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1. SUMMARY  

 

Traumatic Brain Injury (TBI) has been established in epidemiological studies to be a 

risk factor for subsequent development of Alzheimer’s disease (AD). In some analyses, 

the risk of AD development was increased by head trauma only in male population. 

However, the women are more susceptible to develop AD in general, regardless of its 

background.  

 

AD is a devastating brain disorder characterised by neurofibrillary tangles and Aβ 

amyloid plaques. Aβ is derived from the larger amyloid precursor protein (APP). 

Overexpressing of the human mutant APP in the brain of transgenic mice leads to 

age−dependent Aβ amyloid plaque formation. Previously published reports using APP 

transgenic mice in neurotrauma research provided conflicting results. Also no analysis 

of gender influence has been presented. Therefore, a new procedure for posttraumatic 

injury and possible impact on AD pathology in mice has been developed in the present 

thesis. The Closed Head Injury (CHI) model was adapted for repetitive mild- to-

moderate TBI and applied to anaesthetised 3 month-old APP751SL transgenic or wild 

type (WT) mice of both sexes. The neurological assessment was performed before 

trauma and at regular intervals during the following 4 weeks. After this period the 

animals were sacrificed and their brains were analysed using Aβ40 ELISA, as well as 

standard histopathological and immunohistochemical methods.  

Pre-injury assessment revealed poorer neurological performance in female APP(+) vs. 

WT animals, which, however, didn’t impact the posttraumatic course and outcome. 

Histopathological sequelae of trauma didn’t vary significantly between the mice of 

different gender and genotype. Also no differences in Aβ deposition could be observed 

among APP(+) mice. However, biochemical analysis in APP(+) animals revealed a 

trend towards increased Aβ40 content in female vs. male mice in sham, but not in TBI 

group. The latter result suggests that a gender- related difference in posttraumatic 

AD−risk may be potentially reproduced in animals. However, the number of factors 

makes the temporarily available transgenic murine models of Alzheimer’s disease to be 

not an optimal background for neurotrauma studies. The role of these factors and 

results of current and previous similar studies have been critically discussed.  
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2. INTRODUCTION 

 

2.1 Nosological position of Alzheimer’s disease 

Alzheimer’s disease (AD) according to nosological criteria is the primary degenerative 

disease of the brain. The dementia developing in course of AD is classified in the 

International Statistical Classification of Diseases and Related Health Problems, tenth 

revision (ICD-10) among other mental and behavioural disorders (F 00_0-2,9).2  

The World Health Organisation defines AD as ‘a degenerative brain syndrome 

characterized by a progressive decline in memory, thinking, comprehension, 

calculation, language, learning capacity and judgement’,1 requiring, however, an 

differentiation from normal age-related decline in cognitive functions which is more 

gradual and leads to much milder disability.183  

 

2.2 Clinical and histopathological features of Alzh eimer’s disease 

2.2.1 Clinical manifestation 

A variety of clinical features may be observed in the course of AD. They include 

gradual onset of dementia, progressive cognitive decline, memory loss associated with 

executive and other cognitive deficits, and impaired functional abilities.  

According to Morris, AD can be described as insidiously developing debilitating 

process.183 Normally, initial AD progresses for several years, before any medical 

attention is paid. The cardinal feature in early AD is memory loss which is represented 

by uncharacteristic forgetfulness and difficulties in aquisition and retreival of newly 

learned information. In contrast, highly learned material (from past years or rather 

decades) may be recalled without problems. Inintially, simple everyday activities (e.g. 

dressing, bathing and grooming, toileting) remain spared from impairment, but more 

complex tasks such as driving, operating appliances or balancing a checkbook may be 

performed less effecively. Language skills may be affected by word-finding difficulties, 

hesistancy of speech, and decreased verbal output. Personality changes at this stage 

are not prominent. Neurological and psychiatrical signs are usually absent. In general, 

an early stage AD patients appear healthy to casual medical inspection and usually 

remain self-dependently engaged in many activities of daily living that do not require 

high intelectual and memory effort.  

As AD progresses, memory disability becomes profound at moderate stages of the 

disease. Rapid forgetting of new information and frequent inaccuracies in recall of 

established memories are main characteristics of this stage. The social function is 
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impaired by difficulties in recollection of relationship and identity of relatives or friends. 

Gradually a patient may become lost even in familiar surrondings, tolerating poorly any 

changes in his/her environment. Also judgement and problem solving skills decline 

further: all complex activities cannot be performed. Additionally, appropriate 

accomplishing of simple tasks including self-care activities requires help or supervision, 

so that patient gradually becomes fully dependent in daily living. Deterioration in 

language is expressed in circumlocutory or incomplete sentences and poor 

comprehension of speech and writing. At this stage some personality changes and 

psychiatric signs may become apparent: An affected person may present disruptive 

behaviours, agitation, restlessness, day-night disorientation with sleep disturbances, 

aggressive verbal or physical behaviour, suspiciousness and delusions (e.g. in false 

belief that misplaced item has been stolen) and hallucinations. Generalising, the 

moderate stage of AD can be characterised by gradual loss of independence from 

caregivers with retrieval from social function. A growing burden of behavioural and 

psychiatric disturbances may prompt institutionalisation of the AD patients.  

In the severe stage of AD only memory fragments remain. Even closest persons 

cannot be properly identified and only emotional recognition may occur. Not only 

remnant social function, but also all semblance of the patient’s personality eventually 

disappear. Language skills are usually sparse: extremely limited output (short phrases 

and repetition of words) and comprehension of only simplest spoken language can be 

present. Behavioural disturbances may be represented by screaming, however, with 

the progress of the AD even this primitive activity is vanishing. Characteristic for this 

stage are neurological disturbances, including motor complications (e.g. extrapyramidal 

dysfunction, generalised tonic-clonic seizures and falls), urinary and fecal incontinence 

and dysphagia. Terminal stage of AD is represented by bed-ridden, uncomprehending 

patients. Death usually results from one or more complications associated with chronic 

severe debilitation (pulmonary embolus, pneumonia, urosepsis, aspiration or inanition). 

Median duration of AD (from the onset to death) is 9-10 years, with a wide variability 

seen.183  
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2.2.2 Diagnosis and criteria for Alzheimer’s diseas e 

Despite numerous attempts to establish a reliable molecular or neuroradiological 

marker of ‘definite Alzheimer’s disease’ (dAD) in living patients, such diagnosis still 

remains a combination of clinical picture of progressive dementia and post mortem 

confirmation basing on the histopatological analysis of brain tissue. Instead, more or 

less ‘probable Alzheimer’s disease’ (pAD) may be diagnosed in individuals, basing 

mainly on clinical criteria, while laboratory and imaging techniques remain 

complementary. These criteria have been established by McKhann et al. and accepted 

by the National Institute of Neurological and Communicative Disorders and Stroke 

(NINCDS) and the Alzheimer’s Disease and Related Disorders Association (ADRDA) 

(see Table 2.1.).173 Basing on the NINCD/ADRDA criteria three levels of diagnostic 

certaininty may be distinguished:  

− possible AD  for patients with non typical AD dementia or with coexistent 

potentially dementing disorder, that however is believed not to be primarily 

responsible for dementia;  

− probable AD for patients with AD-like dementia and deficits in > 2 cognitive 

areas and with no other diseases that could cause dementia;  

− definite AD for patients, in whom clinical diagnosis has been confirmed by 

histopathological biopsy or autopsy studies of the brain.  

Estabilishing of these criteria carried a few advantages. First, they enable a physician 

to diagnose and treat AD in certain patients with dementia before histopathological 

confirmation (most often resulting from autopsy study) is available. Second, due to 

them a standardisation of epidemiological analyses in AD may be performed. Third, 

these criteria create an excelent tool for clinical research as eligibility criteria for 

studies. Importantly, NINCD/ADRDA criteria for probable AD have documented 

reliability and validity (reaching app. 90% of neuropathological confirmations of 

clinically diagnosed probable AD).183  
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Table 2.1: NINCD/ADRDA criteria of diagnosis of pro bable Alzheimer’s Disease.  

Clinically probable Alzheimer’s disease  

Dementia established by examination and documented by objective testing 

Deficits in two or more cognitive areas 

Progressive worsening of memory and other cognitive functions 

No disturbance in consciousness 

Onset between 40 and 90 years of age 

Absence of systemic disorders or other brain disease that could account for the 

progressive deficits in memory and cognition 

Diagnosis supported by:  

Progressive deficits in langauage (aphasia), motor skills (apraxia), and perception 

(agnosia) 

Impaired activities of daily living and altered patterns of behaviour 

Family history of similar disorders 

Consistent laboratory results (e.g., cerebral atrophy on computed tomography) 

 

2.2.3. The neuropathology of Alzheimer’s disease  

2.2.3.1. Macroscopic changes  

Gross changes in AD involve not only the brain itself, but also meninges and cerebral 

vasculature. The leptomeniges over convexity and near the midline are often 

thickened, due to fibroblastic infiltration with collagen addition and deposition of 

amyloid (the amino acid sequence of which slightly differs from this of parenchymal 

deposits). Amyloid infiltration particularily affects the meningeal vessels, which often 

are involved in this process more prominently than parenchymal vessels.  

The general brain atrophy is seen as decrease in average brain weight and shrinkage 

of the gyri. Gyral atrophy may be apparent in the frontotemporal areas, parietal lobe 

and on the ventral surface of the temporal lobe (involving in particular parahippocampal 

gyrus). In some cases this atrophy seems to affect all brain regions, but, in overall 

comparison occipital lobe is often spared. Also a cerebellar vermis may be shrunken; 

however, this phenomenon is atttributed to general malnutrition seen in advanced AD. 

The cranial nerves are usually spared (with exception of the olfactory bulb and tract 

that may also be atrophied).  

In its typical form, AD changes in cross sections of the brain also are displayed mainly 

in cortex and hippocampus, while basal ganglia remain usually unaffected, save 

potential ischemic foci. The cortical ribbon is thinned and some atrophic changes may 

be seen in centrum semiovale. The demarcation between white matter and cortex is 
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however preserved. Variable degree of pigmentation loss may be seen in locus 

coeruleus and substantia nigra, the latter phenomenon being observed rather in Lewy 

body variant of AD.270  

 

2.2.3.2 Microscopic lesions 

2.2.3.2.1. Amyloid plaques and amyloid angiopathy  

One of the typical pathological lesions described already in 1907 in the first reported 

case of AD are amyloid plaques. They use to be regarded as characteristic for AD, 

nevertheless, some specimens from cognitively normal, non-demented aged people 

have displayed AD-like abundance of plaques. The main component of the plaques, 

beta-amyloid is classically described as an extracellular, filamentous, congophilic 

protein, that is however chemically different from systemic amyloid. Plaques, also those 

found in one individual may vary significantly in their morphology. Basically, two forms 

of plaques may be distinguished:  

So called diffuse plaques are characterised by absence of abnormal neurites. They 

contain nonstructured amyloid peptides and have only minute wisps of formed 

filamentous amyloid. They may be visualised using both silver staining as well as 

thioflavin-S staining techniqe.  

The neuritic plaques, in turn, contain well- structured dense bundles of 9-nm, thioflavin-

S-positive amyloid fibrils. However, their most characteristic components are dystrophic 

neurites.  Biochemical analysis of these neuronal fibers reveals content of APP, growth 

associated protein (GAP43- implying regenerative, not only degenerative processess 

involving the neurites), protein kinase C, tau protein, ubiquitin, brain spectrin, epidermal 

growth factor receptor (EGFR), neurofilaments, synaptophysin and chromogranin, and 

various neurotransmitters (including substance P and acetylcholine). The amyloid core 

of the plaques and peripheral fibrills are, in turn, highly immunoreactive with anti- Aβ 

antibodies. Additional components of both diffuse and neuritic plaqes are α1-

antichimotripsin, protein kinase C, complement proteins, apolipoprotein E, fibroblast 

growth factor (FGF) and sulfated glycosaminoglycanes (S-GAG). The probably crucial 

element of the plaques and their surrondings are reactive astrocytes and microglial 

cells. In particular, microglial cells have been implicated in amyloidogenesis and 

neurodegeneration, as possibly taking part in amyloid production, formation of the 

mature neuritic plaques or phagocyting amyloid. Notably, microglial activation is 

observed not only in proximity of the plaques but is widespread in the cortex of AD-

cases.270  
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2.2.3.2.2. Neurofibrillary tangles and neuropil thr eads 

The second classical feature of AD is the presence of neurofibrillary tangles. In contrast 

to plaques, there is a little doubt on their pathological role in dementia, since first they 

are very uncommon in neocortices of mentally normal elderly and second, their 

presence has been confirmed in numerous disorders other than AD with core 

neurologic and / or psychiatric symptomatology (e.g. postencephalic Parkinson’s 

disease, dementia pugilistica, hydrocephalus associated with mental retardation, 

subacute sclerotic panencephalitis). Nevertheless, some cases of AD represent so 

called plaque- only, or plaque- predominant form of AD, where NFTs are absent or very 

sparse, respectively.  

Most AD cases display abundance of NFTs, localised mainly in entorhinal and 

hippocampal areas, as well as in neocortex, locus coeruleus and dorsal raphe. On the 

cytological level, presence of NFTs is characteristic for larger neurons, while small and 

medium ones remain spared. NFTs are located in their cytoplasm, presenting form of 

flame-shaped or globoid masses, with affinity for silver, Congo red and thioflavin S 

staining. In the entorhinal cortex and hippocampus, but only rarely in neocortex, 

remnants of the NFTs may be found in form of fiber masses without accompanying 

organelles of the neurones that have died.  

The main ultrastructural component of the NFTs are paired helical filaments (PHFs), 

made of tau protein. Additional constituents of the NFTs, as may be stated by 

immunostainting, are: A-68 protein, casein kinase II, protease nexin I, fibroblast growth 

factor (FGF), microtubule- associated protein 5 (MAP-5), ubiquitin and Aβ.  

The pathological role of NFTs results from disturbance of axoplasmic transport and 

intracellular organisation as well as from their neurotoxic properties. Neurotoxicity of 

NFTs is undebatable in respect to hippocampal and entorhinal neurones. However, in 

neocortex severe neuronal loss may be seen even in absence of NFTs, therefore an 

alternative cause of neuronal depletion must be considered. The dysfunction in 

intraneuronal transport and organisation is a result of formation of PHFs and NFTs. In 

this process a phosphorylation of tau protein takes place, which leads to instability of 

polymerised tubulin. In effect the dysfunction and loss of microtubules is to be 

observed.  

Other pathological structures that are biochemically close to NFTs are neuropil threads. 

These relatively short, straight or curly fibres may be observed in the neuropil of 

neocortex as argentophilic and thioflavin positive structures. They present also anti-tau 

and anti-ubiquitin immunoreactivity. The characteristic compound of NTs is so called 

neuropil thread protein, largely homologous with pancreatic thread protein. 
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Ultramicroscopically they are built of PHFs, and some of them are encompassed by 

fine myelin sheath. The latter phenomenon resembles their axonal origin; however 

most of them are degenerated dendrites. Their pathogenesis is still a subject of 

discussion: both degenerative as well as abnormal fibre sprouting processes may be 

involved in their production. A strict relationship exists between number of NT and both 

NFT presence and clinical severity of the AD.21,81,270  

 

2.2.3.3. Neuronal loss and synaptic alterations 

Neuronal loss seen in AD displays certain preponderance to selected brain structures, 

although different grades of decreased neuronal density may be seen in almost all 

regions of the brain in most AD cases. The structures mostly affected are: hippocampi, 

enthorinal cortex, basal nucleus of Meynert, neocortex, locus caeruleus and the dorsal 

raphe. Of particular importance is neuronal loss in nucleus of Meynert and locus 

coeruleus, since neuronal depletion there affects in a widespread way the cholinergic 

and noradrenergic activity, respectively.270  

 

2.2.4. Molecular background of Alzheimer’s Disease 

Amyloid precursor protein is a large transmembrane protein possessing a long 

extracellular N-terminal domain and a small intracellular cytoplasmic domain. A normal 

function of full-length APP and its soluble fragments applies to intra- and interneuronal 

signalling, synaptic transmission, neural growth, morphology and plasticity and learning 

and memory process (for exhaustive review see Turner et al.277). APP protein is 

produced by different types of the cells including endothelia, glia and neurones.242 Due 

to posttranscriptional alternative splicing APP is produced in at least three different 

forms i.e. APP770, APP 771 and APP695, differing in length of peptide chain. APP695 

is only form lacking so called Kunitz Protein Inhibitor (KPI) sequence (which function is 

currently not clear) and is thought to be a substrate for Aβ-generating variant of APP-

processing. Notably, this form is the dominating product of APP gene expression in 

neurones.  

