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I. SUMMARY 

1-1. English Summary 

Despite platelet (PLT) activation plays a crucial role in the physiology and the pathophysiology of  

thrombosis and hemostasis, platelet function assays are not well standardized and lack simple and  

reliable screening possibilities [Breddine 2003, Tsiara 2003, and Reininger 2006].  The Retention Test of  

Homburg (RTH) was set by the institute of clinical hemostaseology, University of Saarland, in 1993 as an 

attempt to bridge this gap by introducing a simple and cost effective assay for screening platelet function 

reliably.  The test was based initially on the retention of platelet by exposing citrated platelet rich plasma 

to a standardized exogenic textured surface (RTH filter: a disc of sintered polyurethane fixed in  

disposable Eppendorf retention tube: “RTH tube”; pores diameter = 16-22µm) under defined conditions of 

flow forced by centrifugation.  The percentage of the difference between platelet count before and after the 

passage of the filter is defined as the platelet retention index (PLT-RI).  High values should be a sign of 

platelet stickiness, whilst low values are supposed to indicate loss of platelet function.  

Since the first developing steps of RTH test, variant procedures were used for performing the assay which 

have never been standardized [Breddine 2003, Reininger 2006].  The RTH assay delivered unacceptable 

reproducibility with serious problems in the reliability.  The accuracy of RTH has never been studied in 

healthy individuals and the evidences on its specificity for platelet were inadequate and presented no 

comprehensive interpretation.  Few investigations defined reference ranges for platelet retention index 

(using citrated platelet rich plasma), but none of them were reliable.  The data obtained from a multi-

center trial using RTH was at least unacceptable [König 2002].  The serious errors and problems of RTH 

destroyed the credibility of previous studies and prevented its application in clinical practice.  In addition, 

the sophistications incorporated by the variant procedures e.g., pre-analytic processing of the blood and 

preparation of variant additives, have damaged the significance of this analysis as a simple and cost 

effective assay.  Some investigations, however, reflected considerable response of platelet retention  

index to platelet agonists/antagonists promising vital clinical significance of RTH for screening platelet 

function.  This has meanwhile to be interpreted as rather hypothetic and also throws doubts on the  

reproducibility.  Few studies concluded the “athrombogeneity” of the RTH filter system, despite the  

evidences were not adequate and our study proved that the filter is not as declared completely athrom-

bogenic.  The main weakness point of RTH studies was the use of variant and unreliable procedures 

stepping unacceptably over defining reliable and evidence based standard operation procedure (SOP).  

Nevertheless, the initially declared athrombogeneity of RTH filter and the relative convenience of the  

application of RTH in clinical practice represented promising advantages of RTH compared with other 

retention tests.  The objectives of our investigations were therefore: a.) Radical validation and  

improvement of RTH procedures, b.) Developing a reliable and simple standardized procedure, c.) Setting 

evidence based interpretation of the specificity for screening platelet function, and d.) Defining a reliable 

reference range in healthy individuals. 

The evaluation and the development of the procedures of RTH resulted in excessive modifications and 

basic improvements on the reliability, the convenience, and the significance of the test implicating the 
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definition of a new standardized assay on citrated whole blood which was introduced as RTH-II.   

Stepwise investigations were done by using different Sysmex cell counters and under morphological 

control for validating and improving the methodology, the reliability and the standardization of RTH.  Thus, 

extensive modifications on RTH besides basic identifications were set and incorporated in RTH-II: 

(1) The citrated whole blood was defined as the tested material of choice in clinical practice instead of 

citrated platelet rich plasma used mainly in RTH.  This was essential to avoid the artifact variability  

attributed to PLT activation by the separation steps as well as to the variability attributed to the diverse 

interactions of the variant PLT gradients (after preparation by centrifugation) with their medium in the 

plasma.  In addition, the whole blood reflects the physiological status more accurately than plasma and 

reduces the probable errors related to PLT hyperactivation (by e.g., aggressive mixing).  (2) The variable 

amounts of the tested materials used in RTH were standardized at 500 µL in RTH-II.  (3) The addition of 

the so in RTH called “reactivating reagent” (Calcium with hirudin) was excluded since it was not justified.  

Also the resulted platelet reaction was found to be unstandardizable, convertible (from positive to  

negative) and vary inter-individually.  (4) The incubation step (3-10 min for the tested materials in RTH 

tube) was excluded in RTH-II to avoid possible platelet activation by long contact with the filter and the 

consequent variability of platelet response related with the variant incubation periods and the inter-

individual differences.  (5) The measurements before the passage of the filter were applied on the  

materials in the collection tube (RTH-II) instead of the RTH tube after the incubation step (RTH).  The 

amount of the tested material passing RTH filter was thus standardized at 500 µL by avoiding the  

variability related to the variant amounts of the samples aspirated by the cell counters (100-400 µL).  The 

blood amount passing the filter became subsequently sufficient for performing the measurements on it 

“in-double” as well as for additional control tests.  Putting the collection tube on a rotator assure the  

homogeneity of the tested material in contrast to the variant rates of blood sedimentations during the 

stand of RTH tube which leads to unacceptable variability in the measurements.  (6) The extremely  

variable centrifugation conditions used in RTH (79-160 g/ 5-16 min) were standardized at 110 g/ 5 min 

which allows acceptable platelet distribution in the filter and delivers reliable measurements.   

Surprisingly, the centrifugation conditions were inadequately specified in some previous RTH studies.   

(7) The blood collected in the lower part of RTH tube (after centrifugation) was mixed by vortex (3 min in 

RTH) before performing the measurements.  Standardized slight vortex (=3sec) was applied in RTH-II in 

order to avoid probable unacceptable platelet aggregations, agglutinations, and/or disruption that damage 

the reliability of the measurements.  (8) The measurements on the blood after the passage of the filter 

should be performed within 2 min after centrifugation to assure the accuracy (preserve the blood homo-

geneity and minimize the errors attributed to probable occurrence of “platelet particles phenomenon”).  

(9) The measurements should better be performed “in-double” to assure their reliability.  The patterns of 

the variations between the 1st and the 2nd in-double measurements were also defined as rapid indicators 

for probable errors (induced by e.g., inadequate or inconvenient mixing).  In-double or in-series measure-

ments should be performed by using new tips for each pipetting instead of the same tip in order to avoid 

unstandardized variation (not specified in RTH related studies).  (10) The formula of calculating the large 

platelet retention index (PLCR-RI) was corrected by using the absolute values of large platelet instead of 

their ratio (%).  The resulted reference range and its correlation with the other retention indices provided 
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significant meanings/conclusions in contrast to those obtained by using the original formula.  Such errors 

of RTH put also serious questions on the reliability of related previous studies.  (11) Nobel identification of 

additional retention indices (RIs) for leucocytes (WBC-RI), erythrocytes (RBC-RI) and for the platelet size 

parameters (platelet derived width “PDW-RI” and mean platelet volume “MPV-RI”) was set for the first 

time in any retention test system.  Defining these retention indices (including large platelet retention 

index) besides their correlations with platelet retention index was essential for: a.) defining the errors and 

the sources of variability of RTH, b) setting and validating necessary modifications, c.) getting compre-

hensive interpretation for the accuracy, the specificity and the precision of RTH-II, and d.) setting for the 

first time a key protocol for the interpretation and the quality assurance of RTH-II measurements.   

(12) Nobel identification of the weight retention index (wRI: the weight of the blood retained in the filter) 

was set.  This index was essential for standardizing and validating the centrifugation conditions as well 

as the quality assurance of the integrity and the reliability of RTH filter.  (13) “Platelet particles”  

phenomenon was identified as the main source of errors.  Platelets activated by shear stress passing 

through RTH filter are opposed to hyperactivation by inconvenient vortex (RTH) leading to degradable 

platelet aggregates/agglutinates (platelet particles).  These particles are misread by the cell counters as 

large platelet, erythrocytes and/or leucocytes (whenever the particles are within their size discriminators) 

and are thus demonstrated by: (a) proportional false decreases in the retention indices of erythrocytes 

and leucocytes, (b) a false shift to the left for the retention indices of platelet size, and (c) relevant false 

increase in platelet retention index.  Occasional platelet hyper-activation may occur before passing the 

filter if the blood is inconveniently handled leading to inverse patterns of false variations for the retention 

indices.  The final values of the retention indices vary according to the total of the false variations before 

and after the passage of the filter.  Platelet hyper-activation leads also to rosette forms associated with 

platelet decrease.  The identification of platelet particles phenomenon besides the new retention indices 

was crucial for defining RTH errors and setting the related modifications.  The correlations between  

platelet retention index and the other retention indices (except large platelet retention index) convert from 

defined positive patterns to negative ones by the occurrence of platelet particles after passing the filter.  

Despite RTH-II avoids the occurrence of this phenomenon, it is not completely preventable.  Understand-

ing the implications of this phenomenon is therefore mandatory for the right interpretation and quality 

assurance of RTH-II measurements.  (14) The room temperature was defined as a standard condition for 

performing RTH-II. (15) The time of performing the assay was standardized at <120 min which preserves 

the reliability of the measurements.  Exceeding this limit up to 180 min used in RTH may be associated 

with marked decrease in the values of platelet retention index. 

Diverse approaches were used in our investigations for validating and characterizing the accuracy, the 

precision and the specificity of RTH-II with the use of multiple morphological control (before and after the 

passage of RTH filter): A.) In-series precision evaluated in 13 series (n=10) of citrated whole blood and 3 

series of Eightcheck control (customary for platelet count check by Sysmex) besides day-by-day  

precision evaluated by using Eightcheck control.  Phase-contrast microscopy was used for control.   

B.) Exclusion the effect of RTH filter.  C.) Performing RTH-II on platelet isolated by gel-filtration compared 

with citrated whole blood.  PLT spreading was used for the morphological control.  D.) Validation of a new 

developed standard for washed and unwashed prefixed platelet under control by phase-contrast micros-
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copy.  E.) Morphological characterization of the interaction of platelet and blood cells with RTH filter.  

Semi- and ultra-thin segments of the filter were fixed after the blood passage and then examined by 

phase-contrast as well as screening and transmission electron microscopy.  F.) Establishing reference 

ranges of the retention indices of platelet and blood cells using citrated whole blood as well as 

Eightcheck control. The accuracy was controlled by phase-contrast microscopy.  G.) Quantity  

assessment of the filter system besides the blood amounts used and trapped in it.  This validation was 

applied on the materials (citrated whole blood and Eightcheck control) used in the precision and  

reference range studies. 

These approaches proved the accuracy, confirm the acceptable precision of RTH-II and provided evidence 

based interpretation for the specificity of the assay.  The accuracy of platelet retention index was for the 

first time studied in normal individuals.  The extreme falsely elevated levels (mean=2.2 folds) and their 

increase by time (up to 61%) were substantially corrected.  The unacceptably high in-series variation of 

platelet retention index measurements by RTH was reduced by at least 80% in RTH-II which delivered 

precise values (standard deviation “SD”=2.9).  The reliability of RTH-II measurements is dependent on 

precise and accurate platelet count besides the biological variability, whilst the errors induced by  

additional sources of variability in RTH (e.g., platelet particles) increase the variability and false results 

unacceptably.  Using more modern cell counters proved to improve the precision of the measurements 

remarkably but showed no impact on the accuracy.  The day-by-day precision which was evaluated for 

periods longer than ever before (up to 10 days) using Eightcheck control revealed also acceptable low 

variation for platelet retention index (SD<2.9). 

In 2004, RTH-II could thus be established.  For the first time, a reliable reference range for platelet reten-

tion index in citrated whole blood with acceptable biovariability (n= 70: mean= 25.2%, SD=6.25) was 

defined.  The impact of different modes of measurements on the accuracy of the results was inspected.  

In parallel with platelet retention index, the precision and the accuracy of the other retention indices were 

substantially corrected and reliable reference range for each retention index was for the first time  

defined.  The accuracy of the retention indices of platelet and the other blood cells was proved and  

characterized by phase contrast and electron microscopy.  It was further proved that: 

A.) RTH filter is rather athrombogenic in contrast to the other “filter systems” used in previous 

platelet retention assays (e.g., Hellem 1970). 

B.) Under the standardized conditions of RTH-II using citrated whole blood, the retention values of 

the leukocytes (WBC-RI=4.2%) and erythrocytes (RBC-RI=-3.6%) are related to their sizes which are 

bigger than the pores of the filter.  Whilst platelets which are smaller in size than the pores of the filter 

interact specifically with it demonstrating basically higher retention values than the blood cells.  Platelet 

retention index reflects directly the response of platelet to activation by shear stress during the passage 

of the filter.  The platelet activation is demonstrated by shape change, extreme adherence and spreading 

on the filter with remarkable degranulation and excessive formation of wall-bound aggregates that bridge 

the opposite polyurethane surfaces of the interconnected micro pores, especially in the upper part of the 

filter.  Platelet may occasionally form free aggregates clumping within the lumina of the pores.  The  

platelet response to activation is comparable to the physiological reaction of circulating platelet at  

a disturbed endothelium and/or subendothelium.  The RTH-II assay may therefore reliably screen the 
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multiple function of platelet in hemostasis and thrombosis.  The upper and lower limits of the reference 

range of platelet retention index in citrated whole blood allow measuring platelet hyper- and  

hypo-activation which is in contrast to the previous study of Krischek [2000].  The clinical significance of 

RTH-II was further promoted by several observations e.g., the remarkable negative correlation of platelet  

retention index with platelet count suggests that the activity of platelet increases in association with the  

decrease of their count in healthy individuals. 

C.) The specificity and reliability of RTH-II was further established by its ability to demonstrate  

accurately and precisely the inhibited function of platelet in the fixed medium of Eightcheck control 

(platelet retention index= 2.6%; SD=2.1) compared with the biovariability of platelet activity in citrated 

whole blood and compatibly with the morphological control.  Platelet in Eightcheck control were not  

activated (spherical) during the passage of the filter and demonstrated no real adhesion on it but only 

occasional agglutinates with selective contacts to the filter.  Whilst RTH studies delivered unexplainably 

high platelet retention index levels for fixed platelet control (>21%; Krischek 2000).  The comparability 

between the retention values of the blood cells in citrated whole blood and that in the fixed medium of 

Eightcheck control enhances linking the retention of these cells in citrated whole blood mainly to their 

sizes. 

D.) The determinations of the retention indices of platelet size parameters (especially for large 

platelets) expand the significance of RTH-II assay to the platelet size distribution and show platelet  

functional heterogeneity.  This was evident by e.g., demonstrating the lower activity of large platelet  

compared with normal sized platelet in normal individuals and their lower response to hyperactivation. 

E.) The determinations of the retention indices of leucocytes (WBC-RI) and erythrocytes  

(RBC-RI) could further extend the significance of RTH-II to the other blood cells which showed some  

specific signs of activation and interaction with the filter.  This may implicate additional hypothetic uses 

of RTH-II assay such as to find out erythrocyte rigidity and deformability. 

The reliability of RTH-II in researches was established by its applicability on the different materials  

(citrated whole blood, citrated platelet rich plasma, gel-filtered platelet, Eightcheck control, and washed 

and unwashed prefixed citrated platelet rich plasma) used in our investigations for validating the  

reliability and specificity of RTH-II with evident compatibility with the multiple morphological control.  For 

example, the RTH-II assay was able to demonstrate the influence of the partial absence of the normal 

medium of platelets on their predisposition to hyperactivation and stickiness (e.g., forming aggregates 

and agglutinates) which was basically much less compensated in fixed medium than in citrated whole 

blood.  This was proved by the ca. 2 folds increase of platelet retention index levels in gel-filtered  

platelets compared with citrated whole blood (57.4% vs. 30.5%) and the basically higher increase of  

platelet retention index in the washed prefixed platelet standards up to 5 folds compared with the  

unwashed ones (5.7% vs. 33.5%).  The RTH-II played essential role in identifying and characterizing 

different new phenomena of platelet function (e.g., platelet particles, platelet response to Ca2+ with  

hirudin) besides providing specific beneficial insights for the development of our standards of washed and 

unwashed prefixed platelet. 

The development of the reliability of RTH-II compared with RTH was further associated with substantial 

improvement in the excellency and the convenience of the test.  No preparation for plasma or any  
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reagent is required and no additives are used in RTH-II.  The blood amount required for the test was  

reduced from >1.5 mL to 0.5 mL.  The turnaround time was shortened extensively up to 89% (35-53 min 

vs. 5.5-6 min).  The assay became significantly simpler and less labor intensive.  It is performed with 

greater ease, less equipment (only the standard disposable RTH tube is required with a convenient  

centrifuge) and higher cost effectiveness.  In addition, setting a quality assurance protocol for RTH-II  

assay for the first time not only enhances the reliability of RTH-II measurements and interpretation but 

also attains the satisfaction of its use in the clinical laboratory.  Our suggestion to automate RTH-II by 

using conventional electronic cell counter allows on-line reporting, interpretation and quality assurance 

which enhance further the convenience and cost effectiveness as well as the reliability and quality  

assurance of RTH-II measurements with greater satisfaction. 

Despite previous “adhesion and retention” tests proved to be meaningful, but they could not be  

established in clinical practice because they are, in contrast to RTH-II, poorly standardized and require 

experienced personnel and additional equipments (e.g., Hellem-II 1970, O´Brien 1987).  Nevertheless, the 

perspective for setting further improvement in the reliability of RTH-II assay could be seen in view of  

several observations in our study: e.g.: a.) the negative correlation of the weight of RTH filter with the 

weight retention index (wRI) and with the platelet retention index, b.) the occasional disruption of  

platelet after the passage of the RTH filter, and c.) the delicacy of mixing the activated platelet in blood 

after the passage of the filter that represents the main drawback of RTH-II application in clinical practice 

since it requires experienced personnel.  This might be overcome e.g., by developing more standardized 

filter system. 

In regard of the absence of simple and standardized assay for screening platelet function reliably  

[Breddine 2003, Tsiara 2003, Tan 2005, and Reininger 2006], the competency of RTH-II assay is evident 

as a simple and rapid assay for screening PLT function reliably and cost effectively.  The essential  

advantages of RTH-II assay urge for further serious investigations addressing its clinical significance  

including mainly the response of platelet retention index to pathological variation and the associated 

implications on platelet size distribution.  The significance of the retention indices of leucocytes and 

erythrocytes in the interpretation and the quality assurance of RTH-II measurements is established, but 

their clinical significance requires further basic researches.  Thus, RTH-II assay can be used as a  

useful test in researches of platelet function as well as in clinical practice as an ideal adjunctive to  

refine the tools for the assessment of platelet response and activity in physiology, pathophysiology, and 

drug monitoring.  Several studies on RTH referred to some beneficial uses for screening platelet  

function.  But the unreliability and variability of RTH assay disrupt the reproducibility of data.  The recent 

introduction of RTH-II by our institute as a standardized, reliable and simple assay implicating reliable 

reference range and evidence-based specificity delivers the right platform for further clinical studies.  As 

first example for this is the recent study of Klinkhardt [2006] on using RTH-II for monitoring  

“antiplatelet” therapy.  The study concluded that RTH-II may be “a simple and easy for monitoring  

effects on P2Y(12)-inhibitors on platelet degranulation”.  The reliability and the convenience of RTH-II 

promise major improvement in the medical care delivered for the satisfaction of the patients in  

the clinical practice as well as in the point of care systems. 
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1-2. Zusammenfassung 

Obwohl die Aktivierung der Thrombozyten („PLT“) eine entscheidende Rolle spielt in der Physiologie und 

Pathophysiologie der Thrombose und Hämostase, sind Thrombozytenfunktionsteste nicht gut standardi-

siert. So fehlen einfache und zuverlässige Screening-Tests [Breddine 2003, Tsiara 2003, and Reininger 

2006]. Der Retentionstest Homburg (RTH) wurde entwickelt im Institut für Klinische Hämostaseologie 

und Transfusionsmedizin des Universitätsklinikums Homburg im Jahr 1993 als ein Versuch die Thrombo-

zytenfunktion orientierend, auf einfache und kosteneffektive Weise sowie zuverlässig zu überprüfen. Der 

Test basierte initial auf der Retention von Thrombozyten auf standardisierter körperfremder „textured“ 

Oberfläche (Filter hergestellt aus Polyurethan fixiert in Eppendorf Hütchen: „RTH-Hütchen") unter definier-

ten Zentrifugations-bedingungen und Verwendung von citrat-antikoaguliertem Plättchen-reichem Plasma. 

Der Prozentsatz der sich aus der der Differenz der Zellzahl der retinierten Thrombozyten zur Plättchen-

zahl vor Passage des Filtersystems ergibt ist definiert als Thrombozyten-Retentionsindex („PLT-RI“). 

Hohe Werte sollten als Hinweis für Thrombozyten „Klebrigkeit“ interpretiert werden wohingegen niedrige 

Werte auf einen Thrombozyten-Funktionsverlust Hinweise geben sollten.  

Seit den anfänglichen Entwicklungsschritten zum RTH Test, wurden variable Vorgehensweisen/  

Verfahren angewandt um den Test durchzuführen. Zu keinem Zeitpunkt konnte eine Standardisierung 

herbeigeführt werden [Breddine 2003, Reininger 2006].  Der RTH Test lieferte eine inakzeptable Reprodu-

zierbarkeit und schwerwiegende Probleme bei der Reliabilität. Die Genauigkeit des Testverfahrens wurde 

zu keinem Zeitpunkt bei Gesunden evaluiert und die Spezifität des Testsystems für Thrombozyten konn-

te nicht adäquat bewiesen werden, was verständlicherweise Interpretationsschwierigkeiten nach sich 

zog. Einige Untersuchungen konzentrierten sich auf die Erstellung von Referenzwerten in citrat-

antikoaguliertem Plättchenreichem Plasma für Thrombozyten-Retentionsindex; doch waren die Ergeb-

nisse unzuverlässig. So waren auch die Daten, die aus einem Multizenter-Projekt“ gewonnen wurden 

letztlich inakzeptabel [König 2002].  Die schwerwiegenden Mängel/Probleme beim RTH Test werfen 

Schatten auf die in früheren Zeiten generierten Daten, respektive durchgeführten Studien, die einer  

möglichen Einführung in die Praxis entgegenstanden. Zusätzlich stellten die integrierten komplexen  

Vorgehensweisen, wie z.B. die präanalytische Aufbereitung des Blutes und Präparationen zusätzlicher 

Reagenzien die Signifikanz der Analyse als simpler und kosteneffektiver Test in Frage. Einige Untersu-

chungen wurden durchgeführt zur Überprüfung der Einflussnahme von Thrombozyten-Agonisten/ Antago-

nisten auf den Thrombozyten-Retentionsindex, die im Nachhinein als sehr hypothetisch angesehen  

werden müssen. Wenige Studien unterstrichen die Athrombogenität des Filtersystems, obwohl keine 

hinreichende Evidenz hergestellt werden konnte und auch unsere Erkenntnisse hinweisend waren, dass 

das Filtersystem nicht als völlig athrombogen angesehen werden darf. Trotzdem sollte das Testverfahren 

aufgrund der anfänglich deklarierten Athrombogenität des Filter-systems und auch relativen Eignung für 

das Routinelabor – im Vergleich mit anderen Retentionstests – als viel versprechend angesehen werden 

dürfen. Ziele unserer Untersuchungen waren daher: a.) eine radikale Validierung und Verbesserung des 

RTH-Verfahrens, b.) Entwicklung und Standardisierung eines einfachen und zuverlässigen Testes,  

c.) Gewinnung einer Evidenz-basierten Einsicht in die Spezifität des Verfahrens als Thrombozyten-

Funktionstest, und d.) Definition verlässlicher Referenzwerte. 
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Die Auswertung und Entwicklung des Verfahrens zum RTH führten zu zahlreichen Modifikationen und 

fundamentalen Verbesserungen bzgl. Reliabilität, Eignung und Signifikanz des Testsystems. Diese  

implizierten die Definition eines neuen, standardisierten Tests („RTH-II“) unter Verwendung von citratanti-

koaguliertem Vollblut. Mittels unterschiedlicher Sysmex-Zellzählsysteme und unter morphologischer 

Kontrolle wurden stufenweise Untersuchungen zur methodischen Verbesserung, Reliabilität, und  

Standardisierbarkeit des Homburger Retentionstestes vorgenommen. Diese führten zu elementaren  

Entwicklungen von RTH, die in RTH-II Berücksichtigung fanden: 

(1) Citratantikoaguliertes Vollblut wurde als Ausgangsmaterial verwendet und für die klinische Routine 

empfohlen anstelle von citrat-antikoaguliertem Plättchenreichem Plasma (RTH). Dies wurde für essentiell 

erachtet um die Variabilität der Thrombozyten-Gradienten im Plasma – nach Präparation mittels Zentrifu-

gation – auszuschließen. Zusätzlich reflektiert Vollblut eher einen physiologischen Zustand im Vergleich 

zu Plasma und reduziert möglicher Fehler die auf die Thrombozyten „Überaktivierung“ (induziert durch 

z.B. ungeeignete Durchmichungsvorgänge) zurückführbar sind. (2) Die unterschiedlichen Mengen an 

verwendetem Testmaterial (pro Bestimmung), die im RTH Anwendung fanden wurden standardisiert auf 

500 µL im RTH-II. (3) Das Hinzufügen von Kalzium-Hirudin, das im RTH Als so genanntes „reaktivieren-

des Reagenz“ Verwendung fand, wurde als nicht gerechtfertigt erachtet. Auch war die Thrombozyten-

Reaktion hierauf nicht standardisierbar, implausibel (Konversion der „Positiv-Werte“ zu „Negativ-Werten) 

variierte intraindividuell. (4) Auf eine Inkubationszeit der verwendeten Materialien im RTH Hütchen  

(3-10 Min) wurde verzichtet um eine mögliche Thrombozyten-Aktivierung durch lange Kontaktzeiten mit 

dem Filtersystem und mögliche hierdurch zusätzliche getriggerte inter-individuelle Differenzen zu  

vermeiden. (5) Die Messungen der Plättchen-Zahl vor der Filterpassage wurden im Sammelröhrchen und 

nicht im RTH-Hütchen nach dem Inkubationsschritt vorgenommen. Die den RTH-Filter passierenden 

Menge an Testmaterial wurde standardisiert (500 µL) auch im Hinblick auf die Variabilität der von den 

unterschiedlichen Zellzähl-systemen aspirierten Proben (100-400 µL). Auch war hinreichen Material für 

Doppelbestimmungen hiermit gegeben. Die Verwendung eines Rotators sicherte weittestmögliche  

Homogenität des Untersuchungsmaterials und vermied Fehlbestimmungen, die sich aus einer variablen 

Sedimentation zellulärer Blutbestandteile in RTH-Hütchen hätten ergeben können. (6) Die extrem variab-

len Zentrifugationsbedingungen, die im RTH Anwendung fanden (79-160 g/ 5-16 min), wurden standardi-

siert auf 110 g/ 5 Min was eine akzeptable Thrombozyten Verteilung im Filtersystem sowie zuverlässige 

Messungen erlaubt. Darüber hinaus wurde in einigen zurückliegenden Untersuchungen mit dem RTH die 

Zentrifugationsmodalität nicht hinreichend spezifiziert. (7) Im RTH wurde die Plättchen-Zahl nach Filter-

passage nach einer Durchmischung (3 Min) mittels „Vortex“ bestimmt. Eine standardisierter Vortex-

Methode (<3 Sek.) fand Anwendung im RTH-II im Hinblick auf eine Minimierung von induzierten Throm-

bozyten-Aggregaten/Agglutinaten/Schädigungen, die die Reliabilität der Messungen in Frage stellen 

würden. (8) Die Plättchen-Zählung nach der Filterpassage sollte binnen 2 Minuten erfolgen um die  

Genauigkeit mittels weittestmöglicher Homogenität zu gewährleisten und Fehlbestimmungen zu minimie-

ren die auf „Thrombozyten Partikel-Phänomene“ zurückzuführen sind. (9) Die Messungen sollten im Hin-

blick auf eine verbesserte Reliabilität jeweils als Doppelbestimmung durchgeführt werden. Das Ausmaß 

der Variation zwischen I. und II. Bestimmung ist auch ein Indikator für evtl. Fehler herangezogen werden 

(provozierbar z.B. durch inadäquate oder ungeeignete Durchmischung des Materials). Für jede Einzel-
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messung der Doppelbestimmungen sowie der Serienmessungen solten neue Pipettenspitzen verwendet 

werden auch im Hinblick auf eine mögliche durch die Mehrfach-verwendung derselben Spitzen provozier-

bare Impräzision (wurde in den RTH Studien ignoriert). (10) Die Formel, die zur Berechnung des große 

Thrombozyten Retentionsindex („PLCR-RI“) Verwendung fand wurde korrigiert. Anstelle von Prozentzah-

len der großen Thrombozyten (%) wurden die entsprechenden absoluten Zahlen angewandt. Die so  

berechneten Referenzwerte und ihre Korrelation mit den anderen Retentionsindices waren signifikant der 

alten Berechnungsgrundlage überlegen (Verwendung der „alten Formel“. Diese Fehler stellen auch die 

Reliabilität vorausgegangener Studien in Frage. (11) Zusätzliche, neue Retentionswerte (RIs) für Leuko-

zyten (WBC-RI), Erythrozyten (RBC-RI) und Thrombozyten-Größe-Parameter („Platelet Derived Width“: 

“PDW-RI”, und „Mean Platelet Volume“: „MPV-RI“) wurden erstmalig in einem Retentionstest-System 

definiert. Die Definition dieser Retentionsindices und große Thrombozyten Retentionsindex mit ihrer  

Korrelationen mit Thrombozyten-Retentionsindex scheint wesentlich für die: a.) Erkennungsmöglichkeit 

von Fehlern, und Ursachen für eine Variabilität im RTH. b.) Definition/ Validierung notwendiger Modifikati-

onen. c.) Auch wird das Verständnis in die Interpretation von Genauigkeit, Spezifität und Präzision des 

Testssystems durch die (Mit-) Berücksichtigung dieser Variablen vertieft. d.) Hierauf aufbauend wurde 

erstmalig ein SchlüsselProtokoll zur Interpretation und Qualitätssicherung der Messungen im RTH-II 

erstellt.  (12) Retentions-Werte für das Gewicht des retinierten Materials („wRI“: Gewicht-

Retentionsindex) wurden erstmalig erstellt. Dies schien uns sowohl bedeutsam für die Standardisierung 

und Validierung der Zentrifugationsbedingungen wie auch die Qualitätssicherung der Integrität und Relia-

bilität des RTH-Filter Systems.  (13) Thrombozyten-Aktivierungs-Mechanismen („Thrombozyten Partikel-

Phänomenen“) wurden als Hauptquelle von Messfehlern identifiziert. Scherstress-bedingte Aktivierung 

von Thrombozyten, wie sie bei der Filterpassage stattfindet wird potenziert durch ungeeignete Vortex-

Modalität im RTH und führt zu Aggregaten/Agglutinaten („Thrombozyten Partikel“) und Zelltrümmern. 

Diese Partikel werden von Zellzähl-Geräten falsch interpretiert als große Thrombozyten, Erythrozyten, 

und/oder Leukozyten. Die Folgen hiervon sind: (a) ein proportional falscher Abfall der Retentionswerte von 

Blutzellen, (b) eine falsche „Shift“ nach links (Reduktion) bzgl. der Retentionswerte der Thrombozyten-

Größe, (c) ein falscher relevanter Anstieg der Thrombozyten-Retentionsindex Werte. Gelegentlich kann 

eine Hyperaktivität von Thrombozyten bei der Zellzahlbestimmung vor Filterpassage durch ungeeignetes 

Handling der Blutprobe zu falschen/ inversen Ergebnissen führen. Eine Thrombozyten-Überaktivierung 

führt auch zu so genannter Rosetten-bildung, assoziiert mit einem Plättchen-Zahl-Abfall. Die Identifikati-

on von Thrombozyten Partikel-Phänomenen und Erfassung weiterer Retentionswerte (RIs) war entschei-

dend für die Definition von RTH Fehlern und notwendige Modifikationen. Die Korrelation zwischen Throm-

bozyten-Retentionsindex und anderen Retentionsindices (mit Ausnahme von große Thrombozyten  

Retentionsindex) konvertiert von positiven Modells zu negativen durch das Auftreten von Thrombozyten 

Partikel nach dem Filterpassage. Obwohl RTH-II weitestgehend das Auftreten dieser Phänomene  

reduziert, so eine Elimination nicht vollständig garantiert werden. Das Verständnis der mit den o.g.  

Phänomenen verknüpften Implikationen ist deshalb notwendig für richtige Interpretation und Qualitäts-

sicherung der RTH-II Messungen. 14) Die Raumtemperatur wurde als „Standard“ für die Durchführung des 

RTH-II definiert.  (15) Die Zeit für die Durchführung des Testes wurde standardisiert auf <120 Minuten 

(Zeitfenster nach der Blutentnahme), was einer verbesserten Reliabilität zugute kommt. Ein Überschrei-



ZUSAMMENFASSUNG/ Ch 1-2 
 

 10 

ten der Zeitlimits (bis 180 Min) – wie im RTH praktiziert – ist assoziierbar mit deutlich reduzierten Reten-

tionswerten (PLT-RI). 

Unter Zuhilfenahme morphologischer Kontrollen (vor/nach Filterpassage) wurden Untersuchungen zur 

Validierung von Präzision, Spezifität und Genauigkeit durchgeführt: (A) Evaluierung der Präzision in Serie 

in citratantikoaguliertem Vollblut (13 Serien; n=10) und Eightcheck Control (von Sysmex: 3 Serien) sowie 

von Tag zu Tag in Eightcheck Control. Phasen-kontrastmikroskopische Untersuchungen wurden als  

Kontrolle hierzu durchgeführt. (B) Ausschluss von filterbezogenen Effekten. (C) Durchführung des RTH-II 

mittels isolierter (gel-filtrierter) Plättchen im Vergleich mit Citratblut. Thrombozyten-Ausbreitung wurde 

als Kontrolle benutzt. (D) Validierung eines neu entwickelten Standards von gewaschenen und ungewa-

schenen fixierten Thrombozyten unter Kontrolle von Phasenkontrast-Mikroskopie. (E) Morphologische 

Charakterisierung der Interaktion von Thrombozyten und Blutzellen mit dem Filtersystem. Ultradünne 

Segmente des Filters wurden nach der Blutpassage fixiert und anschließend mittels Phasenkontrast-

mirkroskopie und Screening- und Transmissionselektronenmikroskopie untersucht. (F) Einführung von 

Referenzwerten für die Retentionsindices mittels citratantikoaguliertem Vollblut und Eightcheck Control. 

Die Genauigkeit wurde kontrolliert mittels Phasenkontrast-mikroskopie. (G) Quantitäts-bestimmungen/ 

Validierung des Filtersystems neben der Bestimmung der Menge des retinierten Materials. Die Auswer-

tung wurde vorgenommen mit citratantikoaguliertem Vollblut und Eightcheck Control. Beide fanden  

Anwendung in den Präzision- und Referenzwert- Studien. 

Diese Untersuchungen bewiesen die Genauigkeit und akzeptable Präzision des RTH-II Testes und liefer-

ten eine Evidenz basierter Interpretation der Spezifität. Die Genauigkeit der Thrombozyten-Retention 

(PLT-RI) wurde erstmalig bei Gesunden untersucht. Die extrem falsch erhöhten Werte (ca. 2.2 fache) und 

ihr zeitabhängiger Anstieg (bis zu 61%) wurde korrigiert. Die inakzeptable hohe Variation der Messungen 

in Serie für Thrombozyten-Retentionsindex wurde reduziert um minimal 80% im RTH-II, welcher präzise 

Werte lieferte („Standard Abweichung“: SD= 2.9). Die Zuverlässigkeit der RTH-II Messungen ist abhängig 

von präzisen Plättchen-Zahlen und einer biologischen Variabilität wohingegen die Fehler im RTH (z.B. 

„Thrombozyten Partikel“) die Variabilität steigern und zu inakzeptablen, falschen Resultaten führen. Die 

Verwendung von modernen Zellzählgeräten führt zu eine Verbesserung der Präzision im Ggs. zur Genau-

igkeit.  Die Präzision von Tag zu Tag, die erstmalig über einen längeren Zeitraum (10 Tage) mittels 

Eightcheck Control evaluiert wurde ergab ebenfalls eine akzeptable niedrige Thrombozyten-Retention 

Variation (SD <2.9; Krischek 2000).  

Im Jahr 2004 konnte RTH-II etabliert werden. Erstmalig wurden zuverlässige Referenzwerte für die 

Thrombozyten-Retentionsindex in Citratblut mit akzeptabler Biovariabilität definiert (Mittel= 25.2%; 

SD=6.25). Der Einfluss verschiedener Messarten auf die Genauheit des Ergebnisses wurde untersucht. 

Neben Thrombozyten-Retentionsindex konnte auch die Präzision und Genauigkeit für die anderen  

Retentionsindices wesentlich korrigiert werden. Erstmalig wurden auch zuverlässige Referenzwerte für 

die anderen Retentionsindices definiert. Die Genauigkeit von Retentionsindices der Thrombozyten,  

Leukozyten und Erythrozyten wurden bewiesen und charakterisiert mittels Phasenkontrast- und  

Elektronen-Mikroskopie. Weiterhin konnte bewiesen werden, dass:  

A.) Der RTH-Filter relativ athrombogen ist im Ggs. zu den anderen Filter-Systemen, die bei anderen 

Retentionstest-Systemen bisher zum Einsatz kamen (z.B. Hellem-Test 1970). 
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B.) Unter standardisierten Blutfluss-Bedingungen im RTH-II, die Retentionswerte von Leukozyten 

(WBC-RI=4.2%) und Erythroyzten (RBC-RI=-3.6%) vorzugsweise abhängig sind von deren Größe,  

welche im Vergleich zur Filter-Porengröße höher ist. Hingegen werden Thrombozyten, die kleiner sind 

als die Poren der Filter, spezifisch durch das Filtersystem reteniert. Ihre Retentionswerte liegen deutlich 

höher, als die der Blutzellen. Thrombozyten-Retentionsindex reflektiert direkt die Antwort der Thrombozy-

ten auf die Aktivierung durch Scherstress – während der Filterpassage. Die Thrombozyten-Aaktivierung 

findet ihren Ausdruck im Formwechsel mit extremer Adhärenz und Ausbreitung auf dem Filter. Darüber 

hinaus findet eine bemerkenswerte Degranulation mit exzessiver Bildung von Aggregaten statt (speziell 

im oberen Teil des Filtersystems). Die Aggregate verbinden sich mit gegenüberliegender Polyurethan-

Oberfläche (zwischengeschalteten Mikroporen) besonders im oberen Teil des Filters. Darüber hinaus 

kann es gelegentlich auch zur Bildung freier Thrombozyten-Aggregate in den Filter-Lummen kommen. 

Dieser interaktive Prozess ist vergleichbar mit der an Gefäßwandläsionen (Endothel bzw. Subendothel) 

stattfindenden Interaktion der zirkulierenden Thrombozyten. Der RTH-II Test ist daher ein Testsystem zu 

einer zuverlässigen, orientierenden Überprüfung vielfältiger Thrombozyten-Funktionen. Die oberen und 

unteren Grenzwerte gestatten nun die Messung von Hyper- und Hypo-Aktivität der Thrombozyten was im 

krassen Gegensatz steht zu den Ergebnissen von Krischek 2000. Unterschiedliche Beobachtungen 

sprechen für die klinische Signifikanz des RTH-II Testes, z.B. lässt die bemerkenswert negative Korrela-

tion des Thrombozyten-Retentionsindex mit der Plättchen-Zahl vermuten, dass die Thrombozyten  

Aktivität ansteigt im Verhältnis zur Abnahme ihrer Zahl bei gesunden Individuen. 

C.) Die Spezifität und die zuverlässigkeit des RTH-II Testes wurde weiter etabliert durch die Möglich-

keit die gehemmte Funktion der fixierten Thrombozyten in Eightcheck Control (PLT-RI= 2.6%; SD=2.1) 

verglichen mit der Biovariabilität der Thrombozyten-Aktivität in citratantikoaguliertem Vollblut zuverlässig 

und mit bewiesener Kompatibilität zu morphologischen Kontrollen zu bestimmen. Thrombozyten in 

Eightcheck Control während der Filterpassage werden nicht aktiviert und zeigen keine richtige Anhaftung 

am Filter. Lediglich selektive Kontakte von Thrombozyten Agglutinaten mit dem Filtersystem finden statt. 

Hingegen beobachtet man in RTH Studien unerklärbar hohe Thrombozyten-Retentionsindex Werte in der 

Kontrolle fixierte Plättchen (>21%; Krischek 2005). Die Vergleichbarkeit zwischen den Retentionswerten 

der Blutzellen in citratantikoaguliertem Vollblut und in dem fixierten Eightcheck Control Mediums spricht 

dafür, dass die Retention dieser Zellen in citratantikoaguliertem Vollblut hauptsächlich im Verhältnis 

steht zu ihrer Größe. 

D.) Die Bestimmungen von den Retentionsindices der Thrombozyten-Größe-Parameter (insbesonde-

re von große Thrombozyten „PLCR-RI“ führten zu weiterer Signifikanz des RTH-II und verweisen auf die 

zusätzliche Bedeutung der Thrombozyten-Größe und Variabilität. Dies wurde bewiesen durch z.B. eine 

geringere Thrombozyten-Aktivierung im Falle großer Thrombozyten im Vergleich zu Normalkonfigurierten 

bei Gesunden wie auch deren geringere Beeinflussbarkeit durch Aktivierung. 

E.) Die Bestimmungen von Retentionsindices der Leukozyten (WBC-RI) und Erythrozyten  

(RBC-RI) könnten ebenfalls die Signifikanz von RTH II auf andere Blutzellen ausweiten, da sie einige 

spezifische Alktivierungsprozesse und Interaktionen mit dem Filtersystem anzeigen. Dieser Aspekt 

könnte im Hinblick auf die Möglichkeit einer Überprüfung von Erythrozyten-Rigidität bzw. -Deformabilität 

bedeutsam werden. 
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Die Zuverlässigkeit des RTH-II in der Forschung wurde etabliert durch die Anwendbarkeit auf unterschied-

lichen Materialien (citratantikoaguliertem Vollblut und Plättchenreichem Plasma, isolierter „gel-filtrierter“ 

Plättchen, Eightcheck Control, gewaschenes und ungewaschenes fixiertes citratanti-koaguliertem Plätt-

chenreichem Plasma), die in die Validierung des RTH-II verwendet wurden, mit bewiesener Kompatibilität 

zur multiplen morphologischen Kontrollen. So beispielsweise, gelang es mittels RTH-II Analyse den Ein-

fluss partiellen Entzuges des normalen Thrombozyten-Medium zu zeigen bezüglich ihrer Prädisposition 

zur Thrombozyten-Hyper- Aktivität und -Klebrigkeit (z.B. Bildung von Aggregaten/Agglutinaten), welche 

im fixierten Medium (Eightcheck Control) wesentlich weniger kompensiert wird, als in citratantikoagulier-

tem Vollblut. Dies wurde bewiesen durch den zweifachen Anstieg des Thrombozyten-Retentionsindex 

Wertes bei isolierter Plättchen versus citratanti-koaguliertem Vollblut (60.6% vs. 32.1%) und dem  

wesentlich höheren Anstieg des Thrombozyten-Retentionsindex (>5 fache) bei den Standards von fixier-

ten, gewaschenen versus ungewaschenen Thrombozyten (5.7% vs. 30.5%). Der RTH-II dient der Identifi-

zierung und Charakterisierung neuer Thrombozyten-Funktions-Phänomene (z.B. „Thrombozyten  

Partikel“, Thrombozyten-Antwort auf Kalzium-Hirudin), und liefert spezifische Einsicht in die Entwicklung  

unseres Standards für gewaschene und ungewaschene Thrombozyten. 

Die Verbesserung der Reliabilität im RTH-II – verglichen mit RTH – war auch assoziiert mit einer Verbes-

serung der „Excellency“ und Eignung des Testes. Keine Vorbereitung von Plasma, oder das Hinzufügen 

von Reagenzien ist notwendig. Die erforderliche Blutmenge wurde reduziert von >1.5 mL auf 0.5 mL. Die 

Versuchszeit (insges.) konnte deutlich verkürzt werden – bis zu ca. 90% (35-53 Min vs. 5.5-6 Min).  

Der Versuch wurde signifikant vereinfacht und ist nun weniger laborintensiv. Er kann einfach durchgeführt 

werden erfordert keinerlei „technische Voraussetzungen“ (nur RTH-Hütchen mit Zentrifuge), und ist mehr 

kosteneffektiv. Außerdem wurde durch das erstmalig etablierte Qualitäts-sicherungsprotokoll nicht nur 

die Verlässlichkeit der RTH-II Messungen und Interpretation verbessert, sondern damit auch die Voraus-

setzungen für die Implementierung im klinischen Routineeinsatz geschaffen.  Unser Vorschlag den  

RTH-II zu automatisieren, unter Zuhilfenahme konventioneller automatischer Zellzählsysteme, sollte eine 

Online-Dokumentation, Interpretation und Qualitätssicherung ermöglichen. Dies verstärkt die Eignung 

und Kosteneffektivität wie auch die Zuverlässigkeit und Qualitätssicherung von RTH-II Messungen.  

Obwohl sich bisher angewandte Adhäsions- und Retentionstests als relevant erwiesen haben, konnten 

sie in der klinischen Praxis nicht angewendet werden, weil sie – im Ggs. zum RTH-II - ungenügend  

standardisiert waren und zusätzliche technische Erfahrung und Einrichtungen benötigen (z.B. Hellem-II 

1970, O´Brien 1987). Trotz der Verbesserungen der Reliabiltiät des RTH II sind weitere Verbesserungen 

im Hinblick auf folgende Beobachtungen möglich: a.) die negative Korrelation des Filtergewichts mit den 

Gewicht-Retentionsindex (wRI) und Thrombozyten-Retentionsindex, b.) die gelegentliche Zerstörung von 

Thrombozyten nach der Filterpassage, und c.) die Problematik der Durchmischung der durch Filterpas-

sage voraktivierten Thrombozyten mittels geeigneter Vortex-Methode, was ein erfahrenes Laborpersonal 

benötigt. Solche Verbesserungen mögen nicht zuletzt auch durch ein verbessertes, mehr standardisier-

tes Filtersystem ermöglicht werden. 

Im Hinblick auf das Fehlen eines einfachen, standardisierten Screening-Testes zur Überprüfung der 

Thrombozyten-Funktion [Breddine 2003, Tsiara 2003, Tan 2005, and Reininger 2006], ist mit der  

Etablierung von RTH-II die Möglichkeit eröffnet auf einfache, zuverlässige Art und Weise, kosteneffektiv 
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und schnell eine Screeninguntersuchung durchzuführen. Die wesentlichen Vorteile von RTH-II ermutigen 

zu weiteren Untersuchungen mit klinischer Fragestellung wie z.B. der Evaluation von Thrombozyten-

Retentionsindex unter pathologischen Bedingungen und die damit verbundene Bedeutung der Thrombo-

zyten-Größenverteilung. Die Bedeutung der Retentionsindices der Leukozyten und Erythrozyten ist we-

sentlich für die Beurteilung und die Qualitätssicherung der Testergebnisse, ihre klinische Bedeutung 

erfordert jedoch auch prospektiv eine Konsolidierung. Darüber hinaus kann der RTH-II Test in der  

Forschung und Klinik hilfreich sein bei der Beurteilung der Thrombozyten-Funktion nicht nur unter  

physiologischen Bedingungen, sondern auch im Hinblick auf die Differenzierung pathologischer  

Gegebenheiten, bzw. im Zusammenhang mit Medikamenten-Interaktionen. Einige Studien mit RTH  

spekulierten mit positiven Effekten wobei die hohe Variabilität der Testergebnisse und auch die fehlende 

Zuverlässigkeit von RTH die Reproduzierbarkeit der Daten zunichte machten. Die Einführung von RTH-II 

durch unser Institut liefert eine adäquate Plattform für weitere prospektive Untersuchungen. Als erstes 

Beispiel hierfür kann die Untersuchung von Klinkhardt (2006) aufgeführt werden, die die Erfassung von 

Patienten mit Thrombozytenfunktionsdefekten mittels RTH-II ermöglicht. So gesehen könnte mittels 

RTH-II auch die Erfassung von Thrombozyten-Funktions-Einschränkungen ermöglicht werden. Reliabilität 

und Eignung des standardisierten RTH-II Testes geben Anlass zu Verbesserungen in der medizinischen 

Betreuung von Patienten in der klinischen Routine, wie auch als „Point-of-care“ System. 
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II INTRODUCTION 
2-1. History of platelet adhesion, aggregation and retention 

As early as 1882, Bizzozero described the platelets (PLT) as the “third morphological blood component” 

and their role in hemostasis and thrombosis.  He could have microscopically insight into the PLT and 

demonstrated pictures of their thrombotic complications.  In 1960, Hellem could demonstrate the  

adhesion of PLT in vitro by pushing non anticoagulated whole blood through a definite foreign surface of 

polyvinylchloride column filled with glass beads under well defined flow conditions (flow rate: 5.7 mL/min; 

column width 3 mm; weight of glass beads 1.3 g).  It was hypothesized that PLT adhesion may be  

interpreted as the first step of thrombus formation induced by the cellular expression of ADP by PLT 

which get in contact with leisured endothelial vessel walls [Käser-Glanzmann 1962 and Breddin 1968].  

This phenomenon was also related to shear stress induced activation of PLT which is more significant in 

arterial than in venous thrombotic diseases.  In contrast to the dynamic approach of Hellem, the PLT 

adherence on siliconized Bürcker counting chambers was measured in static approach [Breddin 1964].  

The modified method of Hellem [Hellem II, 1970] using citrated whole blood (cWB) was, however, easier 

to practice and less time intensive.  Values above 38% were defined as "hyperadhesion of PLT". 

In 1962, ADP induced aggregation of PLT could be demonstrated in citrated platelet rich plasma (cPRP) 

[Born 1962].  This kind of PLT aggregation test (PAT I; Breddin 1965), defining different grades of PLT 

activation microscopically, was modified later by Breddin in 1976 (PAT III) using cPRP for the perform-

ance of a photometrical assay [Breddin 1977].  Spontaneous PLT aggregation (PAT III) was recorded on 

a universal aggregometer (Braun, Melsungen) using an Eppendorf photometer "1001" by Netheler & Hinz, 

Hamburg.  Angle α (maximal aggregation velocity) >40 degrees was interpreted as “hyperaggregation of 

PLT” [Breddin 1977, 1986].  Platelet aggregation due to Ca++ dependent processes was also related to 

PLT activation by preanalytical circumstances (e.g., time from withdrawal of blood to the performance of 

the assay) [Breddin 1974, Bauer 1980].  At least this PLT activation phenomenon did not allow differing 

between PLT adhesion and PLT aggregation.  A vicious circle was hypothesized by which PLT that get 

into contact with foreign surfaces are activated (or even damaged), express bioactive amines, stimulating 

further PLT and leading to aggregation and at least thrombus formation [Mc Pherson 1987].  The role of 

potentially interacting blood components as erythrocytes, leucocytes was postulated [Goldsmith 1971 

and 1975], or at least rather unknown [Joist 1980]. 

