 million/ml in a Ca2+ and Mg2+ free phosphate 

buffer (supplemented with 0.1% BSA and 2 mM EDTA), as the starting material for 

the negative isolation. Heat inactivated FCS and the antibody mix that was provided 

by the kit were mixed in a 1:1 ratio and added to the PBMCs for incubation at 4°C by 

gentle rotation for 20 minutes. The volume of the antibody mix was recommended as 

20 µl by the manufacturer for the starting material of 100 million PBMCs. For isolating 

from more PBMCs the volumes of all the reagents were scaled accordingly for every 

step of the isolation. The cells were then washed by adding 2 ml of the isolation 

buffer and centrifuged at 300 g for 8 min at 4°C. The pellet was resuspended in 800 

µl of the isolation buffer and then 200 µl of the pre-washed depletion dynabeads 

(supplied in the kit) was added. For prewashing, 200 µl of the depletion dynabeads 

were transferred to a fresh tube and the same volume of isolation buffer, or at least 1 

ml, was added and mixed. The tube was kept in a magnet for 1 minute and then the 

supernatant was discarded. The beads were then resuspended in 200 µl of the 

isolation buffer. Subsequently, the cells and beads were mixed and incubated for 15 

min at 18-25°C by gentle tilting and rotation. The tube was then placed in the magnet 

for 2 min. The supernatant contained the negatively isolated naïve CD8T cells and 

was transferred to a new tube. The cells were then stained with trypan blue for 

checking the viability of the purified CD8T cells. Centrifugation was done at 200 g for 
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5 minutes at RT and the pellet was resuspended in fresh and pre-warmed AIMV 

medium (Invitrogen) containing 10% FCS at a volume of 3 million/ml. 

            
Figure 6. Schematic outline of the negative isolation of naive CD8 T cells.  

The isolation of naïve CD8 T cells from PBMCs using dynabeads (See text for details). 

2.2.3 Generation of effector Cytotoxic T lympocytes (CTLs) 

2.2.3.1 Stimulation by CD3/CD28 coated beads 

Naïve CD8T cells from the negative isolation were stimulated with CD3/CD28 T cell 

expander beads (Invitrogen) at a 1:1 ratio. The appropriate volume of expander 

beads was transferred to a fresh tube and equal volume of Buffer 1 (PBS 

supplemented with 0.1% BSA, pH 7.4) was added to the tube. The tube was then 

placed in a magnet for 1 minute and the supernatant was discarded. The beads were 

resuspended in the same volume of Buffer 1 that was initially taken for washing. The 
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beads were then added to the cells and plated at a concentration of 2 million/ml for 3 

days.  

2.2.3.2 Stimulation by superantigen A 

PBMCs from healthy donors were stimulated with 5 µg/ml of Staphylococcus 

enterotoxin A (SEA) at a density of 100 million/ml, at 37°C for one hour. After that, 

stimulated PBMCs were diluted to a density of 20 million/ml in AIMV medium 

(Invitrogen) supplemented with 10% FCS and 100 U/ml of recombinant human IL-2. 

After 5 days, SEA-specific CTLs were positively isolated with Dynabeads (Invitrogen). 

The PBMCs were at a concentration of 10 million/ml before starting the isolation. The 

appropriate volume of Dynabeads as recommended by the manufacturer was added 

to the cells and incubated by gentle rotation at around 4°C. The beads were coated 

with anti-CD8 antibody and so only the cells that are CD8 positive would bind to the 

beads. The cells and beads were then placed in a magnet for about two minutes and 

then the bead bound cells were washed with the buffer1 that is Ca2+ and Mg2+ free 

phosphate buffered saline (PBS) supplemented with 0.1% BSA and 2mM EDTA. This 

step was repeated three times and then the cells that were bound to the beads were 

incubated in buffer 2 (RPMI medium supplemented with 0.1% FCS) for 45 minutes at 

RT. This step was to ensure that the positively isolated CTLs were detached from the 

beads. After this detachment, step the cells were placed in a magnet for two minutes 

and the supernatant containing the CTLs was transferred to a fresh tube. The 

remaining beads were washed four times to ensure that all the cells that were 

detached from the beads were obtained. The cells were stained with trypan blue to 

check the viability of the positively isolated CTLs. The cells were then spun at 200 g 

for five minutes at RT and the pellet containing cells were resuspended in AIMV 

medium supplemented with 10% FCS and 100 U/ml of recombinant human IL-2 

(Biosource). The cells were used up to day three after isolation for experiments. 

2.2.4 Reverse Transcriptase PCR 

2.2.4.1 Preparation of probes and RNA isolation 

15 million naïve CD8 T cells from one donor that were freshly isolated were spun at 

300 g for five minutes at RT and then the pellet was resuspended in 800 µl TRIzol® 
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Reagent (Invitrogen, #15596018). The sample was then frozen at -80°C. The 

remaining cells from the same donor were then stimulated with anti-CD3 and anti-

CD28 coated beads as mentioned above for cell stimulation. 10 million CD8 T cells 

after one day of stimulation and 5 million each of CD8 T cells after 3 and 5 days of 

stimulation were all treated the same way as naïve CD8 T cells. RNA was then 

isolated from the thawed probes in TRIzol® Reagent. The tubes were spun at 12000 

g for 10 minutes at 4°C. The supernatant was transferred to a fresh tube and then 

incubated at RT for 5 minutes. 200 µl of chloroform was added and then the tubes 

were shaken vigorously for 15 minutes and incubated at RT for 2 or 3 minutes. The 

tubes were spun again at 12000 g for 5 minutes at 4°C. After this centrifugation, the 

aqueous phase that was obtained was transferred very carefully to a new tube and 1 

µl glycogen was added (this was done only for unstimulated cells to get more 

optimum amounts of RNA). 500 µl of isopropanol was then added for precipitation 

and incubated at RT for 10 minutes. The tubes were then spun at 12000 g for 10 

minutes at 4°C. The supernatant was then removed and 1 ml 75% ethanol prepared 

in diethyl-pyrocarbonate (DEPC) water was added. The tubes were spun at 7500 g 

for 5 minutes at 4°C. The supernatant was removed and the pellet was air dried at 

RT. Care was taken not to over dry the pellet as that would affect the solubility of the 

RNA. When the color of the pellet changed from white to transparent, 20 µl of DEPC 

treated water was added to dissolve the pellet. The concentration of the RNA was 

measured by UV spectrometry at 260 nm and a small amount of the RNA was also 

loaded on an agarose gel to check the stability. 

2.2.4.2 cDNA preparation and PCR amplification 

cDNA obtained after reverse transcription was used for subsequent PCR reactions. 

All the PCR reactions were normalized based on the amount of cDNA and carried out 

for all the templates that were unstimulated and stimulated. Primers were designed 

for human Syntaxin7 gene and were obtained from Gottingen. UbiquitinC was used 

as a house keeping gene and granzyme B was the positive control. 
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2.2.5 Preparation of lysates from CTL for western blots and analysis 

2.2.5.1 CTL Preparation 

All preparative steps were performed at 0-4°C using pre-chilled solutions. Human 

CTLs were homogenized via syringe five times by hand in a lysis buffer containing 1 

mM EDTA, 1 mM DTT, 50 mM Tris-Cl (pH 7.4), 1% TX-100, 1 mM Deoxycholate, 100 

mM NaCl and protease inhibitors. Lysates were rotated for thirty minutes at 4°C and 

insoluble material and cell debris was removed by low speed centrifugation. All 

extracts contained the protease inhibitors pepstatin A (1 µM), benzamidine (100 µM), 

leupeptin (1 µM), aprotinin (0.3 µM), phenylmethanesulfonyl fluoride (25 mM), trypsin 

inhibitor (20 µg/ml), PefBloc SC (1 mM). 

2.2.5.2 Western Blot Analysis 

Proteins were separated by SDS-PAGE using 4-12% Bis-tris gels. Proteins were then 

transferred to nitrocellulose (0.2 µm pore diameter). Blots were blocked by incubation 

with 5% skim milk powder in 20 mM Tris, 0.15 M NaCl (pH 7.4) (TBS) for two hours 

or overnight. Blots were incubated with affinity-purified antibodies in 5% skim milk 

powder (SM-TBS) with anti-Syntaxin7 (1:4000 in SM-TBS), anti-GAPDH (1:1000 in 

SM-TBS). The blots were washed with TBS containing 0.05% Tween-20 (TBST) (five 

changes), incubated for 1 hour with horseradish peroxidase donkey anti-rabbit 

(Amersham), diluted 1:40000 or horseradish peroxidase-labeled anti-mouse, diluted 

1:10000 in SM-TBST, washed 5-6 times with TBST and developed with ECL reagent 

(Pierce). 

2.2.5.3 Quantitative Analysis 

The blots obtained after developing were scanned to generate tif images. Images 

were analyzed using Adobe CS4 photoshop software. For measurements of pixel 

density, we multiplied the mean fluorescence value by the pixel value for each band. 

Normalized data was obtained by dividing the relative intensity over our standard as 

the common point of comparison according to standard analysis procedures. 

Measurements were then analyzed using Sigmaplot and Excel.  
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 2.2.6 Electroporation of CTL 

Electroporation was done using nucleofector kit supplied by Amaxa/Lonza 

Biosystems. For electroporating CTLs that were activated with CD3/CD28 beads for 

three days, the beads were first removed by the magnet. SEA stimulated CTLs after 

positive isolation were used within 1-3 days of their preparation. The cells were then 

spun at 100 g for 5 minutes to remove the medium and then washed once with PBS 

supplemented with 0.5% BSA 5 million CTLs cells were used for one transfection. 

The maximum amount of DNA used for transfection was 1.5 µg. The program T-023 

recommended by the manufacturer for electroporating CTLs cells was used for all the 

transfections. The cells were washed 6 hours after transfection by a low speed 

centrifugation at 100 g for 5 minutes and then resuspended in fresh AIMV medium 

with 50 U/ml IL-2 (Biosource). 