Processing of APP occurs via different pathways, which are considered as non-

amyloidogenic (without the generation of Aβ-peptides) or amyloidogenic (with the 

generation of Aβ-peptides) (reviewed by De Strooper and Annaert51 and by Nunan ant 

Small194) (see Fig. 2.1.). The main physiological cleavage occurs at the beta-secretase 

site within the Aβ-domain, causing the release of a secreted form of APP (sAPPα), but 

also β- and γ-secretase cleavage can occur under certain physiological conditions. 
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Cleavage of APP within the Aβ domain (between amino acid 16 and 17) by α-

secretase releases the large, soluble ectodomain (~100–120 kDa) of APP (sAPPα) and 

leads to the generation of a membrane-bound carboxy-terminal fragment (~10 kDa), 

named α-CTF or C83. Further cleavage of C83 by gamma-secretase results in the 

liberation of a secreted fragment called p3 (reviewed by Bayer et al.14). 

The alternative pathway of APP secretion results in the cleavage of APP at β- and γ-

cleavage sites, liberating secreted beta-cleaved APP (sAPPβ), as well as Aβ-peptides. 

Cleavage of APP by β-secretase releases the truncated ectodomain of APP (sAPPβ) 

and generates an amyloidogenic C-terminal fragment of ~12 kDa (C99, β-CTF)246, 

which is further processed by gamma-secretase activity to generate Aβ peptides.  

γ-cleavage occurs at different sites resulting in Aβ peptides of varying lengths (39–43 

amino acids). The residual ~7 kDa fragment (γ-CTF) was recently identified211 and 

seems to form a transcriptively active complex with the cofactors Fe65 and Tip60.38 

Four independent groups reported the identification of the candidate for β-

secretase.113,253,284,308 This enzyme is called BACE (β-site APP-cleaving enzyme) or 

Asp2. Besides the long known beta-secretase site, BACE alternatively cleaves also at 

position Glu11 in the Aβ sequence. Mice deficient in BACE1 are healthy, fertile and 

appear normal. BACE knockout mice, which are also hemizygous for APP, lack brain 

β-amyloid and β-secretase-cleaved APP C-terminal fragments (β-CTFs). These results 

provide validation of BACE1 as the major beta-secretase in vivo.154 Notably, an efficient 

beta-secretase-like APP cleavage may be preformed also by proteins from caspase 

family,80,141,295,313 which, in turn are activated in neurones and glia by different forms of 

CNS injury (reviewed by Yakovlev and Faden305), including also TBI.18,30,127,209,306 

Cleavage of the beta-CTF is the final step in the generation of Aβ-peptides. The 

position of γ-secretase cleavage is variable, which leads to the generation of different 

Aβ peptides, of which Aβ40 (40 amino acids) and Aβ42 (42 amino acids) are the major 

components. Recently it was shown that nicastrin, a transmembrane glycoprotein, 

forms high molecular weight complexes with presenilin-1 and presenilin-2 and also 

binds to the C-terminal part of APP.311 Besides nicastrin, further components of the 

gamma-secretase complex have recently been identified. APH-1 and PEN-2 encode 

multipass transmembrane proteins that interact strongly with presenilin and nicastrin.61  
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Fig. 2.1. Schematic representation of Amyloid Precursor Prote in (APP) 

processing.  

A: Non-amyloidogenic processing pathway, by alpha- and subsequent 

gamma-secretase cleavage precludes the formation of Aβ peptides.  

B: Amyloidogenic processing by beta-secretase generates 

amyloidogenic c-terrminal fragments (C99). Further cleavage by 

gamma-secretase leads to generation of Aβ40 and Aβ42 peptides.  
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2.3 Interconnections between Traumatic Brain Injury  and 

Alzheimer’s disease 

2.3.1 Epidemiological link  

The epidemiological research reveals TBI to be a significant risk factor for AD. The first 

suggestions, that TBI may be the cause or risk factor for AD can be found in early case 

descriptions. Thus, Khaime Ts et al. described 3 cases of TBI preceding development 

of full blown AD with clinical diagnosis confirmed by autopsy.128 Thereafter, Rudelli et 

al. reported on 38-year-old man, suffering from AD with severe TBI occurred 16 years 

earlier.238 Following latter publication, numerous case-control studies were undertaken 

in order to estimate the odds ratio for this correlation. According to recent Fleminger’s 

et al. meta-analysis 36 case-control studies were completed until 2001. Among 15 

studies that passed through Fleminger’s strict acceptance criteria, odds ratio for TBI as 

a risk factor of AD varied from 0.44 to 6.00. The meta-analyses of all those studies and 

enrolled subjects gave an odds ratio estimate of 1.58 (1.21 to 2.06 for confidence 

interval CI 95%).59 This result deviates not far from this of Mortimer’s re-analysis 

(EURODEM-study)184 reporting an relative risk of 1.82 (95% confidence interval: 1.26- 

2.67). Both meta-studies revealed gender difference for TBI-related AD-risk (according 

to Fleminger et al., an odds ratio for male was of 2.26 while for females of 0.92). Thus, 

according to this result TBI may contribute to AD development only in males. Barring 

suspected sex-difference of bias, a biological protection from AD-producing effects of 

head trauma in women is assumed.59,184  

APOE e4 is considered as a risk factor for both AD and for outcome of TBI. On this 

ground several case control studies attempted to extract impact of APOE 

polymorphism on TBI-related AD-risk. The results are inconsistent. Mayeux et al. 

reported, that risk of AD was increased 10- fold, when head injury was combined with 

APOE e4 presence, however, TBI alone did not increase this risk at all, comparing with 

twofold increase by APOE e4 separately.169 In contrast, O’Meara et al.197 referred, that 

impact of APOE genotype on epidemiological relations AD-TBI is not statistically 

significant. According to these results head injury and APOE e4 were separate risk 

factors for AD, with odds ratio of 2.1 and 4.1, respectively.  

Apart from case control studies, reputedly more reliable cohort studies were published. 

Though Katzman et al.125 and Metha et al.177 report, that head injury is not a significant 

risk factor for AD, Schofield et al. found length of loss of  consciousness (LOC) as a 

important variable (RR of AD was of 11.2 for LOC > 5 min, but no increase in risk was 

found for LOC < 5 min).243 Most interesting results are reported by Nemetz et al.191 

Comparing AD general risk and time of eventual AD onset between the population 
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cohorts with and without head injury in the past, they stated that TBI increased the risk 

of early AD onset twice, and shortened the time to AD onset, while general risk of AD-

occurrence wasn’t increased. This suggests, that TBI may be rather accelerating, not 

causing factor for AD, acting only in people predisposed to develop AD. 

  

2.3.2. AD- related pathophysiological sequele of TB I in human subjects 

and animal experiments. 

2.3.2.1 Changes in APP immunoreactivity and express ion as a posttraumatic 

reaction  

Increase in immunoreactivity of APP has been widely demonstrated in various forms of 

CNS injury, including: ischemia (of different type: complete,4,117,213,261,307 

transient121,274,289,310 and chronic121), toxic damage,91,126,189,250-252,275,299 cholinergic 

deafferentiation of subcortical nuclei19,150 and axotomy.200 No doubt, TBI deserves a 

special place on this list. Thus, increased APP immunoreactivity after mechanical injury 

was first discovered by Otsuka et al. who used a needle stab injury model in rats. The 

authors reported APP presence in swollen axons (already 30 min postinjury) and glial 

cells (mostly astrocytes- 6 h after injury) close to the site of injury.199 Later on, Lewen et 

al. stated APP deposition also in axons of ipsilateral subcortical white matter and 

thalamus of rats subjected to mild compression contusion trauma, accompanied by 

loss of neuronal body APP immunoreactivity.146 Additionally, using the same model, 

some APP positive profiles were found in hippocampal fissure 24 h postinjury.147 

Subsequently, Pierce et al. examined different time points after fluid percussion injury 

in rats and observed that APP immunoreactivity was increased 1h (in thalamus) and 2h 

(in cortex and subcortical white matter) up to 2 weeks posttraumatically (mainly in 

swollen axons).208 The detailed temporal and regional patterns of these alterations, 

regarding APP- immunoreactivity were described by Bramlett et al. who reported APP-

reactive profiles in axons of striatum, hippocampus and external capsule as well as in 

the cell bodies of cortical and thalamic neurones. Notably, the APP-reactivity of striatal 

axons decreased dramatically between 24h and 3 days postinjury. Moreover in this 

latter report, the severity of trauma was found to be a significant factor directly 

correlated with the intensity of APP accumulation.28 Newertheless, alternative rodent 

model of mild TBI (fluid percussion injury in mongolian gerbils) proved that already 

concussion-like trauma is able to produce early (6h posttrauma) and significant 

accumulation of axonal APP, which was correlated with cognitive function impairment 

(as revealed in open field and T-maze tests).149 
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Investigations of Van Den Heuvel et al. revealed that an increase of APP reactivity was 

found in pericarya of neurons, remote from trauma site (even in contralateral 

hemisphere). Based on the ovine focal brain trauma model increased APP 

immunoreactivity was observed in particular 2 h after trauma and was described as a 

diffuse, widespread staining present in neuronal cell bodies rather than in axons.283 The 

more recent study of this group, in which paediatric head trauma in young lambs was 

analysed, revealed a similar pattern of APP immunostaining 2 h posttrauma.281  

One of the reasonable explanations for this phenomenon was increased APP 

production. Indeed, ischemia,4,102,129,134 axotomy245 and chemical injury to cholinergic 

structures292 result in surge of mRNA-APP or its translation. Similarly, TBI also followed 

this pattern. Alone pericarial localisation of APP accumulation, in an ovine head injury 

model was suggestive of APP’s increased production.283 This presumption was 

confirmed via revelation of the same APP mRNA distribution using an in situ− 

hybridisation technique.281,282  

Further verification of this hypothesis has been provided by studies of TBI in 

rats.24,45,118,161,186 In those experiments an increased expression of APP has been 

demonstrated in cerebral cortex and hippocampus ipsilaterally to the trauma. This 

effect seem to be short lasting, since APP quantity returned then to sham level after 

several days postinjury.24,118,161 Additionally, a surge of APP expression was observed 

regarding isoforms APP751/770, while APP695 was rather decreased.118,161 Moreover, 

gradual decrease in accumulation of APP in CA3 pericarya was accompanied by signs 

of apoptotic degeneration, linking it to death of the APP-producing neurons.186 Based 

on the aforementioned data a hypothesis was formed, which stated that increase of 

APP expression is a part of cerebral acute phase response and that this fact is 

responsible for APP accumulation and later overproduction of its derivative i.e. Aβ, with 

consequent development of AD.74,87,97 

However, this theory is still not free from several inconsistencies. In a model of 

transient ischemia, upregulation of HSP-genes occurred but this phenomenon didn’t 

affect APP mRNA3 and, in TBI-studies APP accumulation was not synchronised with 

APP overexpression, as it occurred long after or even before trauma.118,161 Moreover, 

increased translation of APP in some circumstances was not able to result in 

accumulation of mature APP.292 Finally, an isoform analysis for a shift in APP-mRNA 

level revealed that posttraumatic increase characterises APP751/770, which is 

preferentially expressed in glia, while the level of ‘neuronal’ mRNA-APP695 undergoes 

gradual decrease in damaged cortex.118,161 Therefore (without minimising the 
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importance of APP upregulation), some accessory mechanisms responsible for the 

rapid posttraumatic increase in APP immunoreactivity need to be searched.  

One may notice that the peak in detectable APP can be produced even without any 

increase of its total amount, if its local concentration increases. Since APP undergoes 

fast axonal transport,36,135,182,254 any disturbance in this mechanism could result in such 

a phenomenon. For instance, immunoreactivity of APP was increased after 

intraventricular injection of colchicine, which is toxic to the axonal microtubules, 

necessary for the axonal transport to occur.117 

Most importantly, head trauma is the best depicted cause of axonal impairment, 

described as traumatic axonal injury (TAI). According to current concept, this 

phenomenon is caused by indirect mechanisms and the so called primary axotomy, 

resulting from mechanical tearing of neurites by the trauma is rather ephemeral and 

marginal event168,215. Instead, an axolemma has been proposed as a prime site of injury 

and mechanical damage to its continuity results in loss of ionic homeostasis, with Ca2+ 

gradient disturbance as a main cause of subsequent changes.64,73,164-166,168,206,207,217 

Uncontrolled influx of Ca2+ into axoplasma promotes depolymerization and 

dearrangement of microtubules what results in impaired axonal transport.167,217 This, in 

turn leads to accumulation of proteins, normally carried via anterograde trafficking in 

the portion of axon proximal to injury. Such a swelling ultimately causes interruption 

and disconnection of axons.167,258 

APP is one of the proteins involved in this pathology. Its accumulation in mechanically 

traumatised axons has been presented in whole human nervous system, including 

spinal cord48,226 and optic nerve,227 not only in the brain. Regarding the latter one, 

axonal injury with APP accumulation has been observed even in the slightest forms of 

TBI25,26 and in fatally injured persons its prevalence reached up to 92%.78 Axonal APP 

accumulation was observed as early as 2h after head injury172,249 and persisted even 

up to 99 days,25 thus creating possible background for Aβ production for a prolonged 

period of time. The amount of axonal damage increases up to 10-15h 

posttraumatically,172 while the size of swollen axons representing the mass of 

accumulated APP reached plateau at 85h, suggesting, that secondary waves of axonal 

swelling may occur as a result of secondary complications such as oedema and 

hypoxia.297 Since TBI shares those features with other types of neurodamage (e.g. 

brain ischemia), axonal damage and APP accumulation are not strictly specific for 

mechanical impact to the brain.137,193,196 Nevertheless, APP immunostaining remains at 

date the best method for visualisation of injured axons, both in experimental28,107,208,263 

and medical settings.26,68,70,77,172,225,226,248,249  
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Summarising, axonal pathology produces potentially a second source of APP, in 

addition to its perikaryal accumulation. However, basing on this evidence an important 

question needs to be raised: May subsequent Aβ production and depositon origin in 

any of the two types: 1) perikaryal and 2) axonal of posttraumatically accumulated 

APP? 

 

2.3.2.2. Posttraumatic A β pathology in non-transgenic animals 

The phenomenon of posttraumatic Aβ deposition has not been observed in the majority 

of non-transgenic animal studies. In some of them, i.e. in both adult and young ovine 

head trauma model, β-amyloid staining was not used as a research tool.7,148,281-283 In 

rodent models however, efforts were undertaken in order to identify Aβ deposition in 

traumatised brain but most of them failed.28,45,138,147,161,208,240 Contrasting results have 

been presented in studies of chronic TBI stage in rats. Here the fluid percussion injury 

of moderate or severe degree has been used. A moderate trauma resulted in Aβ 

accumulation that was observed in axonal bulbs and partially around them from 1 

month to 1 year posttraumatically.118 However, after severe brain trauma Aβ was not 

observed until 6 months postinjury and Aβ deposition was present in regions of 

perikaryal cytoplasm and apical dendrite of, especially, pyramidal neurones.108 

In contrast to this lately occurring Aβ pathology formation, a pig model of rotational 

head injury developed quite rapid Aβ accumulation, manifested in axonal bulbs and (in 

form of diffuse deposits) around them already 3 days after trauma.256 Similar results 

were presented also in a rabbit model of rotational acceleration trauma, where Aβ 

immunoreactivity emerged acutely i.e. increasing from 1 to 14 days posttrauma in 

pericaryal area and axonal compartment.92 In a separate study using a pig model with 

6- months’ survival, deposits of Aβ were observed at all analysed time points (3, 6 days 

and 6 months after TBI); however, they didn’t increase with time after trauma. More 

importantly, this study reported axonal co-accumulation of enzymatic factors that 

produce Aβ (BACE, PS-1 and caspase-3), as well as products of their activity (CCA). A 

general expression and activity of some of these factors (as presented with the aid of 

Western Blot and ELISA analysis) can undergo increase after trauma.42 This surge 

however, is short−lasting (only up to 7 days in rat study).24 Thus, local peak in 

concentration of proteins needed for Aβ generation is crucial for abnormal APP 

proteolysis. Since this co-accumulation includes APP, a reasonable final conclusion 

could be that APP, which is highly concentrated in traumatically injured axons, indeed 

provides an ample substrate for Aβ production and aggregation. As presumed, this 

mechanism is functional also in the chronic stage after TBI. It should be noted, that for 
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some reasons this statement seems to be valid only for fully disconnected axons, 

displaying the so called axonal bulb pathology.42,256  

 

2.3.2.3. Posttraumatic A β pathology in human 

At this point next question raises: Does human TBI follow ‘rodent’ (chronic, slow 

progressing) or ‘porcine’ (rapid persistent) pattern of posttraumatic Aβ pathology? Aβ 

deposition has been initially observed in the brains of patients, who suffered repetitive 

blows to the head, as seen in the so called dementia pugilistica or punch drunk 

syndrome.6,46,228,231,273 Later post mortem studies revealed, that in about 30%−50% of 

subjects with severe TBI, diffuse Aβ deposits were spread in various cerebral 

structures.112,229,230 Recent analysis of surgically resected temporal cortex from 

survivors of severe TBI brought similar results.116 In autopsy studies this sequel was 

strongly dependent on APOE genotype (but not on another genetic AD background i.e. 

presenilin-1 gene polymorphism317) and present predominantly in APOE4 

carriers.106,157,192 The prevalence of Aβ deposition was significantly higher in TBI-

subjects than among age- matched non- traumatised controls and this difference was 

observed for all (save age 61-70 years) decades of life.230 Those data support the 

postulate that the observed amyloid deposits originated after traumatic insult and that 

they were no previous changes, present before injury and disclosed by co-occurrence. 