In-vitro, PLT aggregation has been studied by monitoring the changes in the optical density of cPRP for 

PAT III according to Breddin 1976 and 1999.  This assay has been routinely used to evaluate hyper-

activation of PLT and can be attributed either to arterial or venous vascular diseases [Heidrich 1980, 

Breddin 1999 (HAPARG study), Schenk 2002, Feinbloom 2005, Phillips 2005, Ginzburg 2006].  The PLT 

aggregation was also attributed to inflammatory and atherosclerotic processes [Breddin 1974, LaRosa 

1998, Ferroni 2003, and Vorchheimer 2006].  An increased PLT aggregation may be interpreted as a 

thrombophilic risk variable as demonstrated for either patients with arterial diseases [HAPARG-study] as 

well as for patients with venous thrombotic diseases.  Beyond it, PAT III has been proved to be of  

predictive value for new vascular occlusions in diabetics [Breddin 1985, 1986 and 1986].  Since the blood 

flow characteristics which might be more or less laminar in arterial vessels are quite different from venous 
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ones, the PLT activation process have to be interpreted differently.  Due to higher shear stress in stenotic 

arterial vessels or even due to vasospasms the PLT are stimulated leading to aggregation which can be 

demonstrated in vitro without the additional apply of agonists e.g. ADP, or collagen [Konstantopoulos 

1995].  After the development of PAT I [Breddin 1965], several approaches were developed to measure 

PLT aggregation other than PAT III e.g., the Wu & Hoak test [Wu 1974, Velaskar 1982] using flow  

cytometric analysis which was of limited value since it was not standardized [Schmitz 1998].  Platelet 

induced thrombin generation is of interest to measure drug effects [Schenk, 1996, 1999 and 2001,  

Van 2005]. 

A series of “filter tests”, modified from the dynamic approach of Hellem 1960 using mainly cPRP, were 

developed to measure the adhesion (retention) of PLT after the passage of unphysiological filter  

systems composed of glass beads, glass wool, plastic surfaces, or extra cellular matrix coated  

surfaces either with or without shear forces e.g., Salzman [1963], Hellem-II [1970], O´Brien [1987].  The 

difference in PLT count before and after the passage of the filter system reflected the retention of PLT 

which was attributed primarily to PLT adhesion.  The microscopic investigation of the filter used by 

Salzman [1963], however, showed extensive PLT aggregates on the glass beads.  It was concluded that 

the PLT retention by such filters is a measure of PLT aggregation and adhesion [Breddin 2003, Kaneko 

2003].  The latest filter test was the retention test of Homburg (RTH) developed in Homburg 1993 

[Krischek 2000].  None of these quantitative or semi-quantitative retention tests was applied in the  

routine clinical laboratory while they could not be standardized [Scharrer 1985, Breddin 2003,  

Tsiara 2003, Tan 2005, and Reininger 2006]. 

 

2-2. Platelets and their crucial role in hemostasis and thrombosis  

The data accumulated by the different PLT function assays and clinical studies proved that PLT are the 

most important group of ”blood cells” in the context of hemostasis [Margaret 2005, Furie 2006].  These 

relatively small discoid cells (0.5-3.0µm) are synthesized in bone marrow and represent a highly  

specialized and matured differentiated form the megakaryocytes [Alan 1994, Frederick 2001].  The PLT 

cytoskeleton is rich in partly polymerized actin filaments (0.55 mmol/L) which form microtubules close to 

the plasma membrane.  Parts of the actin filament connect directly to the PLT membrane protein.   

A second structure is formed by the planar spectrin-based membrane skeleton.  The PLT cytoskeleton 

contributes significantly to the shape changes which are observed after PLT activation and helps the PLT 

to spread over an injured area.  Metabolically, the PLT are active and rich of granules that contain variant 

ingredients (e.g., calcium ions, PLT activors, vasoconstrictor, and proteins involved in coagulation or its 

regulation) but have lost their protein biosynthesis capability.  Energy is generated by glucose degrada-

tion and oxidative phosphorylation and stored in the form of ATP (adenosine tri-phosphate). In resting 

state PLT are not thrombogenic, but after stimulation they become a potent and active player in  

hemostasis.  Activation of PLT plays a crucial role in the pathology and the pathophysiology of thrombo-

sis and hemostasis.  The series of events triggered after PLT activation depends on the applied stimulus.  

Resting PLT transform rapidly from a discoid to spherical shape upon activation via the contractile  

system of their cytoskeleton.  Weak stimulation leads to shape change and mild activation result in PLT 
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spreading, adherence and aggregation.  More intense stimulation trigger the liberation of arachidonate 

and secretion of the contents of PLT granules; part of them are translocated to the plasma membrane 

and serve as cell adhesion receptor e.g., P-selectin.  Compared with the plasmatic coagulation factors, 

the importance of PLT has been increasing in the last decade especially in the primary hemostasis [Jurk 

1995].  For immediate blood coagulation after an injury, the initial reactions are mediated by an interac-

tion of the vessel wall and PLT.  The timing of primary hemostasis in normal individuals is as follows: 

vasoconstriction (immediately), PLT adhesion (seconds), PLT aggregations (minutes) [White 1994, 

Morgenstern 1997, Miller 2001, Breddin 2003, Levi 2005, Jurk 2005 and Furie 2006].  In addition PLT are 

also tightly linked to the immune system; activated PLT secrete several cytokines, growth factors and 

many other proteins or low molecular substances [Wagner 2003, Levi 2005, and Weber 2005].  Also 

other blood cells mediate numerous function in hemostasis from the very simple effect of thickening or 

dilution of the blood and pressing the PLT against the vessel wall by the erythrocytes to the release of 

multiple cytokines and other hormones from the different leukocytes and their exposure to the procoagu-

lant surfaces under certain conditions [Jurk 2005, Afshar 2006 and Furie 2006]. 

The interaction of PLT in the sequence of events leading to coagulation activation could be summarized 

as follows: (1) PLT activated by contact with injured tissues secrete substances such as (ADP),  

serotonin and especially thromboxane which activate other PLT and thus increase the local PLT density 

and activation leading to the constriction of the vessel wall and consequently to reduced diffusion.   

(2) Activated PLT secrete also Ca2+ and several coagulation and fibrinolysis proteins increasing the local 

concentration of the reactant.  (3) Simultaneously, activated PLT become more sticky (e.g., more binding 

of vWF, fibrinogen, collagen of the vessel wall).  This leads to an increase of local concentration, reduced 

diffusion by formation of PLT plug and adherence to vessel wall.  (4) Activated PLT transport negatively 

charged phospholipids to the surface which bind collagen factors leading to local increasing in the  

concentration.  The kinetic conditions are improved and allow thrombin formation by plasmatic  

coagulation proteins.  (5) The formation of thrombin results in: a.) triggering additional activation of PLT, 

b.) catalysis of fibrin crosslinking and inhibition of fibrinolysis, and c.) activation of endothelial cells which 

leads to the amplifications of all previous events.  (6) The formation of an insoluble fibrin network by fibrin 

cross-linking reduces the blood diffusion, protect against inhibitors from blood and stabilize the PLT plug.  

(7) The activated leucocytes invade later the affected area, release cytokines with multiple functions, 

express tissue factor activity and expose procoagulant surface. (8) The fibrinolytic inhibitors prevent an 

early dissolution of the clot.  Inhibitors of the activated coagulation factors prevent a systemic activation 

of coagulation throughout the vasculature.  Thus the clot is stabilized during the healing of the injured 

tissue and thrombus formation is limited [Van 2001, Huntington 2005, Jurk 2005, Levi 2005, Home 2005, 

and Furie 2006]. 

 

2-3. Availability of simple platelet function assays in clinical practice 

Despite the plenty of PLT function assays, there has been always a striking need for a simple, reliable 

and cost effective assay for assessing PLT function and activity in clinical practice [Breddin 2003,  

Reininger 2006].  The old and world-wide used simple test “bleeding time” e.g., according to Ivy or Duke 
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is poorly standardized, temperature dependant, unreliable and lacks specificity and sensitivity.  Actually 

this method is not standardizable.  Simple approaches such as measuring the mean PLT volume (MPV) 

or PLT release products need further evaluation.  The new automated procedure of platelet function  

analyzer (PFA-100) designed to detect vWF deficiency and PLT adhesion and aggregation defects is 

rather convenient but it provides limited measuring range in samples from patients with strongly defective 

primary hemostasis and it is dependant on normal count of platelets and erythrocytes.  The Ultegra-

RPFA is a promising method, but the claim of a correlation between the test results and the clinical out-

comes needs further evaluation.  The cone and plate analyzer (CPA; Diamed Impact) has the advantage 

of being a fully automated rapid system for the point of care testing.  Extensive studies are needed to 

determine the usefulness of this test for evaluation of patient’s diathesis.  The methods measuring  

spontaneous or agonist-induced PLT aggregation deliver reliable results, but they require specialized 

laboratories, experienced personnel, and big amount of the blood (ca. 10 mL) and can not serve as  

a simple approach for screening PLT function cost effectively.  Even these reliable methods are not  

consistently predictive for vascular risk.  A major advance in the assessment of PLT activation was the 

introduction of flow cytometric assays for the receptors involved in adhesion and aggregation.  Flow  

cytometric assays can detect early PLT activation but they are time consuming, need specialized and 

high cost equipment and reagents as well as experienced personnel.  These drawbacks have been  

serious limitations for the wide application in clinical practice.  None of the mentioned analyses can  

provide a practical index of platelet activity that can reliably detect or predict probable vascular risk.  

Actually none of the presently available platelet function tests is well standardized.  So there is much 

space for the improvement of simple, reliable, and cost effective PLT function assay [Breddin 2003, Rand 

2003, Tsiara 2003, Jurk 2005, Haubelt 2005, Levi 2005, Tan 2005, and Reininger 2006].  

 

2-4. Objectives and methodology of the study 

The Retention Test of Homburg (RTH) was established by the institute of clinical hemostaseology, Univ. 

of Saarland, in 1993 as an attempt to introduce a simple and cost effective assay for screening PLT  

function reliably.  RTH test is based on the retention of platelets resulting from exposing them (cPRP 

was mainly used) to a standardized exogenic surface (the polypropylene filter of Eppendorf retention 

tube) under defined conditions of flow forced by centrifugation.  The percentage of the difference between 

PLT count before and after the passage of the filter is defined as the retention index (RI) of PLT (PLT-RI).  

High PLT-RI should be a sign of PLT hyperactivity/stickiness, whilst low PLT-RI is supposed to indicate 

PLT hypoactivity/stickiness [Wenzel 2000].  Since then, variant procedures were used [Wieding 2001, 

Schenk 2002, Wieding 2004], and the assay has never been standardized [Breddin 2003].  Furthermore, 

the reproducibility of RTH assay has been unacceptable and opposing serious problems and the  

accuracy was never studied in healthy individuals.  The evidences on the specificity of this assay for PLT 

were inadequate and presented no comprehensive interpretation.  Few investigations addressed  

reference ranges for PLT-RI by using cPRP [Kricheck 2000], but none was reliable.  The data obtained 

from a multicentre trial using RTH were at least unacceptable [König 2002] and the assay could never be 

introduced for the clinical practice [Reininger 2006].  In addition, the need for processing the blood to 
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prepare cPRP and for preparing the variant additives used in these procedures deteriorated the  

significance of this analysis as a simple and cost effective assay. 

On the other hand, the RTH assay had major advantages on earlier filter tests e.g., [Salzman 1963, 

Hellem-II 1970 and O´Brien 1987] attributed to: a.) the “athrombogeneity” of its filter system compared 

with other materials (collagen, glass beads etc.), as described by the morphological investigations  

despite the evidences were not adequate [Schenk 2002, Koscielny 2002]. b.) the relative convenience for 

the routine clinical laboratory by using disposable retention tube. The competent principle of RTH and the 

promising results of the studies demonstrating proportional correlation between PLT-RI and specific PLT 

agonists and inhibitors [Wieding 2001 and 2002, Schenk 2001] urged the need for radical validation of 

RTH procedures, developing a reliable and simple standardized operation procedure (SOP), addressing 

evidence based interpretation of the specificity for screening PLT function, and defining a reliable  

reference range in healthy individuals.  These objectives represented actually the aim of our study and 

could be acceptably achieved.  In order to avoid bias by reporting with the earlier unreliable procedures of 

RTH, the newly developed reliable SOP of RTH incorporating our basic improvements and modifications 

was introduced as “RTH-II”.  The rational for using a methodologically simple test was to screen PLT 

hyperactivation or defects in healthy subjects and in point of care systems.  Beyond it, diagnosing  

individual PLT disorder is supposed to be detected by specific PLT function assays. 

A stepwise approach was followed for the validation and the development of RTH procedures.  Each step 

was evaluated and modified and new procedures or identifications were addressed and incorporated  

in RTH assay in order to: a.) primarily exclude or at least minimize the sources of variability and errors 

and assure the reliability and the specificity of the measurements, and b.) secondarily improve the  

convenience of the RTH as a simple and cost effective assay.  Multiple approaches were applied for the 

investigations defining the sources of variability and errors and validating the due modifications as well as 

the resulting newly developed SOP which was based on using cWB.  Specific investigations were  

designed to validate and get more comprehensive insights into the precision, the accuracy and  

especially the specificity of RTH.  In addition to cWB, our investigations used cPRP, PLT isolated by  

gel-filtration, Eightcheck control and our developed PLT standards.  Multiple conventional morphological 

approaches (PLT spreading, phase-contrast microscopy and screening and transmission electron  

microscopy) were performed on the tested materials before and after the passage of RTH filter as well as 

on the filter fixed sections in order to control the reliability of RTH measurements and to provide further 

insights into the implications of our modifications as well as the significance and the interpretation of 

RTH assay.  Developing a reliable SOP of RTH was a pre-requisite for addressing reliable reference 

ranges in healthy individuals which was performed also under morphologic control. 
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III SUBJECTS AND METHODS 

3-1. Subjects of the study (healthy blood donors) 

Unless otherwise is mentioned, the investigations included in our study were performed on apparently 

healthy blood donors (BD).  The blood donors were recruited from blood donor unit in the Institute of  

Clinical Hemostaseology and Transfusion Medicine, Saarland University Clinics in Homburg/Saar.  Blood 

samples were obtained before completing the blood bank safety tests, but the results of a sample were 

included in the study only after passing the safety tests.  The blood donors were non-selectively recruited 

in regard of gender or age.  Blood donors who took Aspirin-like drugs within the last two weeks before 

blood withdrawal were excluded from the study. 

 

3-2. Equipment and Apparatuses 

3-2-1. Standardized Eppendorf retention tubes (RTH tubes) The standardized Eppendorf 

retention tube (RTH tube) is designed especially for performing RTH assay.  This tube (1.5 mL)  

consists of an upper and a lower part.  A newly developed filter system is fixed in the bottom of the upper 

part, as shown in Fig.3-2-1.  The RTH filter is a disc (height 2.3 mm; diameter: 6.9 mm) with standard-

ized textured surface composed of sintered polyurethane (PU) with inter-connected micro pores of 16 to 

22 µm in diameter.  RTH tubes (including RTH filter) are disposed for one time measurement and they 

are produced and supplied by Eppendorf Co. [Wenzel 2000]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 3-2-1:  Eppendorf retention tube “RTH Tube”. 

 

3-2-2. Eppendorf tubes Eppendorf tubes (Epp tubes; 1.5 mL) were used for some specific  

experiments.  Epp tubes are similar to RTH tubes (p.3-2-1) in size, but consist of only one part that has 

no filter inside. 

“RTH tube“ 

“The lower part of RTH tube” 

The tested materials are 
added into the top of the 
upper part of RTH tube 

“The tested materials are collected in the 
bottom of the lower part after  
centrifugation and passing RTH filter” 

“The upper part of RTH tube” 

“RTH filter is fixed in the bottom of the 
upper part of RTH tube” 
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3-2-3. Convenient centrifuges A centrifuge with a standardized phase of acceleration,  

centrifugation and deceleration that can provide constant temperature (8-37°C) was required for  

centrifuging of RTH tubes.  The centrifuge should provide the centrifugal forces 90-110 g (p.3-4-3-2-2-5 

and p.5-1-1-2).  We used mainly the centrifuge “Eppendorf 5417C” which may provide 110 g at 1000 rpm.  

Other centrifuges supplied with plates adaptable to the RTH tubes were occasionally used (e.g., in our 

experiments on gel-filtration in the Dept. of Experimental Surgery; p.4-2-2-1).  A centrifuge was also used 

for preparing cPRP (110 g/ 15 min; p.3-4-2) and for preparing the PLT standard (p.4-2-5-1).  The rotational 

speeds of the centrifuge that comply with the specified centrifugal forces (g) were calculated by consider-

ing the radius (r) of the centrifuge head and using the following equation: 

RCF (relative centrifugal force) = 1.118 x 10-5 x r x (rpm)2 

in which RCF is the relative centrifugal force in units of “g” (i.e., multiples of the gravitational force); 1.118 

x 10-5 is a constant; “r” is the radius (cm) between the axis of rotation and the center of the centrifuge 

tube; and “rpm” is the speed in revolutions per minute [Bauer 1980]. 

3-2-4. Reliable electronic PLT counter Multi-channel whole blood cell counters incorporating 

PLT (PLT) counting1 capabilities were required for the measurements of RTH and the complete blood cell 

count (CBC)2.  Our investigations were done in the Institute of Clinical Hemostaseology where we used 

the available models of cell counters: Sysmex M2000, Sysmex KX21, Sysmex SF3000, and Sysmex 

K1000.  The cell counters were controlled daily by the low and the normal level of Eightcheck control 

(p.3-3-2).  The cell counter “Coulter ACT” was used for performing the investigations on isolated PLT in 

the Dept. of Experimental Surgery. 

3-2-5. Vortex instrument Heidolph Reax 2000, supplied with different vortex speeds that range 

from grade 1 to 9, was used to mix the tested samples by vortex. 

3-2-6. Mechanical rotator Blood samples (p.3-4-1) were put on a mechanical rotator to assure 

homogeneity before performing the analyses. 

3-2-7. Chromatography column for PLT isolation The chromatography column for PLT isola-

tion by gel-filtration using Sepharose 2B (p.3-4-4-1) was composed of 3 parts: A.) 50 mL perfusor syringe 

(for single use); supplied by B\Braun.  B.) Cell strainer; nylon mesh (pore size 40 µm), sterile/gamma 

irradiated, by Becton Dickinson.  C.)  3 ways stopcock for infusion, supplied by B\Braun. 

3-2-8. Light, phase -contrast, and electronic microscopes For the morphological control (p.3-5). 

3-2-9. Athrombogenic plastic slides and covers These slides were essential for performing 

PLT spreading (p.3-4-5-2-4).  They were also used along with plastic covers for the phase-contrast  

microscopy (p.3-5-2).  The use of glassware was avoided since they may activate the PLT by contact 

[Vogler 1995].  The plastic athrombogenic slides (76 x 26 mm, 0.75 mm thick) and covers (22 x 22 mm) 

are manufactured by Heinz Herenz and Plano W Planet respectively. 

3-2-10. pH meter ”PHM 64 research” pH meter, by Radiometer Copenhagen, was used for  

adjusting the pH of the reactivating reagent (p.3-3-3), the buffers used in PLT spreading (p.3-3-6), and in 

the preparation of PLT standard (p.3-3-14). 

                                                                 
1 Platelet counting includes: platelet count (PLT) and platelet size distributions PDW (platelet arithmetic width),  

MPV (mean platelet volume) and PLCR (platelet large cell ratio). 
2 Complete blood cell count (CBC) includes: platelet counting, leukocytes and main normal cell types,  

and erythrocytes and their indices. 
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3-3. Reagents 

3-3-1. Citrated plastic tubes (syringes) Green Sarstedt monovettes (5 and 10 mL containing 

0.5 and 1 mL of 3.8% Na-citrate respectively) were used for preparing isotonic citrated whole blood 

(cWB; p.3-4-1) and/or citrated PLT rich plasma (cPRP; p.3-4-2). 

3-3-2. Eightcheck control The normal and the low level of the Eightcheck control (4.0 mL tubes 

contain stabilized blood cells; by Sysmex) were used to control PLT count measurements by electronic 

cell counters (p.3-2-4).  The normal level of the Eightcheck control (EC) was also used as a “PLT stan-

dard” to evaluate/validate the retention phenomena demonstrated by RTH assay (p.4-2-3-1, 4-1 and 6-1).  

EC tubes were stored at 2-8°C and allowed to equilibrate at room temperature before use. 

3-3-3. Reagents of RTH assay (calcium chloride and r-Hirudin) Calcium chloride (CaCl2; 5 mL 

vial) and r-hirudin (500 ATU/vial) are included in the kit of RTH assay, provided by Eppendorf-Pentapharm, 

for preparing the reactivation reagent used in this assay, as described in p.3-4-3-2-1. 

3-3-4. Distilled water (D.W.) Sterile and pyrogenfree distilled water, produced by Delta-Pharma 

for the external use.  The D.W. was employed for rinsing and dilution purposes. 

3-3-5. Sepharose 2B gel Sepharose 2B is a bead-formed Agarose-based gel-filtration matrix 

manufactured by Pharmacia Biotech.  The content of agarose in Sepharose 2B is 2%.  The broad  

fractionation range of Sepharose make it suitable for characterizing or cleaning-up samples containing 

components of diverse molecular weight; such as for the isolation of PLT from cWB [Grignani 1998]. The 

gel (Sepharose) was stored at 4 to 8°C in the presence of a bacteriostatic agent (20% ethanol). 

3-3-6. Platelet buffer (PLT buffer) This buffer was prepared for the isolation of PLT by Sepha-

rose 2B (p.3-4-5).  The formulas of the stock and the use solutions are described in Tab.3-3-6, and the 

qualifications of the components of these solutions are as follows: 
 

Table 3-3-6: Formulas of the stock and the use solutions of the PLT buffer. 
Stock solution (10x)a Use Solution (1x)b 

NaCl 42.4 g stock solution 100 mL 
HEPES 11.9 g Glucose 1.8 g 
Na2HPO4 0.35 g BSA (Bovine Sigma Albumin) 3.0 g 
KCl 8.3 mL of 3 M D.W. S.Q.1000 mL 
MgCl2 10 mL of 1 M   
D.W. S.Q. 500 mL   
pH 7.4    

a To be sterile filtered after preparation and then kept in refrigerator (2-8°C). If any turbidity or precipitation 
 developed, the buffer should not be used.  b To be kept at -20°C in aliquots  of 50 mL polyprobelineglycol tubes. 

A.) Stock solution (10x): 

• HEPES:  N-[2-hydroxyethyl] piperazin-N´-[2-ethane-silfonic] sodium hydrogenphosphate, by 

Sigma (order code H-0891) for molecular biology (99+%).  EC No. 230-907-9; pKa =7.5 at 25°C, 

useful pH range 6.8-8.2 at room temperature. 

• NaCl, Na2HPO4 KCl and MgCl2 for analysis, by Sigma and MERCK.  The physiologic NaCl solu-

tion for washing as well as the KCl (3M) and MgCl2 (1M) solutions have to be prepared according 

to the required amount of PLT buffer.  Further detailed descriptions are available in Ab.3-3-6. 

B.) Use Solution (1x): 

• Glucose:  D(+)-Glucose monohydrate for biochemistry and microbiology use, by MERCK. 

• BSA:  Bovine Sigma Albumin.  Cell cultured tested and desiccated for laboratory use, EC No.  

232-936-2; nitrogen content 15.43%. Stored at 2-8°C.  Order code A-9418. 
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3-3-7. Isotonic sodium chloride 100 mL vial (for IV infusion) by Delta-Pharm.  Sterile and 

pyrogenfree solution; theoretical osmolity 309 m.osm/L, pH=5-7. 

3-3-8. Sodium citrate solution 10 mL Amp, 3.13% solution by Braun used for lowering the 

viscosity of the blood reactions.  Sterile without preserving material. 

3-3-9. Formaldehyde solution 20% One liter (i.e., 1.04 kg) stock solution for analysis stabilized 

with 10% methanol (toxic); produced by MERCK. 

3-3-10. Potassium permanganate solution Titrisol Amp; 3.161 g KMnO4/ 100 mL; produced 

by MERCK; and stored in dark place. 

3-3-11. Giemsa stain Azur-Eosin-Methylene blue solution for microscopy (contains Methanol); 

produced by Diagnostika MERCK and stored at 15-25 °C. 

3-3-12. Glutardialdehyde 25% For electron microscopy; by ROTH.  Stored at 4°C. 

3-3-13. Sodium acid research grade (NaN3: min. 99%) Reagents for sulfides and thiocyanates 

(Mr = 65.0) produced by SERVA, Heidelberg/NY).  Stored at 4°C. 

3-3-14. Buffers used for preparing PLT standard Two buffers were used: A.) Phosphate 

buffer saline (PBS; pH=7.4-7.6) and B.) Phosphate buffer (0.1 M; pH=7.4).  These buffers are stable for 

weeks at 4°C.  The formulas of these buffers were modified several times throughout the series of  

experiments performed in order to develop a convenient protocol for the preparation of our own unstimu-

lated PLT standard.  The final formula of each buffer is addressed in the results of developing the PLT 

standard (p.4-2-5-1-2).  The appearance of turbidity or precipitation in either buffer indicates its decay and 

the buffer should be discarded in such a case. 

 

 

3-4. Designs of the standard operation procedures (SOP) 

3-4-1. Blood sampling and collection: Preparation of citrated whole blood (cWB) 

Blood was withdrawn from the cubital vein into a 5 or 10 mL syringe (green Sarstedt monovette; 1 part 

isotonic citrate : 9 parts whole blood; p.3-3-1).  The puncture was carefully performed with a 1.1-gauge 

(1.1x40 mm) of a sterile disposable needle.  Blood and anticoagulant were thoroughly and gently mixed 

to obtain the cWB ready for further tests.  If the tube has been standing, this requires at least 2 min on 

mechanical rotator (p.3-2-6) to assure homogeneity and precise results.  Special interest was paid to fill 

the tube exactly up to the measure line.  To prevent tissue thromboplastin from reaching the blood sam-

ple by vein puncture, the two-syringe method was applied [Bauer 1980].  The first syringe was discarded 

(or used for tests other than our study) after aspiration of a minimum of 3 mL blood.  The needle was not 

removed and a second plastic syringe was attached and the specimen was obtained by gentle traction. 

 

3-4-2. Preparation of citrated platelet rich plasma (cPRP) 

The cWB in the collection tube (5 or 10 mL Sarstedt monovettes; p.3-3-1) was centrifuged at 110 g for 15 

min without brake at room temperature.  The resulted cPRP was transferred carefully by micro-pipette 

(using new disposable plastic tips) into a plastic collection tube to get ready for further analyses.  The 

aspiration of the cPRP was performed with a specific care not to disturb the lower layers of leukocytes 

and erythrocytes.  The cPRP was pipetted gently on the inner wall of the collection tube. 
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3-4-3. Retention Test of Homburg (RTH) 

3-4-3-1. Principle of the test 

PLT are exposed to a standardized exogenic surface (the filter of Eppendorf retention tube) under  

defined conditions of flow forced by centrifugation.  The percentage of the difference between PLT count 

before and after the passage of the filter is defined as the retention index (RI) of PLT (PLT-RI).  The test is 

performed mainly by using cPRP and possibly by cWB.  Decreased PLT-RI indicates a reduced PLT 

stickiness and function.  In contrast, high levels of PLT-RI indicate increased PLT stickiness that is  

associated with an increased PLT aggregation as seen in e.g., vascular diseases. 
 

3-4-3-2. First SOP of RTH assay “ SOP-1 ” 

The procedure of RTH (SOP-1), which was the subject of our validation and standardization, was based 

mainly on the newest guideline of RTH assay at the time we start our study [Wenzel 2000]. 

3-4-3-2-1. Preparation of the reactivating reagent  5 mL vial CaCl2 is added into the vial of  

r-hirudin (500 ATU) which is dissolved within 3-5 min.  Both reagents, CaCl2 and r-hirudin, are provided 

with the kit of RTH (p.3-3-3).  The resulting solution is stable for at least 3 months, if refrigerated. 

3-4-3-2-2. Performance of the assay 

3-4-3-2-2-1. 450 µL cPRP or cWB (p.3-4-1 & 2) is pipetted in the upper part of the RTH tube (p.3-2-1). 

3-4-3-2-2-2. Blank:  50 µL of the reactivating reagent (r-Hirudin with CaCl2; p.3-3-3) is added.  

3-4-3-2-2-3. Pre-incubation: The RTH tube is then left at room temperature for 3-10 min. 

3-4-3-2-2-4. The measurements before the passage of RTH filter (b.F measurements):  A part of the 

tested substance (cWB or cPRP) is aspirated from the upper part of RTH tube by an elec-

tronic cell counter (p.3-2-4) to measure PLT count and PLCR before centrifugation. 

3-4-3-2-2-5. Centrifugation:  RTH tube is centrifuged.  Variant conditions could be applied (79 to 160 g 

for 5-16 min; Wienefoet 2003); the most common “g” values are 80-120 g [Wieding 2004]. 

3-4-3-2-2-6. The measurements after the passage of RTH filter (a.F measurements):  The upper part 

of RTH tube is removed and the cWB is mixed thoroughly by vortex for 3 min.  PLT count 

and PLCR ratio are then measured by a cell counter.  Whenever the Eppendorf filter is 

removed while using cPRP, it should not be sampled from the layer containing erythro-

cyte; instead the cPRP should be withdrawn by pipette from top layer. 

Note 1: Due to the critical role of the PLT counting (b.F and a.F) in RTH assay, it is preferable to be 

performed in-double and the mean is considered for the next calculations. 

Note 2: The RTH test should be performed within 30-180 min after blood withdrawal. 

This SOP (SOP-1) was substantially modified according to the conclusions of our evaluation to it and to 

our successive investigations on RTH (p.4-1 & 2).  New SOPs of RTH (SOP-2 and SOP-3) were conse-

quently addressed in our study; as described in sections p.4-1-1-7 and p.4-1-2-5 of the results. 
 

3-4-3-3. Calculation of the retention indices (RIs) of the total platelets (PLT-RI)  

and the large platelets (PLCR-RI) 

The retention index (RI) of the platelet (PLT-RI) as well as of the large platelet (PLCR-RI) was calculated 

by measuring PLT count and PLCR ratio respectively before (b.F) and after (a.F) the passage of the filter: 

RI (%) = (b.F measurement – a.F measurement)  x 100 

b.F measurement 
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3-4-4. Platelet isolation by gel-filtration using Sepharose 2B 

3-4-4-1. Making the chromatography column 

The plunger of a 50 mL syringe (p.3-2-7-A) is taken off and a nylon mesh (Cell strainer; p.3-2-7-B) is re-

placed and fixed in the bottom of the cylinder of the syringe by a suitable adhesive.  The borders of the 

mesh should first be cut to suit the inner diameter of the cylinder of the syringe.  A sufficient quantity of 

the adhesive is applied to the borders of the lower side of the mesh.  The nylon mesh is then put down 

the cylinder by using the plunger.  The needle of the syringe should be thrown away and replaced by  

a 3 ways stopcock (p.3-2-7-C). 
 

3-4-4-2. Preparation of the " Sepharose 2B gel” 

Put 100 mL of the Sepharose 2B (p.3-3-5) in a plastic filter (Sarstedt; 22 µm) and use water vacuum to 

remove alcohol from the Sepharose.  Wash with 800-900 mL NaCl solution (100 mL 1.45 M NaCl and 

900 mL distilled water).  After washing, bring the Sepharose into solution with NaCl and pour in the  

prepared column.  Fill the column to 50-60 mL and keep moist (turn running off).  While spinning,  

equilibrate the Sepharose in the column with PLT buffer (PLT buffer; p.3-3-6.  This step is to get rid of the 

saline in the Sepharose; use as much PLT buffer as the column is filled with Sepharose.  Usually this is 

50-60 mL of the PLT buffer that has to run through the column.  Just before adding the PLT buffer, the 

column must be dry on the top for a few seconds.  The column is then ready for use, and it can be  

covered by a parafilm and kept in the refrigerator (2-8°C).  The Sepharose in the column should be kept 

moist in the whole following steps using PLT buffer (p.3-3-6). 
 

3-4-4-3. SOP of the platelet isolation 

3-4-4-3-1. The Chromatography column must be vertically fixed on a suitable stand and a 50 mL glass 

container is put under the open of the 3 ways stopcock.  Then, let the column to equilibrate 

to the room temperature before using it. 

3-4-4-3-2. Allow sufficient numbers of the aliquots of PLT buffer to dissolve in a water-bath chamber, 

and then put them on a suitable porter.  Open one of the PLT buffer tubes and put in it a dis-

posable plastic pipette to ready it for use. 

3-4-4-3-3. Put the PLT collection tubes, ready for use, on another suitable porter (three 5 mL  

plastic tubes for each 10 mL blood sample). 

3-4-4-3-4. In parallel, by the use of 10 mL cWB drawn from one blood donor, cPRP is prepared,  

collected in a plastic tube and allowed to rest before use (SOP; p.3-4-2).  Add the cPRP 

carefully on the inner-wall of the column.  The top of the column must be dry for seconds 

just before the cPRP is added. 

Note: All the materials that are supposed to be added to the column (PLT buffer, cPRP, NaCl) should 

be applied carefully on its inner-wall. 

3-4-4-3-5. Let the upper surface of the Sepharose dry for seconds, then wash the column with PLT 

buffer. 

3-4-4-3-6. Collecting the isolated PLT (iPLT).  When the plasma (the yellow ring) is at the level of  

30-40 mL, the outcoming PLT buffer drops become gradually cloudy bearing the iPLT.   

Collect as much iPLT as cPRP put on the column, or a little bit more.  The outcoming is col-

lected into 3 tubes (T1, T2 & T3; ca 2 mL in each), so the second one is supposed to bear 
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the most cloudy drops and consequently the highest concentration of iPLT.  When the out-

coming drops become again unclouded stop collecting PLT buffer.  Let the iPLT rest in the 

37°C water-bath for 30 min.  In the course of collecting PLT, keep the Sepharose in the col-

umn moist using PLT buffer. 

3-4-4-3-7. The column can either be thrown away, or kept in refrigerator if it is still in a good condition.  

In the second case, the following steps should be performed: 

• The column is washed with 50 mL PLT buffer. 

• The stopcock is closed, and then filling the column with PLT buffer is completed. 

• The top of the column is closed tightly with a parafilm. 

• The column is stood carefully in the refrigerator (2-8°C). 

3-4-4-3-8. The 50 mL glass container is washed with normal water, and let it dry.  The 50 mL plastic 

(polyprobeline) tubes are washed with normal water and then D.W.  The tubes are then let 

dry (only if they are still in a good condition, otherwise they should be thrown away). 

 
3-4-5. Platelet spreading (morphological test by light microscopy) 

This test was adapted from the method introduced by Marx [1960] and modified by Breddin [1968]. 

3-4-5-1. Preparation of the use solutions 

3-4-5-1-1. Isotonic sodium citrate solution Sodium citrate is diluted with isotonic NaCl (1:9);  

10 mL are subtracted from a sealed vial of 100 mL isotonic NaCl (p.3-3-7) and substituted with the con-

tent of 10 mL sodium citrate ampoule 3.13 % (p.3-3-8). 

3-4-5-1-2. Formaldehyde 10% 42.5 mL of Formaldehyde 20% stock solution (p.3-3-9) is diluted 

with 50 mL D.W. (p.3-3-4). 

3-4-5-1-3. Potassium permanganate 0.1 N. KMnO4 Amp (3.161 g/ 100 mL; p.3-3-10) is mixed 

with 1000 mL D.W. to get 0.1 N solution as described as follows: (1) Insert the ampoule in the neck of 

the volumetric flask and push the pointed glass rod (Cat No. 9998) through the upper membrane.   

(2) Push the lower membrane.  3) Withdraw and rinse the glass rod.  Rotate the ampoule and rinse it 

with D.W.  Fill the volumetric flask to the mark 20°C with D.W. and mix thoroughly. 

3-4-5-1-4. Giemsa stain solution. The stock solution (p.3-3-11) is diluted with D.W. before use (1:2). 

Note:  The resulted solutions are stable for one week at room temperature.  Only fresh solutions were 

used for each batch of PLT spreading preparations to avoid contamination and changes in pH. 

3-4-5-2. SOP of the platelet spreading 

3-4-5-2-1. PLT count is performed on the collected cWB (SOP; p.3-4-1). 

3-4-5-2-2. Preparing cPRP (SOP; p.3-4-2).  Gel-filtered PLT could be also examined as well as cPRP, 

and in this case there is no need to perform the next dilution step (p.3-4-5-2-3). 

3-4-5-2-3. The dilution step.  The PLT count of the cPRP is adjusted to 30 x106 with isotonic  

Na-citrate solution (p.3-4-5-1-1). 

3-4-5-2-4. About 2-4 mL of the resulted platelet suspension is poured on a specific athrombogenic 

plastic slide (p.3-2-9) and incubated at room temperature for 30 min allowing the platelets to 

adhere and spread on the slide. 

3-4-5-2-5. The slide is rinsed carefully with the isotonic Na-citrate solution (p.3-4-5-1-1). 
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3-4-5-2-6. Fixation step.  The slide is stood in the 10% formaldehyde solution (p.3-4-5-1-2) for 7 min. 

3-4-5-2-7. The slide is rinsed with isotonic Na-citrate solution (p.3-4-5-1-1). 

3-4-5-2-8. Oxidation step.  The slide is stood in the 0.1N potassium permanganate solution (p.3-4-5-1-

3) for 5 min. 

3-4-5-2-9. The slide is rinsed with isotonic Na-citrate solution. 

3-4-5-2-10. Staining is accomplished by standing the slide in Giemsa’s solution (p.3-4-5-1-4) for 60 min. 

3-4-5-2-11. The slide is rinsed gently with D.W. and let the slide dry. 

3-4-5-2-12. Examine the preparation by light microscope at the magnification of x100 and x 400. 

 

 

 

3-5. Morphological control/validation 

Conventional morphologic approaches were performed on the tested materials before and after the  

passage of RTH filter as well as on the filter after centrifugation in order to provide further insights into the 

significance and implications of RTH assay and to inspect/assure the reliability of RTH measurements.  

This was quite essential for the basic developments in the initial SOP of RTH as well as for the validation 

the developed SOP (SOP-3) and introducing RTH-II.  Three approaches were used: 

3-5-1. Platelet spreading 

PLT spreading was applied in the investigations performing RTH by using PLT isolated by gel-filtration 

(p.3-4-4) compared with that in cWB.  This test was performed on the tested material before and after the 

passage of RTH filter in order to assess the adhesion, spreading, and spontaneous aggregation or  

agglutination of PLT from a morphological point of view.  The preparations of PLT spreading (p.3-4-5) were 

examined by light microscopy.  According to Scharrer [1985], five types of PLT can be distinguished in 

healthy individuals: (1) Giant forms with a surface of more than 200 µm.  (2) Big forms with minimum one 

diameter more than 10 µm.  (3) Small forms with an average diameter less than 10 µm.  (4) Intermediate 

forms (round, etc.,) which are not completely spread and have little hyalomere between pseudopodia.   

(5) Spider forms which are not spread PLT with one or more short and relative thick pseudopodia.  The 

forms 1-3 are defined as spread PLT forms while the forms 4 and 5 are not spread. 

In our microscopic examination, hundred PLT were counted in each PLT spreading preparation.  The 

findings were recorded on an application (Ab.3-5-1) that was designed to include the complete  

descriptions of the examined preparations as follows:   

A.) The technical quality of the preparation (thickness, coloring, dirties if any, etc.) was differentiated.  

The thickness of the preparations reflect firstly the PLT count of the tested sample and secondly the 

adhesion of PLT. 

B.) The relative presence in percentages (%) of the spread (giant, big, and small) and non-spread (in-

termediate and spiders) PLT as well as the disrupted and abnormal forms. 

C.) The grade of PLT aggregates (Aggr) and/or agglutinates (Aggl) were assessed semi quantitatively 

and differentiated according to their range of size (Tab.4-2-2-3).  

D.) Summary describes whether the examined preparation demonstrated a normal picture, more or less 

spreading depression, or increased big spread forms (left shifted). 
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3-5-2. Phase -contrast microscopy 

The phase-contrast microscopy was used as a reference method [Joist 1980] for the direct examination 

(with no additions or coloring) of PLT morphology in cWB and variety of the samples used in our  

investigations on RTH i.e., cPRP, washed and unwashed prefixed PLT, and Eightcheck control.  The 

focus in this examination was on the following: 

A.) The activation state of the PLT: Resting PLT present intact discocytes.  Partly activated PLT  

demonstrate discocytes with small pseudopodia (echinodiscocytes) that should not exceed 10% in 

normal cases.  The presence of PLT with long pseudopodia or activated forms is a sign of fully  

activated PLT that should not exist in normal individuals. 

B.) The suspension state of PLT:  Normal resting PLT should be separately suspended in the fluid 

phases of cWB, cPRP and washed PLT forming no aggregates (Aggr) or agglutinates (Aggl). 

C.) The presence of abnormal findings in the blood cells, if any.  A special care was paid on the  

concentration of WBC and RBC in the investigations of preparing the PLT standard (p.4-2-5). 

D.) Semi-quantitative control on the accuracy of the PLT and blood cells measurements.  Specific care 

for “quantitative” count was paid for controlling the measurements of the reference ranges of RIs. 

 
3-5-3. Transmission and scanning electron and phase-contrast microscopy of RTH filter 

The transmission (TEM) and scanning (SEM) electron microscopy were used besides phase-contrast 

microscopy for characterizing and specifying the PLT and the blood cells interactions with PU surfaces 

of RTH filter by the use of cWB from healthy blood donors (p.3-4-1) and Eightcheck control (EC).  The 

procedure of the examination was adapted from Geyer [Geyer 1973] as summarized as follows: 

Immediately after the centrifugation of the RTH tubes (110 g/ 5 min; acc to SOP-3 unless otherwise is 

mentioned), the filter was removed out and fixed in 5% glutaraldehyde in 0.1M cacodylat buffer solution 

for 30 min at 4°C.  The fixing solution composed of 2 mL glutaraldehyde (25% for electron microscopy; 

p.3-3-12) in 8 mL 0.1M cacodylate buffer (pH=7.4).  The RTH filter was thereafter split in four segments 

using a razor blade on a water-repellent Teflon surface (Fig.3-5-3) taking into consideration its top and 

bottom faces.  The segments were fixed for further 30 min at 4°C within the fixing solution and then were 

incubated for washing in 10 mL of the washing-buffer (0.1M cacodylate buffer containing 7.55% sucrose) 

over night at 4°C.  After postfixation with osmium tetroxide solution the segments were dehydrated with 

acetone and embedded in Araldite.  After embedding, ultra-thin sections were prepared 
 

 
 

Fig. 3-5-3: 
RTH filter 
preparation 
for microscopic 
examinations. 

 

 

 

 

   Segment of RTH filter Ultra-thin section of RTH filter 

1mm 20 µm 
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and stained with uranylacetate and lead citrate.  The resulting preparations were examined by TEM and 

SEM.  For the phase-contrast microscopy, semi-thin sections (0.5 µm) were prepared and stained by 

methyline blue polychrome. 

 

 

 

3-6. Statistical methods 

The statistical analyses of the results were performed by the use of the statistical program “SPSS”  

(Statistical Package for Social Sciences; version 11) and by Excel program of Microsoft (XP version).  

The levels below 0.05 were considered for the significance of the “p” (probability) values.  The Kolmogorov 

Smirnov (KS) statistic with Lilliefors significance correction was used for testing the normality of distribu-

tion.  The Shapiro-Wilk statistic was calculated if the sample size was low.  The significance of the  

differences between the mean values and the variances of two independent samples were inspected by 

“Independent Sample t test” and by “Levene’s test” respectively.  For the comparison of more than two 

samples, “One-Way Anova” test was used for testing the significance of the differences of means and 

“Levene” for the homogeneity of variances.  “Post Hoc Multiple comparisons” was performed whenever 

necessary by the use of LSD and Tamhane’s tests.  The significance of the differences between two 

related samples was inspected by applying “Paired Sample t-test”.  For non-parametric samples, the 

significance of the differences were computed using the Mann-Whitney U test for independent samples 

and by “Wilcoxon” or “Sign” tests for two related samples.  The significance of the correlation (2-tailed) 

between the values of two variables was investigated by “Pearson” and “Spearman’s rho” tests for  

parametric and nonparametric samples respectively.  The correlation coefficient (r) was calculated in 

parallel with “p” value in both tests.  The employed statistical tests are described by in details by Wagner 

[Wagner 2004].  The methodology for establishing the reference values for the tested parameters was 

adapted from Galen [1980] and Tetrault [2001].  The normal Q-Q Plot test was used for further inspection 

of the distribution of the RIs in normal individuals. 

 

 

 

3-7. Strategy of writing 

The thesis was constructed in respective order.  For reference purposes, we use the abbreviation “p” to 

refer to the respective section or chapter e.g., p.4-2-3-1: refers to the first section of chapter 4-2-3.  RTH 

measurements before (b.F) and after (a.F) the passage of the filter (p.3-4-3-2-2) were performed mainly 

in-double and, unless otherwise is mentioned, the mean values were used for further evaluations and/or 

comparisons (e.g., descriptive statistics).  Due to the huge output of the investigations of our study, the 

results presented in this thesis are mainly descriptive statistics and/or summaries of the key results.  

The detailed results are recorded in abandons (Ab).  The Ab. of certain data is referred to by the respec-

tive number of the corresponding data e.g., Tab.Ab.4-3-2-3 refers to the detailed results of the data  

described in Tab.4-3-2-3.  The references were referred to by the name of the first author along with the 

year of publication.  The bibliography chapter (p.7) presents the references in alphabetical order.  
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IV RESULTS 

4-1. Identifications and investigations to improve 

RTH procedures 

4-1-1. Identifications and investigations addressing to 

the second SOP of RTH assay (SOP-2) 

By reviewing the first standard operation procedures (SOP-1; p.3-4-3-2) of RTH after the initial application 

of RTH assay according to this SOP, some analytical problems and difficulties became evident.   

A stepwise approach was followed therefore to evaluate and improve the procedure of RTH.  Specific 

identifications and modifications were consequently incorporated in the methodology of the SOP of RTH, 

as described in the following: 

4-1-1-1. Fixing/Identifying the conditions of the centrifugation of RTH tubes 

According to the original SOP of RTH (SOP-1; p.3-4-3-2-2-5), no specific standard condition was defined 

for the centrifugation of RTH tube.  Diverse conditions were adapted ranging initially from 79 to 160 g for 

5-16 min [Wienefoet 2003]; the most common centrifugal forces (gravitational forces) used in previous 

RTH studies ranged between 80-120 g [Wieding 2004].  We defined, however, the speed 110 g / 5 min as 

a standard condition for our further investigations of RTH assay because of:  

A.) Reviewing our preliminary experiments as well as some previous analyses of RTH [Koscienly 2002] 

showed that the values of PLT-RI measured by using the speed 110 g were meaningful (95% refer-

ence ranges=13-35%) and allowed acceptable margin for significant pathological variations.  Lower 

“g” values (e.g., 90 g) revealed to deliver too high PLT-RI values (mean=73%; Schenk 2002) implicat-

ing no adequate margin for pathological thrombophilic variations, and vice versa by higher “g” forces.   

B.)  Using centrifugation period longer than 5 min would be of no advantage and prolong the turnaround 

time of the test. 

The initial fixation of this standard condition was, however, further evaluated/validated in the course of our 

investigations (using this condition) for the improvement, the standardization and the validation of RTH 

assay which proved its reliability, as explained in p.5-1-1-2. 

 

 

4-1-1-2. Investigation of the effect of the reactivating reagent (CaCl2 with r-Hirudin)  

on the retention of PLT and on PLT size distribution in cPRP 

A. Aim and methodology of the study 

The SOP-1 of RTH included an additional use of 50 µL of the reactivating reagent (5 mL CaCl2 with 500 

ATU of r-Hirudin; p.3-3-3) to the tested materials (cWB, cPRP) before the centrifugation step (p.3-4-3-2-2-

5).  The necessity of this addition was on question in since the retention index (RI) is a relative value and 

it does not require, therefore, the addition of CaCl2 as a blank.  In addition, we believed that this addition 

may induce further variability.  As an attempt to improve and simplify RTH procedures, we investigated 

the effect of the reactivating reagent on the PLT-RI and on PLT size distribution in cPRP.  Four samples 
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of cPRP were prepared from 4 blood donors (p.3-1) and 450 µL was transferred form each sample into a 

series of 10 RTH tubes.  Different concentrations of the buffered reactivating reagent were applied on 

each series, as described in Tab.4-1-1-2-B, and RTH was performed on each RTH tube.  The concentra-

tion of the undiluted reagent was detected in the Dept. of Clinical Chemistry and found to be equal to 

19.0 mmol CaCl2/L.  Na Citrate was added to the undiluted reagent to deliver the required dilutions.   

The r-hirudin was diluted with only Na-citrate in order to provide a reagent free from CaCl2. 

B. Results of investigating the effect of the reactivating reagent on the retention  

of PLT and on PLT size distribution in cPRP 

The key results are summarized in Tab.4-1-1-2-B.  No significant differences were found in the  

measurements before the passage of the filter. 
 

Table 4-1-1-2-B: Effect 

a of adding different concentrations of the reactivating reagent (CaCl2 with r-Hirudin) on  
the retention of PLT-RI and PLCR-RI in cPRP. 
 

Sample 1 Sample 2 Sample 3 Sample 4 

PLTb PLT-RI 
PLCR

b 
PLCR-RI PLTb PLT-RI 

PLCR
b 

PLCR-
RI PLTb PLT-RI 

PLCR
b 

PLCR-
RI PLTb PLT-RI 

PLCR
b 

PLCR-
RI 

CaCl2  
 

mmol/L 
x103/µL % % % x103/µL % % % x103/µL % % % x103/µL % % % 

19.0 343 27.1 15.0 49.5 230 23.9 16.5 35.0 192 38.5 17.6 37.8 249 12.0 24.7 8.8 

19.0 334 41.9 17.2 71.3 235 13.2 16.4 22.2 190 40.5 17.2 39.1 254 16.5 25.6 14.9 

9.5 371 42.9 9.8 43.4 237 24.9 15.8 30.6 186 46.2 16.5 44.9 247 26.3 25.4 22.3 

9.5 359 NA 10.4 NA 245 34.3 15.6 42.7 193 45.1 18.7 43.3 246 28.9 24.2 26.5 

4.75 350 32.9 9.9 39.0 233 22.7 15.7 27.2 189 44.4 18.2 44.1 250 30.4 23.1 27.1 

4.75 339 NA 9.6 NA 236 39.8 15.8 49.7 184 45.1 16.1 40.0 255 34.1 24.6 32.2 

2.38 337 27.9 10.5 41.6 223 33.2 14.8 38.6 184 33.7 17.5 32.2 248 29.8 24.3 27.5 

2.38 369 25.5 9.7 31.6 236 36.0 17.1 47.6 190 30.0 16.4 27.4 252 31.0 24.9 27.3 

0.0 369 22.2 10.6 23.7 242 24.4 16.6 33.0 189 26.5 17.8 24.4 249 20.5 25.8 17.1 

0.0 337 17.5 10.7 19.8 241 NA 16.5 NA 192 21.9 18.3 20.6 253 23.3 23.5 19.1 

Mean 350.8 29.7 11.3 40.0 235.8 28.0 16.1 36.3 188.9 37.2 17.4 35.4 250.3 25.3 24.6 22.3 

SD 14.9 9.0 2.6 16.2 6.3 8.3 0.7 9.2 3.2 8.7 0.9 8.7 3.1 7.1 0.9 7.2 

CV (%) 4.3 30.2 22.9 40.4 2.7 29.7 4.1 25.4 1.7 23.5 5.0 24.7 1.2 28.0 3.6 32.3 
 

a
 The detailed results are described in Tab.Ab.4-1-1-2.  b The measurements before the passage of the flter (i.e., in the collection tube; p.3-4-2).  