 

2.2.7 Small interfering RNA (siRNA) treatment and Real Time PCR 

All siRNA were modified by Qiagen as described by Mantei et al. 2008. SEA-specific 

CTL were transfected with modified siRNA designed to silence human Syntaxin7 

(SI02631307) using nucleofector kit (Lonza) according to the manufacturer’s 

instructions. A modified non-silencing siRNA (#1022076, Qiagen) was used as 

control. Fresh AIMV medium that was supplemented with recombinant IL-2 (50 U/ml) 

was given to the cells 12 hours after transfection. The cells were then kept in culture 

for additional 24 hours before use. For Quantitative RealTime-PCR (qRT-PCR), total 

RNA was isolated using TRIzol® Reagent (Invitrogen, #15596018) including 1 µl 

Glycogen (5 µg/µl, Invitrogen, #10814-010) according to the manufacturer’s protocol. 

Templates were prepared from 1.5 x 106 SEA-specific CTL and 0.8 µg total RNA was 

reverse transcribed into cDNA by SuperScript™ II reverse trancriptase (Invitrogen, 

#18064-014) including 1 µl RNaseOut, (Invitrogen, #10777-019) and 1 µl oligo dT 

Primer (0.5 µg/µl, Invitrogen, #18418-012) following the manufacturer’s instruction. 

qRT-PCR was carried out in a MX3000 instrument from Stratagene. 1 µl cDNA and 

300 nM of each primer were set into PCR reactions (25 µl) using Quanti Tect SYBR 

green kit (Qiagen, #204145). PCR conditions were: initial denaturation, 15 min, 94 

°C; 45 cycles: denaturation, 30 s, 94 °C; annealing, 45 s, 58 °C; elongation, 30 s, 72 
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°C and finally a dissociation curve cycle (60 s, 95 °C; 30 s 55 °C; 30 s 95 °C). 

Primers were designed using Primer3 program available at http://frodo.wi.mit.edu/. 

PCR fragments were confirmed by sequencing (MWG). 

 

2.2.8 Cytotoxicity assay 

The CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega) was used to detect 

target lysis. CTL were plated in 96-well plates in AIMV medium (5% FCS) with 1×104 

SEA-pulsed Raji target cells at various effector/target ratios. CTL and target cells 

were incubated at 37°C for 4 h and then Lactate dehydrogenase activity in the 

supernatant was measured. To do this the cells were spun down at 200 g for 4 min. 

Then 50 µl of the supernatant was taken from each well and incubated with the 

reaction substrate for 30 min at room temperature. The absorbance was measured at 

490 nm with the GENios Pro plate reader (TECAN). Cytotoxity was calculated with 

the following equation: % Cytotoxicity = (Experimental – Effector Spontaneous – 

Target Spontaneous) / (Target Maximum – Target Spontaneous) × 100. All 

cytotoxicity assays were done in triplicates. 

 

2.2.9 CTL fixation and immunofluorescence 

2.2.9.1 Conjugation of CTL to target cells 

To incubate the SEA CTLs with target cells, Raji cells that were used as cognate 

target cells were pulsed with 10 µg/ml of SEA at 37°C for 30 min. The stimulation of 

Raji cells was done in 96 well plates with maximum 1 million cells resuspended in 

100 µl AIMV medium. The CTL and SEA-pulsed Raji cells were washed once with 

AIMV and resuspended at a concentration of 2×107 cells/ml. CTLs were mixed with 

target cells at a 1:1 ratio and left in suspension for 5 min at 37°C. The cell 

suspension was then diluted to a concentration of 4×106 cells/ml with AIMV medium 

and plated onto poly-ornithine coated 12 mm glass coverslips and incubated at 37°C 

for 5, 15 and 30 min. Cells were resuspended in a volume of 50 µl for one coverslip.  

http://frodo.wi.mit.edu/
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2.2.9.2 Pre-incubation of CTLs to label recycling TCR 

In order to label the recycling TCRs, CTLs were first pre-incubated with alexa 647 

anti CD3 Ab at a concentration of 20×106 cells/ml. First the required number of CTLs 

were washed once with AIMV medium and then resuspended in a volume of 50 µl. 

To this 1 µl of 1 mg/ml alexa 647 anti CD3 Ab was added and plated in one well of a 

96 well plate. The maximum number of cells per well was 0.5 million CTLs. After the 

30 minute incubation, the CTLs were washed once with AIMV medium and 

resuspended at the concentration as mentioned above for the incubation of CTLs 

and Raji cells.  

2.2.9.3 CTL fixation and immunostaining 

CTLs were fixed with ice cold 4% PFA in PBS (GIBCO) that was diluted from a 10% 

stock. The fixation was done for 20 minutes at RT in the dark. The cells were then 

washed with PBS containing 0.1 M Glycine for 3 minutes. This was done to ensure 

the removal of excess PFA. The cells were washed with PBS for five minutes. The 

cells were then permeabilized before staining with primary and secondary antibodies 

with PBS with 0.1% Triton for 20 minutes at RT. Blocking was also done at RT with 

PBS containing 0.1% Triton and 2% BSA. All the primary antibodies and secondary 

antibodies were diluted in the blocking buffer. The primary antibody incubation was 

done either at RT for 90 minutes or at 4°C overnight and the secondary antibody 

incubation was done at RT for 45 minutes. The antibody incubation was followed by 

extensive washing for 5 minutes at least three times with PBS containing 0.1% Triton. 

After the secondary antibody incubation, the cells were ready to be mounted. The last 

wash before mounting was always done for 5 minutes in PBS. Pre cleaned glass 

slides were used for mounting. 3 µl mounting medium was used for one coverslip and 

the cells were removed from PBS and dipped once in distilled water and carefully 

mounted using clean forceps. The mounted glass slides were kept in the dark at 4°C 

and carefully stored till they were used for imaging. 
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2.2.10 Total internal reflection fluorescence microscopy (TIRFM) 

2.2.10.1 Setup  

The TIRFM setup used for visualizing the accumulation and release of Perforin-

mCherry consisted of an inverted Olympus IX70 microscope with the following 

components: a solid-state laser 85 YCA emitting at 561 nm (Melles Griot, Carlsbad, 

CA, USA), a Micromax 512 BFT camera (Princeton instruments Inc., Trenton NJ, 

USA) controlled by Metamorph (Visitron, Puchcheim, Germany), a TILL TIRF 

condenser (T.I.L.L Photonics, Grafeling, Germany) and an Acousto Optical tunable 

filter (AOTF)-nC (AA optoelectronic, St Remy-les Chevreuses, France), a dual band 

FITC/Texas red filter set (# 51006, AHF Analysen technik AG, Tübingen, Germany), 

a dual-view camera splitter (Visitron, Puchheim, Germany) to separate the red and 

green channels, a Visichrome Monochromator (Visitron, Puchheim, Germany) to 

acquire images in epifluorescence. A 100X Olympus objective with a N.A of 1.45 was 

used for all TIRFM experiments. The object size which is represented in one pixel 

size was 130 nm.  

2.2.10.2 Coating glass coverslips with antibody 

25°mm glass coverslips that were precleaned with 70% ethanol were used for all 

TIRFM experiments and dried. The coverslips were then coated with 0.1 mg/ml poly-

ornithine for 30 minutes at RT and then removed before coating the antibodies. The 

anti-CD3 (1 mg/ml) and anti-CD28 (1 mg/ml) antibodies that were used for coating 

were diluted in PBS to a final concentration of 30 µg/ml and 90 µg/ ml, respectively. 

The maximum volume of antibody solution that was used for coating one coverslip 

was 50 µl. The solution was added to the center of the coverslip and then incubated 

for 2:30 hours in a 37°C humidified tissue culture incubator. The solution was 

aspirated after the incubation period and then the coverslips were either used 

immediately for experiments or left overnight in PBS at 4°C. Coverslips stored in PBS 

at 4°C could be kept for a maximum period of one week. 
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2.2.10.3 Experiment protocol  

Perforin-mCherry  

Human CTLs over expressing perforin-mCherry were washed and resuspended in 50 

µl AIMV medium and allowed to settle for 3-4 min on anti-CD3 anti-CD28 coated 

coverslips. The cells were then perfused with extracellular solution containing 10 mM 

calcium in order to induce secretion. Cells were imaged for 30 min by TIRFM at 561 

nm. The cells were recorded simultaneously in epifluorescence at 561 nm excitation 

wavelength. Following each TIRF image, three images were acquired as 

epifluorescence stacks (z = 0.5 µm), the first being at the same plane as that of 

TIRFM. The epifluorescence images were taken to distinguish between secretion and 

movement of the vesicle away from the plasma membrane inside the cell. The 

acquisition speed was 1 Hz and the exposure time was 100 ms. All experiments were 

performed at RT. 

Syntaxin7-TFP 

For experiments with Syntaxin7 full length and dominant negative TFP fusion 

constructs, CTLs were made to co-express perforin-mCherry with either the full 

length Syntaxin7 protein or its mutant form without the transmembrane domain. The 

cells were again allowed to settle for 3-4 minutes on CD3/CD28 coated coverslips. 

For the experiments CTLs expressing either the full length or dominant negative 

Syntaxin7-TFP were chosen and imaged in TIRF at 561 nm. Since the granules 

never moved 1 µm above the TIRF plane and for faster imaging, only two images 

were acquired in epifluorescence at 488 nm and 561 nm, one at the same plane as 

that of TIRFM and the second at 0.75 µm above the TIRF plane. The acquisition 

speed was 1 Hz and the exposure time was 100 ms. All experiments were performed 

at RT. 

2.2.10.4 Analysis of movies 

2.2.10.4.1 Analysis of accumulation  

The analysis of lytic granule accumulation was performed with Metamorph version 

6.3. The background was subtracted from the raw data of TIRF stacks and then a 

threshold value was set for every cell such that only the pixels above a given 

fluorescence intensity that mark the lytic granules were selected. The value of the 
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pixels defined as the threshold area was obtained for every frame of the time lapse 

movie for each individual cell. Due to difficulties in tracking every single vesicle for all 

the cells, a ratio was made between the threshold area and number of vesicles for a 

minimum of five frames for every cell. The area threshold was then divided by this 

ratio for all the time frames to get the number of vesicles for each frame. The average 

of the number of vesicles was then plotted against the time.  