Interestingly, this deposition was observed relatively early (starting as early as few 

hours after trauma116,230) and when analysed by survival time longer than 1 month after 

TBI, the occurrence of Aβ deposition was not significantly different between TBI 

patients and age−matched controls.157 Taken together, it seems that human 

posttraumatic pathology follows the pattern seen in porcine brain i.e. rapid Aβ 

accumulation. 

Autopsy studies also confirmed Aβ generation from APP amassed in injured axons. 

Though previous pathological reports stated that localisation of posttraumatic plaques 

is not related to any other pathology, including axonal damage86, more recent work 

presented Aβ immunoreactivity in terminal ends of disconnected human axons.255 

Finally, co-accumulation of BACE, PS-1 and proteins responsible for axonal transport 

(kinesin and glycogen synthase kinase GSK) has been also confirmed in patients with 

TAI.43 
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2.3.2.4. TBI in transgenic models of AD  

Since the animal transgenic model of AD pathology is available, some efforts were 

undertaken in order to establish the pathophysiological background of AD- TBI 

association observed in humans. Using controlled cortical impact model a series of 

experiments was proceeded in PDAPP transgenic mice using different age and 

posttraumatic survival time (for details see Tab. 2.2.). PDAPP transgenic mouse is 

characterised by deposition of Aβ first at 6 months of age. Applying trauma before this 

age, both short and long term impact on general and Aβ pathology was described. 

First, using this paradigm, rapid, short lasting surge in Aβ level occurred, especially in 

hippocampus. However, trauma did not result in expected Aβ deposition259 and, after 

long term outcome analysis, even substantial reduction of amyloid burden ratio (as 

assessed by planimetry performed on images of Aβ-immunostained brain slices) both 

in cortices and hippocampi in TBI group was reported.187 Moreover, subsequent 

experiment with aged PDAPP mice resulted in TBI-related resolution of established Aβ 

deposits.188 Notably, in all of those experiments, increased neuronal damage, 

especially in hippocampal structures has been noted in PDAPP injured mice when 

compared with traumatised WT littermates. This neuronal loss was accompanied by 

significant memory dysfunction (impaired memory retention) as presented using Morris 

Water Maze (MWM).259 The newest analysis of Brody et al concludes that this 

impairment in PDAPP mice is caused by performance−deteriorating shift in spatial 

search strategy as well as by decrease in efficiency of use of given strategy; both 

effects being exacerbated by TBI.29 Since the impact of genotype has not been 

observed among sham injured animals, authors raised a ‘two-hit hypothesis’. According 

to this hypothesis β-amyloid per se is not neurotoxic in transgenic animals and 

accessory noxious factor (e.g. TBI) is necessary to reveal damaging effects of Aβ on 

neuronal structures.259  

Interestingly, separate analysis of Aβ isomorphs in PDAPP and YAC-APP mouse 

showed the decrease in Aβ40 amyloid level, while more detailed study in PDAPP mice 

revealed that in fact there is early posttraumatic surge in both forms of Aβ (more 

significantly in hippocampus than cortex), after which more amyloidogenic Aβ42 not 

only returned to baseline but was actually decreased.185,259 Regarding YAC-APP 

mouse, this model is characterised by overexpression of APP without spontaneous Aβ 

deposition.34 Also TBI was not able to induce the latter phenomenon.185 

An exceptional result was yielded from repetitive mild TBI (mTBI) experiment. Such a 

murine model has been developed138 and used Tg2576-APP transgenic mice. Here, 

mTBI, when repeated twice, at remote time points gave increase in deposited Aβ that 
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was associated with cortical surge in level of Aβ in soluble and insoluble form, both 

Aβ40 and Aβ42. In contrast, single head trauma resulted in increase of only Aβ42 level 

with plaque formation of degree greater than in sham treated animals, but not so 

escalated as after repetitive trauma. Additional analysis revealed increase in oxidative 

stress marker levels, conferring this type of damage to be an important factor for 

posttraumatic AD development.47,280 

Therefore, the results of TBI- studies in transgenic models of AD were conflicting when 

compared with sequele of human TBI. First, in none of the presented models a rapid 

Aβ deposition has been presented. This includes also repetitive mild head trauma, with 

slow progress of relatively late changes that makes it look similar in particular with 

progress of dementia pugilistica (see Section 2.3.2.3.). However, in comparison with 

other studies made on the same PDAPP mice the trend may be observed that greater 

impact of damage is correlated with reduced Aβ deposition or even resolution of 

already established plaques. This trend seems to be reversed in humans, since both 

the risk212 and the posttraumatic Aβ deposition increased with head trauma 

severity.69,230  

What is origin of these discrepancies? It may be postulated, that murine transgenic 

model of AD is just too remote from physiological APP metabolism in human. Thus, in 

transgenic animals APP carries highly amyloidogenic mutations and it is expressed at 

much higher level than the physiological one. This situation resembles some variants of 

familial AD and transgenic mouse models would be therefore comparable with them. 

Nevertheless, the confrontation with clinical data cannot here be made, since co- 

occurrence of APP mutation and head injury is rather rare and regarding this problem 

only some single notices were published.230 Moreover, model of head trauma in APP 

mouse has been anticipated as simulation of pathology in general population of head 

trauma patients, not in the very selected group. Thus, other explanations are worthy to 

be found and necessary for eventual amelioration of this concept. Some of them are 

outlined in Section 5. (discussion). 

Regarding this, the most reasonable approach has been presented by Abrahamson et 

al. In this study non- transgenic, so called APP knock-in murine construct has been 

used. In such animal, the sequence of mutated, highly amyloidogenic human APP is 

under control of own murine APP promoter, ensuring therefore physiological 

expression of APP gene. In this model, TBI resulted in early (3h posttrauma) raise of 

both Aβ40 and Aβ42. While at 72h posttrauma Aβ40 returned to baseline level, the 

‘more aggressive’ Aβ42 remained elevated through whole posttraumatic period 

analysed (up to 7 days after TBI). In the same study, increased beta-secretase like 



 19 

activity of caspases has been confirmed to be relevant cause of raise in Aβ level, 

which, notably, can be prevented by administration of caspase-3 inhibitor.5  
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Table 2.2.. Selected experimental studies on trauma tic brain injury using Alzheimer transgenic mice 
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2.4. Aim of the study 

Basing on the aforementioned data the following problems were intended to be 

dissolved experimentally: 

1. Regarding impact of TBI on Alzheimer’s pathology development: The existing 

results of animal studies are not fully consistent with evidence from 

epidemiological or neuropathological analyses in humans.  

Therefore: Would it possible to simulate this impact more accurately in 

transgenic model of APP751SL mice? 

2. Though some of the epidemiological studies report AD occurrence as increased 

after TBI in gender-dependent manner, up to date none of animal experiments 

analysed this issue.  

Thus: is there any difference between male and female animals in development 

of amyloid pathology in our posttraumatic AD model?  
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3. METHODS 

 

3.1. Animals 

Mice of both sexes, both transgenic APP751SL mice, as well as their wild−type (WT) 

littermates were used in this study. Breeding animals were obtained from and breeding 

line was established with permission of Aventis Pharma, Centre de Recherche de 

Paris. All animals were handled according to German guidelines for animal care.  

Animals were bred and kept under specific pathogen free (SPF) conditions in 

Laboratory Animal Resources Facility, Department of Experimental Surgery, Saarland 

University. Animals were housed in groups of 1 to 4 per cage, in a 12h :12h dark-light 

cycle. Food and water were provided at libitum. Animals were kept until 12 weeks of 

age. After genotype of mice was assessed, animals were designated to one of the four 

genotype− and sex−matched groups (i.e. APP−female, APP−male, WT−female, 

WT−male). Each of the groups consisted of 10 animals, thereof 5 animals were 

randomly selected for repetitive head injury treatment, while remaining 5 for 

sham−injury treatment.  

 

3.2. Techniques for nucleic acid analysis 

3.2.1. Isolation of mouse tail DNA 

A piece of mouse tail was put into lysis buffer (100 mM Tris/HCl pH 8.5, 5 mM EDTA, 

0.2% SDS, 200 mM NaCl) including Proteinase K (300 µg/ml) and was incubated 

overnight at 55°C in a thermomixer with continuous agitation. After a centrifugation step 

at 13.000 rpm at room temperature for 10 min, the supernatant was transferred into a 

new tube containing 500 µl 2-propanol. After a further centrifugation step, the 

supernatant was discarded and the pellet washed once with 500 µl 70% ethanol. After 

second centrifugation, the pellet was dried at 37°C  and resuspended in 70 µl distilled 

H2O. For polymerase chain reaction an 1:20 solution was used (5 µl of resuspded DNA 

in 95 µl of distilled water) 

 

3.2.2. Polymerase chain reaction 

The polymerase chain reaction (PCR) is a method, which allows specific and 

exponential amplification of selected DNA sequences for molecular biological analysis. 

During this reaction, cyclic annealing and elongation of short oligonucleotides (primers) 

occurs, which flank the sequence of interest. DNA itself is a double-stranded chain of 

nucleotides, whereas primers are single-stranded and able to bind to complementary 
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sequences in another piece of single−stranded DNA. First, the target DNA must be 

denatured, unwound and separated by heating to 90−96°C. The second step is 

hybridization or annealing, in which the primers bind to their complementary bases on 

the now single−stranded DNA. In the third step, DNA is synthesized by a polymerase, 

which results in two new helices, each composed of one of the original strands and its 

newly assembled complementary strand. For further amplification the process is just 

repeated, usually up to 35 times. 

 

Solutions and material: 

dNTP-mix (Invitrogen)  10 µM of dATP, dGTP, 

dCTP, dTTP 

Taq DNA Polymerase 10 x PCR Buffer (Invitrogen) 200 mM Tris HCl (pH 8.4), 

500 mM KCl, 50 mM MgCl2 

Taq-Polymerase (Invitrogen)    5 U/µl, storage at –20°C 

 

PCRs were carried out in volume of 10 µl. Each reaction mix contained 1 µl of dNTPs, 

1 µl of PCR-buffer, 5 pmol sense− and antisense primer, as well as 0.25 U/µl Taq-

polymerase and 1 µl of 1:20 DNA solution. Finally, distilled water was added to total 

volume of 10 µl for each mix. 

 

3.2.3. Genotyping of transgenic mice 

The PCR was carried out in a volume of 10 µl in a PTC-200 Thermocycler (MJ 

Research).  

 

Primer sequences: 

APP-forward:  5’-GTA GCA GAG GAG GAA GAA GTG-3' 

APP-reverse:  5’-CAT GAC CTG GGA CAT TCT C-3’ 

 

PCR-program: 

94°C  5 min 

94°C  60 s 

55°C  60 s      35 Cycles 

72°C  90 s 

72°C  5 min 
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3.2.4. Agarose gelelectrophoresis  

Agarose gelelectrophoresis is based on the principle of the mobility of charged particles 

in an electric field. Nucleic acids move during electrophoresis from the cathode to the 

anode. The velocity of the nucleic acids is both influenced by their molecular mass and 

their conformation (super−helical, double−stranded linear or single−stranded). In 

agarose gels, DNA fragments can be separated in a wide range, depending on the 

concentration of the agarose in the gel.  

 

Solutions: 

10 x TBE: 108 g Tris-HCl, 55 g boric acid, 40 ml 0.5 M EDTA ad 

1000 ml with distilled H2O 

agarose loading buffer: 0.5 ml glycerol, 0.08 ml of 0.5 M EDTA, 0.002 g 

Bromphenolblue, 3 drops of 5 M NaOH, diluted with dist. 

H2O ad 1ml 

Ethidiumbromide 10 mg/ml in dist. H2O 

 

Procedure: 

The 4 g agarose was dissolved in 200 ml of 0.5 x TBE and boiled in a microwave oven. 

After chilling to a temperature of approximately 50°C, 4 µl of ethidiumbromide-solution 

was added and the agarose was poured into a gel chamber. After polymerization, the 

samples were mixed with an equal volume of loading buffer and the electrophoresis 

was started at a voltage of 200 V, using 0.5 x TBE as running buffer. The dye 

ethidiumbromide attaches irreversible to the DNA and fluoresces when irradiated with 

UV-light. Comparison with a molecular weight standard yields information about the 

size of the DNA sample. 
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Fig. 3.1.  Genotyping of APPSL751 mice, basing on P CR and gel 
electrophoresis.  
By use of appropriate set of primers DNA amplification occurs only in 
samples from hAPP- transgenic animals. Electrophoresis and UV 
detection of DNA- ethidium bromide binding reveals hAPP-gene 
containing material as marked by fluorescent stripes (white arrows). 

Molecular weight marker 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Repetitive Closed Head Injury (CHI) model 

To induce brain trauma, a well established mouse model of closed head injury (CHI) 

was used (adapted from Chen et al.44). The principles of this model are based on 

transmission of weight drop energy to intact, non-trephined mouse skull. Using low 

injury severity (without causing skull fracture) concussive- like TBI without overt 

contusion or focal lesion can be achieved.139,140 Preserved bones of the skull enable 

also repetitive applying of trauma. This aspect, together with the advantage of easy 

feasibility made CHI paradigm optimal for purposes of this study.  
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3.3.1. Head trauma device 

The weight drop device (Laboratory Tools Workshop, Department of Pharmacology, 

School of Pharmacy, The Hebrew University of Jerusalem, Israel) consists of the 

bottom aluminium plate (A) with silicon pad (B) and of vertical Plexiglas tube (C), with 

lower opening closed with silicon cone (D). After manual positioning of the 

anaesthetised animal on the plate (head over the silicon pad B), the silicon tip was 

placed on its skull, targeting the injury site mark. Head trauma was applied by brass 

rod (E), free falling along the Plexiglas tube. Weight drop impact was transmitted on 

animal head via silicon cone. The energy of the trauma can be adjusted by using metal 

rod of different weight and by changing the height of its fall. For the purpose of this 

study, the following settings were used: 

Brass rod weight: 50.5 g 

Height of the fall: 12.5 cm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2. Weight drop device. Description in text  

B 

A 

C 

D 

E 
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3.3.2. Procedure 

Surgical procedures were approved by the animal rights committee of the University of 

Saarland at Homburg/Saar, Germany. 

Trauma was induced under pentobarbital anaesthesia (Narcoren 65 mg/kg i. p.), 

confirmed by loss of corneal and pinprick-withdrawal reflexes. The eyes were covered 

with an ointment (Bepanthen, Roche) to prevent noxious input due to drying of the 

cornea. The head fur was removed using hair trimmer. The animals were positioned on 

surgery tablet and scalp skin was disinfected with antiseptic (Octenisept Farblos, 

Schülke & Mayr). A longitudinal midline incision in the skin covering the skull was 

performed and the skin and subjacent soft tissues were retracted to expose the skull 

bone. The trauma site was determined using bregma and sagittal suture as landmarks 

and flagged with permanent waterproof marker. The head was manually fixed at the 

bottom plate of impact device.  