PLT= platelet count;  PLT-RI= the retention index of platelet;  PLCR= platelet large cell ratio;  PLCR-RI= the retention index of PLCR. 

 

Within each series of samples 1-4, the a.F (after the passage of the filter) measurements of PLT and 

consequently PLT-RI varied significantly by applying different concentrations of Ca+2 (p<0.05), as  

described in Tab.4-1-1-2-B.  Although no statistically significant correlation between the variation of these 

retention indices and Ca+2 concentration was objected (p=0.188; Spearman’s rho test), these results 

showed a dose-dependent effect of Ca+2 on PLT-RI, as demonstrated in Fig.4-1-1-2-B-1.  This effect var-

ied markedly among samples 1 to 4.  PLT-RI increased proportionally with the concentration of Ca2+ up 

to a cut-point ranging about 5-12 mmol/L.  Higher levels of Ca2+ led to marked decreases in PLT-RI which 

varied inter-individually (Fig.4-1-1-2-B-1).  This effect was less pronounced in PLCR-RI, as illustrated in 

Fig.4-1-1-2-B-2. 

It was decided therefore to perform RTH without the addition of the reactivating reagent (p.5-1-1-3).  The 

amount of the tested material that should be pipetted into RTH tube increased consequently to 500 µL 

instead of 450 µL.  The a.F measurements of MPV (mean CV=1.8%) and PDW (mean CV=5.7%) within 

the series of samples 1-4 were rather homogeneous. 
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Fig. 4-1-1-2-B-1: Inter-individual variation in Fig. 4-1-1-2-B-2: Effect of the reactivating reagent 
the response of PLT-RI to CaCl2 in the reactivating on PLT-RI and PLCR-RI in cPRP. 
reagent added to cPRP. 

 

 

4-1-1-3. Measurements before the passage of RTH filter comparing RTH tubes  

with the original collection tubes 

In SOP-1, the measurements performed before the passage of RTH filter (b.F measurements;  

p.3-4-3-2-2-4) were applied on the 450 µL tested material added into RTH tubes.  The measurements 

were performed after the resting period and before the centrifugation step.  This methodology had led to 

several problems and errors: 

A.) The normal run of the available cell counter (Sysmex M2000) required about 400 µL for each 

measurement leaving less than 100 µL of the tested material to pass RTH filter.  The use of the micro run 

of that counter (pre-dilution of the tested material) consumed less amounts of the material (10 µL) but 

required additional reagents for the pre-dilution which might increase the probability of the variability of 

these measurements as well as the time and costs.  The other available cell counters (p.3-2-4)  

consumed 100 to 150 µL per measurement.  Thus, performing the b.F measurements on the material 

added to RTH tube made it impossible to perform these measurements in-double (as recommended by 

the first SOP; p.3-4-3-2) or at least unacceptably minimize the amount of the rest material that should be 

centrifuged and then measured in-double (a.F measurements).  In addition, the morphological assays on 

the tested material before and after the passage of RTH filter, performed in our studies for control and 

validation purposes, required further amounts. 

B.) The variable amounts used by the different cell counters for b.F measurements resulted in  

variances in the rest amounts of the tested materials that should pass RTH filter and thus might lead to 

more variations in the determinations of RTH. 

Consequently, we suggested performing the b.F measurements on the tested materials in the original 

collection tube after transferring 500 µL (instead of 450 µL since the addition of 50 µL reactivating reagent 

was excluded; p.4-1-1-2) of the materials to RTH tubes.  Further advantages of this step are explained in 

another chapter (discussion; p. 5-1-1-4). 
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4-1-1-4. Exclusion of the incubation period of cWB in RTH tube before centrifugation 

According to SOP-1  (p.3-4-3-2-2-3), after the addition of the tested material in the RTH tube, it was 

rested for up to 10 min in order to calm down the disturbed PLT before performing the b.F measurements 

on it.  Due to our previous modification (p.4-1-1-3), the b.F measurements were no longer performed on 

the material added in RTH tubes and no need was found therefore to rest RTH tubes.  Further obligations 

for this step are described in p. 5-1-1-5. 

 

 

4-1-1-5. Quantity assessment of the tips of the micropipette used in RTH 

A. Aim and methodology of the study 

Aspirating and pipetting samples tested by RTH should be performed by the use of new tips for each 

RTH test.  Repeating RTH on the same sample may suggest using the same tip to distribute this sample 

into the different RTH tubes for more convenience and saving tips.  An experiment was designed to  

inspect the reliability of employing the same tip for successive pipetting from the same sample by using 

cWB from healthy blood donors (p.3-1).  This was critical to address the right methodology of performing 

RTH in-double as well as studying the precision of RTH and similar investigations where successive  

pipetting from the same sample is applied.  The cWB of each blood donor was distributed into 4 Epp 

tubes (p.3-2-2), 500 µL in each, by using 3 different modes of pipetting as described as follows: (A) using 

the same tip for the first two tubes and a new tip for the other ones.  (B) using the same tip for the first 

three tubes and a new tip for the 4th one.  (C) using a new tip for each pipetting. 
 

B. Results of the quantity assessment of the tips of the micropipette used in RTH 

The statistics of these results are described in Tab.4-1-1-5-B.  The mean weight of the cWB pipetted by 

employing pre-used tips (504.1 mg) was significantly higher (p<0.0005; paired sample t test) than that 

pipetted by using new tips (528.1 mg).  The mean increase in the cWB amount delivered by the pre-used 

tips compared with new ones was 4.1%.  Interestingly, the variation of the pre-used tips was 2 times 

higher than that of the new ones (SD=1.7 vs. 3.4).  Only new tips were therefore used for all  

the measurement in our investigations including the RTH ones. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-1-1-5-B: Descriptive Statisticsa of the quantity assessment of the tips  
of the micropipette used in RTH. 

                                            WB Weightb                          . Descriptive 
Statistics 
(n=36) 

New Tip 
(mg) 

Used Tip 
(mg) 

Increasec (%) 

Range 6.4 11.6 81.3 
Minimum 501.0 521.3 4.1 

Maximum 507.4 532.9 5.0 

Mean 504.1 528.1 4.8 

SD 1.7 3.4 101.4 

CV (%) 0.3 0.6 92.2 
a The detailed results are described in Tab.Ab.4-1-1-4. 
b WB Weight= the weight of the 500 µL cWB pipetted into Eppendorf tubes by using new or used 
tips. 
c Increase= the percentage of the increase in the cWB amount pipetted by using used tips com-
pared with that pipetted by using a new tip. 
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4-1-1-6. Correction of the identification of the retention index of large platelet (PLCR-RI) 

The original formula of PLCR-RI was based on the percentages of large PLT (p.3-4-3-3)3, whilst the  

corrected was calculated by using their absolute count in order to improve its significance, as  

described in p. 5-1-1-7 and p.5-4-3-3-A.  The new identification of PLCR-RI was as follows4: 
 

PLCR-RI (%) = [(b.F-PLCR x b.F-PLT) – (a.F-PLCR x a.F-PLT)]  x 100 

      b.F-PLCR x b.F-PLT 
 

 

4-1-1-7. Addressing the second SOP of RTH (SOP-2) 

Due to the improvements implicated by the modifications suggested in this chapter (p.4-1-1-1 to 6), the 

SOP-1 of RTH described in p.3-4-3-2 was improved to the “SOP-2” which took into consideration the 

following alteration: 

4-1-1-7-1. The amount of the tested material to be added into RTH tube should be 500 µL instead of 

450 µL in the SOP-1(p.3-4-3-2-2-1) and by the use of a new tip for each measurement. 

4-1-1-7-2. No addition of the reactivating reagent to the tested materials is required (p.3-4-3-2-2-2). 

4-1-1-7-3. The b.F measurements (before passing RTH filter; p.3-4-3-2-2-4) should be performed on the 

tested material in the original collecting tube just before transferring 500 µL of this material 

to RTH tube.  The collecting tube should be rested (on rotator) before performing the  

b.F measurements to assure homogeneity and PLT calmness. 

4-1-1-7-4. Exclusion of the pre-incubation of RTH tubes before centrifugation (p.3-4-3-2-2-3). 

4-1-1-7-5. The centrifugation of the materials in RTH tubes (p.3-4-3-2-2-5) is defined at 110 g/ 5 min.  

4-1-1-7-6. The next steps of performing RTH i.e., applying the a.F measurements on RTH tube after 

mixing the centrifuged cWB thoroughly by vortex for 3 min are performed as described in the 

SOP-1 (p.3-4-3-2-2-5 and 6). 

4-1-1-7-7. The corrected formula of PLCR-RI (p.4-1-1-6) should be considered in RTH determinations. 

These points combined represented the second SOP of RTH (SOP-2) performed on cWB. 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                 
3 The initial formula: PLCR-RI (%) = ((b.F-PLCR)- a.F-PLCR)) / (b.F-PLCR) x 100 
  b.F-PLCR= PLCR ratio measured before the passage of RTH filter; a.F-PLCR=PLCR ratio measured after passing RTH filter. 
4 b.F-PLT= PLT count measured before the passage of RTH filter;  a.F-PLT= PLT count measured after passing RTH filter. 
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4-1-2. Identifications and investigations addressing to 

the third SOP of RTH assay (SOP-3) 

4-1-2-1. Improving protocol: Aim and methodology of the study  

After addressing the second SOP of RTH (SOP-2; p.4-1-1-7), it was essential to investigate the precision 

and the reliability of RTH as a "simple" assay applied on cWB for screening the function of PLT.   

An improving protocol was designed for this purpose.  Our investigations represented one part of an inter-

laboratory study held in different university centers in Europe [König 2002]5.  Blood was withdrawn from 

healthy blood donors (BD; p.3-1), collected in 10 mL citrated tubes (p.3-3-1) and then distributed into a 

series of 10 RTH tubes (p.3-2-1); 0.5 mL in each.  RTH was performed according to SOP-2 (p.4-1-1-7).  

The b.F measurements (before the passage of the filter) were performed on the cWB in the collection 

tubes.  The series of 10 RTH tubes were centrifuged simultaneously and the a.F measurements (after the 

passage of the filter) were performed on the centrifuged cWB collected in the lower parts of RTH tubes 

after mixing the blood by vortex for 3 min.  The complete blood cell count (CBC) was determined in each 

measurement by the use of an automatic cell counter; the values of PLT count and PLCR ratio were 

registered and the corresponding retention indices (PLT-RI and PLCR-RI) were accordingly calculated.  

Both b.F and a.F measurements were performed in-double and these two repetitions were referred to as 

“horizontal measurements”.  A third repetition was performed whenever possible to have more insight, but 

only the values of the 1st and the 2nd repetitions were used to compute the mean of the horizontal meas-

urements and correlated determinations.  The measurements performed on the series of 10 RTH tubes of 

each BD were referred to as “in-series measurements”, and the corresponding values were consequently 

referred to “in-series ones”.  The 10 in-series a.F measurements of each cWB sample were not simulta-

neously performed but successively with increasing time intervals since the measurements by the cell 

counters required minimum time (ca. 3 min) and were occasionally interrupted by the routine work.  Nev-

ertheless, this was helpful to study the influence of time on the retention of PLT by RTH filter within the 

limit of 180 min after blood withdrawal under which the whole a.F measurements had to be performed.  

The improving protocol was performed in 4 stages; the stages 1 to 3 are described in the section study-

ing the influence of time on PLT-RI (p.4-1-2-2-1), and the stage 4 is described in the section handling the 

influence of mixing cWB by vortex on PLT-RI (p.4-1-2-3-1). 

 

4-1-2-2. Initial results and the influence of time on the retention of platelet 

4-1-2-2-1. Methodology of the successive stages investigating the influence of time 

In the 1st stage of the study, the improving protocol (p.4-1-2-1) was performed on 5 BDs within 180 min 

after blood withdrawal.  The initial results of this stage pronounced highly elevated levels of PLT-RI that 

increased apparently with time.  The influence of time was therefore inspected in the next 2 stages.  In 

the 2nd stage, cWB was collected from one BD and distributed into 2 collecting tubes (samples 6a and 

6b) that underwent the same improving protocol but with different low and high time intervals (<80 min 

and >120 min after blood withdrawal respectively; Tab.4-1-2-2-2).  This was an attempt to check whether 

                                                                 
5 Berlin (Grigorove), Frankfurt (Klinkhardt), Giessen (Mucha/Lauer), Hamburg (Gutensohn), Ludwighafen (Hellstern), 
Wien (Dostal). . 
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increasing time intervals required for performing the successive a.F measurements on the 10 RTH tubes 

within each series were responsible for the in-series increase of PLT-RI in the 1st stage.  Another  

confirmatory inspection on the influence of time was done in the 3rd stage of the study in order to avoid a 

probable exceptional individual response in the 2nd stage (samples 6A, 6B) that was performed on one 

BD.  The improving protocol was performed on another 2 BDs (samples 7 & 8) but with a special care to 

finish the measurements within 60 min, as described in Tab.4-1-2-2-2. 

4-1-2-2-2. Initial results of the improving protocol and investigation of 

the influence of time on the retention of platelets 

The main key findings are described in Tab.4-1-2-2-2.  In 

the 1st stage, the values of PLT-RI were remarkably  

elevated (mean=45.7-81.7%) with high variation 

(SD=12.0-14.9), as shown in Fig.4-1-2-2-2-1.  The mean 

of PLT-RI within each series increased significantly by 

time (r= 0.68; p<0.0005: Fig.4-1-2-2-2-2); where the last 

in-series measurements (RTH tube No. 10) were  

extremely higher (33.2-45.7%) than that of the first ones 

(RTH tubes No 1), as described in Tab.4-1-2-2-2.  On the 

other hand, the second a.F measurements implicated 

another significant increase in PLT-RI compared with the 

first ones (horizontal increase up to 40%; Fig.4-1-2-2-2-

3).  In the 2nd stage, the paired t-test revealed no signifi-

cant difference between the mean PLT-RI values of  

samples 6a and 6b (77.9% vs. 85.9%; p>0.3: Fig.4-1-2-2-2-1) which were comparably high with the 

means of PLT-RI in the 1st stage (82.1% vs. 60.3%: Tab.4-1-2-2-2).  The variation of sample 6a (SD=20.7) 

sustained the high level found in the 1st stage (mean SD= 15.3), as shown in Fig.4-1-2-2-2-1.  Surpris-

ingly, the variation of PLT-RI in sample 6b, that was tested with high time intervals, delivered much lower 

values than that of sample 6a which was tested with lower time intervals (SD= 4.3 vs. 20.7: p<0.05; 

Fig.4-1-2-2-2-1).  Both samples 6a and 6b revealed positive correlation between PLT-RI and time (r=0.80 

vs. 0.36) which was significant only in sample 6a (p<0.01: Fig.4-1-2-2-2-2-a).  The horizontal increase of 

PLT-RI was slightly higher in sample 6a (10.5%) than in 6b (8.1%), as demonstrated in Fig.4-1-2-2-2-3.   
 

 

 

 

 

 

 

 

 

 

Fig. 4-1-2-2-2-2: PLT-RI against time intervals of the in-series measurements (n=10) in stages 1-3. 
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Table 4-1-2-2-2: Main key results* of RTH measurements in the different stages performing the improving protocol (SOP-2: stages 1-3 and SOP-3: stage 4)**. 
Stagea Sampleb Timec b.F PLT Count  b.F Measurements PLT-RI PLCR-RI PDW-RI MPV-RI WBC-RI RBC-RI HGB-RI HCT-RI 

No.  No.   Mean CV PLCR PDW MPV WBC RBC Mean SD s.Incr h.Incr Mean SD RI-Dif f  Mean SD Mean SD Mean SD 
s.Dec

r 
   

  min x103/µL % % f L f L x103/µL x106/µL %  % % %  % %  % % %  % % % % 

1 1 38-77 253 0.0 15.9 9.3 9.1 11.1 4.2 45.8 14.7 33.2 6.8 25.9 12.7 19.9 -15.3 13.1 -6.3 11.5 -5.0 4.0 4.5 -4.7 -5.0 -3.6 

 2 39-80 141 0.0 15.1 9.9 8.2 5.0 4.3 52.3 14.9 47.5 8.7 18.7 18.6 33.6 -27.6 11.7 -19.5 6.4 -8.2 8.5 10.0 -6.2 -5.5 -5.1 

 3 54-115 407 0.3 6.8 8.2 7.0 7.2 3.8 64.1 15.4 37.7 -0.2 15.4 34.6 48.6 -5.7 5.5 -18.3 4.2 -35.6 17.9 37.8 -7.4 -7.4 -5.8 

 4 83-112 261 0.5 15.6 10.1 8.4 3.9 3.9 81.7 12.0 36.4 13.3 65.3 24.1 26.2 -38.7 22.8 -14.5 6.1 -48.6 19.9 48.7 -7.2 -6.0 -4.4 

 5 87-117 193 1.8 18.5 11.1 8.9 7.0 3.6 62.3 14.5 47.5 14.5 34.2 18.5 31.5 -28.7 11.8 -19.7 8.2 -7.9 10.4 26.4 -5.2 -6.5 -3.9 

2 6a 50-86 147 0.5 33.8 14.6 11.2 6.6 4.1 77.9 20.7 61.4 10.5 68.4 26.2 22.2 -28.4 10.5 -7.0 2.8 -31.3 14.4 25.0 -5.8 -4.9 -4.7 

 6b 118-147 147 0.5 33.8 14.6 11.2 6.6 4.1 85.9 4.4 6.1 8.1 81.0 6.4 21.1 -35.2 16.6 -7.7 6.3 -31.4 7.2 -1.5 -7.3 -5.9 -6.0 

3 7 15-39 207 3.1 12.5 9.2 7.9 6.7 4.2 40.0 15.4 41.6 8.1 11.0 16.6 29.0 -4.7 9.6 -12.5 8.3 -4.4 2.0 6.0 -7.1 -4.0 -7.1 

 8 35-58 140 3.0 28.9 14.0 10.2 9.0 4.2 52.1 11.7 35.4 23.2 48.9 9.0 3.3 -6.9 6.3 -4.0 5.5 -3.1 1.5 2.8 -4.8 -4.6 -4.0 

4 9 29-118 210 1.0 14.3 10.0 8.1 4.3 4.3 25.6 6.2 -7.6 2.6 23.3 6.3 2.1 -1.7 2.5 -1.1 0.7 3.0 1.6 1.2 -5.3 -4.0 -5.1 

 10 59-98 149 0.5 21.1 11.0 9.3 3.4 3.9 29.9 5.1 2.7 1.5 30.5 7.3 -0.6 -3.2 3.2 0.9 2.4 7.2 2.0 0.0 -2.5 -1.1 -2.4 

 11 31-74 159 2.7 15.3 10.3 8.3 6.4 4.9 28.2 3.0 -3.1 -6.0 26.0 3.8 2.2 1.8 4.5 -1.9 1.5 7.7 2.6 -5.5 -3.3 -2.5 -2.6 

Stages 1-3  210 1.1 20.1 11.2 9.1 7.0 4.0 62.5 13.8 38.5 10.3 41.0 18.5 26.2 -21.2 12.0 -12.2 6.6 -19.5 9.5 17.7 -6.2 -5.5 -5.0 

Stage 4  172 1.4 16.9 10.4 8.5 4.7 4.4 27.9 4.7 -2.7 -0.6 26.6 5.8 1.2 -1.0 3.4 -0.7 1.5 5.9 2.0 -1.4 -3.7 -2.5 -3.3 

Sig.*** “p value” of the corrections by using SOP-3 (stage 4) vs. SOP-2 (Stages 1-3)  0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.000 0.001 0.000 0.000 0.000 0.012 0.010 0.000 0.000 0.000 
 

Note: Unless otherwise is mentioned, the values of the different retention indices (RIs) are the in-series means of the first in-double measurements. 
* This table was intensively summarized from the complete 72-page table (Tab.Ab.4-1-2-1), where the detailed results of the successive horizontal and in-series measurements 
   before and after the passage of RTH filter as well as the resulting RIs and their horizontal and in-series variations are described.  
**Compared with SOP-2, the main modifications adapted in SOP-3 were: A.) The blood after the centrifugation of RTH tubes should be mixed by applying the new standardized slight vortex  (=3 sec; p.4-1-2-4-4) 
instead of 3 min in SOP-2 (p.4-1-1-7) and SOP-1 (p.3-4-3-2). The a.F measurements should be performed within 1-2 min afterwards.  B.) Performing RTH assay within 120 min after blood withdrawal.  Further 
details are explained in p.4-1-2-3-1 and p.4-1-2-5. 
*** The significance of the differences between SOP-3 and SOP-2 measurements (p = the probability value) was computed by using t-test for equality of means and Levene’test for equality of variances (the 
value p=0.000 is equivalent to p<0.0005). 
a The different stages performing the improving protocol of this study  (p.4-1-2-1). 
b Each sample was obtained from one healthy blood donor (p.3-1) except for samples 6a and 6b which were taken from the same blood donor for comparison purposes (p.4-1-2-2-1). 
c The time intervals of performing the a.F measurements (on the blood after passing RTH filter ) on the first and the last RTH tube of the 10-RTH tube series for each sample (the delay of performing RTH 
after blood withdrawal was also related with the routine run of the laboratory “Institute of Clinical Hemostaseology and Transfusion Medicine). 
b.F PLT Count= PLT count measured in cWB before the passage of RTH filter where the mean and the CV of the in-double measurements are given.  
PDW-RI, MPV-RI, WBC-RI, RBC-RI, HGB-RI and HCT-RI= the retention indices of PDW, MPV, WBC, RBC, HGB and HCT respectively which we identified in p.4-1-2-3-1-1. 
SD = the standard deviation;  
s.Incr = the series increase i.e., the increase in PLT-RI observed in the last in-series a.F measurement (RTH tube #10) compared with that of the first one (RTH tube #1). 
h.Incr = the horizontal increase i.e., the in-series means of the increases of PLT-RI in the second in-double measurements compared with the first ones. 
RI-Diff = the decrease of the values of PLCR-RI in comparison with PLT-RI. 
s.Decr = the decrease in WBC-RI observed in the last in series measurement (RTH tube #10) compared with that of the first one (RTH tube #1). 
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The mean of PLT-RI (46.1%) in the 3rd stage showed a remarkable decrease compared with that in the 

previous stages (mean=67.1%).  But the variation (mean SD= 13.6) and the in-series (38.5%) as well as 

the horizontal (15.6%) increase of PLT-RI were relatively high and comparable to that encountered in the 

earlier stages (Fig.4-1-2-2-2-1 & 3).  Actually, the increasing time intervals kept on influencing PLT-RI 

positively in this stage (r>0.8; p<0.005), as demonstrated in Fig.4-1-2-2-2-2. 

Our investigation revealed strong positive correlation between PLCR-RI and PLT-RI within the stages 1-3 

(r=0.78; p<0.0005), as illustrated in Fig.4-1-2-2-2-4.  In parallel with PLT-RI, PLCR-RI revealed high values 

in stages 1-3 but they were less elevated than PLT-RI and demonstrated higher in-series variations 

(Fig.4-1-2-2-2-4 and Fig.4-1-2-3-2-8) and similar horizontal ones (Tab.Ab.4-1-2-1). 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4-1-2-2-2-3: Distribution of the first (1st ) and the second Fig. 4-1-2-2-2-4: PLCR-RI against PLT-RI 
(2nd) in-double measurements of PLT-RI within the different in stages 1-3. 
series (n=10) of samples in stages 1-3. 

 
4-1-2-3. Influence of mixing cWB on PLT-RI and interacting retention indices (RIs) 

4-1-2-3-1. Background, aim, identifications and methodology 

A. Enlarging the improving protocol: Identification of new retention indices for 

the parameters of complete blood counting (CBC) 

The application of different time intervals in the improving protocol in stages 1-3 (p.4-1-2-2-2) failed to 

decrease the elevated PLT-RI values and the corresponding high variation.  In addition, three main  

observations had initiated our investigation to the influence of mixing the cWB by vortex on PLT-RI: 

a.) The b.F measurements of PLT delivered low variations (mean CV=1.1%; Tab.4-1-2-2-2).  Whilst the 

significant variations were restricted in the a.F measurements; where RTH tubes were vortexed  

thoroughly (ca 3 min) according to the SOP-1 of RTH assay (p.3-4-3-2-2-6). 

b.) The horizontal increase in PLT-RI of the same RTH tube (i.e., in the second compared with the first 

in-double a.F measurements) could not be attributed to the differences of RTH filters. 

c.) The elevated levels of PLT-RI and their in-series as well as horizontal increases (p.4-1-2-2-2) were 

signs for probable PLT aggregation due to hyperactivation by shear stress (centrifugation). 

As an attempt to have better understanding to the reasons of PLT-RI variability and the probable interact-

ing factors as well as to have more comprehensive insight into the specificity of RTH, we determined to 
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enlarge the improving protocol and identify additional retention indices (RIs).  In parallel to PLT and PLCR 

measurements (p.4-1-2-1), the whole parameters detected by CBC (complete blood counting i.e., PLT 

size distributions, leukocytes and their main normal types, erythrocytes, and RBC indices) were meas-

ured before and after centrifugation in order to identify a corresponding retention index (RI) for each i.e., 

PDW-RI, MPV-RI, WBC-RI, NEUT-RI, LYMP-RI, MXD-RI, RBC-RI, HGB-RI, HCT-RI, MCV-RI, MCHC-RI 

and RDW-RI,  The formula of these new (RI) was identified as follows: 

RI (retention index %) = (b.F measurement – a.F measurement)  x 100 
                             b.F measurement 

 

B. Methodology of investigating the influence of mixing cWB on platelet and RTH assay 

Two approaches were used for this purpose: 

(a) A morphological pilot study of “blood mixing effect” was designed to investigate the influence of 

different modes of mixing cWB (mainly vortex) on PLT count and PLT clumping as well as on PLT-RI and 

interacting RIs (p.4-1-2-4).  A “new standardized vortex method” was addressed to minimize PLT  

clumping and the a.F variations (after centrifugation and passing RTH filter). 

(b) New RIs were identified in the enlarged improving protocol (p.4-1-2-3-1-A) for stages 1 to 3  

(samples 1-8). The b.F and a.F measurements required for calculating RIs were obtained from the  

corresponding CBC (complete blood count).  The enlarged protocol (i.e.. including the new identified RIs; 

p.4-1-2-3-1-A) was performed on 3 BDs (stage 4: samples 9-11) taking into consideration the new  

standardized vortex method addressed by the study of “blood mixing effect” (p.4-1-2-4-4) and finishing the 

RTH assay within 120 min after blood withdrawal.  The series of the last sample (No.11) consisted of 13 

RTH tubes instead of 10 to have even further confirmation about the results.  The horizontal and the  

in-series variations for the b.F and a.F measurements as well as for the RIs were calculated thereafter for 

the whole 4 stages.  A comparison between the findings of the enlarged protocol with and without  

applying the standardized vortex (stage 4 vs. stages 1-3) as well as a comparison among the results of 

applying different time intervals in stage 4 may then give further insight into the influence of mixing cWB 

by vortex after the passage of RTH filter.  We aimed to inspect the probable improvement by applying the 

new standardized vortex method in (p.4-1-2-4-4) stage 4.  The results of “approach B” are presented in 

the next section (p.4-1-2-3-2), whereas the results of approach A are described in section p.4-1-2-4. 

 

4-1-2-3-2. Results of the enlarged improving protocol after applying the new standardized  

vortex method compared with that before (stages 4 vs. 1-3) 

The detailed results for the a.F and b.F measurements, RIs and variations are reported in a 72-page table 

(Tab.Ab.4-1-2-1).  The main key findings (summarized in Tab.4-1-2-2-2) may be described as follows: 

A.) PLT-RI corrections: No significant difference was recognized between the means as well the 

variances of PLT-RI in samples 9-11 (stage 4) despite different time intervals were applied in each  

(29-118 min), as shown in Fig.4-1-2-3-2-1.  The mean values of PLT-RI in these samples (9-11) were 

strongly lower (55.6%; p<0.0005) than that found in samples 1-8 (stages 1-3: mean= 27.7% vs. 62.5%), 

as illustrated in Fig.4-1-2-3-2-1.  The significant increase by time found in stages 1-3 was substantially 

eliminated in stage 4 (Fig.4-1-2-3-2-2).  On the contrary to the sharp in-series increases of PLT-RI values 

in stages 1-3 (mean=38.5%) and their significant correlation with time (r=0.717; p<0.0005), these 
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Fig. 4-1-2-3-2-2: PLT-RI against time intervals of 
the in-series measurements of stage 4 compared 
with that of stages 1-3. 

Fig. 4-1-2-3-2-1: Distribution of the in-series  
measurements (n=10) of PLT-RI in stage 4 compared with that in stages 1-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-1-2-3-2-3: Distribution of the first (1st) and second (2nd) in-double measurements of PLT-RI 
within the different series (n=10) of samples in stages 1-4.  

 

increases were minimized to very low levels in stage 4 (range= -7.6% to 2.7%), and the average correla-

tion switched from positive to negative ranges (r=-0.046).  Levene’s test spelled out significant difference 

in the variation of PLT-RI between stages 1-3 and 4 (mean SD= 13.8 vs. 4.7; p<0.0005: Fig.4-1-2-3-2-1).  

Also, the high horizontal increase of PLT-RI observed in stages 1-3 (mean=10.3%) declined substantially 

in stage 4 (p<0.0005) reaching negative level (mean= -2.7%) which implicated actual decrease (Tab.4-1-

2-2-2), as demonstrated in Fig.4-1-2-3-2-3. 

B.) WBC-RI and RBC-RI correction: The improvements in the measurements of PLT-RI in 

stage 4 were associated with essential coincidences in the RIs of WBC and RBC.  The relationship  

between WBC-RI and PLT-RI converted from strongly negative in stages 1-3 (r= -0.82; p<0.0005) to  

insignificant positive in stage 4 (r=0.30), as illustrated in Fig.4-1-2-3-2-4.  The extremely negative values 
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Fig. 4-1-2-3-2-6: Conversion of correlation 
between RBC-RI and PLT-RI from negative  
in stages 1-3 to positive in stage 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-1-2-3-2-4: Conversion of the correlation Fig. 4-1-2-3-2-5: Distribution of the in-series 
between WBC-RI and PLT-RI from strongly measurements (n=10) of WBC-RI in stages 1-4. 
negative in stages1-3 to positive in stage 4. 

 

of WBC-RI in stages 1-3 rose up consequently to low 

positive values in stage 4 (mean= -19.5% vs. 5.9%; 

p<0.0005) along with significantly lower variation (mean 

SD=9.5 vs. 2.0; p=0.012), as shown in Fig.4-1-2-3-2-5.  

A similar pattern of converted correlation was  

pronounced between RBC-RI and PLT-RI where it 

switched from a slight negative and significant correla-

tion in stages 1-3 (r=-0.33; p=0.002) to a positive one 

in stage 4 (r=0.49; p=0.004), as illustrated in Fig.4-1-2-

3-2-6).  This conversion was associated with a signifi-

cant rise in the RBC-RI values in stage 4 compared 

with that in stages 1-3 (-3.7% vs. -6.2%; p<0.0005).  

The relative increase of RBC-RI values in stage 4 was 

remarkably lower than that of WBC-RI (40.4% vs. 

130.5%), as demonstrated in Fig.4-1-2-3-2-4 & 6. 

C.) PLCR-RI correction: The values of PLCR-RI in stage 4 held the strong positive  

correlation with PLT-RI found in the stages 1-3 (r=0.75; p<0.0005).  But the big decrease of the values of 

PLCR-RI compared with PLT-RI values (RI-Diff; Tab.4-1-2-2-2) founded in stages 1-3 was minimized 

sharply in stage 4 (21.5% vs. 1.3%; p<0.0005), as illustrated in Fig.4-1-2-3-2-7.  Consequently and in 

parallel with PLT-RI, the high variations of PLCR-RI in stages 1-3 decreased significantly (p=0.002) in 

stage 4 (mean SD=18.5 vs. 5.8).  Also, the mean of the high in-series increase of PLCR-RI measure-

ments in stages 1-3 (32.4%) was eliminated in stage 4 and converted to insignificant decrease (-3.4%), 

as shown in Fig.4-1-2-3-2-8. 

D.) PDW-RI and MPV-RI correction: Both PDW-RI and MPV-RI were extremely negative in 

stages 1-3 and rose up significantly (p<0.0005) to low negative levels in stage 4 (mean PDW-RI=  

-21.1% vs. -1.0 %; mean MPV-RI=-12.2 vs. 0.7%).  The high variation of both RIs in stages 1-3 
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Fig. 4-1-2-3-2-7: PLCR-RI against PLT-RI in stage 4 Fig. 4-1-2-3-2-8: Distribution of the in-series 
with line of significant fit comparable to that in measurements (n=10) of PLCR-RI in stages 1-4. 
stages 1-3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-1-2-3-2-9: Distribution of the in-series measurements (n=10) of PDW-RI and MPV-RI in stages 1-4. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-1-2-3-2-10: Conversion of the relationship of PDW-RI and MPV-RI with PLT-RI 
from negative in stages 1-3 to positive in stage 4. 
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decreased significantly in stage 4 (mean SD = 12.0 vs. 3.4 and 6.6 vs. 1.5 respectively; p<0.001), as 

shown in Fig.4-1-2-3-2-9.  Of specific interest was the conversion of correlation between PLT-RI and each 

of PDW-RI and MPV-RI from an inverse relationship in stages 1-3 (r= -0.44 and -0.16) to a positive one in 

stage 4 (r= 0.12 and 0.03), as demonstrated in Fig.4-1-2-3-2-10. 

E.) RIs of the main normal types of leukocytes i.e., LYM-RI, NEU-RI and MXD-RI: These RIs 

(identified in section p.4-1-2-3-1-A) had intimate and proportional relationships with WBC-RI  

throughout the whole stages (1-4) of the improving protocol (p<0.001).  Consequently these indices  

demonstrated the same pattern of correlation with PLT-RI as WBC-RI did (Fig.4-1-2-3-2-11).  No sign of a 

significant correlation between the variations of WBC-RI and the RI of any specific type of leukocytes 

was observed. 

F.) RIs of the the erythrocytes indices i.e., HGB-RI, HCT-RI, MCV-RI, MCHC-RI and RDW-RI: 

The retention indices of the different RBC indices (identified in section p.4-1-2-3-1-A) demonstrated  

diverse correlations with RBC-RI.  Both HGB-RI and HCT-RI were significantly and positively  

correlated with RBC-RI (p<0.0005), but this correlation was stronger in stage 4 than in stages 1-3  

(HGB-RI: r=0.87 vs. 0.43; HCT-RI r= 0.96 vs. 0.46).  There was insignificant low positive correlation  

between RDW-RI and RBC-RI, but it was more remarkable in stage 4 than in stages 1-3 (r= 0.43 vs. 

0.17).  An inverse pattern of correlation with RBC-RI was delivered by MCV-RI, MCH-RI and MCHC-RI 

which demonstrated more remarkable negative effects with RBC-RI in stages 1-3 (r= -0.26 to -0.58) than 

in stage 4 (r=-0.07 to-0.28), as illustrated in 

Fig.4-1-2-3-2-12. 

 

Fig. 4-1-2-3-2-12: Scatter matrix of the mutual Fig. 4-1-2-3-2-11: Scatter matrix of the mutual correlations 
correlations between the RIs of the main types between the RIs of the main indices of erythrocytes  
of leukocytes, WBC-RI and PLT-RI. and RBC-RI. 
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4-1-2-4. Morphological pilot study to the influence of mixing cWB on PLT count, PLT-RI and 

the interacting RIs: Addressing a standardized mixing method 

4-1-2-4-1. Objectives and methodology 

This study was designed as an attempt to interpret the unacceptable high means and variability of  

PLT-RI delivered in stages 1-3 of the improving protocol (p.4-1-2-2-2).  The influence of different modes of 

mixing the blood on PLT clumping and PLT count as well as on the measurements of PLT-RI and the  

probable interacting retention indices (RIs) were investigated under morphological control by phase-

contrast microscopy.  We focused our interest on the vortex (V) as a mean of mixing the blood since it 

was recommended by the first SOP of RTH (p.3-4-3-2).  Different modes of vortex were applied within 

each experiment where S.V, M.V, H.V, >H.V referred to slight, moderate, high, and further high (for 

about 1 min) vortex modes respectively.  The study composed of series of small experiments and was 

performed on cWB from “healthy” blood donors (BD; p.3-1).  We intended to reflect in this chapter only 

the key experiments where two approaches were considered on the influence of mixing the blood on PLT: 

A. Experiments on resting cWB (First Approach) 

Two experiments were performed on normal resting blood (undisturbed by vortex or centrifugation); the 

tested tubes were rested on rotator for 10 min before starting the experiments. 

(a) First experiment: Blood drawn from one blood donor was distributed into 4 Epp tubes (Eppen-

dorf tubes; p.3-2-2); 0.5 mL in each.  Different vortex modes were applied on each Epp tube, and  

thereafter CBC (complete blood count; including PLT count) was performed on blood (Tab.4-1-2-4-2-a). 

(b) Second experiment: 0.5 mL of the cWB drawn from one blood donor and collected in citrated 

SM tube (Sarstedt monovett 5 mL; p.3-2-1) was transferred into one Epp tube (p.3-2-2).  Variant modes 

of vortex were successively applied on each of SM and Epp tube.  A comparison between the  

influence of vortex on the blood in the big tube (SM) and that in the small one (Epp) was possible by 

performing CBC after the application of each vortex mode, as described in Tab.4-1-2-4-2-b. 

B. Experiments on cWB after centrifugation and passing RTH filter (Second Approach) 

After finding out the significant inverse correlation between the rate of vortexing the resting blood and the 

consequent PLT count in the first approach of experiments (p.4-1-2-4-1-A), we stepped ahead to  

examine this phenomenon on the blood in RTH tubes after centrifugation and passing RTH filter which 

might have serious impact on RTH assay reliability.  The SOP-2 of RTH (p.4-1-1-7) was applied taking 

into further consideration the new RIs for the other blood cells identified in the enlarged practical  

protocol (WBC-RI, RBC-RI; p.4-1-2-3-1-A).  The b.F measurements were performed on the SM tubes.  

After the centrifugation of RTH tubes, variant methods of mixing were applied on each tube before  

performing the a.F measurements.  Three key experiments are mentioned here (p.4-1-2-4-3): 

a.) First experiment: Blood was drawn from one blood donor and collected into 2 SM tubes.  

The blood from the first and the second SM tube was transferred then to 3 RTH tubes (“Series 1”) and to 

4 RTH tubes (“Series 2”) respectively (0.5 mL each).  Different modes of vortex were applied on ”Series 1” 

after centrifugation.  The results demonstrated the initial superiority of the “slight vortex” spelled by the 

earlier experiments on resting blood (p.4-1-2-4-3).  Slight vortex was therefore applied after centrifugation 

in “Series 2” in comparison with mixing by a plastic pipette (successive aspiration and pipetting) for  

further validation, as described in Tab.4-1-2-4-3-a. 
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b.) Second experiment: To confirm the influence of vortex and standardize the “slight vortex” 

mode for mixing the a.F blood in RTH assay, a second experiment was done.  Blood was drawn from one 

blood donor and distributed into 6 RTH tubes.  After centrifugation, the blood was mixed by applying 

increasing vortex rates in comparison with mixing by pipette, as shown in Tab.4-1-2-4-3-b. 

c.) Third experiment: Due to the evident influence of the inconvenient mix and/or vortex on the 

a.F measurements of RTH and the initial superiority of “slight vortex” revealed by the earlier experiments 

(p.4-1-2-4-3 & 4), further investigations were done to standardize the slight vortex mode in order to  

minimize possible variations and spurious results.  Mixing by pipette and micropipette was used to  

compare data (Tab.Ab.4-1-2-4-3-d.). Among these investigations, we described here (Tab.4-1-2-4-3-c) 

one key example on the cases where PLT count was not significantly influenced by increased vortex 

rates and the slight vortex mode at least confirmed its superiority. 

The findings of CBC and RTH assay in both approaches (p.4-1-2-4-1-A & B) were controlled by phase-

contrast microscopy (p.3-5-2).  The detailed results of the complete experiments of this pilot study (CBC 

and RTH measurements and their variations) are described in Ab.4-1-2-4.  Only key examples  

representing the main successive steps of this study are summarized in the next sections (p.4-1-2-4-2 & 

3) concluded by the description of the standardized “slight vortex” in section p.4-1-2-4-4. 
 

4-1-2-4-2. Results of the key experiments studying the influence of vortex on resting cWB 

a.)   In the first experiment (Tab.4-1-2-4-2-a), the higher rate of vortex delivered significant decrease in 

PLT (81.1%) associated with a marked increase in WBC (29.9%), as demonstrated in Fig.4-1-2-4-2-a & 

b.  Interestingly, the microscopic control showed no increase in WBC and revealed significant increases 

in PLT aggregates (Aggr: up to 70%) proportional to the decreases in PLT count.  Moreover, significant 

amounts of these Aggr formed WBC like particles (Tab.4-1-2-4-2-a) that were positively correlated with 

the increased count of WBC. 
 

Tables 4-1-2-4-2-a & b: Summary 

a of the key results of the main two 
experiments studying the influence of vortex on resting cWB. 

 

 Table 4-1-2-4-2-a: First experiment. 
Mixing 
Mode 

PLT 
(x103/µL) 

PLCR 
(%) 

WBC 
(x103/µL) 

RBC 
(x106/µL) 

Microscopic  
Findings 

A.F 122 38.9 6.7 4.15 Intact PLT, r. s.Aggr 

M.V 102 41.0 7.1 4.16 Intact PLT, Aggr 10%: s+, m+++, b+. Ros++, Rol++ 

H.V 67 43.3 7.4 4.18 Intact PLT, Aggr 35%: s++, m+, b+++. Ros++, Rol++ 

>H.V 23 31.0 8.7 4.02 Intact PLT, Aggr 70%: s+, m+++, b++. Ros+, Rol++ 

 
Table 4-1-2-4-2-b: Second experiment. 

Test 
Tube 

Mixing 
Mode 

PLT 
(x103/µL) 

PLCR 
(%) 

WBC 
(x103/µL) 

RBC 
(x106/µL) 

Microscopic  
Findings 

SM A.F 175 19.3 3.8 3.76 Intact PLT, r. s.Aggr 
(5 mL) H.V 136 20.6 4.2 3.68 Intact PLT, Aggr 15%: s+++, m+, b++. Ros+, Rol+ 
  Rest  b 137 20.0 4.1 3.68 Intact PLT, Aggr 15%: s+++, m+, b++. Ros+, Rol+ 
  M.V 111 25.2 4.2 3.72 Intact PLT, Aggr 25%: s+++, m+, b++. Ros++, Ro l+ 
  H. V 112 22.1 4.5 3.71 Intact PLT, Aggr 25%: s+++, m+, b++. Ros++, Rol+ 

Epp A.F 185 20.8 3.8 3.68 Intact PLT, r. s.Aggr 
 (1.5 mL) H.V 106 21.3 5.2 3.65 Intact PLT, Aggr 35%: s++, m+++, b++. Ros+, Rol+ 
  >H.V c 18 NA 4.8 3.73 Intact PLT, Aggr 75%: s++, m+, b+++. Ros++, Rol+ 
a The detailed results of the 1st and the 2nd experiments are described in Tab.Ab.4-1-2-4-2-a & b respectively.  b Rest for 10 min.  c Epp tube was 
rested for 60 min before applying further H.V.  SM= Sarstedt monovett 5 mL (p.3-3-1);  Epp= Eppendorf tube (p.3-2-2);  A.F= after filling with a 
pipette;  M.V, H.V = mixing the resting blood by relatively moderate and high vortex modes respectively;  >H.V= further high vortex (for about 1 
min);  Intact PLT = PLT had intact discocytes with less than 10% echinodiscocytes and no spherical or fully activated forms;  r=rare;  Aggr %= 
the percentage of PLT aggregates;  s, m, b= small (2-4 PLT), medium (5-17 PLT), and big (>18 PLT) particles of PLT aggregations;  +. ++. +++ = 
the relative presence;  Ros= rosettes forms (conjugates of PLT adhered around WBC);  Rol= rouleaux (coin-rolls) forms of erythrocytes. 
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b.)   Similarly to the first experiment, the increasing rates of vortex applied on the Epp tubes of the  

2nd experiment delivered significantly elevated PLT count (90.3%) along with WBC increase (26.3%)  

associated with increased PLT aggregation (Aggr: 75%) found microscopically.  But the increase in 

WBC declined slightly by applying further high vortex despite there was a permanent decrease in PLT 

count, as illustrated in Fig.4-1-2-4-2-b.  This controversy could be microscopically explained by the size 

of the different Aggr (Tab.4-1-2-4-2-b).  The coincidence of PLT decrease and WBC increase by applying 

increased vortex rates was less pronounced in the SM tube than in the Epp one; the PLT decrease was 

relatively lower (36.0% vs. 

90.3%) and so was the increase 

in WBC (18.4% vs. 26.3%). 

 

Fig. 4-1-2-4-2-a: PLT and WBC 
counts measured after filling 
(A.F) the Epp tube with blood  
and after applying moderate 
(M.V), high (H.V) and further 
high (>H.V) vortex modes. 

 
Fig. 4-1-2-4-2-b: PLT and WBC 
counts measured after filling 
(A.F) the tube with blood and 
after applying moderate (M.V), 
high (H.V) and further high 
(>H.V) vortex modes and a rest 
of 60 min (Rest). 

 

 

Microscopically, the increases 

of Aggr in the blood in SM 

tubes observed after the suc-

cessive modes of vortex were proportional to the relatively low decreases in PLT count; the percentages 

of Aggr were found to be lower than those observed in the smaller tube i.e., Epp tube (25% vs. 75%).   

In both experiments, the decreases in PLT-RI were associated with relevant decreases in PLCR-RI and 

the microscopic control showed that PLT preserved their integrity after the different modes of vortex, as  

described in Tab.4-1-2-4-2-a & b.  The satellitosis phenomenon (rosette forms; p.3-5-2) was encountered 

in all cases of the moderate and high vortex modes and so were the rouleaux forms of RBC.  The rosette 

forms rose up markedly with the increase of PLT aggregations, as described in Tab.4-1-2-4-2-a & b. 
 

4-1-2-4-3. Results of the key experiments performed on cWB 

after centrifugation and passing RTH filter 

a.) The increased vortex rates applied on RTH tubes in the series “1” of the 1st experiment revealed 

evident decreases in the corresponding a.F measurements of PLT count (51%; Tab.4-1-2-4-3-a).  This led 

to relevant increases in PLT-RI (40.1%), as illustrated in Fig.4-1-2-4-3-a1.  The increases in PLT-RI were 

closely correlated with the incidences of Aggr (up to 35%) and rosette forms observed microscopically as 

well as with the significant decrease in WBC-RI (17.3%).  The decrease of WBC-RI was attributed to the 

increase in a.F count of WBC (17.8%) which was proportional to the increase of WBC-like Aggr observed 
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microscopically (m.Aggr; Tab.4-1-

2-4-3-a). Compared with WBC-RI, 

RBC-RI values decreased less 

significantly (1.9%).  Neverthe-

less, the microscopic control 

showed no increase in the a.F 

counts of WBC or RBC.  PLCR-RI 

increased significantly in parallel 

with PLT-RI (Fig.4-1-2-4-3-a1). 

In the series “2” of the 1st experi-

ment, mixing by pipette led to 

slightly elevated PLT-RI values 

(mean=26.6%) and higher variation (SD= 1.9) compared with the use of slight vortex mode (mean 19.8%. 

SD= 0.0; Fig.4-1-2-4-3-a2).  Similar findings were spelled out by PLCR-RI values after mixing by pipette 

and by slight vortex (mean=27.6% vs. 20.4%; SD=4.3 vs. 1.7).  Microscopically, PLT preserved their 

integrity and disposed few Aggr and rosette forms after mixing by pipette, while these forms were rare by 

using slight vortex mode (Tab.4-1-2-4-3-a). 
b.) In the 2nd experiment, applying increased vortex rates delivered also proportional increases in  

PLT-RI levels (up to 48.6%; Fig.4-1-2-4-3-b) which were intimately related to the increases in Aggr (up to 

50%) and in lower extent to the presence of rosette forms (Tab.4-1-2-4-3-b).  PLT-RI increases were  

significantly associated with the marked decreases in WBC-RI (25.6%).  The decreases in WBC-RI were 

evidently relevant to the increases in WBC like Aggr since no remarkable increase in WBC was found 

microscopically (Tab. and Fig. 4-1-2-4-3-b).  The decreases in RBC-RI were less pronounced compared 

with those of WBC-RI (2.2% vs. 25.6%).  The microscopic control revealed marked increases in RBC 

size-like Aggr by the application of higher vortex rates but no significant variation in the counts of RBC 

was seen.  On the other hand, mixing by pipette led to low variation in PLT-RI comparable to that by 

using slight vortex mode (SD=0.8) but RBC-RI values were found to be positive and significantly higher by 

the use of pipette (2.9% to 9.1% vs. -1.9% to -2.2%;Tab. & Fig.4-1-2-4-3-b). This increases in RBC-RI 

was attributed to lower counts of RBC in a.F measurements (marked microscopically) due to inadequate 

mixing by pipette and it reflected the advantage of using slight vortex on piepette.  PLCR-RI followed the 

same patterns of the variation spelled by PLT-RI, as demonstrated in Fig.4-1-2-4-3-b. 

c.) Further experiments were performed to standardize the slight vortex.  The results are presented in 

Tab.Ab.4-1-2-4-3-c & d, whilst the standardized vortex method is described in the next section (p.4-1-2-

5).  Among these experiments, we mention here in the 3rd experiment, the results of a key example 

(Tab.4-1-2-4-3-c) where increased vortex rates did not lead to significantly higher levels of PLT-RI com-

pared with that spelled by the slight vortex (17.6% vs. 17.3%).  Beyond it, there were even higher varia-

tions in PLT-RI as well as errors in the other RIs of RTH (PLCR-RI and RBC-RI; Fig.4-1-2-4-3-c).  Mixing 

by slight vortex was superior to the use of pipette since the latter demonstrated higher variation in PLT-RI 

(SD=7.2 vs. 1.0) as well as in the other RIs (Tab.4-1-2-4-3-c), as shown in Fig.4-1-2-4-3-c.  Microscopi-

cally, PLT discocytes were intact demonstrating rare Aggr and rosette forms.  No configurations of RBC 

Fig. 4-1-2-4-3-a1: RIs measured  
at increased vortex modes in  
the 1st experiment on RTH.  