2.2.10.4.2 Analysis of secretion 

Metamorph v6.3 was used to analyze the secretion of lytic granules at the IS. Every 

slice of the TIRF movie after background was checked carefully by eye for secretion. 

The time interval between each slice of the TIRF movie was one second and within 

that one second three images in epifluorescence were taken at different planes. One 

second of one experiment therefore generated four time lapse movies one being at 

the TIRF plane and another epifluorescence image at the same plane. The other two 

images were in epifluorescence but at two planes higher than the first plane by a step 

size of 500 nm. When a vesicle that was present in one slice disappeared in the next 

slice, a region of interest was made circling that particular vesicle just before it 

seemed to have been secreted. The same region of interest was copied and pasted 

on to the three epifluorescence images. If the vesicle had been secreted it would not 

appear in any of the subsequent epifluorescence images. However if the vesicle had 

moved back then it would appear in either one of the two planes higher than the TIRF 

plane one second later.  

2.2.11 Confocal and epifluorescence deconvolution microscopy 

2.2.11.1 Laser Scanning Confocal Microscope 710 

The fixed and stained samples were visualized using a standard laser scanning 

confocal microscope LSM 710. A 40X oil objective with a N.A. of 1.3 was used for 

image acquisition. An averaging of 4 with a chip size of 512 x 512 was used with the 

airy unit (A.U) set to 1 for all experiments. Laser light of wavelengths 488 nm, 561 nm 

and 647 nm were used for excitation. The laser power that was used was 1-2% of 

maximal power to avoid bleaching. Serial confocal z-sections were taken at 0.4 µm 

intervals for whole cell analysis. ImageJ v1.37 software was used to generate 
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merged images and projections of confocal sections and to quantify the CD3 

fluorescence at the IS and at the whole plasma membrane of the cells. 

2.2.11.2 Time-lapse imaging and epifluorescence deconvolution microscopy  

Time lapse imaging was performed with a Zeiss Cell Observer HS system with a 63X 

alpha Plan-Fluar Objective (N.A. 1.45) and an AxioCam MRm Rev. 3 with the 

exposure time of 200–500 ms. A Colibri lamb (LED based) was the light source for 

excitation and two single bandpass filter sets were used: GFP (38HE, Zeiss) and ET-

Cy5 (Chroma).  

Human CTLs overexpressing either Syntaxin7-TFP or Syntaxin7∆C-TFP were pre-

incubated with Alexa647-labeled anti-CD3 mAb at 37°C for 30 min to label TCR. Cells 

were kept on the microscope stage in chambers filled with AIMV culture medium. The 

entire stage of the microscope was covered by a climate chamber. In this chamber, 

cells had the same conditions as in a cell culture incubator (37°C, 100% humidity, 5% 

CO2). For a single experiment 5 to 15 stage positions were repetitively monitored 

every minute for a total of 90 minutes. Data were collected and analysed with Zeiss 

Axiovision software. 

For imaging fixed cells, the above mentioned single bandpass filtersets were used 

with the following additional filter: ET-TxRed (Chroma). Images were acquired with no 

binning and a z-stepsize of 0.2 µm. Constrained iterative deconvolution was 

performed using a point spread function calculated with the z-stack acquisition from 

170 nm yellow-green, orange or deep-red fluorescent beads (PS-Speck, Invitrogen) 

using 30-40 iterations. 

2.2.12. Structured Illumination Microscopy 

Structured illumination microscopy (SIM) is a recently developed high resolution 

technique (Gustafsson et al., 2008) which allows decrease of the diffraction barrier by 

the factor of 2-2.5 (resolution of about 100 nm). The setup used was at that time a 

non-commercially available prototype of a SIM system from Zeiss. 

The principle of SIM is as follows: Each plane of a sample is illuminated with light 

which beforehand had passed an optical grade (and so the name structured 

illumination). The illumination is turned 3 times around the optical axes by a discrete 

angle and moved 5 times along a line in the focus plane. As a result for each plane 
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we get a set of 15 single pictures which are then used by a computer algorithm to 

calculate the high resolution picture. The high resolution information itself is hidden in 

the strew light in the pattern illuminated raw data sets of pictures. As a result one 

gets a high resolution picture with a z resolution of 250 nm and a xy resolution of 

about 100 nm. Images at the SIM were taken with a 63X oil objective with a N.A. of 

1.40. Images were acquired with excitation light of 488, 561 and 635 nm wavelengths 

and then processed for SIM to obtain higher resolutions. Z stacks of 200 nm step size 

were used to scan the whole cell. Zen 2009 software was used for acquiring the 

images and for processing for high resolution. 

 

2.2.13 Colocalization analysis 

Image J v3.3 with the plugin Just Another Colocalization Plugin (JACOB) was used 

for all analysis (Bolte and Cordelieres, 2006). The colocalization plugin was based on 

Pearson’s coefficient correlation factor ‘r’. The fluorescence values of one pixel from 

one channel were plotted against the corresponding fluorescence values from the 

other channel. The slope of this curve would determine the association rate of two 

fluorophores and the Pearson’s correlation coefficient determined the probability of 

this association. The value of the Pearson’s coefficient factor can range from 1 to -1 

with 1 for positive correlation of association and -1 for negative correlation of 

association and 0 for no correlation. The background was corrected for the raw 

image stacks from each of the channels and then a threshold was set to eliminate the 

noise. The two channels were then analyzed for two different measures – the 

Pearson’s correlation coefficient and the Van Steensel’s correlation coefficient. 
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3. Results 

3.1 Syntaxin7 is expressed in CTLs, upregulated upon activation 

and is preferentially localised at the IS 

Syntaxin7 has been shown previously to be enriched in the secretory lysosomes of 

NK cells and has been implicated to function in the fusion of lysosomes with the 

plasma membrane (Casey et al., 2007). The secretory machinery of NK cells and 

CTLs has been shown to be very similar (Lowin et al., 1995). Since we were 

interested in identifying the potential SNAREs involved in the fusion of lysosomes in 

CTLs, we thought Syntaxin7 would be a promising candidate. To determine whether 

Syntaxin7 is expressed in CTLs we first performed RT-PCR on CTLs at different 

times after stimulation (Fig. 7a). We used two different methods of stimulation (see 

methods section) – one by CD3/CD28 coated beads and the other by 

Staphylococcus enterotoxin A (SEA). PCR reactions were normalized to the amount 

of cDNA. The expression of Syntaxin7 was tested in naïve cells, in CTLs that had 

been stimulated for 1, 3 and 5 days after CD3/CD28 coated bead stimulation and in 

CTLs that were stimulated for three days with SEA. There was an upregulation of 

Syntaxin7 expression in both methods of stimulation in comparison to naïve cells. 

Western blots further confirmed the presence and upregulation of Syntaxin7 in CTLs 

(Fig. 7b). The expression of Syntaxin7 was comparable between CTLs that were 

stimulated for three days with beads and SEA. The killing capacity of CTLs when 

tested was also maximum at these particular time points after stimulation and 

therefore hinted towards the importance or requirement of Syntaxin7 for the same 

(data not shown). 

 

 
Figure 7. Syntaxin7 is upregulated upon activation of CD8 T cells 
(a) Expression of Syntaxin7 by reverse transcriptase PCR in CD8 T cells at the different 
times after stimulation that are indicated on top with anti-CD3/anti-CD28 coated beads and 
SEA. UbiquitinC (Lyubchenko et al., 2001) was used as the internal control. n is the negative 
control. (b) Western blots showing the expression of Syntaxin7 in naïve and activated CTLs. 
Glyceraldehyde phosphate deydrogenase (GAPDH) was used as the loading control. 
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Killing of target cells occurs by polarized secretion of lytic granules at the IS. If 

Syntaxin7 plays a role in the killing function of CTLs, it should then preferentially 

accumulate at the IS in CTLs. In order to check this we performed 

immunocytochemistry with SEA stimulated CTLs and SEA pulsed Raji cells (target 

cells) (Fischer et al., 1989) that had been in contact for 30 minutes (allowing the 

formation of a mature IS) and stained for Syntaxin7 using a commercially available 

antibody (See Methods for details). Confocal microscopy on these cell conjugates 

showed that in contrast to CTLs that had no contact with target cells (resting CTLs), 

Syntaxin7 preferentially accumulated at the IS in CTLs within 30 minutes of its 

formation (Fig. 8a). To confirm the results obtained with the Syntaxin7 antibody we 

overexpressed CTLs with a full length Syntaxin7-TFP fusion construct (Stx7 FL-TFP). 

We saw a preferential localization of Stx7 FL-TFP at the IS (Fig. 8b, upper panel), 

similar to that seen with endogenous Syntaxin7. When the transmembrane region of 

Syntaxin7 was deleted and this fusion construct was overexpressed in CTLs (Stx7 

∆C-TFP), the staining was not vesicular but cytoplasmic as was also shown 

previously (Kasai and Akagawa, 2001). There was no accumulation of Stx7 ∆C-TFP 

at the IS (Fig. 2b, lower panel). These results indicated that Syntaxin7 is 

preferentially localized to the IS in CTLs. 

 

 
Figure 8. CTLs in contact with target cells show an accumulation of Syntaxin7 at the 
IS. 
(a) Representative images showing the endogenous staining of Syntaxin7 in resting CTLs 
(upper panel) and in CTLs that were incubated with target cells for 30 minutes (lower panel). 
(b) CTLs expressing full length Syntaxin7 protein fused to TFP (upper panel) in contact with 
a target cell for 30 minutes showed an accumulation of Syntaxin7 at the IS. When the trans-
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membrane region of Syntaxin7 was deleted (lower panel) no accumulation at the IS was 
observed. Scale bars are 3 µm. 
 

In order to check the specificity of the Syntaxin7 antibody we co-stained Syntaxin7-

TFP cells with Syntaxin7 antibody. Using structured illumination microscopy (SIM), 

we improved the resolution of fluorescence microscopes by a factor of 2 in all 

directions (Gustafsson et al., 2008). We then imaged serial sections along the whole 

cells and used 0.2 µm tetraspeckTM microspheres (Invitrogen) to correct for any 

chromatic aberration. We saw a robust overlap between Stx7 FL-TFP and the 

Syntaxin7 antibody (Fig. 9), showing antibody specificity for staining Syntaxin7. 