Due to various time of response to anaesthesia, a standard interval of 60 min from 

administration of anaesthetic to weight drop impact (or sham treatment) was exercised. 

After trauma, each mouse was placed again on the surgery tablet and head incision 

was closed using 6.0 polypropylene sutures (Prolene, Ethicon). Thereafter, animals 

returned to their home cages, and were kept under heating lamp until fully recovered 

from the anaesthesia (as evidenced by ambulation).   

At 24h after the first TBI, animals from TBI−group were re anesthetized as described 

above, and were then subjected to a second TBI in the same location over the left 

parietal region.  

Sham animals received identical treatment: on 2 consecutive days they were also 

anesthetized and placed on the base of impact device; the skull was exposed and the 

silicon tip was placed on the skull, however, without applying fall energy to silicon tip 

thus without brain injury. Finally, the skin incision was suture closed, thereby following 

exactly the surgical procedures of repetitive TBI. 
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Table 3.1.  Neurological Severity Score (NSS) scale . 
  Adapted from Sabo et al. 239  

3.4. Neurological assessment 

24h before operation each animal has been pre-trained according to modified 

beam−balance (BB) test protocol. The beam−balance task involves placing the mouse 

on a suspended narrow wooden beam and rating of the animal's ability to balance (the 

maximum time limit was 60 s). The rating of beam−balance performance was from 0 to 

5 (see Fig. 3.3. for BB rating). The trials were given to the animal until it was able to 

perform task correctly (with a note of 0) three times in a row. The pre-training 

performance index was calculated by simple adding of single rates. After CHI or sham 

operation the neurological status was evaluated at different times (from 3 h and up to 

28 days) using a set of motor and behavioural tasks referred to as the Neurological 

Severity Score (NSS). This score was modified from Sabo et al.239 and is outlined in 

Table 3.1.  
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At the same time points posttraumatic beam−balance test was performed. Design and 

rating was analogical to the pre-training protocol. During every assessment each 

animal was given 3 trials and mean of their results was used for further analysis.  

For analysis of temporal profile of neurological impairment changes in both NSS and 

BB were calculated. For given time point change in NSS (D-NSS) or in BB (D-BB) was 

obtained in following way: a result of previous measurement was subtracted from 

actual value. 
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0  steady posture on the beam 

1  grasps the side of the beam 
and/or has unsteady movements 

2  hugs the beam without falling 

5  does not attempt to balance 

Fig 3.3. Beam Balance Test scoring (modified after Scherbel et al. 241) 

If the mouse attempts to perform the task with result 0-3, but falls off 

before end of scoring time (<60”), one point is added  

3 hangs on the beam without 
falling 

 
4 hangs on the beam and falls off  
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3.5. Techniques for histological analysis 

3.5.1. Histopathological analysis  

APP751SL and WT littermate male and female mice used in this study received sham 

injury or repetitive TBI, and the mice were killed 4 weeks after second surgery. Each 

experimental group (8 groups: APP−TBI, APP−sham, WT−TBI, WT−sham for both 

female and male mice) consisted of 5 animals (n = 5 for each group; in total n = 40)  

After the study on living animals was concluded mice were humanely euthanized with 

an overdose of sodium pentobarbital (Narcoren, 200 mg/kg i.p.) and their brains were 

excised and dissected in coronal plane app. 3 mm anteriorly from the injury site. Both 

parts of the brain were snap- frozen in hexane chilled to −80°C and stored in −80°C 

until further processing.  

Thereafter, 8 µm−thick frozen sections were cut in 3 series from posterior part of each 

brain.  

Sections were mounted on microscope slides (Superfrost®, Carl Roth for histology and 

Superfrost®Plus, Carl Roth for immunostaining), dried overnight at room temperature 

and stored at −80°C until staining.  

The histology and location of the TBI site were examined by haematoxylin and eosin 

(H&E) as well as by Perls Prussian Blue iron staining, and the gross neuronal loss 

assessment was performed using the Nissl staining.  

 

Alternate sections were examined by immunohistochemistry. Brain sections were 

immunostained with previously characterized monoclonal and polyclonal antibodies 

that are highly specific for: Aβ peptides (692), APP (23850) and cathepsin D.  Sections 

adjacent to those immunostained for Aβ were stained with thioflavin S, specific for 

protein β-structure of fibrillary Aβ.  

Light microscopic examination (Leica DM1000) and fluorescent microscopic 

examination for thioflavin S−stained slices (Olympus BX 51) were then performed on 

the sections. 
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3.5.1.1. H&E staining of cryosections 

Solutions and Material: 

Fixative:  4% phosphate buffered Formaldehyde (100 

ml 40% Formaldehyde, Merck + 900 ml 0,1 

M phosphate buffer); pH = 7 

Differentiating solution:  acid alcohol: 0.1% HCl in 70% Ethanol (10 

ml 37% HCl , Merck + 1 L 70% Ethanol) 

Ehrlich’s Haematoxylin staining solution Hematoxylin (Merck) 6 g + Ethanol 300 mL 

+ Aluminum potassium sulphate (Carl 

Roth) 45 g + Distilled water 300 mL + 

Glycerol 300 mL (Merck) + Glacial acetic 

acid (Merck) 30 mL; ripen after preparation  

Eosin staining Solution: Eosin G (Merck) 0.1 g + 100 mL distilled 

water 

Quick-hardening mounting medium Entellan (Merck) 

 

Procedure 

• 10 min fixation of tissue sections in phosphate buffered formaldehyde, pH = 7  

• 2 x short rinsing in tap water 

• short rinsing in distilled water 

• 15 min staining in Harris Haematoxylin solution  

• short differentiation in acid alcohol (0.1% HCl ) 

• 30 min bluing in running tap water 

• short rinsing in distilled water 

• 15 min staining in 0.1 % Eosin solution 

• Dehydration of tissue sections in series of graded alcohols  

(1 x 1 min 70% Ethanol, 1 x 5 min 96% Ethanol, 2 x 5 min 100% Ethanol,  5 min 

Xylol) 

• Embedding of tissue sections using a quick hardening mounting medium (Entellan, 

Merck)  
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3.5.1.2. Nissl staining of cryosections 

Solutions and Material: 

 

Nissl staining Solution: Cresyl Violet (Certistain®, Merck) 0.1 g + 

100 mL 0.2 acetic buffer 

Rinsing buffer  0.2 M acetic buffer (3.28 g sodium acetate, 

Merck + 9.76 mL glacial acetic acid, Merck 

+ distilled water ad  1000 mL) 

Quick-hardening mounting medium Entellan (Merck) 

 

Procedure 

• 10 min staining in Cresyl Violet solution  

• short rinsing in 0.2 M acetic buffer (pH = 5) 

• Dehydration of tissue sections in series of graded alcohols  

(1 x 1 min 70% Ethanol, 1 x 5 min 96% Ethanol, 2 x 5 min 100% Ethanol,  5 min 

Xylol) 

• Embedding of tissue sections using a quick hardening mounting medium (Entellan, 

Merck)  

 

3.5.1.3. Prussian Blue staining of cryosections 

Solutions and Material: 

Fixative:  4% phosphate buffered Formaldehyde (100 

ml 40% Formaldehyde, Merck + 900 ml 0,1 

M phosphate buffer); pH = 7 

Staining solution- component A  1% hydrochloric acid (0.86 mL 32% HCl, 

Merck + 100 mL distilled water) 

Staining solution- component B  2% Potassium hexacyanoferrate (II) 

trihydrate (2 g Potassium hexacyanoferrate 

(II) trihydrate, Merck + 100 mL distilled 

water); prepared immediately before use 

Nuclear fast red staining Solution: 0.1 g nuclear fast red (Certistain®, Merck) 

dissolved in hot solution of 5 g aluminium 

sulphate hydrate (Merck) in 100 mL distilled 

water 

Quick-hardening mounting medium Entellan (Merck) 
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Procedure 

• 10 min fixation of tissue sections in phosphate buffered formaldehyde, pH = 7  

• 2 x short rinsing in tap water 

• short rinsing in distilled water 

• 60 min staining in mixture of equal volumetric parts of A and B staining solutions 

prepared immediately before use  

• 10 min washing in distilled water 

• 10 min counterstaining in 0.1% nuclear fast red  

• short rinsing in distilled water 

• Dehydration of tissue sections in series of graded alcohols  

(1 x 1 min 70% Ethanol, 1 x 5 min 96% Ethanol, 2 x 5 min 100% Ethanol,  5 min 

Xylol) 

• Embedding of tissue sections using a quick hardening mounting medium (Entellan, 

Merck)  

 

3.5.1.4. Thioflavin S −−−−staining of cryosections 

Solutions and Material: 

 

Thioflavin S staining solution: 1 g Thioflavin S + 100 mL distilled water 

DAPI staining solution  5 mg 4',6-Diamidino-2-phenylindole 

dihydrochloride (DAPI, Merck) + 100 mL 

PBS 

Mounting medium for fluoroscopy 0.5 mL Moviol 488 (Calbiochem) + 20 mg 

1,4-Diazabicyclo[2.2.2]octane  (DABCO, 

Merck)    

Procedure 

• 1 min hydration of tissue sections in 70 % Ethanol  

• 2 x 1 min washing in distilled water 

• 8 min staining in 1% Thioflavin solution  

• 2 x 1 min washing in distilled water 

• 4 min staining in 1% Thioflavin solution  

• 2 x 1 min washing in 80% Ethanol 

• 3 x 1 min washing in distilled water 

• 1 min counterstaining in DAPI solution  

• Embedding of tissue sections using a Moviol / DABCO mounting medium  
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3.5.2. Immunostainings on cryosections  

Preparation of tissue sections and immunostaining using the ABC-Vectastain-Kit 

To determine the localisation and expression pattern of different proteins in brain 

tissues of mice, the frozen tissue sections have been analysed with 

immunohistochemical detection methods. These methods make use of a covalent and 

irreversible binding between avidin, an egg white protein, and biotin, a vitamin. By 

establishing a biotin link through avidin, between the horseradish peroxidase enzyme 

and a secondary antibody reagent, enzyme location can be achieved at the site of 

primary antibody interaction within the specimen. Many biotin molecules can be 

incorporated by horseradish−peroxidase, without losing enzymatic activity. On the 

other hand biotin can also be conjugated to immunoglobulin. These biotin molecules 

can be joined via an avidin molecule by creating a complex of avidin and biotinylated 

enzyme, which can be attached to the biotinylated secondary antibody. Each avidin 

molecule harbors four biotin binding sites and there are two further binding sites for 

avidin on each biotin molecule. This complex reacts with hydrogenperoxide and an 

electron donor to the endproducts water and a dye molecule. 3,3-Diaminobenzidine-

tetrahydrochloride (DAB) serves as an electron donor, which forms a brown, electron 

dense precipitate, which is insoluble in alcohol. The preparations made by this method 

can be dehydrated in an ascending row of alcohol solutions and conserved by 

embedding the stained tissue sections in mounting media. Due to using frozen, non-

fixated tissue sections, antigen- retrival step (post fixation treatments) could be omitted. 

 

Solutions and Material: 

Fixative:     Acetone (Roth)  

Methanol Blocking-Solution:   200 ml methanol + 2 ml 30% H2O2 

Unspecific Blocking-Solution:  10% fetal calf serum (FCS) + 4% skim milk 

(Roth) in PBS 

Primary Antibody:  10% FCS in PBS + varying concentrations 

of primary antibody (see Table 3.2.) 

Secondary Antibody (DAKO): 10% FCS in PBS + 1:200 anti-mouse-IgG 

or anti-rabbit IgG 

ABC-complex: 10% FCS + 1:100 Solution A + 1:100 

Solution B (ABC-Kit, Vector Laboratories) 

in PBS. Solution has to be prepared 30 min 

before use. Storage at 4°C.  
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DAB-Stock-Solution: 10 mg 3,3-Diaminobenzidine-

Tetrahydrochloride (DAB) (Sigma)/ml in 

0.05 M Tris/HCl, pH 7.4. Solution has to be 

filtered and stored at –20°C. 

DAB-Substrate-Solution: 5 ml 0.05 M Tris/HCl, pH 7.4 + 100 µl DAB 

Stock-Solution + 2.5 µl 30% H2O2 (Roth)  

 

Quick-hardening mounting medium (Riedel−de Haen) 

Vectastain ABC-Elite PK 6100 Standard (Vector Laboratories) 

Harris’ hematoxylin solution (Merck) 

 

Procedure 

• Fixation of tissue sections in pre-chilled (−20°C) Acetone (Carl Roth)  

• Drying at room temperature for 2h 

• 5 min washing in PBS 

• incubation for 60 min in unspecific blocking-solution to saturate unspecific binding 

epitopes 

• overnight-incubation with primary antibody at 4°C 

• 15 min washing in PBS 

• 60 min incubation with the respective secondary antibody at 37°C 

• 15 min washing in PBS 

• 30 min methanol blocking-solution to block endogenous peroxidase-activity 

• 10 min washing in PBS 

• 90 min incubation with ABC at 37°C  

• 15 min washing in PBS 

• Incubation with DAB substrate-solution. Staining takes place under microscopic 

control and is stopped by incubation in PBS 

• 15 min washing in PBS 

• Counterstaining in Harris’ hematoxylin-solution 

• Dehydration of tissue sections in series of graded alcohols  

(1 x 1 min 70% Ethanol, 1 x 5 min 95% Ethanol, 2 x 5 min 100% Ethanol, 2 x 5 min 

Xylol) 

• Embedding of tissue sections using a quick hardening mounting medium (Corbit 

Balsam, Riedel−de Haen)  
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Table 3.2. Commercially available and provided anti bodies used as primary 

antibodies 

Protein (epitope)  Antibody Clone  Dilution Manufacturer 

 

APP  23850 polyclonal 1:500  G.Multhaup (ZMBH) 

Aβ 692 polyclonal 1:500 G.Multhaup (ZMBH) 

GFAP GFAP  polyclonal 1:1000 DAKO 

Cathepsin D Cathepsin D polyclonal 1:500 DAKO 

 

3.6. Protein content analysis 

Analysis of β-amyloid content was performed in brain samples of APP-positive animals 

using enzyme−linked immunosorbent assay (ELISA) 

The antigen, hAβ40 is detected by selective monoclonal anti-Aβ-antibodies, which 

interact with binding sites (epitopes) on the hAβ40.  An N-terminal selective antibody is 

coated on the surface of a microtiter plate as capture antibody. A second, biotinylated 

antibody conjugate serves as the detection antibody in the assay.  

The antibodies, in concert with the amyloid-peptide, form an 

antibody−amyloid−antibody complex (sandwich−complex). The complexed detection 

antibody is then indirectly coupled to an enzyme (horseradish peroxidase) through a 

biotin−streptavidin link. This peroxidase catalyzes the conversion of a substrate 

(Chromogen) into a coloured product; which is detected by the test−kit through means 

of photometry and correlates directly to the hAβ-concentration present in the sample. 

Measured values are quantified in correlation to synthetic peptide standards.  

Procedure 

For quantitation of Aβ40 brain levels, the both anterior and posterior part (remaining 

after sectioning for histological analysis) of each brain was used. The pieces of brain 

tissue were additionally divided into left and right part and fragments of respective 

hemispheres were collected in individual test tubes and weighed. Dissection was 

performed on dry ice (at ~ −70°C) and utmost care was given to prevent samples from 

thawing.  

Extraction of samples was performed with phosphate-buffered saline (PBS) to measure 

brain Aβ40. The brain samples were homogenized (1/10, weight/volume) in 1 x PBS 
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(prepared with Milli-Q water and superpure grade reagents from Merck) by 12 strokes 

at 650 rpm with a CAT Potter Teflon pestle. The homogenate was centrifuged at 

16,000 rpm for 30 min at 4°C. 

Homogenate was aliquoted into fresh tubes (200 µl each aliquot), 8 µl of 1:25 stock 

solution of proteinase inhibitor (Complete®, Roche, Mannheim, Germany) was added 

to each probe and vortexed vigorously.  

Thereafter, samples were incubated on ice for 30 minutes and centrifuged at 16 000 

rpm, 4°C for 30 min. Supernatant was aliquoted (50 µl), collected into fresh Eppendorf 

tubes, snap−frozen on dry−ice and stored at −80°C for further processing. 