Fig. 4-1-2-4-3-a2: Comparison  
between the RIs delivered by mixing 
with pipette (Pip) and slight vortex 
(SV) in the 1st experiment on RTH.  
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rouleaux were objected.  

No remarkable variation 

in WBC or RBC counts 

was observed micro-

scopically in all RTH 

tubes except for the 2nd 

RTH tube which was 

mixed by pipette and 

showed few Aggr 

(<10%), as described in 

Tab.4-1-2-4-3-c. 

 

Tables 4-1-2-4-3-a to c: Key* results of the main three experiments studying 
the influence of vortex and mixing the blood after centrifugation and passing RTH filter 

on PLT-RI and the main interacting retention indices (RIs). 
 

Table 4-1-2-4-3-a: First experiment. 

Tube 
No. 

Measure-
ment 

time 
min 

PLT 
x103/µL 

PLCR 
% 

WBC 
x103/µL 

RBC 
x106/µL 

PLT-RI 
% 

PLCR-RI 
% 

WBC-RI 
% 

RBC-RI 
% 

Microscopic 
Findings 

SM1 b.F 12 182 32.3 7.5 3.74         Intact, r. s.Aggr 

“1st a.F #1. S.V 22 141 29.6 7.3 3.91 22.5 29.0 2.7 -4.5 Intact, r. s-m.Aggr. r.Rol 

Series” a.F #2. H.V 31 120 31.7 7.6 3.94 34.1 35.3 -1.3 -5.3 Intact, Aggr 10%: s+++, m+, b++. Ros+, Rol+ 

  a.F #3. >hv 36 68 30.7 8.6 3.98 62.6 64.5 -14.7 -6.4 Intact, Aggr 35%: s+, m++, b++. Ros++, Rol+ 

SM2 b.F 10 182 30.0 6.9 3.74         Intact, r. s.Aggr 

“2nd a.F #1. Pip 24 136 30.3 6.9 3.85 25.3 24.5 0.0 -2.9 Intact, Aggr 5%: s+, m++, b+. r.Ros, r.Rol 

Series” a.F #2. Pip 27 131 28.9 6.3 3.98 28.0 30.7 8.7 -6.4 Intact, Aggr 10%: s+++, m+, b++. r.Ros, r.Rol 

  a.F #3. S.V 28 146 29.3 6.7 3.95 19.8 21.7 2.9 -5.6 Intact, r. s-m.Aggr, r.Ros. r.Rol  

  a.F #4. S.V 31 146 30.2 6.5 3.86 19.8 19.2 5.8 -3.2 Intact, r. s-m.Aggr, r.Ros. r.Rol 

 
Table 4-1-2-4-3-b: Second experiment. 

Measurement time 
min 

PLT 
x103/µL 

PLCR 
% 

WBC 
x103/µL 

RBC 
x106/µL 

PLT-RI 
% 

PLCR-RI 
% 

WBC-RI 
% 

RBC-RI 
% 

Microscopic 
Findings 

b.F 10 179 21.3 8.2 4.18         Intact, r. s.Aggr 

a.F #1. Pip 23 144 22.9 7.3 3.80 19.6 13.5 11.0 9.1 Intact, r. s-m.Aggr, r.Rol 

a.F #2. Pip 24 146 21.3 7.3 4.06 18.4 18.4 11.0 2.9 Intact, r. s-m.Aggr, r.Rol 

a.F #3. S.V 27 142 21.9 7.5 4.26 20.7 18.4 8.5 -1.9 Intact, r. s-m.Aggr, r.Rol 

a.F #4. S.V 36 140 20.7 7.2 4.27 21.8 24.0 12.2 -2.2 Intact, r. s-m.Aggr, r.Rol 

a.F #5 M.V 29 135 20.3 8.3 4.28 24.6 28.1 -1.2 -2.4 Intact, Aggr <5%: s+, m+++. r.Ros, r.Rol 

a.F #6. H.V 35 55 25.6 9.6 4.35 69.3 63.1 -17.1 -4.1 Intact, Aggr50%: s+, m+++, b++. Ros+, Rol+ 

 
Table 4-1-2-4-3-c: Third experiment. 

Measurement time 
min 

PLT 
x103/µL 

PLCR 
% 

WBC 
x103/µL 

RBC 
x106/µL 

PLT-RI 
% 

PLCR-RI 
% 

WBC-RI 
% 

RBC-RI 
% 

Microscopic 
Findings 

b.F 11 217 27.5 4.5 3.47         Intact, r. s.Aggr 

a.F #1 Pip 31 160 31.8 4.3 3.55 26.3 14.7 4.4 -2.3 Intact, Aggr <10%: s+, m+, b+. r.Ros 

a.F #2 Pip 33 182 30.2 4.4 3.80 16.1 7.9 2.2 -9.5 Intact, r. s-m.Aggr, r.Ros 

a.F #3 S.V 34 181 26.7 4.2 3.63 16.6 19.0 6.7 -4.6 Intact, r.s-m.Aggr, r.Ros 

a.F #4 S.V 36 178 28.5 4.2 3.64 18.0 15.0 6.7 -4.9 Intact, r.s-m.Aggr, r.Ros 

a.F #5 H.V 38 175 28.1 4.4 3.6 19.4 17.6 2.2 -3.7 Intact, r.s-m.Aggr, r.Ros 

a.F #6 H.V 38 183 32.6 4.3 3.49 15.7 0.0 4.4 -0.6 Intact, r.s-m.Aggr, r.Ros 
*  The detailed results of the 1st, the 2nd, and 3rd experiments are described in Tab.Ab.4-1-2-4-3-a, b & c respectively.  SM= Sarstedt monovett 5 mL (p.3-3-1). 
b.F= the measurements performed on cWB before passing RTH Filter i.e., on the blood collected in SM tubes (p.3-4-1);  a.F #1, a.F #2, etc = the 
measurements performed on the blood after passing RTH filter i.e., in the lower part of RTH tube (p.3-2-1);  S.V, M.V, H.V, >H.V= mixing the a.F blood by 
relatively slight, moderate,  high, and further high (for about 1 min) vortex modes respectively;  Pip= mixing the a.F blood by successive aspiration and 
pipetting by a plastic pipette;  Intact = PLT had intact discocytes with less than 10% echinodiscocytes and no spherical or fully activated forms;  r=rare;  Aggr 
%= the percentage of PLT aggregates;  s, m, b= small (2-4 PLT), medium (5-17 PLT), and big (>18 PLT) particles of PLT aggregations;  +, ++, +++ = the relative 
presence;  Ros= rosettes forms (conjugates of PLT adhered around WBC);  Rol= rouleaux (coin-rolls) forms of erythrocytes. 
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Fig. “b”: Exp. “2” on RTH Fig. “c”: Exp. “3” on RTH 

Fig. 4-1-2-4-3-b & c: RIs delivered by the use of pipette (Pip) in comparison with 
increasing vortex rates in the 2nd and the 3rd experiments on RTH.  
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4-1-2-4-4. Standardized method for the vortex of RTH tubes after centrifugation 

The results of the morphological pilot study of “blood mixing effect” (p.4-1-2-4-2 & 3) proved the superior-

ity as well as the convenience of the slight vortex mode for mixing the a.F blood (after centrifugation and 

passing RTH filter) in order to minimize PLT clumping and the variations in the a.F measurements.  The 

resulting standardized slight vortex could be consequently described as follows: 

“Vortex should be performed carefully using slight vortex (vortex speed= 3.3-3.7; p.3-1-5) 3 times before 

the 1st measurement and 2 times for further measurements; <2 seconds for each one-time vortex (=3 sec 

per measurement).  The rate and the time of vortex for the further a.F measurements depend on the  

degree of sedimentation of the cWB pipetted in Eppendorf tubes.  However, the a.F measurements on 

the blood should be performed within 1-2 min after vortex to avoid further sedimentation.  Frequent vortex 

and rest may lead to unacceptable results.  The blood should be mixed thoroughly by vortex without 

forming foams or air bubbles.  The Eppendorf tube has to be placed in the center of the plate of the vortex 

apparatus and hanged from the top of the Eppendorf tube.  “Over-vortex” may lead to unacceptable PLT 

hyperactivation and PLT aggregation that is demonstrated in falsely high PLT-RI levels with unacceptable 

high variation (p.4-1-2-4-2 & 3).  Inadequate mixing may lead to falsely high levels of PLT-RI associated 

with falsely high levels of HGB-RI (p.4-1-2-4-3-b).” 

 

4-1-2-5. Addressing the third SOP of RTH assay (SOP-3) 

The application of the standardized vortex method led to an essential improvement (p.4-1-2-3-2).  We 

addressed therefore the third SOP (SOP-3) of RTH which included the same procedures as mentioned in 

SOP-2 (p.4-1-1-7) besides considering the following aspects: A.) Tested samples should be carefully 

handled especially after passing RTH filter (a.F).  The a.F blood should be mixed by the new standard-

ized vortex (=3 sec; p.4-1-2-4-4) instead of 3 min as in SOP-1 (p.3-4-3-2).  The a.F measurements should 

be performed within 1-2 min after mixing to avoid errors attributed to blood sedimentation (p.5-1-2-7-C-b).  

B.) RTH should be performed within 120 min after blood withdrawal to avoid spurious reduced results 

(Fig.4-1-2-3-2-2).  C.) The new identified RIs that revealed significant implication on the interpretation of 

RTH (i.e., MPV-RI. PDW-RI, WBC-RI, RBC-RI, HGB-RI and HCT-RI; p.5-1-2-3, 4, 6) were termed “secon-

dary” RIs and could be calculated in parallel with the “main” RIs (PLT-RI and PLCR-RI) as far as required.  

D.) The reliable results after applying the standardized vortex (p.4-1-2-3-2) support firmly the reliability of 

our centrifugation condition (110 g/ 5 min).  Thus, the SOP-3 of RTH may be summarized as follows: 

4-1-2-5-1. 500 µL of cWB (or the tested material) is pipetted carefully into the inner surface of the up-

per part of the RTH tube (p.3-1-2). 

4-1-2-5-2. The b.F measurements: CBC is performed on the blood in the collection tube (p.3-4-1). 

4-1-2-5-3. Centrifugation: The RTH tube is centrifuged at 110 g/ 5 min. 

4-1-2-5-4. The a.F measurements: The upper part of RTH tube is removed and the cWB (in the lower 

part of RTH tube; p.3-2-1) is mixed thoroughly by slight vortex (standardized slight vortex; 

p.4-1-2-4-4).  CBC is measured shortly afterwards (1-2 min) by a cell counter. 

Note 1: RTH should be performed within 120 min after the withdrawal of the blood. 

Note 2: It is preferable to perform the measurements in-double and the mean is considered for  

further calculations of the main RIs as well as the secondary RIs. 
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4-2. Validation and quality control of the third SOP  

(SOP-3) of RTH 

4-2-1. Inspection of the specificity of RTH filter by measuring RIs 

with and without RTH filter 

4-2-1-1. Aim and methodology of the study 

This study was designed to inspect whether the acceptable precision of RTH resulted by applying the 

third SOP of RTH (implicating the new standardized vortex; p.4-1-2-3-2) was attributed only to precise 

procedures or to a further specific effect of RTH filter on PLT in cWB.  We suggested that by passing 

RTH filter, PLT are retained specifically leading to a significant decrease in PLT count.  The blood with-

drawn from a given healthy blood donor was collected in a citrated tube (p.3-3-1).  The citrated blood 

(cWB) was distributed into one RTH tube (p.3-2-1) and into one Epp tube (without RTH filter; p.3-2-2); 

500 µL in each.  Both RTH and Epp tubes were centrifuged according to SOP-3 of RTH (p.4-1-2-5) and 

the a.F measurements were performed in-double on both tubes after centrifugation.  The RIs (retention 

indices) of RTH for the cWB in both RTH and Epp tubes were calculated by the comparison with the  

b.F measurements performed on the collection citrated tube.  Sysmex SF 3000 was used for performing 

CBC (complete blood count) in this study.  A comparison of the resulting RIs i.e., with and without using 

RTH filter, was held to inspect our suggestion about the specificity of RTH filter. 

 

4-2-1-2. Results of performing RTH with and without RTH filter 

Table 4-2-1-2: Descriptive statisticsa of the results of performing RTH with and without RTH filter. 
Parameter RTH (n) Minimum Maximum Mean SD KS 

c t-Test 

d 

 Filter 

b  (%) (%) (%)  P p 

PLT-RI (%) with 19 16.9 31.6 23.8 4.3 0.200e  
 no 19 -7.3 10.1 3.2 3.9 0.200e <0.0005 
PLCR-RI (%) with 19 3.4 29.7 18.4 8.9 0.047  
 no 19 -25.7 23.3 -1.2 11.2 0.073 <0.0005 
PDW-RI (%) with 19 -27.0 4.2 -7.6 7.9 0.089  
 no 19 -17.6 8.1 -4.1 5.8 0.200e 0.063 
MPV-RI (%) with 19 -13.1 2.6 -2.9 4.1 0.200e  
 no 19 -7.1 7.5 -1.5 3.4 0.200e  0.071 
WBC-RI (%) with 19 -1.1 12.6 6.3 3.6 0.200e  
 no 19 -0.1 14.7 7.3 3.9 0.200e 0.224 
RBC-RI (%) with 19 -8.1 4.1 -1.9 2.8 0.200e  
 no 19 -1.1 13.3 3.4 4.0 0.200e <0.0005 
HGB-RI (%) with 19 -7.5 3.8 -2.1 3.1 0.200e  
 no 19 -2.2 12.5 3.1 4.0 0.093 <0.0005 
HCT-RI (%) with 19 -7.5 3.5 -1.6 2.6 0.067  
 no 19 -1.1 13.5 3.6 4.0 0.200e <0.0005 
a.PLT (x10*3/µL) with 19 116.0 232.0 166.5 33.9 0.200e  
 no 19 143.0 292.0 210.8 37.6 0.200e <0.0005 
PLT increase (%) 19 14.4 39.7 27.3 7.5   
PLT-RI decrease (%) 19 11.9 29.1 20.6 5.0   
PLCR-RI decrease (%) 19 3.5 32.3 19.5 7.5   

a
 The detailed results are reported in Tab.Ab. 4-2-1-2.  b cWB was centrifuged with (with) the presence of RTH filter (by using RTH tubes; 

p.3-2-1) as well as without (no) the presence of RTH filter (by using Eppendorf tubes; p.3-2-2);  c  The normality of distribution by Kolmo-
gorov-Smirnov test; Lilliefors significance correction.  d The significance of difference by paired samples t-test.  e This is a lower bound of 
the true si gnificance. 
a.PLT= mean of the in-double measurements of PLT count for both RTH and Epp tubes after centrifugation;  PLT increase= the increase 
of PLT count determined in Epp tubes after centrifugation compared with that in RTH tubes; PLT-RI decrease, PLCR-RI decrease= the 
decrease in PLT-RI and PLCR-RI respectively determined without RTH filter compared with that with the presence of RTH filter.  
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Fig. 4-2-1-2-1 to 6:  Retention indices determined by the use of RTH tubes  
(RTH Filter) compared with Epp tubes (No Filter). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-1-2-1. Fig. 4-2-1-2-2. Fig. 4-2-1-2-3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4-2-1-2-4. Fig. 4-2-1-2-5. Fig. 4-2-1-2-6. 
 
 
 
 
This study was performed on the cWB of 19 blood donors and the detailed results are reported in  

Tab.Ab.4-2-1-2 and the statistics of the key results are described in Tab.4-2-1-2.  The distribution of RIs 

detected with and without RTH filter were mainly in line of normal assumption (p>0.05; Tab.4-2-1-2).  The 

levels of PLT-RI as well as PLCR-RI were significantly (p<0.0005) lower in Epp than in RTH tubes  

(3.2 vs.  23.8%; and -1.2 vs. 18.4% respectively), as demonstrated in Fig.4-2-1-2-1 & 2.  The mean of 

this decrease was estimated at 20.6% and 19.5% for PLT-RI and PLCR-RI respectively.  No significant 

correlation was objected between PLT-RI values detected with and that without RTH filter (p>0.2). 

PDW-RI and MPV-RI values in Epp tubes (no RTH filter) were elevated remarkably (p>0.05) compared 

with that in RTH tubes (mean= 4.2% vs. 8.1% and 2.6% vs. 7.5% respectively), as illustrated in  

Fig.4-2-1-2-3 & 4.  The mean and the variation of WBC-RI values in RTH tubes were slightly higher than 

that in Epp tubes (Fig.4-2-1-2-5).  The negative mean of RBC-RI detected in RTH tubes (-1.9%)  

demonstrated a significant increase (p<0.0005) and converted to a positive value (3.4%) in Epp tubes 

(Fig.4-2-1-2-6).  The RIs (retention indices) of HGB as well as HCT in RTH and Epp tubes varied in  

parallel with RBC-RI, as described in Tab.4-2-1-2. 
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4-2-2. Specificity of RTH performed on citrated whole blood 

(cWB)  

compared with platelet isolated by gel-filtration (iPLT) 

4-2-2-1. Aim and methodology of the pilot study “Sepharose” gel-filtered platelets 

This study was designed to inspect the reliability of applying RTH on cWB in comparison with isolated 

PLT (iPLT; isolated from cWB by gel-filtration using Sepharose 2B; p.3-4-4) related to morphological 

control by PLT spreading.  This study represented, therefore, a further step in the investigation of the 

specificity and the accuracy of RTH as a "simple" assay for screening the function of PLT in whole blood.  

The study was also performed as an early step to prepare a non-fixed PLT standard i.e., from native PLT. 

4-2-2-1-1. Protocol carried out in the “Sepharose” pilot study 

4-2-2-1-1-1. Blood is withdrawn from blood donors and collected into 10 mL isotonic citrated plastic 

tubes (10 mL SM; p.3-4-1). 

4-2-2-1-1-2. RTH assay is performed on 0.5 mL cWB (SOP-3; p.4-1-2-5)6. 

4-2-2-1-1-3. Citrated PRP (cPRP) is prepared from the remainder amount of cWB (SOP; p.3-4-2) and 

then transferred to a plastic tube.  The time of centrifugation at 110 g6 was set on 30 min 

instead of 15 min (p.3-4-2) to obtain further amount of cPRP. 

4-2-2-1-1-4. Platelet isolation using chromatography by "Sepharose 2B (gel-filtration) is applied on 

the “resting” cPRP. 

4-2-2-1-1-5. The iPLT obtained by the Sepharose chromatography column (suspended in PLT buffer; 

p.3-3-6) are collected in 3 plastic tubes (T1-T3) and rested in 37°C water bath chamber 

for 30 min. 

4-2-2-1-1-6. RTH assay is performed on 0.5 mL of the iPLT by the use of the collecting tube that 

bears the highest PLT count (mainly T2, occasionally T1; SOP; p.3-4-4-3-6). 

4-2-2-1-1-7. Morphological control on RTH assay.  PLT spreading7 was performed on both on cWB 

and iPLT before (b.F) and after (a.F) the passage of RTH filter.  For the b.F control of 

cWB, preparations were done from the cWB in the original collecting tube (10 mL SM).  

The b.F control of iPLT was performed by use of the same collection tube on which RTH 

was performed (p.4-2-2-1-1-6). 

Note 1: The b.F and a.F measurements were done at least twice and the mean values of the 1st and 

the 2nd measurements were used for calculating the retention indices (RI). 

Note 2: PLT isolation was performed in the Dept. of experimental surgery.  The available automatic cell 

counter “Coulter AcT” did not allow to determine the whole CBC (e.g., PLCR, PDW, etc), but it was help-

ful for our main interest to measure PLT count for performing RTH as well as the RDW index for control-

ling the quality of the isolation of PLT.  For samples 10-12, it was possible to perform CBC by use of 

                                                                 
6 The centrifugation speed of the available centrifuge in the central laboratory of the Dep. of experimental surgery was speci-
fied to comply with the standard conditions (110 g) for preparing cPRP (p.3-4-2) as well as performing RTH (p.4-1-2-4-4-4).   
Considering the radius (r) of the used centrifuge and the equation of RCF (p.3-2-3), the centrifugation speed that is equivalent 
to 110 g was found to be 900 rpm.  
7 By experiencing and evaluating PLT spreading, we found that the dilution performed before PLT spreading should consider 
the PLT count of the tested samples i.e., of cWB or iPLT before as well as after the passage of RTH filter and not the PLT 
count of the original withdrawn cWB, as mentioned in the original SOP of PLT spreading (p.3-4-5-2-3). 
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Sysmex K1000 counter in the Institute of Clinical Hemostaseology in order to gain further PLT size 

measurements i.e., PLCR and PDW. 

 

4-2-2-1-2. Quality control of platelet isolation by gel-filtration using Sepharose 2B 

The gel-filtration of PLT from cWB by using Sepharose 2B proved to deliver high quality of purely isolated 

PLT (iPLT).  The PLT spreading test (Tab.4-2-2-3) showed that: a.) iPLT were intact, unstimulated, and 

disposing no Aggl or Aggr.  b.) iPLT preserve their function which was demonstrated by the very well 

spread preparations.  c.) In concordance with the regular “0” value of RDW in the iPLTsuspension 

(Tab.Ab.4-2-2-1-2-T1-T3), the PLT spreading showed no amounts of RBC or WBC regularly associated 

with iPLT (Tab.4-2-2-3).  The significantly positive levels of the PLT-RI of iPLT reflect their ability to adhere 

to RTH filter and delivers further evidence on their integrity and function capabilities.  The semi-

quantitative technique of the isolation (p.3-4-4-3) allows collecting the iPLT in 3 tubes (T1, T2 & T3) and 

the highest recovery is supposed in the 2nd tube (T2).  The detailed results of the repeated measurements 

on iPLT in the collection tubes (T1-T3) are described in Tab.Ab.4-2-2-1-2-T1-T3.  Quantity assessment of 

the PLT isolation was done by comparing the 

PLT count obtained by the successive collec-

tion tubes of iPLT with that of original cWB, as 

shown in Fig.4-2-2-1-2.  This figure demon-

strated that the highest concentration of iPLT 

was found in T2.  The only exception was 

sample No.3, where RTH assay and the mor-

phologic control were applied on the first col-

lection tube (T1) since it had a higher PLT 

count than T2.  These findings together sup-

port at least the reliability of using Sepharose 

gel to isolate PLT for the research purposes. 

 

4-2-2-1-3. Controlling the reproducibility of PLT count & PLT size measurements for both cWB and 

iPLT before and after passing RTH filter 

PLT count and the parameters of PLT size distribution in cWB and iPLT before and after the passage of 

RTH filter were performed at least twice to assure the accuracy and the precision of the measurements.  

The times of repeating the measurements depended on the amount of the tested sample.  The a.F 

measurements were repeated not more than 3 times since the a.F amount of the tested sample was 

less than 0.5 mL.  Whereas the b.F amount (i.e., in the collection tube) was sufficient for further  

repetitions of the b.F measurements.  The measurements performed on the different iPLT collection 

tubes were also repeated to assure the accuracy.  The reproducibility of the whole measurements was 

acceptable in general, and the means of these measurements were considered for further calculations.  

The variability of PLT count in the different stages was acceptable (mean CV<3.4%), but it was higher in 

the a.F iPLT (up to 6.3%) due to their relatively low PLT counts (mean =45x103/µL).  The detailed results 

of controlling the reproducibility are described in Tab.Ab.4-2-2-1-3-1 to 4. 

Fig. 4-2-2-1-2: Comparison of PLT count of the iPLT in the col-
lection tubes (T1-T3) with that of the original cWB drawn from 
the different blood donors (BD). 
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4-2-2-2. Results of RTH and distribution of PLT size measures for both cWB and iPLT 

The “Sepharose” protocol (p.4-2-2-1-1) was applied on 12 blood donors and performed in 2 batches;  

7 and 5 samples respectively.  The key results of the 1st and the 2nd batch are summarized in  

Tab.4-2-2-2-1 and 2 respectively.  The PLT-RI values of iPLT in the 1st batch compared with that of cWB 

(mean= 61.7% vs. 33.0%) demonstrated significant  

increases ranging from 40.6% to 181.4%: (mean PLT-RI 

increase= 92.8%; p=0.018 by Wilcoxon test), as  

illustrated in Fig.4-2-2-2-1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4-2-2-2-1: PLT-RI increase in isolated PLT (iPLT) by gel-
filtration compared with cWB. 

 

 
Table 4-2-2-2-2: Key 

a results of RTH measurements performed on cWB and iPLT in 
the second batch. 

PLT Count 
(x10*3/µL) 

PLCR 
(%) Serial Sam-

ple 

Rest 
Time  

b 
(min) b.F a.F 

PLT-RI 
(%) 

PLT-RI 
Increase 

(%) 
b.F a.F 

PLCR-RI 
(%) 

PLCR-RI 
Increase 

(%) 

8 WB   171 131 23.4   NA NA     

  iPLT 60 167 61 63.8 172.6 NA NA     

9 WB   130 100 23.1   NA NA     

  iPLT 30 151 76 49.5 114.5 NA NA     

10 WB   164 107 34.8   20.3 24.6 20.7   

  iPLT 120 86 41 52.6 51.4 11.7 11.2 54.7 163.5 

11 WB   186 141 24.5   23.3 22.9 25.8   

  iPLT 60 101 58 43.1 76.1 16.3 18.0 37.1 44.1 

12 WB   153 109 29.1   17.7 18.3 26.7   

  iPLT 30 69 36 48.2 65.6 7.6 8.5 42.3 58.7 
a

 The results of PLT count described herein are the mean values of repeated measurements; a  sum-
mary of the mean values of the other parameter (MPV, RDW) is described in Tab.Ab.4-2-2-2-2, whilst 
the details of the repeated measurements are described Tab.Ab.4-2-2-1-3-1 to 4. 
b

 The periods of resting the platelets isolated by gel-filtration iPLT before applying RTH (p.4-2-2-1-1-
5).  
iPLT= platelets isolated by gel-filtration; b.F= before passing RTH filter; a.F= after passing RTH filter;   
PLT-RI Increase and PLCR-RI Increase= the increase in iPLT compared with that in cWB;  
NA= not available in the menu of the used cell counter (p.4-2-2-1-1). 

Table 4-2-2-2-1: Key 

a results of RTH 
measurements performed on cWB  
and iPLT in the first batch. 

PLT Count 
(x10*3/µL) Serial Sampleb 
b.F a.F 

PLT-RI 
(%) 

PLT-RI 
Increase 

(%) 

1 cWB 243 159 34.6   

 iPLT 152 55 63.8 84.6 
2 cWB 139 84 39.6   
 iPLT 76 34 55.6 40.6 

3 cWB 162 104 36.1   
 iPLT 129 46 64.7 79.2 

4 cWB 157 112 28.4   
 iPLT 125 41 67.5 137.3 

5 cWB 163 115 29.8   
 iPLT 84 46 45.2 52.0 

6 cWB 201 153 23.7   
 iPLT 95 32 66.7 181.4 

7 cWB 182 111 39.1   
 iPLT 62 20 68.3 74.6 

a
 The results of PLT count described herein are the 

mean values of repeated measurements: a summary 
of the mean values of the other parameter (MPV, 
RDW) is described in Tab.Ab.4-2-2-2-1, whilst the 
details of the repeated measurements are described 
Tab.Ab.4-2-2-1-3-1 to 4. 
b

 The time of resting the gel-filtered platelets before 
applying RTH (p.4-2-2-1-1-5) was 30 min.  
iPLT= platelets isolated by gel-filtration;  b.F= before 
passing RTH filter;  a.F= after passing RTH filter;  PLT-
RI Increase= the increase of PLT-RI value in iPLT 
compared with that in cWB. 
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As an attempt to investigate whether this increase of PLT-RI values in iPLT compared with cWB was due 

to the activation of the iPLT after passing through Sepharose gel, increasing time for the resting periods 

of iPLT (bath chamber: 37 °C/ 30-120 min; p.4-2-2-1-1-5) were applied on the 2nd batch (samples 8 to 12) 

to assure iPLT deactivation before performing RTH, as described in Tab.4-2-2-2-2.  The increase of  

PLT-RI in the 2nd batch (PLT-RI increase= 51.4-172.6%: mean= 96.1; Tab.4-2-2-2-2) was comparable to 

that found in the first one.  By reviewing the results of the two batches combined (Tab.4-2-2-2-1 & 2), no 

significant correlation was objected between the periods of resting iPLT and the increase of PLT-RI 

(p>0.5; Spearman’s rho).  Thus, the results of PLT-RI in iPLT compared with that in cWB in batches 1 

and 2 combined (samples 1-12: mean PLT-RI= 57.4% vs. 30.5%) were demonstrated in Fig.4-2-2-2-2 in 

order to illustrate the significance of PLT-RI increase (mean PLT-RI increase= 94.2%: p=0.002; Wilcoxon 

test).  In parallel with the increase in PLT-RI, a similar sharp increase in PLCR-RI of iPLT (mean=44.7%) 

compared with that of cWB (mean=24.4%) was objected (PLCR-RI increase=44.1-163.5%:  

mean= 88.8%), as illustrated in Fig.4-2-2-2-2. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Fig. 4-2-2-2-2: 
Increase of PLT retention 
in PLT isolated PLT by gel  
filtration (iPLT) compared  
with cWB for the same 
blood donors. 

 
 
 
 
 
 

 

The values of MPV-RI were remarkably higher in iPLT than in cWB (mean= 2.5% vs. 1.7%) whilst  

PDW-RI measurements demonstrated marked decrease in iPLT compared with cWB (mean= -2.6  

vs. -1.1), as described in Tab.Ab.4-2-2-2-1 & 2. 
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Fig. 4-2-2-2-2: 
PLT-RI in cWB and PLT isolated 
by gel-filtration (iPLT) using  
increased resting periods  
for iPLT. 
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4-2-2-3. PLT spreading for cWB and iPLT before and after passing RTH filter 

The results of PLT spreading by the use of cWB and iPLT before (cWB-b.F; iPLT-b.F) and after  

(WB-a.F; iPLT-b.F) the passage of RTH filter are summarized in Tab.4-2-2-3.  PLT spreading  

demonstrated, in general, normal findings in cWB-b.F with rather few aggregates (Aggr) and/or  

agglutinates (Aggl).  The test of cWB-a.F presented non-spread PLT (inhibition) and few Aggr and/or 

Aggl, if any.  PLT were well spread in iPLT-b.F and demonstrated few Aggl.  The iPLT-a.F delivered light 

preparations that were thinner than those of cWB-a.F.  The PLT in iPLT-a.F preparations were partly 

spread and demonstrated lot of Aggl.  Intermediate forms of spread PLT were frequently found in  

iPLT-a.F.  The PLT spreading showed occasionally disrupted PLT especially after passing RTH filter. 

 

 

Table 4-2-2-3: Summary of the results of the PLT spreading performed on the samples 1-12. 
 

Sample 
No. 

cWB-b.F cWB-a.F iPLT-b.F iPLT-a.F 

1 
Normal 
s. Aggr,  Aggl - 

Thin, not spread 70-80%, 
disrupted 10% 
rare s. Aggr & Aggl 

Normal 
rare s. Aggl 

Thin+, w. spread >80 % 
Aggl +++ 

2 
Normal 
Aggr + 

L. thin, not spread 40-50%, 
disrupted 30%; light Hyal 
Aggr -,  Aggl- 

w. spread > 90% 
disrupted 10%;  
s. Aggl 

Thin, Normal; Inter+ 
disrupted 40% 
s. Aggl +++ 

3 
Normal 
s. Aggr,  Aggl - 

Thin, not spread 70-80%, 
disrupted 20% 
rare s. Aggr & Aggl 

L. thin 
Normal 
rare s. Aggl 

Thin+, 
w. spread >80 % 
Aggl +++ 

4 
w. spread 70% 
s. Aggr,  Aggl 

Thin 
not spread 60-70% 
Aggr,  Aggl - 

w. spread >75, 
Inter+ 
rare Aggl 

Thin+ 
Normal; Inter+ 
Aggl +++ 

5 
w. spread 80%; 
R 10-20% 
s. Aggr, & Aggl 

L. thin 
not spread 40-60% 
rare s. Aggr,  s. Aggl 

w. spread > 90% 
s. Aggl 

Thin 
Normal; Inter+ 
disrupted 30%, s. Aggl +++ 

6 
Normal 
s. Aggr,  Aggl - 

Thin, not spread 60-70%; 
disrupted: 30-40% 
rare s. Aggr,  s. Aggl 

L. thin 
Normal; Inter+ 
s. Aggl 

Thin+ 
not spread 
Aggl +++ 

7 
L. thin 
w. spread >75% 
s. Aggr,  Aggl 

Thin 
not spread 70-80% 
rare s. Aggr & Aggl 

w. spread > 75% 
s. Aggl 

Thin 
Normal, 
disrupted 25%, Aggl +++ 

8 
Normal 
s. Aggr & Aggl 

Thin 
not spread 40-50% 
Aggr-,  Aggl- 

w. spread > 95% 
rare s. Aggl 

L. thin 
Normal; Inter+ 
Aggl +++ 

9 
Normal; Inter+ 
Aggr,  Aggl - 

Thin 
not spread 60-70% 
Aggr -,  Aggl - 

w. spread 90% 
s. Aggl 

L. thin 
spread > 80% 
Aggl +++ 

10 
L. thick 
w. spread >80% 
Aggr +, Aggl + 

Thin 
not spread 60% 
Aggr-, Aggl + 

w. spread >90% 
rare s. Aggl 

L. thin 
Normal; Inter+ 
s. Aggl +++ 

11 
w. spread > 90% 
Aggr,  Aggl + 

Thin 
not spread 60% 
Aggr -,  Aggl + 

w. spread 90% 
s. Aggl  

spread: > 80% 
Aggl +++ 

12 
w. spread > 80% 
Aggr +,  Aggl 

Thin, not spread 50-60% 
R 30%, 
Aggr -,  Aggl++ 

w. spread 80% 
Aggl 

Normal; 
Inter+ 
Aggl +++ 

cWB-b.F, cWB-a.F = tests applied on cWB before and after passing RTH filter respectively;  iPLT-b.F, iPLT-a.F = tests applied 
on iPLT before and after passing RTH filter respectively;  Normal= normal findings of PLT spreading;  thin= thin preparation;   
L. thin= light thin preparation L. thick= light thick preparation;  w spread = well spread;  Aggr-, Aggr, Aggr+, Aggr++, Aggr+++ 
= no, few, increased, moderate, plenty of PLT aggregates respectively;  Aggl-, Aggl, Aggl+, Aggl++, Aggl+++ = no, few,  
moderate, marked, and extensive PLT agglutinates respectively;  s. Aggr= small aggregates;  s..Aggl= small agglutinates;   
R= abnormal round PLT forms; Inter+= increased intermediate PLT forms; s= small; Hyal= hyalomere of PLT. 
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4-2-3. Quantity assessment of RTH assay and the materials 

trapped in RTH filter system 

4-2-3-1. Aim and methodology of the study 
4-2-3-1-1. Objective and design of the study: Identification of the weight 

retention index (wRI) 

As a further step in the validation and standardization of the specificity and the accuracy of RTH assay, 

the amount of the blood used in RTH as well as that trapped by RTH filter system was quantitatively 

assessed by weight and volume measurements.  The qassessment was performed by using cWB from 

healthy blood donors and the normal level Eightcheck control (EC) and it was done in four axes: 

A.) Assessment of the blood amount used in RTH assay and the weight of RTH filter. 

B.) Establishing the reference range of the amounts of the blood trapped by RTH filter system by 

the use of cWB and investigating the “normality” of these values.  For better evaluation and 

quantity control, a new retention index for estimating the percentage (%) of the amount of the 

blood trapped in the RTH filter was identified as follows: 

wRI (weight retention index %)  =  Blood Trapped by RTH Filter  x100 
                          Blood Used in RTH 

C.) Inspection of the probable correlation of the blood amounts trapped by RTH filter (wRI) with: a.) 

PLT-RI and the other RIs (retention indices) of RTH; and b) the weight of the blood used in RTH 

and the weight of RTH filter. 

D.) Investigation of the precision of the weight parameters including wRI by the use of cWB as well 

as EC.  This axis was done as a part of the investigations performed in the study of the  

precision of RTH described in chapter p.4-2-4. 

The RTH assay was performed according to the third SOP (SOP-3; p.4-1-2-5); where 500 µL of the 

tested material (cWB or EC) is pippeted into RTH tube and centrifuged at 110 g/ 5 min.  Acceptable  

reproducible results of the blood amounts trapped by RTH filter indicate the reliability of the filter  

system under the standardized conditions (110 g/ 5 min).  Otherwise, the protocol should be repeated 

with different conditions of centrifugation. 

 

4-2-3-1-2. Methodology of the quantitative assessment 

Eightcheck control stored at 2-8 °C was allowed to balance with room temperature before performing the 

measurements.  The RTH measurements on cWB should be done within 120 min after blood withdrawal 

(acc. to SOP-3 of RTH; p.4-1-2-5).  Both EC and cWB should be mixed gently and thoroughly before 

performing RTH.  Two approaches were initially suggested for the quantitative assessments: 

A.) Volume assessment The amounts were assessed by aspiration using an adjustable micro-

pipette.  The volume of the cWB after passing RTH filter (a.F size) could be roughly estimated as 470 µL.  

Using volume measurements (for the a.F amounts) proved, however, to be inaccurate since significant 

amounts of the blood may variably adhere to the inner wall of the lower part of RTH tube (p.3-2-1) after 

the aspiration by micropipette.  It was decided, therefore, not to depend on the “volume measurements” 

for the quantitative assessment of RTH assay. 
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B.) Weight assessment The weight of the upper (with RTH filter) and the lower parts of RTH tube 

as well as the weight of RTH filter (p.3-2-1) were measured before (b.F) and after (a.F) the passage of the 

blood through RTH filter.  The a.F weight measurements were performed directly after centrifugation (after 

performing the a.F measurements of RTH by the cell counter) to avoid evaporation of the blood trapped 

by RTH filter.  A cover of parafilm was actually used in order to avoid such an error.  The measurement of 

the amount used in RTH was calculated by subtracting the weight of the empty upper part of RTH tube 

from its weight after filling with blood (500 µL).  The weight of the amount of the blood trapped by RTH 

filter (Trapped cWB or EC) could be calculated by subtracting the b.F weight of RTH filter from its  

a.F weight.  RTH filter should be carefully plugged out by a glass bar with a smooth surface that allows 

applying rather homogenous pressure on the filter while plugging and refixing it in order to preserve its 

integrity.  The weight measurements were performed by using the facilities in the laboratory of the Dept. 

of Biology 

 
4-2-3-2. Results of the quantity assessment of RTH by using cWB from blood donors 
The study was applied on 31 blood donors.  The detailed results of the determinations of the quantity  

assessments along with the measurements of RTH are reported in Tab.Ab.4-2-3-2.  The statistics of the 

main determinations of the quantity assessment are described in the following table: 

 

Table 4-2-3-2: Descriptive statisticsA and reference ranges of the weight parameters of RTH assay using 
cWB from healthy blood donors. 

Weight 
Parameters 

N Range Minimum Maximum Mean SD  
(CV%) 

Mean 
-2SD 

Mean 
+2SD 

KS Test 

B 
p 

“r” with  

C 
PLT-RI 

Added blood (mg) 31 7.4 502.6 510.0 505.5 1.9 (0.4) 501.7 509.3 0.078 0.059 

RTH Filter (mg) 31 4.8 41.1 45.9 42.7 1.1 (2.6) 40.54 44.87 0.189 -0.296 

Trapped cWB (mg) 31 4.2 21.1 25.3 23.1 1.1 (4.7) 20.95 25.24 0.200 

D 0.151 

wRI (%) 31 0.8 4.2 5.0 4.6 0.2 (4.7) 4.14 4.99 0.200 

D 0.169 
 

 A
 The detailed results of the determinations of the quantity assessments and the RTH measurements are described in Tab.Ab.4-2-

3-2. 
 B

 Test of normality by Kolmogorov-Smirnov: significant at p<0.05. 
 C

 r= the correlation coefficient computed by using spearman’s rho test; the correlations were statistically not significant (p>0.05).  
 D

 This is a lower bound of the true si gnificance. 

 
 
The weight of the 500 µL cWB used in RTH assay (mean= 505.6 mg) demonstrated low variance 

(CV=0.4%) and rather normal distribution (p>0.05; KS test: Fig.4-2-3-2-1) with a slight skewness to the 

right (0.742).  The weight of RTH filter (mean= 42.7 mg) showed also low variance (CV=2.6%) and normal 

distribution with the presence of few insignificant outliers (p>0.1; KS test), as shown in Fig.4-2-3-2-2.  

The values of the weight of the blood trapped in RTH filter (mean= 23.1 mg) as well as wRI (mean= 4.6%) 

delivered comparably low variance (CV=4.7%) and were in line of normal assumption (p>0.1; KS test), as 

illustrated in Fig.4-2-3-2-3 and 4.  Due to the normal distribution of the weight parameters, their reference 

ranges were addressed depending on the theory of normal assumption defined as mean ± 2SD (Tab.4-2-

3-2).  PLT-RI values were fairly proportional to cWB amounts added to RTH tubes (r=0.06).  No signifi-

cant correlation was objected between the cWB amount trapped by RTH filter (wRI) and any of the RIs or 

the weight parameters of RTH (p>0.2; Spearman’s rho).  Nevertheless, a slight positive correlation  

between PLT-RI and wRI values (r=0.107) was observed.  The values of wRI demonstrated remarkable 
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negative correlation with the weight of RTH filter (r= -0.233), as shown in Fig.4-2-3-2-5.  The weight of 

RTH filter was also found to be negatively correlated with PLT-RI and with WBR-RI (r= -0.296; r=-0.152 

respectively).  These correlations were, however, not statistically significant (p>0.1). 
 

Fig. 4-2-3-2-1 to 4: Histograms of the weight parameters of RTH assay  
 using cWB from healthy blood donors. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-3-2-1: Weight of the cWB used in RTH. Fig. 4-2-3-2-2: Weight of RTH filter.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4-2-3-2-3: Weight of the cWB trapped Fig. 4-2-3-2-4: Weight retention index (wRI). 
in RTH filter. 

 
 
 
 

Fig. 4-2-3-2-5: The weight retention index (wRI) 
by using cWB from healthy blood donors 
against the weight of RTH filter. 

 

 
 
 
 

RTH Filter  (mg)

46454443424140

w
R

I  
(%

)

5,2

5,0

4,8

4,6

4,4

4,2

4,0

wRI  (%)

5,00
4,94

4,88
4,81

4,75
4,69

4,63
4,56

4,50
4,44

4,38
4,31

4,25
4,19

F
re

qu
en

cy

6

5

4

3

2

1

0

Trapped Blood  (mg)

25,5
25,0

24,5
24,0

23,5
23,0

22,5
22,0

21,5
21,0

F
re

qu
en

cy

10

8

6

4

2

0

RTH Filter  (mg)

46,0
45,5

45,0
44,5

44,0
43,5

43,0
42,5

42,0
41,5

41,0

F
re

qu
en

cy

12

10

8

6

4

2

0

cWB Weight  (mg)

510,0
509,5

509,0
508,5

508,0
507,5

507,0
506,5

506,0
505,5

505,0
504,5

504,0
503,5

503,0
502,5

F
re

qu
en

cy

6

5

4

3

2

1

0



RESULTS/ Ch 4-2-4 
 

 59 

4-2-4. Precision of RTH assay 

4-2-4-1. Aim and methodology of the study 

After addressing the third SOP of RTH (SOP-3; p.4-1-2-5) and getting more experience in its  

performance, it was essential to evaluate the probable further improvement in the precision of RTH by 

using this SOP (SOP-3).  The precision of PLT-RI and the other RIs was investigated in two axes: 

A.) In-series precision: Two approaches were used to study the in-series precision of RTH; the 

first by using fresh cWB collected from healthy blood donors (BD; p.3-1), and the second by the 

use of normal level Eightcheck control (EC; p.3-3-2).  For each cWB series, the b.F measure-

ments of RTH were performed on the cWB in the blood collection tube.  The cWB was then  

distributed into 10 RTH tubes (0.5 mL each) that were thereafter together centrifuged.  After  

centrifugation, the a.F measurements were successively performed on the RTH tubes.  For EC 

series, the b.F measurements were applied on the original tube of EC which was then distributed 

into 7 RTH tubes (0.5 mL each).  

B.) Day-by-day precision: This study was performed on EC at different day intervals.  The use 

of cWB from blood donors was not possible since it is not acceptable to perform RTH or any 

other PLT function assay on cWB after 180 min from blood collection [Thomas 2001]. 

In both axes, different Sysmex cell counters (K-1000, KX-21 and SF 3000) were used in order to inspect 

the probable improvement of using modern counters (Tab.4-2-4-2-1 & 2 and Tab.4-2-4-4).  RTH was per-

formed in-double and revealed no significant differences (Wilcoxon test) between the 1st and the 2nd 

measurements (SD of PLT-RI=1.7%).  The mean values were, therefore, used to compute RIs and the 

statistics of RTH precision.  The accuracy of the RIs of PLT and blood cells in cWB and EC was con-

trolled by phase-contrast microscopy.  In parallel to RIs precision, quantity assessments of the precision 

(both in-series and day-by-day) of the weight parameters of RTH were performed whenever the practical 

circumstances were convenient8.  The methodology of the measurements of the weight parameters is 

described in the chapter of the quantity assessment of RTH (p.4-2-3-1).  The weight parameters included: 

a.) the weight of the amount (500 µL) of the material tested by RTH (cWB and EC); b.) the weight of RTH 

filter; and c.). the weight of the material trapped by RTH filter and the weight retention index (wRI). 

 

4-2-4-2. In-series precision performed on cWB from healthy blood donors and 

on the normal level Eightcheck control (EC) 

The in-series precision was performed on cWB from 3 healthy BDs (PLT count=257, 195 and 229 

x103/µL respectively) and on 3 batches of the EC (PLT count= 189, 201 and 202 x103/µL respectively).  

The descriptive statistics of the results of RTH precision are summarized in Tab.4-2-4-2-1 for cWB series 

and in Tab.4-2-4-2-2 for EC series.  The distributions of PLT-RI as well as the other RIs were rather in line 

of normal assumption in both cWB and EC series (p>0.5; Shapiro-Wilk test).  The mean values of the 

RIs of each cWB series varied due to the individual differences between the recruited blood donors, 

whereas the mean values of the RIs of the different EC series were comparable (p>0.05).  

                                                                 
8 The weight measurements were performed by using the facilities in the laboratory of the Dept. of Biology away from the 
place of performing RTH measurements.  Considerable delay (>30 min) in performing RTH assay due to the heavy daily run of 
the analyses in the Institute of Clinical Hämostaseology prevented therefore occasionally finishing the weight measurements 
within the time limit of 120 min (SOP-3; p.4-1-2-5).  In such cases, the sample was excluded from the study. 
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Table 4-2-4-2-1: Descriptive statisticsa of the in-series precision of RTH measurements and the corresponding quantity 
assessments performed on cWB from healthy blood donors by using different models of Sysmex cell counters. 

BDb Statistics PLT-RI PLCR-RI PDW-RI MPV-RI WBC-RI RBC-RI HGB-RI HCT-RI 
cWB 

Weight  
RTH Filter 

Trapped 
cWB 

wRI 

No.  N  (%) (%) (%) (%) (%) (%) (%) (%) (mg) (mg) (mg) % 

10 Mean   33.9 31.9 2.5 1.7 5.6 -3.4 -3.0 -3.6 504.6 43.2 22.4 4.4 

 SD (CV %)  4.1 4.6 3.7 2.4 2.0 1.5 1.3 1.5 1.1 (0.2) 1.3 (3.1) 0.6 (2.7) 0.1 

 Lower Bound of 95% CI 31.0 28.6 -0.2 -0.1 4.1 -4.5 -3.9 -4.7 503.8 42.2 22.0 4.4 

1.
) 

 S
ys

m
ex

 
K

-1
00

0 

 Upper Bound of 95% CI 36.9 35.2 5.1 3.4 7.0 -2.3 -2.0 -2.5 505.4 44.2 22.8 4.5 

10 Mean   25.2 22.7 -5.3 -1.8 6.3 -3.4 -3.0 -3.4         

 SD (CV %)  2.5 4.9 3.3 1.5 2.2 1.0 1.1 1.0         

 Lower Bound of 95% CI 23.3 19.1 -7.7 -2.9 4.7 -4.1 -3.8 -4.1         

2.
) 

 S
ys

m
ex

 
K

X
-2

1 

 Upper Bound of 95% CI 27.0 26.2 -3.0 -0.7 7.9 -2.7 -2.2 -2.7         

10 Mean   21.8 19.7 2.2 0.1 4.8 -4.2 -4.5 -4.2 504.8 43.1 22.8 4.5 

 SD (CV %)  2.1 4.3 4.1 1.2 1.9 0.6 0.6 0.6 0.9 (0.2) 1.2 (2.9) 0.6 (2.6) 0.1 

 Lower Bound of 95% CI 20.3 16.6 -0.8 -0.8 3.4 -4.6 -4.9 -4.7 504.2 42.2 22.4 4.4 

3.
) 

 S
ys

m
ex

 
S

F
-3

00
0 

 Upper Bound of 95% CI 23.3 22.9 5.1 0.9 6.2 -3.8 -4.0 -3.8 505.5 44.0 23.2 4.6 

Correlation 
Coefficient (r) 

0.864 0.215 0.329 0.189 0.390 0.500 0.338 0.013 0.048 -0.364 -0.388 Total 
(n=30) 

Correlationc 
with 

PLT-RI Sig. 2-tailed:  
(p value) 

0.000 0.255 0.076 0.318 0.033 0.005 0.068 0.956 0.841 0.114 0.091 

a detailed results of RTH measurements and the quantity assessments are described in Tab.Ab.4-2-4-2-1 and Tab.Ab.4-2-4-3-1 respectively.  b the mutual correlations 
between PLT-RI and the other parameters calculated by Spearman's rho test.  c BD= the serial number of the healthy blood donor (p.3-1) and the models of Sysmex cell 
counters used for RTH measurements;  cWB Weight= the weight of the 500 µL blood (cWB) added to RTH tube to perform RTH assay;  RTH Filter= the weight of RTH 
filter before adding blood;  Trapped cWB= the weight of the blood trapped by RTH filter;  wRI= the weight retention index of RTH i.e., the percentage (%) of the weight of 
the blood trapped in RTH filter (p.4-2-3-1-1-B); Lower and upper bound of 95% CI= the lower and the upper bounds of the 95% confidence intervals of the mean.  Note: 
the accuracy of the RIs of PLT and blood cells was controlled by phase-contrast microscopy. 

