Herstellung von transgenen Mausmodellen zur konditionierten Inaktivierung des TRPC5 Gens: Konstruktion des Targetingvektors

Dissertation zur Erlangung des Grades eines Doktors der Medizin Der Medizinischen Fakultät Der UNIVERSITÄT DES SAARLANDES 2006

vorgelegt von: Susanne Stolz geb. am: 28.04.1980 in Daun

FR 2.4 Experimentelle und klinische Pharmakologie und Toxikologie Abteilung Experimentelle Pharmakologie und präklinische Krankheitsmodelle Universitätsklinikum des Saarlandes, Homburg/Saar Prof. Dr. Marc Freichel **Meinen Eltern**

INHALTSVERZEICHNIS

1. Zusammenfassung	1
Summary	3
2. Einleitung	
2.1 TRP-Kanäle	5
2.2 Die TRPC-Unterfamilie	6
2.3 Das TRPC5 Protein	8
2.4 Ziel der Arbeit	10
3. Material und Methoden	
3.1 Material	
3.1.1 Arbeitsmaterial und Geräte	12
3.1.2 Nukleotide und Nukleinsäuren	13
3.1.2.1 Radioaktiv markierte Nukleotide	13
3.1.2.2 Oligodesoxynukleotide	14
3.1.2.3 Oligodesoxynukleotide zur Amplifikation von Plasmid DNS	5
mittels PCR oder zur Sequenzierung von Plasmid-DNS	15
3.1.3 Verwendete Plasmidvektoren	23
3.1.4 Restriktionsendonukleasen	24
3.1.5 Modifizierende Enzyme	25
3.1.6 Puffer und Lösungen	26
3.1.7 Bakterienstämme	30
3.1.8 Nährmedien	31
3.2 Methoden	
3.2.1 Herstellung transformationskompetenter Zellen	32
3.2.2 Transformation	33
3.2.3 Präparation von Plasmid-DNS zur Analyse	34
3.2.4 Präparative Plasmidisolierung	35
3.2.5 Präparative Isolierung von BAC-Plasmid-DNS	36
3.2.6 DNS-Konzentrationsbestimmung	37
3.2.7 Gelelektrophorese von DNS	37
3.2.8 Elektroelution	39

3.2.9 DNS-Präzipitation mittels NaCl/Ethanol-Fällung	39
3.2.10 Aufreinigung von DNS-Fragmenten durch Phenolisierung	40
3.2.11 Spaltung der DNS durch Einsatz von Restriktionsendonukleasen	41
3.2.12 Auffüllen der überhängenden Enden und 5`-Phosphatkinasierung	41
3.2.13 Dephosphorylierung von Plasmid-DNS	42
3.2.14 Ligation von DNS-Fragmenten in Plasmidvektoren	42
3.2.15 Polymerase-Kettenreaktion (PCR)	43
3.2.16 Sequenzierung von DNS	45
3.2.17 Isolierung genomischer DNS aus ES-Zellen	47
3.2.18 Southern-Blot-Analyse	47
3.2.18.1 DNS-Transfer auf eine Nylonmembran	48
3.2.18.2 Prähybridisierung	48
3.2.18.3 Herstellung von ³² P-markierten DNS-Sonden	49
3.2.18.4 Hybridisierung mit radioaktiv markierten Sonden	49
3.2.18.5 Entfernung von unspezifisch gebundener Sonde	50

4. Ergebnisse

4.1 Ausarbeitung einer Genetarg	geting-Strategie zur konditionierten	
Inaktivierung des TrpC5-Ge	ns in der Maus	51
4.2 Klonierung einer Sonde für	das Durchsuchen einer BAC-Klon-Bank	53
4.3 Klonierung des Targetingvel	ktors zur konditionierten Inaktivierung	
des TRPC5-Gens in der Mat	15	53
4.4 Herstellung von Klonierung	svektoren mit definierten	
Restriktionsschnittstellen		56
4.5 Klonierung des 5`-homologe	en Bereichs des Targetingvektors	57
4.5.1 Klonierung von PCR	-Fragment 3	58
4.5.2 Klonierung von PCR	-Fragment 2	58
4.5.3 Klonierung von PCR	-Fragment 1	59
4.5.4 Klonierung des Vekt	ors pC5_08	60
4.5.5 Klonierung des Vekt	ors pC5_09/ Einfügen der	
Negativselektionska	ssette	61
4.5.6 Klonierung des Vekt	ors pC5_10/ Einfügen der	
SA-IRES-GFP-FRT-	NEO-FRT Kassette	61

4.6 Klonie	erung des 3'-homologen Bereichs des Targetingvektors	63
4.6.1	Klonierung von PCR-Fragment 4	63
4.6.2	Klonierung von PCR-Fragment 5	65
4.6.3	Klonierung des Vektors pC5_13	65
4.6.4	Klonierung des Vektors pC5_14	66
4.6.5	Klonierung des Vektors pC5_15	68
4.6.6	Klonierung des Vektors pC5_16	68
4.6.7	Klonierung des Vektors pC5_16b	70
4.7 Strates	gie zum Nachweis des homologen Rekombinationsereignisses	79
4.7.1	Klonierung und Präparation der 3'Sonde	79
4.7.2	3` Southernstrategie	80
4.7.3	5` Southernstrategie	82
5. Diskussi	on	84
6. Abkürzu	ingsverzeichnis	94
7. Literatu	rverzeichnis	97
8. Danksag	ung	102
9. Lebensla	uf	103

<u>1 ZUSAMMENFASSUNG</u>

TRPC5 ist ein Protein der TRPC-Subfamilie und bildet nach heterologer Überexpression seiner cDNS in Zellkulturzellen einen Kationenkanal, der den Einstrom von Kationen über die Zellmembran ins Zytosol vermittelt. Das TRPC5-Gen wird als einziges aller TRP-Gene auf dem X-Chromosom codiert. Es erstreckt sich über 306,51 kb und umfasst 11 Exons, deren codierende Sequenz eine Größe von 4158 bp aufweist. Das hieraus resultierende Protein setzt sich aus 973 Aminosäuren zusammen und besitzt ein berechnetes Molekulargewicht von 111,5 kD. Aufgrund von Hydropathieanalysen wird vermutet, daß sich das TRPC5-Protein aus sechs Transmembrandomänen und einer putativen Porenregion zwischen den Transmembrandomänen fünf und sechs zusammensetzt.

Die höchste Expression von TRPC5 konnte mittels Northern-Blot-Analyse im Gehirn nachgewiesen werden (Philipp et al., 1998). Basierend auf RT-PCR-Analysen wird eine Expression von TRPC5 Transkripten auch in glatten Muskelzellen und Endothelzellen des proximalen Teils der Pulmonalarterie (Ng and Gurney, 2001; McDaniel et al., 2001), in Aorta, in präglomerulären Widerstandsgefäßen und Glomeruli der Niere (Facemire et al., 2004) beschrieben. Es wird postuliert, daß TRPC5 an der Regulation der Neuritenlänge und am kegelförmigen Wachstum von Neuronen im Hippokampus (Greka et al., 2003) sowie an der Blutdruckregulation beteiligt ist.

Da für TRPC5 Kanäle wie auch für die meisten anderen TRP Kanäle keine spezifischen Agonisten bzw. Antagonisten existieren, ist die Generierung von TRPC5-defizienten Mäusen von großer Bedeutung zur Klärung biologischer Funktionen von TRP-Proteinen in vivo. Im Rahmen dieser Arbeit wurde ein Targetingvektor zur Inaktivierung von TRPC5 in der Maus konstruiert. Dazu wurde eine Targetingstrategie gewählt, bei der es durch Einsatz des Cre-loxP-System möglich ist, das Zielgen ubiquitär, zelltypspezifisch sowie zeitlich zu inaktivieren. Um eine homologe Rekombination im chromosomalen Zielbereich zu ermöglichen, wurden Genabschnitte im Bereich des Exons 4 gewählt, die zur Zielsequenz homolog sind. Im Targetingvektor wurde das Exon 4, das für die Transmembrandomänen S1/S2 kodiert, mit loxP-Sequenzen flankiert, um diesen Bereich mit Hilfe der Cre-Rekombinase deletieren zu können. Der zu deletierende Bereich stellt eine essentielle Sequenz des TRPC5-Gens dar. Durch Deletion des Exon 4 kommt es zu einem vorzeitigen Leserastersprung und einem Abbruch der Translation, so daß kein funktionsfähiges Protein mehr gebildet werden kann.

Um nach Transfektion embryonaler Stammzellen Klone zu selektionieren, die den Targetingvektor stabil integriert haben, wurde zwischen die homologen Arme eine Neomycin-Resistenzkassette inklusive Promotor und Polyadenylierungssignal kloniert, die diesen Klonen das Wachstum in Gegenwart des Aminoglykosid-Antibiotikums G418 ermöglicht. Diese Kassette wurde mit frt-Sequenzen flankiert, die es ermöglichen, mit Hilfe der Flp-Rekombinase das Gen für die Neomycin-Phosphotransferase selektiv zu entfernen, um unerwünschte Effekte der Neomycin-Resistenzkassette auf die Expression benachbarte Gene zu verhindern. Zur Negativselektion wurde außerhalb der homologen Arme vor den 5`homologen Bereich eine Thymidinkinase-Selektionskassette kloniert, die bei Integration des Targetingvektors mittels homologer Rekombination nicht mit in den Zielbereich inseriert wird. Zur Identifizierung von Zellen, die das TRPC5-Gen exprimieren, wurde zwischen die homologen Arme eine Kassette inseriert, die neben der "splice acceptor"-Sequenz (SA) eine "internal ribosomal entry site" (IRES) und die cDNA für das grün fluoreszierende Protein GFP beinhaltet. In Zellen, die ein TRPC5 Allel mit dieser SA-IRES-GFP-Kassette aufweisen, sollte unter der Kontrolle des TRPC5-Promotors das GFP-Protein exprimiert werden.

Zum Nachweis der korrekten Integration des Targetingkonstruktes in den TRPC5 genlokus durch homologe Rekombination, wurde eine Strategie zur Southern-Blot-Analyse erarbeitet. Hierbei wurde eine Sonde kloniert, die 3' außerhalb des homologen Bereichs der Sequenz des Targetingkonstruktes lokalisiert ist. Mit Hilfe dieser Sonde ist es möglich, das Wildtypallel vom rekombinanten Allel zu unterscheiden und später transfizierte ES-Zellen auf erfolgreiche homologe Rekombination zu durchsuchen. Da aus dem 5' des Targetingvektors gelegenen Bereichs des TRPC5 Genlokus keine spezifischen DNS-Sonden identifiziert werden konnten, muss hier der Nachweis der korrekten und singulären Integration des Targetingvektors durch Amplifikation und Sequenzierung genomischer DNS aus dem rekombinanten Allel mit Hilfe spezifischer Oligodesoxynukleotide erfolgen.

1 SUMMARY

TRPC5 is a protein of the TRPC subfamily of the TRP superfamily. Upon heterologous over-expression of TRPC5 cDNS in cell culture cells, it forms a cation channel in the plasma membrane which provides cation influx into the cytosol. The TRPC5 gene is the only TRP gene localized on the X-chromosome. It covers 306510 base pairs consisting of 11 exons. The cDNA of mouse TRPC5 compromises 4158 base pairs, encoding a 973 amino acid protein with a calculated molecular weight of 111.5 kD. Hydropathy analyses indicate, that the TRPC5 protein consists of six putative transmembrane domains. The fifth and sixth transmembrane domains are thought to built the pore forming unit. Highest expression of TRPC5 have been shown by Northern Blot analysis in the brain (Philipp et al., 1998). Based on RT PCR experiments TRPC5 transcripts are also detected in smooth muscle cells and endothelial cells of the proximal part of the pulmonal artery (McDaniel et al., 2000; NG LC et al., 2001), in aorta, in preglomerular blood vessels and glomeruli of the kidney (Facemir et al., 2003). It is postulated, that TRPC5 is involved in the regulation of the neurite length and in the conical growth of neurons in the hippocampus (Greka et al., 2003) as well as in regulation of the blood pressure.

Generation of TRPC5 deficient mice is essential to identify the biological functions of TRP proteins in vivo, because specific inhibitors of TRPC5 channels as for most TRP channels are not available. In this work the Cre loxP system was chosen in order to inactivate the TRPC5 gene ubiquitously as well as in a cell type and time dependent manner. DNA sequences flanking exon 4 of the TRPC5 gene were chosen to achieve homologous recombination. Exon 4, which encodes transmembrane domains S1/S2, was flanked by loxP-sequences to allow for Cre-recombinase-mediated deletion, which results in a shift in the open reading frame and in a premature stop of translation.

A positive selection cassette containing promoter, neomycin-resistance gene and polyadenylation signal was cloned between the homologous arms of the targeting vector to allow selective growth of ES cell clones with stable integration of the targetingvector. The positive selection cassette was flanked by frt recognition sequences, to allow removal of these sequences from the recombinant allele using Flp recombinase. Thereby potential alterations of the expression of adjacent genes by the selective cassette can be excluded. Upstream of the 5` homology sequences of the targeting

vector a negative selection cassette containing the gene encoding a thymidine kinase was cloned, which will not be integrated in the TRPC5 gene locus following homologous recombination of the targeting vector.

Additionally, a splice acceptor sequence (SA) and an internal ribosomal entry site (IRES) followed by the cDNA of the green fluorescence protein (GFP) was inserted between the homologous arms of the targeting vector. In cells with a TRPC5 allele containing this SA-IRES-GFP cassette, the GFP Protein is supposed to be expressed under the control of the TRPC5 promotor.

The correct integration of the targeting construct by homologous recombination can be proofed by Southern Blot analysis. Therefore, a DNA probe which is localized 3` to the homologous sequences was created to distinguish between wildtype and homologous recombinant allels. No appropriate DNA probes could be identified in the TRPC5 gene, which are localized 5` to the sequence of the targeting vector. The correct and singular integration of the targeting vector needs to be checked by PCR amplification and sequencing of genomic DNA of the recombinant allele with specific primers.

<u>2 EINLEITUNG</u>

2.1 TRP-Kanäle

Ionenkanäle aus der TRP Familie vermitteln den Einstrom von Kationen über die Zellmembran ins Zytosol und sind dadurch am Anstieg der intrazellulären Ca²⁺ Konzentration und an der Depolarisation der Zellmembran beteiligt. In den letzten Jahren stellte sich heraus, daß Mutationen in TRP Genen bzw. Fehlfunktionen von TRP-Kanälen Ursache zahlreicher menschlicher Erkrankungen sein können (Nilius et al., 2005).

Die Identifizierung der ersten TRP-Kanäle erfolgte durch die Entdeckung einer Mutante in *Drosophila melanogaster*, deren Photorezeptoren nicht wie erwartet eine andauernde Antwort auf einen langen Lichtreiz generierten, sondern mit einer transienten Antwort reagierte. Das bei dieser Mutante nicht funktionsfähige Protein stellt einen kalziumpermeablen Ionenkanal dar, der für die Phototransduktion bei *Drosophila melanogaster* eine elementare Rolle spielt. Die im Elektroretinogramm (ERG) nachgewiesenen transienten Rezeptorpotentiale am Facettenauge dieser Mutante waren für die Namensgebung dieses neu identifizierten Ionenkanals verantwortlich, nach denen diese Kanäle TRP-Kanäle, "Transient Receptor Potential" genannt wurden (Montell and Rubin, 1989).

Mittlerweile sind aufgrund ähnlicher Primärsequenz strukturell verwandte Gene dieses TRP-Kanals in Säugetieren, Intervertebraten und Hefen identifiziert worden. Das gemeinsame Merkmal der TRP-Superfamilie besteht darin, daß die meisten Mitglieder bilden. dieser Familie ein Membranprotein das aus sechs putativen Transmembrandomänen besteht und eine putative Porenregion zwischen den Transmembrandomänen fünf und sechs aufweist (Montell, 2005). Einige Hinweise deuten darauf hin, daß TRP-Kanäle Homo- und/oder Hetero-Tetramere bilden können, jedoch wurde die Tertiärstruktur eines TRP-Kanals durch Röntgenstrukturanalyse bis heute nicht aufgeklärt (Hoenderop et al., 2003; Amiri et al., 2003).

Abbildung 2.1 zeigt eine schematische Darstellung eines TRP-Kanals.

extrazellulär

Abbildung 2.1:Schematische Darstellung eines TRP-Kanals. Die schwarzen ZylinderStellen die Transmembrandomänen dar.N: Aminoterminus, C: Carboxyterminus

Die meisten TRP-Kanäle stellen Kationenkanäle dar, wobei die Selektivität und Permeabilität für mono- und divalente Kationen der einzelnen Kanäle sowie die Expressionsmuster und Aktivierungsmechanismen zwischen den einzelnen Isoformen variieren.

Allein für Säugetiere sind bisher 28 Gene bekannt, die für TRP-Kanäle codieren (Montell, 2005). Aufgrund der Homologie der Aminosäuresequenz unterteilt man die TRP-Kanal-Superfamilie in sechs Unterfamilien (Ramsey et al., 2006). Die TRPC-Unterfamilie (C für "classical" oder "canonical") umfasst sieben Mitglieder, die der TRPM-Unterfamilie (M für "Melastanin") beinhaltet acht Mitglieder. Der erste entdeckte Vertreter der TRPV-Proteine (V für "Vanilloid"), der als Vanilloid Rezeptor 1 beschrieben wurde, diente der Namensgebung dieser Gruppe, der sechs Mitglieder angehören. Weitere Unterfamilien sind die TRPP-Familie (P für "Polycystin"), die drei Mitglieder umfasst und die TRPML-Familie (ML für "Mukolipin"), der ebenfalls drei Mitglieder angehören. Die Familie der TRPA-Proteine (A für "Ankyrin") besitzt in Säugern nur ein Mitglied, TRPA1.

2.2 Die TRPC-Unterfamilie

Die ersten identifizierten Mitglieder der TRP-Superfamilie wurden als "classical" oder "canonical" bezeichnet und gehören der TRPC-Unterfamilie an. Die TRPC-Familie ist die mit dem TRP-Genprodukt aus *Drosophila melanogaster* am engsten verwandte Subfamilie. Die Homologie der Aminosäuresequenz zwischen TRPC Proteinen aus Säugern und dem Drosophila TRP Protein beträgt 30 – 40%. Die strukturellen Gemeinsamkeiten dieser Familie bestehen aus der im proximalen C-Terminus gelegenen TRP-Domäne und den N-terminal gelegenen drei bis vier Ankyrin-Motiven. TRPC-Proteine stellen Agonist-aktivierte, nichtselektive Kationenkanäle dar.

Die sieben Mitglieder der TRPC-Unterfamilie werden aufgrund ihrer Sequenzhomologie und Funktionen wiederum in drei Untergruppen eingeteilt: TRPC1/4/5, TRPC3/6/7 und TRPC2.

Die bisher erhaltenen Daten zur Funktion von TRPC-Proteinen stammen überwiegend, wie bei den TRP Proteinen der anderen Unterfamilien auch, aus Experimenten, die aus der heterologen Überexpression von TRP-Kanälen in Zellkultur resultieren. Da keine spezifischen Pharmaka gegen TRP-Kanäle existieren, ist die Analyse von Mäusen mit gezielter Inaktivierung einzelner TRP Gene der derzeit aussagekräftigste Ansatz zur Identifizierung biologischer Funktionen von TRP-Proteinen in vivo (Clapham, 2003). Tabelle 2.1 gibt eine Übersicht über die biologischen Funktionen einzelner TRPC-Gene, die durch Analyse transgener Mausmodelle identifiziert wurden.

Gen	Art der Mutation	Phänotyp	Referenz
TRPC1		Bisher ist keine TRPC1-defiziente	
		Mauslinie beschrieben	
TRPC2	Gentargeting (Exon 8-11)	gestörte Pheromondetektion,	(Stowers et
		sexuelle Diskrimination und	al., 2002)
		geschlechtsspezifisches soziales	
		Verhalten, fehlende Agression	
		zwischen männlichen Tieren;	
		TRPC2 defiziente männliche Tiere	
		zeigen Sexual- und Balzverhalten	
		gegenüber beiden Geschlechtern	
	Gentargeting (Exon 6-11)	Pheromondetektion und durch	(Leypold et
		Pheromone hervorgerufene	al., 2002)
		Aggressionen zwischen	
		männlichen Tieren gestört,	
		abgemildertes aggressives	

Tabelle 2.1.: Biologische Funktionen von TRPC-Genen

		Verhalten von laktierenden	
		weiblichen Tieren	
TRPC3	Transgene	Calcineurin abhängige	(Nakayama et
	Überexpression nach	Herzhypertrophie mit gesteigerter	al., 2006)
	Pronukleusinjektion	Aktivität von NFAT (nuclear	
		factor of T-cells)	
TRPC4	Gentargeting (Exon 6)	Verminderte Endothel-abhängige	(Freichel et
		Vasodilatation,	al., 2001;
		Endothelpermeabilität sowie	Tiruppathi et
		5-HT-induzierte GABA-	al., 2002;
		Freisetzung aus Interneuronen des	Munsch et al.,
		Thalamus	2003)
TRPC5	Konstruktion des Targeting	gvektors in dieser Arbeit	
TRPC6	Gentargeting (Exon 7)	Gesteigerte Agonist-induzierte	(Dietrich et
		Kontraktilität der Trachea und von	al., 2003;
		Blutgefässen, erhöhter Blutdruck	Dietrich et al.,
			2005)
TRPC7		Bisher ist keine TRPC7-defiziente	
		Mauslinie beschrieben	

2.3 Das TRPC5 Protein

Das TRPC5-Protein gehört zur TRPC-Subfamilie und ist als einziges TRP-Protein auf dem X-Chromosom (Xq23) codiert. Das TRPC5-Gen der Maus erstreckt sich über 306,51 kb und umfasst 11 Exons (s. Abb. 2.2). Die TRPC5 cDNS zeigt eine Größe von 4158 bp. Das TRPC5 Protein setzt sich aus 975 Aminosäuren zusammen und besitzt ein berechnetes Molekulargewicht von 111,5 kD. Zusätzliche funktionelle Spleißvarianten von TRPC5 sind bislang nicht beschrieben. Wie fast alle TRP-Proteine enthält TRPC5 sechs putative Transmembrandomänen. Die Kanalpore wird zwischen den Transmembrandomänen fünf und sechs vermutet (Philipp et al., 1998;Okada et al., 1998).

<u>Abbildung 2.2</u>: Schematische Darstellung der Exon-Intron-Strukrtur des TRPC5- Gens. Dargestellt sind die Exons (1-11), der Translationsstart (ATG), die Lokalisationen der für die 6 Transmembrandomänen(S1-S6) und die putative Porenregion (P) kodierenden Sequenzen. (nach ENSEMBL Gene Report for ENSMUSG00000041710)

In Northern Blot-Analysen konnten TRPC5-Transkripte im ZNS detektiert werden. Mittels in situ Hybridisierung wurde die höchste Expressionsrate im Kleinhirn, insbesondere dort in den lateralen Kleinhirnkernen, im Okzipitalpol und in geringerem Maß in der *Medulla oblongata* und dem Frontallappen nachgewiesen. Ein weiterer Lokalisationsort ist der entorhinale Kortex (Philipp *et al.*, 1998). RT-PCR-Analysen zeigen eine Expression von TRPC5 Transkripten in glatten Muskelzellen und Endothelzellen des proximalen Teils der Pulmonalarterie (Ng and Gurney, 2001; McDaniel et al., 2001), in Aorta, in präglomerulären Widerstandsgefäßen und Glomeruli der Niere (Facemire et al., 2004). Es besteht eine Divergenz zwischen Ergebnissen von verschiedenen Forschungsgruppen bezüglich der Expression von TRPC5 in glatter Muskulatur.

TRPC5 weist eine enge Verwandtschaft zu TRPC4 als auch zu TRPC1 auf. Nach Überexpression der TRPC5 cDNS in Zellkulturzellen wird ein Einstrom von Kationen in die Zelle induziert, der unter physiologischen Bedingungen zum Ca²⁺ Einstrom nach Aktivierung G_q-Protein gekoppelter Rezeptoren beiträgt. Hinsichtlich der Permeabilität von TRPC5-Kanälen für monovalente Kationen im Vergleich zu divalenten Kationen sowie hinsichtlich der intrazellulären Signalwege, die letztlich zur Kanalaktivierung führen, gibt es unterschiedliche Ergebnisse (Philipp *et al.*, 1998; Okada *et al.*, 1998; Schaefer et al., 2000; Plant and Schaefer, 2003; Zeng et al., 2004). Für die Bedeutung von TRPC5 Proteinen in nativen Zellen sollten vergleichende Untersuchungen an Wildtyp- bzw. TRPC5-defizienten Primärzellen wie z.B. an glatten Muskelzellen aus Blutgefäßen oder an isolierten Neuronen wichtige Erkenntnisse liefern. Immunhistologische Färbungen sowie in situ Hybridisierungen (Freichel et al., 2005) zeigen eine überlappende Expression von TRPC1 und TRPC5 im Hippocampus. Außerdem gibt es Hinweise aus unabhängigen Arbeitsgruppen, daß TRPC5 Proteine mit TRPC1 Proteinen sowie mit TRPC4 Proteinen interagieren. Demnach wird postuliert, daß diese Proteine Bestandteile eines heterooligomeren Kanalkomplexes sind (Strubing et al., 2001;Hofmann et al., 2002;Goel et al., 2002;Strubing et al., 2003). Coexpression von TRPC1 und TRPC5 in Zellkultur zeigen einen nichtselektiven Kationenkanal, der sich hinsichtlich der meisten elektrophysiologischen Charakteristika von dem durch TRPC5-Monomere induzierten Strom unterscheidet (Strubing et al., 2001). Allerdings weist der durch TRPC1/TRPC5 Heteromultimere induzierte Kationenstrom Ähnlichkeiten mit einem durch metabotrope Glutamatrezeptoren sowie durch muskarinerge ACh-Rezeptoren aktivierten Kationenstrom in CA1-Pyramidenzellen des Hippocampus auf (Congar et al., 1997).

Die Bedeutung von TRPC5 Proteinen für biologische Funktionen hippocampaler Neurone wurde kürzlich dadurch untersucht, daß diese Zellen mit einer negativ dominanten Variante von TRPC5 transfiziert wurden, die einen Austausch von drei Aminosäuren zwischen der fünften und sechsten Transmembrandomäne enthielt und zur vollständigen Unterdrückung des TRPC5-induzierten Kationenstroms führte (Greka et al., 2003). Dissozierte hippocampale Neurone, die mit dieser dominant-negativen TRPC5 Variante transfiziert wurden, zeigten eine deutliche Längenzunahme ihrer Axone sowie deren Filopodien, d.h. der fingerförmigen Ausstülpungen der Zellmembran der Wachstumskegel dieser Axone.

Basierend auf diesen Arbeiten wird TRPC5 bzw. der durch TRPC5 vermittelte Ca²⁺ Einstrom als ein wichtiger Regulationsmechanismus für das Wachstum und die Morphologie von Axonen angesehen.

2.4 Ziel der Arbeit

Ziel dieser Arbeit war die Erarbeitung einer Gentargetingstrategie zur konditionierten Inaktivierung des TRPC5-Gens in der Maus mit Hilfe des Cre-loxP-Systems und die Klonierung des dazugehörigen Targetingvektors. Mit der gewählten Strategie sollte es möglich sein, einen essentiellen Abschnitt des TRPC5 Gens mit loxP Erkennungssequenzen zu flankieren, um nach Expression der Cre-Rekombinase das TRPC5-Gen in der Maus ubiquitär, zelltypspezifisch und zeitlich zu inaktivieren. Zwischen die homologen Arme des Gentargetingvektors sollte ein Gen für die Neomycin-Phosphotransferase inklusive Promotor und Polyadenylierungssignal kloniert werden, um nach Transfektion embryonaler Stammzellen eine Positivselektion zu ermöglichen. Zur Negativselektion sollte außerhalb der homologen Arme eine Thymidinkinase-Selektionskassette kloniert werden.

Um in Zellen der aus dem Gentargeting resultierenden transgenen Mäuse diejenigen Zellen identifizieren zu können, die TRPC5 Proteine endogen exprimieren, sollte das Reportergen GFP gekoppelt an eine "splice-acceptor-Sequenz" (SA) und eine "internal ribosomal entry site" (IRES) in den Gentargetingvektor integriert werden.

Zum Nachweis der homologen Rekombination sollte eine Southern-Strategie erarbeitet werden. Hierzu sollten zwei genomische DNS-Fragmente, die außerhalb des homologen Bereichs, 3'und 5' der Sequenz des Targetingkonstruktes lokalisiert sind, amplifiziert, kloniert und sequenziert werden. Mit Hilfe dieser Sonden sollte das Wildtypallel nach erfolgreicher homologer Rekombination vom rekombinanten Allel unterschieden werden.