 

 
Figure 9. Syntaxin7-TFP transfected CTLs showed a strong overlap with Syntaxin7 
antibody. 
CTLs transfected with Syntaxin7-TFP (green) were stained with Syntaxin7 antibody (red). 
Images were taken by SIM to obtain higher resolution. There was a large overlap between 
Syntaxin7-TFP and Syntaxin7 antibody. Scale bar is 5 µm. 

 

3.2 Syntaxin7 is required for CTL mediated killing and perforin 

release 

3.2.1 Population killing assay 

The preferential accumulation of Syntaxin7 at the IS led us to investigate the 

requirement of Syntaxin7 for the killing function of CTLs. To do this we used a 

modified siRNA (Mantei et al., 2008) that was specific for Syntaxin7 to downregulate 

its expression in SEA stimulated CTLs. A nonsilencing siRNA was used as the 

control. 36 hours after transfection of CTLs with Syntaxin7 and control siRNAs, we 

saw a significant reduction in the relative expression of Syntaxin7 in Syntaxin7 siRNA 

transfected CTLs. Quantitative real Time PCR (qRT-PCR) from two donors showed 

an 80% reduction in Syntaxin7 mRNA expression (Fig. 10a). Two different house 

keeping genes, the TATA box binding protein (TBP) and an RNA polymerase were 

used as controls. Data from four different donors showed a 60% reduction in 
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Syntaxin7 protein expression (Fig. 10b+c). Glyceraldehyde phosphate 

dehydrogenase (GAPDH) was used as the loading control. Thus, after having verified 

the reliability of the modified siRNA in downregulating Syntaxin7 expression in CTLs 

we performed a killing assay to verify if there was any change in the killing capacity of 

CTLs when Syntaxin7 expression was downregulated. 

 

 
Figure 10. Syntaxin7 expression was downregulated using modified siRNA in primary 
human CTLs. 
Downregulation of Syntaxin7 at the (a) mRNA level by qRTPCR and (b) protein level by 
Western blot in control (Ctrl) and Syntaxin7 (Stx7) siRNA treated CTLs. (c) Quantification of 
b from 4 independent experiments. Expression of Syntaxin7 was quantified by normalizing to 
the loading control (GAPDH). 
 

A population based killing assay with varying ratios of effector to target cells showed 

a significant reduction in the killing capability of Syntaxin7 siRNA transfected CTLs in 

contrast to Control siRNA transfected CTLs (Fig. 11). CTLs and SEA pulsed Raji 

cells were incubated together for 4 hours at 37°C. The activity of lactate 

dehydrogenase (LDH) in the supernatant was used as the measure for killing (see 

2.2.8). The reduction in the killing efficiency of target cells was independent of the 

varying effector to target cell ratios that were used. 

 

 



---------------------------------------------------Results----------------------------------------------- 

 47 

 
Figure 11. Reduced CTL mediated cytotoxicity when endogenous Syntaxin7 
expression is downregulated. 
CTL-mediated cytotoxicity was impaired when Syntaxin7 was downregulated. SEA-specific 
CTLs and SEA-pulsed Raji cells were co-cultured at the indicated effector:target cell ratios 
for 4 hours. Each condition was done in triplicate. One representative experiment out of three 
independent experiments is shown. Error bars show standard deviation. 
 

In order to check whether the reduction in the killing capacity of Syntaxin7 siRNA 

transfected CTLs was because they had less lytic granule content we performed two 

sets of control experiments. In the first experiment we checked whether there was 

any difference in the total expression of the lytic granule marker perforin in Syntaxin7 

siRNA cells when compared to control siRNA cells. The expression was quantified 

and normalized to GAPDH which was used as the loading control. There was no 

significant difference in the total expression of perforin (Fig. 12a+b). Secondly, to 

verify whether the numbers of perforin granules per cell were different or not we 

stained resting CTLs that were transfected with control and Syntaxin7 siRNA with 

anti-perforin antibody and counted the number of perforin vesicles per cell. We found 

that there was no significant difference in the number of perforin vesicles between 

control and Syntaxin7 siRNA transfected CTLs (Fig. 12c). The average number of 

vesicles counted were 32.7 ± 2.54 and 33.8 ± 2.6 in control and Syntaxin7 siRNA 

transfected cells (Fig. 12d). 
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Figure 12. Control and siRNA transfected CTLs have no change in endogenous 
perforin expression. 
(a) Lysates of Control and siRNA transfected CTLs were blotted for perforin and GAPDH.(b) 
Quantification of the total expression of perforin normalized to GAPDH which was used as 
the loading control (c) Images showing the total number of perforin loaded vesicles in control 
and siRNA transfected CTLs (d) Quantification of (c). There was no significant difference in 
the total number of perforin vesicles per cell. Scale bars are 3 µm. Error bars show SEM. 
 

3.2.2 TIRFM 

The killing of target cells requires the fusion of lytic granules with the plasma 

membrane at the IS. We therefore analyzed granule movement and fusion by total 

internal reflection fluorescence microscopy (TIRFM). This technique has been well 

established to study synaptic transmission from neurons and neuroendocrine cells 

with high spatial resolution (Zenisek et al; Chow Nature, Nofal et al.), but has not 

been used before to study the secretion of lytic granules. The early events of IS 

formation in T cells have been studied using TIRFM. Glass coverslips coated with 

with either membrane bilayers containing laterally mobile anti-CD3 and ICAM1 

molecules (Kaizuka et al., 2007) or with anti-CD3/anti-CD28 molecules have been 

used to effectively to form functional synapses with T cells (Quintana et al., 2007). In 

order to test the applicability of studying secretion of lytic granules by TIRFM we 
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transfected bead stimulated CTLs with the lytic granule marker perforin fused to 

mCherry and allowed the cells to form functional synapses with anti-CD3/anti-CD28 

coated coverslips. Shortly after the addition of CTLs on the glass coverslips, the 

appearance of lytic granules at the cell/coverslip interface could be observed. The 

number of lytic granules approaching the IS increased over time (Fig. 13a). The 

number of vesicles approaching the IS could be reliably quantified (Fig. 13b; see also 

Methods section 2.2.10.4.1). 

 

 
Figure 13. Visualization of lytic granule accumulation at the IS by TIRFM. 
CTLs were transfected with perforin mCherry to label lytic granules and imaged 24 hours 
later. The cells were allowed to settle on anti CD3 coated coverslips to form a synapse and 
imaged immediately for 30 minutes. Scale bar is 3µm. (a) Typical accumulation of perforin 
mCherry at the TIRF plane after minutes of addition to glass coverslips. (b) Quantification of 
the number of lytic granules approaching the IS from 21 cells. LG: lytic granule. 
 

Furthermore, some of the lytic granules that accumulated over time at the IS quite 

regularly fused with the plasma membrane (Fig. 14). Fusion of lytic granules could be 

distinguished from their movement back into the cell (See Methods section 2.2.10.4.2 

for details). 
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Figure 14. Secretion of lytic granules at the IS can be distinguished from movement. 
To distinguish between secretion of vesicles and their movement away from the plasma 
membrane images were acquired simultaneously in TIRF and epifluorescence. (a) TIRF and 
epifluorescence images taken at planes 0, 0.5 and 1.0 µm above the TIRF plane, before and 
after secretion or movement. The lytic granule (marked by an arrow), which was secreted, 
was neither present in the TIRF image nor in the epifluorescence stack images. (b) A lytic 
granule that moved away from the TIRF plane. It had disappeared in the TIRF image (lower 
panel, After), but was still visible in the epifluorescence images. Scale bars are 3 µm. 
 

Quantification of fusion from 24 cells showed that the average number of vesicles 

released was 2 ± 0.13. The time of the first fusion event was 405.75 ± 37.66 s. The 

low number of fusion events could be because CTLs do not need many lytic granules 

for killing one target cell (Lyubchenko et al., 2001). 

Having established the validity of the method we then performed similar experiments 

with CTLs coexpressing either Stx7 FL-TFP or Stx7 ∆C-TFP in addition to perforin-

mCherry. As shown in the exemplary traces in Figure 15a, expression of the 

dominant-negative Stx7 ∆C-TFP led to a large reduction in the number of lytic 

granules appearing in the TIRFM field compared to cells expressing the full length 

Stx7 FL-TFP. Quantification of the data from 11 and 14 cells revealed that after 15 

min of IS formation Syntaxin7 expressing cells had about five times more lytic 

granules at the IS than cells expressing the dominant-negative mutant (Fig. 15b). 

 

 

  b 

  a 
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Figure 15. Reduced accumulation of lytic granules was seen in TIRFM.  
(a) TIRFM images of CTLs expressing perforin mCherry in Stx7-TFP cells (upper panel) or 
Stx7 ∆C-TFP cells (lower panel). The extracellular solution contained 10 mM Ca2+ in order to 
induce secretion in the cells. Cells were allowed to settle for 2-3 minutes on 
antiCD3/antiCD28 coated coverslips and then imaged for 15 minutes. Stx7 FL-TFP cells 
(upper panel) showed an increase in perforin accumulation overtime in contrast to Stx7 ∆C-
TFP cells (lower panel). (b) Quantification of (a) as the number of lytic granules approaching 
the IS over time from 11 Stx7 FL-TFP cells and 14 Stx7 ∆C-TFP cells from at least three 
independent donors. Scale bars are 3 µm. 
 

Also, the cells expressing Stx7 FL-TFP cells secreted perforin at the IS indicating that 

the fusion construct did not block the function of CTLs. The average number of 

perforin vesicles released was 1.6±0.24 which was similar to the cells overexpressing 

only perforin mCherry. This indicated that the overexpression of Syntaxin7 in CTLs 

did not interfere with the function of CTLs.  

In order to confirm our observation of a significant reduction in perforin accumulation 

at the IS in Stx7 ∆C-TFP cells in comparison to that seen in Stx7 FL-TFP cells, we 

fixed and stained transfected CTLs that were in prior contact with target cells for 30 

minutes for perforin.  
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Confocal microscopy imaging of serial sections of the whole cell also showed a a 

relative reduction in the accumulation of perforin at the IS (Fig. 16). This was 

comparable to the results obtained from TIRFM. These data allow us to conclude that 

Syntaxin7 function is required for the correct transport of lytic granules to the IS. 