For assessment of brain Aβ40 level, commercially available hAβ40 hs ELISA kit® (The 

Genetics Company, Zurich, Switzerland) was used according to protocol of the 

manufacturer.  

 

3.7. Statistical analysis.  

One−way ANOVA with Bonferroni's multiple comparison post−hoc test and Student t-

test were used for statistical analysis of the numerical results of the study (weight, 

duration of anaesthesia, duration of apnoea, mortality, D-weight, NSS, D-NSS, BB, D-

BB). All calculations were performed using GraphPad Prism version 4.00 for Windows 

(GraphPad Software, San Diego). 
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Fig 4.1.  

4. RESULTS AND ANALYSIS.  

4.1. Initial weight 

Measurements of body weight in groups of animals prior to surgery revealed significant 

sex− and genotype−related differences (Fig. 4.1.).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subsequent additional analysis for TBI/sham subgroups separately revealed 

unintended pre-selection in F WT group, caused by random selection (significant 

difference between TBI and sham subgroups) (Fig. 4.2.).  
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4.2. Pre- training 

Neurological status assessment performed before any surgical intervention revealed 

significantly higher neurological impairment score in female but not male APP 

transgenic animals in comparison to their WT littermates. There was also a significant 

sex−related difference in test results between WT but not APP mice (Fig 4.3.).  
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Impact of genotype and gender on neurological perfo rmance
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Since in physiological conditions, increased weight without substantial neurological 

impairment is correlated with poorer performance in balance−based tests, significant 

initial weight differences were regarded.  In order to exclude this as potential source of 

a bias in interpretation, analysis of correlation between neurological performance and 

weight has been performed. There was no significant correlation between weight and 

neurological impairment in female animals (Fig 4.4.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relation between weight
and pre-training result-

female animals

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0
0

10

20

30

40

50

60

70

80

ns

Weight

im
pa

ir
m

en
t 

sc
or

e

Fig 4.4.  



 43 

The same analysis however revealed that observed difference in neurological 

performance between M WT and F WT animals was strongly weight−dependent (Fig 

4.5.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Subsequent additional analysis for TBI/sham subgroups separately revealed no pre-

selection caused by random selection (no significant difference between TBI and sham 

subgroups) (Fig. 4.6.). 

 

 

 

 

 

 

 

 

Relation between weight
and pre-training result-

WT animals

18 19 20 21 22 23 24 25 26 27 28 29
0

10

20

30

40

50

60

70

80

**
p=0.0007

Weight

im
pa

ir
m

en
t 

sc
or

e

Fig 4.5.  



 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-training and later group selection
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4.3. Mortality 

The mortality analysis is presented in Table 4.1.  All the animals that died during 

experiment before 28 day posttrauma were excluded from other analyses, therefore 

each experimental subgroup consisted ultimately of 5 animals.  

 

 

 

 

APP 

 

WT 

Mortality % 

(died animals/animals 

destined for group)  

TBI 

 

Sham 

 

TBI 

 

Sham 

 

Female 

 

28,6% (2/7) 

 

0% (0/5) 

 

0% (0/5) 

 

0% (0/5) 

 

Male 

 

37,5% (3/8) 

 

37,5% (3/8) 

 

16,7% (1/6) 

 

0% (0/5) 

 

 

Table 4.2 presents detailed stratification of mortality regarding time and presumed 

cause of death.  

Postoperative / posttraumatic seizures were occasionally observed throughout the 

further experiment among M APP animals. However, due to lack of continuous 

monitoring of animals for the whole experimental period (28 days) this phenomenon 

could not be assessed as to the pattern of occurrence, duration, and lethality.   

 

 

 

 

 

 

 

 

 

 

Table 4. 1. 
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Mode of death No of 

animals 

Subgroup 

specifications 

 

Prolonged posttraumatic apnoea 

 

4 

2 F APP TBI 

1 M APP TBI 

1 M WT TBI 

 

Perioperative (trauma, surgery− or anaesthesia− 

related?)  

 

 

2 

 

1 M APP TBI 

1 M APP Sham 

 

Delayed (>24 h after second surgery; seizure− 

related?) 

 

 

3 

 

1 M APP TBI 

2 M APP Sham 

 

The statistical analysis of mortality revealed a clear trend (p = 0,058) toward increased 

mortality among APP transgenic animals in general. Subsequent single factor analysis 

among separate two−factors−matched groups disclosed no additional statistical 

relationship. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2.  
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4.4. Duration of anaesthesia 

Analysis of anaesthesia time among different subgroups revealed single differences in 

sex−matched groups, of however inconsistent pattern (Fig 4.7. and 4.8.). No significant 

sex−related difference was found in duration of anaesthesia (Fig 4.9.). 
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Duration of anaesthesia in male animals
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4.5. Weight changes 

During experimental period only single, elusive differences between experimental 

groups were found. Summarising, no consistent pattern of weight changes could be 

described  

 

4.6. Neurological impairment 

According to NSS and BB tests results trauma did not impact neurological performance 

among WT animals save NSS in female animals at time point 72h posttraumatically 

(Fig 4.10.B). There was also no impact among APP mice except BB in male animals at 

time point 28 d after second CHI (Fig 4.15.A).  

The impact of genotype on outcome was limited to poorer NSS performance in TBI-

subjected APP transgenic females at time point 4h” and 7d” when compared to WT 

ones (Fig 4.10.C). However, in BB test TBI APP females presented lower impairment 

index than WT at time point 6h’ (Fig 4.14.C). Notably, neurological impairment was also 

present among sham injured APP animals (NSS, time points 4h” and 24h” for females 
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and 28d for males) in comparison to sham WT littermates of respective sex (Fig 

4.10.D, 4.11.D).  

Regarding gender influence, BB test revealed strongly significant difference among TBI 

APP mice at time point 24h’ (Fig 4.16.A), and less though still significant in sham APP 

group at 14 d (Fig 4.16.B), both toward poorer performance in males. These results 

were however not confirmed by simultaneous NSS test (Fig 4.12.AB). 

Additional analysis has been performed in genotype- matched, gender unsplit groups 

(genotype− and TBI-status−matched F and M [e.g. TBI WT F and TBI WT M] analysed 

as one group, composed of 10 animals). In that way, additional significance has been 

refined at 7d posttrauma among APP animals (TBI subjected mice performed worse) in 

NSS (Fig 4.13.A). Supplementary genotype effect has been here revealed at 4h” and 

28d timepoints (worse performance after TBI among APP mice)(Fig 4.13.C). However, 

gender unsplit analysis of BB results disclosed no additional trauma or genotype effect 

(Fig 4.17.).  

Summarising, significant differences in neurological performance were seen only at 

single post TBI / sham injury time points and they didn’t follow any certain pattern of 

impairment. In particular, the points of significant difference that were present in NSS 

testing did not overlap those in BB test.  
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Fig 4.10. NSS scoring −−−−female animals 
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Fig 4.11. NSS scoring −−−−male animals 
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Fig 4.12. NSS scoring −−−−female vs. male animals 
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Fig 4.14. Beam Balance scoring −−−−female animals 
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Trauma impact in APP animals-
 male animals
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Fig 4.15. Beam Balance scoring −−−−male animals 



 
57 

 

Gender impact in APP TBI group
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Fig 4.16. Beam Balance scoring −−−−female vs. male animals 

D 

B 

C 

A 



 
58 

 

Trauma impact in APP animals
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Fig 4.17. Beam Balance scoring −−−−APP vs. WT animals (gender unsplit) 
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4.7. Post-surgery recovery profile 

Beside of single points of significant difference, two potential tendencies could be 

outlined.  

1. There was a shift in late recovery occurring first from 72h to 7d in female APP TBI 

animals, but as early as from 24h” to 72h in their WT littermates (Fig 4.18.C).  

2. A similar shift could be observed also in WT TBI animals of different sex, where 

late recovery of females occurred from 24h” to 72h and from day 14 to 28, while 

correspondent recovery of male WT TBI mice emerged from 72h to 7 days 

posttraumatically (Fig 4.20.C). Notably, such a gender- related drift was not 

observed among TBI APP animals (Fig 4.20.A).  

The abovementioned correlations were, however observed only in NSS results. No 

statistically significant differences could be outlined basing on BB test results (not 

shown). 

Neither NSS nor BB analysis performed in gender unsplit groups revealed additional 

effect (not shown).  
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Fig 4.18. Temporal profile of NSS changes −−−−female animals 
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Fig 4.19. Temporal profile of NSS changes −−−−male animals 
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Gender impact in APP TBI group
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Fig 4.20. Temporal profile of NSS changes −−−−female vs. male animals 
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4.8. Analysis of A β40 content 

As Aβ40 content in WT animals as assessed by hAPP−ELISA was below the detection 

limit of the assay (previous, unpublished observation) this assay was performed only in 

tissue obtained from APP transgenic mice.  

The results of this analysis are presented on the Fig. 4.21. 

Comparison of gender−matched (male or female) and site−matched (hemisphere ipsi- 

or contralateral to CHI) samples revealed no significant differences in Aβ40 content 

between TBI and sham treatment groups (not outlined). 

Regarding gender−related differences, in sham treatment group females had higher 

Aβ40 content for both ipsi- and contralateral hemisphere. This result, though nearly 

matching, failed however to reach the threshold of statistical significance. 

Importantly, such a trend could not be revealed in animals subjected to TBI.  
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4.9. Histopathological assessment 

 

4.9.1. Classical staining 

No posttraumatic cortical cavitation could be found in both TBI− and sham−injured 

animals regardless of both sex and genotype.  

Analysis of brain slides with H&E and cresyl violet staining revealed observable 

neuronal loss neither in cortical areas nor among hippocampal neurons on the site of 

trauma  

Also no inflammatory infiltration could be distinguished.  

Prussian Pearl staining revealed no overt iron deposition in meninges / cortex 

subjacent to CHI site.  

 

4.9.2. GFAP immunostaining 

There was no evidence of reactive gliosis as a response to TBI in both APP transgenic 

and WT animals. Also no increase in glial proliferation/activation could be noted in APP 

sham injured animals in respect to their WT littermates.  

 

4.9.3. Cathepsin D immunostaining 

There was no evidence of increased lysosomal activity as a response to TBI in both 

APP transgenic and WT animals. Also no increase in lysosomal activation could be 

noted in APP sham injured animals in respect to their WT littermates.  

 

4.9.4. Aβ staining 

Aβ deposition was detectable in the cerebral cortex and hippocampus in the APP751 SL 

mice at 4 months of age and thereafter earlier than previously reported. At the 

analysed time point (28d) the Aβ deposits were mostly solitary and infrequent in all 

groups of transgenic mice, whereas there were no Aβ deposits in any of the WT mice. 

These amyloid deposits were detectable in selected brain regions, i.e. in parietal 

cortical regions, dentate gyrus and in perihippocampal cortex, as well as in the 

hippocampus (Fig 4.22.).  

Thioflavin staining of slides adjacent to those immunostained revealed overlapping 

fluorescence only for several deposits, what normally characterises dense amyloid 

plaques. Thus, observed deposits could be in most cases described as diffuse, non-

mature plaques.  
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Notably, there was no increase in the Aβ burden in repetitive TBI mice relative to 

sham−treated APP mice as assessed semiquantitatively by simple count of single 

deposits.  

 

4.9.5. APP staining 

Immunostaining for APP revealed widespread immunoreactivity of pericaryal areas of 

neurones, clearly manifested in cortical and subcortical areas as well as in 

parahippocampal cortex, hippocampus, dentate gyrus, and some subcortical nuclei 

(amygdala). 

No overt pattern of posttraumatic axonal pathology was found on APP stained slides.  

Since adjacent slides in series were stained for Aβ and APP, a potential involvement of 

APP into diffuse plaque formation could be assessed. Indeed, areas occupied by 

plaques as identified by Aβ immunostaining displayed also increased APP 

immunoreactivity.  
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Fig 4.22. 
a)-b) Diffuse A β deposits in cortical areas of  a) sham injured and  b) CHI 
subjected  F APP mice.  
c) dense plaques (arrows) located in hippocampus an d parahippocampal 
structures of F APP sham animal.  
d) the same plaques in hippocampus, greater magnifi cation. Note intensively 
stained core of the plaques.  
a)-d): immunostaining using 692 anti- A β antibody, a),b),d): magnification 
1x100, c): magnification 1x40 
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5. DISCUSSION 

5.1. Concepts of AD-TBI relationship 

Regarding epidemiological evidence of impact of TBI on AD occurrence (see 2.3.1), 

one needs to ask, what are the mechanisms promoting development of amyloid 

pathology after trauma. Here at least two of them need to be outlined. First, increased 

amyloidogenesis may result from raised production of APP as a substrate for 

subsequent Aβ derivation. Second mechanism is a shift in APP processing toward 

amyloidogenic β-cleavage. Both events have been reported after TBI; however their 

pathophysiological background requires more precise insight. According to the concept 

of Gentleman et al., inflammatory posttraumatic reactions play a key role.76 Microglial 

activation, mediated by interleukin-1 is the common point for AD and TBI: Increased 

levels of IL-1 and activated microglia were found in both TBI105,268 and AD animal 

models20 as well as in head-injured100,104 and AD patients.90,247 Interestingly, IL1 gene 

polymorphysm is modulating the risk of AD.223 The effect of IL-1−mediated microglial 

activation explains in some aspect impact of APOE genotype on AD development and 

outcome in TBI.13,156 More importantly, IL-1 is able to increase both 

production60,82,202,309 and processing of APP.35 This impact on APP metabolism was 

outlined also in TBI in rat45 and in human study.89 Thus, posttraumatic IL-1 potentially 

affects both mechanisms. 

 

Another posttraumatic event is energetic dysfunction and free−radical−mediated 

oxidative stress. These phenomena are clearly observed in traumatised 

brain12,124,278,285 and correlate well with the severity of the trauma in experimental 

settings.269 In turn, also AD−affected brain, both in patients and hAPP transgenic 

animals displays increased free radical production and levels of oxidative stress 

markers, in particular oxidised lipids (reviewed by Practico218). The impact of free 

radicals on Aβ accumulation is mediated by increased Aβ production203,265,266 and 

aggregation of available Aβ,55 while raise in APP production seems to result from other 

mechanisms.309 However, on the other hand, the observed overexpression of APP 

post TBI, is potentially able to increase vulnerability of neurons to oxidative stress.94,162  

 An oxidative stress-based link between TBI and AD has been tested directly by Uryu 

et al.: TBI has been presented to cause increased lipid peroxidation in Tg2576 mice. 

Increased oxidative stress in turn was associated with increased Aβ accumulation.280 
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Moreover, prolonged pre-treatment by the antioxidant vitamin E was able to reduce 

Aβ42 levels and MWM performance in TBI subjected Tg2576 mice.47 

It is intriguing whether a raise in oxidative stress is the cause or the result of 

amyloidosis. Interestingly, coexistence of both options is quite possible, since elevated 

levels of oxidative stress markers have been reported in WT animals219,278 and 

humans15,285 subjected to TBI. Oxidative stress, in turn, promotes amyloid 

production203 and aggregation.178 On the other hand; Aβ is increasing oxidative 

damage, closing therefore this vicious circle (reviewed by Reddy224 and Butterfield et 

Bush33) (See Fig. 5.1.).  

 

A specific role in posttraumatic amyloidogenesis may be played also by apoptotic 

processes. Both AD and TBI are characterised by apoptotic cell death, related to the 

activation of caspase enzymes (reviewed by Raina et al.,222 Cribbs et al.50 and Liou et 

al.,151 respectively). There is evidence that these enzymes are able to take part in the 

proteolytical cleavage of WT−APP, thereby promoting amyloid production.50,80,295 

Additionally, in relation to sweAPP they are able to play a direct beta-secretase role.80 

More specifically, caspases are able to perform proteolytical cleavage of APP 

accumulated after TBI in form of traumatic axonal swellings. This phenomenon is 

correlated with accumulation of Aβ in traumatic axonal bulbs. Such generation of Aβ 

from posttraumatically accumulated APP has been presented in animal studies5,42,262 

and confirmed in autopsy material255 as well as in brains obtained ex vivo during 

neurotrauma surgery.116 Thus, axonal APP and Aβ constitute the next potential link 

between AD and TBI.  