 
Table 4-2-4-2-2: Descriptive statisticsa of the in-series precision of RTH measurements and the corresponding quantity  
assessments performed on normal level Eightcheck control (EC) by using different models of Sysmex cell counters. 

ECb Statistics PLT-RI PLCR-RI PDW-RI MPV-RI WBC-RI RBC-RI HGB-RI HCT-RI 
EC 

Weight  
RTH Filter 

Trapped 
EC 

wRI 

No.  N  (%) (%) (%) (%) (%) (%) (%) (%) (mg) (mg) (mg) % 

7 Mean   2.3 10.3 0.9 1.2 9.7 -3.6 -2.7 -4.1 523.8 42.1 25.7 4.9 

 SD (CV %)  1.9 5.6 2.5 1.2 1.4 0.7 0.4 0.8 1.7 (0.3) 0.4 (0.8) 0.8 (3.0) 0.1 

 Lower Bound of 95% CI 0.57 5.15 -1.35 0.04 8.37 -4.30 -3.04 -4.80 522.2 41.7 25.0 4.8 

1.
) 

 S
ys

m
ex

 
K

-1
00

0 

 Upper Bound of 95% CI 4.1 15.4 3.2 2.3 11.0 -2.9 -2.4 -3.4 525.3 42.4 26.5 5.0 

7 Mean   2.3 10.7 5.1 1.2 13.1 -6.3 -5.5 -6.2 523.5 42.5 24.8 4.7 

 SD (CV %)  2.9 4.3 2.4 1.2 2.2 7.8 6.8 7.2 1.1 (0.2) 0.7 (1.7) 0.9 (3.7) 0.2 

 Lower Bound of 95% CI -0.51 6.65 2.87 0.02 11.07 -13.53 -11.83 -12.83 522.5 41.9 23.9 4.6 

2.
) 

 S
ys

m
ex

 
K

X
-2

1 

 Upper Bound of 95% CI 5.1 14.7 7.3 2.3 15.1 0.9 0.8 0.4 524.5 43.2 25.6 4.9 

7 Mean   3.1 3.1 0.7 -0.2 11.4 -4.6 -6.5 -4.9 523.3 42.5 25.5 4.9 

 SD (CV %)  2.2 8.5 1.0 1.8 3.0 2.8 4.8 2.8 0.6 (0.1) 0.8 (1.9) 0.7 (2.8) 0.1 

 Lower Bound of 95% CI 1.02 -4.81 -0.23 -1.88 8.66 -7.21 -10.96 -7.44 522.7 41.7 24.9 4.8 

3.
) 

 S
ys

m
ex

 
K

X
-2

1 

 Upper Bound of 95% CI 5.1 11.0 1.6 1.4 14.2 -2.0 -2.1 -2.3 523.9 43.2 26.2 5.0 

Correlation 
Coefficient (r) 

0.588 -0.042 0.419 -0.054 0.169 -0.162 0.149 0.005 0.225 0.238 0.258 Total 
(n=30) 

Correlationc 
with 

PLT-RI Sig. 2-tailed:  
(p value) 

0.005 0.855 0.058 0.818 0.463 0.483 0.519 0.984 0.328 0.299 0.259 

a Detailed results in of RTH measurements and the quantity assessments are Tab.Ab.4-2-4-2-2 and Tab.Ab.4-2-4-3-2 respectively.  b The mutual correlations between PLT-RI and the other parameters calculated by 
Spearman's rho test.  c The serial number of the tested normal level of Eightcheck control (EC) and the models of Sysmex cell counters used for RTH measurements.  EC Weight= the weight of the 500 µL EC added 
to RTH tube to perform RTH assay;  RTH Filter= the weight of RTH filter before adding EC;  Trapped EC= the weight of EC trapped by RTH filter;  wRI= the weight retention index of RTH i.e., the percentage (%) 
of the weight of the amount of EC trapped in RTH filter (p.4-2-3-1-1-B);  Lower and upper bound of 95% CI= the lower and the upper bounds of the 95% confidence intervals of the mean.  Note: the accuracy of the RIs 
of PLT and blood cells was controlled by phase-contrast microscopy. 

 

The variation of PLT-RI in cWB series (SD=2.1-4.1) was significantly higher (p=0.002) than that of EC 

series (SD=1.9-3.0).  This effect was not remarkable (p>0.05) for PLCR-RI where SD was rather compa-

rable in both cWB and EC series (SD = 4.3-4.9 vs. 4.3-8.5).  The mean values of PLT-RI as well as 

PLCR-RI were significantly lower (p<0.0005) in EC series compared with cWB ones (PLT-RI=2.3-3.1% 

vs. 21.8-29.9%; PLCRI-RI= 3.1-10.3% vs. 19.2-30.5%), as shown in Fig.4-2-4-2-1 & 2.  The resulting 

95% confidence intervals (CI) of the means of PLT-RI and PLCR-RI, for both cWB and EC series, were 
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rather low (Tab. and Fig.4-2-4-2-1 & 2).  The use of different models of Sysmex counters for RTH  

measurements revealed no significant differences for of the variations of PLT-RI and PLCR-RI in EC  

series (Fig.4-2-4-2-1 & 2).  In contrast, the use of Sysmex KX-21 for cWB series delivered a remarkable  

decrease in the variation of PLT-RI compared with Sysmex K-1000 (SD=2.5 vs. 4.1).  A more pronounced 

and statistically significant decrease (p=0.01) was obtained by using the available most modern model 

“Sysmex SF3000”, as demonstrated in Fig.4-2-4-2-1.  The variations (SD) of PDW-RI as well as MPW-RI 

were low in both cWB and EC series, and the mean values were rather comparable (Tab.4-2-4-2-1 & 2), 

as shown in Fig.4-2-4-2-3 & 4.  Despite WBC-RI values were significantly higher in EC than in cWB 

(mean= 9.7-13.1 vs. 4.8-7.7%: p<0.0005), their variations were comparable (SD=1.4-3.0 vs. 1.9-2.2) and 

demonstrated small 95% CI, as illustrated in Fig.4-1-5-2-5.  The mean values of the RIs of RBC, HGB, 

and HCT were comparable in both cWB and EC (Tab.4-2-4-2-1 & 2).  Heavy tails were found in the 2nd 

and the 3rd series of RBC-RI in EC (Skewness= -0.63) causing overestimation of the variation of RBC-RI 

of these series (Fig.4-2-4-2-6).  In parallel with RBC-RI, a similar effect was found in the same series for 

HGB-RI and HCT-RI.  The other EC series as well as cWB series demonstrated low variation and small 

95% CI, as illustrated in Fig.4-2-4-2-6. 

The statistics of PLT-RI correlations with the other RIs in cWB and EC series are described in Tab.4-2-4-

2-1 and 2 respectively.  The patterns of the positive correlations in the cWB series were very similar to 

that found in the stage 4 of the improving protocol, as illustrated in Fig.4-2-4-2-7.  The correlation of  

 

Fig. 4-2-4-2-1 to 6:  In-series precision of the retention indices of RTH assay performed on WB and on 
normal level Eightcheck control (EC) based on the 95% confidence intervals (CI) of the 
mean values using different models of Sysmex counters. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-4-2-1. Fig. 4-2-4-2-2. Fig. 4-2-4-2-3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4-2-4-2-4. Fig. 4-2-4-2-5. Fig. 4-2-4-2-6. 
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PLCR-RI with PLT-RI was statistically significant.  The correlations between PLTR-RI and the other RIs in 

EC series varied from positive to negative, as described in Tab.4-2-4-2-2.  None of these correlations was 

significant except the relation between PLT-RI and PLCR-RI (p=0.005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4-2-4-3. Quantity assessments of the in-series precision performed on cWB  

and on normal level Eightcheck control (EC) 

The statistics of the precision of RIs and the weight parameters of RTH are summarized in Tab.4-2-4-2-1 

and 2 for cWB and EC series respectively.  Shapiro-Wilk statistic implicated a normal distribution 

(p>0.05) for the values of these parameters within cWB and EC series.  The values of the in-series 

measurements of the weight of RTH filter in both cWB and EC series were almost identical (mean= 42.1 

to 43.2 g: CV=0.8-3.1%; Fig.4-2-4-3-1).  The in-series measurements of the weight of the 500 µL cWB 

and EC used in RTH assay demonstrated low variation (CV=0.2-0.3%).  The mean values of  
 

Fig. 4-2-4-3-1 to 4:  In series precision of the weight parameters of RTH assay performed on cWB and on 
the normal level Eightcheck control (EC) based on the 95% confidence intervals (CI) of 
the mean values using different models of Sysmex counters. 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-4-3-1. Fig. 4-2-4-3-2. Fig. 4-2-4-3-3. Fig. 4-2-4-3-4. 
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cWB series (504.6-504.8 g) were comparable and significantly (p<0.0005) lower than that of EC series 

(523.3-523.8 g), as illustrated in Fig.4-2-4-3-2.  The mean weight of the amounts trapped by RTH filter 

were significantly higher in EC series (24.8-25.7 g) than in cWB ones (22.4-22.8 g), as shown in  

Tab.4-2-4-3-3.  Both cWB and EC series presented low variation (CV=2.6-3.7%).  Similarly, the weight 

retention index (wRI) demonstrated low in-series variation for both cWB and EC (SD=0.1-0.2).   

Furthermore, cWB had also significantly (p<0.0005) higher mean values for EC series (4.7-4.9%) than for 

cWB ones (4.4-4.5%), as demonstrated in Fig.4-2-4-3-4.  

 

4-2-4-4. Day-by-day precision performed on normal level Eightcheck control (EC) 

The study of the day-by-day precision of RTH was performed on 2 batches of EC by the application of 

increasing time intervals ranging from 1 to 10 days, as described in the statistics of the results (Tab.4-2-

4-2).  The mean PLT counts of each batch were found to be 195 and 206x103/µL respectively.  The values 

of the day-by-day measurements of PLT-RI and other RIs in both EC batches were in line of normal  

assumption (p>0.1; Shapiro-Wilk test).  The mean values of PLT-RI and PLCR-RI in both batches were 

comparable to each other (p>0.3; Fig.4-2-4-4-1 & 2) as well as to the mean values of EC detected in the 

study of the in-series precision of RTH (Fig.4-2-4-4-3 & 4).  The use of Sysmex M-2000 in the 1st batch of 

EC led to a marked but insignificant decrease (p>0.05; Levene test) in the day-by-day variations of  

PLT-RI (SD=1.5) and PLCR-RI (SD=5.0) compared with that delivered by using Sysmex KX-21 in the 2nd 

batch (SD=1.8 and 8.8 respectively).  In both cases, the variations were low and comparable (p>0.05 

Levene test) with that pronounced by EC in the in-series precision, as illustrated in Fig.4-2-4-4-3 & 4. 
 

Table 4-2-4-4: Descriptive statisticsa of the day-by-day precision of RTH assay and the corresponding quantity  
assessments performed on normal level Eightcheck control (EC) using different models of Sysmex cell counters. 

ECb Statistics PLT-RI PLCR-RI PDW-RI MPV-RI WBC-RI RBC-RI HGB-RI HCT-RI 
EC 

Weight  
RTH Filter 

Trapped 
EC 

wRI 

No.  N   (%) (%) (%) (%) (%) (%) (%) (%) (mg) (mg) (mg) % 

5 Mean   2.9 8.4 1.4 2.6 12.9 -3.1 -2.1 -3.0 523.8 42.1 25.7 4.9 

 SD (CV %)  1.5 5.0 2.2 1.0 2.9 0.5 1.2 0.6 1.7 (0.3) 0.4 (0.8) 0.8 (3.0) 0.1 

 Lower Bound of 95% CI 1.0 2.2 -7.9 -0.7 9.3 -3.7 -3.7 -3.8 522.2 41.7 25.0 4.8 

1.
) 

 S
ys

m
ex

 
M

-2
00

0 

 Upper Bound of 95% CI 4.8 14.6 6.5 4.8 16.6 -2.4 -0.6 -2.3 525.3 42.4 26.5 5.0 

6 Mean   2.4 4.1 -3.4 1.4 9.8 -2.9 -4.4 -3.4 42.7 523.7 24.8 4.7 

 SD  1.8 8.8 3.0 2.6 3.3 1.1 1.3 0.6 1.3 (2.9) 3.8 (0.7) 1.0 (4.1) 0.2 

 Lower Bound of 95% CI -0.51 6.65 2.87 0.02 11.07 -13.53 -11.83 -12.83 522.5 41.9 23.9 4.6 

2.
) 

 S
ys

m
ex

 
K

X
-2

1 

 Upper Bound of 95% CI 5.1 14.7 7.3 2.3 15.1 0.9 0.8 0.4 524.5 43.2 25.6 4.9 
a

 Detailed results in of RTH measurements and the quantity assessments are Tab.Ab.4-2-4-4 and Tab.4-2-4-5 respectively;  b EC No.: the serial number 
of the tested normal level of Eightcheck control (EC) and the models of Sysmex cell counters used for RTH measurements; increasing time intervals 
were applied: 1, 2, 3, 9 and 10 days on the first EC, and 1, 2, 3, 4, 5 and 8 days on the second EC.  
EC Weight= the weight of the 500 µL of EC added to RTH tube to perform RTH assay;  RTH Filter= the weight of RTH filter before adding EC;  
Trapped EC= the weight of EC trapped by RTH filter;  wRI= the weight retention index of RTH (the percentage (%) of the weight of the amount of EC 
trapped in RTH filter; p.4-2-3-1-1-B);  Lower and upper bound of 95% CI= the lower and the upper bounds of the 95% confidence intervals of the 
mean.  Note: the accuracy of the RIs of PLT and blood cells was controlled by phase-contrast microscopy. 

 

No significant differences were found between the means (p>0.1) or the variations (p>0.1) of the  

day-by-day measurements of PDW-RI. MPV-RI and WBC-RI performed on both EC batches.   

The findings of these RIs in the day-by-day precision were actually comparable to that of EC expressed 

by the in-series precision, as demonstrated in Fig.4-2-4-4-5, 6 and 7.  For both EC batches, the values of 

RBC-RI demonstrated comparable variations (p>0.1; Levens’ test) with rather similar mean values 

(p>0.01; t-test).  As illustrated in Fig.4-2-4-4-8, the day-by-day variation was as low as that found in the 
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1st EC series of the in-series precision and much lower than the high variation of the 2nd and the 3rd series 

which demonstrated heavy trails (p.4-2-4-2).  The variations of HGB-RI and HCT-RI were comparable to 

that of RBC-RI (Tab.4-2-

4-4). 
 

Fig. 4-2-4-4-1: 
Day-by-day precision of 
PLT-RI performed on 
normal level Eightcheck 
control (EC). 
 

 

 

 
 
 
Fig. 4-2-4-4-2: 
Day-by-day precision of 
PLCR-RI performed on 
normal level Eightcheck 
control (EC). 

 

 

 

 
Fig. 4-2-4-4-3 to 8:  Day-by-day precision (Day) of the retention indices of RTH assay performed on normal 

level Eightcheck control (EC) based on the 95% confidence intervals (CI) using different 
models of Sysmex counters compared with that of the in-series precision (Series) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-4-4-3. Fig. 4-2-4-4-4. Fig. 4-2-4-4-5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4-2-4-4-6. Fig. 4-2-4-4-7. Fig. 4-2-4-4-8. 
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4-2-4-5. Quantity assessment of the day-by-day precision performed on  

normal level Eightcheck control (EC) 

The quantity assessment of the study of the day-by-day precision of RTH was performed on the  

second batch of EC of this study.  The statistics of the results are summarized Tab.4-2-4-4.  The  

values of the weight parameters were in line of normal assumption (p>0.1; Shapiro-Wilk). The mean  

values of each of the weight of RTH filter (42.7 g), the weight of the 500 µL EC used in RTH assay  

(523.2 g), and the weight of the EC amount trapped by RTH filter (24.8 g) were quite comparable (Anova 

test: p>0.1) to that delivered by the different series EC of the in-series precision (mean values= 42.4 g, 

523.5 g, 25.3 g respectively).  The variations of these parameters observed in the day-by-day quantity 

assessments (CV=1.3%, 0.6%, 4.1% respectively) were low but slightly higher than the low variation of 

the in-series one (CV= 0.6%, 0.2%, 3.2% respectively).  Nevertheless, the differences were not  

statistically significant (p>0.05; Levene test), as demonstrated in Fig.4-2-4-5-1, 2, and 3. 

The day-by-day variations of wRI were quite low (mean=4.7%: SD=0.20; Fig.4-2-4-5-5) and  

comparable with that demonstrated by the in-series assessments (mean=4.8%. SD=0.15), as  

illustrated in Fig.4-2-4-5-5.  Statistically, no significant differences in the means (Anova test: p>0.1) or in 

the variations (Levene test: p>0.1) of wRI were objected between the in-series and the day-by-day  

measurements, as shown by Fig.4-1-2-5-4. 

 

Fig. 4-2-4-5-1 to 4:  Day-by-day precision (Day) of the weight parameters of RTH assay performed on the normal 
level Eightcheck control (EC) based on the 95% confidence intervals (CI) using different mod-
els of Sysmex counters compared with that of the in-series precision (Series). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-2-4-5-1. Fig. 4-2-4-3-2. Fig. 4-2-4-3-3. Fig. 4-2-4-3-4. 
 
 
 
 
 
 

Fig. 4-2-4-5-5: Day-by-day precision 
of wRI performed on Eightcheck  
control (EC). 
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4-2-5. Validation of a newly developed PLT standard by using RTH 

compared with the control of phase-contrast microscopy 

4-2-5-1. Aim and methodology of the study: Developing a convenient PLT standard 

The standardized PLT preparation supplied by Sysmex (Eightcheck control; p.3-2-1) was used in the 

control of the precision of RTH.  It turned out that this standard is not optimal as a reference control in 

the sense of correctness since it delivered very low PLT-RI value (mean=2.6) with low variance (SD=2.1) 

reflecting the unacceptably reduced function of the PLT in this standard (p.4-2-4-2 & 4).  For this  

particular purpose, we tried to develop our standard PLT preparation in the Institute of Clinical Hemosta-

seology with the kind cooperation of Prof. Morgenstern in the Dept. of Biology.  The morphological  

acceptance criteria of our intended PLT standard are: A.) The standard should compose of unstimulated 

PLT i.e., intact discocytes forms. B.) The number of discocytes with small pseudopodia (echinodisco-

cytes) should not exceed 10%.  C.) Fully activated PLT (with long pseudopodia or with an activated 

shape) should not exist in PLT suspension of the standard.  D.) The PLT should be separately  

suspended in the PLT preparation with no aggregation (Aggr) or agglutination (Aggl).  E.)  Only few traces 

of WBC and/or RBC are allowed to be presented in the standard.  For the morphological control, the 

phase-contrast microscopy was used. 

On the other hand, the preparation of the PLT standard was regarded as a further inspection of the  

reliability of using RTH assay in research for assessing PLT function specifically and accurately in  

comparison with CBC (complete blood count; including PLT count) and in due of morphological control.  

The PLT standard was first planned to be prepared by employing the gel-filtered PLT (obtained by using 

Sepharose 2B; p.4-1-1-1).  This approach was found, however, to be unacceptable (p.5-4) and it was 

decided therefore to try another approach by preparing unstimulated PLT standard from cPRP. 

4-2-5-1-1. Initial formula for preparing unstimulated PLT standard 

4-2-5-1-1-1. Prepare 25 mL cPRP from apparently healthy blood donors (SOP; p.3-4-2). 

4-2-5-1-1-2. Fixation with 40 µL glutardialdehyde (25% for electron microscopy, p.3-3-12)/ mL 

suspension (cPRP). 

4-2-5-1-1-3. First control on the PLT morphology using phase-contrast microscope (p.3-5-2). 

4-2-5-1-1-4. Centrifugation: 550 g/ 20 min at room temperature. 

4-2-5-1-1-5. Removing of the supernatant. 

4-2-5-1-1-6. Covering of the pellet with PBS9 containing NaN3 (0.1%) at 4°C. 

4-2-5-1-1-7. Resuspension (stirring). 

4-2-5-1-1-8. Second control on the PLT morphology using phase-contrast microscope (p.3-5-2). 
 

4-2-5-1-2. Developing the PLT standard under morphological control: Final formula 

of the preparation of the PLT standard 

Taking into consideration the successive experiments in order to improve the initial protocol of the  

standard and the resulting modification (described in details in Ab.4-2-5-1), the final protocol of preparing 

the PLT standard that meets the morphological criteria (p.4-2-5-2-A to C) was addressed as follows: 

                                                                 
9 PBS (phosphate buffer saline): NaCl: 8000 mg,  KCl: 200 mg,  Na2HPO4: 1000 mg,  NaH2PO4: 150 mg,  
KH2PO4: 200 mg,  D.W: S.Q. 1000 mL.  Adjust at pH 7.4-7.6.  Store at 4°C. 
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4-2-5-1-2-1. For each lot of the PLT standard, cPRP is prepared from not more than one10 healthy 

blood donor (SOP; p. 3-3-2). 

4-2-5-1-2-2. PLT deactivation and morphological control10.  Rest cPRP in 37°C bath-chamber for 30 

min sooner after preparation.  cPRP was not accepted for the next steps unless it fulfills 

the morphological criteria by phase-contrast microscopy (p.4-2-5-1-A to C). 

4-2-5-1-2-3. Fixation with 150 µL/ mL cPRP by a solution containing: 

100 mg EDTA in 0.8% NaCl-solution11 10 mL 

Glutardialdehyde12 (25% for electron microscopy)   1 mL 

0.1 M Phosphate buffer13 pH 7.4   4 mL 

4-2-5-1-2-4. Morphological control of the PLT by phase-contrast microscopy (p.4-2-5-1-A to C). 

4-2-5-1-2-5. Centrifugation14: 220 g/ 20 min at room temperature. 

4-2-5-1-2-6. Removing of the supernatant immediately15 after centrifugation (with suitable syringe). 

4-2-5-1-2-7. Resuspension.  The pellet should be sooner covered with PBS16 (pH=7.4) containing NaN3 

(0.1%), stirred thoroughly (40-50 sec) on a vibrator to deliver homogenous suspension with 

no visible particles (PLT agglutinates).  The resulting suspension is the final “PLT  

standard” which should be stored at 4°C.  Note: The ratio PRP:PBS =1:1 delivers the 

normal level standard, while the ratio 3:5 delivers the low level standard  

4-2-5-1-2-8. Morphological control of PLT by phase-contrast microscopy (p.4-2-5-1-A to C). 

Note 1: Non-thrombogenic plastic slides were used for the microscopic examinations to avoid possible 

PLT activation or agglutination by contact with glass surface. 

Note 2: The preparations excluding the “washing” steps (p.4-2-5-1-2-5 to 8) were defined as the  

standards of “unwashed” PLT (Suw), while the standards of “washed” PLT (Sw) included these steps. 
 

 

 

                                                                 
10 The morphologic control of the cPRP (prepared from more than one blood donor) before the fixation step (p.4-2-5-1-1-1) 
revealed rare WBC with no significant traces of RBC, but PLT were unacceptably hyper-stimulated (presence of PLT  
aggregates and agglutinates, PLT discocytes with small pseudopodia >10%).  It was decided therefore to: A.) prepare cPRP 
from no more than one blood donor to avoid probable incompatibility;  B.) cPRP should be rested in water-bath to assure PLT 
deactivation due to pre-analytical causes and/or after being disturbed by the centrifugation and cPRP preparation.  C.) PLT in 
the collected cPRP should be controlled morphologically before using it for preparing the standard.  
11 Isotonic EDTA was added to avoid unacceptable agglutinations of the fixed PLT. 
12 Lower concentration of glutardialdehyde, compared with the initial formula (p.4-2-5-1-1-2), was used to avoid cPRP gela-
tion. 
13 Cacodylate buffer (0.1 M: recommended for good staining especially for electron microscopy) was initially used, but then it 
was substituted with phosphate buffer (0.1M) since it is convenient for phase-contrast microscopy, and moreover not toxic 
and with less costs.  The formula of the phosphate buffer (0.1M) is as follows: 

Stock solution I: 14.2 g NaH2PO4 /1000 mL D.W. 
Stock solution II: 13.6 g KH2PO4 /1000 mL D.W. 
Mixing ratio: 7:3 (stock solution I:II) 

 Adjust at pH=7.4.  Stable for weeks when stored at 4°C. 
14 Lower relative centrifugal forces (RCF; compared with the initial formula p. 4-2-5-1-1-4), were experimented to wash fixed 
PLT and our addressed centrifugation condition proved to substantially reduce PLT agglutination of the washed PLT. 
15 Any delay in removing the supernatant and resuspending PLT (p.4-2-5-2-3-7) would increase the possibility of PLT  
agglutinations in the washed PLT. 
16 An inclusion of 10g. EDTA/1000 to the PBS (p.4-2-5-1-1-6) was considered to avoid the tendency of agglutination by time 
throughout the few hours after preparation.  The final formula of PBS was:  
EDTA: 10g,  NaCl: 8000 mg,  KCl: 200 mg,  Na2HPO4: 1000 mg,  NaH2PO4: 150 mg,  KH2PO4:200 mg,  D.W: S.Q. 1000 mL.  Ad-
just at pH 7.4-7.6.  Stored at 4°C. Note. NaN3 should be added to PBS (0.1%; mg/mL) just before use to avoid  
bacterial and fungal contamination in the PLT standard. 



RESULTS/ Ch 4-2-5 
 

 68 

4-2-5-1-3. Methodology of the successive lots of the PLT standard 

Depending on the “final” formula of the PLT standard (p.4-2-5-1-2), three batches of the standard were 

produced.  The First lot composed of normal (N.Sw-1) and low level (L.Sw-1) standards of washed PLT 

(p.4-2-5-1-2); each was distributed into aliquots of 600 µL.  The second lot included one normal level 

standard of unwashed PLT (Suw-2) that was prepared and stored in one tube.  Considering the significant 

improvement in the stability of the standard of unwashed PLT demonstrated by Suw-2 compared with 

that of the washed PLT (Sw-1) delivered by the first lot (tables 4-2-5-3 & 4), normal level standards of 

washed (Sw-3) and unwashed (Suw-3) PLT were prepared from the same cPRP in the 3rd lot of the  

standard for further inspection of this improvement.  Each of these standards was stored in one tube, 

sealed firmly, and stored in refrigerator (<8°C).  PLT count of the cPRP from which the standards of the 

first lot were prepared was 364 x103/µL.  Since the standard include an addition of 150 µL fixation  

solution / mL cPRP (p.4-2-5-1-2-3), the expected value of PLT count for N.Sw-1 and L.Sw-1 were  

364 x 0.85 = 318 x103/µL and 364 x 0.85 x 3/5 = 191 x103/µL respectively.  Similarly, the expected value 

of the PLT count of the second and the third lot of the standard were 413 x103/µL (486 x 0.85) and 396 

x103/µL (467 x 0.85) respectively. 

 

4-2-5-1-4. Methodology of evaluating the precision of PLT standards morphologically  

and by the use of RTH assay 

The stability and the precision of the different lots of the PLT standard were investigated.  The study of 

the in-series precision composed of performing CBC (complete blood count), whereas the study of the 

day-by day precision included additionally the morphological examination by phase-contrast microscopy.  

The measurements of CBC and RTH in the study of the precisions (in-series and day-by-day) were  

carried out in-double.  The detailed results, figures and tables are described in Ab.4-2-5-2.  Only the key 

results are summarized in this chapter.  The standards were allowed to balance with room temperature 

and then mixed thoroughly before applying any control (for the first lot, only one aliquot was used for 

each one time control). 

The in-series precision was studied on N.Sw-1 and on Suw-2 as examples for the washed and unwashed 

PLT standards respectively.  The day-by-day precision was investigated in each of the three lots of the 

PLT standard.  The control was performed initially from day to day and then with increasing time intervals 

as often as the quantity of the standards allowed.  Having reasonable insight about the precision of the 

PLT standard by the control performed on the 1st and the 2nd lots, we step ahead to use RTH assay for 

evaluating PLT function of the 3rd lot of the standard.  Due to the practical conditions of the work, the 

measurements of the in-series as well as on the first day of the day-by-day precision were generally 

possible to be performed only few (2-4) hours after preparing the standard, whilst the microscopic control 

in these studies was performed within 60 min after the preparation. 

 

 

 

 



RESULTS/ Ch 4-2-5 
 

 69 

4-2-5-2. In-series precision of the PLT standard 
 

Table 4-2-5-2: Controlling the in series precisiona of the parameters of the PLT standards. 
Standard Statistics PLT PDW MPV PLCR WBC RBC HGB HCT 

Lotsb  (x103/µL) (fL) (fL) (%) (x103/µL) (x106/µL) (g/dL) (%) 

1st Standard of  Mean 88 16.6 10.8 34.4 6.2 0.03 0.1 0.0 

Washed PLT SD 1.7 0.2 0.1 0.4 0.2 0.005 0.1 0.0 

(N.Sw -1)c CV (%)d 1.90 0.92 1.31 1.21 2.47    

2nd Standard of  Mean 427 12.0 10.0 26.7 0.2 0.07 0.1 0.1 

Unwashed PLT SD 5.9 0.2 0.1 1.2 0.03 0.11 0.04 0.03 

(Suw -2) CV (%)d 1.37 1.32 1.08 4.66     
a

 The detailed measurements are described in Tab.Ab.4-2-5-2.  b The measurements of the first and the second standard were  
performed 3 and 4 hours after their preparation respectively.  c  The normal level (N.Sw-1) of the 1st lot of the standard and not the 
low (L.Sw-1) was considered for the comparison with the 2nd lot since only normal level standard (Suw-2) was prepared in the 2nd 
lot.  d Due to the low mean value of the traces of these cells, the high CVs are meaningless and were therefore omitted. 

 
 
 
4-2-5-3. Day-by-day precision of the first lot of PLT standard 

The PLT counts of the normal (N.Sw-1) and low level (L.Sw-1) washed PLT standards measured on the 

1st day (87 and 61 x103/µL respectively; Tab.4-2-5-3-1) were much lower than expected (318 and 

191x103/µL respectively; p.4-2-1-3).  This significant and early decline in PLT count of the N.Sw-1 and 

L.Sw-1 (72 and 68% respectively) was followed by remarkable stability during the first 6 day control 

(CV=7% and 15% respectively).  The next  

control showed a trend of PLT decrease by 

time that was more pronounced in the normal 

level (Fig.4-2-5-3-1).  In parallel, WBC count  

increased significantly up the 1st day control 

despite only rare WBC could be objected  

microscopically (Tab.4-2-5-3-2).  The micro-

scopic control revealed no increase in WBC 

but significant increases in Aggl were observed 

and were rather proportional to the decreases 

of PLT as well as to the increases in WBC; 

some of those Aggl demonstrated WBC size-

like particles.  WBC increased with close  

association to the decrease of PLT up to a cut 

point where the decline began, as illustrated in 

Fig.4-2-5-3-2.  No significant variation was 

observed in PLCR or in PLT size distribution 

other than a slight decrease in MPV and 

PLCR, as further illustrated in Ab.4-2-5-2; 

Fig.4-2-5-3-3 and 4. 

 

 

Table 4-2-5-3-1: Summary of the key* results of the day-
by-day control on the first washed PLT standards. 

PLT Serial Time PLT WBC RBC 

 Standard No. (day) 
(x103/µL) 

(x103/µL
) 

(x106/µL
) 

Normal 1 1** 87 6.3 0.03 
Level 2 2 91 7.5 0.02 

Standard 3 3 92 5.8 0.02 
(N.Sw -1): 4 4 103 5.3 0.03 
PRP:PBS= 5 5 93 5.9 0.03 

(1:1) 6 6 82 6.9 0.03 
  7 27 66 9.0 0.02 
  8 34 53 5.1 0.02 
  9 51 58 8.6 0.02 
  10 76 74 7.1 0.02 
 11 83 47 8.8 0.02 

Low  1 1** 61 4.1 0.02 
Level 2 2 61 4.6 0.02 

Standard 3 3 59 4.5 0.02 
(L.Sw -1) 4 4 67 4.2 0.02 
PRP:PBS= 5 5 61 4.3 0.02 

(3:5) 6 6 44 4.2 0.01 
  7 27 43 5.9 0.01 
  8 34 41 5.3 0.01 
  9 51 42 5.5 0.01 
  10 76 15 1.8 0.01 
 11 83 50 8.6 0.02 
*The detailed results of the CBC measurements are described in 
Tab.Ab.4-2-5-3;  **The measurements were applied 4 hours after 
preparing the standard, whilst the microscopic examination of the 
standard was performed within 30 min after its preparation. 



RESULTS/ Ch 4-2-5 
 

 70 

 

Table 4-2-5-3-2: Day-by-day control on the first washed PLT standards by phase-contrast microscopy*. 
Serial 
No. 

Time Intervals 
(day) 

Normal Level Standard (N.Sw -1) 
PRP:PBS = 3:3 

Low Level Standard (L.Sw -1) 
PRP:PBS = 3:5 

1 1 
PLT+++,  f RBC, r WBC 
Aggl: <5%: s >90% 

PLT++,  f RBC,  r WBC 
Aggl: <5%: s >90% 

2 2 
PLT+,  r RBC 
Aggl: 65%: s 35%, b 10% 

PLT+,  r RBC 
Aggl: 65%: s 20%, b 15-20% 

3 3 
PLT+,  r RBC 
Aggl: 65%: s 40%, b 15-20% 

PLT+,  r RBC 
Aggl: 70%: s 25%, b 15% 

4 4 
PLT+,  r RBC 
Aggl: 60%: s 40%, b 20% 

PLT+,  r RBC 
Aggl: 65%: s 25-30%, b 15% 

5 5 
PLT+,  r RBC 
Aggl: 65%: s 40%, b 15-20% 

PLT+,  r RBC 
Aggl: 65-70%: s 20%, b 20% 

6 6 
PLT+,  r RBC 
Aggl: 70%: s 35, b 15-20% 

PLT+,  r RBC 
Aggl: 75%: s 25%, b 20-25% 

7 27 
PLT+,  r RBC 
Aggl: 80%: s 40%, 5% 

PLT+,  r RBC 
Aggl: 80%: s 25%, b 5-10% 

8 34 
PLT+,  r RBC 
Aggl: 80-90%: s 10%, b 60% 

PLT+,  r RBC 
Aggl: 80%: s 10%, b 25-30% 

9 51 
PLT+,  r RBC 
Aggl: 80%: s 30%, b 15% 

PLT+,  r RBC 
Aggl: 80%: s 5%, b 25-30%  

10 76 
PLT+,  r RBC 
Aggl: 70-80%: s 30%, b 15-20% 

PLT+,  r RBC 
Aggl: >90%: s 5%, b 75% 

11 83 
PLT+,  r RBC 
Aggl: 80-90%: s 10%, b 20% 

PLT+,  r RBC 
Aggl: 70-80%: s <5% 

* For all the examined preparations, the PLT standards preserved the intact unstimulated discocyte forms of PLT with less 
than 10% echinodiscocytes disposing no long pseudopodia or fully activated shapes. 
PLT+, PLT++, PLT+++ = low, moderate and high PLT concentration respectively;  f= few; r= rare;  Aggl = the percentage of 
agglutinated PLT;  s, b: the percentage of PLT forming small (2-4 PLT) and big Aggl (>18 PLT) respectively. 
 

 

The microscopic control of the PLT standards (Tab.4-2-5-3-2) showed the intact unstimulated  

discocyte forms of PLT with less than 10% echinodiscocytes disposing no long pseudopodia or  

activated shapes. 

 
 

 
 
 

 
 
 
 
 
 

Fig. 4-2-5-3-1: Day-by-day precision of the PLT Fig. 4-2-5-3-2: Correlation between PLT and WBC count 
count in the first standards of washed PLT. in the day-by-day control of the first standards of 
 washed PLT. 

 

 

4-2-5-4. Day-by-day precision of the second lot of PLT standard 

The PLT count on the 1st day (429 x103/µL; Tab.4-2-5-4-1) was comparable to the expected value  

(413 x103/µL; p.4-5-2-1-3). PLT demonstrated later significant decrease by time (r=-0.94: p<0.0005; 

Fig.4-2-5-4-1).  On the 2nd day, PLT declined remarkably (11%) and then showed evident stability within 
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the next 6 days (366-359 x103/µL).  PLT continued to decrease by time and stepped below 300 x103/µL 

(i.e., >30% decrease) after 33 days.  WBC increased by time in close association with PLT decrease 

(r=-0.94, p<0.0005) and the increase in the Aggl observed microscopically (Tab.4-2-5-4-2).  PLCR and 

PLT size distribution demonstrated rather stable features by time (Ab.4-2-5-2; Fig.4-2-5-4-3 & 4).   
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Morphologically, the PLT preserved their intact  

unstimulated discocytes forms, no WBC was found, 

and only rare traces of RBC were encountered  

(Tab.4-2-5-4-2). 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 4-2-5-4-1: Day-by-day precision of the PLT Fig. 4-2-5-4-2: Correlation between PLT and WBC 
count in the second lot of the standard of. in the day-by-day control of the second unwashed 
unwashed PLT (Suw-2).  PLT standard. 
 
 

Table 4-2-5-4-1: Summary* of the key results 
of the day-by-day control on the second  
unwashed PLT standard (Suw-2). 

Serial Time PLT WBC RBC 
No. (day) (x103/µL) (x103/µL) (x106/µL) 
1 1** 429 0.2 0.03 
2 2 366 1.0 0.05 
3 5 359 1.5 0.03 
4 8 330 2.7 0.04 
5 12 331 3.2 0.03 
6 15 332 4.3 0.03 
7 18 310 4.6 0.03 
8 21 307 6.1 0.03 
9 26 312 6.6 0.03 
10 29 307 7.9 0.03 
11 33 279 12.1 0.03 
12 38 280 12.4 0.03 

* The detailed results of the CBC measurements are 
described in Tab.Ab.4-2-5-4.  **The measurements 
were applied 3 hours after preparing the standard, 
whilst the microscopic examination of the standard was 
performed within 30 min after its preparation. 

Table 4-2-5-4-2: Day-by-day morphological con-
trol on the second unwashed PLT standard  
(Suw-2) by phase-contrast microscopy*. 

Serial 
No. 

Time 
(day) 

Microscopic Examination 

1 1 
PLT+++,  r RBC 
Aggl: <1%: s >97% 

2 2 
PLT+++,  r RBC 
Aggl: 10%: s 80% 

3 5 
PLT+++,  r RBC 
Aggl: 10-15%: s 75% 

4 8 
PLT+++,  r RBC 
Aggl: 20%: s 65% 

5 12 
PLT+++,  r RBC 
Aggl: 20%: s 60% 

6 15 
PLT+++,  r RBC 
Aggl: 20%: s 50-60% 

7 18 
PLT+++,  r RBC 
Aggl: 25%: s 50% 

8 21 
PLT+++,  r RBC 
Aggl: 25: s 40% 

9 26 
PLT+++,  r RBC 
Aggl: 25%: s 35% 

10 29 
PLT+++,  r RBC 
Aggl: 25%: s 25% 

11 33 
PLT+++,  r RBC 
Aggl: 30-35%: s 10-20% 

12 38 
PLT+++,  r RBC 
Aggl: 30-35%: s 5% 

* For all the examined preparations, the unwashed PLT 
standard preserved the intact unstimulated discocyte 
forms of PLT (<10% echinodiscocytes, no long  
pseudopodia or fully activated shapes). 
PLT+++ = high PLT concentration; r= rare;  Aggl= the 
percentage of agglutinated PLT; s, b: the percentage of 
PLT forming small (2-4 PLT) and big Aggl (>18 PLT) 
respectively. 
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4-2-5-5. Day-by-day precision of the third lot of PLT standard 

In comparison with the standard of the unwashed PLT (Suw-3), the washed PLT standard (Sw-3)  

revealed much lower (p<0.0005) PLT levels and demonstrated significantly more evident (p=0.005)  

decrease in PLT by time, as described in Tab.4-2-5-5 and illustrated in Fig.4-2-5-5-1.  On the 1st day (few 

hours after preparation), the Sw-3 delivered a PLT count (90x103/µL; Tab.4-2-5-5-1) that was much lower 

(77%) than the expected value (396x103/µL; p.4-5-2-1-3).  On the 2nd day, PLT declined sharply and then 

preserved rather stable range (58-68 x103/µL) within the next 30 days.  The Suw-3 showed rather stable 

PLT count within the first 17 days (373-411x103/µL) that ranged about the expected value (396x103/µL).  

PLT began to decrease significantly later, where it stepped down 252 x103/µL (i.e., >33% decrease) on 

the 31st day.  WBC levels in the washed standard (Sw-3) were much higher than those in the unwashed 

one (Suw-3: p=0.005; Fig.4-2-5-5-2).  The increase of WBC was closely correlated with PLT decrease  

(r= -0.669, p=0.002; Fig.4-2-5-5-3) and was positively correlated with the PLT agglutination observed  

microscopically (Tab.4-2-5-5-2).  This correlation was more pronounced in the unwashed standard  

(Suw-3).  The parameters of PLT size distribution of the washed standard (Sw-3) could not be recognized 

by the automatic counter, whilst it was determinable for the unwashed standard (Suw-3) and presented  

a remarkable decrease by time (Ab.4-2-5-2; Fig.4-2-5-5-4 and 5).   

 

Table 4-2-5-5-1: Summary 

a of the key results of the day-by-day control of the third lot of PLT standard using 
RTH. 
Standard Serial Time PLT PLCR WBC RBC PLT-RI PLCR-RI WBC-RI 

Type No. (day) (x103/µL) (%) (x103/µL) (x106/µL) (%) (%) (%) 

   b.F a.F b.F a.F b.F a.F b.F a.F    

1b 1 90 58 NR NR 4.5 3.0 0.05 0.01 35.6 NR 33.3 

2 3 59 87 NR NR 4.3 2.4 0.02 0.01 -47.5 

d NR 44.2 

3 6 64 53 28.9 NR 4.2 2.5 0.01 0.01 17.2 NR 40.5 

4 8 65 55 NR NR 4.5 2.9 0.02 0.01 15.4 NR 35.6 

5 11 68 61 NR NR 5.0 2.8 0.02 0.01 10.3 NR 44.0 

6 14 61 49 29.2 NR 4.0 2.3 0.01 0.01 19.7 NR 42.5 

7 17 66 55 NR NR 4.5 2.6 0.02 0.01 16.0 NR 42.7 

8 22 66 53 28.8 NR 3.7 1.9 0.01 0.03 19.7 NR 48.6 

9 

c 31 58  NR  3.8  0.10     

W
a
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h

e
d

 P
L
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S
ta

n
d

a
rd

 
(S

w
-§

) 

Mean 19.1 NR 41.4 

1b 1 377 356 39.2 37.9 0.8 0.8 0.6 0.04 5.6 8.7 20.0 

3 3 411 356 35.8 34.9 0.9 0.9 0.5 0.04 13.4 15.6 44.4 

3 6 387 364 34.8 34.2 0.9 0.9 0.5 0.03 5.9 7.6 44.4 

4 8 380 371 33.3 33.3 1.0 0.9 0.9 0.03 2.4 2.4 10.0 

5 11 373 290 33.6 32.9 1.4 1.4 0.9 0.03 22.3 23.9 35.7 

6 14 386 362 32.2 31.3 1.8 1.8 1.1 0.03 6.2 9 38.9 

7 17 380 364 31.0 30.0 3.1 3.1 1.4 0.04 4.2 7.3 54.8 

8 22 345 359 31.0 28.0 3.6 3.6 1.3 0.03 -4.1 

d 6.0 63.9 

9 

c 31 252  28.7  9.3 9.3  0.01    

U
n

w
a

s
h

e
d
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d

a
rd

 
(S

uw
-3

) 

Mean 8.6 10.0 39.0 
a

 The detailed results of RTH measurements are described in Tab.Ab.4-2-5-5.  b The measurements were applied 2 hours after 
preparing the standard, whilst the microscopic examination was performed within 30 min after its preparation.  c  The amount was 
too little for performing a.F measurements and was partly gelled.  d The negative PLT-RI values were dropped out from the mean 
because they are attributed to PLT degradation and not to a real retention to the PLT, as explained in the discussion (p.5-1-2-7-A-
3-c). b.F= RTH measurements performed on the PLT standard before centrifugation and passing RTH filter (in the collection tube);  
a.F= RTH measurements performed on the PLT standard after centrifugation and passing RTH filter (in the lower part of RTH tube);   
NR= not readable by the automatic cell reader.  
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Performing RTH revealed significantly (p=0.01) higher PLT-RI for the washed standard (Sw-3: 

mean=19.1%; range 10.3 to 35.6%) compared with the unwashed standard (Suw-3: mean=8.6%; range 

2.4 to 22.3%), as demonstrated in Fig.4-2-5-5-4.  Contradictory could be interpreted microscopically by 

the degradations of Aggl after passing RTH filter, as explained in p.5-1-2-7-3-B. 

WBC-RI levels were remarkably high in both the washed (Sw-3) and the unwashed (Suw-3) standards 

(mean WBC-RI= 41.4% and 39.0%; range= 33.3-48.6% & 10-63.9% respectively).  WBC-RI seemed to 

increase by time; especially in the unwashed standard (Suw-3: Fig.4-2-5-5-5).  PLCR-RI of the  

unwashed standard (Suw-3) was significantly correlated with PLT-RI (r=0.952, p<0.0005), as shown in 

Fig.4-2-5-5-6. 

 

 
 
 
 
 
 
 
 
Fig. 4-2-5-5-1: Day-by-day precision of the PLT Fig. 4-2-5-5-2: Day-by-day precision of the WBC 
count in the third lot of the PLT standards.  count in the third lot of the PLT standards. 

 
 

 
 
 
 
 
 
 
 
 
 
Fig. 4-2-5-5-3: Correlation between PLT and Fig: 4-2-5-5-4. Day-by-day control of PLT-RI in the third 
WBC in the day-by-day control of the third lot of. lot of the PLT standards. 
the PLT standards. 
 

 
 

 
 
 
 
 
 
 
 
 
Fig. 4-2-5-5-5.  Day-by-day control of WBC-RI Fig. 4-2-5-5-6: Correlation between PLCR-RI and 
in the third lot of the PLT standards. PLT-RI in the day-by day control of the third  
 lot of the unwashed PLT standard (Suw-3). 
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The microscopic control of both the washed (Sw-3) and the unwashed (Suw-3) PLT standards showed 

permanently intact unstimulated discocytes forms of PLT (<10% echinodiscocytes, no long pseudopodia 

or activated shapes).  No traces of leucocytes could be objected and only rare erythrocytes were 

counted (Tab.4-2-5-5-2). 

 
Table 4-2-5-5-2: Day-by-day morphological control on the third lot of PLT standards by phase-contrast microscopy*. 

The Washed PLT Standard (Sw -3) The Unwashed PLT Standard (Suw -3) Serial 
No. 

Time 
(day)                 b.F                  a.F b.F                    a.F 

1 1 
PLT+,  r RBC 
Aggl: 75%: s 10%, b 65% 

PLT+,  r RBC 
Aggl: 15-20%: s 10-20% 

PLT+++,  r RBC 
Aggl: 2-5%: s 90% 

PLT+++,  r RBC 
Aggl: <3%: s >90%, b<2% 

2 3 
PLT+,  r RBC 
Aggl: 85%: s 10%, b 70% 

PLT+,  r RBC 
Aggl: 15%  s 40-50%, b<5% 

PLT+++,  r RBC 
Aggl: <1%: s 90% 

PLT+++,  r RBC 
Aggl: <3%: s >90%, b<2% 

3 6 
PLT+,  r RBC 
Aggl: 80%: s 10%, b 70% 

PLT+,  r RBC 
Aggl: 25-30%: s 20% 

PLT+++,  r RBC 
Aggl: 2-5%: s 90% 

PLT+++,  r RBC 
Aggl: 2-4%: s >90%, b<2% 

4 8 
PLT+,  r RBC 
Aggl: 80%: s 10%, b 70 

PLT+,  r RBC 
Aggl: 30%: s 20% 

PLT+++,  r RBC 
Aggl: 5%: s 80% 

PLT+++,  r RBC 
Aggl: 5%: s 90%, b <2% 

5 11 
PLT+,  r RBC 
Aggl: 80%: s 10%, b 65% 

PLT+,  r RBC 
Aggl: 25%: s 20% 

PLT+++,  r RBC 
Aggl: 5-10%: s 75% 

PLT+++,  r RBC 
Aggl: 5%: s 85% , , b<2% 

6 14 
PLT+,  r RBC 
Aggl: 80-85%: s 10%, b 70% 

PLT+,  r RBC 
Aggl: 25-30%: s 20% 

PLT+++,  r RBC 
Aggl: 5%: s 50-60% 

PLT+++,  r RBC 
Aggl: 5-10%: s 65%, b 5% 

7 17 
PLT+,  r RBC 
Aggl: 80%: s 10%, b 70% 

PLT+,  r RBC 
Aggl: 25-30%: s 15-20% 

PLT+++,  r RBC 
Aggl: 5-10%: s 30% 

PLT+++,  r RBC 
Aggl: 5%: s 65%, b<2% 

8* 22 
PLT+,  r RBC 
Aggl: 80%: s10%, b 70-75% 

PLT+,  r RBC 
Aggl: 25%: s 15% 

PLT+++,  r RBC 
Aggl: 15%: s 40% 

PLT+++,  r RBC 
Aggl: 5-10%: s 65%, , b<2% 

9 31 
PLT+,  r RBC 
Aggl: 85%: s 10%, b 70-75% 

 
PLT+++,  r RBC 
Aggl: 35%: s 20% 

 

* For all the examined preparations, the PLT standards preserved the intact unstimulated discocyte forms of PLT (<10% echinodiscocytes, no 
long pseudopodia or fully activated shapes).  PLT+++ = high PLT concentration in the microscope field;  r= rare;  Aggl = the percentage of 
agglutinated PLT;  s, b: the percentage of PLT forming small (2-4 PLT) and big Aggl (>18 PLT) respectively.  
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4-2-6. Morphological characterization of the interaction of 

platelets and blood cells with RTH filter 

4-2-6-1. Aim and methodology of the study 

This study was designed to further evaluate the retention phenomena for PLT and blood cells as well as 

to characterize the modalities of their interactions with the surfaces of the inter-connected micro  

 

Fig. 4-2-6-2-1: Phase-contrast microscopy of RTH filter sections 
obtained by applying different centrifugal speeds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filter 2: The speed 90g/5min was used. 
Adherent cells were presented only in  
the upper part of RTH filter. 

Filter 1: The speed 110g/5min was used. 
Erythrocyte agglutinates are found in 
the upper and the middle parts of RTH filter. 
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pores of the polyurethane filter of RTH (PU; p.3-2-1).  RTH assay (SOP-3; p.4-1-2-5) was performed on  

cWB drawn from 2 healthy blood donors (sample 1: PLT count= 278x103/µL; PLT-RI=32%, sample 2: 

PLT count=236x103/µL; PLT-RI=28%) Semi- and ultra-thin fixed sections of RTH filter were prepared af-

terwards and examined by phase-contrast besides scanning (SEM) and transmission (TEM) electron 

microscopy, as described in the methods (p.3-5-3).  Two samples of cWB were used for performing RTH 

and for each two rotational speeds were used for the centrifugation of RTH tubes: 110 g and 90 g.   