 

                      
 
Figure 16. Confocal microscopy shows a reduction in perforin accumulation at the IS. 
Shown are representative confocal images and maximum intensity projections (MIP) of CTLs 
transfected with either Stx7 FL-TFP (upper panel) or Stx7 ∆C-TFP (lower panel) and stained 
with perforin antibody. A qualitative difference in the reduction of perforin accumulation was 
seen in cells overexpressing Stx7 ∆C-TFP on comparison with Stx7 FL-TFP expressing 
CTLs. Scale bars are 3 µm. 
  

After confirming by two independent methods the importance of Syntaxin7 for the 

normal accumulation of perforin at the IS in CTLs we asked the next important 

question concerning the localization of Syntaxin7. In order to investigate whether 

Syntaxin7 and perforin were colocalized we used SIM microscopy to scan serial 

sections along the whole cell. We found that there was very little colocalization 

between Syntaxin7 and perforin (Fig 17).  

 

 
Figure 17. Colocalization of Syntaxin7 and Perforin in activated CTLs. 
Resting CTLs were fixed and stained with Syntaxin7 and perforin antibodies. Colocalization 
analysis was done using Jacob plugin from ImageJ. Scale bar is 3 µm. 
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The amount of colocalization between Syntaxin7 and perforin was quantified using 

Pearson’s coefficient (r) from 15 cells (See also methods section 2.2.13). SEA 

stimulated CTLs that had no prior contact with target cells were used for the analysis 

which yielded a Pearson’s coefficient value of 0.05 ± 0.02. This indicated that 

Syntaxin7 and perforin were not colocalized. We therefore conclude that the 

reduction in the killing capacity of CTLs that had impaired or reduced Syntaxin7 

expression cannot be due to a defect in the trafficking/sorting of perforin.  

3.3 Defective TCR accumulation when Syntaxin7 function is blocked 

Lytic granule polarization and release is one of the later steps occurring after a 

mature IS is formed. Since Syntaxin7 and perforin were found to be present in two 

different vesicle populations we decided to examine the function of Syntaxin7 in the 

early trafficking events necessary for IS formation. TCR signaling at the CTL-target 

cell contact zone is one of the earliest signaling events that initiate the formation of a 

mature IS. Accumulation of TCRs at the IS to form the cSMAC marks the formation of 

a mature IS. We therefore wanted to check whether the effect of impaired Syntaxin7 

function on the accumulation of perforin at the IS in CTLs was because of a defect in 

the formation of the cSMAC. A fluorescently labeled anti-CD3 antibody was used to 

label recycling TCRs. CTLs transfected with siRNA for human Syntaxin7 showed a 

dramatic loss of CD3 accumulation at the IS in comparison to cells that were 

transfected with control siRNA control (Fig. 18a). In an attempt to quantify the 

observed reduction we divided the CTL into three equal parts and measured the 

percentage of CD3 fluorescence in the third facing the target cell (containing the IS). 

If the CD3 fluorescence was distributed randomly throughout the cell, we would 

expect a 28.9% value in that area (dotted line in Fig. 18b). In cells transfected with 

control siRNA, 30 minutes after CTL-target cell contact 61.4 ± 3.3% of CD3 

fluorescence was present in the region near the IS. In contrast, only 43.0 ± 2.7% of 

CD3 fluorescence occurred in the third facing the target cells in cells transfected with 

siRNA against Syntaxin7 (Fig. 18b; p < 0.001). A qualitatively and quantitatively 

similar block of CD3 accumulation was observed in CTLs expressing Stx7 ∆C-TFP 

cells (40.9 ± 1.6%) when compared to CTLs expressing Stx7 FL-TFP (56.5 ± 1.3%; 

p < 0.001; Fig. 18c+d). Thus, our two independent methods of interfering with 

Syntaxin7 function reveal that Syntaxin7 is needed for the stable formation of the 

cSMAC at the IS.  
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Figure 18. Reduced accumulation of CD3 in CTLs when Syntaxin7 function is blocked. 
CD3 staining to mark the formation of a mature IS after 30 minutes of CTL-target cell contact 
in (a) Ctrl siRNA and Syntaxin7 siRNA cells and (c) Stx7FL-TFP and Stx7∆C-TFP cells. (b) 
and (d) are the quantification of CD3 accumulation in (a) and (c) respectively. Scale bars are 
3 µm. 
 

In principle, this observation could be due to either a reduced transport of intracellular 

organelles containing recycling TCR towards the IS (Das et al., 2004) or to a reduced 

lateral mobility of membrane bound TCR towards the IS membrane (Favier et al., 

2001). In order to distinguish between these possibilities we performed live imaging 

in both Stx7 ∆C-TFP and Stx7 FL-TFP transfected CTLs. In order to exclude the 

possibility of labeling newly synthesized TCR, we pre-incubated CTLs with a 

fluorescent conjugated anti-CD3 antibody (see also section 2.2.9.2). As shown in 

Figure 19, we observed no accumulation of CD3 at any time of observation in 

Stx7 ∆C-TFP transfected CTLs, thereby indicating that the transport of recycling TCR 

to the IS is blocked in these cells resulting in defective cSMAC formation. 
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Figure19. Time lapse imaging of CD3 polarisation towards the IS. 
Live cell imaging showing the dynamics of CD3 polarisation towards the IS after CTL-target 
cell contact in (a) Stx7 FL-TFP and (b) Stx7 ∆C-TFP cells. The cells are a representative of a 
total of 6 (Stx7 FL-TFP) and 17 (Stx7 ∆C-TFP) cells. Cells were taken from three 
independent donors. Scale bars are 3 µm. 
 

It was not feasible to quantify the accumulation of recycling TCRs from the time lapse 

imaging experiments. The cells were scanned only along three planes to avoid 

bleaching during the movie. We were interested in analyzing the accumulation of 

recycling TCR at different time points. To do this, we performed 

immunocytochemistry on fixed CTL-target cell conjugates that were transfected with 

either Stx7 ∆C-TFP or with Stx7 FL-TFP. We pre-incubated CTLs with Alexa-647 

conjugated CD3 for 30 minutes and then washed the cells before incubating them 

with target cells for 5, 15 and 30 minutes before fixation (Fig. 20). The accumulation 

of CD3 was later quantified by first making a projection of all the stacks of the cell. 

The cell was then divided into three equal parts. The third facing the target cell was 

defined as the immunological synapse and the CD3 fluorescence in this region was 

measured over the fluorescence along the entire region of the cell. 
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Figure 20. CD3 localization at different times after CTL-Target cell contact. 
(a, b)TFP tagged with either Syntaxin7 protein lacking its transmembrane region (Stx7 ∆C-
TFP) or full length Syntaxin7 (Stx7 FL-TFP) were expressed in CTLs. 24 hours after 
transfection CTLs were pre-incubated for 30 minutes with Alexa647–labeled anti-CD3 mAb 
to label recycling TCR and then washed. CTLs were then incubated with target cells for 5, 15 
and 30 minutes (Panels A, B and C respectively; shown above). (c) Accumulation of CD3 
was quantified by dividing the fluorescence of CD3 in proximity to the IS (defined as one third 
the distance into the cell from the immunological synapse) by the total fluorescence in the 
cell. CTLs expressing Stx7 ∆C-TFP showed no CD3 accumulation over time in contrast to 
Stx7 FL-TFP expressing CTLs. Scale bar is 5 µm.  
 

After 5 minutes of CTL-Target cell contact we observed internalization of TCR in both 

the Stx7 FL-TFP and Stx7 ∆C-TFP cells. The CD3 fluorescence in the third facing the 

target cell was 42.13 ± 2.25%, 53.17 ± 1.76% and 61.41 ± 4.19% in Stx7 FL-TFP at 

and 32.63 ± 2.05%, 42.41 ± 3.48% and 38.13 ± 1.15% in Stx7 ∆C-TFP cells at 5, 15 
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and 30 minutes after CTL-target cell contact respectively. The dramatic reduction in 

the accumulation of recycling TCR seen at 30 minutes restates the importance of 

Syntaxin7 for a fully formed cSMAC. In order to check whether the CTLs with an 

impaired Syntaxin7 function could even form a stable contact with their target cells 

we used Talin as marker for the pSMAC. We observed that Talin accumulated 

normally in both control and Syntaxin7 siRNA treated cells indicating that Syntaxin7 

functions specifically in the transport of recycling TCR towards the IS (Fig. 21). 

 

 
Figure 21. Accumulation of Talin at the IS after 30 minutes of CTL-target cell contact. 
Representative cells from three independent experiments showing the normal accumulation 
of Talin, but defective accumulation of CD3 in Syntaxin7 siRNA treated cells. In contrast, 
control siRNA cells show a normal accumulation of Talin and CD3. Scale bars are 3 µm. 
 

3.4 Defective TCR recycling in CTLs where Syntaxin7 function is 
blocked 
The live cell imaging experiments confirmed that the internalization of TCR was not 

affected but only their polarization towards the synapse was blocked. we thought that 

the trafficking step of the TCR either from the early to late/recycling endosome or 

from the late endosome to lysosome was blocked. In order to discern which specific 

step was blocked by Syntaxin7, we checked the localization of T cell receptors first 

with the early endosome marker early endosome autoantigen 1 (EEA1) (Barysch et 

al., 2009). Interestingly, we found that there was an increase in the colocalization 

between EEA1 and TCR. This suggests that when Syntaxin7 was down regulated, 

the TCR recycling pathway is blocked at the early endosome (Fig. 22a). Pearson’s 

coefficient and Van Steensels CCF were used as the measure for colocalization (Fig. 