<u>3. MATERIAL UND METHODEN</u>

3.1 MATERIAL

3.1.1 Arbeitsmaterial und Geräte

Materialien:

- 96-Lochplatten mit Filtrationseinheit: Whatman Microplate Devices Unifilter (Whatman)
- Dialyseschläuche (Sigma)
- H₂O_{HPLC}: LiChrosolv "Wasser für die Chromatographie" (Merck)
- Hybridisierungsbeutel: Metzgereigroßhandel Strobel
- NickTM Columns (Amersham Pharmacia): Zur Aufreinigung von radioaktivmarkierter DNS-Sonden von uneingebauten Nukleotiden per Größenausschlusschromatographie
- Nitrocellulose-Membran: Hybond (Amersham Pharmacia)
- Phosphoimagerscreens: BAS-IP-MP 2040 (Fuji)
- Röntgenfilme: Hyperfilm MP (Amersham Pharmacia)
- Sepharose zum Befüllen der 96-Loch-Filterplatten: SephadexTM G-50 (Amersham Pharmacia)
- Szintilationsröhrchen (Zinsser Analytic)

Sonstige Gebrauchsmaterialien:

- Plasmid-Maxi-Kit (Qiagen)
- Plasmid-Mini-Kit (Qiagen)
- "Rediprime II DNS Labelling System" zur radioaktiven Markierung der DNS-Sonden (Amersham Pharmacia)
- Sequenzierungs-Kit: "ABI Prism Big DyeTM FS Terminator Cycle Sequencing Ready Reaction Kit V1.1" (Applied Biosystems)

Geräte:

- Autoklav: Tuttnauer 3870 ELV
- DNS Sequenzierungsgerät: Abi Prism 310 Genetic Analyzer (Applied Biosystems)
- Geldokumentationssystem: Herolab
- Horizontal-Gelelektrophorese-Apparatur: Biorad Model 3000 Xi (Bio-Rad)
- Pipetten: Pipetman (Gilson)
- Pipettierhilfen: Pipetboy acu (Integra Bioscience)
- Phosphoimager: Fujifilm BAS-2500 (Fuji)
- Photometer: Gene quant II (Pharmacia Biotech)
- Reinstwasseranlage: Reinstwassersystem Clear plus (SG-Wasseraufbereitung)
- Rührer: Heidolph MR3002
- Schüttelinkubator: Scientific Series 25 Incubator Shaker (New Brunswick Scientific)
- Schüttelwasserbad (GFL)
- Sterilbank: Köttermann 8511 (Köttermann)
- Szintillationszähler: Wallac 1410 Liquis Scintillation Counter (Wallac Perkin Elmer)
- Thermocycler: Gene Amp PCR System 9700 (PE Applied Biosystems)
- UV-Crosslinker: UV-Stratalinker 1800 (Stratagene)
- Vertikal-Gelelektrophorese-Apparatur
- Zentrifugen: 96-Lochplatten-Zentrifuge 4°C 15°C (Sigma) Kühlzentrifuge J2-HS centrifuge (Beckman)

Tischzentrifuge Heraeus pico

3.1.2 Nukleotide und Nukleinsäuren

In allen PCR-Reaktionen wurde ein dNTP-Mix der Firma Peqlab verwendet.

3.1.2.1 Radioaktiv markierte Nukleotide

Für die zur Southern-Blot-Analyse radioaktive Markierung der DNS-Sonden wurden die radioaktiv markierten Nukleotide "Redivue [α -32P] dCTP" der Firma Amersham Pharmacia eingesetzt.

3.1.2.2 Oligodesoxynukleotide

In der folgenden Tabelle sind Oligodesoxynukleotide mit 5`Phosphatresten aufgeführt, die zur Herstellung von Klonierungsvektoren benötigt wurden. Diese wurden sowohl von der Firma MWG als auch von der Firma Operon synthetisiert.

Vor Gebrauch wurden die Oligodesoxynukleotide auf 1 mM verdünnt. Im folgenden Schritt wurden jeweils 50 µl der zueinander komplementären Oligodesoxynukleotide in ein 1,5 ml Reaktionsgefäß überführt. Dieser Ansatz wurde für 5 Minuten bei 75°C denaturiert und im Anschluss in einem 50 ml Becherglas, gefüllt mit 75°C warmen Wasser, auf Raumtemperatur abgekühlt. In dieser Abkühlungsphase lagern sich die Oligodesoxynukleotide zusammen. Zur Generierung eines Hilfsvektors wurden diese nun zusammengelagerten Oligodesoxynukleotide gerichtet in einen mit BssH II verdauten pBlue SK (-) Vektor kloniert. Auf diese Weise konnten Klonierungsvektoren mit den gewünschten Restriktionsschnittstellen sowie weiteren benötigten DNS-Sequenzen, wie z.B. loxP- bzw. FRT-Sequenzen, generiert werden.

Name	Sequenz	Endonuklease- Erkennungssequenz	Länge
C5_17	5'- CGCGC GCGGCCGC GAATTC C CTTAAG AGATCT GGTACC ATA ACT TCG TAT A GCATACAT TAT ACG AAG TTAT CCCGGG G-3'	BssH; Not, EcoRI, AfIII, BgI II, Kpn I, IoxP, Xma I, BssH; backbone pC5_03	79
C5_18	5'- CGCGC CCCGGG ATAACTTCGTATA ATGTATGC TATACGAAGTTAT GGTACC AGATCT CTTAAG G GAATTC GCGGCCGC G-3'	rev zu C5_17	79
C5_19	5'- CGCGC GCGGCCGC TCCC CCCGGG CTTAAG AGATCT TGATCA CCG CTCGAG GGCCGGCC A GGCGCGCC G - 3'	BssH; Not; Xmal, AfIII; BgI II; BcI I; Xho I; Fse I; AscI, BssH backbone pC5_04	68
C5_20	5'- CGCGC GGCGCGCC T GGCCGGCC CTCGAG CGG TGATCA AGATCT CTTAAG CCCGGG GGGA GCGGCCGC G -3'	rev zu C5_19	68

Tabelle 3.1: Liste der verwendeten Oligodesoxynukleotiden mit 5` Phosphatrest

C5_31		BssHII, Fsel, Stul,	50
		Pvull, Notl, Ascl,	
	GGCGCGCC G-3	BssHII	
		backbone nC5 11a	
05.00	F' 00000 0000000 0000000		50
C5_32		rev zu C5_31	50
	GGCCGGCC G-3		
C5_33	5'- CGCGC CAGCIG ATA ACT TCG TAT	BssHII, PvuII, loxP,	80
	A GCATACAT TAT ACG AAG TTAT	12 Basen, Xbal, Bolll,	
	TCTTACCCTGAG TCTAGA GC AGATCT	Noti Bsshil	
	GCGGCCGC G-3'	hockbono nCE 11h	
C5_34	5'- CGCGC GCGGCCGC AGAICI GC	rev zu C5_33	80
	ICIAGA CICAGGGIAAGA		
	ATAACTTCGTATA ATGTATGC		
	TATACGAAGTTAT CAGCTG G-3'		
C5 111	5'- CGCGC GGCGCGCC GCGGCCGC GC	backbone pC5 19	90
_	TCTAGA CTCAGGGTAAGA		
	ATAACTTCGTATA ATGTATGC	NEVER OF	
	TATACGAAGTTAT AGGCCT GGCCGGCC		
	G -3'		
C5 112	5'- CGCGC GGCCGGCC AGGCCT ATAA	BssHII, Fsel, Stul.	90
	CTT CGT ATA GCA TAC AT TAT ACG	lovP 12 Basen Xhal	
	AAG TTAT TCTTACCCTGAG TCTAGA GC	Not Acol Doci III	
	GCGGCCGC GGCGCGCC G -3'	INULI, ASCI, BSSHII	
		backbone pC5_19	

3.1.2.3 Oligodesoxynukleotide zur Amplifikation von Plasmid DNS mittels PCR oder zur Sequenzierung von Plasmid-DNS

Die in der Tabelle aufgeführten Oligodesoxynukleotide wurden von den Firmen MWG bzw. Operon synthetisiert.

Tabelle 3.2: Liste der verwendeten Oligodesoxynukleotide

 $T_M =$ Schmelztemperatur

Name	Sequenz	Bemerkung	Basen	<u>I</u> <u>M</u>
	Oligodesoxynukleotic Durchsuchen einer	le zur Klonierung ei genomischen Bibli	ner Sono othek	de zum
C5_01	5'- GTT GTA TGT CTA GGC TAG AAT GG -3'	forward; Intron 3-4	23	66°C
C5_02	5'- CAC CCA GAA GCA ACC TTG GG -3'	forward; Exon 4 S1/S2	20	64°C
C5_03	5'- CCC AAG GTT GCT TCT GGG TG -3'	reverse; Exon 4 S1/S2	20	64°C
C5_04	5'- TCT TCT GAC TGT GGG ACC AG -3'	reverse; Intron 4-5	20	62°C

Oligodesoxynukleotide zur Klonierung der 5`-Homologie				
C5_05	5'- GCC AGA AGC TGG AAA GAA CC-3'	forward, Targeting 5' Homologie	20	62°C
C5_06	5'- GTA TTT GCC AGG CAT TGG TCC-3'	Reverse, Targeting 5' Homologie	21	64°C
C5_07	5'- GGG AAG CTC CTT TCC CTG TG-3'	forward, Targeting 5' Homologie	20	64°C
C5_08	5'- CTA GCC TAG ACA TAC AAC ACA G -3'	Reverse, Targeting 5' Homologie	22	64°C
C5_09	5'- GAC AGC TGA GCT CCC TAT TG -3'	forward, Targeting 5' Homologie	20	62°C
C5_10	5'- CAA GGC CAT CAA TTA CCA GAC-3'	Reverse, Targeting 5' Homologie	21	62°C
C5_27	5'- TCC ACT ATG TTC ATA GCA GCC -3'	Ersatz für C5_05 forward	21	62°C
C5_28	5'- CTC TGG CTC CTT CAT TGG GG -3'	Ersatz für C5_06 Reverse	20	64°C
C5_29	5'- ACT ACC AGC CCA GGG ATG G -3'	Ersatz für C5_07 forward	19	62°C
C5_30	5'- AAC TCT GCC TGT GGC TAT GG -3'	Ersatz für C5_08 reverse	20	62°C
C5_78	5'- AAC ATA CAT CAT GAC TAA GAA GC -3'	forward, Targeting 5' Homologie	23	62°C
C5_79	5'- GTG TCT CTA GTT GCA TAT GTA GC-3'	forward, Targeting 5' Homologie	23	66°C
C5_80	5'- CCA AAG TGT GGA TTC TTC ATT CC-3'	forward, Targeting 5' Homologie	23	66°C
C5_82	5'- CGG AAT TCG TGT CTC TAG TTG CAT ATG TAG C -3'	siehe C5_79 plus EcoRI	31	66°C
C5_83	5'- CGG AAT TCC CAA AGT GTG GAT TCT TCA TTC C -3'	siehe C5_80 plus EcoRI	31	66°C
C5_85	5'- CGG AAT TCA TGC CAG GAC CAG GAA GTG G -3'	forward, Targeting 5' Homologie	28	64°C
C5_86	5'- CTA GGT AAC TGG GAT GTT TAG C -3'	forward, Targeting 5' Homologie	22	64°C

Oligodesoxynukleotide zur Klonierung der 3`-Homologie				
C5_11	5'- CTC TCC AGT ACA TGC CAT CTT C -3'	forward, Targeting 3' Homologie	22	64°C
C5_12	5'- GAA CAT CAC CAC AGA AGT CCC -3'	Reverse, Targeting 3' Homologie	21	64°C
C5_13	5'- GCG AGG AGA GAG AGG TGA G -3'	forward, Targeting 3' Homologie	19	62°C
C5_14	5'- CAG GGG GTG GGA AAC TTC C-3'	Reverse, Targeting 3' Homologie	19	62°C
	Oligodesoxynukle	otide zur Klonierung v	on 5` So	onden
C5_15	5'- GCA GAG GGT GAA TAA GGG GC-3'	forward, Sonde 5' Homologie	20	64°C
C5_16	5'- GAG GTA TTG CTG GAT CTT CTG -3'	reverse, Sonde 5' Homologie	21	62°C
C5_23	5'- CTG TCG CCC TAG GGT TAT AGG -3'	forward, Sonde 5' Homologie	21	66°C
C5_24	5'- CCA GAC TGA CTT CCA GAG TGG -3'	reverse, Sonde 5' Homologie	21	66°C
C5_50	5'- GGT AAG AGG GAG ACA ATA GAG C -3'	forward, Sonde 5' Homologie	22	66°C
C5_51	5'- GGA ATG AAG AAT CCA CAC TTT GG -3'	reverse, Sonde 5' Homologie	23	66°C
C5_81	5'- AGC TGA GTA GTA CTC CAT TGT G-3'	reverse, Sonde 5' Homologie	22	64°C
C5_87	5'- CAG ACT GAC TTC CAG AGT GG -3'	reverse, Sonde 5' Homologie	20	62°C
C5_98	5'- GGA ATT CCC CAC AAC TAA TAT CC -3'	forward, Sonde 5' Homologie	23	66°C
C5_102	5'- GAC AGC AGA TGT TGG CGA GG -3'	forward, Sonde 5' Homologie	20	64°C
C5_103	5'- CTT CTT GAG TTT CAT GAG TTT TGC -3'	reverse, Sonde 5' Homologie	24	66°C
C5_104	5'- GAC CAG ATG GGT TTA GTG C -3'	forward, Sonde 5' Homologie	19	58°C
C5_105	5'- GGG TCT TAA TGT GGT TTA GG -3'	reverse, Sonde 5' Homologie	20	58°C
C5_106	5'- CCT TAG ATG CTG AGA AAG C -3'	forward, Sonde 5' Homologie	19	56°C
C5_107	5'- TAC CTT ACA GAA GCT TTG C -3'	reverse, Sonde 5' Homologie	19	54°C
C5_108	5'- CCC ATT CAT GAT AAA AGT CTT GG -3'	forward, Sonde 5' Homologie	23	64°C
C5_109	5'- TCT CAC AGC ACA AGC CAT TGC -3'	reverse, Sonde 5' Homologie	21	64°C

Oligodesoxynukleotide zur Klonierung einer 3` Sonde				
C5_21	5'- CGT GTC CAT GCT ATC ATG GAG -3'	forward, Sonde 3' Homologie	21	64°C
C5_22	5'- GAT GGT GAG GAC TGG ACT CC -3'	reverse, Sonde 3' Homologie	20	64°C
C5_25	5'- GAT ATC ACT TCG GTC CAT CCC -3'	forward, Sonde 3' Homologie	21	64°C
C5_26	5'- CTC TGT CTT CTG GAA TGT GAG G -3'	reverse, Sonde 3' Homologie	22	66°C
C	Dligodesoxynukleotide	e zur Sequenzierung de	es Vekto	rs pC5_05
C5_04	5'- TCT TCT GAC TGT GGG ACC AG -3'	Sequenzprimer for, Fragment 3	20	62°C
C5_10	5'- CAA GGC CAT CAA TTA CCA GAC-3'	Reverse, Targeting 5' Homologie	21	62°C
C5_30	5'- AAC TCT GCC TGT GGC TAT GG -3'	Sequenzprimer for, Fragment 3	20	62°C
C5_43	5'- CCA TAG CCA CAG GCA GAG TT -3'	Sequenzprimer for, Fragment 3 (For zu C5_30)	20	62°C
C5_44	5'- CGG AAT GGA CCT GGT GAG C-3'	Sequenzprimer for, Fragment 3	19	62°C
C5_45	5'- GCT CAC CAG GTC CAT TCC G -3'	Rev zu C5_44	19	62°C
C5_46	5'- GAA ATG TGG TTC CTT CTA TCC -3'	Sequenzprimer for, Fragment 3	21	60°C
C5_47	5'- GGA TAG AAG GAA CCA CAT TTC -3'	Rev zu C5_46	21	60°C
C5_48	5'- CTG GTC CCA CAG TCA GAA GA -3'	Sequenzprimer for, Fragment 3 (For zu C5_04)	20	62°C
C5_49	5'- GTC TGG TAA TTG ATG GCC TTG -3'	Sequenzprimer for, Fragment 3 (For zu C5_10)	21	62°C
Oligodesoxynukleotide zur Sequenzierung des Vektors pC5_06				
C5_09	5'- GAC AGC TGA GCT CCC TAT TG -3'	Sequenzprimer for, Fragment 2	20	62°C
C5_71	5'- GCT TCA ATG GGA GGA GAG G - 3'	Sequenzprimer for, Fragment 2	19	60°C

C5_72	5'- CCT CTC CTC CCA TTG AAG C - 3'	rev zu C5_71	19	60°C
C5_73	5'- CGT GTT ACA AAT GGT TGT CAG C -3'	Sequenzprimer for, Fragment 2	22	64°C
C5_74	5'- GCT GAC AAC CAT TTG TAA CAC G -3'	rev zu C5_73	22	64°C
C5_75	5'- GCT ACT CCT GGA ACT TCT GC -3'	Sequenzprimer for, Fragment 2	20	62°C
C5_76	5'- GCA GAA GTT CCA GGA GTA GC -3'	rev zu C5_75	20	62°C
C5_77	5'- CAA TAG GGA GCT CAG CTG TC -3'	Sequenzprimer rev, Fragment 2 Rev zu C5_09	20	62°C
C	Dligodesoxynukleotide	zur Sequenzierung de	es Vekto	rs pC5_07
C5_88	5'- GCT AGA GAA AGT ACC CAA GG -3'	Sequenzprimer for, Fragment 1	20	60°C
C5_89	5'- CCT TGG GTA CTT TCT CTA GC -3'	Sequenzprimer rev, Fragment 1	20	60°C
C5_90	5'- CGA CTT TAT CTG CTA TGA TGA GG -3'	Sequenzprimer for, Fragment 1	23	66°C
C5_91	5'- CCT CAT CAT AGC AGA TAA AGT CG -3'	Sequenzprimer rev, Fragment 1	23	66°C
C5_92	5'- GGA TAG AAA CTC ACA CCA GGC -3'	Sequenzprimer for, Fragment 1	21	64°C
C5_93	5'- GCC TGG TGT GAG TTT CTA TCC -3'	Sequenzprimer rev, Fragment 1	21	64°C
C5_94	5'- GAA GGG ACG ATG AAT TCA GAG G -3'	Sequenzprimer for, Fragment 1	22	66°C
C5_95	5'- CCT CTG AAT TCA TCG TCC CTT C -3'	Sequenzprimer rev, Fragment 1	22	66°C
C	Dligodesoxynukleotide	zur Sequenzierung de	es Vekto	rs pC5_12
C5_52	5'- GCA ATG TGA TCC CTG CAG TAC -3'	Sequenzprimer for, Fragment 4	21	64°C
C5_53	5'- GTA CTG CAG GGA TCA CAT TGC -3'	Rev zu C5_52	21	64°C
C5_54	5'- CTT ATC ACC ATC AGG GGA ATG G -3'	Sequenzprimer for, Fragment 4	22	66°C
C5_55	5'- CCA TTC CCC TGA TGG TGA TAA G -3'	Rev zu C5_54	22	66°C
C5_56	5'- GGC TGA GTA ATG AAG ACA GGG -3'	Sequenzprimer for, Fragment 4	21	64°C
C5_57	5'- CCC TGT CTT CAT TAC TCA GCC -3'	Rev zu C5_56	21	64°C

C5_58	5'- CTC ACC TCT CTC TCC TCG C 3'	Sequenzprimer for, Fragment 4 Rev zu C5_13	19	62°C
C5_84	5'- GGA ACA TCG AAG GCA AAT TAT GC -3'	Sequenzprimer for, Fragment 4	23	66°C
0	ligodesoxynukleotide	zur Sequenzierung de	s Vektors	pC5_13a
C5_59	5'- GGA TGT CTA CCA TCT TTC TTC C -3'	Sequenzprimer for, Fragment 5	22	64°C
C5_60	5´- GGA AGA AAG ATG GTA GAC ATC C -3´	Rev zu C5_59	22	64°C
C5_61	5'- GCT CAC TAA ATG CAC TAC CTC C -3'	Sequenzprimer for, Fragment 5	22	66°C
C5_62	5′- GGA GGT AGT GCA TTT AGT GAG C -3′	Rev zu C5_61	22	66°C
C5_63	5'- GGG TTC ACC TAC AAT TCA CC -3'	Sequenzprimer for, Fragment 5	20	60°C
C5_64	5'- GGT GAA TTG TAG GTG AAC CC -3'	Rev zu C5_63	20	60°C
C5_65	5'- GGA GTA AAG TTC CAG GTA CC -3'	Sequenzprimer for, Fragment 5	20	60°C
C5_66	5'- GGT ACC TGG AAC TTT ACT CC -3'	Rev zu C5_65	20	60°C
C5_67	5'- CCC AAG AGT ATG CCT TAT ACG -3'	Sequenzprimer for, Fragment 5	21	62°C
C5_68	5'- CGT ATA AGG CAT ACT CTT GGG -3'	Rev zu C5_67	21	62°C
C5_69	5'- CTA CAG ATG CTC AAC ATC AGC -3'	Sequenzprimer for, Fragment 5	21	62°C
C5_70	5'- GCT GAT GTT GAG CAT CTG TAG -3'	Rev zu C5_69	21	62°C
C5_96	5'- GTG GTG ATG TT \overline{C} AAC ACT GCC -3'	Sequenzprimer for, Fragment 5	21	64°C
C5_113	5'- CTA AAC TTG GAG TTA CAG ATG G -3'	Sequenzprimer 3' Homologie Ende	22	62°C
	Oligodesoxynı loxP_SA_IRES	ukleotide zur Sequenzi 6_GFP- FRT-NEO-FRT-	erung der Kassette	

C5_114	5'- CCA CCA TAT TGC CGT CTT TTG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	21	62°C
C5-115	5'- CAA AAG ACG GCA ATA TGG TGG -3'	Sequenzprimer REV zu C5_114	21	62°C
C5_116	5'- CCT CAA GCG TAT TCA ACA AGG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	21	62°C
C5_117	5'- CCT TGT TGA ATA CGC TTG AGG -3'	Sequenzprimer REV zu C5_116	21	62°C

C5_118	5'- CTG AAG TTC ATC TGC ACC ACC -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	21	64°C
C5_119	5'- GGT GGT GCA GAT GAA CTT CAG -3'	Sequenzprimer REV zu C5_118	21	64°C
C5_120	5'- GCC ACA ACG TCT ATA TCA TGG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	21	62°C
C5_121	5'- CCA TGA TAT AGA CGT TGT GGC -3'	Sequenzprimer REV zu C5_120	21	62°C
C5_122	5'- GCC ATA CCA CAT TTG TAG AGG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	21	62°C
C5_123	5'- CCT CTA CAA ATG TGG TAT GGC -3'	Sequenzprimer REV zu C5_122	21	62°C
C5_124	5'- CCA AGG CAG TCT GGA GCA TG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	20	64°C
C5_125	5'- CAT GCT CCA GAC TGC CTT GG -3'	Sequenzprimer REV zu C5_125	20	64°C
C5_126	5'- GCT CAG AGG CTG GGA AGG G -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	19	64°C
C5_127	5'- CCC TTC CCA GCC TCT GAG C -3'	Sequenzprimer REV zu C5_126	19	64°C
C5_128	5'- GTC AAG ACC GAC CTG TCC G -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	19	62°C
C5_129	5'- CGG ACA GGT CGG TCT TGA C -3'	Sequenzprimer REV zu C5_128	19	62°C
C5_130	5'- CTG GAC GAA GAG CAT CAG GG -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	20	64°C
C5_131	5'- CCC TGA TGC TCT TCG TCC AG -3'	Sequenzprimer REV zu C5_130	20	64°C
C5_132	5'- CGA GTT CTT CTG AGG GGA TC -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	20	62°C
C5_133	5'- GAT CCC CTC AGA AGA ACT CG -3'	Sequenzprimer REV zu C5_132	20	62°C
C5_134	5'- CCC ACT CAT GAT CTA TAG ATC T -3'	Sequenzprimer loxP_SA_IRES_GFP- FRT-NEO for	22	62°C

Oligodesoxynukleotide zur Sequenzierung der Thymidinkinase				
TK_1	5'- GGG CAG CGG CCA ATA GCA GC -3'	Sequenzprimer for, TK	20	68°C
TK_2	5'- CGC AAC TGC TGG TGG CCC -3'	Sequenzprimer for, TK	18	62°C
TK_3	5'- GCG GTA CCT TAT GGG CAG C -3'	Sequenzprimer for, TK	19	62°C
TK_4	5'- CAA CGG CGA CCT GTA TAA CG -3'	Sequenzprimer for, TK	20	62°C
TK_5	5'- AGG GCT GGC ACT CTG TCG -3'	Sequenzprimer for, TK	18	60°C
TK_6	5'- TGG GAC CGA ACC CCG CG -3'	Sequenzprimer rev, TK	17	60°C
TK_7	5'- AGC AAC TCG GGG GCC CG -3'	Sequenzprimer rev, TK	17	60°C
TK_8	5'- GCT GCC CAT AAG GTA CCG C -3'	Sequenzprimer rev, TK	19	62°C
ТК_9	5'- GGG CCA CCA GCA GTT GCG -3'	Sequenzprimer rev, TK	18	62°C
TK_10	5'- GCT GCT ATT GGC CGC TGC CC -3'	Sequenzprimer rev, TK	20	68°C
Oligodesoxynukleotide zur Sequenzierung der 5` Sonden				
	Oligodesoxynukleot	ide zur Sequenzierung	der 5` S	Sonden
C5_97	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde	23	Sonden 66°C
C5_97 C5_98	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde	23	Sonden 66°C 66°C
C5_97 C5_98 C5_99	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde	der 5` \$ 23 23 23	Sonden 66°C 66°C 66°C
C5_97 C5_98 C5_99 C5_100	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde	der 5` \$ 23 23 23 23 22	Sonden 66°C 66°C 66°C 66°C
C5_97 C5_98 C5_99 C5_100 C5_101	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3' 5'- CTT AAA CCA TAG AGA GTC TCT GC -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev 5` Sonde	der 5` \$ 23 23 23 22 23	Sonden 66°C 66°C 66°C 66°C 66°C
C5_97 C5_98 C5_99 C5_100 C5_101	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3' 5'- CTT AAA CCA TAG AGA GTC TCT GC -3' Oligodesoxynukleot	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev 5` Sonde	der 5` \$ 23 23 23 22 23 der 3` \$	Sonden 66°C 66°C 66°C 66°C 66°C
C5_97 C5_98 C5_99 C5_100 C5_101 C5_35	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3' 5'- CTT AAA CCA TAG AGA GTC TCT GC -3' Oligodesoxynukleot 5'- CTC CTC CCA CCT GTG AGG -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev 5` Sonde	der 5` \$ 23 23 23 22 23 der 3` \$	Sonden 66°C 66°C 66°C 66°C 66°C Sonden
C5_97 C5_98 C5_99 C5_100 C5_101 C5_35 C5_36	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3' 5'- CTT AAA CCA TAG AGA GTC TCT GC -3' Oligodesoxynukleot 5'- CTC CTC CCA CCT GTG AGG -3' 5'- CCT CAC AGG TGG GAG GAG -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev 5` Sonde ide zur Sequenzierung Sequenzprimer for, 3` Sonde Rev zu C5_35	der 5` \$ 23 23 23 22 23 der 3` \$ 18 18	Sonden 66°C 66°C 66°C 66°C 66°C 5onden 60°C 60°C
C5_97 C5_98 C5_99 C5_100 C5_101 C5_101 C5_35 C5_36 C5_37	Oligodesoxynukleot 5'- GAG ACT CTC TAT GGT TTA AGA GC -3' 5'- GGA ATT CCC CAC AAC TAA TAT CC -3' 5'- GGA TAT TAG TTG TGG GGA ATT CC-3' 5'- GCT CTA TTG TCT CCC TCT TAC C -3' 5'- CTT AAA CCA TAG AGA GTC TCT GC -3' Oligodesoxynukleot 5'- CTC CTC CCA CCT GTG AGG -3' 5'- CTT CAC AGG TGG GAG GAG -3' 5'- CTG GTC TAT GAA CCA AAT TTG G -3'	ide zur Sequenzierung Sequenzprimer for, 5` Sonde Sequenzprimer for, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev, 5` Sonde Sequenzprimer rev 5` Sonde Sequenzprimer for, 3` Sonde Rev zu C5_35 Sequenzprimer for, 3` Sonde	der 5` \$ 23 23 23 23 22 23 der 3` \$ 18 22 23	Sonden 66°C 66°C 66°C 66°C 66°C 5onden 60°C 60°C 62°C

C5_39	5'- CCA CTT GCT CAC TGT GAT GC -3'	Sequenzprimer for, 3` Sonde	20	62°C
C5_40	5'- GCA TCA CAG TGA GCA AGT GG -3'	Rev zu C5_39	20	62°C
C5_41	5'- CCT TGG GAA GGT TAA TGA TCA G -3'	Sequenzprimer for, 3` Sonde	22	64°C
C5_42	5'- CTG ATC ATT AAC CTT CCC AAG G -3'	Rev zu C5_41	22	64°C

3.1.3 Verwendete Plasmidvektoren

Plasmide sind bakterielle, zirkuläre, doppelsträngige, selbstreplizierende DNS-Moleküle, die extrachromosomal vererbt werden. Sie bestehen aus einem Replikationsstart (origin of replication, ori), einem Selektionsgen (meist ein Antibiotikumresistenzgen) und einer Klonierungsstelle (multiple cloning site, MCS), die für multiple Erkennungssequenzen von Restriktionsendonukleasen codiert. Diese ermöglicht es, fremde DNS ins Plasmid einzuschleusen. Einige Plasmide besitzen weitere Gene, die bestimmte Selektionen ermöglichen (z.B. lacZ).

pBluescript SK (-)

Der pBluescript SK (-) ist ein Plasmid mit einer Länge von 2961 bp und wurde von der Firma Stratagene bezogen. Er besitzt ein Ampicillinresistenzgen und das N-terminale α -Fragment des β -Galaktosidasegens (lacZ), daß alleine jedoch keine β -Galaktosidase-Aktivität besitzt. In Wirtszellen, die den C-termialen Teil dieses β -Galaktosidase-Gens enthalten, können sich diese beiden inaktiven Proteinfragmente zusammenlagern und ein aktives Enzym bilden, das das farblose Substrat X-gal nach Enzyminduktion mit IPTG in einen blauen Farbstoff spalten kann.