Increasing time intervals were used for the centrifugation of RTH tube by 110 g (5, 10 and 15 min).  Only 

of the key results of the electron microscopy of RTH filter by using our standard condition 110 g/ 5 min 

are summarized herein because: a.) Using the speed 110 g resulted in acceptable differentiation of blood 

cells in the filter compared with limited one by using the speed 90 g (described in p.4-2-6-2), and b.) The 

application of 110 g with intervals higher than 5 min revealed no further improvement in the distribution of 

blood cells in RTH filter.  On the other hand, due to the findings revealed by phase-contrast microscopy 

(p.4-2-6-2) blood cells were more available in the upper than in the middle or the lower parts of RTH filter.  

The results of the electron microscopy presented here are therefore focused on the sections of the upper 

part of RTH filter, unless otherwise is mentioned. 

The protocol of this study was also performed on 4 samples of the normal level Eightcheck control (EC) 

and on 2 samples of cPRP, and the results were published elsewhere [Nemeh 2005, 2005, 2006].  The 

key results are summarized here also since they are of vital significance for understanding the specificity 

of RTH assay.  Actually, this study represented a further step for the morphological assessment of the 

specificity and the accuracy of RTH assay for screening the function of PLT (p.5-2-7, 9). 

 

 

4-2-6-2. Phase -contrast microscopic examinations of RTH filter by using cWB 

By the use of the centrifugal speed 90 g/ 5 min, the blood cells (agglutinated erythrocytes, leukocytes 

and PLT aggregates) were found only in the mesh of the upper parts of RTH filter (Fig.4-2-6-2-1).  Using 

110 g/ 5 min, the blood cells reached significantly deeper levels.  They were observed in the mesh of the 

upper and the middle parts of the filter demonstrating lower density in the later, as shown in Fig.4-2-6-2-

1.  In both cases, only few blood cells were objected in the lower part of RTH filter.  The Fig.4-2-6-2-2 

presents an example of higher magnification of the  

middle part of RTH filter by using the centrifugal speed 

i.e., 110 g/ 5 min. 

 
 
 
 
 
 

Fig. 4-2-6-2-2: Phase-contrast microscopy of  
a section in the middle part of RTH filter 
(110g/5min).  Among the erythrocytes, two  
leukocytes were objected (L). 
PU= polyurethane. 
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4-2-6-3. Electron microscopic examinations of RTH filter by using cWB 

The surfaces of the filter could always be recognized (Fig.4-2-6-3-1 to 3).  The bulging of the sintered 

polyurethane (PU) material of the filter results in a mesh of interconnected micropores or canals with 

various widths.  The filter structure forms therefore a labyrinth-like mesh that resembles the inter-cellular 

matrix. 

A.) Platelets findings:  

PLT aggregates on the filter were extensively objected by SEM (Fig.4-2-6-3-a-1), while significantly less 

leucocytes and erythrocytes adhered on it.  The platelets adhered mainly on the surfaces of the upper 

part of the filter and spread extremely forming wall bound aggregates that could mostly bridge between 

the opposite surfaces of the filter pores, as shown in Fig.4-2-6-3-a-2.  Individually adherent and/or non-

spread PLT were occasionally encountered Fig.4-2-6-3-a-3.  The density of adherent and aggregated PLT 

is related with their activation and retention value as well as their count before the passage of the filter.  

The TEM showed adhering and wide-spreading PLT with prolonged pseudopodia building very thin layers 

covering the PU surface of the most upper part of the filter (Fig.4-2-6-3-a-4).  The adherent PLT developed 

a network of aggregates that were filled with plasma and mostly bridging the opposite PU surfaces 

(Fig.4-2-6-3-a-1, 2 & 5).  The characteristic PLT-contacts objected in the endothelium were clearly built 
 

 

 

 

 

 

 

 

 

 

 
 

Fig.4-2-6-3-a-1: SEM showing extensive platelet adherence and aggregation on the surfaces of the porex filter. 
(PLT count=278x103/µL; PLT-RI=32%). SEM= scanning electron microscopy. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 
Fig.4-2-6-3-a-2: SEM showing wall-bound PLT aggregates bridging the opposite surfaces of the filter pores. 

(PLT count=236x103/µL; PLT-RI=28%). SEM= scanning electron microscopy. 
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by PLT aggregates demonstrating: (a) connecting tight contacts and (b) bridges of fibrinogen molecules, 

as shown in Fig.4-2-6-3-a-6.  PLT borders could not always be recognized implicating irreversible  

aggregates (Fig.4-2-6-3-a-2 & 5).  Free aggregates were encountered in the upper and in the middle parts 

of the filter (Fig.4-2-6-3-a-7).  Other signs of PLT activation were evident in forming contractile  

cytoskeleton associated with shape changes and moderate degranulation/secretion (Fig.4-2-6-3-a-8).   

No contact between the platelets and leukocytes or erythrocytes was objected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4-2-6-3-a-3: SEM showing occasional Fig. 4-2-6-3-a-4: TEM showing adherent PLT (aP)  
single and/or nonspread adherent PLT. spread extremely and degranulated building a very  
(PLT count=236x103/µL; PLT-RI=28%). thin layer on the polyurethane (PU) surface of the  
SEM= scanning electron microscopy. Filter.  TEM= transmission electron microscopy. 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4-2-6-3-a-5: TEM showing adherent (aP) and  
aggregated (PA) platelets bridging a small pore (PU)  
of RTH filter.  TEM= transmission electron microscopy. 
E = erythrocytes. 

 

Fig. 4-2-6-3-a-6: Adherent (aP) and aggregated (PA)  
platelets on the polyurethane surface (PU).  
The characteristic fibrinogen-mediated contacts (1)  
and the “tight contacts” (2) are demonstrated. 
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1= Fibrinogen con-
tact 
2= Tight contact 

5 µm 
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Fig. 4-2-6-3-a-7: TEM demonstrate free PLT 
aggregate (PA) in the middle part of RTH filter.  
TEM= transmission electron microscopy; 
PU= polyurethane.  
 

 
Fig. 4-2-6-3-a-8: TEM demonstrating PLT  
degranulation. In part (a) PLT adheres (AP) 
on the polyurethane surface of a small pore 
of the filter.  The magnification in part (b) 
shows the micro-filament of the cytoskele-
ton (C) in the adherence area.  Granules dur-
ing the secretion are distinguished beside 
the unchanged alpha granules (G). 
EC= Echinocytes (activated PLT); 
TEM= transmission electron microscopy. 

 
 
B.) Erythrocytes findings: 

Big erythrocyte agglutinates were objected in the upper part 

of the filter where the coin-roll (rouleaux) formations were 

frequently seen.  The erythrocytes adhered directly on the 

polyurethane (PU) surface via membrane contact (Fig.4-2-6-3-

b). Most of the erythrocytes retained blood plasma layers 

between the cells and the PU-surfaces (plasma bridges; 

Fig4-2-6-3-b). 

 

Fig. 4-2-6-3-b: Coin-rolls forms of erythrocytes (E) in the  
upper part of RTH filter showing direct membrane contact 
with the polyurethane surface PU (1).  Most of them retain 
plasma layers between the cells and PU (2). 

 

C.) Leukocytes findings: 

Monocytes (Fig.4-2-6-3-c-1) and neutrophile granulocytes (Fig.4-2-6-3-c-2) adhered on the PU surface of 

RTH filter, but they were also found among the erythrocytes.  Whilst it was possible to find contacts 

between the adherent monocytes and erythrocytes (Fig.4-2-6-3-c-1), no such contacts were observed 

from the granulocytes.  No contacts between the PLT and leukocytes could be objected. 

1= direct contact 
2= plasma bridges 10 µm 

1 µm 

10 µm 

10 µm 
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Fig. 4-2-6-3-c-1: Adherent leukocytes on the poly- Fig. 4-2-6-3-c-2: A granulocyte (PMN) adhere on the 
urethane surface of RTH filter (PU). polyurethane surface of RTH filter (PU). 
A monocyte (M) and an erythrocyte (E, above) The cell was fully degranulated; no contact with other 
adhere on PU.  The erythrocytes (E) demonstrate  cells was objected. 
partly close contacts to the monocytes. 
 

 

 

 

4-2-6-4. Electron and phase -contrast microscopy of RTH filter 

by using Eightcheck control (EC) 

The prefixed PLT in the normal level Eightcheck control (EC) were mainly found in the mesh of the upper 

part of RTH filter.  The concentration of PLT decreased in deeper parts.  Examining the upper part by 

SEM showed that PLT were spherical in shape, clumping in the canal lumen and adhered rarely on its 

PU surfaces (Fig.4-2-6-4-1).  Examining the filter by TEM showed PLT agglutinates composing of  

degranulated echinospherocytes.  The PLT in these agglutinates were connected via “PLT selective  

contacts” (PC) and demonstrated no real adherence on the PU surface of RTH filter (Fig.4-2-6-4-1).   

Occasionally, some PLT agglutinates presented 

focal contacts with the PU surface of the filter  

(Fig.4-2-6-4-2).  Agglutinated leukocytes and  

erythrocytes were objected in low rate comparable to 

that encountered in cWB. 

 

 

Fig. 4-2-6-4-1: SEM showing partly degranulated 
echinospherocytes connected via focal contacts 
(FC*) by which they can adhere on the PU sur-
face of RTH filter. 
ML= membrane lesion. 
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Fig. 4-2-6-4-2: TEM showing degranulated echino- Fig. 4-2-6-4-3: TEM showing partly degranulated  
spherocytes (P1 und P 2) connected via platelet  echinospherocytes connected via focal contacts  
selective contacts (PC) with centralized contractile  (FC*) by which they can adhere on the PU surface 
gel (CG) and not adherent on the filter surface. of RTH filter. 
ML= membrane lesion. ML= membrane lesion. 
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4-3. Reference ranges of the retention indices (RIs) of  

RTH assay measured in cWB 
4-3-1. Aim and design of the study 

The main aim of this study was to establish the reference ranges of the “main” retention indices (PLT-RI 

and PLCR-RI) of RTH assay performed on cWB from healthy individuals.  The reference ranges of the 

“secondary” retention indices (PDW-RI, MPV-RI, WBC-RI, RBC-RI, HGB-RI, & HCT-RI) were in parallel 

established to provide more insight into the effect of RTH filter.  In addition, the study was designed to 

investigate the correlations between the different retention indices (RIs) in healthy people.  Our  

consequent question was whether the identification of such probable correlations along with addressing 

the reference ranges of the secondary RIs may together help for:  

A.) Enlarging the clinical significance of RTH assay by the use of cWB. 

B.) Playing the role of additional discriminators to the accuracy and the right interpretation of the 

main RIs i.e., PLT-RI and PLCR-RI, and indicating the possible errors in these indices. 

Apparently healthy blood donors (BD) were recruited from the blood bank (p.3-5-1).  The SOP-2 of RTH 

(p.4-1-1-7) was initially used on 20 healthy individuals.  After addressing the significant improvement in 

RTH precision and accuracy by the application of SOP-3 in comparison with SOP-2 (Tab.5-1-3) and the 

acceptable results of the validation of SOP-3 (p.5-2), we decided to put apart the results of SOP-2 and to 

apply SOP-3 for the study of the reference ranges of RTH.  Thus, RTH assay was performed on 73 blood 

donors by the application of SOP-3.  The accuracy of PLT and blood cell retention indices and the nor-

mal integrity of PLT were controlled by phase-contrast microscopy (p.3-5-2).  The results of 3 BD were 

dropped since they were far away from the statistical distribution of the other results (Tab.Ab.4-3-1-1).  

The study of the reference range included therefore at least 70 blood donors. 

Most of RTH measurements were performed in-double and the means of the resulting values were used 

to establish the normal ranges and to perform the different investigations in this study.  The reference 

sample was assigned into 3 subgroups according to the mode of performing the measurements before 

(b.F) and after (a.F) passing RTH filter (Tab.4-3-4): 

1.) 2b.F:2a.F = two b.F as well as a.F measurements (n= 31). 

2.) 2b.F:1a.F = two b.F measurements and one a.F measurement (n= 18). 

3.) 1b.F:1a.F = one b.F as well as a.F measurement (n= 21). 

The compatibility of the results of these three modes of measurements and the probable improvements 

by a specific mode was investigated.  On the other hand, RTH measurements were initially performed by 

using the automatic cell counter “Sysmex M 2000”.  For further assurance of the reliability, more modern 

counters i.e., Sysmex KX-21 and Sysmex SF 3000 were used later (Tab.4-3-5) and the probable  

improvements in the accuracy and the precision of the measurements were inspected. 

 

4-3-2. Establishing the reference ranges of the retentions indices of RTH 

The detailed measurements of the reference ranges of the retention indices (RIs) of RTH are reported in 

Tab.Ab.4-3-2.  The median, the percentiles, and the 90% reference range of the different RIs (RI) of RTH 

in cWB are described in Tab.4-3-2-1.  The formal test of normal distribution (Kolmogorov Smirnov test) 
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confirmed the normal assumption for PLT-RI (p=0.2) as well as the other RIs (p>0.05).  But the normality 

of RBC-RI, HGB-RI and HCT-RI was rather critical, as shown in Tab.4-3-2-1.  The distributions of the 

different RIs were demonstrated by histograms.  PLT-RI values trended to be skewed to the right (Fig.4-3-

2-1).  The distribution of PLCR-RI, PDW-RI, MPV-RI and WBC-RI was in line with normal assumption 

(Fig.4-3-2-2 to 4).  Few high outliers were found in PDW-RI and in MPW-RI.  The values of RBC-RI,  

HGB-RI and HCT-RI presented heavy tails, as illustrated in Fig.4-3-2-5 to 7. 

 

Table 4-3-2-1: The 90% reference rangesa of RTH based on empirical percentiles. 
Retention N Median 90% Reference P                          Percentiles (%)                          s KSb 
Index (RI)  (%) Range (%) 5 10 25 50 75 90 95 (p) 

PLT-RI 70 25.3 15.5 to 38.3 15.5 17.3 20.9 25.3 28.9 32.0 38.3 0.200c 

PLCR-RI 70 19.6 4.8 to 35.1 4.8 7.7 13.8 19.6 27.8 33.1 35.1 0.200c 

PDW-RI 70 -5.3 -19.0 to 4.0 -19.0 -13.8 -9.5 -5.3 -1.5 2.5 4.0 0.200c 

MPV-RI 70 -2.3 -8.2 to 3.2 -8.2 -6.3 -4.3 -2.3 0.7 2.1 3.2 0.200c 

WBC-RI 70 4.8 -2.7 to 11.7 -2.7 -2.1 1.2 4.8 7.3 8.9 11.7 0.200c 

RBC-RI 70 -3.6 -8.7 to 4.3 -8.7 -7.6 -5.3 -3.6 -1.2 0.9 4.3 0.054 

HGB-RI 70 -3.9 -10.2 to 4.6 -10.2 -7.9 -5.1 -3.9 -1.7 1.5 4.6 0.049 

HCT-RI 70 -3.2 -9.0 to 3.9 -9.0 -7.5 -5.0 -3.2 -1.0 0.8 3.9 0.064 
a

 The detailed measurements of the reference ranges of RTH are described in Tab.Ab.4-3-2. 
b

 Test of normality by Kolmogorov-Smirnov: Lilliefors significance correction; significant when p<0.05.  c  This is a lower bound of 
the true significance. 
 

Fig. 4-3-2-1 to 8:  Histograms of the distributions of the retention indices  
of RTH in healthy individuals (n=70). 

 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4-3-2-1: PLT-RI reference values. Fig. 4-3-2-2: PLCR-RI reference values. 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 4-3-2-3. Fig. 4-3-2-4. Fig. 4-3-2-5. 
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Fig. 4-3-2-6. Fig. 4-3-2-7. Fig. 4-3-2-8. 
 
Further inspection of the distribution of the RIs was therefore performed by Q-Q Plot test which  

demonstrated an acceptable normal distribution for PLT-RI as well as for the other RIs as shown in  

Fig.4-3-2-9 to 12.  Actually the skewness in PLT-RI was low (0.489) and within acceptable range  

(Std error = 0.287). 

 
Fig. 4-3-2-9 to 16: Test of normality of the retention indices of RTH  

in healthy individuals by Q-Q Plot test. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4-3-2-9: Normal Q-Q plot of PLT-RI. Fig. 4-3-2-10: Normal Q-Q plot of PLCR-RI. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-3-2-11. Fig. 4-3-2-12. Fig. 4-3-2-13. 
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Fig. 4-3-2-14. Fig. 4-3-2-15. Fig. 4-3-2-16. 

 
Table 4-3-2-2: Reference range of RTH based on normal theory with the mutual correlation with PLT-RI. 

95% Confidence Intervals 
for Mean (%) 

Retention 
Index 
(RI) 

N 
 
 

Mean 
 

(%) 

SD 
 
 

Mean 
-2SD 
(%) 

Mean 
+2SD 
(%) Lower Bound Upper Bound 

Correlation* with 
PLT-RI 

“r” 

PLT-RI 70 25.22 6.25 12.72 37.72 23.73 26.71 - 

PLCR-RI 70 20.45 9.05 2.35 38.55 18.29 22.60 0.689 

PDW-RI 70 -5.64 6.46 -18.56 7.28 -7.18 -4.10 -0.074 

MPV-RI 70 -1.97 3.52 -9.01 5.07 -2.81 -1.13 -0.021 

WBC-RI 70 4.21 4.14 -4.07 12.49 3.23 5.20 0.183 

RBC-RI 70 -3.25 4.13 -11.51 5.01 -4.24 -2.27 0.062 

* r = the correlation coefficient computed by using spearmans ’rho test; the correlations were statistically  
not significant (p>0.05) except for PLCR-RI (p<0.0005).  

 

These results combined implicated the rightness of  

considering PLT-RI as well as the other RIs to be  

distributed in line of normal assumption.  Taking this into 

consideration, the reference range of PLT-RI and the other 

RIs could be acceptably expressed by using the 95%  

reference ranges based on normal theory and defined as 

mean ± 2SD, as described in Tab.4-3-2-2.  Interestingly, 

the PLT-RI values demonstrated inverse correlation  

(r= -0.22) with the PLT count measured before the passage 

of RTH filter.  The statistical significance of this correlation 

was rather critical (p=0.68). 

 
4-3-3. Investigation of hypothetic mutual correlations between PLT-RI and other RIs 

The correlations between the different RIs are illustrated in Fig.4-3-3-1. Statistically, Spearman’s rho test 

was used to inspect the significance of these correlations.  The main retention indices i.e., PLT-RI and 

PLCR-RI, demonstrated significant positive mutual correlation (r=0.702, p<0.0005), as shown in  

Fig.4-3-3-2.  Lower significant correlation was observed between PLCR-RI and both of PDW-RI (r=0.396, 

p=0.001) and MPV-RI (r=0.592, p<0.0005), as demonstrated in Fig.4-3-3-3 & 4.  No significant correla-

tion was noted between PLT-RI and PDW-RI and MPV-RI (p>0.05). Nevertheless PDW-RI in parallel with 

MPV-RI seemed to be slightly negatively correlated with PLT-RI (Fig.4-3-3-5 & 6).  WBC-RI values were 
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Fig. 4-3-2-17:  PLT-RI against PLT count in 
healthy individuals (n=70) with line of 
marked negative correlation. 
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insignificantly but positively correlated with PLT-RI (r=0.183; p=0.129: Fig.4-3-3-7).  RBC-RI has no  

correlation with PLT-RI (r=0.062; p=0.609: Fig.4-3-3-5).  HGB-RI and HCT-RI values varied in parallel with 

RBC-RI (p<0.0005) and they followed the 

same pattern of insignificant correlation with 

PLT-RI (p>0.05) as RBC-RI did (Fig.4-3-3-1). 

 
 
 
 

 

 

 

 

 

 

 

 

 

Fig. 4-3-3-2: PLCR-RI against PLT-RI with Fig. 4-3-3-1: Scatter matrix of the mutual correlations  
line of best fit. between the different retention indices of RTH.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-3-3-3: PDW-RI against PLCR-RI. Fig. 4-3-3-4: MPV-RI against PLCR-RI. Fig. 4-3-3-5: PDW-RI against PLT-RI. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4-3-3-6: MPV-RI against PLT-RI. Fig. 4-3-3-7: WBC-RI against PLT-RI. Fig. 4-3-3-8: RBC-RI against PLT-RI. 
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Furthermore, a comparison between the values of PLT-RI in blood donors with positive RBC-RI  

versus those with negative RBC-RI revealed no significant difference in the means of PLT-RI (p=0.62; 

Mann Whitney test) as well as their variances, (Tab.4-3-3-1). 
 

Table 4-3-3: Comparison of PLT-RI in healthy individuals with positive and negative RBC-RI. 
PLT-RI RBC-RI N Mean 

(%) 
SD Std. Error  

of Mean 
Equality of Mean 

(p)  

A 
Equality of Variances 

(p)  

B  

Subgroup Positive 10 27.01 8.26 2.61 0.46 0.317 

 Negative 60 24.92 5.88 0.76   
A

 Students t-test for equality of means adjusted for unequal variances, p=0.62 Mann Whitney U-Test. 
B Levene test for equality of variances.  
 

 

4-3-4. Investigation on the modality of RTH measurements 

The means and standard deviations of the 3 subgroups representing the different modes of  

measurements (p.4-3-1) are given in Tab.4-3-4.  The differences of the mean values of RIs among these 

subgroups were not significant except for WBC-RI (p=0.029).  Pairwise comparisons (Fishers protected  

 

Table 4-3-4: Descriptive statistics of the different subgroups of the modes of RTH measurements. 
Retention 
Index (RI) 

Subgroup 

a N Mean 
 

(%) 

SD 
 

Equality of 
Means 
(p)  

b  

Homogeneity of 
Variances 

(p)  

c 
PLT-RI 2b.F:2a.F 31 26.70 7.02 0.165 0.259 
  b.F2:a.F1 18 23.29 4.29   
  1b.F:1a.F 21 24.69 6.17   
  Total 70 25.22 6.25   
PLCR-RI 2b.F:2a.F 31 21.77 8.73 0.511 0.158 
  b.F2:a.F1 18 18.73 10.45   
  1b.F:1a.F 21 19.96 8.37   
 Total 70 20.44 9.05   
PDW-RI 2b.F:2a.F 31 -5.33 6.37 0.868 0.960 
 b.F2:a.F1 18 -5.44 7.04   
 1b.F:1a.F 21 -6.27 6.35   
 Total 70 -5.64 6.46   
MPV-RI 2b.F:2a.F 31 -1.63 3.26 0.781 0.371 
 b.F2:a.F1 18 -2.28 4.23   
 1b.F:1a.F 21 -2.19 3.35   
 Total 70 -1.97 3.52   
WBC-RI 2b.F:2a.F 31 3.01 4.14 0.029 0.503 
  b.F2:a.F1 18 6.24 4.01   
  1b.F:1a.F 21 4.25 3.73   
  Total 70 4.21 4.14   
RBC-RI 2b.F:2a.F 31 -3.71 3.80 0.203 0.652 
  b.F2:a.F1 18 -1.75 2.81   
  1b.F:1a.F 21 -3.85 5.27   
  Total 70 -3.25 4.13   
HGB-RI 2b.F:2a.F 31 -4.35 4.14 0.097 0.723 
  b.F2:a.F1 18 -1.75 2.73   
  1b.F:1a.F 21 -3.45 4.63   
  Total 70 -3.41 4.07   
HCT-RI 2b.F:2a.F 31 -3.64 3.88 0.163 0.636 
  b.F2:a.F1 18 -1.49 2.66   
  1b.F:1a.F 21 -3.54 5.00   
  Total 70 -3.06 4.05   

a
 2b.F:2a.F = two measurements before the passage of the filter (2b.F) and two measurements afterwards (2 a.F); b.F2:a.F1 = two 

measurements before the passage of the filter (2b.F) and one measurement afterwards (1a.F);  1b.F:1a.F = one measurements 
before the passage of the filter (1b.F) and one measurements afterwards (1a.F).  b Anova Fisher test protected least significant 
difference of variances based on the mean values.  c  Levene test for homogeneity of variances.  
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least significant difference test) revealed marked difference (p= 0.067) between each of the modes using 

one a.F measurement (subgroups 2b.F:1a.F and 1a.F:1a.F) and that using two a.F measurements  

(subgroups 2b.F:2a.F).  The variations (SD) of PLT-RI values were remarkably higher in the subgroup of 

2a.F measurements than 1a.F measurement, as described in Tab.4-3-4).  Nevertheless, the test of the 

homogeneity of the variances in the different subgroups revealed no significant difference (p>0.05; Levene 

test), as described in Tab.4-3-4. 

 

 

4-3-5. Effect of using different automatic cell counters 

No significant difference was observed between the means of the main retention indices of RTH i.e., PLT-

RI and PLCR-R by using different Sysmex cell counters, while remarkable differences were  

pronounced by the other RIs (Tab.4-3-5).  Levene's test of homogeneity of variances showed  

no significant differences between the different models of Sysmex cell counters, as described  

in Tab.4-3-5. 

 

Table 4-3-5: Descriptive statistics of the use of different models of Sysmex cell counters  
Retention 
Index (RI) 

Sysmex 
Model 

N Mean 
 

(%) 

SD 
 

Equality of 
Means 

(p)* 

Homogeneity of 
Variances 

(p)** 
PLT-RI M 2000 22 26.14 7.70 0.289 0.121 
  KX 21 19 26.30 5.66   
  SF 3000 29 23.81 5.27   
  Total 70 25.22 6.25   
PLCR-RI M 2000 22 22.54 9.54 0.237 0.343 
  KX 21 19 21.24 7.22   
  SF 3000 29 18.34 9.57   
  Total 70 20.44 9.05   
PDW-RI M 2000 22 -6.12 6.42 0.563 0.631 
 KX 21 19 -4.27 6.58   
 SF 3000 29 -6.18 6.50   
 Total 70 -5.64 6.46   
MPV-RI M 2000 22 -1.76 3.21 0.859 0.903 
 KX 21 19 -1.78 3.82   
 SF 3000 29 -2.25 3.64   
 Total 70 -1.97 3.52   
WBC-RI M 2000 22 4.19 3.51 0.004 0.196 
  KX 21 19 1.82 4.51   
  SF 3000 29 5.80 3.67   
  Total 70 4.21 4.14   
RBC-RI M 2000 22 -3.17 3.94 0.050 0.894 
  KX 21 19 -5.08 4.38   
  SF 3000 29 -2.12 3.80   
  Total 70 -3.25 4.13   
HGB-RI M 2000 22 -3.56 4.13 0.020 0.819 
  KX 21 19 -5.34 4.23   
  SF 3000 29 -2.03 3.47   
  Total 70 -3.41 4.07   
HCT-RI M 2000 22 -3.32 4.12 0.036 0.784 
  KX 21 19 -4.76 4.08   
  SF 3000 29 -1.74 3.62   
  Total 70 -3.06 4.05   

* Anova Fisher test for analyzing the significance of variances based on the mean values.  
** Levene test for homogeneity of variances.  
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V. DISCUSSION 

5-1. Basic developments improving the methodology, reliability 

and standardization of the procedures of RTH assay 
The developments improving the methodology, the reliability and the standardization of the first “SOP” of 

RTH assay (SOP-1; p.3-4-3-2) were done in two stages.  The identifications and modifications of the first 

stages (p.4-1-1) were addressed to the second SOP of RTH (SOP-2; p.4-1-1-7).  The investigations on 

the reliability of SOP-2, performed in the improving protocol (p.4-1-2), led to further improvements that 

were addressed to the third SOP of RTH (SOP-3; p.4-1-2-5). 

 

5-1-1. Identifications and modifications on SOP-1 addressed to 

SOP-2 of the RTH assay 

5-1-1-1. Applying RTH assay on cWB instead of cPRP in the clinical practice 

Previous studies of RTH were mainly focused on the use of cPRP [Krischek 2000, Schenk 2001, and 

Nickels 2003].  Our study was planned to step ahead in the validation of RTH performed on cPRP.  We 

suggested, however, using cWB instead of cPRP in the clinical practice because of the following  

reasons: 

A. Using cWB reflects the actual physiological status more accurately than cPRP and prevents artifact 

variability related to PLT activation due to the separation steps [Moris 2001, Franchini 2005]. 

B. Preparing cPRP by centrifugation leads to an unstandardized gradient of blood cell concentrations 

(mainly PLT) that vary according to the distance from the bottom of the collecting tube.  Sampling 

from cPRP would lead therefore to variable results of RTH. 

C. Sampling from cPRP implicates variability in PLT function attributed to PLT gradient in the plasma 

after centrifugation and the consequent diverse modalities of PLT interaction with the medium which 

differ inter-individually and also according to the concentrations of the blood components varying due 

to the gradient effect.  Our investigations on the PLT isolated by gel-filtration (iPLT) compared with 

cWB as well as on the standards of washed fixed PLT compared with the unwashed PLT enhance 

these conclusions and demonstrated significant PLT predisposition to hyperactivation by partial  

absence of normal blood medium (p.5-2-3) which underlines the superiority of cWB.  Such hyper-

activation is especially serious because it increases the probability of the occurrence of PLT  

particles phenomenon after the passage of RTH filter which can cause major destroy in the reliability 

of RTH measurements, as described in p.5-1-2-2 and p.5-1-2-7-C. 

D. The blood amount required for performing RTH could be minimized to 0.5 mL instead of at least  

>1.5 mL in the case of cPRP (cPRP preparation; p.3-4-2). 

E. Using cWB is easier and at least save the time of the preparation of cPRP (>15 min; p.3-4-2). 

In addition to the advantages of using cWB (points D and E), the points A to C underline the probable 

variations implicated by using cPRP.  Such variations may be simply avoided by the use of cWB.  It was 

decided therefore to consider cWB as the tested material of choice for performing RTH assay in the 
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clinical practice.  The objective of our study was consequently to validate, improve and standardize RTH 

assay as a simple assay for measuring PLT function in cWB. 

 

5-1-1-2. Standardizing the centrifugation conditions of RTH tube at 110 g/ 5 min 

As mentioned in p.3-4-3-2-2-5, the centrifugation conditions of RTH tube varied extensively between  

79-160 g for 5-16 min [Wienefoet 2003].  No standard conditions were specified, and the most common 

centrifugal forces (gravitational forces) used in previous RTH studies ranged between 80-120 g  

[Wieding 2004].  In addition, these conditions were even not clearly defined in other studies [Wieding 

2001].  Our suggestion to adapt the speed 110 g / 5 min as a standardized condition for the centrifugation 

of RTH tube (p.4-1-1-1) proved to help in delivering reliable SOP (SOP-3) and significant RTH values in 

regard of the followings: 

A.) The morphological characterization of the interaction of PLT and blood cells with RTH filter (p.4-2-6-2) 

proved that: (1) By using the force 90 g, the PLT distribution was limited mainly in the upper part of RTH 

filter (Fig.4-2-6-2-1).  Whilst the use of 110 g delivers convenient distribution of the platelets in the filter as 

their adherence extend acceptably from the upper until the middle-lower parts of the mesh of RTH filter. 

Using higher “g” forces would therefore result in major increase of the PLT forced out of the filter and thus 

disrupt the significance of the retention indices.  (2) The application of 110 g with intervals higher than  

5 min did not improve the distribution of PLT and blood cells in RTH filter.  It is not justified, therefore, to 

use higher intervals which would undesirably prolong the turnaround time of the test. 

B.) The quantity assessment of SOP-3 proved that applying 110 g/ 5 min lead to high precision for the 

percentage of the amount of cWB as well as Eightcheck control trapped in RTH filter (wRI= the weight 

retention index: CV<4%; Tab.4-2-4-2-1 and 2).  This study revealed also significant reference range of 

wRI in cWB (mean ± 2SD=4.6 ± 0.4 %; Tab.4-2-3-2 and Fig.4-2-3-2-1). 

C.) Adapting this condition could deliver a well standardized and reliable procedure (SOP-3; p.4-1-2-5) 

implicating acceptable accuracy and specificity (p.5-2) as well as precision (p.5-3). 

D.) Delivering a reliable and meaningful reference range of PLT-RI with acceptable biovariability 

(mean±2SD= 25.2±12.5; Tab.4-3-2-2, Fig.4-3-2-1) and adequate margins for assessing the pathological 

variations.  Higher rotational speeds (>110 g) would consequently deliver reference ranges that are too 

low (<12%) for assessing the hypo-retention and PLT dysfunction.  In addition, our investigation to lower 

speeds (e.g., 90 g) delivered too high PLT-RI values (mean=73%; Schenk 2002) implicating too small 

margins for the assessing PLT hyperactivity and pathological thrombophilic variations which was the 

main aim of developing RTH [Wenzel 200, Schenk 2002, Wieding 2004]. 

 

5-1-1-3. Excluding the addition of the reactivating reagent (CaCl2 with r-Hirudin) 

This modification, initially suggested upon our consideration that this addition may induce unacceptable 

variability was further supported by our investigations (p.4-1-1-2) which showed significant variances in 

the measurements of RTH assay induced by the addition of this reagent as follows: A.) The correlation 

between the reactivating reagent and PLT-RI was variable and converted from positive to negative at a non 

precisely identified cut-point (Fig.4-1-1-2-B-1).  B.) The response of PLT function (PLT-RI) to the reactivat-

ing reagent varied inter-individually (Fig.4-1-1-2-B-1).  C.) Similar effect was objected for the response of 
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large PLT reflected by the variation of PLCR-RI (Fig.4-1-1-2-B-2).  The addition of CaCl2 as blank (SOP-1; 

p.3-4-3-2-2-2) according to Wenzel 2000 is not justified since RI was to be interpreted as a relative value.  

It was decided therefore to exclude the addition (50 µL) of the reactivating reagent in order to avoid the 

variable response of PLT. 

 

5-1-1-4. Standardizing the amount passing RTH filter: Applying the measurements before 

the passage of RTH filter on the collection tube instead of RTH tube 

As described in the results of improving the first SOP of RTH (p.4-1-1-3), the application of the  

b.F measurements on the tested material in the original collecting tube delivered a sufficient quantity for 

the b.F and the a.F in-double measurements (100-400 µL per measurement).  The amount should pass 

RTH filter (b.F amount) was standardized and fixed at 500 µL.  By considering the unstandardized 

marked positive correlation of PLT-RI with the b.F amount (p.4-2-3-2), this modification eliminates the 

variability attributed to the variances in the amounts aspirated from the different cell counters (100-400µL) 

for performing the b.F measurements on the material added to RTH tubes.  This is especially critical for 

comparative studies e.g., inter-Lab investigations.  Moreover this modification along with the exclusion of 

the addition of 50 µL of the reactivating reagent (p.5-1-1-3) increases the amount of the tested  

materials that are supposed to pass RTH filter allowing for further controls (e.g., PLT isolation and PLT 

spreading; p.4-2-2) on these materials after passing RTH filter. In addition, resting the blood in the  

collection tubes for a standardized time (1-2 min) on a mechanical rotator allows the PLT – disturbed 

after blood withdrawal – to calm down and ensure the homogeneity of the tested sample leading to more 

reliable b.F measurements.  In contrast, applying the b.F measurements on the blood added into RTH 

tubes after standing it or after the incubation step (up to 10 min: SOP-1; p.3-4-3-2-2-3) implicates variant 

rates of blood sedimentation and heterogeneity that result in variances of PLT count and CBC  

(b.F measurements).  Further support for this modification was provided by our study of “blood mixing 

effect” which showed that PLT are significantly less opposed to hyperactivation in big tubes by  

inconvenient mixing than in smaller Epp tubes (Fig.4-1-2-4-2-b), as explained in p.5-1-3-A. 

 

5-1-1-5. Standardizing the contact time of cWB with RTH filter:  

Exclusion of the incubation step 

The justification of resting the disturbed tested material (cPRP) in the RTH tube before performing the  

b.F measurements (incubation step up to 10 min; p.4-1-1-4) in earlier RTH procedures was no longer 

rational after our modification: (a) Using the cWB instead of cPRP.  This prevents PLT activation during 

the preparation steps (p.5-1-1-1).  (b) Applying the b.F measurements on the tested materials in the 

collection tube instead of RTH tubes (p.5-1-1-4).  In addition, the RTH filter is not completely athrom-

bogenic (p.5-2-6).  Excluding the incubation step can thus avoid: 1.) possible PLT activation during the 

contact time with the filter which can falsely increase PLT-RI, and 2.) the variability resulting from variant 

grades of PLT activation attributed to different periods of incubation and to the inter-individual variability of 

PLT response to such activation.  Thus, the exclusion of the incubation step standardizes the time of the 

contact between the tested material and RTH filter and improve the reliability of RTH assay. 
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5-1-1-6. Using new tips for the successive measurements of RTH assay 

The investigation on the effect of using one tip for successive pipetting from the same sample (in-double 

or in-series measurements) revealed significant increase in the variation of the blood amount added into 

RTH tubes compared with using new tips (101.4%; Tab.4-1-1-5-B).  The quantity assessment showed  

a marked unstandardized correlation between PLT-RI and the b.F amount (p.4-2-3-2).  We do suggest 

therefore using only new tips in order to avoid such unstandardized variation in the measurements. 

 

5-1-1-7. Basic improvement in the significance of PLCR-RI by using the corrected formula 

Using the absolute values of large PLT in the corrected formula of PLCR-RI instead of its percentages 

has resulted in basic improvement in the significance of PLCR-RI and its interaction with the other RIs of 

RTH (p.4-1-1-2).  This was obvious in the results of the reference ranges of RTH determined on 70 

healthy blood donors (p.4-3).  Using the corrected formula delivered a meaningful reference range of 

PLCR-RI values demonstrating a significant correlation with PLT-RI (p<0.0005, r=0.689; Fig.5-1-1-7).  

Interestingly, the systemically lower levels of PLCR-RI compared with PLT-RI (mean= 20.5% vs. 25.2%; 

Tab.4-3-2-3) suggests that the large PLT are less active than the normal sized PLT and are retained 

therefore less effectively on RTH filter.  Defining these important observations was not possible by using 

the original formula where PLCR-RI values reflected no remarkable correlation with PLT-RI (p>0.1) and 

delivered negative reference range (mean= -6.4%) with no clinical significance, as shown in Fig.5-1-1-7.  

Actually, the same pattern of strong correlation between PLCR-RI and PLT-RI was objected by using the 

corrected formula in the diverse investigations of our study e.g., RTH precision (p.4-2-4-2). 

The measurements of PLCR-RI were quite beneficial throughout our investigations for developing and 

validating RTH (p.5-1-2-4-B and p.5-1-2-5) and could provide significant insights into the specificity  

and the clinical significance of RTH assay, as further  

explained in p.5-4-4-3.  Addressing the significance 

and the implications of PLCR-RI was only possible by 

using the corrected formula.  An evident example is 

the crucial role of the corrected formula, in contrast to 

the original one, in defining the errors of RTH meas-

urements and validating the correction associated 

with using the new standard vortex (Fig.5-1-2-5-C), as 

described in p.5-1-2-5-C.  In addition, the PLCR-RI 

measurements based on the corrected formula was 

also beneficial for setting a useful indicator (RI-Diff; 

Tab.4-1-2-2-2) for the interpretation and the quality 

assurance of RTH assay (p.5-4-6-1-d). 

 

 

 

 

 

Fig. 5-1-1-7: Correlation between PLCR-RI and PLT-RI 
in healthy individuals (n=70) using the original and 
the corrected formulas of PLCR-RI. 
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5-1-2. Identifications and modifications on SOP-2 addressed to 

SOP-3 of the RTH assay 

5-1-2-1. Standardizing the time of performing RTH assay 

As described in p.4-1-2-2 (Tab.4-1-2-2-2), the use of different time intervals in stages 1-3 of the improving 

protocol (15-147 min after the blood withdrawal) failed to reduce the unacceptably significant in-series 

increase of PLT-RI values (increase by time up to 61%: p<0.0005; Fig.4-1-2-2-2-2).  The substantial  

correction of PLT-RI increase by time in stage 4 (Fig.4-1-2-3-2-2) by using the new standardized vortex 

approach, in spite applying different time intervals (29-118 min), indicates that this increase was mainly 

initiated by the inconvenient vortex method applied in stages 1-3 (vortex 3 min; SOP-1; p.4-1-1-7), as 

described as follows: the PLT, preactivated by shear forces while passing through RTH filter, seemed to 

be further over-stimulated by inconvenient vortex leading to PLT aggregates (Aggr) that increase by time.  

This results in relevant decrease of the a.F PLT count and consequently in relevant increase of PLT-RI, 

as further explained in the “PLT particles” phenomenon (p.5-1-2-7-B).  This explanation interprets the 

controversy of PLT-RI values measured in sample 6a and 6b.  The substantially higher time intervals 

used in sample 6b (118-147 min) compared with 6a (50-86 min) were expected to be associated with 

higher in-series increase and variation of PLT-RI.  But the PLT-RI measurements revealed substantially 

higher in-series increase (s.Incr= 61.4% vs. 6.1%: p<0.005; Fig.4-1-2-2-2-2) and variation (SD=20.7 vs. 

4.3; Fig.4-1-2-2-2-1) in sample 6a versus 6b.  Using relatively lower time intervals in sample 6a allowed 

recording the significant in-series increase in Aggr formation by time.  Whilst by using very high intervals 

in sample 6b, the formation of such Aggr reached almost its highest rate before starting with the  

a.F measurements and thus only slight increase and variation by time (in-series) could be recorded.   

The higher mean of PLT-RI pronounced by sample 6b compared with 6a (86% vs. 78%) support this  

interpretation.  Another evidence on the interpretation of the increase of PLT-RI by time (in-series) is that 

the correction of PLT-RI increase in stage 4 was associated with significant reduction (p<0.0005) of the 

highly elevated levels of PLT-RI and their high variation in stages 1-3 to rational levels of PLT-RI with  

acceptable variation in stage 4 (mean= 62.5% vs. 27.9%, SD= 13.8 vs. 4.7) in spite using different time 

intervals in this stage (29-118 min), as illustrated in Fig.4-1-2-2-2-1.  Actually, by applying the  

standardized vortex in stage 4, the time had no influence or correlation with PLT-RI values within intervals 

<120 min, as demonstrated in Fig.4-1-2-3-2-2.  Performing RTH with higher intervals (>120 min) may lead 

to unacceptable decrease in PLT-RI that could be attributed to the gradual loss of PLT function by time 

(Fig.4-1-2-3-2-2).  It was decided, therefore, to consider this time window in SOP-3 (p.4-1-2-5) as  

a standard limit for performing RTH.   

 

5-1-2-2. “PLT particles phenomenon”: A major source of errors in blood cell counting  

and RIs measurements 

As described in the previous section (p.5-1-2-1), applying different time intervals in stages 1-3 of the  

improving protocol failed to decrease the unacceptably high in-series increase of PLT-RI (up to 61%;  

Fig.4-1-2-2-2-2) as well as to reduce the resulting elevated levels of PLT-RI (up to 82%) and their high 

variation (SD=14; Fig.4-1-2-2-2-1).  Three main observations in stages 1-3 triggered us to hypothesize the 
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“PLT particles” phenomenon and to inspect its relevance by investigating the influence of mixing the  

a.F blood by vortex on the reliability of PLT-RI measurements (p.4-1-2-3 and 4).  This was an essential 

step in the improvement of RTH as it was attempt to find a rational interpretation of the unacceptable 

errors and to help in finding the appropriate solutions.  The related observations are: 

A.) The b.F measurements of PLT delivered low variations (mean CV=1.1%; Tab.4-1-2-2-2).  While the 

significant variations were restricted in the a.F measurements; where RTH tubes were vortexed  

inconveniently (3 min) according to the original SOP of RTH assay (SOP-1; p.3-4-3-2-2-6). 

B.) The significant horizontal increases in PLT-RI of the same RTH tube (up to 23.2%; Tab.4-1-2-2-2); 

due to the significant decrease in PLT count of the second horizontal (in-double) measurement 

compared with the first one, were not correlated with the time intervals (p>0.5) and could not be  

attributed to the differences within each series of RTH tubes (Tab.4-1-2-2-2, Fig.4-1-2-3-2-2). 

C.) The significant inverse correlation between the remarkably negative levels of WBC-RI and the  

irrationally elevated levels of PLT-RI in stages 1-3 (r= -0.82: p<0.0005; Fig.4-1-2-3-2-4).   

The hypothesis of “PLT particles” phenomenon could be initially outlined as follows: 

“Platelets (PLT) in cWB seem to be activated after centrifugation and passing RTH filter.  Later  

inconvenient mixing of the centrifuged blood (e.g., by vortex for 3 min as recommended by SOP-1) could 

stimulate PLT resulting in PLT hyperactivation leading to PLT aggregations and/or agglutinations.  Thus, 

“PLT particles” with different sizes are formed.  These particles seem to be mainly like WBC in size, 

“WBC-like particles” and/or “RBC-like particles” and less probably bigger than WBC “above-WBC  

particles”.  We hypothesize that these “PLT particles” may be misread by the automatic blood cell 

counters (Sysmex; p.3-2-4) as WBC or RBC whenever they are within the corresponding size discrimina-

tors leading to: a.) False increase in PLT-RI related to the decrease in the a.F PLT count (after passing 

RTH filter) due to the consumption of PLT by PLT particles.  b.) False decrease in WBC-RI and/or  

RBC-RI proportional to the false increase in the a.F count of WBC and/or RBC related to the increase in 

WBC- and RBC-like particles.  The mode of the variations in RIs of PLT, WBC and RBC may differ  

according to the sizes and amounts of the resulted PLT particles.” 

 

5-1-2-3. Validation of the “PLT particles phenomenon” and standardizing a convenient 

mixing method due to morphological control by phase -contrast microscopy 

The validity of this hypothesis was inspected in the course of investigating the influence of mixing cWB 

on PLT count and RTH measurements (p.4-1-2-3).  Two approaches were used: 

1.) The morphological pilot study of “blood mixing effect” (p.4-1-2-4).  The observations and the 

conclusions of this study (explained in p.5-1-2-3-B and A) could together help in: (a) Establishing 

the rightness of the initial hypothesis of PLT particles phenomenon and providing further insights into 

this phenomenon and its implications.  (b) Standardizing a convenient method for mixing the  

a.F blood that could deliver accurate and precise measurements of complete blood counts (CBC) 

and consequently of RIs measurements.  (c) Providing indicators on the inconvenient blood mixing 

and the consequent errors in the accuracy and the precision of RTH measurements. 

2.) Inspecting the responsibility of “PLT-particles phenomenon” on the errors in the accuracy and 

the precision of PLT-RI and the other RIs measurements in stages 1-3 of the improving protocol by 
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investigating the possibility of avoiding such errors by applying the new standardized vortex in stage 

4 (p.4-1-2-3; Tab.4-1-2-2-2). 

A. Addressing the influence of vortex on mixing normal resting cWB 

Several conclusions could be set from the investigations on blood mixing effect using normal resting 

blood in the morphological pilot study (p.4-1-2-4-2): 

1.  The application of higher vortex modes on the blood led to evident decreases in PLT count (down to 

90.3%) inversely correlated (p<0.01; r=-0.78) with significant increases in WBC count (up to 29.9%), as 

shown in Fig.4-1-2-4-2-a and b.  Microscopically, the decreases of PLT count were related to PLT  

hyperactivation as demonstrated mainly by the formation of PLT aggregates (Aggr; Tab.4-1-2-4-2-a and 

b).  The percentages of WBC-like Aggr were also proportional to the increases in WBC count  

(Tab.4-1-2-4-2-a and b). 

2.  This pattern of correlations were in some instances interrupted e.g., the 2nd experiment (p.4-1-2-4-2-

b).  The application of further high vortex on the Epp tube did not lead to a decrease but a slight increase 

in WBC count (7.7%) despite there was a sharp decrease in PLT count (83.0%: Fig.4-1-2-4-2-b).  This 

controversy could be explained microscopically by the different size of Aggr.  The percentage of  

aggregated PLT increased sharply but the percentage of WBC-like aggregates (particles) declined due to 

their partial degradation (Fig. and Tab.4-1-2-4-2-b).  This observation underline that the PLT aggregations 

induced by inconvenient vortex are degradable. 

3.  In parallel with the formation of Aggr which represent the main reason (up to 80%) for PLT count  

decrease due to PLT hyperactivation induced by inconvenient vortex, the incidence of rosette forms  

objected microscopically (up to 20%) can be interpreted as a minor reason for such PLT decrease. 

4.  In addition to PLT, blood cells especially RBC are also activated by inconvenient mixing.  This was 

evident by the co-existence of the rosette forms of WBC and the rouleaux forms (coin-rolls) of RBC  

(Tab.4-1-2-4-2-a and b). 

5.  The decrease of PLT count triggered by high vortex seems to be significantly more pronounced by 

using Epp tubes (1.5 mL: 90.3%) than the bigger SM tubes (5 mL: 36.0%).  This effect is also associ-

ated with significantly higher increase of WBC count Epp tubes than in SM tubes (26.3% vs. 18.4%), as 

shown in Fig.4-1-2-4-2-b.  The microscopic findings were quite compatible (Aggr: 75% vs. 25%; Tab.4-1-

2-4-2-b).  This phenomenon is attributed to the contact effect occurring during vortex between the blood 

and the inner wall of the tested tube which is much bigger in the case of Epp tube than in SM one.  
 

B. Superiority and standardization of the slight vortex mode for mixing cWB 

after centrifugation and passing RTH filter 

The morphological pilot study of the effect of mixing the a.F blood (cWB after centrifugation and passing 

RTH filter) on RTH measurements (p.4-1-2-4-3) revealed clear evidences on the convenience and the 

superiority of the standardized slight vortex mode (described in p.4-1-2-4-4) for mixing the a.F blood: 

1.) Higher vortex modes led to substantial increases in PLT-RI (up to 49%; Fig.4-1-2-4-3-a1 and  

b) proportional to the decreases in the a.F PLT count (down to 63%).  Similarly to the experiments on 

resting blood, the PLT decreases were related to a.F PLT hyperactivation as demonstrated  

microscopically by the increased formation of mainly (80%) Aggr and secondarily also rosette forms 

(Tab.4-1-2-4-3-a, and b). 
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2.) The increase in a.F Aggr upon PLT hyperactivation by high vortex was demonstrated in different 

sizes.  The decreases of WBC-RI and RBC-RI were related with the false increases of the a.F count of 

WBC and RBC associated with the increases of WBC-like and RBC-like Aggr which were also inversely 

proportional with PLT-RI (Fig.4-1-2-4-3-a1 and b).  The conversion of WBC-RI levels from positive to  

negative was attributed to the extensively false increase of the a.F WBC count and WBC-like Aggr. The 

decreases of RBC-RI were less pronounced than that of WBC-RI (down to 2.2% vs. 25.6%; Tab.4-1-2-4-

3-a1 and b).  This is due to the fact that the concentration of RBC is 103 times higher than that of WBC 

in blood (x106/µL vs. x103/µL).  Thus, the RBC count and consequently RBC-RI are much less affected 

with the increases of Aggr than WBC count.  The inverse correlations of PLT-RI with WBC-RI and RBC-RI 

are considered, therefore, as a rapid indicator for probable PLT hyperactivation, especially if associated 

with elevated PLT-RI levels and reduced levels for WBC-RI and RBC-RI.  