 

Summarising, most of the molecular background of AD is reflected in both early and 

late posttraumatic phase. It means that posttraumatic AD may result from the 

perpetuation of inflammatory, oxidative, apoptotic and amyloidogenic processes seen 

after TBI. However, according to the author’s concept, the crucial role in triggering and 

self-perpetuation of these events is played by Aβ itself. There is strong evidence that 

Aβ is accumulated early in human TBI precipitating to diffuse deposits.77,106,116,229,230 

Additionally, local supersaturation of Aβ concentration in axons is also possible, 

resulting from processing of locally accumulated APP42,255,262 and, potentially, from 

direct disturbance in Aβ axonal transport.122 In turn, Aβ is known to produce glial 

activation,66,111,175,176 neuroinflammation (reviewed by Tuppo et Arias276), cause 

oxidative stress damage (reviewed by Reddy224 and Butterfield et Bush33) and trigger 
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apoptotic death with caspase activation.96,153,160 Thus, such a posttraumatic raise in Aβ 

levels and deposition may activate mechanisms responsible for its own production. 

Interestingly, an even more direct link can be reasoned since polymerisation of Aβ has 

been increased by amyloid itself, both in vitro (reviewed by Harper and Lansbury98 as 

well as in transgenic animals after intracerebral infusion of human AD−brain 

extracts123,290,291.    

Thus, regardless, whether these early deposits are persisting or vanishing in prolonged 

posttraumatic course, already at this stage they may be able to trigger the 

abovementioned deleterious effects. Such secondary damage in turn is very likely to 

undergo self- propagation, even if the primary deposits are already dissolved (see Fig. 

5.1.). Concluding, TBI may be regarded as incipient stage of subsequently apparent 

AD. 
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Fig. 5.1.  Author’s concept of role of TBI in amylo id pathology 
development.  
Posttraumatic increase in both APP expression as well as in β - 
cleavage of APP leads to raise in Aβ. Note the central role of β - 
amyloid in ‘small vicious circle’ of deleterious processes, triggered 
also otherwise by TBI.  These processes (oxidative stress, 
apoptosis and inflammation) are reciprocally propelling each other. 
They also increase Aβ production (‘large vicious circle’). Note also 
potential direct impact of TBI on APP local concentration (APP 
accumulation) via TAI. Arrows present positive influence on given 
process, shaded arrows- amyloid production.  
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5.2. Validity of the model  

The transgenic model of AD chosen for purpose of this study is described by far 

similarity to the human AD pathology, as by the presence of amyloid deposits with 

periplaque markers of glial activation and formation of degenerative fibers (DNs) with 

accompanying molecular flags of mitochondrial dysfunction and proapoptotic 

processes recapitulating human Aβ plaques with accompanying high expression of the 

hAPP transgene. The presence of the Swedish mutation leads to an increase in the 

C99 APP fragment / full−line−hAPP ratio.23 Since relatively high levels of C99 APP- 

fragments were shown to correspond with early Aβ accumulation and deposition, in this 

transgenic model a presence of Aβ plaques was to be expected already at age of 6 

months.23 However, according to presented observation Aβ deposition may occur as 

early as at 4 months of age in this transgenic line. Nevertheless, such aberration from 

original results didn’t create a great discrepancy, since the presence of the plaques 

was not uniform and rather an exception among animals; moreover the plaques 

observed were rather scarce, of diffuse form and present only in selected areas 

(hippocampal and cortical fields) previously reported as affected most early by Aβ 

deposition in different transgenic hAPP models.23,109,120,179 Of greater importance is 

the conclusion, that appearing of Aβ- plaques at age chosen for posttraumatic analysis 

was the optimal validation for suitability of this animal model for the purposes of our 

study. First, it was a direct proof, additional to strong literature evidence23 that the brain 

of Thy1-APP751SL mouse gives a possibility for Aβ deposition, similar to human one. 

Second, on this background it was able to postulate that, if the factor of TBI (in given 

experimental settings) were able to impact significantly the plaque formation, this effect 

would be seen in our analysis of Aβ deposits pattern (this, however, was not the case).  

 

In this study a well established model of Closed Head Injury (CHI) has been used.44 

The main reason for this choice among other models was its basic characteristic: CHI 

is technically simple, easy to implement model and provides high reproducibility. Also 

lack of need for threpining of the skull and possibility of trauma parameter setting 

(height and weight of fall) was very convincing, for the great concern was preserving of 

intact cranial bones which was crucial for TBI repetition.44,139,143,181 Considering that 

examination of the skull vertex in experimental animals after each trauma as well as by 

tissue harvesting revealed no bone fracture, we may state that reliability of provided 

results has not been hazarded by the factor of nonuniform damage to the skull and 

brain.44,139,140,181  
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The separate problem was the trauma severity and the mode of repetition. On the one 

hand, the results of human studies were respected, where higher TBI severity was 

correlated with greater risk of AD.212 On the other hand, the abovementioned bias of 

inequality in trauma energy was impending, if using settings allowing fracture of cranial 

bones. Therefore the decision was to apply trauma load slightly under the threshold of 

skull breakage, as estimated during preliminary experiments with WT animals (data not 

presented). According to a further analysis of mortality, reaching up to 37,5% and of 

neurological deficit, where no consistent pattern of impairment has been seen, trauma 

severity in such a paradigm could be rated as mild to moderate.  

Furthermore, as mentioned, intact skull enabled repetition of the trauma. Analysis of 

previous AD−TBI studies gave the conclusion that most experiments, using APP 

transgenic murine models subjected to single TBI (save double, APP−APOE transgenic 

mouse99) failed to reproduce posttraumatically increased Aβ pathology.185,187,188,259 

Therefore, some patterns were adopted from the single successful concept of Uryu et 

al., where repeated mild TBI repeated was used.280 One important difference was the 

use of more intensive trauma. Of separate importance is the question, whether the 

chosen interval between two consecutive hits (24 hours) was adjusted properly, i.e. in 

the way providing their synergistic effect on the brain vulnerability. Again, this setting 

was taken after Uryu et al.280 A recent study of the same group provided experimental 

data about postconcusional vulnerable state protracted to 5 days in regard to axonal 

and potential subcellular damage, confirming proper timing.152 

Summarising, the experimental approach presented here differ from this of Uryu et 

al.,280 in type of transgenic animal used (Thy1−APP751SL vs. Tg2576 mouse), as well 

as in mode and severity of trauma (mild−to−moderate CHI vs. mild CCI).  

The anaesthesia mode we used for our study (pentobarbital anaesthesia) is widely 

accepted in experimental neurotraumatology and has been previously used in research 

on head trauma in hAPP transgenic animals.185,187,188,259,280 Pentobarbital is a short 

acting barbiturate, metabolised primarily in liver. Though use of pentobarbital has been 

justified by general use in neurotrauma research, some of its potential disadvantages 

need to be mentioned. First, it presents significant individual differences regarding 

especially time and profoundness of anaesthesia.190 Second, pentobarbital- 

anaesthetised animals use to tend to prolonged posttraumatic apnoea, what resulted in 

dramatic increase in mortality in preliminary study. Thus, to avoid both of these 

hindrances a 1h−interval between administration of anaesthetic and trauma deliver has 

been set. This gave a reasonable and humane compromise between anaesthesia 
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depth and tendency to fatal apnoea. The third potential source of bias was 

pentobarbital–related impairment of thermoregulation. Pentobarbital anaesthesia 

produces dose-dependent brain hypothermia with decrease of brain temperature up to 

app. – 4−4,5°C deviation from baseline with accompanying cor e hypothermia of lesser 

degree, so that normal brain−core temperature gradient is reversed. This phenomenon 

is commonly attributed to barbiturate−induced brain hypometabolism.49,133 

Hypothermic condition (during or after TBI) has been reported to possess significant 

cerebroprotective properties. In experimental settings, various basic mechanisms of 

hypothermic protection at the cellular level have been analysed including reduction of 

glutamate surge and intraneuronal calcium mobilisation, diminishing microglial 

activation and proliferation, reduction of superoxide activity and direct impact on 

posttraumatic protein synthesis as well (for review, see Fritz et Bauer62). Most 

importantly, this spectrum is widely (if not completely) overlapping with the list of the 

factors, potentially contributing to posttraumatic surge of APP and Aβ production. 

Therefore it can be assumed that posttraumatic events leading to an increase in Aβ 

accumulation will be reduced in the given experimental setting due to pentobarbital- 

related hypothermia. In consequence, the differences (TBI vs. sham) related to APP- 

Aβ- metabolism in transgenic animals would be diminished to some degree, what sets 

one possible explanation for respectively indiscriminate result of microscopic and 

biochemical analysis. This hypothetical impact would however require further 

evaluation with multiple time− and target temperature point paradigm.  

One potential advantage of pentobarbital−related hypothermia was the possible 

influence on sexual hormones regulation in female. Struton and Cohen presented that 

hypothermic condition suppresses pulsatile secrection of luteinizing hormone.264 This 

may implicate unintentional interruption of hormonal cyclicity in female mice, with 

potential synchronisation of ovarian cycle.  

However, this could equalise the impact of sexual hormones among female mice only 

in posttraumatic course: since hormonal status before the CHI was not checked and no 

modification of sexual hormone cycle was implemeted (by means of ovariectomy or 

hormone administration), a phase of oestrous cycle at the moment of trauma remained 

unknown. Taking into account that hormonal status at the TBI time may influence the 

later outcome27,236,287 and that part of our results regards gender- difference, 

overwhelming of this disadvantage in further studies is warranted.  

Additional advantage is the lack of barbiturate effects on APP metabolism, at least at 

transcription level,201 while for other considered anaesthetics, potential impact on 

amyloidogenesis needed to be considered.56,233 
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5.3. Results of neurological testing  

A particular attention is called by the results of the pre- training assessment, based on 

BB−test. The differences in neurological performances (APP vs. WT female animals 

and female vs. male WT animals, respectively) (Fig. 4.3.) present before any operative 

intervention has been performed, could be attributed to the following background:  

- since heavier animals perform normally poorer in balance- based neurological 

assessments, the weight difference should be considered as the potentially 

most obvious reason for this difference; 

- regardless of impact of weight on the performance, a virtual neurological 

impairment could be suspected.  

Subsequent analysis of weight−performance correlation (Fig. 4.4. and 4.5.) allows to 

state that among WT animals, sex-related difference represents physiological 

weight−dependent phenomenon, while APP vs. WT female difference represents a 

virtual neurological impairment in APP female mice.  

 

BBS test, including BB−pretraining is usually categorised as vestibulomotor 

test.17,63,93,241 However, since this test included pre-surgery training, it can no longer 

be described as a purely motor test. In particular, the difference in pre-training scores 

presented here could result from both motor impairment and disturbed motor task 

acquisition (occasionally conceptualised as ‘motor learning’). Therefore several 

reasons for observed differences need to be outlined.  

First, the amyloid load could interfere with cerebral neuronal circuits, responsible for 

movement and balance performance. The list of relevant structures encompasses the 

association cortex, sensorimotor cortex, subcortical nuclei, cerebellum, and brainstem, 

as well as spinal cord neurons. Vestibulomotor function, in turn is described as 

mediated by activity of corticospinal neurons, nigrostriatal neurons, the nucleus 

accumbens, the basal ganglia, and the thalamus.63,67 Facing this complexity, damage 

to any of these elements may result in disturbed BB−pre-training score. Previous 

reports present impaired behaviour of already young single Tg2576 APP transgenic 

and double PS1/APP transgenic mice in beam balance test.11,130,131 The early onset of 

impairment in the balance test has been described as attributable to sensivity to Aβ 

deposition, soluble Aβ or overexpression of mutated hAPP.11 Interestingly, King et al. 

reports vestibulomotor impairment in young Tg−APP mice in mixed gender group, but 

no separately for females or males. On the other hand, in the same study selective 

impairment of female animals was present in cognitive area (circular platform test and 
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error score for Morris Water Maze test).131 In the results presented here, the 

impairment was observed only in BB−pre-training but not in posttraumatic BB 

performance, suggesting that in scoring of pre-surgery training the accent may be 

shifted from static (single performance) to dynamic (‘motor skill learning’) component of 

motor task acquisition. However, to refine this concept, both elements should be 

extracted by i.e. additional use of ‘more purely’ motor tests as reflex−based tests (as 

reviewed by Fujimoto et al.63). 

 

One novel aspect is the possibility of neuronal dysfunction on the spinal cord level. The 

motor component of BB pre-training score could be impaired not only on cerebral, but 

also spinal level. The recent observation published in cooperative work of the author303 

clearly presents neuronal damage in spinal cord of PS1/APP transgenic mice. Since 

strong expression of the hAPP in Thy1−APP751SL in spinal neurones was observed 

already at 3 months of age, it can be premised that both APP and Aβ overload could 

lead to neuronal dysfunction. However, in some analyses of sensimotor test results, 

impairment that appeared at the young age was not further progressing (in relation to 

WT animals) while Aβ concentration and deposition was clearly increased with the 

age.11,131 Moreover, spinal intraneuronal Aβ depositon could be detected not before 8 

months of age in Thy1−APP751SL animals.303 This suggests that impairment at spinal 

level might be caused solely by hAPP expression, or that even undetectable levels of 

intraneuronal hAβ were sufficient to cause neuronal / axonal dysfunction. The character 

of such impairment remains unknown. The change in behaviour (abnormal extension 

reflex in tail−suspended mouse), most probably of spinal origin, was observed not only 

in PS1/APP751SL animals303 but also in ApoE271− or tau221–transgenic animals. A 

disturbance in axonal transport is proposed as possible explanation.  

 

The cited results prove also that more aggressive amyloidogenesis, as seen in double 

transgenic PS/APP mice is necessary for structural spinal damage (axonopathy with 

axonal spheroids) to occur. The localisation of axonal and neuronal pathology in spinal 

cord of transgenic animals, matches quite well the achieved result in BB−pre-training 

scores.303 Neurons of the ventral horn are the final common path of the motor 

innervation and their dysfunction results in decreased strength of the respective muscle 

group. In turn, damage to dorsal column causes ataxia described as spinal or 

sensory.67 Both signs potentially affect the performance in BB−pre-training testing. 
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Unfortunately, more specific assessments of neurological function have yet not been 

completed (Wirths O, personal communication).  

Current observation is in accordance with clinical evidence, reporting motor impairment 

and ataxia in some AD patients.288 In another study, poor physical function was 

associated with development of dementia, including AD, preceding its onset. The 

authors concluded that AD development impairs primarily balance and gait 

performance as ‘more challenging brain function’.294  

 

Second aspect is the ability or motivation to acquire balance task. This could be 

reduced due to affection of corticostriatal, cerebellar and / or limbic structures. There is 

rationale to suspect that behavioural changes interfered with BB−pre-training, since 

neophobia, anxiety as well as episodes of aggression and hyperactivity have been 

reported previously in APP transgenic animals, in particular in Thy-1 promoter 

driven−APP transgenic models.110,179,180 As a background, APP expression and Aβ 

accumulation in structures responsible for managing emotional context of the task 

(hippocampus itself as well as firmbria, prefrontal cortex, amygdala and thalamus9,67) 

may be proposed.179  

The problem of aquisition and retention of mobility task in BB test deserves more 

detailed analysis. The clear memory impairment in different strains of hAPP- transgenic 

mice is the obvious fact.41,109,131,179,214,296 Of note, in 3 months old Tg2576 mice the 

interrelation between sensimotor task score (beam balance and wire grip tests) and 

memory retention in circular maze test has been reported.10,131 

Most commonly, rotarod training paradigm has been used in various 

experiments.40,79,132 Recently, this paradigm has been also tested in murine model of 

AD. 12 months old PS1/APP transgenic animals displayed impaired motor performance 

on rotarod.58  

Interestingly, studies on learning in AD patients revealed opposite results. There is 

clear dissociation of implicit (motor) and explicit (verbal) learning in AD patients, since 

they presented no significant difference in motor task aquisition vs. age−matched 

controls.57,101 The same statement was true also in apractic AD patients, who, though 

generally performing a given motor task worse, were not disabled in improvement of 

the same119 or alternative motor skill.298  

Regardless of the components of disclosed difference in BB−pre-training score (static 

i.e. performance vs. dynamic i.e. ‘motor learning’) more general question of its 

molecular background emerges. The impairment presented here may be linked to 
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amyloidogenic processes in APP animals. Theoretically, it may result from both 

structural damage (neuronal loss) since Aβ in its aggregated form possesses strong 

neurotoxic activities,210,279 as well as from synaptic or neuronal dysfunction without 

loss of neural cells as related to Aβ potential to cause neuroinhibition and reduction of 

synaptic transmission (reviewed by Turner et al.277). It was unapplicable to assess the 

level of Aβ and stage of neuronal loss at pre-operative time point. However, basing on 

previous description of Thy1−APP751SL transgenic model it should be premised, that at 

analysed point (12 weeks of age) APP mice were free of apparent Aβ deposition.23 

This presumption is granted further by the observation that in the same mice 4 weeks 

later (at time point of sacrificing) amyloid deposits, if present at all, were extremely 

scarce and rather diffuse in form, what is attributed to initial phase of accumulation of 

Aβ (at its low concentration). At this time point also no apparent neuronal loss could be 

described in sham animals, leading to further conclusion that neurological impairment 

in pre-injury analysis was caused rather by functional than structural disturbance.  