In pBluescript liegt, wie in vielen anderen Klonierungsvektoren, eine multiple Klonierungssequenz (MCS) innerhalb der kodierenden Sequenz für das α -Fragment. Dadurch wird nach Insertion eines DNS-Fragments in die MCS des Vektors das lacZ-Gen inaktiviert, da kein korrektes α -Peptid mehr gebildet wird. Nach Inkubation mit X-Gal und IPTG bleiben rekombinante Klone weiß, wohingegen sich Klone ohne Insertion blau färben. pBluescript SK (-) wurde in dieser Arbeit zur Klonierung des Targetingvektors verwendet.

pUC 18

pUC 18 ist ein Plamid mit einer Länge von 2686 bp und wurde von der Firma Stratagene bezogen. Auch pUC 18 enthält ein Ampicillinresistenzgen sowie das lacZ-Gen. pUC 18 wurde zur Herstellung einer Sonde für das Durchsuchen einer BAC-Klon-Bank verwendet und diente als Testplasmid zur Bestimmung der Transformationskompetenz kompetenter Zellen.

pBTK_1

Dieser Vektor wurde von Prof. Dr. Mortensen, Havard Medical School, Boston, USA zur Verfügung gestellt.

pmCaTL_65A

Dieser Vektor wurde von Frau Jenny Olausson, Institut für Pharmakologie und Toxikologie, Universität des Saarlandes zur Verfügung gestellt.

BAC-Plasmid

Das BAC-Plasmid 29P23 aus einer genomischen Datenbank des Mausstammes 129 SvJ wurde mit Hilfe einer TRPC5-spezifischen Sonde durch das Roswell Park Cancer Institute, Buffalo, NY, USA identifiziert. pBAC 29P23 wurde als Matrize zur Amplifizierung von DNS-Fragmentn aus dem TRPC5 Genlokus verwendet.

3.1.4 Restriktionsendonukleasen

In der folgenden Tabelle sind die wichtigsten in dieser Arbeit verwendeten Restriktionsendonukleasen aufgeführt. Sie wurden von der Firma New England Biolabs als auch von der Firma Invitrogen bezogen.

Restriktionsenzym	5`-3`Erkennungssequenz	Wirtsorganismus
Asc I	GGCGCGCC	Arthrobacter
Afl II	CTTAAG	Anabaena flos-aquae
Bgl II	AGATCT	Bacillus globigii
BssH II	GCGCGC	Bacillus stearothemophilus H13

Tabelle 3.3: Liste der verwendeten Restriktionsendonukleasen

EcoR I	GAATTC	Escherichia coli RY 13
Fse I	GGCCGGCC	Frankia species Eul 1b
Kpn I	GGTACC	Klebsiella pneumoniae OK8
Not I	GCGGCCGC	Nocardia otitidis-caviarum
Sal I	GTCGAC	Streptomyces albus G
Stu I	AGGCCT	Streptomyces tubercidicus
Xba I	TCTAGA	Xanthomonas badrii
Xho I	CTCGAG	Xanthomonas holcicola
Xma I	CCCGGG	Xanthomonas malvacearum

3.1.5 Modifizierende Enzyme

Im Rahmen dieser Arbeit wurden weitere Enzyme verwendet, die zur Modifikation und Klonierung der DNS dienten.

Enzym	Verwendungszweck	Herkunft
Taq-Polymerase	Amplifizierung von DNS-	Thermus aquaticus
	Fragmenten mittels PCR	
Pfu-Polymerase	Amplifizierung von DNS-	Pyrococcus furiosus
	Fragmenten mittels PCR	
T4-DNS-Polymerase	Auffüllen von 5` und 3`	Escherichia coli
	Überhängen	
T4-DNS-Ligase	Ligation von DNS-Fragmenten	Bacteriophage T4
T4-DNS-	5` Phosphorylierung von DNS-	Bacteriophage T4
Polynukleotidkinase	Fragmenten	
Alkalische Phosphatase	5'-Dephosphorylierung von	Kälberdarm
	Vektor-DNS	
Ribonuklease A (RNase A)	Abbau von RNA	Escherichia coli
Lysozym	Abbau von Proteinen	Hühnereiweiß

Tabelle 3.4: Liste der verwendeten modifizierenden Enzyme

3.1.6 Puffer und Lösungen

Zur Herstellung der Puffer und Lösungen wurde deionisiertes Wasser aus der Reinstwasseranlage "Reinstwassersystem Clear plus" verwendet.

0,5 M EDTA (1 l), pH 8,0

Menge/ Volumen	Substanz	Endkonzentration
186,1 g	Na ₂ -EDTA	0,5 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

1 M Tris-HCl, pH 7,5 (1 l)

Menge/ Volumen	Substanz	Endkonzentration
121 g	Tris (Base)	1 M
800 ml	H ₂ O _{steril}	
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

Lysozymlösung (1 ml)

Menge/ Volumen	Substanz	Endkonzentration
10 mg	Lysozym	10 mg/ml
ad 1ml	H ₂ O _{steril}	

5 M NaCl (1 l)

Menge/ Volumen	Substanz	Endkonzentration
292,2 g	NaCl	5 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

STET-Puffer (1 l)

Menge/ Volumen	Substanz	Endkonzentration
80 g	Saccharose	8%
50 ml	Triton X-100	5%
25 ml	2 M Tris-HCl, pH 8	50 mM
100 ml	0,5 M EDTA	50 mM
ad 1000 ml	H ₂ O _{steril}	

RNase Wasser (100 ml)

Menge/ Volumen	Substanz	Endkonzentration
99,2 ml	RNaseA [10 mg/ml]	10 mg/ml
500 µl	2 M Tris HCl, pH 7,5	10 mM
300 µl	5 M NaCl	15 mM
100 ml		

Aliquotieren à 1 ml, Lagerung bei -20°C

Menge/ Volumen	Substanz	Endkonzentration
20 g	Harnstoff 40% (w/v)	40 % (w/v)
20 g	Glycerin 99% (w/v)	40 % (w/v)
5 ml	0,5 M EDTA, pH 8,0	50 mM
500 μl	1 M Tris-HCl, pH 7,0	10 mM
1 Spatelspitze	Bromphenolblau	
1 Spatelspitze	Xylencyanol FF	
ad 50 ml	H ₂ O _{steril}	

10 x DNS-Gelladepuffer (50 ml)

Durch den DNS-Gelladepuffer wird die Dichte der Probe erhöht und das Auftragen der Probe erleichtert. Die Farbstoffe Bromphenolblau und Xylencyanol wandern in einer definierten Geschwindigkeit zur Anode und dienen so als Indikator.

10 x TBE-Puffer, pH 8,0 (1 l)

Menge/ Volumen	Substanz	Endkonzentration
108 g	Tris HCl	0,89 M
55 g	Borsäure	0, 89 M
40 ml	0,5 M EDTA, pH 8,0	0,02 M
ad 1000 ml	H ₂ O _{steril}	

1 x TE-Puffer (50 ml)

Menge/ Volumen	Substanz	Endkonzentration
500 μl	1 M Tris HCl, pH 8,0	10 mM
100 µl	0,5 M EDTA, pH 8,0	1 mM
ad 50 ml	H ₂ O _{steril}	

10 x PCR-Reaktionspuffer (100 ml)

Menge/ Volumen	Substanz	Endkonzentration
1,21 g	Tris HCl	100 mM
0,305 g	MgCl ₂ *6H ₂ O	15 mM
3,728 g	KC1	500 mM
ad 100 ml	H ₂ O _{steril}	

Lysis-Puffer zur Isolierung genomischer DNS aus ES-Zellen (50 ml)

Menge/ Volumen	Substanz	Endkonzentration
5 ml	1 M Tris HCl, pH 8,5	100 mM
500 µl	0,5 M EDTA	5 mM
2 ml	5 M NaCl	200 mM
500 µl	20 % SDS	0,2 %
ad 50 ml	H ₂ O _{steril}	

Kurz vor Gebrauch Zugabe von 500 µl Proteinase K (Konzentration: 10mg/ml; Endkonzentration: 100 µg/ml)

0,25 M HCl (1 l)

Menge/ Volumen	Substanz	Endkonzentration
20,76 ml	HCl (37%)	0,25 M
ad 1000 ml	H ₂ O _{steril}	

0,5 M NaOH/ 1,5 M NaCl (1 l)

Menge/ Volumen	Substanz	Endkonzentration
20,05 g	NaOH	0,5 M
87,66 g	NaCl	1,5 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

0,5 M Tris/ 3 M NaCl (1 l)

Menge/ Volumen	Substanz	Endkonzentration
60,57 g	Tris HCl	0,5 M
175,32 g	NaCl	3 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

1 M Na₂HPO₄ (1 l)

Menge/ Volumen	Substanz	Endkonzentration
178,0 g	$Na_2HPO_4*2 H_2O$	1 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

1 M NaH₂PO₄ (1 l)

Menge/ Volumen	Substanz	Endkonzentration
156,0 g	NaH ₂ PO ₄ *2 H ₂ O	1 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

20 % SDS (1 l)

Menge/ Volumen	Substanz	Endkonzentration
200 g	Sodiumdilaurylsulfat (SDS)	20 %
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

20 x SSC, pH 7,0

Menge/ Volumen	Substanz	Endkonzentration
88,23 g	Natrium-Citrat	300 mM
175,32 g	NaCl	3 M
ad 1000 ml	H ₂ O _{steril}	

Dampfsterilisation bei 121°C und 1 bar für 20 Minuten

Church-Puffer zur	Prähyb	ridisierung	und Hyb	oridisieru	ung (1 l)	

Menge/ Volumen	Substanz	Endkonzentration
387 ml	1 M Na ₂ HPO ₄	
113 ml	1 M NaH ₂ PO ₄	
350 ml	20 % SDS-Lösung	7 %
110 ml	10 % BSA-Lösung	1 %
2 ml	0,5 M EDTA	1 mM
10 ml	Lachssperma-DNS (vor Zugabe bei 95°C denat.)	0,1 mg/ml
ad 1000 ml	H ₂ O _{steril}	

3.1.7 Bakterienstämme

Zur Vermehrung der für das Targetingkonstrukt relevanten DNS-Bereiche wurde der Bakterienstamm Escherichia coli XL-1 Blue verwendet. Er besitzt folgenden Genotyp:

Stamm	Genotyp
E. coli	recA1 endA1 gyrA96 thi-1 hsdR17 supE44
	$relA1 \text{ lac } [F' \text{ proAB}^+ lac/^q Z\Delta M15Tn10 (Tet^r)]$

Stamm	Genotyp
DH5a Zellen	$F^{-} \Phi 80 lac Z \Delta M 15 \Delta (lac ZYA-argF) U169$
	recA1 endA1 hsdR17(r_k^- , m_k^+) phoA supE44 λ -
	thi-1 gyrA96 relA1
Epicurian Coli XL-10 Gold Zellen	$Tet^{r}\Delta(mcrA)183\Delta(mcrCB-hsdSMR-mrr)173$
	endA1 supE44 thi-1 recA1 gyrA96 relA1 lac
	Hte [F' proAB lac/ ^q Z Δ M15 Tn10 (Tet ^r) Amy
	Cam ^r] ^a
Epicurian Coli SURE Zellen	e14 ⁻ (McrA ⁻) Δ (mcrCB-hsdSMR-mrr)171
	endA1 supE44 thi-1 gyrA96 relA1 lac recB recJ
	sbcC umuC::Tn5 (Kan ^r) uvrC [F' proAB
	$lac/^{q}Z\Delta(M15 Tn10 (Tet^{r})]$

Zur Vermehrung des Targetingvektors pC5_16 wurden zusätzlich folgende Bakterienstämme verwendet:

3.1.8 Nährmedien

Die meisten Bakterien lassen sich in Flüssigmedien heranzüchten, die die für die Bakterien notwendigen Nährstoffe in entsprechender Konzentration enthalten. Sie ermöglichen das Wachstum und die Teilung der Bakterien.

Bei dem für diese Arbeit verwendeten Medium handelt es sich um ein komplexes Medium namens Luria-Bertani (LB). Es enthält Trypton, welches im wesentlichen Aminosäuren und Peptide liefert, Hefeextrakte, welche als Stickstoff- und Zuckerlieferanten dienen und organische und anorganische Nährstoffe bereitstellen, sowie NaCl.

Durch Zugabe von Agar kann aus diesem Flüssigmedium ein Festmedium hergestellt werden, welches zur Vereinzelung von Bakterienkolonien dient.
3.2 METHODEN

3.2.1 Herstellung transformationskompetenter Zellen

Die Aufnahme von gelösten DNS-Molekülen durch Bakterienzellen bezeichnet man als Transformation. Zur Herstellung transformationskompetenter Bakterienzellen werden häufig chemische Verfahren wie die Calciumchlorid-Methode oder die TSS-Methode angewendet.

Zur Herstellung transformationskompetenter Bakterienzellen mit der TSS-Methode wurden 5 ml LB-Medium mit einer Kolonie E.coli XL-1 Blue, die durch Vereinzelungsausstrich auf einer Agarplatte erhalten wurde, angeimpft und bei 150 - 200 rpm und 37°C über Nacht inkubiert. Am folgenden Tag wurden 100 ml LB-Medium mit 1 ml dieser Übernachtkultur angeimpft und bis zum Erreichen einer OD₅₇₈ von 0,35 – 0,4 in einem Schüttelinkubator bei 37°C geschüttelt. Anschließend wurde die Bakteriensuspension mittels Zentrifugation bei 4°C von 10 min bei 1000x g (Beckman, Rotor JA 10, 3000 rpm) pelletiert und in 15 ml 1 x TSS-Puffer, 4°C resuspendiert. Im folgenden Schritt wurden die Zellen à 300 µl in eiskalte 1,5 ml Reaktionsgefäße aliquotiert, durch Übergießen mit flüssigem Stickstoff schockgefroren und bei -80°C gelagert.

TSS-Puffer	10% (w/v) PEG 3.350	
	5% (v/v) DMSO	
	50 mM MgCl ₂	ad 50 ml LB-Medium (steril)

Um die Transformations-Kompetenz der Zellen zu testen, wurde ein Aliquot der gewonnenen kompetenten Zellen mit 5 ng Plasmid-DNS (pBR322 oder pUC18) transformiert (siehe 3.2.2). Von diesem Ansatz wurden je zwei Verdünnungen von 1:10, 1:100 und 1:1000 auf LB-Amp-Platten (Ampicillin-End-Konzentration von 50 µg/ml) ausgestrichen und bei 37°C über Nacht inkubiert. Am nächsten Tag erfolgte die Auswertung durch Auszählung der gewachsenen Kolonien. Hiermit konnte die Transformationskompetenz mit folgender Formel berechnet werden:

Transformanden/ μ g DNS = n * F * V_G/V_x * 1/M

- n = Anzahl der Kolonien
- F = Verdünnungsfaktor
- V_G = Gesamtvolumen des Transformationsansatzes
- V_x = ausplattiertes Volumen
- M = Menge an eingesetztem Plasmid [µg]

Bei diesen mittels chemischer Vorbehandlung hergestellten kompetenten Zellen wird eine Kompetenz von ca. $10^6 - 10^7$ Kolonien/µg Test-DNS erreicht.

3.2.2 Transformation

Die Transformation dient der Aufnahme von *in vitro* rekombinierter DNS durch Bakterien. Das in dieser Arbeit angewendete Verfahren beruht auf einer Methode von Cohen et al. (1972). Der hierbei verwendete Hitzeschock bewirkt das Erweitern der Poren in der Membran, so daß der Durchtritt der DNS in die Zellen erleichtert wird.

Zunächst wurden 300 μ l kompetente Zellen langsam auf Eis aufgetaut. Im folgenden Schritt wurden 10 ng der zu transformierenden DNS hinzugegeben, vorsichtig gemischt und der Ansatz für 30 Minuten auf Eis inkubiert. Anschließend erfolgte ein 2 minütiger Hitzeschock bei 42°C, dem sich eine 2 minütige Erholungsphase auf Eis anschloss. Hiernach wurden 900 μ l LB-Medium hinzugefügt und der Ansatz für 2 Stunden bei 37°C in einem Schüttelinkubator inkubiert. Nach dieser Wachstumsphase wurden 150 μ l dieser Suspension auf Selektionsagarplatten (LB-Amp-Platten mit einer Ampicillin-End-Konzentration von 50 μ g/ml) ausplattiert und über Nacht bei 37°C im Wärmeschrank inkubiert.

Bei der Transformation von Ligationsansätzen wurde zusätzlich das restliche Volumen der Bakteriensuspension mittels zweiminütiger Zentrifugation bei 800x g (Heraeus pico, 3000 rpm) und Raumtemperatur (RT) pelletiert, der Überstand bis auf einen kleinen Rest des Nährmediums dekantiert. In diesem Überstand wurde das erhaltene Pellet gelöst und ausplattiert. Dieser Schritt wurde durchgeführt, da bei manchen Ligationsansätzen mit einer geringen Anzahl Transformanden gerechnet werden kann.

3.2.3 Präparation von Plasmid-DNS zur Analyse

Die verwendete Methode beruht auf einem Verfahren nach (Holmes and Quigley, 1981), die auch als "boiling method", d.h. "Kochmethode", bezeichnet wird. Mit diesem Verfahren kann in kurzer Zeit zu analytischen Zwecken aus 1,5 ml Bakterienkultur mehrere Mikrogramm Plasmid-DNS gewonnen werden. Hierbei werden genomische DNS und Plasmid-DNS voneinander getrennt. Durch die Behandlung der Bakterien mit Lysozym und Detergenzien des STET-Puffer wird die Bakterienzellwand aufgeschlossen. Das Erhitzen bei 95°C dient der Koagulation von Proteinen und der Denaturierung der genomischen DNS. Durch die zuvor beschriebenen Schritte und anschließende Zentrifugation gehen Plasmid-DNS und RNA in Lösung, während genomische DNS und Proteine sedimentiert werden.

Zur Gewinnung von DNS wurden zunächst 5ml LB-Medium (versetzt mit Ampicillin in einer Endkonzentration von 50 µg/ml) mit einer Einzelkolonie, die aus einem Ausstrich auf einer LB-Amp-Platte erhalten wurden, angeimpft und für 12 bis 16 Stunden in einem Schüttelinkubator bei 150 bis 200 rpm und 37°C über Nacht kultiviert. Am nächsten Tag erfolgte eine Zentrifugation von 1,5 ml der Suspension für 10 min bei 1200x g (Heraeus pico, 3500 rpm) und RT. Man erhielt ein Bakterienpellet, der Überstand wurde verworfen. Da die Bakterienzelle von einer Zytoplasmamembran eingehüllt und von einer widerstandsfähigen Zellwand umgeben ist, mussten diese Barrieren aufgebrochen werden, um den Zellinhalt freizugeben. Zur chemischen Lyse der Zellwand wurde Lysozym verwendet. Hierbei handelt es sich um ein Enzym, das im Hühnereiweiß und in Körperflüssigkeiten wie Speichel und Tränen vorkommt. Es spaltet die glykosidische Bindung des Mureins zwischen N-Acetylmuraminsäure und N-Acetylglucosamin und baut so die Zellwand ab. Lysozym wurde vor Gebrauch zum STET-Puffer hinzugefügt, der neben Tris-HCl pH 8, EDTA, Saccharose und Triton X-100 enthält. Saccharose verhindert das sofortige Platzen der Zellen, das Detergenz Triton X-100 lysiert die Zellen. Mit diesem STET-L-Puffer wurde das Bakterienpellet resuspendiert. Anschließend erfolgte eine Inkubation dieser Suspension für 5 min auf Eis, gefolgt von einer Minute im Heizblock bei 95°C. Dies bewirkt eine Koagulation der Proteine sowie die Denaturierung der genomischen DNS. Plasmid DNS wird nicht denaturiert, da es in der "supercoiled" Form vorliegt. Aufgrund der Größe der chromosomalen DNS und ihrer Verbindung zur Zellwand konnte diese mittels

Zentrifugation bei 16000x g und RT für 15 min (Heraeus pico, 13000 rpm) abzentrifugiert werden. Es entstand ein Pellet, bestehend aus Zellwandresten und genomischer DNS, welches mittels sterilem Zahnstocher entfernt und verworfen wurde. Im nächsten Schritt erfolgte die Präzipitation der Plasmid-DNS durch Zugabe von Isopropanol und einer Zentrifugation von 30 min bei 16000x g und RT (Heraeus pico, 13000 rpm). Nach einem folgenden Waschschritt mit 1 ml 70%igem Ethanol durch Zentrifugation von 10 min bei 16000x g und RT (Heraeus pico, 13000 rpm), wurde das DNS-Pellet getrocknet und anschließend in 50µl RNAse-H₂O gelöst. Die auf diese Weise gelöste DNS enthielt zahlreiche Verunreinigungen und kann z.B. nicht für Sequenzierungen eingesetzt werden.

3.2.4 Präparative Plasmidisolierung

In dieser Arbeit wurde ein Kit-System (QIAgen Maxi-Plasmid-Purification System) verwendet, das einer modifizierten Variante der alkalischen Lyse von Birnboim and Doly (1979) entspricht. Mit dieser Methode lassen sich Ausbeuten von 200 bis 900 µg DNS aus 400 ml Kulturmedium erzielen.

Zunächst wurden 5ml LB-Medium (versetzt mit Ampicillin in einer Endkonzentration von 50 µg/ml) mit einer Einzelkolonie angeimpft und für 12 bis 16 Stunden in einem Schüttelinkubator bei 150 bis 200 rpm und 37°C über Nacht kultiviert. Am nächsten Tag beimpfte man einen mit 400 ml LB-Medium befüllten Erlenmeyerkolben, der Ampicillin in einer Endkonzentration von 50µg/ml enthielt, mit 1 ml der Bakterienkultur und inkubierte diese erneut für 12 bis 16 Stunden in einem Schüttelinkubator bei 150 bis 200 rpm und 37°C. Am folgendend Tag wurde die Kultur für 10 Minuten bei 3950x g (Beckman, Rotor JA 10, 6000 rpm) und 4°C zentrifugiert und das entstandene Pellet in 10 ml Puffer P1, versetzt mit RNaseA, die den Abbau von Ribonukleinsäuren bewirkt, gelöst.

Im Anschluß erfolgte die Zugabe von 10 ml Puffer P2 (Lysepuffer), der durch die enthaltenen Komponenten SDS und NaOH die Lyse der Bakterien bewirkt. Dabei kommt es zur Freisetzung von Zellinhalten und Proteinen, chromosomale DNS und Zellwandbestandteile werden denaturiert. 10 ml Puffer P3 (Neutralisationspuffer) wurden zugegeben, invertiert und der Ansatz für 20 Minuten auf Eis inkubiert. Die Neutralisation der denaturierten Proteine und anderer Zelltrümmer ist durch die Bildung weißer, flockiger Präzipitate erkennbar.

Durch die sich anschließende Zentrifugation von 30 Minuten bei 17000x g (Beckman, Rotor JS 13.1, 13000 rpm) und 4°C wurden diese Überstände pelletiert und die sich in Lösung befindende Plasmid-DNS auf eine zuvor mit Puffer QBT äquilibrierten Silikatmatrix einer Anionenaustauschersäule gegeben.

Nach zweimaligem Waschen mit 30 ml Puffer QC wurde die an die Silikatmatrix gebundene DNS unter Hochsalzbedingungen mit 15 ml Puffer QF eluiert. Nach Zugabe von 10,5 ml Isopropanol erfolgte eine Zentrifugation von 30 Minuten bei 17000x g (Beckman, Rotor JS 13.1, 13000 rpm) und 4°C, die eine Präzipitation der DNS bewirkt. Im letzten Schritt wurde das DNS enthaltende Pellet mit 70% Ethanol durch eine Zentrifugation von 5 Minuten bei 17000x g (Beckman, Rotor JS 13.1, 13000 rpm) und 4°C gewaschen, an der Luft getrocknet und in 200 μ l sterilem H₂O_{dest} aufgenommen.

Die Plasmidisolierung mittels "QiaPrep[®] Spin Miniprep Kit" (Katalognummer 27106) beruht auf derselben Methode, wobei andere Volumina eingesetzt und kürzere Zentrifugationszeiten verwendet wurden. Alle Schritte wurden nach Herstellerangaben durchgeführt.

3.2.5 Präparative Isolierung von BAC-Plasmid-DNS

BAC-Plasmide besitzen die Fähigkeit, sehr große DNS-Fragmente aufzunehmen. Das in dieser Arbeit verwendete BAC-Plasmid 29P23 wurde mit einem Kit der Firma Qiagen (QIAgen Maxi-Plasmid-Purification System) unter Anwendung des Low-Copy-Plasmid-Protokolls aufgereinigt, das dem Prinzip des in Kapitel 3.2.4 beschriebenen Vorgehens entspricht. Hierbei wurde die sich in Lösung befindene Plasmid-DNS zusätzlich über einen Filter aufgereinigt und anschließend durch Zugabe von 0,7 Vol% Isopropanol und Zentrifugation von 30 Minuten bei 17000x g (Beckman, Rotor JS 13.1, 13000 rpm) präzipitiert. Das erhaltene Pellet wurde in 500 µl TE-Puffer aufgenommen, auf ein Volumen von 12 ml aufgefüllt und über die zuvor mit Puffer QBT äquilibrierten Silikatmatrix einer Anionenaustauschersäule gegeben. Das weitere Protokoll entspricht dem des in Kapitel 3.2.4 beschriebenen.

3.2.6 DNS-Konzentrationsbestimmung

Die Konzentration der in einer Maxi-Präparation erhaltenen DNS wurde mittels Absorptionsspektroskopie bestimmt. Aufgrund der enthaltenen aromatischen Basen absorbieren Nukleinsäuren Licht der Wellenlänge 260 nm.

Hierzu wurde die präparierte DNS in einem geeigneten Verhältnis mit H_2O_{steril} verdünnt und mit Hilfe des Spektralphotometers die Absorption bei 260 nm ermittelt. Als Referenz diente steriles H_2O_{dest} . Laut Hagemann (1990) entspricht eine Absorption von 1,0 einer DNS-Konzentration von 50 µg/ml. Demzufolge kann die Konzentration der DNS anhand folgender Formel berechnet werden:

Konzentration ($\mu g/ml$) = $A_{260 nm} \cdot VF \cdot M$

A_{260nm} = Absorption bei 260 nm VF = Verdünnungsfaktor M = Multiplikationsfaktor (beträgt für DNS 50μg/ml; s.o.)

Diese lineare Funktion für die Konzentrationsberechnung gilt nur in einem Absorptionsbereich von 0,1 bis 1,0. Falls die Absorption ausserhalb dieses Bereiches liegt, muss eine Messung mit weiteren Verdünnungen durchgeführt werden.

Neben der Konzentration konnte bei der Absorptionsspektroskopie auch der Reinheitsgehalt der DNS bestimmt werden. Als Maß der Reinheit diente der Quotient der Absorption von 260 nm und 280 nm. Proteine absorbieren im Gegensatz zu DNS Licht bei einer Wellenlänge von 280 nm. Das Verhältnis lag in allen gemessenen Proben zwischen 1,5 und 1,8.