22b+c). The difference in the Pearson’s coefficient calculated for 17 Syntaxin7 siRNA 

treated cells was 0.2 ± 0.03, while that for control siRNA transfected cells was only 

0.09±0.01 (p<0.001).  
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Figure 22. Defective TCR recycling in Syntaxin7 downregulated cells 
(a) Representative images showing the colocalization of early endosomes with TCR in 
control siRNA and Syntaxin7 siRNA treated cells. EEA1 was used as the marker for early 
endosomes TCR was labeled using CD3-647 antibody. A significant increase in the 
colocalization of EEA1 and TCR was seen in Syntaxin7 siRNA treated cells when compared 
to control siRNA treated cells. Scale bars are 3 µm. (b) Pearsons’s co-efficient was 
calculated as a measure for colocalization. 22 cells from control conditions and 17 cells from 
Syntaxin7 siRNA conditions were used for analysis. (c) One representative cell was taken 
from each of the above treated conditions to show the Van Steensel’s CCF as another 
measure for colocalization. 
 

Since the previous results indicated that the function of Syntaxin7 was to ensure the 

correct trafficking of TCR from early to late endosomes, we wanted to investigate the 

mechanism of its function. The important question we asked was to which 

compartment Syntaxin7 was localized. 

Therefore, we analyzed the colocalization of Syntaxin7 with the early and late 

endosome markers EEA1 and Rab7 respectively in CTLs using SIM. We used the 

value of the Pearson’s coefficient (r) as a measure for colocalization.  
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We found there was no significant colocalization between Syntaxin7 with EEA1 (r = 

0.04 ± 0.01; Fig. 23a). There was partial colocalization with the late endosome 

marker Rab7 (r = 0.13 ± 0.02; Fig. 23b). The partial colocalization with Rab7 might be 

due to the possibility that Syntaxin7 is only localized to the TCR containing late 

endosomes and not the entire population of late endosomes in CTLs as there are 

several sub-populations of late endosomes in cells. Additionally, the partial 

colocalization with TCRs could also be because not all the TCRs in the cells are 

present in the late endosomes. 

 

             
Figure 23. Syntaxin7 is preferentially localized to the late endosomes in CTLs. 
Colocalization of Syntaxin7 with the (a) early endosome marker EEA1 and (b) late endosome 
marker Rab7 in resting CTLs. Shown are representative images that were acquired using 
Structured illumination microscopy to obtain an improved resolution in comparison to the 
acquisitions using the conventional laser scanning confocal microscopy. Scale bars are 5 
µm. 
 

Syntaxin7 is a Qa SNARE and therefore is the SNARE present on the target 

membrane of fusion. Since there was more colocalisation between TCR and EEA1 in 

the cells that were downregulated with Syntaxin7, it implies that Syntaxin7 is the Qa 

SNARE residing on the late endosomes and is required for fusion between the early 

and late endosomes.  
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Figure 24. Less colocalization between CD3 and Rab7 in Syntaxin7 siRNA transfected 
cells 
(a) Representative images showing the colocalization of CD3 and Rab7 in control and 
Syntaxin7 siRNA transfected CTLs. CTLs were incubated with SEA plused Raji cells for 30 
minutes before the fixation and subsequent staining. (b) Colocalization analysis for Pearson’s 
coefficient that was done using Jacob plugin in the Image J software. Scale bars are 3 µm. 
 

If the TCR compartments were stuck in the early endosome compartment in the 

absence of functional Syntaxin7 then we would assume there should be less TCR 

colocalizing at the late endosome. This was indeed the case when we compared the 

colocalization between TCR and Rab7 in Syntaxin7 siRNA and control siRNA 

transfected CTLs (Fig. 24a). A significant reduction in the Pearson’s correlation 

coefficient (Fig. 24b) further indicates that the increase in colocalization between the 

TCR and EEA1 was specifically due to the incomplete trafficking of TCRs from the 

early to late endosomes. 

 

3.5 Expression of SNARES in CTLs under naïve and stimulated 

conditions 

The importance of SNAREs in immune cells has been highlighted in Stow et al. 

(2006). The specific roles of few of the SNARE proteins have been identified in some 

of the immune cells. The importance of Syntaxin7 in CTLs that is needed for the 

killing of cognate target cells directed us towards investigating the importance of 

other SNAREs in CTLs. Several mutations have been identified in Syntaxin11, a Qa 

SNARE that cause defective NK cell degranulation and cytotoxicity. The outcome of 

this phenotype leads to the devastating FHL (see also section1.8). Recent studies 

from a VAMP8 knock out mouse by Loo et al. (2009) have shown that it is the R-
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SNARE that is present on lytic granules and is required for their fusion with the 

plasma membrane. We tested the expression of all the SNAREs with the idea of 

determining their expression profile upon CTL activation. We used CD3/CD28 bead 

stimulated cells and compared the expression of all the SNAREs first at the mRNA 

level by RT-PCR. We saw that some of the SNAREs were not expressed in CTLs. 

Out of the remaining SNAREs some were upregulated upon activation and some 

showed no change in expression. The mRNA expression pattern of some of the 

tested SNAREs is shown in figure 25. Syntaxin11 was expressed in CTLs and was 

upregulated upon stimulation along with several other SNAREs such as Syntaxin3, 

Syntaxin4, Syntaxin6 and Syntaxin17. Some SNAREs like VAMP3 and VAMP4 

showed no change in expression. The presence and upregulation of only certain 

SNAREs might implicate their importance in CTLs. 

 

 
Figure 25. mRNA profile of some SNARE proteins with varying regulation upon 
activation. 
RT-PCR on naïve (indictated as 0) and CD3/CD28 bead stimulated CTLs at day 1 and 3 
after stimulation, n is the negative control. Shown are the expression profiles of some of the 
SNAREs tested.  
 

We next wanted to test whether the SNARES that were either upregulated or that 

showed no change in their expression upon activation had any role in the release of 

lytic granules. We systematically tested the localization of various SNAREs in CTLs 

at the IS by immunocytochemistry as that could give a hint about its potential role in 

CTL effector function. Perforin was used to mark the IS. CTLs and target cells were 

incubated for 30 minutes to induce IS formation. The cell pairs were then fixed and 

stained for various SNARE proteins (Fig. 26). Confocal images of serial sections 

along the whole cell were taken to analyze the localization of various SNAREs at the 
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IS. Interestingly not all the SNAREs that were upregulated upon stimulation from the 

RT-PCR results accumulated at the IS in CTLs. Some among the various SNAREs 

tested with different patterns of localization at the IS are shown in Figure 26. 

Syntaxin3, 4 and 6 in addition to VAMP3 and 4 accumulated at the IS. Syntaxin 10, 

17 and SNAP-23 did not accumulate at the IS.  

  

 
Figure 26. Accumulation of some of the Q and R SNAREs at the IS along with perforin 
Shown are confocal images of the localization of selected Q (a) and R (b) SNAREs among 
the various that were tested. CTLs and target cells were incubated for 30 minutes. before 
fixation and subsequent immunostaining. Perforin was used as the lytic granule marker. 
Scale bars are 3 µm. 
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These results indicated that several SNAREs show promising localization at the IS 

with perforin implicating their possible role in lytic granule release at the IS. Detailed 

functional analyses of SNARE proteins could hint towards further understanding of 

the still mysterious killing process of CTLs.  
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4. Discussion 

4.1 Are SNAREs indispensable for immune function? 

Extensive studies have been done in the recent past showing the presence of 

several SNARE proteins in various cells of the immune system. There are many 

processes such as the release of molecules that mediate inflammation or other 

immune responses and the delivery of receptors to and from the cell surface that 

mediate signaling, which all need SNARE dependent fusion reactions (Lacy, 2005; 

Logan et al., 2003). In macrophages for example, the presence and upregulation of 

particular SNAREs such as Syntaxin4, 6 and Vti1b have been reported. More 

importantly, the protein levels were found to be correlating with the requirements for 

trafficking and were rate limiting for the secretion of TNF from activated macrophages 

(Murray et al., 2005a; Murray et al., 2005b; Pagan et al., 2003). 

Platelets have fast release of granules content by direct fusion with the plasma 

membrane or slow release of granule contents through surface connected 

invaginations. The distinct location of specific Q SNAREs in these cell types 

determines the fate of the granule fusion (White, 1970). The Q SNARE Syntaxin4 

alone or the Q-SNARE complex of Syntaxin2 and SNAP-23 regulate specific and 

distinct granule secretion events within the cell (Chen et al., 2000a; Chen et al., 

2000b; Flaumenhaft et al., 1999; Lemons et al., 2000). The study by Huse et al. 

(2006) on activated T helper cells also show that there are a specific set of SNARE 

proteins that mediate secretion at the synapse that are different from the ones that 

mediate multi-directional cytokine secretion. In mast cells, the translocation of two 

SNAREs VAMP7 and Syntaxin3 containing granules to the plasma membrane has 

been consistent with their role in membrane fusion (Hibi et al., 2000). It was also 

shown that specific inhibition of VAMP7 blocks release of granules from neutrophils 

(Logan et al., 2006; Mollinedo et al., 2006). The regulation of SNAREs also plays an 

important role in immune function as shown by Hepp et al. (2009), where the 

phosphorylation of SNAP-23 is needed for activated mast cells to degranulate. The N 

terminal domains of SNARE proteins by interaction with Sec/Munc-like proteins also 

regulate SNARE complex formation as seen in the case of Syntaxin4 in mast cells. 

When Syntaxin4 dissociates from Munc18c, it allows Q-SNARE complex assembly 

formation for cytokine release and phagocytosis (Kay et al., 2006).  
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4.2 What do we know about SNAREs and CTLs?? 

However, the most compelling evidence about the absolute requirement for SNAREs 

in immune cells is seen in the form of genetic defects in lymphocyte mediated killing. 

The importance of the Qa SNARE Syntaxin11 in lymphocytes was identified by the 

defect in granule mediated killing that was linked to specific mutations in its gene 

(Albayrak et al., 2009; zur Stadt et al., 2005). Impaired binding of Munc18 to 

Syntaxin11 which results in the decreased stability of both proteins leads to a 

reduction in the function of CTLs and NK cells (Cote et al., 2009; zur Stadt et al., 

2009).These lines of work in favour of the specificity of SNAREs in mediating various 

fusion events in the cells. Defects in SNARE regulating proteins such as Rab27a 

(Menasche et al., 2000; Stinchcombe et al., 2001a) and Munc13-4 (Feldmann et al., 

2003) also have severe effects that lead to a complete defect in granule secretion. 