Therefore, this result confirms the hypothesis, that neuronal trafficking is affected 

already by intracellular load of amyloid. This hypothesis shifts an emphasis from 

extracellularly deposited Aβ (in form of plaques) to its soluble intraneuronal fraction as 

main cause of AD signs and symptoms.22,83,300-302 From a vantage point of a clinician, 

such a shift means that AD may be manifested long before any structural damage has 

occurred.83 Moreover, results of intracellular Aβ accumulation may potentially be 

treated (by the mean of i.e. pharmacotherapy or immunotherapy) easier than 

established amyloid plaques.32,195 

From a nosological point of view in turn, the current results augment recent 

evidence83,84,300 that allows to incorporate β-amyloid−related disorders (thereunder 

AD) to a family of intraneuronal ‘proteinopathies’. Previous categorisation to distinct 

nosological group of neurodegenerative diseases with excusively extracellular protein 

accumulation84 seems to be no more valid. 

 

In posttraumatic course, at the timepoints analysed, no consistent pattern of 

neurological impairment could be detected in gender− and genotype−matched groups. 

Most probable cause here was the minor severity of trauma. It is commonly accepted 

to describe severity of experimental trauma according to neurological impairment 

achieved in early posttraumatic course. Most experiments in mice have defined trauma 

with no or with minute effects on neurological performance as mild.52,138,267,316 

Considering the results from repetitive mild trauma studies, no significant neurological 
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impairment has been noted. DeFord et al. reported two different grades of rTBI 

severity, stating 30% mortality in the group considered later as moderate trauma.52 A 

similar mortality rate was observed in the current study. This, together with no 

neurological deficit, was convincing to describe the used paradigm as mild to moderate 

trauma. Nevertheless, in contrast to DeFord’s et al. results in the non-survivor group no 

apparent skull fracture could be noted and mortality should be attributed to other 

factors (e.g. deleterious effect of anaesthesia).  

 

Of special concern was the potential difference between APP and WT animals. The 

current study presented no such divergence. This result is concordant with previous 

works, where also no genotype impact on neurological performance has been noted. 

This regards both rmTBI280 as well as more severe TBI experiments,185,259 though 

different methods of neurological assessment were used (mouse composite 

neuroscore,185,280 Rotarod test,185 angle board score185 or simply determining 

swimming speed in MWM test259). Considering, that Uryu et al.280 and Smith et al.259 

(but not Murai et al.185) reported parallel memory impairment, it can be stated, that 

cognitive function is more fragile to TBI effects than neurological one also in hAPP 

transgenic animals. Such observation has been made previously in WT animal studies 

and in clinical settings (as discussed more specifically above).  

The current results however may not be free from bias. One aspect is the quite early 

posttraumatic timepoint used. Fujimoto et al. suggested that to avoid interference 

anaesthesia effects, neurological assessment should not be regarded as conclusive 

before 7 days posttrauma.63 Indeed some single point differences were observed early 

in sex− and genotype−matched animals. Thus, also due to their irregularity they should 

be regarded rather as post-operative noise.  

Next question is the validity of the NSS score. NSS, analogous to composite 

neuroscore consists of more tasks, allowing to assessment of whole motor function 

basing both on strength / reflex tests as well as on vestibulomotor components.63 It has 

been previously described and used in numerous studies on head trauma in rats and 

mice. The main advantage of this method is its relative simplicity, as well as the ability 

to analyse more than one aspect of neurological deterioration (as presented above). 

The disadvantages are: task rating made arbitrary by human observer and grossly 

stepwise assessment. These disadvantages were tried to be overcome here by first 

blind assessment of NSS tasks and second refinement of NSS scoring by use of 

gradual rating. However it still cannot be excluded that a more ‘fine-grained’ 

experimental tool (as e.g. Accelerod test) could be more advantageous here. 
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Nevertheless a previous report of NSS use in similar trauma settings (mild CHI)316 

allows to postulate that choosing of NSS was valid.  

 

Another aspect is the sample size. To analyse probable gender effect, small groups of 

5 sex−, genotype− and trauma status−matched animals has been established. 

However, the statistical power of analysis performed in such scarce clusters may be 

questioned. To address this, additional analysis in genotype− and TBI status−matched 

but gender−unsplit groups (of 10 animals each) was performed. This analysis indeed 

revealed few additional effects in NSS analysis (deleterious trauma effect at 7d in APP 

group and unfavourable APP−genotype impact on performance at 4h” and 28d 

posttrauma).  

The additional aspect is the posttraumatic course. In hAPP animals it may be expected 

that both faster or more significant improvement (due to neurotrophic APP properties) 

as well as deleterious effects (due to increased Aβ concentration) may occur.185 

However, in the current study none of these effects was observed. It is possible that 

the bare NSS scores were not significantly increased, at least not enough to have an 

influence in a statistically significant manner.  

 

A separate problem is the neurological assessment in sex-matched groups. Regarding 

posstraumatic performance, there have been only single differences between male and 

female animals noted. In particular, female APP animals strongly outperformed males 

in BB testing at 24h after first insult, while this effect has been observed neither in 

respective NSS scoring, nor in WT TBI animals, nor after second trauma. This result is 

somehow consistent with reports from studies with more severe CCI trauma, where 

female rats were better in motor tasks as early as 24h after TBI and thereafter up to 5 

days.286 In present study, however, such prolonged effect has not been recorded, 

potentially due to second injury applied, obscuring this gender difference or due to 

minor trauma severity with quick recovery.  

 

More clearly there was a gender impact on delayed posttraumatic course among WT 

TBI animals. The D-NSS pattern here suggested a shift in posttraumatic course 

towards an earlier onset of recovery in female vs. male animals. The explanation for 

this effect could be based on the previous observations that female gender was 

associated with reduced contusion volume27 and posttraumatic edema,235 improved 
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cerebral blood flow236 and more protracted course of cytoskeletal degeneration and 

rearrangement.136 One may presume that these sex−related beneficial effects were 

influencing neurological recovery most significantly in the described time window (3-

28d). Intriguing is the lack of such gender effect among APP TBI animals. Interference 

of intracellular amyloid burden with the gender−dimorphic recovery processes is one 

reasonable explanation.  

 

One important aspect is the result of BB testing. There was a clear genotype−related 

difference among female animals in acquisition of BB−related task in pre-training (as 

discussed above). However, no significant difference in performing this task once 

learned was seen during the posttraumatic period (save time point 6h after first trauma. 

Here WT animals however performed worse, and in respect to the early posttraumatic 

point this effect may result rather from different anaesthesia recovery, than being a 

virtual impairment). This shows that retention of balance task, which was acquired 

before the trauma, was not disturbed by hAPP and Aβ production, or by the TBI 

paradigm used here. One may presume that frequent task repetition and its constant 

conditions could serve as preserving factors. Indeed, AD patients were able to gain and 

keep motor skill equally to healthy controls if performed under constant practice 

conditions.53,54 According to Dick et al.,53 performing a task in conditions similar to 

those of the original task learning may be described as hippocampus−independent. 

This fits well with the current BB−assessment situation and histological analysis as 

described in 4.10.1. and 4.10.4.  

 

5.4. Biochemical analysis  

Basing on the results of previous analyses of the Thy1−APP751SL transgenic model, 

the decision was made to include the measurement of only soluble Aβ40 level, since at 

the age designated to be the posttraumatic time point for tissue harvesting, no 

significant amount of cerebral Aβ42 type and no overt amyloid deposition has been 

reported. Moreover, the Aβx-42/Aβ1-40 ratio remained constant in time though accruing 

Aβ deposition during ageing. For lateralised trauma, as in given experimental TBI, an 

inter-hemisphere difference needed to be considered, therefore separate 

concentrations of Aβ for contra- and ipsilateral hemispheres have been estimated. 

However, no statistically significant difference between contra- and ipsilateral 

hemispheres of respective experimental groups has been found, what is consistent 
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with previous observations of Uryu et al.280 and Conte et al.,47 where analyses in 

Tg2576 mice were performed at 8, 16 and 8 weeks posttrauma, respectively.  

There was also no difference in Aβ1-40 content and amyloid deposition between TBI- 

subjected and sham injured animals. One possibility is, that given TBI settings were 

just not sufficient to cause any change in APP metabolism and Aβ accumulation. 

Nevertheless, this result can be attributed also to the specific posttraumatic time point 

we have chosen for analysis (4 weeks). In one aspect it could be too early to expect 

any changes in Aβ level, as in the model of Philadelphian group significant changes in 

presence of deposited amyloid were not observed until 16 weeks of posttraumatic 

course, while Aβ ELISA measurement revealed no significant increase in Aβ1-40 

concentration even at this time.47,280 On the other hand, this point can be also criticised 

as too remote, since Smith et al. presented posttraumatic surge of Aβ40 to be present 

in 2h but not at later time points after TBI.259 Also in the recent study of Abrahamson et 

al., a raise in Aβ1-40 level returned to the baseline as early as 24 h posttraumatically.5 

Moreover, Murai et al. presented in his experimental setting actually a decrease of 

Aβ40 level 7 days after TBI.185  

 

Despite the mentioned studies are unintegrated in respect to animal AD−model used 

(PDAPP in studies of Smith et al. and Nakagawa et al.,187,259 Tg2576 in Uryu’s and 

Conte’s group,47,280 APPNLh/NLh in Abrahamson’s et al. study5 and APP-YAC in this of 

Murai et al.185), a certain concept may be already based on their results. It is possible, 

that analysis time point of our study is situated in a kind of ‘equilibrium period’, when 

posttraumatic Aβ levels and deposition are near to non-trauma baseline. This period 

would be preceded by rapid but short lasting surge in amyloid production and it would 

later proceed to late chronic amyloidogenesis with reappearance of elevated Aβ levels 

and deposition. Of course, during such subchronic AD-pathology respective 

pathophysiological processes will take place, however, they will be occult, in means of 

microscopic and biochemical Aβ analysis. A strong support for this concept can be 

found in studies of TBI−victims’ brains. Both post-mortem studies and analysis of 

surgically excised fragments revealed increased Aβ deposition at early posttraumatic 

stage (up to 24h) while in long-term survivors of TBI (after 30 d post-TBI) no difference 

to age-matched controls could be revealed.157 TBI as cause for AD, however, emerges 

again in epidemiological studies with multiannual follow−up212 or retrospect.59  

Moreover, the study of Nakagawa et al. confirms the existence of posttraumatic 
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mechanisms that are able to dissolve already established deposits,188 assumedly also 

those created acutely after TBI.  

 

One important aspect, both in experimental and in autopsy studies is heterogeneity of 

Aβ, since apart Aβ40 also more amyloidogenic species of Aβ1-42 and Aβx-42 exist. The 

two later forms seem to play a more crucial role in posttraumatic amyloid pathology. 

Interestingly, Aβx-42 level remained stable despite significant decrease in Aβ1-40 in 

experiment of Murai et al.185 Two further studies showed both Aβ40 and 42 levels to be 

increased early259 and remotely280 after single and repetitive mild TBI, respectively; in 

both studies however, surge in Aβ42 species was much more prominent. Finally, 

Abrahamson et al. in non-transgenic mouse model reported not only a rapid surge in 

Aβ42 (500% of the sham level) within 3h post TBI, but also secondary protracted 

elevation (to 150% of sham base) persisting up to 14 days. This double-phase raise 

was accompanied by transient increase in Aβ40, declining to sham levels already 72 

after trauma.5 Together with previous reports, it suggests a predominant role of Aβ1-42 

in posttraumatic AD pathology. This has been confirmed in autopsy studies, where Aβ1-

42 content in diffuse amyloid deposits was shifted toward increase in Aβ1-42 species, 

comparing to cases of ‘regular’ AD.75  

Regarding this, it would be reasonable to include Aβ42 analysis also in our study. 

However, one need to notice that animals used in cited experiments were of much 

more advanced age than in present study and significantly increased levels of more 

amyloidogenic Aβ species could be easily and credibly estimated. Thus, for reliable 

results of Aβ42 analysis more remote points for analysis need to be chosen or TBI 

needs to be applied in more aged animals. Also time points before and after discussed 

latency period of AD- pathology should be targeted. These problems will be the main 

focus by designing of subsequent studies. (Aβ42 levels below detection limit of the 

assay).  

 

In current study a clear trend towards decreased levels of Aβ40 in male animals, 

compared to females in the sham group is presented. This difference however was not 

present in animals subjected to TBI. The former data is consistent with previous 

reports, that amyloid production, accumulation and deposition is more intensive and 

occurs earlier in female animals expressing hAPP in different transgenic models of AD, 

including Tg2576,37,142 double transgenic APPswe/PS1 mice293 and in the here used 

Thy1−APP751SL strain.244 Interestingly, a gender difference in Aβ plaque load has been 

observed first in aged animals (coincident with anestrus phase),37 while increased 
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Aβ40 levels were reported already in young female animals, consistently to the current 

report. As an explanation Callahan et al. proposed a direct impact of estrogen on 

amyloid production, since cultured neuroblastoma cells, bearing mutated βAPPswe 

released more Aβ40 and Aβ42 after estrogen treatment.37 Another aspect, outlined by 

Lee et al. is the gender difference in synaptic zinc release. Zinc ions in physiologically 

plausible conditions are able to precipitate soluble Aβ fraction in vitro.31 In Tg2576 mice 

synaptic zinc concentration was increasing during ageing in female but not male mice, 

corresponding to amyloid burden. However, these results regarded aged animals and 

rather insoluble than soluble Aβ level was correlating with zinc concentration, 

suggesting that synaptic zinc is playing a main role in Aβ accumulation but not 

production.142 In contrast, Schuessel et al. presented increased Aβ40 production in 

both 3− and 12 month−old female Thy-1 APP mice compared to males. This was 

associated with impaired Cu/Zn superoxide dismutase activity and increased levels of 

lipid peroxidation products as markers of oxidative stress in comparison to non-

transgenic female age-matched animals. The similar genotype−related differences 

appeared in male animals first at 12 months of age. Thus, gender−dependent Aβ and 

C99 production causes impaired antioxidant activity and an increase in oxidative 

stress.244 

The observations in animal studies are consistent with clinical epidemiological data, 

according to which female gender is affected by higher incidence and earlier onset of 

AD.114,125 

  

There are several ideas trying to explain this gender effect on AD development. First, 

referring to the concept of brain reserve capacity as derivate of brain size, earlier onset 

of AD has been linked to antropometric gender differences in cerebral volume.155 

Second, other theories have been based on molecular interactions between sex steroid 

hormones and APP production and processing. In general, influence of estrogen is 

regarded as protective in AD. Addressing APP metabolism: estradiol reduces APP 

transcription via methylation of APP promoter,158 shifts in adult mice posttranscriptional 

APP splicing toward APP695 form272 and increases α-cleavage of APP as represented 

by sAPPα level.159,304,314 Thus, clinically observed preponderance of female sex 

among AD subjects has been attributed to estrogen depletion in postmenopausal 

anestrus phase. Male subjects in turn will be protected by the impact of testosterone on 

amyloid pathology similar to that of estrogen.85  
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Nevertheless, this does not fit to present and previous observation in Thy1−APP751SL 

mice, since Aβ levels were raised in females already at 3−4 months of age.244 It is 

possible that the observed effect may be attributed to properties of selected hAPP 

transgenic constructs, in particular to the mutated hAPP sequence used. It has been 

presented that estrogen supplementation reduces Aβ derivation from APP in APPswe 

but not in PDAPP mice, harbouring the APP V717 mutation.88,145 Summarising, in 

female Thy1−APP751SL mice the stages associated with normal levels of circulating 

estrogen (i.e. development and young adulthood) will be associated with a more 

pronounced Aβ generation from APPswe.  