3.2.7 Gelelektrophorese von DNS

DNS-Fragmente können aufgrund ihrer unterschiedlichen Ladung und Größe im elektrischen Feld aufgetrennt werden. Die Auftrennung der DNS beruht darauf, daß diese als Polyanion zur Anode wandert. Hierbei wandern niedermolekulare DNS-Fragmente mit schnellerer Geschwindigkeit durch die Gelmatrix zur Anode als höhermolekulare. Als poröse Matrix dienen Agarosegele, wobei zahlreichen OH-Gruppen der Kohlenhydrate D- und L-Galaktose das Ausbilden von Wasserstoffbrücken ermöglichen und das Gel seine Festigkeit erhält. Die Porengröße wird durch eine bestimmte Konzentration an Agarose definiert; je höher die Konzentration, desto kleiner die Porengröße. Ebenso bedient man sich der Polyacrylamidgele, die der Auftrennung kleinerer DNS-Fragmente dienen. Hier entsteht die Matrix durch radikalische Polymerisation des monomeren Acrylamids mit dem quervernetzenden Methylenbisacrylamid.

Zur Herstellung der Agarosegele wurde Agarose in 400 ml 1x TBE-Puffer (Tris-Borat-EDTA-Puffer) durch Erhitzen in der Mikrowelle gelöst. In dieser Arbeit wurden Gele mit einer Konzentrationen von 0,8% bis 2%, abhängig von der Größe der zu trennenden DNS-Fragmente, eingesetzt, wobei der Gehalt an Agarose mit abnehmender Fragmentgröße zunahm. Zur Detektion der DNS wurde der noch ca 50°C warmen Agarose-Lösung der Fluoreszensfarbstoff Ethidiumbromid in einer Konzentration von 0,5 µg/ml zugesetzt, der mit seiner trizyklischen, planaren Gruppe mit einzelnen Basenpaaren der DNS interkaliert. Diese Lösung wurde in einen zuvor vorbereiteten Gelträger gegossen und erkalten gelassen. Zur präparativen Gelelektrophorese wurde GTG-Agarose verwendet, die gegenüber herkömmlichen Agarosen einen höheren Reinheitsgrad aufweist.

Vor dem Auftragen der zu analysierenden Proben wurden diese mit 1/10 des Volumens an Gelladepuffer versetzt. Zusammen mit den Proben wurde ein DNS-Molekulargewichtsmarker aufgetragen, anhand dessen die Größe der getrennten Fragmente bestimmt werden konnte.

Der Gellauf erfolgte in einer Horizontalapparatur, an die eine Spannung von 80-120 V angelegt wurde. Als Laufpuffer diente ebenfalls 1xTBE-Puffer.

Zur Auftrennung kleinerer DNS-Fragmente (100 bis 1000 bp) wurden 7%ige Polyacrylamid-Page-Gele verwendet. Hierzu wurde die entsprechende Menge Acrylamid/ Methylbisacrylamid-Lösung (Rotiphorese 40 29:1, Fa. Roth) mit 10xTBE-Puffer versetzt und die Polymerisation des Acrylamids durch Zugabe von 0,075% (w/v) Ammoniumperoxydisulfat (APS) und 0,15% (v/v) N`,N`,N`,N`-Tetramethylethyldiamin (TEMED) bewirkt. Hierbei startet TEMED die Radikalreaktion und APS dient als Katalysator. Auch hier wurden die zu analysierenden Proben vor dem Auftragen mit 1/10 des Volumens an Gelladepuffer versetzt. Die Elektrophorese erfolgte in einer Vertikalapparatur mit einer angelegten Spannung von 150 bis 200 V. Als Laufpuffer diente 1 x TBE-Puffer. Da Ethidiumbromid die Polymerisation von Polyacrylamidgelen verhindert, werden diese daher erst nach der Auftrennung der DNS in einer Ethidiumbromid-Lösung inkubiert.

Die Auswertung der aufgetrennten DNS-Fragmente im Gel erfolgte mit dem UV-Transilluminator, wobei die Fragmente aufgrund des interkalierenden Ethidiumbromids rot-orange leuchteten. Das erhaltene Bild wurde mittels eines Videodokumentationssystems fotographiert.

3.2.8 Elektroelution

In dieser Arbeit wurde zur Isolierung von definierten DNS-Fragmenten nach einer elektrophoretischen Auftrennung die sogennante Elektroelution (Davis et al., 1986) angewandt. Hierbei wurde das mit Ethidiumbromid angefärbte DNS-Fragment unter dem UV-Tisch mit einem Skalpell aus dem Gel ausgeschnitten, in einen mit 300µl 1xTBE-Puffer gefüllten Dialyseschlauch (Fa. Sigma) überführt und luftblasenfrei verschlossen. Daraufhin wurde dieser Schlauch in einer Flachbettelektrophoreseapparatur mit 4°C kaltem 1xTBE-Puffer bedeckt, eine konstante Stromstärke von 135 mA angelegt und die DNS 1 Stunde pro kb in den Puffer des Dialyseschlauches eluiert. Im Anschluß wurde die DNS-Lösung aus dem Dialyseschlauch in ein Reaktionsgefäß überführt und mittels NaCl/Ethanol-Fällung präzipitiert.

Zur Herstellung der Dialyseschläuche wurden zunächst Stücke von 6 bis 8 cm Länge von der Rolle des Schlauchmaterials geschnitten und in einer 10 mM EDTA-Lösung autoklaviert. Im Anschluß wurde die Lösung dekantiert und die Schläuche mit H₂O_{steril} gespült. Diese beiden Schritte wurden so oft wiederholt, bis die gelbliche Trübung nach dem Autoklavieren verschwunden war. Nach dem letzten Autoklavieren und Spülen wurden die Dialyseschläuche in 100% EtOH bei 4°C gelagert.

3.2.9 DNS-Präzipitation mittels NaCl/Ethanol-Fällung

Aufgrund ihrer negativ geladenen Phosphatgruppen ist DNS gut in wässrigen Lösungsmitteln, jedoch schlecht in organischen Lösungsmitteln wie Ethanol löslich. Um die in wässriger Lösung vorliegende Plasmid-DNS präzipitieren zu können, wurde diese Lösung mit 1/10 des Volumens an 5M NaCl versetzt, so daß eine NaCl-

Endkonzentration von 0,45 M vorlag. Durch die Neutralisierung der negativ geladenen Gruppen der DNS nimmt die Löslichkeit der DNS ab. Der Ansatz wurde sorgfältig gemischt und das 2,5 fache Volumen an reinem Ethanol zugesetzt. Dadurch nimmt die Löslichkeit der DNS weiter ab, da Ethanol der DNS Wasser entzieht. Nach erneutem Mischen erfolgte zur Präzipitation eine Zentrifugation von 30 min bei 16000x g und RT (Heraeus pico, 13000 rpm), der sich ein Waschschritt mit 70% Ethanol mittels Zentrifugation von 10 min bei 16000x g und RT (Heraeus pico, 13000 rpm) anschloß, um die noch vorhandenen Salze herauszulösen. Der Überstand wurde dekantiert und das entstandene DNS-Pellet getrocknet und in ein geeignetes Volumen H₂O_{steril} aufgenommen.

3.2.10 Aufreinigung von DNS-Fragmenten durch Phenolisierung

Um proteinhaltige Verunreinigungen nach DNS-Präparationen zu beseitigen, wurde in dieser Arbeit eine Phenol-Chlorophorm-Extraktion durchgeführt. Hierzu wurde eine Phenol-Chloroform-Isoamylalkohol-Lösung (PCI; 25:24:1) verwendet. Die enthaltenen Komponenten Phenol und Chloroform haben eine denaturierende Wirkung auf Proteine, während der Isoamylalkohol das Schäumen verhindert.

Zu 400 µl wässriger DNS-Lösung wurden 400 µl PCI gegeben und der Ansatz sorgfältig gemischt. Zur Phasentrennung erfolgte eine Zentrifugation bei 16000x g und RT (Heraeus pico, 13000 rpm) für 5 Minuten. Die obere wässrige Phase mit der darin gelösten DNS wurde in ein neues Reaktionsgefäß überführt, während die untere organische Phenolphase und die Interphase mit den darin enthaltenen denaturierten Proteinen verworfen wurden.

Um das verbliebene Phenol in der wässrigen DNS-Lösung zu entfernen, wurde diese Lösung mit 400 µl Diethylether versetzt, gemischt und zur Phasentrennung ebenfalls für 5 Minuten bei 16000x g und RT (Heraeus pico, 13000 rpm) zentrifugiert. Die obere organische Phase wurde verworfen und der vorangegangene Arbeitsschritt wiederholt. Der restliche Diethylether wurde bei RT verdampft und die DNS mittels NaCl/Ethanol-Fällung präzipitiert.

3.2.11 Spaltung der DNS durch Einsatz von Restriktionsendonukleasen

Zur Analyse von isolierter Plasmid-DNS sowie zur Klonierung und Linearisierung von DNS-Fragmenten wurden Restriktionsendonukleasen eingesetzt, die sequenzspezifisch doppelsträngige DNS aufspalten. Restriktionsendonukleasen werden aus Bakterienzellen gewonnen, die diese endogen vor Fremd-DNS schützen sollen. Diese Enzyme erkennen meist 4 bis 8 Basen lange, in der Regel palindromische Sequenzen und spalten an dieser für das entsprechende Enzym charakteristischen Stelle die Phosphodiesterbindung auf. Hierbei ist der Einsatz des jeweils entsprechenden Puffers für die Aktivität der Restriktionsendonukleasen essentiell. Bei einigen Enzymen wird ein Zusatz von bovinem Serumalbumin (BSA) in den Reaktionsansatz zur Stabilisierung der Enzyme empfohlen.

Die Konzentration der Enzyme wird in Units/ml angegeben, wobei 1 Unit die Menge an Enzym ist, die benötigt wird, um 1 μ g DNS in einem Ansatz von 50 μ l in einer Stunde bei korrekter Temperatur und in korrektem Puffer vollständig zu schneiden. Zur vollständigen DNS-Spaltung wurden pro μ g DNS meist ca. 2-10 Units eines Restriktionsenzymes verwendet.

3.2.12 Auffüllen der überhängenden Enden und 5`-Phosphatkinasierung

Nach Amplifikation von DNS-Fragmenten mittels TAQ- bzw. Pfu-Polymerase entstehen Fragmente mit Adenosin-Überhängen. Um diese Fragmente in einen Plasmidvektor klonieren zu können, mussten diese Überhänge mit komplementären Thymidin-Nukleotiden aufgefüllt und an die neu entstehenden 5` Enden Phosphatgruppen angefügt werden. Das Auffüllen erfolgte mit Hilfe der T₄-DNS-Polymerase, die aufgrund ihrer 5` \rightarrow 3`-Polymeraseaktivität die 5`-Überhänge auffüllt und die 3`-Überhänge durch 3` \rightarrow 5`-Exonukleaseaktivität entfernt. Die 5` Phosphatkinasierung wurde durch das Enzym T₄-Polynukleotidkinase (PNK) katalysiert.

Im folgenden ist ein Beispiel für einen Reaktionsansatz aufgeführt:

22,75	μl	DNS-Lösung
1,25	μl	dNTPs (1,25 mM)
2	μl	T_4 -Polynukleotidkinase (10U/µl)
1	μl	T ₄ -DNS-Polymerase (1U/µl)
3	μl	10 x Ligasepuffer

Der Ansatz wurde für 20 Minuten bei 37°C inkubiert und die Enzyme durch eine weitere Inkubation von 10 Minuten bei 75°C hitzeinaktiviert. In manchen Fällen wurde anschließend eine Phenol-Chloroform-Extraktion durchgeführt. Im Anschluß erfolgte eine NaCl/Ethanol-Fällung und das so gewonnene Fragment konnte in einen linearisierten Vektor mit glatten Enden kloniert werden.

3.2.13 Dephosphorylierung von Plasmid-DNS

Um die Rezirkularisation und Religation eines Vektors ohne Insertion eines DNS-Fragmentes nach Spaltung mit einem einzelnen Restriktionsenzym zu minimieren, wurden die Monophosphatgruppen an beiden 5` Enden des Vektors mittels alkalischer Phosphatase entfernt.

Ein Dephosphorylierungsansatz bestand aus folgenden Komponenten:

- 35 µl DNS-Lösung
- $4 \mu l$ 10 x Puffer für alkalische Phosphatase
- 1 μ l Alkalische Phosphatase (1U/ μ l)

Dieser Ansatz wurde für eine Stunde bei 37°C in einem Wasserbad inkubiert. Es erfolgte eine weitere Zugabe von 0,5 µl alkalischer Phosphatase und eine Inkubation für weitere 30 Minuten. Nach Hitzeinaktivierung der alkalischen Phosphatase bei 75°C für 15 Minuten wurde die DNS mittels NaCl/Ethanol-Fällung präzipitiert.

3.2.14 Ligation von DNS-Fragmenten in Plasmidvektoren

Ligasen sind Enzyme, die unter Hydrolyse von ATP die Bildung einer Phosphodieseterbindung zwischen einer 5`-Phosphat- und 3` Hydroxyl-Gruppe katalysieren. Sie werden verwendet, um ein DNS-Fragment in einen Vektor zu inserieren, wobei die Enden des Inserts kovalent mit den Enden des Vektors verbunden werden.

In dieser Arbeit wurde ausschließlich die T₄-Ligase verwendet. Ein Ligationsansatz setzte sich im Einzelnen wie folgt zusammen:

Х	μl	Plasmid (ca. 25 fmol)
у	μl	Fragment (molares Verhältnis Vektor:Fragment ca. 1:3 bis 1:10)
2	μl	10 x T ₄ -DNS-Ligase-Puffer
1	μl	T ₄ -DNS-Ligase
ad 20	μl	H ₂ O _{steril}

Die Ligationsansätze wurden entweder über Nacht bei 16°C im Kühlwasserbad oder für 48 bis 72 Stunden bei 4°C im Kühlraum inkubiert.

3.2.15 Polymerase-Kettenreaktion (PCR)

Die Polymerase-Kettenreaktion ist eine *in vitro*-Technik, die durch den Einsatz von thermostabilen Polymerasen die selektive Amplifikaion von bestimmten DNS-Sequenzen ermöglicht (Saiki et al., 1988). Als Startpunkte der Synthese dienen zur Zielsequenz komplementäre Oligodesoxynukleotide (Primer).

Die PCR wurde in dieser Arbeit zur Amplifikation von Teilsequenzen aus genomischer DNS oder BAC-DNS eingesetzt, die zu weiteren Klonierungen verwendet wurden. Weiterhin fand die PCR Einsatz im Rahmen der Sequenzierung nach Sanger (siehe Kapitel 3.2.16).

Bei der PCR handelt es sich um ein zyklisches Verfahren, bei dem in jedem Zyklus die Anzahl der DNS-Kopien verdoppelt wird (Newton et al., 1994). Zur Durchführung einer PCR-Reaktion werden neben einer DNS-Matrize mit einer definierten Sequenz Oligonukleotidprimer benötigt, die komplementär zu den jeweiligen Enden des Templates sind. Weiterhin werden Desoxynukleotide (dNTP's) als Bausteine der DNS eingesetzt. Als thermostabile Polymerase diente die *Pfu*-Polymerase (aus *Pyrococcus furiosus*) oder die TAQ-Polymerase (aus *Thermus aquaticus*). Die Pfu-Polymerase hat im Vergleich zur TAQ-Polymerase den Vorteil, daß sie neben der 5' \rightarrow 3'-DNS- Polymeraseaktivität auch eine $3 \rightarrow 5$ '-Exonuklease-Proofreading-Aktivität besitzt, die die Anzahl der Mutationen in der amplifizierten DNS erheblich senkt. Ein Reaktionsansatz mit 50 µl setzte sich wie folgt zusammen:

Matrizen-DNS	1-2µl (ca. 50ng)
dNTP-Mix	1 µl (50µM)
10xPuffer	5 µl
3'- Oligonukleotidprimer	2 µl (0,5µM)
5`- Oligonukleotidprimer	2 µl (0,5µM)
Pfu-Polymerase	1 µl
H ₂ O _{dest}	ad 50 µl

Im ersten Schritt wird der DNS-Doppelstrang durch Erhitzen auf 95°C denaturiert und in seine beiden Einzelstränge aufgetrennt. Durch das Abkühlen auf eine bestimmte Temperatur wird das spezifische Anlagern der Oligdesoxynukleotide an die homologe Zielsequenz ermöglicht (Annealing). Die Temperatur richtet sich hierbei nach der Schmelztemperatur der eingesetzten Oligodesoxynukleotide. Bei einer Temperatur von 72°C erfolgt die Elongation eines DNS-Fragmentes durch die Polymerase, nachdem am 3` Ende der Oligonukleotidprimer die Polymerisation und somit die Synthese einer zur Matrize komplementären Sequenz startet. Die Menge an DNS-Molekülen wird theoretisch pro Zyklus verdoppelt, so daß pro Molekül Matrizen-DNS nach n-Zyklen bis zu 2ⁿ⁻¹ Moleküle amplifiziert werden können.

Die Annealing-Temperatur der verwendeten Oligonukleotidprimer wurde mit folgender Formel abgeschätzt:

 $T_m(^{\circ}C) = (2^{*}{A + T} + 4^{*}{C + G}-3)$

	Funktion	Temperatur	Zeit	Zyklen
1	Initiale Denaturierung	95 °C	5:00	-
2	Denaturierung	95°C	1:00	30 - 40
3	Annealing [*]	58 – 64°C	0:30	
4	Elongation ^{**}	72 °C	2:00	
5	Finale Elongation	72°C	5:00	-
6		4°C	Bis zum Wegfrieren	-
			des Reaktionsansatzes	

Zur Amplifikation wurde folgendes Protokoll in einem Thermocycler verwendet:

* in Abhängigkeit von den verwendeten Oligodesoxynukleotiden

^{*} in Abhängigkeit von der Länge des zu amplifizierenden DNS-Fragmentes: 1min/kb mit TAQ-Polymerase bzw. 1,5 min/kb mit Pfu-Polymerase

Alle in dieser Arbeit verwendeten Oligodesoxynukleotide wurden von der Firma MWG und der Firma Operon bezogen und sind in Tabelle 3.2 aufgeführt. Es wurde darauf geachtet, daß sie einen Guanin/Cytosin-Gehalt von 60% aufwiesen und eine Schmelztemperatur zwischen 58 und 64°C besaßen.

Mit Hilfe von Agarose- und Polyacrylamid-Gelen konnten die vervielfältigten DNS-Fragmente analysiert und zur weiteren Verwendung isoliert werden.

3.2.16 Sequenzierung von DNS

Zur Bestimmung der Basenabfolge der amplifizierten DNS-Fragmente und zum Ausschluss von unerwünschten Mutationen diente ein modifiziertes Protokoll der Sequenzierung nach Sanger et al. (1977), die auch als Kettenabbruch-Synthese bezeichnet wird.

Hierzu verwendet man eine Polymerase, die ausgehend von einem zugegebenen Oligodesoxynukleotid einen zur Matrize komplementären DNS-Strang synthetisiert. Allerdings werden neben den Desoxynukleotiden (dNTP's) zusätzlich mit unterschiedlichen Fluoreszenzfarbstoffen gekoppelte Didesoxyribonukleotide (ddNTP) verwendet, die keine 3'-OH-Gruppe besitzen. Dadurch ist eine DNS-Verlängerung nicht möglich, da keine weitere Phosphodiesterbindung mit dem 5' Phosphat eines Nukleotids synthetisiert werden kann. So kommt es bei einem entsprechenden Mischungsverhältnis zwischen dNTP's und ddNTP's an jeder korresponierenden Position der Matrizen-DNS in den neu synthetisierten DNS-Strängen zu einem Kettenabbruch. Bei dem in dieser Arbeit verwendeten "Cycle Sequencing" Protokoll werden, ähnlich wie bei der PCR, durch wiederholte Zyklen von Denaturierung, Annealing und Elongation die eingesetzten DNS-Fragmente amplifiziert. Da hier allerdings nur ein Oligodesoxynukleotid pro Reaktionsansatz als Primer eingesetzt wird, kommt es hier nicht zu einer exponentiellen sondern nur zu einer linearen Vermehrung der DNS-Fragmente.

In dieser Arbeit wurde eine von der Firma Applied Biosystems entwickelter Kit verwendet, in dem ddNTP's enthalten waren, die mit 4 unterschiedlichen Fluoreszenzfarbstoffen ("DyeTerminator") markiert sind. Die Reaktion wurde in einem 0,2 ml-Reaktionsgefäß angesetzt; ein Ansatz mit 12 µl setzte sich wie folgt zusammen:

	3	μl (ca. 1,5 μg)	Plasmid-DNS als Matrize
	1,5	μl	Big Dye [®]
	1	μl (10 pmol/μl)	Oligodesoxynukleotid
ad	12	μl	H_2O_{HPLC}

	Funktion	Temperatur	Zeit	Zyklen
1	Denaturierung	95°C	1:00	-
2	Denaturierung	95°C	0:10	
3	Primer-Anlagerung	55 °C	2:30	
	und Extension			35
	bzw. Termination			
4	Lagerung	4°C	Bis zum Wegfrieren	-
			des Reaktionsansatzes	

Es wurde folgendes Amplifikationsprotokoll angewendet:

Nach Beendigung der Reaktion im Thermocycler wurden die erhaltenen fluoreszenzmarkierten DNS-Fragmente von der Polymerase und nicht eingebauten Nukleotiden gereinigt. Dies erfolgte durch Laden der Probe auf zuvor vorbereitete Sepharosesäulen. Hierzu wurde eine 96-Lochplatte mit Sepharose befüllt. Diese wurden vor dem Starten der Sequenzreaktion für 2 Stunden mit je 300 μ l H₂O_{HPLC} äquilibriert und im Anschluß mittels Zentrifugation von 5 Minuten bei 910x g und 4°C gewaschen. Es schloß sich ein weiterer Waschschritt mit 150 μ l H₂O_{HPLC} an. Nun konnten die Proben in 0,2 ml Reaktionsgefäße mit 8 μ l vorgelegtem HiDi-Formamid (Fa. Applied Biosystems) mit Hilfe einer Zentrifugation von 5 Minuten bei 910x g und 4°C eluiert werden. Das enthaltene Formamid bewirkt die vollständige Denaturierung der DNS-Fragmente.

Anschließend wurden die Proben in einem Sequenzierapparat der Firma Applied Biosystems mittels elektrokinetischer Injektion verarbeitet. Die durch die Sequenzreaktion erhaltenen Fragmente konnten kapillarelektrophoretisch aufgetrennt werden und aufgrund der Fluoreszenz der eingebauten Nukleotide detektiert werden. Die Auswerung der Basenabfolge erfolgte mit der Software "DS-Gene".

3.2.17 Isolierung genomischer DNS aus ES-Zellen

Zur Isolierung genomischer DNS aus ES-Zellen wurden die in einer 96 Loch Platte kultivierten ES-Zellen durch Zugabe von je 150 μ l Lysis-Puffer, der ProteinaseK (Endkonzentration: 100 μ g/ml) enthielt, lysiert. Im Anschluss konnte die genomische DNS durch Zugabe von 200 μ l Isopropanol präzipitiert werden. Durch Inkubation dieser Lösung auf einem Schüttler bei 4°C über Nacht wurde die genomische DNS als weißes Flöckchen sichtbar und konnte nach Isolierung durch Zugabe von 80 μ l TE-Pufer gelöst werden.

3.2.18 Southern-Blot-Analyse

Edward Southern entwickelte 1975 eine Technik, die es erlaubt, definierte DNS-Fragmente in einem Fragmentgemisch nachzuweisen. Hierzu wurden durch Restriktionsendonukleasen geschnittene DNS-Fragmente mittels Gelektrophorese ihrer Größe nach aufgetrennt und vor dem Transfer auf eine Nylon-Membran mit HCl depuriniert und durch eine NaOH-haltige Lösung denaturiert. Die auf die Membran übertragenen DNS-Fragmente konnten mit radioaktiv-markierten Sonden, die zu den zu detektierenden Fragmenten komplementär sind, inkubiert werden. Nach Hybridisierung der Sonde an komplementären DNS-Fragmenten auf der Nylonmembran, Abwaschen von unspezifisch gebundenen DNS-Fragmenten und anschliessender Autoradiographie konnten definierte DNS-Fragmente aus einem Gemisch detektiert werden.

3.2.18.1 DNS-Transfer auf eine Nylonmembran

Eine geeignete Menge genomischer DNS, die durch vergleichende Inkubation verschiedener Volumina einer DNS-Lösung ermittelt wurde, wurde mit 40 bis 50 Units Restriktionsenzym über Nacht bei 37°C in einem Gesamtvolumen von 35 µl verdaut, am nächsen Tag mit 3,5 µl Ladepuffer versetzt und mit einer Spannung von 120V in einem 0,6% GTG-Agarose Gel mit 1 cm Schichtdicke und 3,5 mm Taschenbreite aufgetrennt. Als Größenmarker diente der "1 kb-Ladder" (Invitrogen). Weiterhin wurde das Gel mit einem Lineal fotographiert, um später die Länge der detektierten DNS-Fragmente ermitteln zu können. Nach der elektrophoretischen Auftrennung der DNS-Fragmente wurde das Gel für 15 Minuten in 0,25 M HCl inkubiert. Hierdurch wurde die DNS depuriniert und in kleinere Stücke zerteilt, die effizienter auf die Membran transferiert werden können. Anschließend erfolgte eine Inkubation für 30 Minuten in 0,5 M NaOH und 1,5 M NaCl, die die DNS-Doppelstränge in Einzelstränge denaturiert. Nach der Neutralisation des Gels für 30 Minuten in 3 M NaCl und 0,5 M Tris-HCl pH 7,5 erfolgte der eigentliche Transfer der DNS auf eine Nylonmembran. Hierzu wurde das Gel zum Aufbau des Kapillarblots auf einen mit 20 x SSC getränkten Schwamm gelegt, der sich in einer mit demselben Puffer gefüllten Edelstahlwanne befand. Hierauf wurde nun die Nylonmembran, bedeckt von einem Whatman-Papier, gelegt. Um den Kapillarsog durch das Gel zu gewährleisten wurden die Ränder mit Parafilm bedeckt. Die oberste Schicht des Blots bestand aus Papiertüchern, die mit einem Gewicht von 1 kg beschwert wurden. Der Blotvorgang dauerte ca. 16 Stunden (Blot über Nacht), in denen der Puffer aufgrund der Kapillarkräfte durch das Gel in die Papiertücher wanderte und die dabei mitgeschwemmte DNS im Nylonfilter haften blieb. Am nächsten Tag wurde die DNS mittels UV-Crosslinking bei einer Wellenlänge von 254 nm und einer Energie von 120 mJ kovalent an die Membran gebunden und anschließend zwei Stunden bei 80°C getrocknet.

3.2.18.2 Prähybridisierung

Um unspezifische Wechselwirkungen der Sonden mit der Filtermembran zu minimieren und störende Signale im Hintergrund abzusättigen, wurde die Nylonmembran für mindestens zwei Stunde bei 65°C mit Church Puffer inkubiert. Hierzu wurde die Membran mit 10 ml Church-Puffer pro cm² Blot-Oberfläche luftblasenfrei in einen Hybridisierbeutel eingeschweißt und in ein 65°C warmes Schüttelwasserbad gelegt.

3.2.18.3 Herstellung von ³²P-markierten DNS-Sonden

Die Markierung der als Sonden verwendeten DNS-Fragmente mit ³²P erfolgte mit dem Rediprime II DNS Labelling System der Firma Amersham Pharmacia. Die als Matrize dienende DNS (50 ng) wurde mit 1 x TE-Puffer auf ein Volumen von 45 µl aufgefüllt und für 5 Minuten bei 95°C denaturiert. Es schloß sich eine 5 minütige Inkubation auf Eis an, um ein Renaturieren der DNS zu verhindern. Diese DNS wurde zu einem Ansatz aus einem im Kit enthaltenen Gemisch verschiedener Hexanukleotide als Startmoleküle, sowie dATP, dTTP und dGTP gegeben und gemischt. Nach der Zugabe von 5 µl [α-³²P]-dCTP (6000 Ci/mmol) erfolgte die Synthese radioaktiv markierter DNS-Fragmente für 30 Minuten bei 37°C. Um die radioaktiv-markierte Sonde von nicht eingebauten Nukleotiden zu trennen, erfolgte eine Aufreinigung über eine Sephadex G50- Säule (NICK-Columns) nach dem Prinzip der Größenausschlusschromatographie. Hierzu wurde der radioaktive Ansatz auf eine zuvor mit 1 x TE-Puffer äquilibrierte Säule gegeben. Hiernach wurden 400 µl 1 x TE-Puffer auf die Säule gegeben und der Durchlauf im Reaktionsgefäß 1 aufgefangen. Dieser Schritt wurde 5 mal mit 200 µl 1 x TE-Puffer wiederholt und alle Fraktionen im Szintillationsmessgerät vermessen. Aufgrund ihres Molekulargewichts lag die radioaktivmarkierte Sonde meist in der zweiten und dritten Fraktion vor. Diese wurden auf Eis gelagert um eine radioaktivitätsbedingte Hydrolyse der DNS zu verhindern. Bei einer erfolgreichen radioaktiven Markierung betrug die spezifische Aktivität ca. 10^6 cpm pro ng eingesetzter DNS.