The protein LYST, mutations in which cause the genetic syndrome CHS, was shown 

to interact with the SNARE complex. This might reveal further mechanistic insights 

into the underlying cause of the severe genetic syndrome that results in defective 

lytic granule secretion in lymphocytes (Bossi and Griffiths, 2005; Tchernev et al., 

2002). 

Our results show for the first time that there is a differential regulation of SNAREs 

upon activation of naïve CD8T cells (Fig. 25). This is in agreement with studies on 

other immune cells which show also specific upregulation of certain SNAREs upon 

cell activation (Murray et al., 2005b). The SNARE proteins barring Syntaxin11 that 

are critically required for the function of CTLs have not been identified (Hong, 2005; 

Stow et al., 2006). Our data provide the first clue as to which SNAREs could play 

important roles in the activation or cytolytic function of CTLs. The dramatic 

upregulation of Syntaxin11 upon CTL activation is consistent with its function in 

lymphocyte degranulation (Arneson et al., 2007). The preferential localization of 

some SNAREs at the IS such as Syntaxin3, 4 and 10 (Fig. 26) could implicate their 

possible role in mediating secretion of specific components at the IS (Hibi et al., 

2000). Taken together these results imply that SNAREs are important for CTL 

function and that identifying the specific SNAREs important for different steps in CTL 

function might give new insights into the function of CTL. 
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4.3 Syntaxin7 function in CTLs 

In this study we show that the Qa SNARE protein Syntaxin7 is critically required for 

the cytolytic function of CTLs. Some aspects of the function of Syntaxin7 in the innate 

immune system has been studied earlier. Syntaxin7 was shown to mediate the 

secretion of TNF from macrophages (Murray et al., 2005a). It was also reported to 

function in the formation of phagosomes in macrophages (Collins et al., 2002). Using 

two independent methods of stimulation, we determined the expression profile of 

Syntaxin7 in naïve and stimulated CTLs and found that Syntaxin7 is upregulated 

upon CTL activation showing a strong expression at the days that CTLs show 

maximum killing efficiency. Most SNARE proteins that are upregulated upon immune 

cell activation have been shown to play a crucial role for the function of those 

activated cells (Murray et al., 2005b; Pagan et al., 2003). While it is not essential that 

the proteins important for the cytolytic function of T cells should always show an 

increased expression upon T cell activation (as it was the case for Munc13-4 in 

Menager et al., 2007), the upregulation of Syntaxin7 clearly implicated that the 

protein is important for some function of activated T cells. Our results on the 

localization of Syntaxin7 in resting and activated CTLs clearly indicated a preferential 

localization of Syntaxin7 at mature synapses. Studies on the Jurkat T cell lines have 

shown the accumulation of the plasma membrane Q SNAREs Syntaxin4 and SNAP-

23 at the IS with a possible role for mediating the fusion of recycling TCRs with the 

plasma membrane (Das et al., 2004). We show that Syntaxin7 is needed for CTL 

mediated killing of target cells. Perforin, a marker for secretory lysosomes was shown 

to be one of the key players for CTL granule mediated target cell killing. A previous 

study in NK cells showed the preferential enrichment of Syntaxin7 in the lysosome 

fractions (Casey et al., 2007). However, our results using SIM showed that Syntaxin7 

and perforin almost exclude each other in terms of colocalization. NK cells and CTLs 

both share similar pathways for target cell killing (Kagi et al., 1994) though NK cells 

require no pre-activation for killing as they belong to the innate immune system. This 

could account for the differences in the requirement of trafficking proteins in CTLs 

and NK cells for their respective functions.  

We discuss in two parts about the two major findings from our studies on Syntaxin7 

in CTLs in this chapter. 
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4.3.1 Perforin accumulation and TIRF microscopy 

The first major surprise from our study was the significant effect of the lack of 

functional Syntaxin7 on the accumulation of perforin at the IS though they seemed to 

present on two different vesicle populations. 

In order to check whether Syntaxin7 is influencing the final fusion event of perforin 

vesicles, we proposed to use TIRFM. TIRFM is a high resolution technique that 

allows exclusive visualization of biological processes within 200 nm from the plasma 

membrane (Holz and Axelrod, 2008; Nofal et al., 2007). TIRFM has been used to 

study secretion from neurons and chromaffin cells (Zenisek et al., 2000). The use of 

membrane bilayers with CD3 and ICAM antibodies have been used to form a 

functional IS with T cells to enable studies using TIRFM (Dustin, 2008; Ilani et al., 

2009). TCR microcluster formation and the Actin dynamics have been studied using 

TIRF microscopy (Dustin, 2008). Mitochondrial movement to the IS and calcium 

signaling have been studied using TIRF microscopy with the IS formed between 

CTLs and coated glass coverlips with CD3 and other co-stimulatory molecules 

(Quintana et al., 2009; Quintana et al., 2007). When we employed TIRF microscopy 

for the first time to study secretion of lytic granules at the IS we observed a gradual 

accumulation of lytic granules at the IS over time. The accumulation of perforin at the 

synapse was rapid and occurred within minutes of CTL adhering to antibody coating. 

This was expected of synapses formed from CTLs as they are known to form rapid 

and short synapses leading to target cell destruction (Bossi et al., 2002; Isaaz et al., 

1995). The rapid accumulation led to a phase where there was no further significant 

increase in the accumulation of lytic granules. CTLs do synthesize new perforin 

granules after TCR stimulation (Isaaz et al., 1995). The limitation to the number of 

granules that turn out to be fusion competent for killing at the IS is probably a safety 

mechanism for CTL function. CTLs probably to ensure efficient killing and to always 

have a supply of perforin have devised a method where only limited granules are 

targeted to the IS which could explain the sustained phase in perforin accumulation 

that was reliably seen after the initial rise in accumulation after 5 minutes of CTLs 

adhering to the glass coverslips. Not all the lytic granules in the CTL even approach 

the IS as seen in our results where simultaneous epifluorescence imaging shows the 

presence of lytic granules in the epifluorescence images taken above the TIRF plane 

persisting overtime. Studies using labeled granules of CTLs have shown that very 

few granules need to be released to destroy a target. Lyubchenko et al. (2009) have 
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shown that in TALL-104 cells (CTL cell lines) only 15% of lytic granules in a cell are 

released at the IS. We show that approximately only 20% of the vesicles that 

approach the IS fuse with the glass coverslip.  

The experiments with Stx7 FL-TFP show a similar pattern of perforin accumulation at 

the TIRF plane over time. In Stx7 ∆C-TFP there is an almost complete block of 

perforin accumulation and fusion at the IS. The results were confirmed in a qualitative 

manner by confocal microscopy with fixed CTL-target cell conjugates. The TIRFM 

method can therefore be used reliably to study the events occurring at the CTL 

secretory synapse prior to the secretion of lytic granules and can probably be used to 

quantify pre secretion events such as docking and priming.  

 

4.3.2 TCR trafficking and Syntaxin7 

One of the other major findings in this study is the function of Syntaxin7 in the 

trafficking of recycling TCRs to the IS and the importance of this pathway for CTL 

effector function. We report that in the absence of functional Syntaxin7, recycling 

TCRs cannot get past the early endosomes and remain trapped there. There have 

been reports of fast recycling where the early endosomes bypass recycling 

endosomes and fuse with the plasma membrane (Sheff et al., 1999). One 

explanation for our result could have been that Syntaxin7 is localized to the early 

endosome and needed for the fusion of early endosomes with the plasma membrane 

constituting a role in the fast recycling. Evidently, the first report on Syntaxin7 showed 

it to be colocalizing with transferrin receptors marking the recycling compartment of 

the early endosomes (Wong et al., 1998). This could explain the findings from 

Prekeris et al. (1999) where Syntaxin7 constantly cycles through the plasma 

membrane. However, in that scenario the SNARE hypothesis would predict 

Syntaxin7 to be localized on the plasma membrane, since as a Qa SNARE it would 

reside on the target membrane of the two fusing compartments. Other authors also 

claimed a localization of Syntaxin7 to the early endosome (Nakamura et al., 2000). In 

contrast, our results show that Syntaxin7 is partially colocalized to the late endosome 

fraction in CTLs. Our findings are in agreement with studies by Wang and coworkers 

who have shown Syntaxin7 to be localized to both late endosome and lysosome 

compartments (Wang et al., 1997). Studies using electron microscopy have also 

shown that Syntaxin7 was localized to the multivesicular bodies along with Rab7 

(Mullock et al., 2000). In NK cells the secretory lysosomes and not the early 
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endosomes or late endosomes were reported to have an enriched fraction of 

Syntaxin7. This implied that the TCR trafficking from the early to late endosomes 

required Syntaxin7. This was in agreement with the work reported by Prekeris et al. 

(1999) which showed that Syntaxin7 was mediating the fusion of early and late 

endosome compartments. Since in this scenario the Syntaxin7 would reside on the 

correct target membrane, we consider a localization of Syntaxin7 in the membrane of 

late endosomes more likely. 

Studies using truncated Syntaxin7 with deletion of the transmembrane domain have 

shown to block the function of Syntaxin7 leading to cytoplasmic staining (Kasai and 

Akagawa, 2001; Nakamura et al., 2000). We report here that the over-expression of 

truncated Syntaxin7 leads to a clear phenotype, the loss of TCR accumulation at the 

IS. The use of tetanus toxin which specifically inactivates VAMP3 on Jurkat cells 

shows a defect in recycling TCR accumulation (Das et al., 2004), indicating that the 

accumulation of recycling TCR at the IS is SNARE-dependent. In our study the defect 

in recycling TCR accumulation leading to the defect in killing clearly implicates the 

importance of this process in CTL. It also goes to show that all three processes of 

TCR transport to the IS, lateral diffusion of TCR to the IS (Favier et al., 2001), actin 

mediated transport and the trafficking mediated by SNAREs are required for the 

cluster of TCR accumulation (Das et al., 2004) and do not compensate for the loss of 

the other. 