 

While sex matched groups (TBI M vs. sham M and, separately TBI F vs. sham F) 

seemed to show no significant impact of trauma on Aβ level, the clear trend towards 

sex−related difference in this rate has been observed only in sham but not TBI APP 

animals. This implies that head trauma selectively impacted Aβ accumulation in male 

animals so that it reached the level seen in female animals, while in ‘normal’ condition 

(without accessory damage due to TBI) female Aβ rate outranks the male one. 

Interestingly, this observation finds a solid ground on epidemiological studies: 

Fleminger et al. reports positive odds ratio for TBI as an AD risk factor in general 

population and among males, but not in females.59 The possible explanations for 

current results, as well as for this epidemiological evidence may be as following: First, 

in females certain protective mechanisms are present, ceasing or reducing those 

effects of post-TBI events which propel development of AD. These mechanisms were 

therefore absent or less effective in male subjects. Second, in female brain, APP and 

Aβ turnover is physiologically set on the high level that cannot be further significantly 

increased by TBI sequelae (this would also explain to some part greater susceptibility 

of females to AD, as discussed above). Thus, male APP−metabolism would be more 

vulnerable to TBI, as possessing greater freedom range for up-regulation.   

A possible explanation may be found again on the field of oxidative stress. It has been 

presented that female Thy1−APP751SL mice are burdened with less lipid peroxidation 

products than age matched transgenic males, though in the females antioxidative 

SOD-activity was decreased more than in males.244 With regard to posttraumatic 

course, the levels of oxidative stress markers were more profoundly and persistently 

elevated in CSF of male TBI patients.16,285 This suggests that antioxidative 

mechanisms in females are more efficient or supported by e.g. respective properties of 

sex hormones (reviewed by Roof et Hall237). Indeed, in female animals bearing 



 85 

increased CuZn-SOD activity no protective effects on cortical damage could be seen 

after TBI, in contrast to male animals, though trauma impact was in general reduced by 

female gender.115  

Taking together, for the results of the present study it may be hypothesised that 

antioxidant defence in Thy1−APP751SL females is sufficient to resist Aβ−related 

oxidation, even if one compound of it i.e. CuZn-SOD function is impaired by Aβ load. 

Moreover, antioxidant activity remains efficient even in the face of additional 

posttraumatic raise of oxidative stress. These mechanisms could therefore stop the 

impetus of oxidative damage, generated by TBI itself. In male animals in turn, 

posttraumatic processes might lead to more pronounced, less restricted free radical 

damage, resulting potentially in raised amyloidogenesis.  

Thus, the male brains would be more eager to succumb to vicious circle of free radical 

production and Aβ generation. As a result, in the relatively short posttraumatic period, 

they were able to equate the Aβ level to this seen in female animals.  

 

To the best knowledge of the author, this is the first study attempting to compare 

impact of TBI on AD in APP transgenic animals of both sexes. Prior studies were 

performed using either sex- uniform experimental groups (males or ovariectomised 

females), or the analysis was performed without regard to this factor. There are some 

obvious shortcomings of presented experimental settings in respect to the gender 

problem. In particular, the information about estrous cycle status at the time of TBI is 

lacking. Facing the data, describing the impact of hormonal status on the posttraumatic 

outcome27 this creates a potential bias source. However, the general presence of 

circulating sex hormones has here a more clear impact than estrous cycle stage during 

traumatic insult.287 Moreover, such settings approximate more closely the clinical ones, 

where no certain hormonal status can be imposed at the moment of trauma.  

 

5.5. Histological analysis 

In here presented study, no overt neuronal loss could be observed in traumatised 

animals, regardless of genotype and sex. Neuronal loss is a universal consequence of 

neurotrauma, as it has been reported both in experimental and clinical setting 

analysing TBI of different severity. Neuronal loss has also been precisely described in 

a murine CHI model.44 However, regarding rmTBI mode, no significant depletion in 

neuronal number was observed in studies of DeFord et al.52 and Uryu et al.280 what is 

consistent with current observation.  
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Generally, TBI resulted in abundant neuronal loss in hAPP transgenic animals as 

comparing to their WT littermates. This phenomenon was attributed to neurotoxic 

properties of Aβ that, however, were uncovered first after additional damage (here 

TBI). This was based on the observation, that hAPP transgenic mice do not develop 

neuronal loss spontaneously, though manifold increase in Aβ concentration. 

Nevertheless, in the current study no such difference could be observed. This may be 

explained by the young age of animals used, in which Aβ levels were still only slightly 

elevated. This fits with the study of Murai et al., where cell loss in APP-YAC animals 

did not differ from WT after trauma.185 Notably, APP−YAC animals are characterised 

by no spontaneous plaque deposition due to only slightly evevated level of Aβ.34,204 

 

Analysis of the glial response to the trauma displayed no difference between the 

experimental groups. Astrocytic activation and gliosis are the common sequele of both 

TBI and AD111,170,175,205 and have been seen also in respective animal 

models.20,39,163,260 In a previous report on the mTBI paradigm, moderate gliosis has 

been detected, though not in prolonged posstraumatic observation. This regards both 

to WT and Tg2576 hAPP transgenic animals in repetitive mTBI mode.280 The lack of 

apparent glial activation in the current study was in accordance with the 

abovementioned reports, since the time point chosen for analysis was quite remote 

from TBI. A separate problem is the potential impact of the posttraumatic glial 

activation on the development of AD pathology. Both main components of brain tissue: 

glia and neuronal cells are participating in APP production. However, the production of 

APP isoforms differs between these two cell populations. Alternative splicing of APP 

leads to the production of three major APP isoforms: APP770, APP751 and APP695. The 

two former isoforms contain the so-called Kunitz protease inhibitor sequence (KPI), 

what enables to identify them by generating KPI−specific antibodies. Using methods 

specifically targeted to separate APP isoforms and/or respective mRNA it has been 

stated, that in cell cultures neurons produce mainly KPI−lacking APP695, while in 

astrocytes the proportion APP770/751/APP695 is reversed since they produce mainly 

KPI−containing longer isoforms.234 Considering the general role of glia in AD 

pathology, glial cells may not only be an executor of toxic Aβ properties in and around 

the deposits. There is evidence that glial cells, in particular astrocytes participate in Aβ 

production.144 Moreover, there is a clear shift in the concentration of APP isoforms 

among the age, since foetal brain contains predominantly mRNA APP695, while in aging 

and, in particular AD−affected brain mRNA APP770/751 is the dominant form.220 
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Interestingly Masumura et al. stated that the posttraumatic surge in general APP was 

due to the glial form, while neuronal APP expression was gradually decreasing.161  

This raises a possibility, that posttraumatic increase in Aβ production and accumulation 

is dependent rather of glial than of neuronal APP overexpression.  

However, Zhao et al. presented that APP transgenic mice with APP expression driven 

by the GFAP promoter produce no significant amounts of Aβ and that TBI was not able 

to increase amyloidogenesis in this model.315 Also Harada et al. presented that glial 

cells from Alzheimer patients are lacking activity of BACE-1 enzyme.95 Contrasting this 

with evidence suggesting glial Aβ generation (especially from in vitro studies), the 

question of whether astrocytes are producing Aβ posttraumatically needs to be further 

addressed. In particular it would be interesting to test, whether other cells, in particular 

neurones or microglia are able to derive Aβ from APP released from astrocytes.  

 

An important posttraumatic aspect is APP immunoreactivity as a measure of potential 

posttraumatic APP accumulation. In the current study no difference in APP 

immunoreactivity has been detected between injured and sham−injured APP animals. 

In particular, no intraaxonal APP or formation of axonal bulbs could be observed. As 

mentioned above, APP overexpression and accumulation is regarded to play a 

causative role in posttraumatic AD development. The lack of raise in APP 

immunoreactivity could be an explanation, why no difference in Aβ deposition and level 

between trauma−subjected and sham animals was observed. However, 

immunohistochemistry is not an optimal method to assess APP concentration, thus no 

quantitative assessment could be here made.  

An additional problem is again the time point of analysis. In previous experiments, WT 

animals presented an increased APP expression lasting for a few days.24,118,149,161 

However, TAI−associated APP accumulation has been observed between 28d to 56d 

after rmTBI.138 Similarly, in human autopsy studies APP immunoreactivity has been 

raised early in neuronal somata171 and was used to visualise TAI in a time window 

between 2h to app. 100 days after TBI.25,172,249 Thus the selected timepoint in this 

study might be too remote to display APP overexpression. On the other hand, APP as 

a marker of axonal injury also could not be disclosed, since in the here used CHI model 

TAI is not the dominating form of the injury.139,140,143 Thus, potentially 28 d was too late 

to disclose a posttraumatic increase in APP expression, while TAI−related APP 

immunoreactivity was too scarce due to the basic characteristics of the TBI model.  
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5.6. Feasibility of reproducing AD-TBI relationship  in animal models: 

General considerations  

The lack of success in achieving increased β-amyloid deposition in the presented 

experimental paradigm raises also some general question: Is it really feasible, to 

reproduce closely a human−like posttraumatic AD pathology in transgenic murine 

model?  

To address this question, some possible hindrances, applying both to here presented 

as well as to previous experiments will be discussed.  

 

5.6.1. Difference in regulation of APP expression 

One aspect is the way of neuronal APP expression in physiological settings and in 

transgenic animals. As mentioned above, neurons are the predominant source of APP 

in transgenic brains. However, to obtain amyloid pathology resembling human one a 

high level of baseline APP overexpression is needed. Moreover, to achieve desirable 

levels of Aβ, usually a mutated, highly amyloidogenic form of hAPP is expressed. Thus, 

in transgenic animals both levels of hAPP and Aβ are much higher than may be seen in 

natural settings, including even those in patients with familial AD. Such conditions are 

required to overcome some obstacles related to use a mouse as a hAPP gene−carrier. 

Apart from differences in molecular environment (described in 4.6.2.) the opportunity 

for Aβ to accumulate and to be deposited is hindered also by short life span of mice. 

Aβ accumulation is to some degree a simple chemical reaction that is dependent to 

time and concentration of amyloid molecules as a substrate.98 In human, amyloid 

pathology may take many years to decades to develop. To replicate this process in 

relatively short time (i.e. months) in murine models, the second predictor of the reaction 

i.e. Aβ concentration and, thus, APP expression must be increased manifold.232  

To achieve such a high level of neuronal APP expression, gene constructs are 

required, in which the APP gene is driven by a strong promoter, such as a modified 

PDFG promoter (in PDAPP mice),65 PrP prion promoter (in Tg2576 mice)109 or Thy-1 

promoter (in hAPP SL751, used here).8 In that way, the regulation of APP expression is 

also not physiological, but dependent on the properties of the given promoter construct. 

Considering that baseline APP expression is set on an extremely high level one may 

expect, that its expression would not be further up-regulated in reaction to noxious 

factor e.g. TBI.  

Since TBI is resulting in neuronal loss, it is clear that a number of APP producing units 

(i.e. neurones) are decreased posttraumatically. However, this loss needs to be 
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overcompensated for amyloid pathology to occur. Here, two mechanisms may be 

proposed: (i) increase in posttraumatic Aβ- derivation from available APP and (ii) 

overbalancing raise in APP expression in preserved neurons. The former mechanism is 

clearly seen as a surge in BACE-1 activity and activation of caspases as alternative 

way for amyloidogenic APP−processing. This phenomenon is probably present also in 

transgenic animals and it would explain a short lasting raise in posttraumatic level of 

Aβ.  

 

Let’s consider the latter mechanism (i.e. neuronal APP overexpression). Such activity 

may be lacking in transgenes, since APP expression is governed in the way 

attributable to the respective foreign promoters. Thus, even if any posttraumatic surge 

in neuronal APP expression takes place, it may not be as abundant as in the case of 

APP expression driven by its own promoter. Therefore overbalancing of neuronal loss 

by increase in APP production by single surviving neurons may be absent. This 

explanation fits well to the results of previous studies on TBI in hAPP murine models. 

Severe trauma resulted in profound neuronal loss (exacerbated by toxic properties of 

abundant Aβ) and eventual decrease in subsequent Aβ deposition. In turn, a mild 

trauma paradigm with no observed neuronal loss succeeded in increased Aβ 

production and deposition. In presented paradigm no neuronal loss could be detected 

and no change in Aβ deposition was observed. Apart from other explanations (see 

5.5.), a reaching of a balance point between raise in Aβ production and neuronal loss 

could be also speculated.  

 

Considering this disadvantage of contemporary AD models, the use of APP−promoter 

driven constructs is a reasonable approach. Such experiments have been recently 

performed, presenting early surge in both APP expression and Aβ level as measured 

biochemically. The price paid for physiological regulation of APP expression is the lack 

of full blown amyloid plaque pathology in such knock-in constructs. Reconciling of the 

advantages of both knock−in and transgenic animals seems to be a difficult task, but 

the goal of achieving an animal model of AD, almost ideal for neurotrauma research is 

very tempting.  
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5.6.2. Structure of white matter and axons 

Apart from molecular features, a pivotal role may be played by some biomechanical 

characteristics of traumatic brain injury in different species.   

The human brain, relatively to its size, demands disproportionally long axonal fibres in 

the white matter for its remote structures to be connected. Such a structural 

organisation makes human axons extraordinary vulnerable to mechanical damage.258 

Additionally, during trauma the anatomical constitution of human brain, head and neck 

promotes induction of inertial forces in numerous brain regions containing white 

matter.72,198 Taken together, axons of the traumatic brain injury patients are 

mechanically the most vulnerable cerebral structures,258 the damage of which (in form 

of traumatic or −when more extensive− diffuse axonal injury) may be observed in the 

mildest forms of head trauma, even without substantial injury to the neurons per 

se.25,26  

 

On the contrary, the axons of lissencephalic small rodent brain are much shorter as the 

white matter amount is reduced according to some scaling laws.312 In result, to achieve 

axonal damage by single insult, relatively stronger non-inertial mechanical impact is 

demanded since the anatomical constitution of these animals hampers usage of 

TAI−favouring angular forces.257 However, this type of trauma correlates with 

increased neuronal damage. Thus, it seems that traumatic axonal injury of a similar 

degree with the one observed in humans cannot be achieved easily in small animal 

models, since the energy required for the trauma would cause drastic or even lethal 

neuronal damage.71,174 Indeed, in small rodent models of axonal injury significant 

necrotic and neurodegenerative changes have been observed while axonal pathology 

was of a proportionally lesser degree. Moreover, axonal swellings were predominant in 

damage pattern while formation of axonal bulbs, which represents disconnection of 

neurites, was less extensive.28,39,103,108,208,216 

 

Also a difference in timing for axonal bulb formation and disconnection may be of great 

importance for Aβ pathology. Those hallmarks of TAI have been observed in animal 

models of head trauma; however in smaller animals the sequence of events leading to 

axonal disruption was exceptionally fast.167,215,216 The model of CHI used in presented 

study has not been utilised before in AD-relevant studies. Unfortunately, the tissue 

preparation (frozen slices) was not convenient in microscopic analysis of axonal 

pathology. Therefore relevant statements about presence or lack of TAI on amyloid 
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pathology development may not be formulated. Previous descriptions of CHI consider it 

as a rather focal model of TBI; therefore widespread TAI should not be expected. This 

is the next reasonable explanation for a lack of visible difference in Aβ deposition at the 

rather early posttraumatic 28d time point. The similar paradigm of trauma (force of 

trauma applied directly to closed skull) was established in mild TBI model of Laurer et 

al.138 later used also in Uryu’s et al. study.280 These studies report a presence of 

delayed formation of TAI hallmarks (after 7 days posttrauma)138 with an increase in Aβ 

deposition also occurring in a retarded manner.280 This temporal congruence 

emphasise above discussed role of axonal injury on amyloid pathology development.  

Summarizing, it is tempting to assume that the axonal length has a key role in rapid 

posttraumatic Aβ accumulation as all, save porcine animal models of TBI failed to 

produce this phenomenon. This regards also to transgenic mouse models, since in the 

single successful paradigm of Uryu et al. increased Aβ deposition was not observed 

until 9 weeks of posttraumatic course. However, further evidence is required for 

verification of this concept.  
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