3.2.18.4 Hybridisierung mit radioaktiv markierten Sonden

Vor der Hybridisierung wurde die radioaktivmarkierte Sonde für 5 Minuten bei 95°C denaturiert, der sich eine dreiminütige Inkubation auf Eis anschloss. Die einzelsträngige DNS-Sonde wurde in ein von der Größe der Membran abhängiges Church-Puffer-Volumen (10 ml/cm² Membranoberfläche) gegeben. Hierbei wurde darauf geachtet, daß mindestens 3-5 x 10⁶ cpm/ml der radioaktivmarkierten Sonde in der Lösung vorhanden waren. Die Prähybridisierlösung, mit der der Filter zuvor 1 Stunde bei 65°C inkubiert

wurde um unspezifisches Binden der Sonde zu verhindern, wurde verworfen. Anschließend wurde die Membran in einen neuen Hybridisierbeutel überführt und mit der Hybridisierlösung luftblasenfrei eingeschweißt. Die Inkubation erfolgte bei 65°C für 16 Stunden über Nacht.

3.2.18.5 Entfernung der unspezifisch gebundenen Sonde

Nach der Hybridisierung wurde der nicht gebundene Überschuss der Sonde durch mehrere aufeinanderfolgende Waschschritte mit Puffern abnehmender Salzkonzentration im Schüttelwasserbad entfernt. Salze neutralisieren die Abstoßung zwischen den negativ geladenen Phosphatgruppen der DNS-Stränge und stabilisieren so die DNS-DNS Bindung. Durch Verwendung der Lösungen bei höheren Temperaturen (bis 75°C) und Inkubation des Blots in Lösungen mit abnehmenden Salzkonzentrationen kommt es zur Destabilisierung von unspezifisch gebundenen Nukleotidsequenzen, die somit vom Blot abgelöst und entfernt werden können. Es wurden folgende Waschschritte durchgeführt:

- 2 x SSC/ 1% SDS	65°C, eimmal für 10 Minuten
- 2 x SSC/ 1% SDS	65°C, zweimal je 20 Minuten
- 0,4 x SSC/ 1% SDS	65°C, zweimal je 20 Minuten
- 0,2 x SSC/ 1% SDS	65°C, einmal für 20 Minuten
- 0,1 x SSC/ 1% SDS	65°C, einmal für 20 Minuten (je nach Bedarf)

Die Radioaktivität wurde zwischen den einzelnen Waschschritten kontrolliert. Nach Erreichen einer Strahlung von 0,2 bis 0,7 Becquerel pro Flächeneinheit wurde die Membran in eine Kunststofffolie eingeschlagen, mit einem Phosphoimagerscreen bedeckt und in eine Entwicklungskassette gelegt. Die Signale des Phosphoimagerscreens wurden nach 24 Stunden detektiert.

4.1 Ausarbeitung einer Gentargeting-Strategie zur konditionierten Inaktivierung des TrpC5-Gens in der Maus

Ziel der vorliegenden Arbeit war es, mit Hilfe des Cre-loxP-Systems einen Gentargetingvektor zur konditionierten Inaktivierung des TrpC5-Gens herzustellen. Dieser Vektor enthält Genabschnitte, die zur Zielsequenz des TrpC5-Gens homolog sind. Bei dieser Vorgehensweise wird ein Bereich des TrpC5-Gens, der für einen essentiellen Teil des TRPC5-Proteins codiert, durch loxP-Sequenzen flankiert. Die loxP-Sequenzen bzw. die FRT-Sequenzen sind Erkennungssequenzen für die sogenannte Cre- bzw. Flp-Rekombinase. Die von den Erkennunssequenzen flankierten Bereiche werden durch die Rekombinaseaktivität je nach Orientierung und Lokalisation der Erkennungssequenz entweder deletiert, invertiert oder transloziert. Um sicher zu stellen, daß nach der Deletion des mutierten TRPC5-Allels kein funktionsfähiges Protein mehr gebildet werden kann, sollte die Deletion des ausgewählten Bereiches des TRPC5-Gens zur Verschiebung des Leserasters und somit zu einem frühzeitigen Translationsstop bei der Synthese des TRPC5-Proteins führen.

Zunächst wurde innerhalb des TrpC5-Gens ein geeigneter Abschnitt für die Crevermittelte Excision gesucht. Hierzu bot sich der Bereich des Exons 4 an, der für die Transmembrandomäne S1/S2 codiert (s. Abb. 2.2) und für die Struktur und Funktion des Proteins essentiell ist. Die Deletion des Exons 4 resultiert in einem Leserastersprung und generiert so ein vorzeitiges Stop-Codon. Von einem derart mutierten TRPC5-Allel kann demnach kein funktionelles TRPC5-Protein mehr entstehen, da höchstens noch der aminoterminale Teil des Proteins, allerdings ohne Transmembrandomäne, gebildet kann. werden trunkierten **TRPC5-Proteine** Diese werden demnach höchstwahrscheinlich nicht in die Plasmamambran inkorporiert, sondern vorzeitig abgebaut.

Zur Herstellung des Targetingvektors wurden der 5'-Homologiebereich und der 3'-Homologiebereich in separaten Klonierungsschritten kloniert, so daß diese Arbeitsschritte parallel durchgeführt werden konnten. Mittels Polymerasekettenreaktion mit Oligodesoxynukleotiden und genomische DNS von ES-Zellen (Linie R1) bzw. BAC-Klon-DNS wurden die Fragmente der Homologiebereiche amplifiziert, mit Hilfe bestimmter Endonukleasen verdaut und in zuvor angefertigte, mit spezifischen Restriktionsschnittstellen versehene Hilfsvektoren kloniert. Zur späteren Deletion von Exon 4 wurde dieser Genabschnitt durch loxP-Sequenzen flankiert. Hierdurch kann bei Mäusen, die diese Erkennungssequenzen tragen, der zwischen den loxP-Seiten liegende Bereich durch Einkreuzung von Cre-Rekombinase-Mauslinien entfernt werden. Alternativ kann dieser Genabschnitt auch in embryonalen Stammzellen durch Transfektion mit einem Cre-Rekombinase-Plasmid deletiert werden.

Zur Positivselektion von rekombinanten Klonen eine wurde Neomycin-Resistenzkassette verwendet, die durch Frt-Sequenzen flankiert ist und durch Einkreuzen bestimmter Mauslinien, die die FLP-Rekombinase exprimieren, entfernt werden kann. Dies ist nötig, da sich die Anwesenheit dieser Resistenzkassette in einem genomischen Locus negativ auf die Expression benachbarter Gene auswirken kann (A.L. Joyner, 2000). In diesem Fall spricht man von einem hypomorphen Allel, das zu einer verringerten Expression des entsprechenden Proteins führen kann. Weiterhin wurde im Bereich der homologen Arme eine Kassette verwendet, die neben einer "splice acceptor"-Sequenz (SA) eine "internal ribosomal entry site" (IRES) und die cDNS des grün fluoreszierenden Proteins (GFP) beinhaltet. Unter der Kontrolle des TrpC5 Promotors sollten von dem rekombinanten Allel GFP-Proteine exprimiert werden. Dadurch sollte es möglich sein, Zellen zu identifizieren, die das TrpC5-Gen endogen exprimieren.

Insgesamt können mit dieser Gentargeting-Strategie 3 Mauslinien generiert werden:

1) TRPC5-/-

Bei dieser Mauslinie ist ein Exon, das für einen essentiellen Proteinabschnitt des TRPC5-Ionenkanals codiert, deletiert. Hierbei besteht die Inaktivierung des TRPC5 Gens seit dem frühesten Embryonalstadium und in der Folge in allen Zellen des resultierenden Organismus.

2) TRPC5^{flox/flox}

Bei dieser Mauslinie ist das selbe Exon, das in der TRPC5-/- Mauslinine ubiquitär deletiert ist, von sogenannten loxP-Sequenzen flankiert. Durch Verpaarung der TRPC5^{flox/flox} Mäuse mit transgenen Mäusen, die die Cre-Rekombinase zelltyp-spezifisch exprimieren, ist es möglich, das TRPC5-Gen selektiv in definierten Zelltypen zu inaktivieren.

3) TRPC5^{Reporter}

Bei dieser Mauslinie ist ein Reportergen (GFP) so in das TRPC5 Gen integriert, daß es unter der Kontrolle des TRPC5-Promotors exprimiert wird. Auf diese Weise kann durch Nachweis der GFP-Fluoreszenz an intakten Zellen die Expression von TRPC5-Kanälen untersucht werden.

4.2 Klonierung einer Sonde für das Durchsuchen einer BAC-Klon-Bank

Als Matrize zur Amplifikation homologer Genabschnitte wurde genomische DNS aus Klonen von denjenigen ES-Zellen, die später zum Gentargeting verwendet werden sollten, oder alternativ genomische DNS aus Geweben des isogenen Mausstammes 129 SvJ verwendet. Weiterhin wurden DNS-Präparationen von Bakterienklonen einer isogenen genomischen Bibliothek verwendet, die den entsprechenden Abschnitt des TrpC5-Gens enthalten. Zur Identifikation eines solchen Bakterienklons wurden zwei Oligodesoxynukleotide abgeleitet, so daß mittels PCR ein DNS-Fragment amplifiziert werden konnte, das die genomische Sequenz des Exons 4 enthielt. Das gewonnene Fragment wurde in pUC18 kloniert und sequenziert. Das Insert des resultierenden Plasmids pC5_01 konnte nach Spaltung mit den Restriktionsenzymen EcoR I/BamH I vollständig isoliert werden und wurde am Roswell Park Cancer Institute, Buffalo, New York, USA als Sonde zur Durchsuchung und Identifikation des BAC-Plasmids 29P23 verwendet, das das Exon 4 des TRPC5-Gens enthielt.

4.3 Klonierung des Targetingvektors zur konditionierten Inaktivierung des TRPC5-Gens in der Maus

Zur Herstellung des Targetingvektors werden der 3'-homologe und der 5'-homologe Bereich parallel amplifiziert und in die zuvor angefertigten Hilfsvektoren kloniert. Die folgenden Abbildungen geben einen Überblick über die Klonierungsstrategie. LoxP-Erkennungssequenzen sind in den folgenden Abbildungen als schwarz gefüllte Dreiecke dargestellt, FRT-Erkennungssequenzen als nicht gefüllte Dreiecke. Die jeweils verwendeten Restriktionsendonukleasen sind aufgeführt. CIP bedeutet, daß das jeweilige Plasmid nach dem Restriktionsverdau mit einer Phosphatase (Calf Intestine Phosphatase, CIP) dephosphoryliert wurde. Die einzelnen Klonierungsschritte werden in den folgenden Kapiteln detailliert beschrieben.

4.4 Herstellung von Hilfsvektoren mit definierten Restriktionsschnittstellen

Zur Herstellung des Targetingvektors wurden sogenannte Hilfsvektoren eingesetzt. Hierzu wurde die in dem Vektor pBlueskript II SK (-) vorhandene "Multiple Cloning Site" durch den Verdau mit BssH II entfernt. Der linearisierte Vektor wurde dephosphoryliert und mittels Ligation mit einem Polylinker versehen. Dieser Polylinker bestand aus zwei komplementären, zuvor hybridisierten Oligodesoxynukleotiden mit BssH II-kompatiblen, 5'-phosphorylierten Überhängen. Diese Polylinker codieren für die Sequenzen der benötigten Enzyme und die benötigten loxP-Seiten.

Die entstandenen Hilfsvektoren (Abb 4.1) wurden doppelsträngig sequenziert, um die Korrektheit der eingeführten Restriktionsschnittstellen zu überprüfen.

Abbildung 4.1: Schematische Darstellung der für die Targetingstrategie hergestellten Hilfsvektoren. Die Nukleotide "TCTTACCCTGAG" bilden den Übergang vom 5`-homologen Arm zum 3`-homologen Arm des Targetingvektors. Diese Nukleotide werden mit Hilfe des Hilfsvektors pC5_19 in den Targetingvektor eingebracht, um keine klonierungsbedingten Deletionen im TRPC5 Gen hervorzurufen. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

$E = CoR I_C C_5_{-83} \rightarrow Fragment 1 + C_5_{-06} + C_5_{-30} + C_5_{-10} + C_5$

4.5 Klonierung des 5`-homologen Bereichs des Targetingvektors

Abbildung 4.2: Schematische Darstellung des 5`-homologen Bereichs des Targetingvektors des TRPC5-Gens. Abgebildet sind das Exon 4 (Kästchen), die zur Amplifikation verwendeten Oligodesoxynukleotide und die zur Klonierung dieser Fragmente benötigten Restriktionsschnittstellen.

Zur Herstellung des 5'-homologen Armes wurden zunächst die drei in Abb. 4.2 amplifizierten Fragmente kloniert. Alle drei Fragmente konnten mit Hilfe der *Pfu*-Polymerase amplifiziert werden. Die Oligodesoxynukleotide wurden meist so gewählt, daß sie das zu klonierende Fragment flankieren und der Abstand so gelegt, daß ein Überhang von ca. 250 Nukleotiden zu den jeweiligen Restriktionsschnittstellen entsteht. So konnte nach dem Restriktionsverdau der PCR-Amplifikate mit den entsprechenden Enzymen sichergestellt werden, daß das zu klonierende Fragment mit dem richtigen Restriktionsenzym geschnitten wurde. Die Amplifikationsprodukte wurden nacheinander zusammenkloniert. Anschließend wurden die Selektionskassetten für die Positiv- bzw. Negativselektion eingefügt (s. Abb. 4.3 - 4.8).

Alle klonierten Amplifikationsprodukte wurden nach der Klonierung doppelsträngig sequenziert und mit der Sequenz der öffentlich zugänglichen Genomdatenbank verglichen (http://www.ensembl.org).

4.5.1 Klonierung von PCR-Fragment 3

Das mit Hilfe der Oligodesoxynukleotide C5_09 und C5_10 aus BAC-Klon-DNS amplifizierte Fragment wurde mit Afl II verdaut und im folgenden Schritt in den mit Afl II verdauten und dephosphorylierten Hilfsvektor pC5_04 kloniert (siehe Abb. 4.3).

Abbildung 4.3: Klonierung des Vektors pC5_05

4.5.2 Klonierung von PCR-Fragment 2

Der Hilfsvektor pC5_03 wurde zur Klonierung des zweiten PCR-Fragments mit den Restriktionsendonukleasen EcoR I und Afl II geschnitten. Im Anschluss wurde das aus ES-Zell-DNS und den Oligodesoxynukleotiden C5_07 und C5_30 amplifizierte PCR-Fragment mit denselben Enzymen verdaut und in diesen Vektor ligiert (siehe Abb. 4.4).

<u>Abbildung 4.4</u>: Klonierung des Vektors pC5_06. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.5.3 Klonierung von PCR-Fragment 1

In diesem Klonierungsschritt wurde das mit EcoR I verdaute PCR-Produkt, das mit Hilfe der Oligodesoxynukleotide C5_06 und C5_83 aus ES-Zell-DNS gewonnen wurde, in den ebenfalls mit EcoR I verdauten und dephosphorylierten Vektor pC5_06 vor das Fragment 2 kloniert (siehe Abb. 4.5). In diesem Fall war an den Primer C5_83 eine EcoR I Schnittstelle ans 5` Ende gekoppelt, da mit Oligodesoxynukleotiden, die 5` der mit * gekennzeichneten EcoR I Schnittstelle lagen, keine spezifischen DNS-Fragmente amplifiziert werden konnte. Dadurch verringert sich der 5` homologe Arm um ca. 150 Nukleotide im Vergleich zur ursprünglich geplanten Sequenz.

<u>Abbildung 4.5</u>: Klonierung des Vektors pC5_07. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.5.4 Klonierung des Vektors pC5_08

Zur Klonierung des Vektors pC5_08, der für die weiteren Klonierungsschritte zusätzliche singuläre Schnittstellen für weitere Restriktionsenzyme enthält, wurde ein Not I / Xma I Fragment aus dem Vektor pC5_07 freigesetzt und in den ebenfalls mit Not I und Xma I geschnittenen Vektor pC5_05 vor das PCR-Fragment 3 subkloniert (siehe Abb. 4.6).

<u>Abbildung 4.6</u>: Klonierung des Vektors pC5_08. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.5.5 Klonierung des Vektors pC5_09/ Einfügen der Negativselektionskassette

In dem nachfolgenden Klonierungsschritt wurde die Thymidinkinase-Kassette, die der Negativselektion dient und sich mit Not I aus dem Vektor pBTK_1 isolieren ließ, in die Not I Schnittstelle des Vektors pC5_08 kloniert (siehe Abb. 4.7). Im Targetingvektor liegt diese Selektionskassette somit am 5` Ende des Vektors (siehe Abb. 4.18).

Abbildung 4.7: Klonierung der Thymidinkassette. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.5.6 Klonierung des Vektors pC5_10/ Einfügen der SA-IRES-GFP-FRT-NEO-FRT Kassette

Im letzten Klonierungsschritt der 5'-Homologie wurde neben der Neomycin-Resistenzkassette eine SA-IRES-GFP-Kassette in den Vektor pC5_09 kloniert. Der Vektor pmCatL_65A wurde von Frau Dr. Jenny Olausson zur Verfügung gestellt. Er basiert auf dem von Dr. Kulessa und Dr. B. Hogan (Vanderbilt University, Nashville, USA) zur Verfügung gestellten Vektor psP-loxP-SA-IRES-lacZ-FRT-NEO (Kulessa and Hogan, 2002). Im Vektor pmCatL_65A wurde das lacZ-Gen durch das GFP Gen ersetzt und die NEO-Kassette ist durch Einfügen einer weiteren FRT-Erkennungssequenz von zwei FRT-Sequenzen flankiert (s. Abb. 4.9). Die gesamte SA-IRES-GFP-FRT-NEO-FRT-Kassette konnte mit Sal I aus dem Vektor pmCatL_65A freigesetzt und in den mit Xho I geschnitten und dephosphorylierten Vektor pC5_09 kloniert werden (siehe Abb. 4.8), da mit Sal I bzw. Xho I geschnittene DNS-Fragmente kompatible kohäsive Enden aufweisen.

Abbildung 4.8: Klonierung des Vektors pC5_10. Das schwarz gefüllte Dreieck stellt die loxP- und das weiße Dreieck die FRT-Erkennungssequenz dar.

4.6 Klonierung des 3`-homologen Bereichs des Targetingvektors

<u>Abbildung 4.9</u>: Schematische Darstellung des 3`-homologen Bereichs des Targetingvektors innerhalb des TrpC5- Gens. Abgebildet sind die zur Amplifikation verwendeten Oligodesoxynukleotide und die zur Klonierung dieser Fragmente benötigten Restriktionsschnittstellen.

In diesem Bereich sollten zwei Fragmente des 3'-homologen Armes des Targetingvektors kloniert werden. Auch hier wurden die Oligodesoxynukleotide so gewählt, daß sie das zu klonierende Fragment flankieren und ein Überhang von ca. 250 Nukleotiden zu den jeweiligen Restriktionsschnittstellen entsteht. Die PCR wurde bei allen Reaktionen mit *Pfu*-Polymerase durchgeführt. Die Fragmente wurden zusammenkloniert und im letzten Schritt zusammen in den letzten Vektor der 5'-Homologie, pC5 10, kloniert.

Alle Amplifikationsprodukte wurden nach der Klonierung doppelsträngig sequenziert und mit der Sequenz der öffentlich zugänglichen Genomdatenbank verglichen (http://www.ensembl.org).

4.6.1 Klonierung von PCR-Fragment 4

Das erste Fragment der 3'-Homologie wurde mit Hilfe der Oligodesoxynukleotide C5_11 und C5_12 aus BAC-Klon-DNS amplifiziert. Im Anschluss wurde es mit den Enzymen Xba I und Bgl II verdaut und in den mit den selben Enzymen geschnittenen Hilfsvektor pC5_11b kloniert (siehe Abb. 4.10).

<u>Abbildung 4.10</u>: Klonierung des Vektors pC5_12. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

Bei der Sequenzierung dieses Fragments traten in einem Bereich entsprechend Position 10101 und 11186 des Targetingvektors (s. Abb. 4.18) Unterschiede mit der in der ENSEMBL-Datenbank veröffentlichten Sequenz auf, wobei in dem hier amplifizierten Fragment Nukleotide fehlten.

- Hinter Position 10101 fanden sich in der von ENSEMBL veröffentlichten Sequenz weitere 6 Nukleotide (TCTCAC).
- Auch hinter Position 11186 waren in der von ENSEMBL veröffentlichten Sequenz
 weitere Nukleotide (TTT) vorhanden.

Die durch Amplifikation mit den Oligodesoxynukleotiden C5_11 und C5_12 sowie BAC-Klon-DNS erhaltene Sequenz, die in der Sequenz des Targetingvektors (siehe Abb. 4.18) wiedergegeben ist, konnte jedoch durch mehrmaliges Sequenzieren unabhängiger Plasmide sowie durch direktes Sequenzieren des BAC-Plasmids 29P23 bestätigt werden.

4.6.2 Klonierung von PCR-Fragment 5

In diesem Klonierungsschritt wurde das mit Bgl II geschnittene Amplifikationsprodukt, das mit Hilfe der Oligodesoxynukleotide C5_13 und C5_14 aus ES-Zell-DNS gewonnen wurde, in den ebenfalls mit diesen Enzymen verdauten Vektor pC5_11b kloniert (siehe Abb. 4.11).

<u>Abbildung 4.11</u>: Klonierung des Vektors pC5_13a. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

Im Bereich dieses Fragments wies sich im Vergleich zu der in der ENSEMBL-Datenbank veröffentlichten Sequenz ein unterschiedliches Nukleotid an Position 12472 auf (s. Abb. 4.18). Dieses war sowohl in 3 weiteren unabhängigen Plasmiden als auch im BAC-Klon 29P23 nachweisbar, so daß davon ausgegangen werden kann, daß die amplifizierte Sequenz die Sequenz des TRPC5-Gens in Mäusen des 129 SvJ Inzuchtstammes repräsentiert.

4.6.3 Klonierung des Vektors pC5_13

Zur Klonierung des Vektors pC5_13 wurde das in den Vektor pC5_13a klonierte Fragment mit Bgl II freigesetzt und in den ebenfalls mit Bgl II geschnittenen und dephosphorylierten Vektor pC5_12 hinter das PCR-Fragment 1 subkloniert (siehe Abb. 4.12).

<u>Abbildung 4.12</u>: Klonierung des Vektors pC5_13. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.6.4 Klonierung des Vektors pC5_14

Zur weiteren Klonierung sollten zunächst die homologen Bereiche der 3`-Homologie mittels einem Pvu II / Not I-Verdau aus dem Vektor pC5_13 freigesetzt und in den mit diesen Enzymen verdauten Vektor pC5_11a ligiert werden (siehe Abb. 4.13).

<u>Abbildung 4.13</u>: Erste Strategie zur Klonierung des Vektors pC5_14. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

Die Spaltung des Vektors pC5_13 mit Pvu II lieferte allerdings wiederholt DNS-Fragmente unerwarteter Größe, die möglicherweise durch unspezifische DNS-Spaltung hervorgerufen wird. Deswegen wurde die Klonierungsstrategie modifiziert und der TRPC5 Genabschnitt bestehend aus den amplifizierten Fragmenten 4 und 5 mittels Xba I und Not I freigesetzt. Deshalb wurde ein weiterer Hilfsvektor (pC5_19) benötigt, der neben den benötigten Schnittstellen auch die 12 Nukleotide "TCTTACCCTGAG" als Anfang des 3'-homologen Armes und die loxP-Sequenz enthält.

Nach der Freisetzung des Fragments aus dem Vektor pC5_13 mit Hilfe der Enzyme Xba I/ Not I konnte das Fragment in den neu hergestellten Hilfsvektor pC5_19 kloniert werden, der ebenfalls mit Xba I/ Not I gespalten wurde (siehe Abb. 4.14).

Abbildung 4.14: Klonierung des Vektors pC5_14. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.
4.6.5 Klonierung des Vektors pC5_15

In dem nachfolgend beschriebenen Klonierungsschritt wurde in den mit Not I geschnittenen und dephosphorylierten Vektor pC5_14 eine weitere Thymidinkinase-Kassette kloniert. Die Verwendung von zwei unabhängigen Negativselektionskassetten sollte dabei die Effektivität der selektiv homolog rekombinanter ES-Zellklonen im Gentargetingexperiment steigern. Diese wurde mit Hilfe des Restriktionsenzyms Not I aus dem Vektor pBTK_1 freigesetzt. Somit liegt diese im Targetingvektor am 3` Ende des Vektors (siehe Abb. 4.15).

<u>Abbildung 4.15</u>: Klonierung des Vektors pC5_15. Das schwarz gefüllte Dreieck stellt die loxP Erkennungssequenz dar.

4.6.6 Klonierung des Vektors pC5_16

Im finalen Klonierungsschritt wurden die homologen Fragmente des 3`-Homologiebereichs inklusive Thymidinkinasegen in den Vektor pC5_10, der die gesamte 5`-Homologie enthält, kloniert. Hierzu wurde das Fse I/ Asc I freigesetzte Fragment aus pC5_15 in den ebenfalls Fse I und Asc I geschnittenen Vektor pC5_10 ligiert (siehe Abb. 4.16).

Abbildung 4.16: Klonierung des finalen Vektors pC5_16. Das schwarz gefüllte Dreieck stellt die loxP- und das weiße Dreieck die FRT-Erkennungssequenz dar.

Der resultierende Vektor pC5_16 enthält nach der zweiten Thymidinkinasekassette, die auf den 3'-homologen Arm folgt, eine singuläre Asc I Schnittstelle. Diese dient der Linearisierung des Plasmids vor der Transfektion der ES-Zellen mittels Elektroporation. Allerdings ließ sich das Plasmid pC5_16 nicht in größeren Mengen präparieren. Es wurde vermutet, daß es durch die zweifache Insertion des Thymidinkinasengens zu intramolekularer DNS-Rekombination kommt. Aus diesem Grund wurden Transformationen in verschiedene Bakterienstämme durchgeführt:

Zunächst erfolgte eine Transformation in DH5 α -Zellen. Diese besitzen 2 Mutationen, *recA* und *endA*, die die Stabilität der DNS vergrößern und die Rekombinationswahrscheinlichkeit verringern. Jedoch konnte auch aus diesem Bakterienstamm keine ausreichende Plasmidmenge isoliert werden.

Im nächsten Schritt wurde das Fragment in den *E. coli* Stamm Epicurian XL10 –Gold, der sich durch seine hohe Transformationseffizienz auszeichnet, sowie in den SURE-Stamm transformiert. Im SURE-Stamm sind DNS-Reparatursysteme inaktiviert, die an Bereichen repetitiver Sequenzen und anderen irregulären Strukturen angreifen und so Rekombinationen und Deletionen hervorrufen können. Aufgrund dieser Inaktivierung erhält man auch hier eine größere Stabilität eingefügter Plasmid-DNS und eine Verringerung von Rekombinationsereignissen. Es gelang allerdings weder aus dem SURE-Stamm noch aus dem Epicurian XL10 –Gold-Stamm, eine zur Transfektion von ES-Zellen ausreichende Menge Plasmid-DNS zu präparieren.

Da für ein erfolgreiches Gentargetingexperiment Plasmid-DNS in der Größenordnung von mehr als 100 µg benötigt wird, wurde aus den Vorläuferplasmiden ein Targetingvektor hergestellt, der nur eine Thymidinkassette enthält. Demzufolge sollten intramolekulare Rekombinationsereignisse nicht mehr auftreten und das Plasmid sollte sich in ausreichender Menge isolieren lassen.

4.6.7 Klonierung des Vektors pC5_16b

Hierzu wurden die homologen Fragmente des 3`-Homologiebereichs mit den Enzymen Fse I und Asc I aus dem Vektor pC5_14 freigesetzt und in die korrespondierende Stelle des Vektors pC5_10, der die gesamte 5`-Homologie enthält, kloniert (siehe Abb. 4.17).

<u>Abbildung 4.17</u>: Klonierung des alternativen Vektors pC5_16b. Das schwarz gefüllte Dreieck stellt die loxP- und das weiße Dreieck die FRT-Erkennungssequenz dar.