3.) The positive RBC-RI levels obtained by using pipette for mixing the a.F blood compared with the  

significantly lower levels associated with using SV in the 2nd experiment (mean= 6.0% vs. -2.1%; Tab.4-

1-2-4-3-b) were microscopically attributed to the lower a.F RBC counts due to inadequate mixing.  The 

levels of PLT-RI in both cases were comparable Fig.4-1-2-4-3-b.  But in most experiments, the use of 

pipette delivered elevated PLT-RI levels with higher variation compared with SV (Fig.4-1-2-4-3-a2 and 

Fig.4-1-2-4-3-c) and it was occasionally associated with irrational levels of RBC-RI (Fig.4-1-2-4-3-c).  

These observations (1 to 3) confirm at least the superiority of using SV compared with the use of pipette 

since SV produce less errors and it is easier and faster to practice.  The high RBC-RI value could be an 

indicator of inadequate mixing of the a.F blood. 

4.) Of specific interest, the experiments done for optimizing the SV showed that the response of PLT 

count to inconvenient mixing or vortex varies inter-individually and that PLT may be in some instances 

not hyperactivated and consequently not aggregated, as illustrated in Fig.4-1-2-4-3-c.  Compared with 

SV, higher vortex modes led in such case to no significant increases in PLT-RI.  This is compatible with 

the microscopical objection of no remarkable increase of Aggr. 

5.) PLCR-RI varied in parallel with PLT-RI by different mixing modes (Fig.4-1-2-4-3-a1, a2, b, and c). 

 

5-1-2-4. Reliability of applying the new standardized vortex method to correct the errors 

of the main retention indices of RTH  

The basic correction of the RIs errors in stages 1-3 of the improving protocol by applying the new  

standard vortex method (<3 sec; p.4-1-2-4-4) in stage 4 instead of 3 min (acc. to SOP-1; p.3-4-3-2-2-6) in 

stage 1-3 (Fig.4-1-2-3-2-1 to 12) support firmly its reliability for mixing the a.F blood and improving the 

significance of RTH assay. 

A.) Substantial corrections of PLT-RI accuracy and precision 

The main corrections of the precision and the accuracy are summarized as follows: 

1. The big in-series as well as horizontal variations of PLT-RI in stages 1-3 were substantially  

reduced (>65%; p<0.0005) to acceptable lower levels in stage 4 (SD= 4.7 vs. 13.8 and 8.2 vs. 

2.9 respectively; Fig.4-1-2-3-2-1 and 3). 

2. The falsely elevated PLT-RI levels in stages 1-3 declined significantly (55.4%; p<0.0005) to  

rational levels in stage 4 (mean = 62.5% vs. 27.9%), as demonstrated in Fig.4-1-2-3-2-1. 
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3. As explained in p.5-1-2-1, the big systemic increases of PLT-RI by time (in-series increase: up 

to 61.4%; r=0.717) and horizontally (the increase in the 2nd in-double measurements compared 

with the 1st  ones: mean=10.3%) found in stages 1-3 were actually eliminated in stage 4 

(p<0.0005) and converted to insignificant negative ranges (mean= -2.7% and -0.6% respectively: 

r>-0.046; Tab.4-1-2-2-2), as illustrated in Fig.4-1-2-3-2-2 and 3. 

These substantial corrections can be interpreted by the “PLT particles” phenomenon.  PLT activated by 

shear forces (centrifugation) passing through the micro pores of RTH filter seemed to be hyperactivated 

by later inconvenient vortex (SOP-1; p.3-4-3-2) before the a.F measurements in stages 1-3.  PLT hyper-

activation led to the formation of PLT aggregates that increased with time resulting in relevant decreases 

of the a.F PLT count proportional to the false increases of PLT-RI.  The evident corrections in stage 4 

proved that the new standardized vortex could successfully avoid the occurrence of this phenomenon. 

B.) Substantial correction of PLCR-RI accuracy and precision 

PLCR-RI followed the same patterns of the variation and corrections demonstrated by PLT-RI  

(Tab.4-1-2-2-2) since they were strongly correlated throughout the whole stages of the improving  

protocol (r>0.75, p<0.0005; Fig.4-1-2-3-2-7).  The unacceptable in-series increase of PLC-RI (increase by 

time) in stages 1-3 was eliminated converting to insignificant negative range in stage 4 (32.4 vs. 3.4%; 

Fig.4-1-2-3-2-8).  The elevated levels of PLCR-RI values as well as their big in-series variations in stages 

1-3 were substantially (p=0.002) reduced to rational levels in stage 4 (mean PLCR-RI= 41.0 % vs. 26.6%: 

SD= 18.5 vs. 5.8; Fig.4-1-2-3-2-8). 

 

5-1-2-5. Correction and significance of the systemic difference between PLT-RI  

and PLCR-RI (RI-Diff) 

Interestingly, PLCR-RI values were found to be systemically lower than PLT-RI in the improving protocol. 

This difference (RI-Diff) declined substantially (95.3%; p<0.0005) in stage 4 compared with stages 1-3 

(RI-Diff=26.2% vs. 1.2%; Tab.4-1-2-2-2).  Three conclusions could be set from these observations: 

A. Shift of PLT size distribution to the right by hyperactivation of the blood 

after the passage of RTH filter 

The significant decline of RI-Diff suggests that the big shift of PLT size distribution to the right in stages 

1-3 shrank sharply in stage 4.  This is interpreted by the hyperactivation of PLT in the a.F blood in stages 

1-3 induced by inconvenient vortex which resulted in: (1) Changes in PLT shape disposing variable  

increases in PLT surface (up to 3-5 folds; White 1994) which could be misread by cell counters, at least 

partially, as large PLT.  (2) Formation of Aggr related to the false increase in PLT-RI (as explained in  

p.5-1-2-4-A.); the small Aggr (large PLT-like Aggr= 2-3 PLT) seemed to be occasionally misread by cell 

counters as individual large PLT.  These incidences (1 and 2) led to a relevant spurious shift of PLT size 

distribution to the right demonstrated by proportional false increase in a.F PLCR and consequently by 

significant false declines in PLCR-RI levels.  Thus, avoiding the shift of PLT size distribution to the right in 

stage 4 by using the standardized vortex could minimize RI-Diff substantially.  This effect of PLT hyper-

activation is further supported by the findings of PDW-RI and MPV-RI (p.5-1-2-6-B) and it was therefore 

integrated in the implications of PLT particles phenomenon (p.5-2-7-B).  We may at least suggest that a 
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trend of significantly lower levels of PLCR-RI compared with PLT-RI is an indicator for possible errors in 

RTH measurements due to PLT hyperactivation and/or inconvenient vortex. 

B. Large PLT are of less active than the normal sized PLT 

In addition to the main interpretation of the significant increase of RI-Diff in stages 1-3 compared with 

stage 4 by the false shift of PLT size to the right already explained in p.5-1-2-5-A, a minor explanation for 

this phenomenon could be that large PLT are less predisposed for hyperactivtion compared with normal 

sized PLT.  The consequent formations of a.F Aggr were therefore composed of normal sized PLT more 

than large PLT.  This was demonstrated by the relative reduction of the elevated levels of PLCR-RI  

compared with PLT-RI.  The slightly lower levels of PLCR-RI compared with PLT-RI in stage 4 support our 

suggestion that large PLT are less active than normal sized PLT.  This conclusion is firmly supported by 

the significantly lower levels of PLCR-RI versus PLT-RI revealed by the reference ranges (n=70: mean= 

20.5% vs. 25.2%; Tab.4-3-2-3), as explained in p.5-1-1-7. 
 

C. Basic role of the corrected formula of PLCR-RI for addressing the RI-Diff phenomenon 

As illustrated in Fig.5-1-2-5-B, the old formula of PLCR-RI delivered unexplainable negative levels in stage 

1-3 of the improving protocol (mean=-55.5%) which were inversely and insignificantly correlated with  

PLT-RI: r=-0.150; p>0.01).  The PLCR-RI values turned to low positive levels in stage 4 (mean= -2.0%) 

reflecting no clinical significance with no meaningful positive correlation with PLT-RI (r=0.033; p>0.01).  

This conversion implicated no conclusion or sense for the correction of PLCR-RI measurements by  

applying the standard vortex in stage 4.  In contrast, the corrected formula preserved a significant and 

positive correlation with PLT-RI in all stages (r>0.75; p<0.0005).  The corrected formula delivered mean-

ingful and positive levels of PLCR-RI in stage 1-3 which decreased significantly by applying the new  

standard vortex in stage 4, (mean=41.0% vs. 26.6%).  This shift of PLCR-RI values to the left and  

the constant positive correlation between PLCR-RI and PLT-RI values have essential implications for both 

the correction of PLCR-RI measurements (p.5-1-2-4-B and p.5-1-2-5-A and B) and their clinical  

significance (p.5-4-4-3-A). 

 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-1-2-5-C: Corrected formula of PLCR-RI demonstrating the difference between PLT-RI and PLCR-RI values  
in the improving protocol and their strong mutual correlation in contrast to the old formula. 
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5-1-2-6. Nobel identification of retention indices for CBC parameters and their interactions  

with PLT-RI: Crucial role in improving the reliability of RTH measurements 

The retention indices (RIs) for the whole parameters detected by the complete blood counting (CBC: i.e., 

PLT size distribution, leukocytes and their main normal types as well as erythrocytes and RBC indices) 

were identified (p.4-1-2-3-1-A) in order to get more insight into RTH errors found in stage 1-3 of the  

practical protocol.  The variations of these RIs and their correlations with PLT-RI played essential role in 

the development of RTH assay by: (1) Finding out the reasons of the errors of PLT-RI measurements in 

the improving protocol and the morphological study, as explained later in this section. (2) Addressing and 

validating the related modifications in RTH procedures.  (3) Setting convenient protocol for the quality 

assurance of the measurements (p.5-4-6). 

Actually, this is the first time ever, in PLT retention assays; a retention index is identified for any of CBC 

parameters other than PLT-RI and PLCR-RI.  The RI measurements are basically more informative than 

CBC parameters in respect of data analysis because: a.) The unified unity of RIs (percentage: %) in  

contrast to the diverse unities of CBC parameters.  b.) RIs reflect PLT function providing significant  

linkage between the b.F and a.F counts of CBC parameters.  This was especially evident by analyzing 

the data of the morphological pilot study on the effect of mixing the “resting blood” (i.e., by using CBC 

findings; p.5-1-2-3-A) compared with the “a.F blood” (after passing RTH filter i.e., by using RIs findings 

p.5-1-2-3-B).  The conclusions were easier to be set by using RIs measurements than CBC ones.  The 

insight provided by new RIs was an essential trigger of hypothesizing the “PLT particles” phenomenon 

(p.5-1-2-2-C) which revealed to be the prime error in previous RTH measurements.  The measurements of 

these RIs provided crucial evidences on this hypothesis in due of morphological control (p.5-1-2-3) and 

added further implications of this hypothesis (p.5-1-2-7-A).  The measurements of the new RIs were also 

essential to address the standardized vortex method for mixing the a.F blood and to validate the resulted 

improvement in the reliability of RTH in stage 4 of the improving protocol, as described as follows: 

5-1-2-6-A. Significance of the RI of leukocytes (WBC-RI) and erythrocytes (RBC-RI) 

1.) In the morphological pilot study of the “blood mixing” effect 

As described in p.5-1-2-3-B-2 and 3, the levels and variations of WBC-RI and RBC-RI and their mutual 

correlations with PLT-RI were compatible with the morphological findings and also essential for:  

(a) Proving the initial hypothesis of “PLT particles” phenomenon as well as providing further  

insights into their implications. 

(b) Indicating the errors and improvements in the accuracy and the precision of RTH measure-

ments by using the different modes of blood mixing e.g., those attributed to unacceptably strong 

vortex, convenient slight vortex, or inadequate mixing by pipette 

(c) Addressing the new standardized vortex method that could deliver accurate and precise RTH 

measurements. 

2.) In the improving protocol 

The significant inverse correlation of the falsely elevated PLT-RI levels with the remarkably negative levels 

of WBC-RI and RBC-RI (r<-0.33; p<0.002) in stages 1-3 of the improving protocol (Fig.4-1-2-3-2-4 and 6) 

were prim triggers of our investigations on the effect of blood mixing (PLT particles phenomenon; p.5-1-2-

2-C).  In addition and in concordance with the morphological pilot study of the blood mixing effect, the 
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patterns of the levels and variations of WBC-RI and RBC-RI as well as their correlations with PLT-RI 

could play a beneficial role as indicators for validating the accuracy and the precision of RTH assay in 

the improving protocol.  This was evident by the substantial changes in the characteristics of these  

patterns in stage 4 compared with stages 1-3 i.e. the changes associated with the basic correction of 

the PLT-RI accuracy and precision by using the standard vortex (p.4-1-2-3-2), as summarized as follows: 

a.) Significant conversion (p<0.0005) of the correlation between WBC-RI and PLT-RI from strongly 

negative to a positive one (r= -0.82 vs. 0.30; Fig.4-1-2-3-2-4). 

b.) Similar significant effect (p<0.0005) was registered for RBC-RI (r=-0.33 vs. 0.49; Fig.4-1-2-3-2-6). 

c.) Sharp rise up of WBC-RI from strongly negative to positive levels (-19.5% vs. 5.9%: p<0.0005; 

Fig.4-1-2-3-2-5). 

d.) Significant reduction of the variation of WBC-RI and RBC-RI values (p<0.01; Fig.4-1-2-3-2-5 & 6). 

These observations could be interpreted by the PLT particles phenomenon taking into consideration the 

conclusions of the morphological pilot study of “blood mixing effect” (p.5-1-2-3-B-1 and 2).  The increased 

and variant formations of WBC-like and RBC-like Aggr in the a.F blood due to unacceptable hyperactiva-

tion by inconvenient vortex in the stages 1-3 resulted in: a.) Relevant false decrease in a.F PLT counts 

negatively proportional to PLT-RI, and b.) Relevant false increases in a.F WBC and RBC counts that 

were negatively related to WBC-RI and RBC-RI.  Thus, the falsely reduced levels of WBC-RI and RBC-RI 

were negatively correlated with the falsely elevated levels of PLT-RI.  The lower impact of Aggr increases 

on the retention of RBC compared with WBC is due to the much higher (103) concentration of RBC than 

WBC in the blood, as explained in the morphological study (p.5-1-2-3-B-2).  The application of the  

standardized vortex method in stage 4 could successfully avoid the unacceptable PLT hyperactivation 

and the consequent false variations and lead to accurate and precise measurements reflected by  

acceptable variation and rational levels of WBC-RI and RBC-RI that were interpreted as mainly  

“unspecific” retention due to the blood cell sizes, as explained in the chapter of the specificity of RTH 

(p.5-2-9-A).  Thus, the measurements of WBC-RI and RBC-RI were critical for the validation of the  

improvement in the reliability of RTH assay by using the new standard vortex in stage 4. 
 

5-1-2-6-B. Significance of the RIs of PLT size distribution: PDW-RI and MPV-RI 

The extremely negative and variable levels of PDW-RI and MPV-RI in stages 1-3 compared with stage 4 

of the improving protocol (Fig.4-1-2-3-2-9) support strongly our conclusion that the PLT hyperactivation by 

inconvenient vortex of the a.F blood in stages 1-3 led to relevant spurious shift of the PLT size distribution 

to the right, as explained in p.5-1-2-5-A.  This shift was reflected by false and variant declines in PDW-RI 

and MPV-RI levels that differed proportionally from the variety of PLT shape changes and the large  

PLT-like Aggr induced by inconvenient vortex.  The basic reduction of PLT hyperactivation in stage 4 by 

using the standardized vortex for mixing the a.F blood resulted therefore in a significant (p<0.0005) rise 

up for both PDW-RI and MPV-RI levels (Tab.4-1-2-2-2).  This linkage with the applied vortex mode  

explains the significant conversion of the correlation of PDW-RI and MPV-RI with PLT-RI values from 

negative in stages 1-3 to positive in stage 4 (Fig.4-1-2-3-2-10).  The extreme negative and variable values 

of PDW-RI and MPV-RI that are inversely correlated with elevated PLT RI levels may be therefore  

considered as a sign of hyperactivation and/or inconvenient vortex.   
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5-1-2-6-C. RIs of the main normal types of leukocytes (NEUT-RI, LYMP-RI, MXD-RI) 

The retention indices (RIs) of the main normal types of Leukocytes (p.4-1-2-3-1-A) delivered the same 

pattern of intimate and proportional correlation with WBC-RI throughout the whole stages (1-4) of the 

improving protocol (p<0.001; Fig.4-1-2-3-2-11).  The absence of a significant correlation between the 

variations of WBC-RI with the types of leukocytes suggest that the misreading of WBC-like particles as 

WBC by the cell counters is not on the account of either of these types.  In addition, the main normal 

types of WBC seem to be comparably retained by RTH filter by applying the standard vortex in stage 4.  

The RIs of the main normal types of leukocytes present therefore no further advantage upon WBC-RI in 

regard of their correlation with PLT-RI errors and variances. 
 

5-1-2-6-D. RIs of the erythrocyte indices (HGB-RI, HCT-RI, MCV-RI, MCHC-RI and RDW-RI) 

The retention values (RIs) of the erythrocyte indices (p.4-1-2-3-1-A), demonstrated either positive or  

negative patterns of close correlation with RBC-RI throughout the whole stages (1-4) of the improving 

protocol, as illustrated in Fig.4-1-2-3-2-12.  These patterns of correlation were more evident in stage 4 

than in stages 1-3 which could be attributed to the formation of RBC-like Aggr in stages 1-3 (p.5-1-2-6-A).  

This trend was mostly evident for HGB-RI and HCT-RI (r=0.87 and 0.96 vs. 0.43 and 0.46; p<0.0005), and 

therefore, their measurements could be of advantage for further control of the reliability of RTH.  Other-

wise, the differences of the other RIs were not significant and actually did not provide further significant 

insight into the variation errors of RBC-RI and PLT-RI. 

 

5-1-2-7. Hypothesis “PLT particles phenomenon” 

5-1-2-7-A. Accumulative clues and implications 

The morphological pilot study on the “blood mixing” effect could establish the rightness of the initial  

hypothesis of “PLT particles” phenomenon and provide further significant insight and implications, as 

described in p.5-1-2-3-A and B.  The success of applying the new standardized vortex method (stage 4 

vs. stages1-3 in the improving protocol; p.5-1-2-4 to 6) is a further clear proof on the reliability of our  

hypothesis.  The variations and the levels of PLT-RI and the other RIs and their mutual correlations before 

and after this correction provided basic insights into the interpretation and implications of PLT particles 

phenomenon in RTH measurements, as described in p.5-1-2-4, 5-A, and 6.  In addition, further significant 

evidences on this phenomenon as well as insights on its implications and interactions with RTH meas-

urements were accumulated from different investigations of our study, as summarized in the followings: 

1.) The agglutinates of iPLT (PLT isolated by gel-filtration; p.4-2-21), objected after the passage of RTH 

filter (a.F), were misread by the cell counter as blood cells.  Both, the CBC (complete blood counting) 

and the morphological control by PLT spreading proved the absence of blood cells in the suspension of 

iPLT (p.4-2-2-1-2).  The remarkable a.F counts of WBC (up to 0.8x103/µL) were proportional to WBC-like 

particles, as revealed by the microscopic evaluation (Tab.4-2-2-3).  This could be explained only by the 

occurrence of PLT particles phenomenon.  Less pronounced effect was demonstrated by RBC-like  

particles.  Due to the absence of plasma fibrinogen in iPLT, PLT particles are formed mainly of PLT  

agglutinates (Aggl) instead of aggregates (Aggr) due to the lack of plasmatic fibrinogen.  Nevertheless, 
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the hyperactivated iPLT may occasionally form Aggr by the help of their internal content of fibrinogen 

[Jurk 2005, Levi 2005]. 

2.) PLT are predisposed to hyperactivation by partial absence of the normal blood medium e.g., in 

iPLT suspension and in the PLT standards prepared from fixed plasma, as explained in p.5-2-3. 

3.) Day-by-day control on the PLT standards prepared from fixed cPRP (p.4-2-5-3 to 5).  The significant 

decreases of PLT count of the different PLT standards by time (mean=38.4%: p<0.0005; Fig.4-2-5-3-1, 4-

2-5-4-1 and 4-2-5-5-1) were proportional to the increases in PLT particles objected by phase-contrast 

microscopy (Tab.4-2-5-3-2, 4-2-5-4-2 and 4-2-5-5-2).  In parallel, the initial low counts of WBC of the PLT 

standards increased dramatically (e.g., from 0.2x103/µL up to 12.4x103/µL; p<0.0005) and proportionally 

to the increases of WBC-like and RBC-like particles found microscopically.  The formation of PLT  

particles was attributed to PLT agglutination and not to aggregation since the PLT standards were  

prepared from fixed plasma.  Performing RTH for the day-by-day control provided specific insights into 

PLT particles phenomenon.  Three effects of PLT particles have to be taken into consideration: 

(a) The b.F Aggl were trapped by RTH filter.  The retention of b.F WBC-like Aggl, falsely interpreted 

as WBC, resulted in falsely elevated levels of WBC-RI (mean=35.9%; Tab.4-2-5-5-1).  Much 

lower effect is expressed by RBC-RI as RBC count is 103 times higher than that of WBC. 

(b) The increases of a.F Aggl resulted in relevant false decreases in a.F PLT count that led to  

proportional increases of PLT-RI.  In parallel, the increases of the a.F WBC-like Aggl, led to pro-

portionally false decreases in WBC-RI.  The final values of WBC-RI depended therefore on the 

false variations of their b.F and a.F counts and the percentage of the trapped Aggl. 

(c) The negative PLT-RI values were attributed to the degradation of the excessive b.F Aggl  

after passing RTH filter leading to decrease in a.F PLT count relevant to the degree of  

degradation; e.g., PLT-RI on the 3rd day of controlling the 3rd PLT standard declined to negative 

levels (Fig.4-2-5-5-4).  This observation underline that physical effects may also degrade Aggl, as 

well as Aggr (p.5-1-2-3-A-2) e.g., by passing through RTH filter or by vortex. 

4.) The electron microscopy of RTH filter proved the activation of PLT by shear stress (centrifugation) 

during the passage of the inter-connected micro pores of RTH filter (p.5-2-9-A).  In parallel, the  

activation of the blood cells was also demonstrated electron microscopically mainly by granulocytes 

degranulation (Fig.4-2-6-3-c1 and 2) and by the rouleaux (coin roll) forms of erythrocytes (Fig.4-6-2-3-b).  

Such activation process may lead to the formation of rosette forms by further hyperactivation e.g., by 

vortex. 
 

5-1-2-7-B. Integrated identification/description of “PLT particles phenomenon” 

Taking into consideration the initial formula of the “PLT particles” phenomenon (p.5-1-2-2) as well as its 

accumulative evidences and implications already explained in p.5-1-2-7-A, the integrated formula of this 

hypothesis may be described as follows: 

(1) Hyperactivated PLT may aggregate and/or agglutinate and form PLT particles with  

different sizes: “large PLT-like” particles, “RBC-like” particles, “WBC-like” particles, and particles above 

the size of WBC i.e., “above-WBC” particles.  These particles may be misread by the automatic cell 

counter (Sysmex; p.3-2-4) as large PLT, RBC, and/or WBC respectively whenever they are within the  

corresponding size discriminators of these “blood cells” leading to relevant false increases in the counts 
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of these cells.  The false increases of RBC count attributed to the formation of PLT particles are less 

significant than that of WBC and occasionally not remarkable because the concentration of RBC is  

103 times higher than that of WBC in the blood.  The false increase in WBC count, proportional to the 

formation of WBC-like particles, is not related to a specific type of leukocytes.  The “above-WBC”  

particles are not read as blood cells but they lead to a false decline of PLT count proportional to the 

sizes and the amounts of these particles.  The main consequence of the formation of PLT particles,  

however, is the false decrease in PLT count which is proportional to the amount of the consumed PLT.   

(2) Inconvenient mixing of the blood (e.g., by aggressive vortex) may induce PLT hyperactivation  

especially if the PLT are activated after centrifugation (shear forces) while passing the inter-connected 

micro pores of RTH filter.  PLT are more exposed to hyperactivation by inconvenient mixing when they 

are in contact with a relatively larger inner surface than with a smaller one (blood in RTH tubes vs. SM 

tubes; p.5-1-2-3-A).  PLT are more opposed to hyperactivation by the partial absence of the other blood 

components e.g., in PLT isolated by gel-filtration (iPLT) compared with cWB, and PLT in prefixed washed 

cPRP compared with the unwashed one (p.5-2-3).  (3) The PLT particles formed in blood or in cPRP 

compose mainly of aggregates (Aggr) and secondarily of agglutinates (Aggl).  PLT agglutinates are the 

main component of PLT particles in iPLT; iPLT may aggregate only by their intern content of fibrinogen 

due to the absence of the plasma fibrinogen.  Fixed PLT can also form particles which are not composed 

of Aggr but of Aggl attributed to increased stickiness (p.5-2-3).  (4) Large PLT are less predisposed for 

hyperactivation and aggregation than normal sized PLT.  Consequently and due to PLT shape changes 

and the probable formation of large PLT-like Aggr triggered by PLT hyperactivation, the PLT size distribu-

tion is mostly shifted to the right (p.5-1-2-5-A).  (5) Both Aggr and Aggl may degrade upon further  

physical effects e.g., vortex and/or passing RTH filter.  The degradation of PLT particles results in 

changes in the blood cells relevant to the new configurations of these PLT particles as well as in an  

increase of PLT count proportional to the non aggregated and/or agglutinated PLT released from the  

degraded PLT particles.  The sizes of PLT particles and their amounts may also change by time and the 

“Above-WBC” particles are more disposed to be disrupted due to their big size. 

Note: Rosette forms In addition to PLT, blood cells can also be hyperactivated by incon-

veniently strong mixing, especially if they are preactivated by shear stress passing RTH filter  

(p.5-1-2-3).  This is demonstrated mainly by rosette forms (satellitosis phenomenon) and the coin-roll 

(rouleaux) configurations associated with PLT particles in both, the resting and the a.F blood (Tab.4-1-2-

4-2a and b, Tab.4-1-24-4-3-a, b and c).  Despite the incidence of the rosette forms is much lower than 

that of PLT particles (1:5), it contributes constantly in the false decrease of PLT count.  We integrate the 

formation of rosette in the PLT particles phenomenon in order to have more comprehensive insight into 

the interpretation of the incidences induced by inconvenient mixing of the blood and especially for the 

right interpretation of RTH measurements. 
 

5-1-2-7-C. Implication/Significance of PLT particles phenomenon in RTH assay 

The PLT particles phenomenon may occur or be triggered mostly if PLT are pre-activated by shear stress 

(centrifugation) while passing through RTH filter (a.F particles).  The b.F particles are less frequent and 

are mainly encountered in the relative absence of the other blood components especially for long time 

e.g., in the day-by-day control of the PLT standard (Tab.4-2-5-3-2, 4-2-5-4-2 and 4-2-5-5-2; also p.5-1-2-7-
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A-3).  The relative absence of blood medium increases the predisposition of PLT to hyperactivation,  

especially by stimulation after passing RTH filter (p.5-1-2-7-A-2 and p.5-2-3).  The occurrence of b.F 

and/or a.F PLT particles has serious implications on the reliability of RTH measurements since it leads 

to false values RIs and increases their variability.  The response of PLT and blood cells to inconvenient 

vortex varies inter-individually and may disappear occasionally (Fig.4-1-2-4-3-c).  Understanding the  

integrated formula of PLT particles phenomenon (p.5-1-2-7-B) and its implication is, therefore, essential 

for the right interpretation of RIs as well as for suspecting false results and assuring reliable quality for 

RTH measurements, as summarized as follows: 

a. Implications on the measurements before the passage of RTH filter 

The b.F PLT particles are associated with variable decrease of b.F PLT count (p.5-1-2-3-A), and they are 

mainly trapped by RTH filter.  The retention of WBC-like particles leads to falsely proportional elevated 

levels of WBC-RI (p.5-1-2-7-A-3-a).  Much lower effect may be encountered for RBC-RI.  The b.F particles 

may occasionally degrade after passing RTH filter leading to relevant decrease in PLT-RI values that can 

even step to negative levels (p.5-1-2-7-A-3-c). 

b. Implications on the measurements after the passage of RTH filter 

1.) The decline of the a.F PLT count due to the formation of PLT particles leads to proportional relevant 

false increase of PLT-RI and less significant increase of PLCR-RI (p.5-1-2-4).  2.) In parallel, the changes 

of the PLT shapes associated with PLT hyperactivation and the resulted increase of “large PLT-like”  

particles lead to a proportional shift in PLT size distribution to the right (p.5-1-2-5-A).  This shift is also 

reflected by a proportional decrease of PDW-RI and MPV-RI (p.5-1-2-6-B) as well as by a relevant relative 

decline of PLCR-RI (p.5-1-2-5-A).  3.) The increases in the amount of the a.F WBC-like and RBC-like 

particles result in false decreases in WBC-RI and RBC-RI; the increase of RBC-RI is much less  

pronounced than that of WBC (p.5-1-2-6-A).  4.) The variations in WBC-RI and RBC-RI resulting from the 

formation of PLT particles lead to proportional relevant variations in the RIs of the normal types of leuko-

cytes as well as the RIs of the erythrocytes indices.  5.) Occurrence of rosettes forms upon inconvenient 

vortex contributes significantly (up to 20%) to the decrease and the variation of a.F PLT and  

consequently to the false increase of PLT-RI 

Since the formation PLT particles is time dependant (Fig.4-1-2-3-2-2), the a.F measurements should be 

performed shortly (within 1-2 min) after mixing the centrifuged blood by vortex in order to minimize the 

probable errors related to the PLT particles phenomenon, as we recommended in SOP-3 (p.4-1-2-5). 
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5-2. Specificity and accuracy of RTH assay 
The extensive improvements on the accuracy of RTH procedures by excluding the sources of the  

variability in SOP-1 (p.5-1-1) and SOP-2 (p.5-1-2) were concluded by the basic correction of the accuracy 

of RIs in SOP-3, as explained in p.5-1-2-4 to 6.  We could afterwards step further to validate and evaluate 

the specificity and the accuracy of RTH assay for screening PLT function.  Diverse approaches were 

investigated, and the accumulative conclusions and evidences are described as follows: 

5-2-1. Measuring RI with and without RTH filter 

This study (p.4-2-1) provided clear clues that the acceptable precision of RTH using SOP-3 was  

attributed to a further specific effect of the filter on PLT in cWB.  By excluding RTH filter (Tab.4-2-1-2), 

the values of PLT-RI (mean= 3.2%) as well as PLCR-RI (mean PLCR-RI=-1.2%) had no significance.  

Getting substantially lower PLT-RI levels upon excluding the filter (mean: Epp tubes 3.2% vs. RTH tubes 

23.8%: relative decrease= 86.6%: p<0.0005; Fig.4-2-1-2-1) points out the specific retention of PLT by 

RTH filter.  In parallel, PLCR-RI values demonstrated even sharper decline (106.4%: p<0.0005; Fig.4-2-1-

2-2).  Actually the mean of PLCR-RI converted from a significant positive level by using RTH tubes 

(18.4%) to a negative one (-1.2 %) by using Epp tubes.  The low levels of WBC-RI and RBC-RI (Fig.4-2-1-

2-5 and 6) in both RTH and Epp tubes suggest that RTH filter has no significant specific effect on WBC 

and RBC.  Nevertheless, the remarkable decreases of WBC-RI and RBC-RI levels in RTH tubes  

compared with Epp ones suggest that the concentration of these cells increase slightly after passing 

RTH filter.  This could be interpreted by the plasma portions absorbed by RTH filter, as explained  

in p.5-2-9-B. 

 

5-2-2. Compatibility between the findings of RTH and PLT spreading for both cWB and 

platelets isolated by gel-filtration (iPLT) 

The investigations using cWB and iPLT (PLT isolated by gel-filtration; p.4-2-2) established the reliability 

of applying RTH assay on iPLT as well as on cWB.  The morphologic validation of PLT in both cases 

before passing RTH filter showed that they were intact, unstimulated, active, and demonstrated well 

spread preparations (Tab.4-2-2-3).  The RTH assay was able also to reflect the integrity and the function 

of PLT by delivering significantly high positive PLT-RI values for cWB as well as iPLT (Tab.4-2-2-2-1 and 

2).  In comparison with the PLT spreading before the passage of RTH filter (b.F), the PLT were  

significantly inhibited or at least less spread after passing RTH filter (a.F).  This observation suggests 

that PLT with normal function are mainly trapped by RTH filter, whereas those of lower function are 

mainly allowed to pass the filter.  The compatibility between RTH findings and PLT spreading in both 

cWB and iPLT (Tab.4-2-2-2-1 and 2 compared with Tab.4-2-2-3) proved the specificity and the accuracy 

of RTH assay for screening PLT function. 

 

5-2-3. Insight into platelet predisposition to hyperactivation by partial absence 

of normal blood medium 

The levels of PLT-RI increased substantially in iPLT (PLT isolated by gel-filtration; p.4-2-2) compared with 

cWB in the first 7 samples (mean increase=92.8%; p=0.018: Fig.4-2-2-2-2) despite the PLT in the iPLT 
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suspension were deactivated by resting them in a bath chamber (37 °C/ 30-120 min).  Beyond it, the 

integrity and normal activity of PLT were controlled morphologically before passing RTH filter.  The  

increase of PLT-RI demonstrated no significant correlation with the longer resting periods used in  

samples 8-12 (30-120 min applied to assure iPLT deactivation), and it preserved similar high rates as in 

samples 1-7 (mean increase= 96.1%; Fig.4-2-2-2-2).  This suggests that iPLT have lower activation 

threshold than PLT in cWB.  The phenomenon of “PLT-RI increase” varied inter-individually  

(40.6-181.4%; p=0.002) and was proved morphologically by PLT spreading (Tab.4-2-2-3) which showed 

higher PLT activity in iPLT suspension compared with cWB especially after passing RTH filter as  

described as follows: 

a.) The iPLT suspensions before the passage of RTH filter were better spread than of PLT in cWB. 

b.) The preparations of iPLT after the passage of RTH filter were relevantly thinner and less  

concentrated than that of PLT in cWB. 

c.) After the passage of RTH filter, the PLT in cWB were not spread and demonstrated few small 

Aggr and/or Aggl, if any.  Whilst, the iPLT were partly spread with frequent intermediate forms 

and had a lot of Aggl.  This reflects significantly higher PLT activity for iPLT than the PLT in 

cWB after the passage of RTH filter. 

The similar sharp increases of PLCR-RI values in iPLT compared with cWB (mean increase= 88.8%; 

Fig.4-2-2-2-2) enhance our conclusions and provide further insight on the impact of PLT size.  We may 

thus suggest that the significant increase of the retention of the platelets associated with proportional 

reduction of their activation threshold is related to the partial absence of the normal blood medium of 

PLT.  Such effect was significantly less compensated by prefixed PLT which dispose and substantial 

increase in stickiness and agglutination, as demonstrated by the investigations on our PLT standard 

(prepared from fixed cPRP).  The PLT-RI of the standard of washed PLT (Sw) was 536% higher than that 

of the unwashed PLT (Suw) (35.6% vs. 5.6%: the measurements after preparation; Tab.4-2-5-5-1).  The 

phase-contrast microscopy proved this effect and reflected increased PLT stickiness and consequent 

agglutination in Sw compared with Suw Tab.4-2-5-5-1).  Further investigations on the standards revealed 

similar high increases of PLT-RI (mean increase=483%; p=0.003) in Sw compared with Suw (5.7 vs. 

33.5%), as previously described in [Nemeh 2005 and 2006].  We may suggest, therefore, that the mutual 

interactions between PLT and their normal blood medium preserve the dynamic balance of PLT function 

in normal hemostasis and hypothesize that PLT are more predisposed to hyperactivation by partial  

absence of the other blood components.  Despite further studies are required to address this effect,  

triggering this phenomenon also by RTH – compatibly with the morphologic control – provides at least 

further significant support to the reliability of RTH assay for evaluating PLT function specifically.  The 

significance of RTH assay exceeded, in this case, that of the morphological tests (PLT spreading and 

phase-contrast microscopy) which had just a confirmatory role. 

 

5-2-4. Indication of the variable dose -dependent effect of Ca+2 with hirudin 

on the retention of platelets 

The significant positive correlation of PLT-RI and PLCR-RI with the reactivating reagent (CaCl2 with  

r-hirudin) could demonstrate the dose-dependent response of PLT to Ca+2 (Tab.4-1-1-2-B).  The  
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conversion of this correlation from a positive to a negative one is attributed to the presence of hirudin 

(Fig.4-1-1-2-B-1 and 2).  This correlation reflected also the inter-individually variable response of PLT to 

the reactivating reagent, as illustrated in Fig.4-1-1-2-B-2.  Despite further investigations are required to  

address this effect; indicating these interactions between PLT and the reactivating reagent by RTH assay 

at least supports its specificity and accuracy for analyzing PLT function. 

 

5-2-5. Triggering and proving the hypothesis of PLT particles phenomenon 

As explained in the investigations to improve the reliability of RTH, the observations delivered by RTH 

measurements triggered the hypothesis of PLT particles phenomenon (p.5-1-2-2).  The investigations 

based on RTH measurements could also provide evident clues on the rightness and the implications of 

the PLT particles phenomenon (p.5-1-2-3, 4, 5-A, 6 and 7-A).  The demonstration of these evidences by 

RTH assay and in concordance with multiple morphological controls (p.5-1-2-3 and p.5-1-2-7-A) promotes 

strongly the reliable specificity, accuracy and precision of RTH assay as well as its significance for 

screening PLT function. 

 

5-2-6. Reliable assessment of the PLT standard in due of morphological control 

As shown by the day-by-day control of the PLT standard prepared from fixed cPRP (p.4-2-5-3 to 5), the 

findings of RTH assay were more informative than CBC and demonstrated evident compatibility with the 

morphological control by phase-contrast microscopy.  This compatibility prove evidently the accuracy 

and the specificity of RTH assay for screening the function of fixed PLT as well as sustained PLT in 

cWB. 

 

5-2-7. “Athrombogenity” of RTH filter and the specific responses of PLT to activation  

characterized by electron microscopy 

The response of PLT in cWB to activation by shear stress forcing the blood to pass through the  

inter-connected micro pores of the polyurethane (PU) filter is demonstrated extensively by the PLT  

adherence and spreading on the PU surfaces with extremely prolonged pseudopodia (Fig.4-2-6-3-a-1, 2, 

and 4).  The changes of PLT shape are associated with moderate degranulation (Fig.4-2-6-3-a-4 and 8).  

PLT activation is primarily demonstrated by wall-bound PLT aggregates that vary in size.  In contrast to 

the in-vitro aggregates without the influence of shear forces [Harrison 2000, Rand 2003], the PLT  

aggregates in RTH filter built a network characterized by extremely prolonged pseudopodia mostly  

bridging between the opposite PU surfaces (Fig.4-2-6-3-a-1 and 2).  These specific interactions of PLT 

with RTH filter in response to activation by shear stress besides the characteristic PLT contacts within 

aggregates, (Fbr-mediated and direct contacts; Fig.4-2-6-3-a-5 and 6) are comparable to the physiologic 

reaction of the circulating PLT at a disturbed endothelium and/or subendothelium [Miller 2001, Huntington 

2005, Jurk 2005].  This comparability underlines evidently the athrombogeneity of RTH filter.  The  

occasional free PLT aggregates in the lumina of the pores of the filter (no contact to the filter surfaces; 

Fig.4-2-6-3-a-4) could be attributed to the availability of activating substances by PLT degranulation  

during the passage of the filter. 
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On the other hand, the occasional increase in the disrupted PLT forms objected by PLT spreading after 

the passage of RTH filter by using cWB as well as PLT isolated by gel-filtration (Tab.4-2-2-3) suggests 

that RTH filter may disrupt PLT and put a question on its athrombogeneity. 

We may conclude that RTH filter is rather athrombogenic especially if compared with the filter systems 

used in previous PLT retention assays i.e., Salzman [1963], Hellem-II [1970], O´Brien [1987].  Thus, the 

PLT activation during the passage of RTH forced by centrifugation is attributed mainly to the shear stress 

of centrifugal force and not to a thrombogenic effect related with the filter. 

 
5-2-8. Reliability and specificity of the reference ranges for the RIs and the weight parameters 

of RTH by using Eightcheck control 

The different batches of the normal level Eightcheck control (EC) used in the study of the in-series 

(Tab.4-2-4-2-2) and the day-by-day (Tab.4-2-4-4) precision of RTH assay revealed no significant  

differences (p>0.1; t test) in the mean values of the retention indices (RIs) as well as the weight  

parameters of the quantity assessment (p.4-2-3-1) and demonstrated rather homogeneous low variances 

(p>0.05 Levene test), as shown in Fig.4-2-4-4-3 to 8.  The accuracy of the RIs of PLT and blood cells 

was proved by phase-contrast microscopy.  Taking into consideration that EC consists of prefixed  

medium, the low and homogeneous variations of the resulting RIs and weight parameters underline the 

ability of RTH assay to reflect accurately and precisely the loss of the physiologic activity of the prefixed 

PLT in EC.  The total 32 measurements performed in the study of the in-series and the day-by-day  

precision of RTH assay using EC could be, therefore, statistically considered as one integrated sample 

addressing to the reference ranges of RTH by using EC.  Since the values of EC measurements  

demonstrated mainly normal distribution (p>0.05), their reference ranges are based on the theory of  

normal assumption defined as mean ± 2SD, as described in Tab.5-2-7-A. 

 
 

Table 5-2-8: Descriptive Statistics of the reference ranges of the RIs and the weight parameters of RTH 
by using Eightcheck control (EC). 

 N Range Minimum Maximum Mean SD Mean Mean KSa 

      (CV %) -2SD +2SD (p) 

PLT-RI  (%) 32 8.9 -2.7 6.2 2.6 2.1 -1.6 6.8 0.200b 

PLCR-RI  (%) 32 26.2 -7.5 18.7 7.3 7.1 -6.9 21.5 0.200b 

PDW-RI  (%)c 32 16.4 -8.1 8.3 1.0 3.5 -5.9 8.0 0.176 

MPV-RI  (%) 32 7.1 -2.8 4.3 1.1 1.8 -2.5 4.7 0.200b 

WBC-RI  (%) 32 12.9 4.1 17.0 11.3 2.8 5.7 17.0 0.096 

RBC-RI  (%) 32 22.6 -24.0 -1.4 -4.2 3.9 -12.0 3.7 0.000c 

HGB-RI  (%) 32 21.6 -21.6 0.0 -5.2 5.3 -15.8 5.4 0.000c 

HCT-RI  (%) 32 19.9 -22.4 -2.5 -4.4 3.6 -11.6 2.8 0.000c 

EC Weight  (mg) 27 11.5 518.4 529.9 523.6 1.9 (0.4) 519.7 527.5 0.110 

RTH filter  (mg) 27 3.6 41.2 44.8 42.4 0.8 (1.9) 40.8 44.0 0.200b 

Trapped EC  (mg) 27 3.7 23.0 26.7 25.2 0.9 (3.7) 23.4 27.1 0.200b 

WRI  (%) 27 0.7 4.4 5.1 4.8 0.2 4.5 5.2 0.200b 
a

 Kolmogorov-Smirnov test of normality; Lilliefors significance correction.  b
 This is a lower bound of the true significance.  c  Skew-

ness for these secondary RIs attributed to an extreme outlier within one of the measured series (Fig.4-2-4-2-6). 
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5-2-9. Integrated interpretation of the specificity and the accuracy of RTH assay 

The clues of our multiple investigations, described in p.5-2-1 to 8, provided firm evidences and insights on 

the specificity and the accuracy of RTH assay (using the improved SOP: “SOP-3”) for the evaluation of 

PLT function and activity.  Taking into consideration the reference ranges of RTH in cWB (Tab.4-3-2-2) 

and in EC (Tab.5-2-8) and the findings characterizing PLT and blood cell interaction with RTH filter (p.4-2-

6-2 to 4) besides the findings of the quantity assessment of RTH by using cWB (Tab.4-2-3-2) and EC 

(Tab.5-2-8), we may suggest the integrated interpretation of the specificity and accuracy of RTH  

assay as described in the next sections (A and B) respectively.  The mean values are considered for 

comparative analyses. 

A.) Nobel significance of the retention of PLT in view of the RIs of blood cells in cWB and EC 

and in due of phase -contrast and electron microscopic control 

The significantly lower retention level of erythrocytes (RBC-RI=-3.25%) compared with leukocytes  

(WBC-RI=4.21%) by using cWB (Fig.5-2-9-A) could be attributed to their significantly smaller size  

allowing easier passage through the pores of RTH filter (16-22 µm).  Despite PLT are basically smaller 

than erythrocytes (6.5-12 fl vs. 80-96 fl), they 

demonstrated substantially higher retention level 

(PLT-RI= 25.2%; p<0.0005: Fig.5-2-9-A) which 

reflects a specific effect of the RTH filter.  This 

effect was proved and characterized electron 

microscopically mainly by: a.) the extensive 

adherence of PLT aggregates on the poly-

urethane (PU) surfaces of RTH filter bridging its 

inter-connected micro pores, and b.) the  

substantially less adherence of leucocytes and 

erythrocytes (p.4-2-6-3-A) despite the blood cells 

as well as PLT were activated by shear stress 

during the passage of the inter-connected micro 

pores of RTH filter (Fig.4-2-6-3-a 1 to 8, b, and c1 

& c2; p.4-2-6-3-a, b and c).  In addition, the  

incidences of leukocyte and erythrocyte  

agglutinates in the filter by using cWB compared 

with EC were rather comparable (p.4-2-6-4) and proportional to the levels of WBC-RI (4.2% vs. 11.3%) 

and RBC-RI (-3.6% vs. -4.2%) in EC and cWB (Fig.5-2-9-A).  This supports strongly our initial suggestion 

that platelets are specifically retained by the filter due to their activation by shear stress in contrast to 

the other blood cells which are retained mainly unspecifically due to their size (p.5-2-1).  On the other 

hand, the sharp reduction in the levels and variability of PLT-RI in EC compared with that in cWB  

(mean= 2.6% vs. 25.2%, SD= 2.1 vs. 6.3; p<0.0005: Fig.5-2-9-A) proves the ability of RTH to reflect PLT 

activity proportionally by demonstrating the low and invariable activity of the prefixed PLT in EC as well 

as the physiologic activity and biovariability of the sustained PLT in cWB.  The electron microscopy  

provided further evidences on this conclusion by the characterization of PLT interactions with RTH filter 

Fig. 5-2-9-A: Comparison between the reference 
ranges of the retention indices (RIs) of the blood 
cells by using citrated whole blood (cWB: n=70) and 
Eightcheck control (EC: n=32). 
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(p.5-2-7):  (A) The extensive PLT adherence, wide spreading and aggregation on the PU surfaces of RTH 

filter by using cWB as well as the associated PLT shape change and mild PLT degranulation prove:  

(1) PLT-RI values reflects directly the multiple response of sustained PLT to activation by shear stress 

during the passage of the pores of RTH filter (Fig.4-2-6-3-a-1 to 8). (2) This PLT response is, thanks to 

the athrombogeneity of the RTH filter, comparable with that found by disturbed endothelium/sub-

endothelium.  (B) Prefixed PLT in EC could form mild PLT agglutinates and demonstrated no real  

adherence but only selective focal contacts on the PU surfaces of the filter (Fig.4-2-6-4-1 to 3).  The  

accuracy of the variant retention indices were additionally proved for PLT, RBC, and WBC in cWB and 

EC by using phase-contrast microscopy (p.4-3-1 and p.4-2-4-1).  In parallel with PLT-RI, the levels of 

PLCR-RI showed also significant decline in EC compared with cWB (mean= 7.3% vs. 20.5%: p<0.0005; 

Tab.5-2-7-A and Tab.4-3-2-2). 

B.) Nobel significance of the weight retention index (wRI): “Absorbance effect” of RTH filter 

By the centrifugation of cWB in RTH tube, a significant amount of the blood equivalent to wRI 

(mean=4.6%; Fig.4-2-3-2-4) is absorbed by filter.  This portion comprises mainly of the plasma because 

of its liquid phase and its lower specific gravity compared with the blood cells [Moris 2001, Sugai 2003].  

This “absorbance effect” is supposed therefore to lead to relevant increases in the concentrations of the 

blood cells after the passage of RTH filter and consequently to relevant negative RI values.  The RI value 

of blood cells is determined therefore by the total of: (1) the positive RI attributed to the “unspecific”  

retention by RTH filter mainly proportional with the size of the cell (p.5-2-9-A); and (2) the negative RI 

related to the absorbance effect (the virtual level = -mean wRI= -4.6%).  Thus, the low negative level of 

RBC-RI (-3.25%) reflects mainly the “absorbance effect”, whilst the WBC-RI level which stepped signifi-

cantly over it (4.2%) implicates a retention effect on leukocytes significantly higher than that on erythro-

cytes since the latter are 3 times smaller in size [Moris 2001].  In addition, the value of WBC-RI is  

significantly more affected by such retention effect than RBC-RI since the concentration of leucocytes in 

blood is 103 times lower than that of erythrocytes.  Comparably, the substantial increase of PLT-RI levels 

(25.2%) over the virtual negative level related to the absorbance effect (-4.6%), in spite PLT are 7-12 

times smaller than RBC [Diamant 2004], confirms firmly the specific and accurate effect of PLT retention 

under the conditions of SOP-3.  The absorbance effect is also evident by using EC as tested material.  

But the gap between PLT-RI levels and the virtual negative level related to the absorbance effect of EC  

(-4.8%) was significantly smaller by using EC than by using cWB (7.4% vs. 29.8%).  This is attributed to 

loss of PLT function in EC, as explained in p.5-2-9-A. 

 

5-2-10. Reliability and specificity of RTH assay pronounced by the quantity assessment 

using cWB and EC 

Taking into consideration the results of the reference ranges of the weight parameters by using cWB 

(Tab.4-2-3-2) and EC (Tab.5-2-8), we may conclude the followings: 

1. Accuracy of the amount added to RTH tubes (b.F amount) 

The low variations of the reference ranges of the b.F amount added to RTH tubes i.e., passing RTH filter 

by using cWB and EC (CV<0.4%) enhance the accuracy of performing RTH assay.  Despite the trend of 

positive correlation between PLT-RI levels and the b.F amounts of cWB was not statistically significant 
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(r=0.06: p>0.01; p.4-2-3-2), but it underlines the necessity of standardizing and controlling the  

b.F amount to preserve the reliability of RTH measurements.  The higher weight of the 500 µL of EC 

compared with cWB (523.6 mg vs . 502.6 mg) is interpreted by the higher specific gravity of EC  

[Moris 2001, Sugai 2003].  