Both siRNA and dominant negative approach show an increase in colocalization 

between EEA1 and TCR in Syntaxin7 downregulated cells. This was specifically 

supported by a significant decrease in the reduction of colocalization between Rab7 

and TCR in the Syntaxin7 downregulated cells. Since the accumulation of recycling 

TCR contributes to the formation of a cSMAC, in the next part we discuss about the 

role of the cSMAC in CTL effector function.  

The requirement and function of the cSMAC has been under debate. Naïve T cells 

have been shown not to be dependent on the formation of a cSMAC for their 

activation (O'Keefe et al., 2004). Studies have also shown that a mature synapse is 

not required for the effector function of CTLs (Purbhoo et al., 2004) and that CTLs 

can kill target cells without the formation of a complete cSMAC. Killing of target cells 

was shown to occur in the presence of low concentrations of antigen presentation. 

Strong antigen signals ensure complete signaling and the formation of SMACs. 

However it was shown recently that low TCR signaling can ensure the polarization of 
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MTOC to the IS but only in response to strong TCR signals can the efficient transport 

of lytic granules to the IS take place (Jenkins et al., 2009). Since recycling TCR do 

contribute to the formation of TCR accumulaton at the IS (Das et al., 2004), granule 

polarization therefore requires the normal accumulation of of recycling TCRs as is 

also shown by our results.  

Trafficking of TCR is probably also very important in CTLs for the termination of 

signals after ensuring the killing of target cells. It has been shown that at the cSMAC 

TCR is internalized and degraded (Liu et al., 2000). The trafficking of TCR from the 

early to late endosome could be the decisive factor in determining the fate of TCR to 

the plasma membrane or to the lysosome for degradation. Previous studies have 

shown that early endosomes are the compartments where the decision of recycling 

or degradation takes place (Rink et al., 2005; Sheff et al., 1999). Late endosomes 

mature from early endosomes and from the late endosomes components are 

recylyed back though the trans golgi network to reach the recycling endosomes 

(Maxfield and McGraw, 2004). This decision is probably regulated by the function of 

Syntaxin7 that mediates the fusion between the early and late endosome which is 

crucial in determining the persistence of TCR signaling required for full effector 

potential of CTLs. 

Another finding from our results is the transient localization of Syntaxin7 at the 

plasma membrane which is probably because of a necessity to have a second step 

of TCR regulation. A previous study on Syntaxin7 proposed that it is not only 

colocalized to both late endosomes and lysosomes but also functionally active on 

both membranes (Ward et al., 2000b). The yeast Vam3p was also shown to be 

mediating homotypic fusion of yeast vacuoles. This fusion reaction is NSF dependent 

and requires the vSNARE Nyv1p to be both present and functionally active on both 

partners. This model was used to explain that Syntaxin7 may be active on both late 

endosome and lysosome compartments and catalyzes fusion events from a number 

of different pathways that converge at late endosome/lysosome compartments. Our 

results show that Syntaxin7 is not only present in late endosomes but also at the 

plasma membrane. One reason for the strong plasma membrane localization of 

Syntaxin7 could be that it is functional in both membranes. SNAP-23 was proposed 

to be important for the recycling of TCRs in the Jurkat cells. However, in our results, 

we did not see any accumulation of SNAP-23 (Qbc SNARE) in primary human T 

cells. One possible explanation could be that primary cells have different trafficking 
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partners. Syntaxin7 (Qa SNARE) probably also functions at the plasma membrane as 

the target SNARE for the fusion of TCR granules. Syntaxin8 (Qc SNARE), a known 

endosomal SNARE, is also supposed to be localized to the plasma membrane 

(Prekeris et al., 1999) and is a known interacting partner for Syntaxin7 (Antonin et al., 

2002b). VAMP3 (R SNARE) which is the vSNARE on the recycling TCR (Das et al., 

2004) has been shown to interact with Syntaxin7 (Murray et al., 2005a) and therefore 

Syntaxin7 and Syntaxin8 along with another Qb SNARE (probably Vti1a or Vti1b) 

could interact with VAMP3 in controlling the fusion of recyling TCR. One could 

envision that CTLs have a two step mechanism to regulate the signaling of TCR at 

the IS. One step would be at the level of the early/late endosomes and, if for some 

reason this is bypassed, then the other would be at the plasma membrane. Syntaxin7 

is the only endosomal SNARE that adopts an open and closed conformation for 

regulation (Antonin et al., 2002a). Normally this regulation is supposed to be only for 

plasma membrane SNAREs (Dulubova et al., 1999). This could be one possible 

explanation for how Syntaxin7 regulates the trafficking of TCR at the IS. 

Syntaxin7 therefore regulates the accumulation of TCR at the IS at two levels. CTLs 

are very efficient killers and sustained TCR signaling at the IS might result in CTL-

target cell remaining in contact even after target cell killing. Therefore termination of 

signal after target cell killing is very important for CTLs to move to kill the next target 

for a quick and efficient effector response. One important question remains to be 

studied: Which molecule is binding to be the closed form of Syntaxin7 to ensure its 

regulation? An attractive candidate would be Munc18 that is known to mediate this 

function at the active zone of CNS neurons. 

Our results on the function of Syntaxin7 in CTLs establish that SNAREs are important 

for recycling of TCR to the membrane (Das et al., 2004). We show in addition that 

this specific process is critically required for the killing function of CTLs. 

4.4 Outlook 

The importance of Syntaxin7 in CTL function leads to several open questions about 

the specific function of other SNAREs and SNARE related proteins for CTL effector 

function. A lot is left to be discovered in the field about the importance of SNARE 

trafficking. Recently it was shown that VAMP8 is important for lytic granule release 

(Loo et al., 2009). If this is indeed the case then it could be the v-SNARE on the lytic 

granules that fuses with the t-SNARES Stx4 and SNAP-23 which are both known 
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interacting partners for VAMP8 (Paumet et al., 2000; Polgar et al., 2002; Puri and 

Roche, 2006). Syntaxin4 and SNAP-23 are both localized to the plasma membrane. 

The explanation for SNAP-23 not accumulating at the IS but being important for a 

fusion event at the IS could be that there are so few lytic granules that are released 

at the IS for killing one target cell that there is no necessity for SNAP-23 to 

accumulate in the plasma membrane. It could be that SNAP-23 is specific only for the 

release of lytic granules. Syntaxin4 the other Q-SNARE accumulates very well at the 

IS. This could be because it might be regulating some other fusion event at the IS as 

well such as the release of cytokines.  

What is also not known is the importance of other regulators for the release of lytic 

granules. Neuronal synapses are well studied. There are several additional 

molecules apart from SNAREs such as Munc18, Synaptotagmin, and CAPS that are 

well known to be playing an important role in the fusion of neuronal vesicles (Rettig 

and Neher, 2002; Walent et al., 1992). What are these molecules good for in 

mediating the function of CTLs? Impaired binding of Syntaxin11 to Munc18 causes 

FHL-5. The mechanism or the reasons for the mutations in Syntaxin11 leading to 

FHL are not known. Is it blocking the final fusion event or some very important 

pathway in between? It is known to be localized to the TGN. One might not be able to 

rule out the possibility that the mutations in Syntaxin11 that lead to FHL might be 

because of blocking the sorting of molecules that are important for the cytolytic 

function of T cells. It would also be very interesting to know what role Munc18 is 

indeed playing in this whole process.  

A recent study showed the function of Synaptotagmin in the release of lytic granules 

leaving us to believe that there is a lot of similarity in the basic mechanism of lytic 

granule and neurotransmitter release (Fowler et al., 2007).  

Another protein that is involved in the secretion of dense core vesicles in 

neuroendocrine cells is the Ca2+-dependent Activator Protein for secretion (CAPS). 

Studies have shown the presence of CAPS in non neuronal tissues (Sadakata et al., 

2007). Interestingly both the thymus and spleen as important sites for T cell 

maturation and activation show the expression of CAPS. CAPS protein has a Munc-

13 homology domain (MHD) that functions as a Syntaxin interacting domain. Will 

CAPS have a function to play by binding to Syntaxin11 or some other SNARE in 

CTLs? The function of CAPS in CTL effector function if any might give new insights 

into the molecular mechanisms of the release of lytic granules.  
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5. Summary 

The function of cytotoxic T lymphocytes (CTLs) is to kill infected cells in the body. In 

order to kill their targets they must first come in contact with them to form an 

immunological synapse (IS). It is at the IS that the lytic granules containing cytotoxic 

components such as perforin and granzymes fuse with the plasma membrane of the 

CTL, an event that is necessary to bring about apoptosis of the specific target cell. 

SNARE proteins (soluble NSF-attachment receptor proteins) are well known as 

mediators of fusion events in cells. The specific SNARE proteins that are important 

for the fusion of lytic granules have not been identified. Here we analyzed the 

function of a SNARE protein, Syntaxin7, in CTL function using two independent 

approaches to interfere with its function – overexpression of a Syntaxin7 dominant 

negative construct and siRNA. 

We show that Syntaxin7 is critically required for the accumulation and fusion of lytic 

granules at the IS. Surprisingly we found no colocalization of Syntaxin7 with the lytic 

granule maker perforin. Our results therefore established that the reduction in lytic 

granule fusion at the IS was not because of a defect in the trafficking of perforin itself. 

Further studies showed that there was a defective accumulation of T cell receptors 

(TCRs) at the IS indicating that the formation of a complete cSMAC required the 

function of Syntaxin7. We observed a significant increase in colocalization between 

EEA 1 (early endosome autoantigen 1), a marker for early endosomes and TCR 

upon interference with Syntaxin7 function. High resolution nanoscopy showed that 

Syntaxin7 and Rab7, a marker for late endosomes were partially colocalized. We 

show that Syntaxin7 is required for the trafficking of recycling TCR and that in the 

absence of functional Syntaxin7 the TCRs are trapped in the early endosomes. This 

results in incomplete recycling and defective accumulation of TCRs at the IS. Our 

results provide evidence that the accumulation of recycling TCRs at the IS is a 

necessity or a pre-requisite for CTL effector function. We also ascertain the specific 

function of Syntaxin7 in the recycling pathway of TCRs in CTLs. 
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