Der aus dieser Klonierung hervorgegangene Vektor pC5_16b ließ sich in größeren Mengen isolieren und konnte somit zur weiteren Verwendung im Gentargeting-Experiment verwendet werden.

Die Nukleotidsequenz des Targetingvektors pC5_16b ist in Abbildung 4.18 dargestellt. Die Gesamtlänge beträgt ca. 16400 bp.

	TK-Kassette	GAGGCGCTTT	TCCCAAGGCA	GTCTGGAGCA	60
Not I	CCCCACTTCC	СССТАСАСАА	GTGGCCTCTG	GCCTCCCACA	120
	CCCCCAACCC	COMCCOMMON		CURCECCEC	100
	GUGULAAUUG	GCICCGIICI	IIGGIGGCCC	CIICGCGCCA	190
CCTTCTACTC CTCCCCTAGT	CAGGAAGTTC	CCCCCCGCCC	CGCAGCTCGC	GTCGTGCAGG	240
ACGTGACAAA TGGAAGTAGC	ACGTCTCACT	AGTCTCGTGC	AGATGGACAG	CACCGCTGAG	300
CAATGGAAGC GGGTAGGCCT	TTGGGGCAGC	GGCCAATAGC	AGCTTTGCTC	CTTCGCTTTC	360
TGGGCTCAGA GGCTGGGAAG	GGGTGGGTCC	GGGGGCGGGC	TCAGGGGCGG	GCTCAGGGGC	420
GGGGCGGGCG CCCGAAGGTC	CTCCGGAGGC	CCGGCATTCT	GCACGCTTCA	AAAGCGCACG	480
TCTGCCGCGC TGTTCTCCTC	TTCCTCATCT	CCGGGCCTTT	CGACCAGGCT	GCGCGTTCTC	540
GCGGCCATAG CAACCGACGT	ACGGCGTTGC	GCCCTCGCCG	GCAGCAAGAA	GCCACGGAAG	600
TCCGCCCGGA GCAGAAAATG	CCCACGCTAC	TGCGGGTTTA	TATAGACGGT	CCCCACGGGA	660
TGGGGAAAAC CACCACCACG	CAACTGCTGG	TGGCCCTGGG	TTCGCGCGAC	GATATCGTCT	720
ACGTACCCGA GCCGATGACT	TACTGGCGGG	TGCTGGGGGC	TTCCGAGACA	ATCGCGAACA	780
TCTACACCAC ACAACACCGC	CTCGACCAGG	GTGAGATATC	GGCCGGGGGAC	GCGGCGGTGG	840
TAATGACAAG CGCCCAGATA	ACAATGGGCA	TGCCTTATGC	CGTGACCGAC	GCCGTTCTGG	900
CTCCTCATAT CGGGGGGGGAG	GCTGGGAGCT	CACATGCCCC	GCCCCCGGCC	CTCACCCTCA	960
TCTTCGACCG CCATCCCATC	GCCGCCCTCC	TGTGCTACCC	GGCCGCGCGG	TACCTTATGG	1020
GCAGCATGAC CCCCCAGGCC	GTGCTGGCGT	TCGTGGCCCT	CATCCCGCCG	ACCTTGCCCG	1080
GCACCAACAT CGTGCTTGGG	GCCCTTCCGG	AGGACAGACA	CATCGACCGC	CTGGCCAAAC	1140
GCCAGCGCCC CGGCGAGCGG	CTGGACCTGG	CTATGCTGGC	TGCGATTCGC	CGCGTTTACG	1200
GGCTACTTGC CAATACGGTG	CGGTATCTGC	AGTGCGGCGG	GTCGTGGCGG	GAGGACTGGG	1260
GACAGCTTTC GGGGACGGCC	GTGCCGCCCC	AGGGTGCCGA	GCCCCAGAGC	AACGCGGGCC	1320
CACGACCCCA TATCGGGGAC	ACGTTATTTA	CCCTGTTTCG	GGCCCCCGAG	TTGCTGGCCC	1380
CCAACGGCGA CCTGTATAAC	GTGTTTGCCT	GGGCCTTGGA	CGTCTTGGCC	AAACGCCTCC	1440
GTTCCATGCA CGTCTTTATC	CTGGATTACG	ACCAATCGCC	CGCCGGCTGC	CGGGACGCCC	1500
TGCTGCAACT TACCTCCGGG	ATGGTCCAGA	CCCACGTCAC	CACCCCCGGC	TCCATACCGA	1560
CGATATGCGA CCTGGCGCGC	ACGTTTGCCC	GGGAGATGGG	GGAGGCTAAC	TGAAACACGG	1620
AAGGAGACAA TACCGGAAGG	AACCCGCGCT	ATGACGGCAA	TAAAAAGACA	GAATAAAACG	1680
CACGGGTGTT GGGTCGTTTG	TTCATAAACG	CGGGGTTCGG	TCCCAGGGCT	GGCACTCTGT	1740
CGATACCCCA CCGAGACCCC	ATTGGGGCCA	ATACGCCCGC	GTTTCTTCCT	TTTCCCCACC	1800
CCACCCCCCA AGTTCGGGTG	AAGGCCCAGG	GCTCGCAGCC	AACGTCGGGG	CGGCAGGCCC	1860
TGCCATAGCC ACTGGCCCCG	TGGGTTAGGG	ACGGGGTCCC	CCATGGGGAA	TGGTTTATGG	1920

	TTCGTGGGGG	TTATTATTTT	GGGCGTTGCG	TGGGGTCAGG	TCCACGACCC	AAGCTCTAGA	1980
	ACTAGTGGAT	CATCGAATTC	En	de der TK-Ka GGGGATCCAC	SSETTE TAGTTCTAGA	GCGGCCGCGA	2040
F	ATTCCCAAAG	t 5 Homolog TGTGGATTCT	jie, Fragmen TCATTCCTTC	t 1 TTAGAATGGG	GAACAAAATA	CCCATGGAAG	2100
	GAGTTACAGA	GACAAAGTTT	GGAACCAAGA	CTGAAGGAAG	GACCATCCAG	AGACTGACCC	2160
	ACCTGGGGAT	CCATCCCATA	AACAACCACC	AAACCCAGAT	ACTATTGTAT	АТАССААСАА	2220
	GATTTTGCTG	GCAGGACCCT	GATATAGCTG	TCTCCTGTGA	GGCTATGCCA	GTGCCTGGCA	2280
	AAAACAGGAG	TCACAGTCAT	CTATTGGATG	GAACACATGG	TCCCTAATGA	ATGAGCTAGA	2340
	GAAAGTACCC	AAGGAGCTAA	AGGGGTCTGC	AGGCCTATGG	GAGGAACAAC	AATATGAACT	2400
	AACCCATACC	CCCCAGAGCT	GTGTCTCTAG	TTGCATATGT	AGCAGAGGAT	AACCTAGTCG	2460
	GCCATCAATT	GGAGGAGTGG	CCCTTGGTCT	TGCAAAGATT	CTATGCCCCA	GTATAGGGGA	2520
	ATGCCAGGAC	CAGGAAGTGG	GAGTGAATGG	GTTGGTGAGC	AGGGGGGTGG	GGGAGGGTAT	2580
	AGGCGATTTT	TGGAGAGGAA	ACTAGAAAAG	GGGATAGCAT	TTGAAATGTA	AATGAAGAAA	2640
	ТСАТСТААТА	AAAAATGGAA	AAACGATTCT	GAGACGACTT	TATCTGCTAT	GATGAGGCAT	2700
	ATTTCTAAGG	AGGAGACTCT	AAACTGTAAA	ACCTTTTTTT	ACAAAGCATC	CTACTCTTTA	2760
	TACATCCATT	TTCCTCAGTA	GATATGATAC	TCTCAGTTGT	CTTATTTCTT	TTCTTTTCTT	2820
	TTTCATTGCA	TCTTTAGATT	TAGTTTTCCC	CTTCAGCTTC	CCTATATCTT	CTTGGGCTTC	2880
	TTTGGCATAG	TCTGTGATGC	CTAGTGTCTT	AGTCAGGGTT	TCTATTCCTG	AACATACATC	2940
	ATGACTAAGA	AGCAAGCTGG	GGAGGAAAGG	GTTTATTCAG	CTTACACCTC	CACATTGCTG	3000
	TTCATCACCA	AAGGAAGTCA	GGATAGAAAC	TCACACCAGG	CAGGAACTTG	GAGGCAGGGG	3060
	CTGATGCAGA	GGCCATGGAA	AAGTGCTGCA	TTCTGACTTA	CTTCCCCTGG	CTTGCTCAAC	3120
	TTGCTTTCTT	ATAGAACCAA	GACTACCAGC	CCAGGGATGG	CACCACTCAC	AATGGGCCCT	3180
	CGCACCCTTG	ACCACTAATT	GAGAAAATGC	TTACAGATGG	ATCTCATGGA	CGCATTTCCT	3240
	CAAGGGAAGC	TCCTTTCCCT	GTGATAACTC	TAACTTGTGT	CAAGTTGACA	CAAAACTAGC	3300
		GAAATAAAAA de Fragmen	GGATCTGTAT	GATTTGTTAA	TGAATTTGTG	GAAGGGACGA	3360
	TGAATTCAGA ECOR I	GGATAAAAAT	ATTTTACAAA	TTAGAAAATA	TTTTGGACCA	ATGCCTGGCA	3420
	AATACAGAAG	TAGATACTCA	CAGTCATCCA	TTGGACAGAG	CACAAAGTCC	CCAATGAAGG	3480
	AGCCAGAGAA	AGTACCCAGG	GAGCTGAAGG	GGTCTGAAGC	CCCATAGGAG	GAACATCAGT	3540
	ATGAACTAAC	CAGTGCCCCA	GAGCTCCTTG	CAACTATACC	АССААТСААА	GAAAACACAT	3600
	GGTGGAACTT	GTAGCTCTAG	CTGTATATGT	AGCAGAGGAT	GACTTTGTGG	GGCTTCAATG	3660
	GGAGGAGAGG	CCCTTGGTCC	TTTGAAAGCT	CTATGCCCCA	GTATAGGGGA	ATGCCAGGAC	3720
	CAGGAATGGG	AGTGGGTGGG	TTGGGGAGCA	GGGGGAGGGG	GAAGGGATAG	AGGATTTTCA	3780
	GAGGGGAAAC	TAGGAAAGGG	GATAACACTT	GAAATGTAAA	GAAAATAATC	ТАААААААТ	3840

AATAAAAGTI	TTATGAAAAA	AGAAAATACT	TTGGTATAGT	GTGTGTGTGA	TTGTTTTACC	3900
TTTGTGAATG	TATGTGTGCC	ATATGTGTGC	CTGTGTCCAT	AGAGGTGAGA	AGGAGACATT	3960
GGATCCCCCT	GGAACTGGCG	TGTTACAAAT	GGTTGTCAGC	TACCACGTGG	TTCCTTAGAA	4020
CTGACCTGCA	TCCTCTACAA	GAGGATCTTA	AACACTGAGC	GATCTTTTTA	AGTCACAGAG	4080
ATTATTTTT	TTTCAGTTTC	CTAATTTCCA	ACTGCTTTAG	ACCTAAAAGC	ATATGGTGGC	4140
ттааааста	TAGAATTTTC	TCATGAATTT	ATCTCAAGGT	AAATATTCTT	GGTCAGCAGA	4200
ATAGTTCTCT	TCCTTGATGA	TAGTAAGGGG	CGTGGGCTCT	CAAAAACTCC	CCAGATGGAG	4260
TATAGCCACA	GAGGAACACT	CATGGAACAC	TTCTATGGGC	TACTCCTGGA	ACTTCTGCAC	4320
ATCATTTCTC	TTCCTATTTG	GTTAATGAGA	ACTTAGTCAC	ATGGCCAGGG	ATACTGAGAA	4380
ATATCGTCTA	CCCATGGAGT	AGACTAAGGA	GGAGAATGAC	TTGATTGAGA	CTTTCTGGTC	4440
GTTGTAAATA	ТААТААДААА	GTTGGGATAG	TTTGCCTTAG	GTGTTAGGTA	AATGATGGAA	4500
GAGGTTTCTG	TCCTTTGTAT	TAGTATGCTA	CATGGTGTAG	CTATGTTCAT	CTGTCCCCTG	4560
GGAAGCTTGA	ATAGTCAAAT	GTAGGCAGTA	TTTCAAATCA	TGGTTGACAG	CTGAGCTCCC	4620
TATTGACTCA	CTTACCAGGA	AGTAGCAGCT	GAAGGGTGAC	TTGCATTGCT	GATTATTCCT	4680
ТААТТАТТАА	TCACTGACAC		GCCTTAAGAG	ATCTGGTACC	ATAACTTCGT	4740
ATAGCATACA	TTATACGAAG	TTATCCCGGG		ACCCCAGCTG	GGTTAGTATA	4800
СААТАТТАТА	GTGTTGACCC	CCAAATATTT	TTCCTGTGTT	GTATGTCTAG	GCTAGAATGG	4860
ATATTAGATA	GATAGCAGAG	TAGCAACCTT	ATTTATTGCA	AACCAGCCAA	GTGATACTCA	4920
АААСААААТС	GGAAAAAGGC	АААААТСААА	AAGGGAACTA	ATTTCCATTT	CAAACCATAG	4980
CCACAGGCAG	AGTTTATTCT	CTGGCAGTTT	GCGTTTCCCC	AAACCAACTG	TACACTTGAC	5040
AGTGACCTCA	TGTAGGATAA	GGGAATGAAT	AGAAGTAAAT	CAGTCTGAAA	ТАААААТССТ	5100
CAGGCTTCTC	AACTGAGACG	CACATATATT	CCCAGGGAAA	TTTAGAAAAC	TGATATCCAG	5160
GCTCAATCCT	TCATTACCTT	AGGGAGTCTC	AGCCCATCCG	GAATGGACCT	GGTGAGCTCG	5220
ATTTTTCAAT	GTGCTTTTAA	TGACTCTGTC	TTCTCTGTGT	CACACGGGCT	TTCGCTGGAG	5280
AAGACTGTGA	TGGAAGTATT	ATGAGCATTG	ACTTTTTCCT	GGGCTGATCT	CAGGTGCCTA	5340
ACTTGTTCTT	TTCTTTTCCC	AGTTTGTCGC	TCAGCCAAAC	TGCCAACAAT	TGCTAGCCAC	5400
CTTGTGGTAC	GATGGCTTCC	CTGGATGGCG	GAGAAAACAC	TGGGTAGTCA	AGCTTCTGAC	5460
CTGCATGACC	ATTGGATTCC	TGTTTCCTAT	GCTGTCCATA	GCCTATCTGA	TCTCACCCAG	5520
AAGCAACCTT	GGGCTTTTCA	TCAAGAAACC	CTTTATTAAG	TTCATCTGCC	ACACAGCATC	5580
CTATCTGACC	TTCCTCTTCA	TGCTTCTCCT	GGCTTCTCAA	CATATCGTCA	GAACAGACCT	5640
CCATGTTCAA	GGACCTCCCC	CAACTGTTGT	GGAATGGATG	ATACTGCCTT	GGGTTCTAGG	5700
TAAGTGAAAC	AGAACAATAA	TGACTATGCT	GTCTTCTAGT	CCCACTTTAA	AAACTACTGG	5760

ACATGCATTC AGTGGAATGT GTAGCTCTGA CTAAAGACCC CTCTAGTGAG CCTGTATTGA 5820 GAATCTAAGA AATGTGGTTC CTTCTATCCT AGGTTCTTCT GATCACTCAA TTATGCATAA 5880 GCCATTGTAA AATAAGCATA TTCTCAGAGT TTGCATCTGC TCACCTAACA TCTTTTAGGA 5940 TTGTAAAATA AAAAATGGGT GTTAGTTGGC TTAGGGGAGA AAGCTTTGTG TCAGTCACTA 6000 TAGGCTTCAA GGAAACTAGA CAGGGCAAGC ACTGAGTATT CTATTTAAAA CACCCTTTGC 6060 TATAACCAGG AAGCACATGG ATTCTGCTGA TTTCTTGTGT TTGTGTCAAT TTCATAGAAT 6120 CCTAGTTCAG GATCTATGTA CTTTTTGAAT ACTGGTCCCA CAGTCAGAAG AAAAAAACTG 6180 AGAAATTCAC TCTGACCATG GTAAAAGTTG ATCTCCCTGT GATCTTCAGA CATAATCAGA 6240 TGACACTGAC CTCTCCAGTA CATGCCATCT TCTATGTCTA TGTGACTCAA ACTCTGAACC 6300 Ende Fragment 3 & Ende 5`Homologie -TCAAGCTAGC ATTTTGAGCA TGATTTGGGA TTTTATCATT GACATCTTAA GAGAT 6360 Afl II Bgl II Bcl I 6420 → Start SA TTATGCAGAG ACATCTCTAT TTCTCGCTAT TGATCGGTGT TTATTTATTC TTTAACCTTC 6480 Ende SA - Start IRES CACCCCAACC CCCTCCCCAG AGACACCGAA GATCCGCCCC TCTCCCTCCC CCCCCCTAA 6540 BamH I/Bgl II CGTTACTGGC CGAAGCCGCT TGGAATAAGG CCGGTGTGCG TTTGTCTATA TGTTATTTTC 6600 CACCATATTG CCGTCTTTTG GCAATGTGAG GGCCCGGAAA CCTGGCCCTG TCTTCTTGAC 6660 GAGCATTCCT AGGGGTCTTT CCCCTCTCGC CAAAGGAATG CAAGGTCTGT TGAATGTCGT 6720 GAAGGAAGCA GTTCCTCTGG AAGCTTCTTG AAGACAAACA ACGTCTGTAG CGACCCTTTG 6780 CAGGCAGCGG AACCCCCCAC CTGGCGACAG GTGCCTCTGC GGCCAAAAGC CACGTGTATA 6840 AGATACACCT GCAAAGGCGG CACAACCCCA GTGCCACGTT GTGAGTTGGA TAGTTGTGGA 6900 AAGAGTCAAA TGGCTCTCCT CAAGCGTATT CAACAAGGGG CTGAAGGATG CCCAGAAGGT 6960 ACCCCATTGT ATGGGATCTG ATCTGGGGCC TCGGTACACA TGCTTTACAT GTGTTTAGTC 7020 GAGGTTAAAA AAACGTCTAG GCCCCCCGAA CCACGGGGAC GTGGTTTTCC TTTGAAAAAC 7080 Ende IRES ACGATGATAA TATGGCCACA ACCATGGTGA GCAAGGGCGA GGAGCTGTTC ACCGGGGTGG 7140 TGCCCATCCT GGTCGAGCTG GACGGCGACG TAAACGGCCA CAAGTTCAGC GTGTCCGGCG 7200 AGGGCGAGGG CGATGCCACC TACGGCAAGC TGACCCTGAA GTTCATCTGC ACCACCGGCA 7260 AGCTGCCCGT GCCCTGGCCC ACCCTCGTGA CCACCCTGAC CTACGGCGTG CAGTGCTTCA 7320 GCCGCTACCC CGACCACATG AAGCAGCACG ACTTCTTCAA GTCCGCCATG CCCGAAGGCT 7380 ACGTCCAGGA GCGCACCATC TTCTTCAAGG ACGACGGCAA CTACAAGACC CGCGCCGAGG 7440 TGAAGTTCGA GGGCGACACC CTGGTGAACC GCATCGAGCT GAAGGGCATC GACTTCAAGG 7500 AGGACGGCAA CATCCTGGGG CACAAGCTGG AGTACAACTA CAACAGCCAC AACGTCTATA 7560 TCATGGCCGA CAAGCAGAAG AACGGCATCA AGGTGAACTT CAAGATCCGC CACAACATCG 7620 AGGACGGCAG CGTGCAGCTC GCCGACCACT ACCAGCAGAA CACCCCCATC GGCGACGGCC 7680

CCGTGCTGCT GCCCGACAAC CACTACCTGA GCACCCAGTC CGCCCTGAGC AAAGACCCCA 7740 ACGAGAAGCG CGATCACATG GTCCTGCTGG AGTTCGTGAC CGCCGCCGGG ATCACTCTCG 7800 Ende GFP 🔸 GCATGGACGA GCTGTACAAG TAÀAGCGGCC GCGACTCTAG ATCATAATCA GCCATACCAC 7860 ATTTGTAGAG GTTTTACTTG CTTTAAAAAA CCTCCCACAC CTCCCCCTGA ACCTGAAACA 7920 TAAAATGAAT GCAATTGTTG TTGTTAACTT GTTTATTGCA GCTTATAATG GTTACAAATA 7980 AAGCAATAGC ATCACAAATT TCACAAATAA AGCATTTTTT TCACTGCATT CTAGTTGTGG 8040 TTTGTCCAAA CTCATCAATG TATACCATGG CTTAAGGAAG TTCCTATTCT CTAGAAAGTA 8100 Afl II 1. frt-Sequenz Start NEO TAGGAACTTC TTAATTAAGT TTTCGAGGGC CCCTGCAGGT CAATTCTACC GGGTAGGGGA 8160 GGCGCTTTTC CCAAGGCAGT CTGGAGCATG CGCTTTAGCA GCCCCGCTGG GCACTTGGCG 8220 CTACACAAGT GGCCTCTGGC CTCGCACACA TTCCACATCC ACCGGTAGGC GCCAACCGGC 8280 TCCGTTCTTT GGTGGCCCCT TCGCGCCACC TTCTACTCCT CCCCTAGTCA GGAAGTTCCC 8340 CCCCGCCCCG CAGCTCGCGT CGTGCAGGAC GTGACAAATG GAAGTAGCAC GTCTCACTAG 8400 TCTCGTGCAG ATGGACAGCA CCGCTGAGCA ATGGAAGCGG GTAGGCCTTT GGGGCAGCGG 8460 CCAATAGCAG CTTTGCTCCT TCGCTTTCTG GGCTCAGAGG CTGGGAAGGG GTGGGTCCGG 8520 GGGCGGGCTC AGGGGCGGGC TCAGGGGCGG GGCGGGCGCC CGAAGGTCCT CCGGAGGCCC 8580 GGCATTCTGC ACGCTTCAAA AGCGCACGTC TGCCGCGCTG TTCTCCTCTT CCTCATCTCC 8640 GGGCCTTTCG ACCTGCAGCC AATATGGGAT CGGCCATTGA ACAAGATGGA TTGCACGCAG 8700 GTTCTCCGGC CGCTTGGGTG GAGAGGCTAT TCGGCTATGA CTGGGCACAA CAGACAATCG 8760 GCTGCTCTGA TGCCGCCGTG TTCCGGCTGT CAGCGCAGGG GCGCCCGGTT CTTTTGTCA 8820 AGACCGACCT GTCCGGTGCC CTGAATGAAC TGCAGGACGA GGCAGCGCGG CTATCGTGGC 8880 TGGCCACGAC GGGCGTTCCT TGCGCAGCTG TGCTCGACGT TGTCACTGAA GCGGGAAGGG 8940 ACTGGCTGCT ATTGGGCGAA GTGCCGGGGC AGGATCTCCT GTCATCTCAC CTTGCTCCTG 9000 CCGAGAAAGT ATCCATCATG GCTGATGCAA TGCGGCGGCT GCATACGCTT GATCCGGCTA 9060 CCTGCCCATT CGACCACCAA GCGAAACATC GCATCGAGCG AGCACGTACT CGGATGGAAG 9120 CCGGTCTTGT CGATCAGGAT GATCTGGACG AAGAGCATCA GGGGCTCGCG CCAGCCGAAC 9180 TGTTCGCCAG GCTCAAGGCG CGCATGCCCG ACGGCGATGA TCTCGTCGTG ACCCATGGCG 9240 ATGCCTGCTT GCCGAATATC ATGGTGGAAA ATGGCCGCTT TTCTGGATTC ATCGACTGTG 9300 GCCGGCTGGG TGTGGCGGAC CGCTATCAGG ACATAGCGTT GGCTACCCGT GATATTGCTG 9360 AAGAGCTTGG CGGCGAATGG GCTGACCGCT TCCTCGTGCT TTACGGTATC GCCGCTCCCG 9420 ATTCGCAGCG CATCGCCTTC TATCGCCTTC TTGACGAGTT CTTCTGAGGG GATCGATCCG 9480 CTGTAAGTCT GCAGAAATTG ATGATCTATT AAACAATAAA GATGTCCACT AAAATGGAAG 9540 TTTTTCCTGT CATACTTTGT TAAGAAGGGT GAGAACAGAG TACCTACATT TTGAATGGAA 9600

76

GGATTGGAGC TACGGGGGTG GGGGTGGGGT GGGATTAGAT AAATGCCTGC TCTTTACTGA 9660 AGGCTCTTTA CTATTGCTTT ATGATAATGT TTCATAGTTG GATATCATAA TTTAAACAAG 9720 CAAAACCAAA TTAAGGGCCA GCTCATTCCT CCCACTCATG ATCTATAGAT CTATAGATCT 9780 Ende NEO CTCGTGGGAT CATTGTTTT CTCTTGATTC CCACTTTGTG GTTCTAAGTA AACGAAGTTC 9840 CTATTCCGAA GTTCCTATTC TCTAGAAAGT ATAGGAACTT CGTCGAGGG 2. frt-Sequenz (Xho I/Sal I) (Xho I/Sal I) Fse I Stu I 9900 TATAACTTCG TATAGCATAC ATTATACGAA GTTATTCTTA CCCTGAGTCT AGAAGCTAAC 9960 12 Nukleotide Xba I Start 3`Homologie & 3. loxP-Sequenz AGTATCCCTA AGTGATCCAT ACTTAAAGTC TGGTAATTGA TGGCCTTGAC CATGGCCACA Fragment 4 10080 TAGCTTTACT GAAACATCTC TGTCATCAGG CAAAATTTCT CTCTCTCTCC CTCTCTCTC → ENSEMBL: + TCTCAC 10140 CACACACACG GGAGGAGAAG AGAGAAAATA GATCCTAGAT TATTTGGGGT CACAATGCAT 10200 AACTTAAGTA GTTACATCTG GCAATGTGAT CCCTGCAGTA CATCAAAACC CAGGAAGAGC 10260 TTTTCTCCTT AGCACCCAGA GAAAAATAAT GATAGAACAA TACTGACAAA GTCAATTTAC 10320 TATAGTCCAA AATGAAAAGA ATGGGAAATC CGGTGCCTAA AATTTCAGTA GCTAAATTAA 10380 AGCTTAAGCG AAACCACAAC AGCCTCAAAT TATGAAGAAC AAAGTGAAAA ATAAATAGTT 10440 TAGGGAGTAC TTATCACCAT CAGGGGAATG GAAATTAAAA CTACTTCAAA TTTTTATTTC 10500 ATCCTAGTCA GAATGGCTAG CATCAAGAAA GTAAGTGATA CTAGGTATGG GGTATGGAGG 10560 GGGTGGGGAA GAGATATCAT TCACTGCTTG GGAGAGACTT CTGCAGGCAA TGTGGAAATC 10620 AGTGTGATGG AATCGTCATA AAACTATGCT ATTCCTGGGT CAGGTATCCA AAAGGACCCA 10680 ATATCCCACC ACAGAGGCAC TTGCACATCA GTGTTTCTTG CTGCACTACT GTCAATAACA 10740 AGGAAATGGA ACCAGCCTAG ATGCCCATGA AAAAAATGGC TGAGTAATGA AGACAGGGTC 10800 CATATACAGA ATGGGAGTTT GTTCCATTGT AAGGAATAGG CAAATTGTGA AACATGCAGG 10860 AAACTGGATG GATCCAGAAA ATATTAAATT GAACAAGGTT ACCTAGTCTG AGAAAGGCAA 10920 ACACTTCATG CTCTCTTATA TGAGTGTGAC TGAATGTGGG GCATACAAAC AGAAAAAGAC 10980 CATGAGGTAG AGAAAAGAAA ATAGAACATA CGTGACATGA AAGTGGAAAG TCGAAAGGGG 11040 GCTACCAGGG ATAGAAGGGA AAAGGAGCGA GGAGAGAGAG GTGAGAAGAA TGGTTAGGAA 11100 CATCGAAGGC AAATTATGCT TTATGTTTGA AAAACAAAAA ACAGAAAAGT GAAAAGCATA 11160 ► ENSEMBL: + TTT 11220 Ende Fragment 4, Start Fragment 5 Г AAGGTAAGAG ATCTCTTACC TGCTGGGCCC AGTTCATTGG TTCATGCCTC TCATCTTTAT 11280 Bgl II TCATTTGGGG GACTTCTGTG GTGATGTTCA ACACTGCCTT GATATAGAAA TAAACTTACT 11340 GCCTCCATTC TTTAGGTTTC ATTTGGGGGG AGATAAAGGA AATGTGGGAT GGTGGATTCA 11400 CGGAATACAT CCATGATTGG TGGAACCTGA TGGATTTTGC AATGAACTCC CTCTACCTGG 11460 CAACTATTTC CTTGAAGATC GTGGCCTATG TCAAGGTAAA ATGGGATGTC TACCATCTTT 11520

CTTCCCCTGT	AATTTTGGCA	GAGTTATGTC	AATAAACTTT	TGCACTGGGC	GCAGAAAGAG	11580
TTTATGGGGA	AAACTATTGA	GTGTCCCATC	TATTCTAGGA	AATACTACAG	AGACCTTTTT	11640
CAGTAGTGTG	TAAGTAGTAT	CAACTTATGC	AAATCCAGTG	AAGAAAGGAA	CATTCTTTTT	11700
CCAGAGGAAT	CCTTAAGTTT	CTCAGACTCT	CAGGGTAAAG	TTGTCTTCAG	CCTTCAGTGC	11760
TTAAACATCT	ATAACATTCC	TTCGAAGAAT	ACTAATGCTC	ACTAAATGCA	CTACCTCCAA	11820
AAAGCCTCTT	ACCCGTTATC	ACTTTAGTAA	AATCAGTTAT	TTTATATTTG	ACTAATATTT	11880
TCCCTGCTGT	AGCCATTGGT	AAGCACTCCT	CCTTTTGGAG	ATACACAGGA	CAAAAGTGAT	11940
CCCTCTGTAG	TACAGATATT	GTCCCCTCTC	CTTTACCTTC	TGAGTCATTG	TTTCACAGAG	12000
CCAACATCCC	CACTTCCCCA	CCCATTCTTT	GTATAACAAG	CAGCATAACC	CCAGAAACTG	12060
TACAACACAT	GGGTTCACCT	ACAATTCACC	TACAATTCTT	CTTTATGTCT	TCTGTCAGGA	12120
TAATTTTTCA	ATTTGTTAAA	ATATACACAA	ATTTTTATTA	TCACTCACCC	TACATCCCCC	12180
TACCGGTTCA	GAAAATGTCT	ATACTGAGCA	TACCCTGTCA	TCTTGATACT	TTCCCCATAC	12240
ATAAGCACCT	TGAATTATTC	TGAAAATTAT	TATTAAATAC	GTACAGTTTC	ACTTTTAATG	12300
AGACCTATAA	ATGAGTACAG	TCTGGTTGTC	TCATCAACAG	AGATACAACT	CATGTAAGAC	12360
GACCTTCCCC	AAGCAAAATG	AGACAAGTGT	GGAGTAAAGT	TCCAGGTACC		12420
CCACTATATC	TGGGGGTAAC	CACAGGTCTG	AATCTAGGTC	TGTAATTTAA	TGATAGAAGG	12480
CATGGCTATG	CTCCTTCTAC	CCTGCTTTGA	GTTTTTCCCC	ACAAGGTAAG	GCTGACAATT	12540
CATTTCCCAA	GATGTCTAGT	CAGTCATGCT	TTTGGTATTC	AATTTCACAT	TGAAGACTTT	12600
TAGAATGGGA	ATATGGCTGT	CCCCCAAGTC	TCCAACAACT	TCGTTTATTT	TTACATCCCT	12660
AATATGCATA	TTGCATAAAT	TGTAAGACCT	TGAGAGTTAT	ATAGAGCATG	AATATTGAAT	12720
GCATTCATGA	AACATTTTTG	AAAAGAGCCC	AAGAGTATGC	CTTATACGTG	TGTCGACCAT	12780
TTAACACATG	CTTACAACTT	TCTTAAAAGA	AAAAGCCTAG	TGAAAGAAAA	TGTTTGACTC	12840
TCTGGTGATC	CTGCCTGGGT	TAACTCCATG	TCCCCCTGGC	ACTCTGCTGG	CTAAGTATCA	12900
CAGTTTTCCT	TTTCAACCAT	GCACTGTGTG	TATTACGAAT	АТТТТТАААА	TAATTAATAA	12960
AATATTATAT	TTTTAAATCT	CCTTTATAAG	TAGAGACACC	ATAACTTAAC	AATCTTGAAC	13020
TTACTAGGTT	TTGTTTAACC	AGAAAAGTTT	AGAATAAATG	ATGAAAAGAA	TGATTTTAGT	13080
CTGGGGTATT	AAAATGTGTC	TACAGATGCT	CAACATCAGC	TAATTACATA	ATCTTCCTAA	13140
TTTCACTGGA	GAGGTTTCCA	AAGAGCTAAA	TACTTCTCCA	TATCAATGTA	TAATAAACCC	13200
ACTCAACTAG	GCTTCTAAGT	TCTGCCTCTT	ААСАСТАААА	GAAAACACAA	ACAAGACATG	13260
TCACATGCAG	ACTTTCGATT	тттааасата	TTTATGTGTA	TGGATTTTTT	TGTGTGTATG	13320
TGTGTACATA	TGCTTAGTGC	TCAAGAAGGC	CCGAAGAGAC	AGACTCATCC	CCTAAACTTG	13380
GAGTTACAGA	TGGTTTGGAG	CCACCATGTG	GGTATTGGGA	ATTGAATGCA	GATCCTCTAC	13440
AGTAAGAGTG	GCAAGCAGTC	TTAACCTCTA	GTCCATCTCT	CCAGCCCCAA		13500
CTGCGGCCGC Not I	ggcgcgcc Asc I				DGI II	13518

Abbildung 4.18: Sequenz des Targetingvektors pC5_16b

4.7 Strategie zum Nachweis des homologen Rekombinationsereignisses

Die zufällige Integration des Targetingvektors an beliebige Stellen des Genoms ist sehr viel häufiger als die Integration durch homologe Rekombination an einem definierten Ort. Der Nachweis einer korrekten Integration des Targetingvektors pC5_16b kann durch Gentypisierung mittels Southern-Blot-Analyse und/oder PCR-Reaktion erfolgen. Für die Southern-Blot-Analyse werden Sonden, die 3` bzw. 5` des homologen Bereichs des Targetingkonstruktes lokalisiert sind, hergestellt. Mit Hilfe dieser Sonden ist es möglich, nach Verdau mit entsprechenden Restriktionsendonukleasen, das Wildtypallel vom rekombinanten Allel eindeutig zu unterscheiden und später transfizierte ES-Zellen auf erfolgreiche homologe Rekombination zu untersuchen.

4.7.1 Klonierung und Präparation der 3`-Sonde

Die 3'-Sonde umfasst 1892 Basenpaare und liegt 707 bp 3' des Endes der 3'-Homologie des Gentargetingvektors. Das Fragment wurde mittels PCR mit Taq-Polymerase und den Desoxynukleotiden C5_25 und C5_26 (s. Tab. 3.2) aus BAC DNS amplifiziert. Im folgenden Schritt wurde dieses Fragment wie in Kapitel 3.2.12 beschrieben behandelt und in einen EcoR V verdauten pBluescript SK (-) Vektor kloniert. Nach der Aufreinigung des erhaltenen Vektors pC5_17 wurde der Bereich des Fragments doppelsträngig sequenziert und mit der von ENSEMBL veröffentlichten Sequenz des TrpC5-Gens verglichen (http://www.ensembl.org).

Das Insert konnte zur Verwendung als Sonde in der Southern-Blot-Analyse nach Restriktionsverdau mit EcoR I und Hind III vollständig aus dem Vektor herausgeschnitten und durch Elektophorese in einem 7% PAGE-Gel und Elektroelution aufgereinigt werden.

Abbildung 4.19: Schematische Darstellung der 3` Southernstrategie. Abgebildet ist das Wildtypallel, der Targetingvektor pC5-16 und das rekombinante Allel. Die Exonsequenzen sind als schwarze Quadrate und die Intronsequenzen als schwarze Linie dargestellt. Das rekombinante Allel besitzt eine loxP-Seite (schwarze Dreiecke) 5` des Exons 4 und eine SA-IRES-GFP-FRT-NEO-FRT Kassette 3` des Exons 4. Unterhalb der Abbildung ist die Sonde und die Größe der genomischen DNS-Fragmente für die Southern-Blot-Analyse dargestellt.
WT: Wildtyp, MT: rekombinantes Allel X: Xba I, E: EcoR I, S: Stu I, A: Afl II, B: Bgl II

Die 3'-Southernstrategie beruht auf einem Restriktionsverdau der genomischen DNS mit dem Restriktionsenzym Stu I. Nach dem Verdau von Wildtyp-DNS mit Stu I entsteht ein Fragment von 10,3 kb Länge, das mit Hilfe der spezifischen 3'-Sonde (s. Kapitel 4.7.1) nachgewiesen werden kann. Durch Insertion einer künstlichen Stu I-Schnittstelle in das Targetingkonstrukt kann zwischen korrekter bzw. nicht erfolgter Integration in das Genom unterschieden werden. Nach homologer und vollständiger Insertion der gesamten 3'-homologen Sequenz einschließlich der dritten loxP-Sequenzen (L3, s. Abb. 4.20) entsteht im rekombinanten Allel ein Fragment von 7 kb. Um zu überprüfen, ob die präparierte Sonde spezifisch bindet, wurde eine Southernblot-Analyse durchgeführt. Hierzu wurde genomische DNS von Wildtyp-ES-Zellen mit Stu I verdaut, mittels Gelektrophorese aufgetrennt und auf eine Nylonmembran transferiert. Anschließend erfolgte eine Hybridisierung mit der radioaktiv markierten 3'-Sonde. In

Abbildung 4.20 sind Banden in Höhe von 10,3 kb zu erkennen. Aufgrund dieses Ergebnisses kann davon ausgegangen werden, daß die Sonde spezifisch an ihre Zielsequenz bindet und somit auch rekombinante Allele nach erfolgter homologer Rekombination nachgewiesen werden können.

Abbildung 4.20:Nachweis von 10,3 kb großen Stu I-DNS-Fragmenten aus dem
TRPC5-Gen mit Hilfe der 3`-Sonde durch Southern-Blot-Analyse
Genomische Wildtyp-DNS wurde mit Stu I geschnitten Lane 1 bis 4:
jeweils 15 μl genomischer ES-Zell-DNS nach Stu I- Verdau.

4.7.3 5`-Southernstrategie

Abgebildet ist das Wildtypallel, der Targetingvektor pC5-16 und das rekombinante Allel. Die Exonsequenzen sind als schwarze Quadrate und die Intronsequenzen als schwarze Linie dargestellt. Das rekombinante Allel besitzt eine loxP-Seite (schwarze Dreiecke) 5` des Exons 4 und eine SA-IRES-GFP-FRT-NEO-FRT Kassette 3` des Exons 4. Unterhalb der Abbildung sind die Sonden und die Größen der genomischen DNS-Fragmente für die Southern-Blot-Analyse dargestellt.

WT: Wildtyp, MT: rekombinantes Allel

X: Xba I, K: Kpn I, B: Bgl II, E: EcoR I, S: Stu I, A: Afl II

Die 5'-Southernstrategie beruht auf einem Restriktionsverdau der genomischen DNS mit den Restriktionsenzymen Bgl II bzw. Kpn I. Nach dem Verdau von Wildtyp-DNS mit Bgl II entstehen Fragmente von 6,9 kb Länge, die mit Hilfe einer spezifischen 5'-Sonde, die zwischen der Bgl II-Schnittstelle und dem Beginn der 5'-homologen Sequenz des Targetingvektors liegt, nachgewiesen werden können. Durch Insertion von zwei zusätzlichen Bgl II-Schnittstellen in das Targetingkonstrukt soll zwischen korrekter, unvollständiger oder nicht erfolgter Integration in das Genom unterschieden werden. Nach homologer und vollständiger Insertion der gesamten 5'-homologen Sequenz einschließlich aller loxP-Sequenzen sollte im rekombinanten Allel ein

Fragment von 4 kb entstehen. Bei korrekter und vollständiger Integration finden sich somit drei loxP- und zwei ftr-Sequenzen im Genom (L3F2-Allel, d.h. drei loxP- und zwei ftr-Sequenzen). Mit Hilfe der zweiten künstlich eingefügten Bgl II-Schnittstelle lässt sich die unvollständige Integration des Konstruktes von der richtigen Integration in die Zielsequenz mittels Southernblot-Analyse unterscheiden. In diesem Fall wird durch die homologe Rekonstruktion nur ein Teil des 5'-Homologiebereiches ohne die erste loxP-Sequenz inseriert (L2F2-Allel, d.h. zwei loxP- und zwei ftr-Sequenzen). Durch das Fehlen der ersten loxP-Sequenz fällt aufgrund der unmittelbaren Nähe zum 5'-Ende die erste artifiziell eingefügte Bgl II-Schnittstelle weg. Somit lässt sich durch die zweite eingefügte Bgl II-Schnittstelle mit Hilfe der spezifischen Sonde ein Fragment der Länge 5,6 kb nachweisen. Bei unvollständiger Integration finden sich somit zwei loxP- und zwei ftr-Sequenzen im Genom.

Als Alternative zur Spaltung der genomischen DNS mit Bgl II kann das Restriktionsenzym Kpn I verwendet werden. Entsprechende DNS-Fragmente, die als Sonde für die Southern-Blot-Strategie in Frage kommen, müssen zwischen der Kpn I Schnittstelle und dem Start des Targetingvektors liegen. Nach dem Verdau von Wildtyp-DNS mit Kpn I entsteht ein Fragment mit einer Länge von 9,4 kb. Nach homologer und vollständiger Integration der gesamten 5`-homologen Sequenz einschließlich aller loxP-Sequenzen entsteht im rekombinanten Allel ein Fragment von 5,3 kb (L3F2-Allel), da unmittelbar vor der ersten loxP-Seite im Targetingkonstrukt eine zusätzliche Kpn I-Schnittstelle eingefügt wurde. Bei unvollständiger Insertion und dem Verlust der ersten loxP-Sequenz entfällt folglich auch hier die künstlich inserierte Schnittstelle für Kpn I. In diesem Fall entsteht ein Fragment der Länge 12,8 kb (L2F2-Allel).

Von insgesamt 6 im 5` Bereich des Targetinglokus gelegenen DNS-Fragmenten, die in Southern-Blot-Analysen untersucht wurden, kam es in allen Fällen zu einer unspezifischen Hybridisierung mit der genomischen DNS. Da keine anderen Enzyme praktikabel sind, muss die Richtigkeit der Sequenz im Bereich der 5`-Homologie sowie die korrekte Integration der ersten und zweiten loxP-Sequenz (L1 bzw. L2) durch Amplifikation der genomischen DNS in diesem Bereich und anschließender Sequenzierung überprüft werden.

5 DISKUSSION

Ziel dieser Arbeit war es, einen Gentargetingvektor zur Inaktivierung des TRPC5-Gens im Mausmodell zu konzipieren und zu klonieren. Zur konditionierten Geninaktivierung wurde das Cre-loxP System aus dem Bakteriophagen P1 bzw. das Flp-FRT-System aus der Hefe *Saccharomyces cerevisiae* verwendet. Beide Systeme können mittlerweile effizient zur konditionierten Geninaktivierung in der Maus eingesetzt werden (Lewandoski, 2001;Kwan, 2002).

Die beiden genannten Systeme bestehen aus einem Rekombinase-Enzym, Cre bzw. Flp, und einer dazugehörigen Erkennungssequenz, loxP bzw. FRT. Die minimale Erkennungssequenz beträgt jeweils 34 bp, so daß das zufällige Auftreten dieser Sequenz in Säugern und somit eine negative Beeinflussung anderer Gene relativ unwahrscheinlich ist. Die Erkennungssequenzen beinhalten die Bindestelle der Crebzw. Flp-Rekombinase, in der es in der Mitte der Sequenz zum Schneiden des Stranges und zur Religation kommt. Die durch die Erkennungssequenz flankierten DNS-Abschnitte werden je nach Orientierung und Lage der Erkennungssequenz deletiert, invertiert oder transloziert.

Neben der ubiquitären Geninaktivierung besteht beim Cre-loxP System die Möglichkeit der zelltypspezifischen und zeitlichen Inaktivierung. Zur zelltypspezifischen Inaktivierung werden die von der Erkennungssequenz flankierten DNS-Abschnitte des Zielgens durch zelltypspezifische Expression der Rekombinase deletiert und das Gen inaktiviert. Hierzu werden Mäuse, die das mutierte Allel tragen mit Mäusen verpaart, die die Cre-Rekombinase zelltypspezifisch exprimieren. Somit wird das Zielgen ausschließlich in den Zellen deletiert, in denen die Cre-Rekombinase exprimiert wird. Um die Inaktivierung des Zielgens zeitlich zu steuern, kann ein Verfahren benutzt werden, bei dem ein Fusionsprotein aus der Cre-Rekombinase und einer mutierten Ligandenbindestelle des Östrogenrezeptors in transgenen Mäusen exprimiert wird. In diesem Fall kann die Rekombinaseaktivität des Cre-Fusionsproteins z.B. durch exogen zugeführtes Tamoxifen ausgelöst werden. Endogene Östrogene bewirken dagegen keine Aktivierung des Cre-Fusionsproteins. Im unstimulierten Zustand ist das Cre-Fusionsprotein an ein Hitzeschockprotein gebunden und kann nicht in den Zellkern diffundieren. Durch die Zufuhr von exogenem Tamoxifen wird das Hitzeschockprotein aus der Bindung mit dem Cre-Fusionsprotein vedrängt, so daß dieser Komplex in den

Zellkern diffundieren kann und damit eine Aktivierung der Cre-Rekombinase bewirkt. Somit kann duch Tamoxifen-Gabe die Deletion der durch loxP-Erkennungssequenzen flankierten DNS-Fragmente zu definierten Zeitpunkten erreicht werden (Lewandoski, 2001;Kwan, 2002;Hayashi and McMahon, 2002). Wird durch Voranschalten eines gewebspezifischen Promotors vor das Gen für das Cre-Fusionsprotein dessen Expression auf bestimmte Zelltypen in der Maus beschränkt, kann die Inaktivierung eines Zielgens zeitlich kontrolliert und selektiv in definierten Zelltypen induziert werden (Sohal et al., 2001).

Die in dieser Arbeit gewählte Strategie ermöglicht es, mit Hilfe des Cre-loxP- bzw. des FRT-Flp-Systems nach erfolgreichem Gentargeting in embryonalen Stammzellen folgende drei Mauslinien zu generieren, auf die im Anschluss genauer eingegangen wird:

1) TRPC5-/-

Bei dieser Mauslinie ist das Exon 4, das für einen essentiellen Proteinabschnitt des TRPC5-Ionenkanals codiert, deletiert. Die durch die Deletion hervorgerufene Inaktivierung des TRPC5 Gens besteht dabei seit dem frühesten Embryonalstadium und in der Folge in allen Zellen des resultierenden Organismus.

2) TRPC5^{flox/flox}

Bei dieser Mauslinie ist das selbe Exon, das in der TRPC5-/- Mauslinine ubiquitär deletiert ist, von loxP-Sequenzen flankiert. Durch Verpaarung der TRPC5^{flox/flox} Mäuse mit transgenen Mäusen, die die Cre-Rekombinase zelltypspezifisch exprimieren, ist es möglich, das TRPC5-Gen selektiv in definierten Zelltypen zu inaktivieren. Diese Vorgehensweise ist notwendig, wenn TRPC5-/- Mäuse bereits während der Embryonalentwicklung versterben (Weissgerber et al., 2006), oder um eine in TRPC5-/- Mäusen beobachtete Dysfunktion, die durch Fehlfunktionen in mehreren Organe bzw. Zelltypen zustande kommen könnte, einem definierten Zelltyp oder Organ zuzuordnen. In diesem Fall könnte man das TRPC5-Gen selektiv in dem zu untersuchenden Zelltyp inaktivieren und diese Mäuse hinsichtlich dieser Dysfunktion untersuchen.

3) TRPC5^{Reporter}

Bei dieser Mauslinie ist ein Reportergen (GFP) so in das TRPC5 Gen integriert, daß es unter der Kontrolle des TRPC5-Promotors exprimiert wird. Auf diese Weise kann durch Nachweis der GFP-Fluoreszenz an intakten Zellen die Expression von TRPC5-Kanälen untersucht werden. Außerdem sollte es möglich sein, native TRPC5-exprimierende Zellen auf Grund ihrer GFP-Fluoreszenz z.B. aus Blut oder Knochenmark mit Hilfe von FACS (Fluorescence activated cell sorting) zu isolieren, um anschließend die funktionelle Bedeutung der TRPC5-Kanäle in diesen Zellen zu analysieren.

Mit Hilfe TRPC5-defizienter Mauslinien können Aussagen über die Funktion des TRPC5-Proteins in nativen Zellen, Organen und für Systemfunktionen gemacht werden. Um das Ereigniss der homologen Rekombination zu ermöglichen, wurde in dieser Arbeit ein Gentargetingvektor kloniert, der neben dem Exon 4 weitere homologe Bereiche zur Zielsequenz des TRPC5-Gens enthält.

Eine Möglichkeit zur konditionierten Inaktivierung eines Gens mittels homologer Rekombination ist die Elimination eines Genabschnittes, der für die Funktion des codierenden Proteins essentiell ist. In dieser Arbeit wurde deshalb das Exon 4, das für die Transmembrandomäne S1/S2 codiert, mit loxP-Sequenzen flankiert. Mit Hilfe der Cre-Rekombinase kann dieses Exon deletiert werden.

Da die Insertion des Gentargetingvektors in zufällige genomische Bereiche sehr viel häufiger stattfindet als in den gewünschten chromosomalen Bereich, wurden in den Targetingvektor Gene kloniert, die eine Positiv- bzw. Negativselektion im Rahmen des Gentargetingexperiments in ES-Zellen ermöglichen. Zur Positivselektion wurde zwischen die homologen Arme des Gentargetingvektors ein Gen für die Neomycin-Phosphotransferase inklusive eines in ES-Zellen erprobten Promotors und eines Polyadenylierungssignals kloniert. Die Expression dieses Enzyms in transfizierten ES-Zellen ermöglicht diesen Zellen das Wachstum in Gegenwart des Aminoglykosid-Antibiotikums G418 unabhängig von der Lokalisation des Integrationsortes im Genom, während nichttransfizierte Zellen absterben. Damit es durch dieses Gen nicht zu unerwünschten Effekten auf benachbarte Gene kommt, wurde eine Strategie gewählt, bei der diese Kassette mit FRT-Sequenzen flankiert wurde. Dadurch ist es möglich, mit Hilfe der Flp-Rekombinase das Gen für die Neomycin-Phosphotransferase selektiv zu entfernen. Es gibt Beispiele die belegen, daß die Anwesenheit einer Neomycin-Kassette in der Zielsequenz Einfluss auf die Expression benachbarter Gene besitzt, z.B. stört die Integration einer PGK-NEO-Kassette in den Genlokus des Granzym-Genes die Expression selbst 100kb entfernter Gene (Pham et al., 1996). Zur Negativselektion wurde außerhalb der homologen Arme vor den 5'-homologen Bereich die Thymidinkinase-Selektionskassette, bestehend aus pgk-Promotor, Thymidinkinase cDNS sowie Polyadenylierungssignal, kloniert. Bei Integration des Targetingvektors mittels homologer Rekombination wird die Thymidinkinase nicht mit in den rekombinanten Genlokus inseriert, da sie eine nicht homologe Sequenz darstellt, die außerhalb der homologen Arme liegt. Bei dem weitaus häufiger vorkommenden Ereignis einer zufälligen Integration wird diese Negativselektionskassette allerdings zusammen mit der zum TRPC5-Gen homologen Sequenz ins Genom integriert und bleibt funktionstüchtig. Die Thymidinkinase phosphoryliert Nukleosid-Analoga wie z.B. Ganciclovir Monophosphat welchem zum aus durch weitere Phosphorylierungsschritte endogener Kinasen ein Triphosphat hervorgeht. Werden diese Triphosphate in die DNS eingebaut kommt es zur Hemmung der DNS-Replikation. ES-Zell-Klone, die die Thymidinkinase-Selektionskassette vollständig ins Genom integriert haben sind somit im Gegensatz zu den regelrecht homolog rekombinierten ES-Zellen sensitiv gegenüber Ganciclovir und können durch dessen Zugabe ins Kulturmedium eliminiert werden.

Zur Identifizierung homolog rekombinanter ES-Zellklone wurde eine Strategie zur Southern-Blot-Analyse erarbeitet. Nach Spaltung genomischer DNS aus Wildtyp ES-Zellen mit dem Restriktionsenzym Stu I wird nach Hybridisierung mit einer 3` des Targtingvektors lokalisierten Sonde ein 10,3 kb DNS-Fragment aus dem TRPC5-Genlokus detektiert. Bei ES-Zellklonen, bei denen das Targetingkonstrukt mittels homloger Rekombination in den TRPC5-Genlokus integriert wurde, wird dagegen ein 7 kb Fragment identifiziert (P. Weißgerber, M. Freichel, unveröffentlichte Ergebnisse). Aus dem 5` des Targetingvektors gelegenen Bereich des TRPC5-Genlokus konnte keine DNS-Sonde identifiziert werden, obwohl aus dem in Frage kommenden Bereich insgesamt 6 DNS-Fragmente in Southern-Blot-Analysen untersucht wurden. In allen Fällen kam es zu einer unspezifischen Hybridisierung mit der genomischen DNS, möglicherweise aufgrund zahlreicher repetitiver Sequenzbereiche in diesem Abschnitt des TRPC5-Genlokus. Der Nachweis der korrekten und singulären Integration des Targetingvektors muss deshalb dadurch erfolgen, daß die relevante DNS-Sequenz im 5'-Teil des Targetinglokus wie z.B. die loxP-Erkennungssequenz mittels spezifischer Oligodesoxynukleotide amplifiziert und sequenziert werden. Um auszuschliessen, daß der Targetingvektor mehrfach integriert wurde, wird eine Southern-Blot-Analyse mit einem DNS-Fragment durchgeführt, das innerhalb des Targetingvektors liegt (s. Abb. 5.1).

<u>Abbildung 5.1:</u> Schematische Darstellung der Strategie zur Überprüfung der korrekten einmaligen Integration des Targetingvektors ins Genom. Abgebildet ist das Wildtypallel, der Targetingvektor pC5-16 und das rekombinante Allel. Die Exonsequenzen sind als schwarze Quadrate und die Intronsequenzen als schwarze Linie dargestellt. Das rekombinante Allel besitzt eine loxP-Seite (schwarze Dreiecke) 5` des Exons 4 und eine SA-IRES-GFP-FRT-NEO-FRT Kassette 3` des Exons 4. Unterhalb der Abbildung sind die Sonden und die Größen der genomischen DNS-Fragmente für die Southern-Blot-Analyse dargestellt.
MT: rekombinantes Allel, I1: Interne Sonde 1, I2: Interne Sonde 2 X: Xba I, E: EcoR I, S: Stu I, A: Afl II, B: Bgl II

In genomischer DNS homolog rekombinanter ES Zellklone mit singulärer Integration des Targetingvektors dürfte nach Stu I- bzw. Xba I-Verdau und Hybridisierung mit der internen Sonde 1 oder 2 bzw. mit der Exon 4 Sonde lediglich ein DNS Fragment der erwarteten Größe (siehe Abb. 5.1) detektiert werden. Bei mehrfach Integration werden zwei oder mehrere DNS Fragmente erwartet.

Nach Transfektion des Gentargetingvektors in embryonale Stammzellen und erfolgreicher homologer Rekombination erhält man ES-Zellen, die für die eingefügte Mutation heterozygot sind. Durch Injektion dieser ES-Zellen in Blastozysten können nach Implantation der Blastozysten in scheinschwangere Ammenmäuse chimäre Tiere geboren werden. Diese Chimären sind in der Lage, die eingeführte Mutation zu vererben. Um Mäuse zu erhalten, die für die geplante Veränderungen heterozygot (+/L3F2) sind, werden diese Chimären mit Wildtyp-Mäusen verpaart. Im Folgenden wird dargestellt, welche Genotypen durch Verpaarungen der heterozygoten TRPC5 +/L3F2 Mäuse mit verschiedenen Mauslinien, die die Cre- bzw. Flp-Rekombinase exprimieren, generiert werden können.

Zur Herstellung TRPC5 defizienter Mäuse, bei denen das Gen ubiquitär und beginnend mit den frühesten Embryonalstadien inaktiviert ist, werden diese Mäuse z.B. mit einer Mauslinie verpaart, die die Cre-Rekombinase unter der Transkriptionskontrolle des Cytomegalievirus (CMV)-Minimalpromotors und bereits während der frühen Embryogenese exprimiert. Wegen der effektiven Geninaktivierung der jeweiligen Zielgene bezeichnet man diese CMV-Cre-Mauslinie auch als Cre-Deleter Mauslinie (Schwenk et al., 1995).

Abbildung 5.2: Schematische Darstellung der Excision der durch loxP-Sequenzen flankierten Bereiche aus dem L3F2-Allel duch Expression der Cre-Rekombinase und Generierung des L1-Allels. Eingezeichnet sind das Exon 4 (orangener Kasten), die Exons 5 und 6 (graue Kästchen), die Neomycin-Resistenzkassette (rosa), die IRES-GFP-Kassette (grün) mit Splice-Akzeptor-Sequenz (SA) und Polyadenylierungssignal (pA) sowie die loxP- (schwarze Dreiecke) als auch die FRT-Sequenzen (rote Dreiecke).

Demnach besitzen Nachkommen von Verpaarungen aus TRPC5 ^{+/L3F2} Mäusen mit Cre-Deleter Mäusen ein Nullallel für das TRPC5-Gen (TRPC5 – oder TRPC5 ^{L1}). Da das durch loxP-Erkennungssequenzen flankierte Exon 4 einen essentiellen codierenden Bereich des TRPC5-Gens darstellt, kommt es durch die Deletion dieses Exons zum Leserastersprung und somit zum vorzeitigen Translationsstop. Als Folge dieser Deletion sollte von diesem Null-Allel kein funktionstüchtiges Protein mehr gebildet werden. Durch Verpaarung dieser für die eingeführte Mutation heterozygoten Tiere können Mäuse generiert werden, die homozygote Träger des Nullalels sind (TRPC5 -/-). Da das TRPC5 Gen auf dem X Chromosom lokalisiert ist, können hemizygote männliche Tiere, die das TRPC5-Null-Allel tragen, bereits keine funktionellen TRPC5 Kanäle mehr herstellen. Der Nachweis der fehlenden Expression des TRPC5-Gens kann mit Hilfe einer Northern Blot Analyse oder mittels einer Western Blot Analyse bei Verfügbarkeit eines geeigneten, gegen das TRPC5-Protein gerichteten Antikörpers, erfolgen. Umgekehrt dienen Proteinfraktionen, die aus TRPC5 defizienten Mäusen gewonnen werden als Negativkontrolle zur Evaluation der Spezifität von TRPC5-Antiseren, wenn der Nachweis der fehlenden Expression funktioneller TRPC5-Transkripte- bzw. der TRPC5-Proteine zuvor z.B. mittels Northern-Blot-oder Western-Blot-Analyse erbracht wurde.

Durch vergleichende Analysen von Zellen, Organen bzw. systemischen Körperfunktionen an Wildtyp- bzw. TRPC5 defizienter Mäuse kann auf die funktionelle Bedeutung von TRPC5 geschlossen werden. In Neuronen aus Wildtyp- bzw. TRPC5 defizienten Mäusen kann z.B. die Länge und die Morpholgie von Neuriten untersucht werden, da das TRPC5-Protein, basierend auf Experimenten mit denen negativ dominante TRPC5-Konstrukte in hippocampalen Neuronen überexprimiert wurden, als Regulatoren des Neuritenwachstums postuliert wurden (Greka et al., 2003).

Da keine Pharmaka verfügbar sind, die TRPC5-Kanäle mit ausreichender Spezifität blockieren können, kann mit Hilfe TRPC5-defizienter Mäuse untersucht werden, ob Agonist aktivierte Kationenströme und der damit verbundene Ca²⁺ Einstrom durch TRPC5-Kanäle vermittelt ist.

In ähnlicher Weise kann die Bedeutung des TRPC5-Proteins als Untereinheit von Kationenkanälen und für den Agonist-induzierten Ca²⁺ Einstrom in glatten Muskelzellen sowie für die Kontraktilität von Blutgefäßen und die Blutdruckregulation untersucht werden. Eine Bedeutung von TRPC5 Kanälen für diese Funktionen wird derzeit vermutet (Beech et al., 2004). Außerdem wurde kürzlich berichtet, daß die Expression von TRPC5 bei Patienten mit Herzinsuffizienz gesteigert ist (Bush et al., 2006). Eine kausale Rolle von TRPC5 für die Entstehung von Herzhypertrophie bzw.

Herzinsuffizienz könnte ebenfalls mit Hilfe des TRPC5-Mausmodells untersucht werden.

Falls TRPC5 defiziente Mäuse nicht lebensfähig sind, besteht bei der hier gewählten Targetingstrategie auch die Möglichkeit, das TRPC5-Gen zeitlich kontrolliert oder zelltypspezifisch zu inaktivieren. Dazu wird eine Mauslinie benötigt, bei der das Exon 4 des TRPC5-Gens von loxP-Sequenzen flankiert ist (TRPC5 ^{flox/flox}). Diese Mauslinie kann nach Verpaarung der TRPC5 ^{L3F2/+} Mäuse mit der EIIa-Cre-Mauslinie erhalten werden (Holzenberger et al., 2000). Die EIIa-Cre-Maus ist eine transgene Mauslinie, die die Cre-Rekombinase unter dem adenoviralen EIIa-Promotor exprimiert, der nur in Oocyten und Präimplantationsstadien aktiv ist. Die Expression der Cre-Rekombinase findet daher nur in diesen Stadien des Embryos statt. Hierbei kommt es bei den Nachkommen neben der totalen Excision der durch loxP-Erkennungssequenzen flankierten DNS-Bereiche (siehe Abb. 5.2) auch zu sog. Mosaikrekombinationen (Holzenberger *et al.*, 2000). Hierbei ist auch eine partielle Excision beim Vorliegen mehrerer loxP-Sequenzen möglich (u.a. die Excision des DNS-Abschnittes zwischen der 2. und 3. loxP-Sequenz. Das auf diese Weise resultierende TRPC5^{flox}-Allel ist in Abb. 5.3 dargestellt).

Abbildung 5.3: Schematische Darstellung der Excision der durch loxP-Sequenzen flankierten SA-IRES-GFP-NEO-Kassette aus dem L3F2-Allel durch Expression der Cre-Rekombinase und Generierung des L2-Allels. Eingezeichnet sind das Exon 4 (orangener Kasten), die Exons 5 und 6 (graue Kästchen), die Neomycin-Resistenzkassette (rosa), die IRES-GFP-Kassette (grün) mit Splice-Akzeptor-Sequenz (SA) und Polyadenylierungssignal (pA) sowie die loxP- (schwarze Dreiecke) als auch die Frt-Sequenzen (rote Dreiecke). Werden die das Flox-Allel tragenden Tiere (TRPC5^{flox/flox}) mit Mauslinien verpaart, die die Cre-Rekombinase zelltypspezifisch exprimieren, wird das TRPC5-Gen in den Nachkommen selektiv in diesen Zelltypen inaktiviert. Eine Möglichkeit besteht in der Verpaarung mit einer Cre-Mauslinien, die die Cre-Rekombinase unter der Kontrolle eines Promotors aus glatten Gefäßmuskelzellen (Regan et al., 2000) oder Kardiomyocyten (Wettschureck et al., 2001) exprimieren, so daß TRPC5 selektiv in glatten Gefäßmuskelzellen bzw. in Kardiomyocyten inaktiviert wird.

<u>Abbildung 5.4</u>: Schematische Darstellung der Excision des durch loxP-Sequenzen flankierten Exons 4 aus dem Floxed-Allel (L2) durch Expression der Cre-Rekombinase in Kardiomyocyten und Generierung eines Kardiomyocyten-spezifischen Null-Allels (L1♥). Eingezeichnet sind das Exon 4 (orangener Kasten), das Exon 5 (graues Kästchen) sowie die loxP-Sequenzen (schwarze Dreiecke).

Die dritte Mauslinie, die bei der gewählten Strategie generiert werden kann, entsteht nach Verpaarung der heterozygoten Tiere (TRPC5 ^{L3F2/+}) mit sog. "Flp-Mäusen" (Farley et al., 2000), die unter Kontrolle des *ROSA26*-Promotors die Flp-Rekombinase ubiquitär exprimieren. Durch die Expression dieser Flp-Rekombinase wird die durch die FRT-Sequenzen flankierte Neomycin-Resistenzkassette herausgeschnitten. Es resultiert das

TRPC5 L3F1-Allel, aus dem eine mRNA bestehend aus Exon 1 bis 4 des TRPC5-Gens, sowie der IRES-Sequenz und der für das GFP-Protein kodierenden Sequenz gebildet werden kann. Unter Kontrolle des TRPC5-Promotors sollten in diesem rekombinanten TRPC5 L3F1-Allel GFP-Proteine exprimiert werden, die es ermöglichen, Zellen, die das TRPC5-Gen endogen exprimieren, zu identifizieren.

Abbildung 5.5: Schematische Darstellung der Excision der Neomycin-Resistenzkassette aus dem L3F2-Allel durch Expression der Flp-Rekombinase und Generierung des L3F1-Allels. Eingezeichnet sind das Exon 4 (orangener Kasten), die Exons 5 und 6 (graue Kästchen), die Neomycin-Resistenzkassette (rosa), die IRES-GFP-Kassette (grün) mit Splice-Akzeptor-Sequenz (SA) und Polyadenylierungssignal (pA) sowie die loxP- (schwarze Dreiecke) als auch die Frt-Sequenzen (rote Dreiecke).

Auf diese Weise kann durch Nachweis der GFP-Fluoreszenz an intakten Zellen die Expression von TRPC5-Kanälen untersucht werden. Außerdem sollte es möglich sein, native TRPC5-exprimierende Zellen auf Grund ihrer GFP-Fluoreszenz z.B. aus Blut oder Knochenmark mit Hilfe von FACS (Fluorescence activated cell sorting) zu isolieren, um anschließend die funktionelle Bedeutung der TRPC5-Kanäle in diesen Zellen zu analysieren.

<u>6 ABKÜRZUNGSVERZEICHNIS</u>

°C	Grad Celsius
³² P	Radioaktives Phosphat
μg	Mikrogramm
μl	Mikroliter
Â	Adenin
Abb	Abbildung
Amp	Ampicillin
APS	Ammoniumperoxydisulfat
ATP	Adenosintriphosphat
BAC	Bacterial artificial chromosome
bp	Basenpaare
BSA	Bovines Serumalbumin
С	Cytosin
Ca^{2+}	Calcium
cAMP	Cyclisches Adenosinmomophosphat
cGMP	Cyclisches Guanosinmomophosphat
cDNS	copy Desoxyribonukleinsäure
Ci	Curie
cm ²	Quadratzentimeter
cpm	counts per minute
Cre	Cre-Rekombinase
CMV	Cytomegalievirus
dATP	Desoxyadenintriphosphat
dCTP	Desoxycytosintriphosphat
ddNTP	Didesoxyribonukleosidtriphosphat
DEPC	Diethylpyrocarbonat
dest	destilliert
dGTP	Desoxyguanosintriphosphat
DNS	Desoxyribonukleinsäure
dNTP	Desoxyribonukleosidtriphosphat
dTTP	Desoxytyrosintriphosphat
E.coli	Escherichia coli
EDTA	Ethylendiamin-N,N,N`,N`-tetraessigsäure
ES-Zellen	Embryonale Stammzellen
EtOH	Ethanol
Fa	Firma
flox	von loxP-Sequenzen flankiert
Flp	Flp-Rekombinase
fmol	Femptomol
frt	Flp-Rekombinase-Target
g	gramm
G	Guanosin
G418	Geneticin
GFP	Grün fluoreszierendes Protein
GTG	Genetic technology grade
GTP	Guanosıntriphosphat
H ₂ O	Wasser

HCl	Salzsäure
HPLC	High Performance Liquid Chromatography
IPTG	Isopropyl-B-D-thiogalactosylpyranosid
IRES	Internal Ribosomal Entry Site
kb	Kilobasen
KCl	Kaliumchlorid
kDa	Kilodalton
ko	Knock out
1	Liter
lac7	B-Galaktosidase-Gen
I B-Medium	Luria-Bertani Medium
lovP	Locus of Crossingover in P1-Bakterionhage
M	Molare Masse
m A	Milliamporo
MCS	Multiple Cloping Site
MCS	Multiple Cloning Site
mg MaCl	Minigramm Magnagium chlarid
	Magnesiumeniorid
min	Minute
mJ	Millijoule
ml	Milliliter
mM	Millimolar
mRNA	Boten-Ribonukleinsäure
n	Anzahl
Na	Natrium
Na ₂ HPO ₄	Dinatriummonohydrogencarbonat
NaCl	Natriumchlorid
NaH ₂ PO ₄	Natriumdihydrogenphosphat
NaOH	Natronlauge
NEO	Neomycin-Resistenzgen
ng	Nanogramm
nm	Nanometer
OD	Optische Dichte
pA	Polyadenylierungssignal
PCI	Phenol-Chloroform-Isoamylalkohol
PCR	Polymerasekettenreaktion
PEG	Polyethylenglycol
Pfu-Polymerase	Pyrococcus furiosus Polymerse
pH	Pondus Hydrogenii
PNK	Polynukleotidkinase
rom	Umdrehungen pro Minute (rounds per minute)
RT	Raumtemperatur
SA	Splice-Acceptor
SDS	Sodiumdilaurylsulfat
SSC	Saline Sodium Citrate
STET-Puffer	Saccharose-Tris-EDTA-TritonX-100-Puffer
T	Tyrosin
Tag-Polymerase	Thermus aquaticus Polymerase
TBF-Puffer	Tris-Borat-FDTA-Puffer
TE-Puffer	Tris-FDTA-Puffer
TEMED	N' N' N' N'-Tetramethyldiamin
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

TK	Thymidinkinase
T _m	Schmelztemperatur
Tris	α, α, α -Tris-(hydroxymethyl)-methylamin
TRP	Transient Receptor Potential
U	Unit
UV	Ultraviolett
V	Volt
WT	Wildtyp
хg	Multiplikation mit der Erdbeschleunigung
X-Gal	5-Bromo-4-chloro-3-indolyl-B-D-galactosylpyranosid

7 LITERATURVERZEICHNIS

Amiri,H., Schultz,G., and Schaefer,M. (2003). FRET-based analysis of TRPC subunit stoichiometry. *Cell Calcium.*, **33**, 463-470.

Beech, D.J., Muraki, K., and Flemming, R. (2004). Non-selective cationic channels of smooth muscle and the mammalian homologues of Drosophila TRP. *J. Physiol.*, **559**, 685-706.

Birnboim,H.C. and Doly,J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. *Nucleic Acids Res.*, **7**, 1513-1523.

Bush,E.W., Hood,D.B., Papst,P.J., Chapo,J.A., Minobe,W., Bristow,M.R., Olson,E.N., and McKinsey,T.A. (2006). Canonical Transient Receptor Potential Channels Promote Cardiomyocyte Hypertrophy through Activation of Calcineurin Signaling. *J. Biol. Chem.*, **281**, 33487-33496.

Clapham, D.E. (2003). TRP channels as cellular sensors. Nature, 426, 517-524.

Congar, P., Leinekugel, X., Ben Ari, Y., and Crepel, V. (1997). A long-lasting calciumactivated nonselective cationic current is generated by synaptic stimulation or exogenous activation of group I metabotropic glutamate receptors in CA1 pyramidal neurons. *J. Neurosci.*, **17**, 5366-5379.

Davis, G., Dibner, MD., Battey, J.F (1986). Basic methods in molecular biology. *Elesevier*, New York.

Dietrich,A., Gollasch,M., Chubanov,V., Mederos y Schnitzler,M., Dubrovska,G., Herz,U., Renz,H., Gudermann,T., and Birnbaumer,L. (2003). Studies on TRPC6 deficient mice reveal its non-redundant role in the regulation of smooth muscle tone. *Naunyn Schmiedebergs Arch. Pharmacol. Suppl. 1*, **367**, R95.

Dietrich, A., Mederos, Y.S., Gollasch, M., Gross, V., Storch, U., Dubrovska, G., Obst, M., Yildirim, E., Salanova, B., Kalwa, H., Essin, K., Pinkenburg, O., Luft, F.C., Gudermann, T., and Birnbaumer, L. (2005). Increased vascular smooth muscle contractility in TRPC6-/mice. *Mol. Cell Biol.*, **25**, 6980-6989.

Facemire, C.S., Mohler, P.J., and Arendshorst, W.J. (2004). Expression and relative abundance of short transient receptor potential channels in the rat renal microcirculation. *Am. J. Physiol Renal Physiol.*, **286**, F546-F551.

Farley, F.W., Soriano, P., Steffen, L.S., and Dymecki, S.M. (2000). Widespread recombinase expression using FLPeR (flipper) mice. *Genesis.*, **28**, 106-110.

Freichel, M., Suh, S.H., Pfeifer, A., Schweig, U., Trost, C., Weissgerber, P., Biel, M., Philipp, S., Freise, D., Droogmans, G., Hofmann, F., Flockerzi, V., and Nilius, B. (2001). Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. *Nat. Cell Biol.*, **3**, 121-127.

Freichel, M., Vennekens, R., Olausson, J., Stolz, S., Philipp, S.E., Weissgerber, P., and Flockerzi, V. (2005). Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. *J. Physiol.*, **567**, 59-66.

Goel, M., Sinkins, W.G., and Schilling, W.P. (2002). Selective association of TRPC channel subunits in rat brain synaptosomes. *J. Biol. Chem.*, **277**, 48303-48310.

Greka, A., Navarro, B., Oancea, E., Duggan, A., and Clapham, D.E. (2003). TRPC5 is a regulator of hippocampal neurite length and growth cone morphology. *Nat. Neurosci.*, **6**, 837-845.

Hayashi,S. and McMahon,A.P. (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. *Dev. Biol.*, **244**, 305-318.

Hoenderop, J.G., Voets, T., Hoefs, S., Weidema, F., Prenen, J., Nilius, B., and Bindels, R.J. (2003). Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. *EMBO J.*, **22**, 776-785.

Hofmann,T., Schaefer,M., Schultz,G., and Gudermann,T. (2002). Subunit composition of mammalian transient receptor potential channels in living cells. *Proc. Natl. Acad. Sci. U. S. A*, **99**, 7461-7466.

Holmes, D.S. and Quigley, M. (1981). A rapid boiling method for the preparation of bacterial plasmids. *Anal. Biochem.*, **114**, 193-197.

Holzenberger, M., Lenzner, C., Leneuve, P., Zaoui, R., Hamard, G., Vaulont, S., and Bouc, Y.L. (2000). Cre-mediated germline mosaicism: a method allowing rapid generation of several alleles of a target gene. *Nucleic Acids Res.*, **28**, E92.

Joyner, AL., Sedivy, JM (2000). Gene targeting: a practical approach. New York, Oxford University Press

Kulessa,H. and Hogan,B.L. (2002). Generation of a loxP flanked bmp4loxP-lacZ allele marked by conditional lacZ expression. *Genesis.*, **32**, 66-68.

Kwan,K.M. (2002). Conditional alleles in mice: practical considerations for tissuespecific knockouts. *Genesis.*, **32**, 49-62.

Lewandoski, M. (2001). Conditional control of gene expression in the mouse. *Nat. Rev. Genet.*, **2**, 743-755.

Leypold,B.G., Yu,C.R., Leinders-Zufall,T., Kim,M.M., Zufall,F., and Axel,R. (2002). Altered sexual and social behaviors in trp2 mutant mice. *Proc. Natl. Acad. Sci. U. S. A*, **99**, 6376-6381.

McDaniel,S.S., Platoshyn,O., Wang,J., Yu,Y., Sweeney,M., Krick,S., Rubin,L.J., and Yuan,J.X. (2001). Capacitative Ca(2+) entry in agonist-induced pulmonary vasoconstriction. *Am. J. Physiol Lung Cell Mol. Physiol.*, **280**, L870-L880.

Montell, C. (2005). The TRP superfamily of cation channels. Sci. STKE., 2005, re3.

Montell,C. and Rubin,G.M. (1989). Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. *Neuron*, **2**, 1313-1323.

Munsch, T., Freichel, M., Flockerzi, V., and Pape, H.C. (2003). Contribution of transient receptor potential channels to the control of GABA release from dendrites. *Proc. Natl. Acad. Sci. U. S. A*, **100**, 16065-16070.

Nakayama,H., Wilkin,B.J., Bodi,I., and Molkentin,J.D. (2006). Calcineurin-dependent cardiomyopathy is activated by TRPC in the adult mouse heart. *FASEB J.*, **20**, 1660-1670.

Newton, CR., Graham, A (1994). PCR. Spektrum Akademischer Verlag GmbH, Heidelberg, Berlin, Oxford.

Ng,L.C. and Gurney,A.M. (2001). Store-operated channels mediate Ca(2+) influx and contraction in rat pulmonary artery. *Circ. Res.*, **89**, 923-929.

Nilius, B., Voets, T., and Peters, J. (2005). TRP channels in disease. *Sci. STKE.*, **2005**, re8.

Okada, T., Shimizu, S., Wakamori, M., Maeda, A., Kurosaki, T., Takada, N., Imoto, K., and Mori, Y. (1998). Molecular cloning and functional characterization of a novel receptoractivated TRP Ca2+ channel from mouse brain. *J. Biol. Chem.*, **273**, 10279-10287.

Pham,C.T., MacIvor,D.M., Hug,B.A., Heusel,J.W., and Ley,T.J. (1996). Long-range disruption of gene expression by a selectable marker cassette. *Proc. Natl. Acad. Sci. U. S. A.*, **93**, 13090-13095.

Philipp,S., Hambrecht,J., Braslavski,L., Schroth,G., Freichel,M., Murakami,M., Cavalie,A., and Flockerzi,V. (1998). A novel capacitative calcium entry channel expressed in excitable cells. *EMBO J.*, **17**, 4274-4282.

Plant, T.D. and Schaefer, M. (2003). TRPC4 and TRPC5: receptor-operated Ca2+permeable nonselective cation channels. *Cell Calcium.*, **33**, 441-450.

Ramsey, I.S., Delling, M., and Clapham, D.E. (2006). An introduction to TRP channels. *Annu. Rev. Physiol.*, **68:619-47.**, 619-647.

Regan, C.P., Manabe, I., and Owens, G.K. (2000). Development of a smooth muscletargeted cre recombinase mouse reveals novel insights regarding smooth muscle myosin heavy chain promoter regulation. *Circ. Res.*, **87**, 363-369.

Saiki,R.K., Gelfand,D.H., Stoffel,S., Scharf,S.J., Higuchi,R., Horn,G.T., Mullis,K.B., and Erlich,H.A. (1988). Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. *Science.*, **239**, 487-491.

Sanger, F., Nicklen, S., and Coulson, A.R. (1992). DNA sequencing with chain-terminating inhibitors. 1977. *Biotechnology.*, **24:104-8.**, 104-108.

Schaefer, M., Plant, T.D., Obukhov, A.G., Hofmann, T., Gudermann, T., and Schultz, G. (2000). Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. *J. Biol. Chem.*, **275**, 17517-17526.

Schwenk, F., Baron, U., and Rajewsky, K. (1995). A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. *Nucleic. Acids. Res.*, **23**, 5080-5081.

Sohal,D.S., Nghiem,M., Crackower,M.A., Witt,S.A., Kimball,T.R., Tymitz,K.M., Penninger,J.M., and Molkentin,J.D. (2001). Temporally regulated and tissue-specific gene manipulations in the adult and embryonic heart using a tamoxifen-inducible Cre protein. *Circ. Res. 2001. Jul. 6.*;89. (1.):20. -5., **89**, 20-25.

Stowers, L., Holy, T.E., Meister, M., Dulac, C., and Koentges, G. (2002). Loss of sex discrimination and male-male aggression in mice deficient for TRP2. *Science*, **295**, 1493-1500.

Strubing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2001). TRPC1 and TRPC5 form a novel cation channel in mammalian brain. *Neuron*, **29**, 645-655.

Strubing, C., Krapivinsky, G., Krapivinsky, L., and Clapham, D.E. (2003). Formation of novel TRPC channels by complex subunit interactions in embryonic brain. *J. Biol. Chem.*, **278**, 39014-39019.

Tiruppathi,C., Freichel,M., Vogel,S.M., Paria,B.C., Mehta,D., Flockerzi,V., and Malik,A.B. (2002). Impairment of store-operated Ca2+ entry in TRPC4(-/-) mice interferes with increase in lung microvascular permeability. *Circ. Res.*, **91**, 70-76.

Weissgerber, P., Held, B., Bloch, W., Kaestner, L., Chien, K.R., Fleischmann, B.K., Lipp, P., Flockerzi, V., and Freichel, M. (2006). Reduced cardiac L-type Ca2+ current in Ca(V)beta2-/- embryos impairs cardiac development and contraction with secondary defects in vascular maturation. *Circ. Res.*, **99**, 749-757.

Wettschureck, N., Rutten, H., Zywietz, A., Gehring, D., Wilkie, T.M., Chen, J., Chien, K.R., and Offermanns, S. (2001). Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. *Nat. Med.*, **7**, 1236-1240.

Zeng,F., Xu,S.Z., Jackson,P.K., McHugh,D., Kumar,B., Fountain,S.J., and Beech,D.J. (2004). Human TRPC5 channel activated by a multiplicity of signals in a single cell. *J. Physiol.*, **559**, 739-750.

Eigene Veröffentlichungen

Freichel, M., Vennekens, R., Olausson, J., Hoffmann, M., Muller, C., Stolz, S., Scheunemann, J., Weissgerber, P., and Flockerzi, V. (2004). Functional role of TRPC proteins in vivo: lessons from TRPC-deficient mouse models. *Biochem. Biophys. Res. Commun.*, **322**, 1352-1358.

Freichel, M., Vennekens, R., Olausson, J., Stolz, S., Philipp, S.E., Weissgerber, P., and Flockerzi, V. (2005). Functional role of TRPC proteins in native systems: implications from knockout and knock-down studies. *J. Physiol.*, **567**, 59-66.

DANKSAGUNG

Mein herzlicher Dank gilt Herrn Prof. Dr. Veit Flockerzi und Herrn Prof. Dr. Marc Freichel für die Bereitstellung des Themas und für die allzeit freundliche Unterstützung im Rahmen dieser Arbeit und während meines beruflichen Werdeganges.

Ganz besonders bedanke ich mich bei Frau Stefanie Buchholz und Frau Dr. Petra Weißgerber, die mir während meiner gesamten Zeit im Labor zur Seite gestanden, mir jegliches Laborwissen vermittelt und mich allzeit sehr unterstützt haben. Danke für Eure Geduld mit dem "Master of desaster" und die vielen unvergesslichen Momente!

Weiterhin danke ich Herrn Priv.-Doz. Dr. Ulrich Wissenbach und Frau Karin Wolske für die Hilfe beim Lösen von Klonierungsproblemen und die stetige Diskussionsbereitschaft.

Mein Dank gilt weiterhin unseren Azubis, die mich tatkräftig unterstützt haben sowie allen weiteren nicht namentlich genannten Mitarbeitern des Instituts, die mir während meiner Ausbildung viele Methoden vermittelt und sich stets für das Gelingen und Vorankommen dieser Arbeit interessiert haben.

Für die moralische Unterstützung in schwierigen Phasen dieser Arbeit bedanke ich mich bei meiner Oma Traudi, meinen "Sandkasten"-Freunden Andi, Chrisi und Alex sowie bei meiner Kommilitonin Kerstin Wagner. Ohne sie wäre das Medizinstudium nur halb so lustig gewesen. Danke, daß Ihr immer an mich geglaubt habt!

Ich bin meinem Freund Tom dankbar für die Unterstüzung und die Ermutigung während den Hochs und Tiefs dieser Arbeit. Danke für Deine Geduld und Dein Verständnis!

Mein größter Dank gilt meinen Eltern, ohne die das Medizinstudium und somit diese Arbeit nie Möglich gewesen wäre. Danke für die Unterstützungen jeglicher Art sowie die Aufmerksamkeit, das Verständnis und die Liebe die Ihr mir schenkt!

Lebenslauf

Name:	Stolz
Vorname:	Susanne
Geburtsdatum:	28.04.1980
Geburtsort:	Daun
Wohnort:	66424 Homburg/Saar
Straße:	Untere Allee 15
Telefon:	06841/9854561
E-Mail:	susistolz@web.de
Staatsangehörigkeit:	Deutsch
Familienstand:	Ledig

Schulausbildung:	1986-1990 Grundschule Laufeld
	1990-1992 Kurfürst Balduin Realschule Wittlich
	1992-1999 Cusanus Gymnasium Wittlich
Schulabschluß:	Hochschulreife (Abitur 1999)
Berufsausbildung:	Biologielaborantin (1999-2001)
Studium:	WS 2001/2002 bis heute:
	Studium der Medizin, Universität des Saarlandes
	SS 2003: Ärztliche Vorprüfung
	WS 2006/2007/SS 2207: Praktisches Jahr
Dissertation	Oktober 2003 bis Oktober 2005:
	Experimente zur Doktorarbeit am Institut für
	Pharmakologie und Toxikologie (FR 2.4)