2. Accuracy of the weight of RTH filter: A discriminator of the filter integrity 

The low variation of the reference range of the weight of RTH filter by using cWB and EC (CV=2.6%)  

promotes further the reliability of RTH filter and consequently RTH assay.  Despite the correlation  

between PLT-RI and the weight of RTH filter was not statistically significant (p>0.01), it was quite  

remarkable (r=-0.296).  Thus, the reference range of the weight of RTH filter represents a helpful  

discriminator for controlling the integrity of RTH filter besides the quality assurance of the reliability of 

RTH measurements. 

3. Accuracy of the weight retention index (wRI): Indicator of the reliability of RTH filter 

The wRI proved to demonstrate proportionally the amounts of the blood trapped/absorbed in RTH filter 

(p<0.0005; p.4-2-3-2).  The significant increase of wRI by using EC compared with cWB (4.82% vs. 

4.57%) is attributed therefore to the higher specific gravity of EC [Moris 2001, Sugai 2003].  The  

variability of the wRI was very low (SD=0.21) with no significant correlation with PLT-RI.  But the levels of 

wRI demonstrated marked negative correlation with the weight of RTH filter in both cWB (r= -0.23) and 

EC (r= -0.12), as shown in Fig.5-2-10-3.  The reproducible levels of wRI are considered, therefore, as an 

essential indicator for the integrity as well as the reliability of RTH filter and RTH measurements under 

the centrifugation conditions of 110 g/ 5 min.  Also the reference ranges of wRI for both cWB and EC 

(Tab.5-4-6-3) are consequently essential discriminators for the quality assurance of the integrity of the 

filter and the reliability of RTH assay. 

The negative correlation between wRI and the weight of 

RTH filter in both cWB (r= -0.233) and EC (r= -0.12) as 

well as the marked negative correlation between PLT-RI 

and the weight of RTH filter (r=-0.269) may together  

suggest the perspective for setting even further improve-

ment in the reliability of RTH assay.  This might be 

achieved by developing more standardized construction 

of the filter system. 
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Fig. 5-2-10-3: wRI against the weight of RTH 
filter by using cWB from blood donors (n=31) 
and Eightchek control (EC: n= 27). 
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5-3. Precision of RTH assay 
The essential improvements on the precision of RTH were accomplished in the course of the stepwise 

development of the methodology and the reliability of RTH assay addressing SOP-2 and then SOP-3 

which implicated acceptably precise measurements for the retention indices (RIs).  The accumulated 

experience in the application of RTH assay using SOP-3 emerged further investigation on its precision  

in cWB in order to inspect further probable improvement as well as to study the in-series and the  

day-by-day precision by using normal level Eightcheck control (EC).  The precision study set further 

evident clues on the reliability of the precision of RTH measurements, as summarized as follows:  

5-3-1. Reliability of the in-series precision of RTH assay using cWB 

The modifications addressed to SOP-2 excluded major sources of the variability and errors in the SOP-1 

of RTH, as described in p.5-1-1.  Nevertheless, the resulted accuracy and precision of RTH could not 

reach acceptable levels, as revealed by the measurements in stages 1-3 of the improving protocol (high 

SD values; Tab.4-1-2-2-2).  The modifications addressed to SOP-3 in stage 4 of the improving protocol, 

delivered further basic corrections and resulted in acceptable precision (substantially lower SD values; 

Tab.4-1-2-2-2) and accuracy especially by avoiding the errors related to the PLT particles phenomenon, 

as described in p.5-1-2-4-A & B and p.5-1-2-6-A-1 & p.5-1-2-6-B.  The high systemic increases of PLT-RI 

by time (in-series increase: mean=38.5%) and horizontally (the increase in the 2nd in-double measure-

ments compared with the 1st ones: mean=10.3%) found in stages 1-3 (SOP-2) were actually eliminated 

(p<0.0005) in stage 4 (SOP-3) and even converted occasionally to insignificant negative ranges  

(mean= -2.7% and -0.6% respectively: r>-0.046), as described in Tab.4-1-2-2-2 and illustrated in Fig.4-1-

2-3-2-2 and 3.  The high in-series and horizontal variations of PLT-RI in SOP-2 (stages1-3) were also 

sharply reduced to acceptable limits in SOP-3 (stage 4) (SD= 13.8 vs. 4.7 and 8.2 vs. 2.9 respectively: 

Fig.4-1-2-3-2-1 and 3).  In parallel, the serious errors of the other RI measurements in SOP-2 were basi-

cally corrected in SOP-3 leading to acceptable precision and accuracy, as described in Tab.4-1-2-2-2 

and demonstrated in Fig.4-1-2-3-2-5, 6, 8 and 9. 

The latest precision study performed on 3 series of cWB from different healthy blood donors (Tab.4-2-4-2-

1) enhanced the acceptable precision of SOP-3.  Similarly to stage 4 of the improving protocol, the  

precision study demonstrated also no significant horizontal variation and it resulted in even further  

reduction of the in-series variation of PLT-RI (SD=4.8 vs. 2.9) associated with conveniently small ranges 

of the 95% confidence intervals of the mean values (Fig.4-2-4-2-1).  The resulting low variation of the  

PLT-RI by using SOP-3 is of little practical consequence because of the physiologic variation of PLT 

activity [Kunicki 2002, Jurk 2005].  In parallel with PLT-RI, the precision of the other RIs was similarly 

further improved, as described in Tab.4-2-4-2-1 and illustrated in Fig.4-2-4-2-2 to 6.  The reliability of the 

acceptable in-series precision was further enhanced by the constant demonstration of normal distribution 

by the PLT-RI and other RI values within each series of measurements (p>0.05).  This significant  

improvement in the precision is attributed to the accumulated experience of improving the performance of 

RTH.  Having acceptable precision on 3 series of cWB in stage 4 of the improving protocol besides  

further lower variation in the other 3 series cWB from different blood donors (in the precision study)  

confirm evidently the reliability of RTH precision. 
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In parallel with PLT-RI, the precision of the RIs of PLT size (PLCR-RI, PDW-RI and MPV-RI) and blood 

cells (WBC-RI, RBC-RI) revealed basic improvement (Fig.4-1-2-3-2-5, 6, 8 & 9 and Fig.4-2-4-2-2 to 6).  

The reliable precision of these RIs (Tab.4-2-4-2-1), enhances the enlarged significance of RTH assay 

(p.5-4-4-3 and p.5-4-5) and support strongly the reliability of RTH measurements in view of the  

significance of the models of the mutual correlations between PLT-RI and the other RIs (Fig.4-2-4-2-7) for 

the interpretation and the quality assurance of RTH assay (p.5-4-6-1 & 2).  The variation of the RIs of PLT 

is dependant on the reliability of CBC measurements and the biological variability. 

 

5-3-2. Reliability of the in-series and the day-by-day precision of RTH assay using EC 

The day-by-day precision of RTH assay was studied by using EC.  The cWB from blood donors was not 

used since it is not acceptable to perform PLT function analyses after 180 min from blood collection  

[Harrison 2000, Miller 2001].  The in-series as well as the day-by-day precision of RTH using EC revealed  

rather homogenous of PLT-RI (SD 2.3 vs. 1.7; p>0.01) which was significantly (p<0.05) lower than that of 

the in-series precision performed on cWB (SD=2.9).  This is interpreted by the loss of PLT activity in the 

prefixed medium of EC and underlines the reliability of RTH to reflect this fact precisely and accurately.  

The acceptable reproducibility of PLT-RI and the other RI levels as well as the high homogeneity of their 

variances (Levene test) by using 5 different EC series in the precision study (3 for the in-series and 2 for 

the day-by-day studies: Fig.4-2-4-4-3 to 8; Tab.4-2-4-2-2 and 2) underlines the reliable in-series as well 

as day-by-day precision of RTH assay.  The rather normal distribution of the measurements of RIs in EC 

series enhances the reliability of RTH precision using EC.  The occasional presence of outliers in the  

in-series measurements was limited to a minority of series of the secondary RIs (e.g., RBC-RI) causing 

no disruption in the significance of their normal assumption neither their small ranges of the 95%  

confidence intervals of the mean values, as illustrated in Fig.4-2-4-4-3 to 8. 

 

5-3-3. Reliability of the precision of the weight parameters of RTH assay 

The weight parameters demonstrated quite acceptable in-series precision by using cWB and EC as well 

as day-by-day precision by using EC.  This was evident by the low variation of these measurements 

(CV=4.1%; (Tab.4-2-4-2-2-1 & 2 and Tab.4-2-4-4) besides their normal distribution (p>0.05) and the small 

range of the 95% confidence intervals of the mean values, as illustrated in Fig.4-2-4-3-1 to 4 and 4-2-4-5-

1 to 4.  The variations of wRI were in intimate concordance with that of the weight of the material trapped 

by RTH filter (cWB as well as EC; p<0.0005).  The significant increases in the mean values of EC  

compared with cWB are attributed to its lower specific gravity [Moris 2001, Sugai 2003]. 

 

5-3-4. Compatibility of the serial and day-by-day measurements of RTH with the morphologi-

cal control by phase -contrast microscopy 

As described in p.4-2-4-1, the accuracy of the retention indices of PLT and blood cell in the the serial as 

well as the day-by-day measurements of the precision study using cWB EC was proved by phase-

contrast microscopy.  This morphological control enhances the credibility of the precision study of  

RTH assay.  The compatibility between the findings of RTH and the phase-contrast microscopy supports 
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the reliability of the resulted low variances of RIs and acceptable precision of RTH.  Similar evident  

compatibility between the findings of RTH and the morphological control by phase-contrast microscopy 

was objected in the day-by day precision of the 3rd lot of our PLT standard, as described in Tab.4-2-5-5-1 

and 2. 
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5-4. Introduction of RTH-II: A developed, standardized,  

reliable, and simple version of RTH 
5-4-1. Reliability and evidence based specificity of the developed standard procedure  

compared with the variability and errors of previous RTH procedures and studies 

The data obtained from the last multicenter investigations on RTH underlined that the reliability of RTH 

assay is at least unacceptable [König 2002].  Since its development in 1993, the RTH assay has been 

suffering from serious problems in the reliability preventing its application in the clinical practice.  The 

studies investigating the precision of RTH delivered variant results; some of them are not interpretable 

[Koscielny 2002].  The accuracy of RTH assay in healthy individuals has never been investigated, and 

the clues on its specificity have been insufficient and presented no comprehensive interpretation.   

Nevertheless, some works reflected considerable response of PLT-RI to PLT agonists and PLT  

inhibitors and promised vital clinical significance for RTH as PLT function screening test [Wieding 2001 

and 2003, Schenk 2001].  This has meanwhile to be interpreted as rather hypothetic and throws doubts 

on the reproducibility.  Few studies concluded the “athrombogeneity” of the RTH filter system [Wieding 

2001, Schenk 2002], despite the evidences were not adequate and the filter is proved actually to be not 

completely athrombogenic, as explained in our study (p.5-2-7).  The main weakness point of RTH  

studies was the use of variant and unreliable procedures stepping unacceptably over defining reliable and 

evidence based SOP (standard operation procedures).  This was evident in the improvements and modifi-

cations addressing our developed SOP of RTH (SOP-3), as explained in p.5-1 and summarized in  

Tab.5-4-1.  In addition, previous studies on RTH had frequently serious errors in their methodology.   

As examples we may briefly mention the followings: 

1) The centrifugation conditions were not specified and varied extensively in the guideline of RTH 

and related studies (79-160 g for 5-16 min) [Wenzel 2000, Wienefoet 2003, Wieding 2004, and 

Krischek 2005].  A main investigation on RTH described the used “g” value but it neglected defining 

the time of centrifugation [Wieding 2002 and 2003].  Our investigations were, however, based on well-

defined centrifugation conditions (p.4-1-1-1 and p.5-1-1-2). 

2) PLCR-RI values were calculated according to the old formula and their levels were significantly 

higher than PLT-RI ones; mean= 26% vs. 21.0% as mentioned by Koscielny [2002], Schenk [2002], 

and Krischek [2005] (the number of the studied group was mentioned only by Krischek).  But the  

diverse investigations in our study proved firmly that the old formula can deliver only very low or  

negative levels of PLCR-RI e.g., the reference range (n=70) (mean = -6.4%; Fig.5-1-1-7).  Even the  

PLCR-RI levels based on our corrected formula (p.4-1-1-6) were lower and not higher than PLT-RI  

levels (mean=20.5% vs. 25.2%; Tab.4-3-2-3).  The PLCR-RI values preserved significant correlation 

with PLT-RI thought the diverse investigations of our study which was essential in the interpretation of 

the assay and improving the reliability of the measurements in contrast to the meaningless  

results by using the old formula, as explained in p.5-1-2-5-C (Fig.5-1-2-5-C).  These controversies put 

a serious question on the accuracy and the credibility of the related previous studies. 

3) The PLT-RI values by using fixed PLT medium (Eightcheck control) revealed low levels and  

variation in our precision study (mean=2.6%, SD=2.1; Tab.5-2-8) which demonstrated proportionally 
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the low and invariable activity of the prefixed PLT.  Whilst the study of Krischek [2000 and 2005] 

stated irrationally high levels for PLT-RI (mean= 21.8%, SD=4.4) which could be attributed to the  

errors of PLT particles phenomenon.  The day-by-day variations were substantially higher than the  

in-series ones by using the Eightcheck control, as described by Wienefoet [2003].  This is also  

irrational since the prefixed medium of Eightcheck control delivers rather stable retention values  

regardless of the time, as also revealed by our study (no significant differences between the serial 

variations and the day-by-day ones: p>0.01; Fig.4-2-4-4-3 to 8). 

4) The amount of the tested material was variable (450-500 µL) and the period of its incubation in 

RTH tube (3-10 min) differed significantly [Wenzel 2000, Nickels 2003, and Wienefoet 2003].  

5) The time window of performing the test varied up to 180 min after blood withdrawal [Schenk 2001, 

Koscielny 2002], despite the limit 180 is not recommended for PLT function assays [Miller 2001] and 

our study revealed also unacceptable variability associated with intervals above 120 min (Fig.4-1-2-3-

2-2; p.5-1-2-1). 

6) Surprisingly and apart from these variability and errors of RTH procedures, some of RTH  

related studies did frequently not define main parts of the procedures applied for performing RTH e.g., 

(a) The amount of the tested material [Wieding 2002], (b) the period of the incubation step [Schenk 

2002], (c) the conditions of centrifugation (the “g” value and the time: Wieding 2001], (d) the way of 

mixing the blood after centrifugation [Schenk 2001, König 2002, Wieding 2004] which is quite  

essential for reliable measurements (Fig-4-1-2-3-2-1 and 3), as revealed in our study (p.5-1-2-7),  

(e) the time limit of performing the measurements after centrifugation [e.g., Koscielny 2002, Schenk 

2002, Wieding 2004, König 2002] which is quite critical for their reliability (as revealed in our study: 

p.5-1-2-7-C-b), (f) the time window of performing the test which [König 2002, Wieding 2003 and 2004], 

(g) the formula of calculating PLT-RI e.g., [Schenk 2001, Wieding 2002].  

7) Some studies performed by using cPRP, but they unacceptably generalize their conclusions on 

the RTH assay using cWB [Schenk 2001]. 

These errors in the methodology of the previous studies negate their credibility and put a question on the 

reliability of their findings e.g., the specificity and the reference ranges. 

In contrast, our study addressed the reference range of RTH assay and its specificity after developing a 

reliable and standardized procedure for RTH (SOP-3).  A stepwise approach was followed for the radical 

validation and development of RTH procedures.  Each step was evaluated and then new modifications, 

procedures and/or identifications were set/addressed and incorporated in RTH assay primarily to exclude 

or minimize the sources of the variability and errors and to assure the reliability and the and the  

specificity of the assay.  As a further step, the convenience of the RTH as simple and cost effective  

assay should be improved.  Our basic improvements on SOP-1 were incorporated in SOP-2 which was in 

turn further evaluated and developed to SOP-3.  Multiple approaches were applied for the investigations 

validating our modifications as well as the resulting SOPs by using cWB, EC, iPLT, cPRP, and our  

developed PLT standard (p.4-1 & 4-2).  The nobel identification of the secondary RIs (p.5-1-2-6), the  

correction of PLCR-RI formula (p.5-1-2-4-B & 5), and wRI (p.5-2-9-B, p.5-2-10 and p.5-3-3) along with the 

use of multiple morphologic control (p.3-5) were quite essential for: (1) assuring the reliability of the 

measurements, (2) getting comprehensive insights into the interpretation of RTH measurements,  
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(3) defining the sources of errors and variability and setting the related modifications, and (4) validating 

the reliability of the developed SOP.  This methodology was crucial for addressing a comprehensive and 

evidence based interpretation for the specificity and the accuracy of RTH assay, for the first time, under 

the standard conditions of SOP-3 (p.5-2); and b.) defining adequate clues characterizing the rather 

“athrombogeneity” of RTH filter (p.5-2-7). 

 

Table 5-4-1: Summary* of the modifications on RTH and identifications addressing the standard procedures of RTH-II. 
Procedures and 
Identifications 

RTH RTH-II Advantages of RTH-II 

Tested material in 
clinical practice 

MainlyA cPRP, 
occasionallyB 
cWB 

cWB 

• Avoid variability of PLT & cell gradients and their diverse interactions with PLT. 
• Reflects the actual physiological situation. 
• Minimize the required blood amount to 0.5 vs. >1.5 mL. 
• More convenient: Easier and save the preparation time of cPRP (>15 min).   

Tested amount 450-500 µLC Standard 
500µL 

Standardize the amount passing RTH filter 

Additional Re-
agents 

50 µL mainly 
reactivating 
reagentsD 

Non 
o Unjustified addition: PLT response to such additives was not defined or standardized.  
o Avoid unstandardized convertible PLT response that varies inter-individually. 
o Save preparation time (3 -6 min) with greater ease. 

Incubation 
step 

3-10 minC, 
ND Non 

v Exclude errors attributed to PLT activation by long contact with the filter.  
v Standard contact time with RTH filter: Avoid variability of PLT activation due to different 

incubation periods and the inter-individual variability PLT response to such activation. 

b.F 
measurements 

On the 
materials 
added to 
RTH tube: 
After the  
incubation  
step 

On the 
materials in the 
collection tube: 
No incubation 
required 

ü Standardize the amount passing RTH filter: Eliminate variability due to variances in the 
amounts aspirated from the different cell counters (100-400 µL).  

ü Sufficient quantity for performing the in-double b.F and a.F measurements and additional 
control. 

ü Assure blood homogeneity on mechanical rotator, contrast to the variability of the measure-
ments on RTH tube attributed to variant rates of sedimentation and blood heterogeneity dur-
ing its stand. 

ü Blood in big tubes is less opposed to hyperactivation by inconvenient mixing than in the 
smaller Epp tubes.  

ü Save time: Allow performing the b.F measurements during the centrifugation of RTH. 

Centrifugation 
of RTH tube 

79-160 g  
for  
4-16 minE, 
ND 

110 g/ 5 min 

§ Deliver reliable procedure and measurements of PLT-RI and other RIs.  
§ Acceptable distribution of PLT in the filter: from its upper until middle-lower parts 
§ High precision of the weight retention (wRI: CV<2.6%) and si gnificant reference range. 
§ Reliable and meaningful reference range of PLT-RI and the other RIs with acceptable 

bio-variability and adequate margins for assessing pathological variations.  
Mixing RTH tube 
before a.F meas-
urements 

Vortex 3 min 
Slight vortex: 
standard  
1-3 sec. 

o Avoid PLT hyper-activation triggering the occurrence of PLT particles phenomenon that is 
associated with serious errors destroying the reliability of a.F measurements.  

o Save time and greater convenience. 

a.F 
Measurements On RTH tube 

On RTH tube 
<2 min after 
mix 

v Preserve blood homogeneity. 
v Minimize errors attributed to probable occurrence of PLT particles phenomenon. 

Measurements 
Type 

Not  
standardized In-Double 

Assure the measurements’ quality: the patterns of the variation of the 2nd in-double a.F 
measure-ments compared wi th the 1st one indicate probable errors e.g., inadequate or ag-
gressive mixing. 

Time of performing 
RTH 

<180 min., 
ND 

Standardized  
<120 min 

• Deliver reliable accuracy and precision for RIs measurements.  
• PLT-RI decrease remarkably after 120 min. 

Tips of the  
micropipette 

ND New  Avoid unstandardized variation by using one tip for successive pipetting (e.g., in-double).  

Correction of  
PLCR-RI formula 

PLCR-RI (%) =  
[(b.F PLCR) – 
a.F PLCR)] / 
(b.F PLCR) x 
100 

PLCR-RI (%) =  
[(b.F PLCR x 
b.F PLT) – 
(a.F PLCR x  
a.F PLT)] x 100 
/(b.F PLCR x  
b.F PLT)  

ü Reliable and significant reference range contrast to the meaningless one using original 
formula. 
ü Correction of PLCR-RI correlation with PLT-RI and the other RIs.  
ü Essential role in identifying RTH errors and validating the due modifications approaching 

RTH-II 
ü Enlarging the significance of RTH-II assay: Significant insights into the characteristics of 

large PLT function and their i nteraction with RTH filter.  
ü Approaching key indicators for the quality assurance of PLT-RI measurements by the varia-

tion their levels and the pattern of their correlation with PLT-RI. 

Identification of 
new RIs for 
PDW and MPV 

Non PDW-RI, 
MPV-RI 

Ø Reliable and significant reference range: RI (%)=b.F measurement-a.F measurement) x100 
/ b.F measurement 
Ø Beneficial role in validating the errors and due modifications approaching RTH-II  
Ø Enlarging the significance of RTH-II assay: Significant insights into the interaction of PLT 

size distribution and RTH filter e.g., the mild shift of PLT size distribution to the right after 
passing the filter and its significant increase by PLT particles phenomenon 
Ø Setting significant indicators for the quality assurance of RTH-II measurements by the pattern 

of the variation of their levels and correlation with PLT-RI. 
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Identification of 
new RIs for the 
blood cells 

Non 

WBC-RI, 
RBC-RI, 
HGB-RI,  
HCT-RI 

§ Reliable and significant reference range: RI (%) = (b.F measurement-a.F measurement) x100 
/ b.F measurement. 
§ Crucial role in identifying RTH errors and validating the due modifications approaching 

RTH-II 
§ Provide essential indicators for the quality assurance of RTH measurements: Enhance  

the reliability of RTH-II. 
§ Expand the significance of RTH-II to other blood cells.  

Identification of wRI 
(the weight reten-
tion index) 

Non 

wRI: weight 
percentage of 
blood trapped 
in the filter 

o wRI (%) = (b.F filter weight – a.F filter weight) x 100 / b.F filter weight. 
o Essential for standardizing the conditions of centrifugation and validating the reliability of  

the developed procedures of RTH-II. 
o Essential for the quality assurance of the integrity and the reliability of RTH filter.  

Identification of 
PLT particles 
phenomenon 

Non 

Addressed 
experimentally: 
on cWB, cPRP, 
isolated PLT 
and prefixed 
PLT mediums 
(EC, PLT stan-
dard) 

• PLT particles phenomenon: “PLT activated by centrifugation passing through the filter are 
opposed to hyperactivation by inconvenient vortex (RTH) leading to PLT degradable aggre-
gates/agglutinates (particles) and rosette forms resulting in: a) False PLT count decrease and 
b) PLT particles  
misread by the automatic cell counter as large PLT, RBC, and/or WBC whenever they are 
within their corresponding size discriminators leading to relevant false increases in their 
counts and shift of PLT size to the right. A b.F PLT hypera tivation can lead to the same con-
sequences.  The total values of RIs vary according to the false b.F and a.F variations.” 

• Mandatory for identifying RTH errors and setting the due modifications of RTH-II:  
Associated with defined patterns of RIs levels and their inter-correlation with PLT-RI. 

• Represent the main probable errors for RIs measurements.  
• Understanding their implications is necessary for interpreting and assuring the quality of  

the measurements.  

Applicability on 
other materials Not studied 

Established for 
isolated* and 
fixed* PLT 

ü Further comprehensive insight on RTH precision, accuracy and specificity. 
ü Characterization of PLT interaction with the filter and their different medium. 
ü Enhance RTH-II reliability for research purposes.  

Automation Non  Addressed o On-line interpretation and quality assurance based on RIs levels and correlation with PLT-R. 
o Enhance reliability and satisfaction with higher cost effectiveness.  

* Details are described in p.5-1: The procedures of RTH (SOP-1) were based mainly on the newest guideline of RTH assay at the time we start our study [Wenzel 2000] and 
considering the procedures used in the main RTH related studies at that time. A Krischek 2000, Schenk 2001, Koscielny 2002, Nickels 2003. B König 2002.  C Wenzel 2000, 
Nickels 2003, Wienefoet 2003.  D (r-Hirudin with CaCl2) or occasionally Na-Cit 0.3% [Nickels 2003].  E Wenzel 2000, Wienefoet  2003, Wieding 2004, Krischek 2005.  
cWB= citrated whole blood (p.3-4-1);  cPRP=citrated platelet rich plasma (p.3-4-2); ND= frequently  not defined partly or totally (see the text);  EC= normal level Eightcheck 
control. 

 

Despite the essential improvements in the precision and the accuracy of RTH using SOP-2 due to  

excluding major sources of errors and variability in SOP-1 (p.5-1-1), the SOP-3 implicated further basic 

correction in the accuracy and the precision of RTH measurements (p.5-1).  The phenomena of false 

elevations of PLT-RI levels (mean: 2.2 fold) and their increase by time (up to 61%) observed in SOP-2 

(Tab.4-1-2-2-2), as well as the errors of PLT-RI correlation with the other RIs (Fig.4-1-2-3-2-4, 6, 7 and 10) 

were basically corrected in SOP-3, as described in p.5-1-2-4 to 6.  The errors of SOP-2 were attributed 

mainly to PLT particles phenomenon which was defined under morphologic control.  Approaching the 

PLT particles phenomenon was actually essential (p.5-1-2-2, 3 and 7).  The correction of the accuracy 

and the precision of PLT-RI levels were associated with the correction of the other RIs (p.5-1-2-4 to 6).  

Compared with SOP-3, the variation of PLT-RI in SOP-2 was 4.7 times higher (SD= 2.9 vs. 13.8;  

Tab.4-2-4-2-1 and Tab.4-1-2-2-2 respectively).  The in-series (38.5%) and horizontal increases (10.3%) in 

SOP-2 (Tab.4-1-2-2-2) were eliminated in SOP-3, as further explained in p.5-1-3.  Investigating the  

precision by using Eightcheck control; in-series and day-by-day (for periods longer than ever before), 

revealed low and homogenous variations for RIs (e.g., PLT-RI: SD<2.9) that support further the reliability 

of SOP-3.  In association with PLT-RI, similar basic improvements (p<0.0005) on the precision of other 

RIs was achieved in SOP-3, as described in p.5-3-1.  The compatibility between the measurements of 

the precision and the phase-contrast microscopy control enhances strongly reliability of SOP-3 (p.5-3-4).  

The reliability of RTH assay using SOP-3 is dependent on precise and accurate CBC measurements 

(before and after the filter passage) and the biological variability, whilst the errors induced by additional 

sources of variability in previous procedures (e.g., PLT particles) increase the variability and false results 

unacceptably. 
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The significance of the improvements in the accuracy and the precision of RTH using SOP-3 (above  

mentioned and also described in details in p.5-1-2 and p.5-3) is further enhanced by taking into  

consideration that these improvements are based on the comparison with SOP-2 which actually  

implicates also essential improvement compared with SOP-1 by excluding different sources of variability.  

Therefore, the improvements in the reliability of RTH measurements using SOP-3 compared with SOP-1 

exceed significantly that described in the comparison of SOP-2 with SOP-3.  The advantages of the  

identifications and improvements addressed/set to RTH assay in our study (p.5-1) did not only represent 

basic development in its reliability and specificity (p.5-1 and 3), but also underlined the inconvenience 

and unacceptable reliability of SOP-1.  The significance of SOP-3 is further enhanced by taking into  

consideration that SOP-1 was the newest “improved” guideline of RTH [Wenzel 2000] when we started 

our study. 

 

 

5-4-2. Identification of RTH-II: Obligations and adaptation of the developed SOP 

With regard to the frequent serious errors in previous RTH studies and the extensive and unacceptable 

errors and variability of previous RTH procedures compared with the basic developments of the  

standardized and improved SOP (SOP-3) of RTH implicating acceptable reliability (Tab.5-4-1; p.5-4-1), 

we identified “RTH-II” as the developed and reliable version of RTH which comprises mainly our  

improved SOP (SOP-3) holding consequently its advantages.  The SOP of RTH-II exceeds further the 

excellency of SOP-3 by taking into consideration the advantages concluded by its validation and  

establishing the reference range, as summarized as follows: A.) The determination of the secondary RIs 

(WBC-RI, RBC-RI, MPV-RI and PDW-RI; p.4-1-2-5) is incorporated in RTH-II assay due to their substan-

tial significance in: (1) its interpretation and specificity (p.5-1-2-6 and p.5-2-9), and (2) the quality assur-

ance of PLT-RI measurements (p.5-4-6).  In addition these RIs enhance and enlarge the clinical signifi-

cance of RTH-II evidently (p.5-4-4 and 5).  B.) The HGB-RI and/or HCT-RI could be optionally calculated 

instead of RBC-RI according to the menu of the cell counter.  C.) The RIs of the main normal types of 

leukocytes (NEUT-RI, LYMP-RI and MXD-RI) and of the indices of erythrocytes (MCV-RI, MCHC-RI and 

RDW-RI) were excluded from RTH-II because they provided no additional significant insights into the 

specificity or the interpretation of RTH-II.  This became evident in the improving protocol (p.5-1-2-6-C and 

D) and was further confirmed in our subsequent investigations e.g., on the reference range (Fig.4-3-3-1).  

D.) For further minimizing the turnaround time, the b.F measurements on the collection tube could be 

performed during the centrifugation of RTH tube.  This was actually applied in the investigations for  

validating RTH and establishing the reference range.  E.) The room temperature was defined as a  

standard condition for performing RTH-II since it delivered reliable results.  F.) Specific care should be 

given to the interpretation of the variation of the 2nd measurements compared with the 1st ones for the 

quality assurance of the results.  The patterns of these variations can indicate probable errors related to 

e.g., inadequate or aggressive (PLT particles phenomenon) mixing, as explained in p.5-4-6-1-a.  The 

SOP of RTH-II is illustrated in Fig.5-4-2 and can be summarized as described as follows: 

5-4-2-1. 500 µL of cWB (or the tested material) is pipetted carefully into the upper part of the RTH tube 

(p.3-1-2) and then centrifuged by 110 g/ 5 min at room temperature. 
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5-4-2-2. CBC before the passage of RTH filter (b.F measurement) is performed on the blood in  

the collection tube (p.3-4-1) during the centrifugation of RTH tube. 

5-4-2-3. CBC after the passage of RTH filter (a.F measurement).  After centrifugation, the upper part of 

RTH tube is removed and the blood in the lower part (p.3-2-1) is mixed thoroughly and carefully 

by vortex (standard vortex; p.4-1-2-4-4).  The a.F measurement is performed on the blood in the 

lower part of RTH tube shortly (within 1-2 min) after mixing. 

5-4-2-4. Calculation of the retention indices (RIs). PLT-RI and the secondary RIs (e.g., MPV-RI, PDW-

RI, WBC-RI, RBC-RI) are calculated as follows: 

RI (retention index %) = (b.F measurement – a.F measurement) x 100 
                             b.F measurement 

 

PLCR-RI is calculated according to the corrected formula (p.4-1-1-6). 

Note 1: RTH should be performed within 120 min after blood withdrawal and at room temperature.  Inter-

laboratory investigations should better prospectively define the time limits of RTH performance in order to 

minimize the variation (p.5-1-2-1). 

Note 2: The measurements are performed preferably in-double and the means are considered for the 

calculation of RIs.  For expertise personnel, performing the a.F measurements one time is recommended 

to reduce the critical time required for delivering the results.  Interpretation of the results should consider 

the key notes summarized in the protocol of quality control (p.5-4-6). 

In contrast to RTH, the modifications incorporated in RTH-II implicate a.) basic improvement in the  

standardization and reliability, b.) the correction of PLCR-RI formula and the nobel identification of the 

RIs for PLT size distribution and blood cells, c.) evidence based specificity.  These modifications have  

consequently led to fundamental improvements reflected on: (1) identifying reliable reference ranges of 

RIs (p.5-4-3), (2) enhancing and enlarging the specificity on PLT function (p.5-2-9 and 5-4-4),  

(3) expanding the clinical significance (p.5-4-5), (4) improving the excellency (p.5-4-7 and 8) and the  

quality assurance of the assay (p.5-4-6) which in turn enhance further the reliability of RTH-II.  This 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5-4-2: Standard Operation Procedures (SOP) of RTH-II. 
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enlarged furthermore the gap between the reliability and the significance of RTH-II and RTH.  The  

introduction of RTH-II assay is therefore mandatory in order to prevent significant and basic “bias by  

reporting”. 

Since the introduction of RTH-II in 2004, only one study has been created using the SOP of RTH-II 

[Klinkhard, 2006].  The newly published works of Krischek and Wieding were still attributed to RTH  

despite the procedures described are significantly adapted from RTH-II [Krischek 2005, Wieding 2005].  

These findings should be therefore critically revealed.  

 

 

5-4-3. Reliability of the reference range of RTH-II 

5-4-3-1. Well established reference ranges for RIs and their significance 

After addressing RTH-II which implicates acceptable accuracy and precision as well as evidence based 

specificity on PLT (p.5-4-1 and p.5-2 and 3), it became possible for the first time to identify a reliable 

reference range for PLT-RI by using cWB.  The variability of RTH procedures used for addressing the 

reference ranges of PLT-RI in previous studies [Krischek 2000, Schenk 2002] disrupted the probable 

usefulness in clinical practice.  In addition, RTH procedures implicated serious errors that negate the 

reliability of the measurements of such reference ranges, as summarized in Tab.5-4-1 and explained in 

p.5-4-1.  Moreover, the previous studies used no conventional control on RTH measurements.  In contrast 

for the reference range of RTH-II, the accuracy of PLT and blood cell retention indices besides the  

integrity of PLT were controlled by phase-contrast microscopy (p.4-3-1).  However, the available data on 

the previous reference ranges shows that they were addressed on small samples of blood donors  

(e.g., n=14; Krischek 2000) and were based on the theory of normal distribution (mean ± 2SD) despite 

the normality of the PLT-RI values was not statistically defined.  Whereas the reference range of RTH-II 

was based on a statistically significant number of healthy individuals (n=70; Tab.4-3-2-1).  The normality 

of PLT-RI and the other RIs was inspected in triple by: a.) the formal test of normal distribution (KS: 

p<0.05; Tab.4-3-2-1), b.) histograms of RIs distribution (Fig.4-3-2-1 to 8) and c.) Q-Q Plot test (Fig.4-3-2-

9 to 16).  The PLT-RI values were mainly in line of normal assumption with slight skewness ranging 

within acceptable limits (<2 Std error; p.4-3-2).  These tests revealed that PLT-RI and the other RIs are 

acceptably distributed in line of normal assumption, and could be therefore reliably expressed by using 

the 95% reference ranges based on normal theory defined as mean ± 2SD, as described in Tab.4-3-2-2.  

Regarding PLCR-RI, a previous study defined a reference range by using its old formula which should be 

therefore critically revealed, as explained in p.5-4-1-7.  Nevertheless, the use of the old formula would 

have delivered no meaningful reference range (mean= -6.4: SD=9.4; Fig.5-1-1-7) while the use of our cor-

rected formula delivered a meaningful reference range for PLCR-RI (mean=20.6%: SD= 9.1; Tab.4-3-2-2.), 

as illustrated in Fig.4-3-2-2 and Fig.5-1-1-7. 

Establishing reliable reference ranges, for the first time, for PLCR-RI and the new RIs and addressing 

their mutual correlation with PLT-RI was essential for: a.) understanding of the specificity and the  

accuracy of RTH for screening PLT function (p.5-2-9), b.) interpreting PLT-RI measurements and enlarg-

ing the clinical significance of RTH (p.5-4-4 and 5.), and c.) setting a protocol for the quality  

assurance of RTH measurements (p.5-4-6). 
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5-4-3-2. Impact of the modality of RTH-II measurements on the reliability of the assay 

The use of different modes of measurements for the reference range of RTH-II demonstrated: 

(1) marked increase in the means and the variations of PLT-RI by practicing two a.F measurements  

instead of one a.F measurement (Tab.4-3-4), and (2) critical value for the significance of the increase of 

the means of 2.a.F subgroup compared with the 1a.F ones (p=0.067), as revealed by the pairwise  

comparisons.  These findings could be attributed either to bioindividual variations between these  

subgroups and/or to systemic increase in the 2nd in-double a.F measurements compared with the  

1st ones due to unacceptable formation of PLT particles relevant to aggressive re-mixing of the blood by 

vortex.  The control by phase-contrast microscopy did not regularly but occasionally demonstrated such 

effect.  These effects, however, were not strong enough to disturb the reliability of applying these 3 

modes of measurements for establishing the reference range of PLT-RI since the differences between the 

means were not significant (p>0.1; Anova test) and the variances were statistically homogeneous (p>0.1; 

Levene test).  Nevertheless, the undesirable occurrence of PLT particles by vortex of the a.F blood was 

mainly eliminated by the basic improvements of RTH-II (implicating SOP-3; p.5-1-2-3 and 4), but it is at 

least not completely preventable.  Thus, we recommend: a.) Performing the a.F measurements in-double 

for assuring the quality of the measurements and the interpretation of the results, as described in p.5-4-

6-1.  Significant decrease of the 2nd a.F PLT count compared with the 1st one could be an indicator for 

unacceptable occurrence of PLT particles.  b.) For expertise personnel, performing the a.F measure-

ments one time instead of twice (unless the 1st measurement is suspected) may be justified to spare 

time for delivering the results.  c.) A protocol for the quality assurance of RTH-II results is essential for 

preserving the reliability of RTH-II assay, as described in p.5-4-6. 
 

5-4-3-3. Impact of using different automatic cell counters on the reliability of RTH-II 

measurements 

None of the 3 different Sysmex cell counters revealed any sign of systemic or specific influence on the 

accuracy of RTH-II measurements.  The differences between the means of PLT-RI or PLCR-RI in the 

counter’s subgroups were not significant and the variances of RIs were homogeneous, as described in 

Tab.4-3-5.  Nevertheless, the precision study demonstrated marked decreases in the variations of PLT-RI 

by the use of more modern cell counters for RTH measurements (p<0.05 for: series 2 vs. 1, series 3 vs. 

1 and 2; Tab.4-2-4-2-1).  Thus we may suggest that despite Sysmex counters deliver comparable  

accuracy for RTH-II assay performed on cWB, using modern counters may improve the precision of this 

assay, especially the use of Sysmex SF-3000. 

 

 

5-4-4. Fundamental improvement in the clinical significance of RTH-II 

for screening PLT function 

5-4-4-1. Enlarged and reliable specificity on PLT function 

Our study (p.5-2-7 and p.5-2-9-A) proved that: A.) The retention of PLT (PLT-RI) measured under the 

standardized conditions of RTH-II demonstrates proportionally and reliably the response of PLT to  

activation by shear stress forcing the blood through the inter-connected micro pores of the RTH filter 
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system.  In contrast, the serious errors in the accuracy and the precision of RTH (p.5-4-1) disrupt its  

reliability of measuring PLT-RI.  B.) The response of PLT to activation is comparable to the physiologic 

reaction of circulating PLT at a disturbed endothelium and/or subendothelium.  This response is  

demonstrated mainly by: (1) extensive adherence on the athrombogenic surface of RTH filter  

(2) extreme PLT spreading and shape changes, (3) aggregation/agglutination bridging the opposite  

surfaces of its micropores associated with extremely prolonged pseudopodia, and (4) mild PLT  

degranulation.  Thus, RTH-II assay can assess directly multiple responses of PLT to activation by shear 

stress which enlarge its significance for screening PLT function.  The specificity of RTH was related  

initially to PLT stickiness [Wenzel 2000] and later also to aggregation [Schenk 2002, Wienefoet 2003]. 
 

5-4-4-2. Reliability of the reference range for assessing the pathological variations 

The unreliability and variability of the reference ranges of RTH disrupted its clinical significance in  

contrast to RTH-II (p.5-4-2).  In addition, the majority of the reference ranges of PLT-RI were  

addressed by using cPRP [Krischek 2000, Schenk 2002].  Only one reference range was defined by 

using cWB [Krischek 2000].  But the mean value was too high (mean=70.2%) for evaluating PLT  

hyperactivity which was rather the main pathological concern for RTH assay [Wenzel 2000, Schenk 2001 

and 2002, Wieding 2003].  The too small range of biovariability of this reference range (SD=2.1) throws 

doubts on the reliability of the measurements.  Whilst the reference range of RTH-II addressed on cWB 

deliver acceptable biovariability with adequate ranges for assessing mainly hyper- and possibly hypo- 

PLT activation (mean= 25.2%, SD= 6.25; Tab.4-3-2-2).  High PLT-RI values indicate increased PLT  

activation and high stickiness which could be interpreted as pathologic and might represent a thrombo-

philic risk proportional.  Low PLT-RI values indicate poor PLT response to activation and could be a sign 

of a serious loss in PLT function and a risk of bleeding potency.  Abnormal results, however, suggest 

performing further specific inspection of PLT function. 
 

5-4-4-3. Nobel clinical significance on PLT size distribution and further quality assurance 

The nobel identification of new retention indices (RIs) for the PLT size distribution (PDW-RI and MPV-RI) 

and the correction of PLCR-RI formula added nobel significance for RTH-II assay since none of the  

previous RTH procedures or any other PLT retention tests included these RIs.  The reliability and the 

significance of these RIs in clinical practice were established by: a.) their reliable measurements (Tab.4-

2-4-2-1, Fig.4-1-2-3-2-10 and 4-2-4-2-3 & 4; p.5-3-1), b.) well-defined reference range for each RI (Tab.4-3-

2-2; p.5-4-3-1), and c.) the definition the mutual correlations of these RIs with PLT-RI within their refer-

ence ranges as well as within the in-series measurements of the precision (Fig.4-1-2-3-2-10 and Fig.4-2-

4-2-7).  Despite further investigations are required to address the promising clinical significance of the RIs 

of PLT size distribution, our study shows evidently that the incorporation of the determinations of these 

RIs in RTH-II assay enlarges its clinical significance for evaluating the heterogeneity of PLT function and  

enhances further the quality assurance of RTH-II measurements, as described as follows: 

A.) Incorporation of PLCR-RI: 

The measurements of PLCR-RI and their correlations with PLT-RI played a beneficial role in: 

a.) Defining and validating the errors of RTH measurements and setting the related modifications.  

This became evident in many investigations e.g.: (1) the PLT response to the reactivating reagent  
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(Fig.4-1-1-2-B-2), as explained in p.5-1-1-3; and (2) addressing to the PLT particles phenomenon leading 

to set the standard vortex (Fig.4-1-2-4-3-a1, a2, b, and c; p.5-1-2-3), (3) validating the corrections  

delivered by using the standard vortex (Fig.4-1-2-3-2-7; p.5-1-2-4-B, and p.5-1-2-5). 

b.) Setting the key directions of the quality assurance of RTH-II measurements (p.5-4-6-1 and 2). 

The reliability and the significance of PLCR-RI measurements and their correlations with PLT-RI were 

further enhanced by providing direct insights into the specific characteristics of large PLT function and 

their interaction with RTH filter which were demonstrated as follows: 

1) The systemically and significantly lower levels of PLCR-RI versus PLT-RI revealed by the reference 

ranges of RTH (n=70: mean= 20.5% vs. 25.2%; Tab.4-3-2-3: Fig.4-3-2-1 and 2) as well as throughout 

the investigations of our study using cWB (as explained in p.5-1-1-7 and 5-1-2-5-B) confirm strongly 

that large PLT are less active than the normal sized PLT. 

2) The decrease of PLCR-RI compared with PLT-RI (RI-Diff) implicate proportional mild shift of PLT size 

to the right after passing RTH filter.  The negative mean of the reference range of MPV-RI  

(-1.97%; Tab.4-3-2-2) supports this conclusion.  The significant increase of RI-Diff by the occurrence 

of PLT particles phenomenon confirm also the lower response of large PLT to inconvenient vortex of 

the blood after passing RTH filter compared with normal sized PLT, as explained in p.5-1-2-5-A). 

3) The constantly strong positive correlation of PLCR-RI with PLT-RI in our divers investigations  

(using cWB, cPRP, EC, our PLT standard: r>0.75; p>0.0005) confirm that the activity of large PLT 

is, however, intimately proportional to that of PLT. 

Addressing these phenomena or implications was not possible by using the old formula of PLCR-RI used 

in RTH (Fig.5-1-1-7 and Fig.5-1-2-5-C), as explained in p.5-1-1-7 and p.5-1-2-5-C.  The systemic  

difference between PLT-RI and PLCR-RI values and the pattern of their strong correlation within their  

reference ranges as well as the in-series measurements of the precision play essential role in the quality 

assurance of RTH-II measurements, as described in p.5-1-2-4-B, p.5-1-2-5-A and p.5-4-6-1-d & 2.  This 

enhances the reliability and consequently the significance of RTH-II for screening PLT function. 

B.) Incorporation of PDW-RI and MPV-RI:  

In concordance with PLCR-RI, the reference ranges of PDW-RI and MPV-RI (Tab.4-3-2-2) demonstrated 

negative means that reflect the mild shift of PLT size distribution to the right after passing the RTH filter, 

as already explained (p.5-4-4-3-A).  In addition, the variations of the levels of these RIs and their patterns 

of correlation with PLT-RI could reflect the increase of this shift attributed to PLT hyperactivation by  

inconvenient vortex as well as the necessity of applying the standardized vortex method (Fig.4-1-2-3-2-

10), as explained in p.5-1-2-6-B.  The measurements of PDW-RI and MPV-RI are interpretable in  

regard of their reference ranges together with their patterns of mutual correlation with PLT-RI and  

PLCR-RI (Fig.4-3-3-3 to 6).  Obtaining either of MPV-RI or PDW-RI value significantly apart from its  

reference range and/or normal pattern of correlation with PLT-RI or PLCR-RI is a sign of probable  

abnormal PLT function or the unacceptable occurrence of PLT particles phenomenon relevant to hyperac-

tivation (p.5-1-2-7-B and C).  The use of PLCR-RI seems to be more reliable for estimating the function of 

large PLT than MPV-RI since the later demonstrated insignificant correlation with PLT-RI in the healthy 

individuals in contrast to PLCR-RI (r= 0.021, p>0.05 vs. r=0.689, p<0.0005: Fig.4-3-3-2 and 5).   
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Nevertheless, the integration of PDW-RI and MPV-RI in RTH-II along with PLCR-RI may contribute to 

further enhancement of the reliability and the clinical significance of RTH-II.  

 

 

5-4-5. Expanding the clinical significance of RTH-II to the other blood cells: 

Incorporation of WBC-RI and RBC-RI 

The reference ranges for WBC-RI and RBC-RI enhance the reliability of RTH-II for screening PLT function 

and extend its clinical significance further to the other blood cells.  None of previous RTH procedures or 

any other PLT retention test identified RIs for leucocytes and/or erythrocytes.  Obtaining WBC-RI and/or 

RBC-RI values that are significantly out of their normal ranges should be interpreted also in light of their 

correlation with PLT-RI (Fig.4-3-3-7 and 8) and the probable inadequate mixing of the blood after passing 

RTH filter or unacceptable occurrence of PLT particles phenomenon (p.5-4-6-1-b and c).  In this respect, 

the determination of these RIs enhances the quality assurance of PLT-RI and RTH-II measurements and 

consequently the reliability of the test, as evidently revealed by the investigations of improving RTH  

(p.5-1-2-6-A).  Otherwise, abnormal findings of WBC-RI and/or RBC-RI could be seen as indicators of 

pathologic disorders in leukocytes or erythrocytes respectively.  Beyond it, several observations under-

line probable specific interactions of blood cells with RTH filter:   

A.) The blood cells were able to pass through RTH filter despite they were bigger in size than the pores 

of RTH filter (16-22 µm).  This was evident in the followings: 

a.) The different investigations of our study demonstrated considerable counts for WBC and RBC  

after passing RTH filter reflected by significant WBC-RI and RBC-RI respectively. 

b.) The reliable reference ranges of WBC-RI and RBC-RI. 

c.) The adherence of leucocytes and erythrocytes on the filter was less significant than platelets, as 

shown by electron microscopy (p.4-2-6-3-A). 

B.) The electron microscopic examination demonstrated the activation of the blood cells passing RTH 

filter by shear stress.  This was evident by the leukocyte degranulation (Fig.4-2-6-3-c-2) as well as the 

erythrocyte agglutinations and formations of coin-rolls (rouleaux Fig.4-2-6-3-b) which reflect the activation 

of these cells [Leone 2001, Lee 2004, Arese 2005, Falanga 2005, and Lang 2005].  Interestingly, these 

cells demonstrated direct adherence on the PU surfaces of the filter (Fig.4-2-6-3-b, and Fig.4-2-6-3-c-1 

and 2). 

C.) The inter-correlations of WBC-RI and RBC-RI with PLT-RI in cWB from healthy blood donors (Fig.4-

3-3-7 and 8) as well as in the in-series precision demonstrated constant patterns (Fig.4-2-4-2-7; p.4-1-2-

3-2-4 and 6). 

Despite leucocytes and erythrocytes seem to be retained by RTH filter mainly “unspecifically” due to 

their sizes (Fig.5-2-7-7-B and p.5-2-8-A), these observations refer to an interesting probable specific  

interaction between these cells and RTH filter.  Such specific effect should be further investigated  

especially for the leukocytes as they demonstrate positive RI level (mean= 4.25%; Fig.4-3-2-5).  In  

addition, since the monocytes demonstrate contacts with erythrocytes compared to that found in vivo 

after activation (Fig.4-2-6-3-b) [Stamenkovic 1990], this phenomenon should be followed up.  The  

“specific” interaction of blood cells with RTH filter implicates additional hypothetic uses of RTH-II assay 
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such as to exclude erythrocyte rigidity and to find out erythrocyte deformability respectively.  At least the 

filter itself might be prepared in a way to measure RBC-RI sensitively.  Such applications of RTH-II should 

be of interest for physicians working in the field of microcirculation.  Additional investigations are required 

therefore to address further the clinical significance of these RIs. 

 

 

5-4-6. Quality assurance protocol: Essential enhancement of RTH-II reliability and satisfaction 

The availability of quality assurance protocols for the analyses in the clinical laboratory is mandatory for 

preserving the reliability of their measurements as well as enhancing the excellency and of the  

analyses with greater satisfaction especially in the routine clinical laboratory in respect to the heavy  

everyday run and the variable experience of the laboratory personnel [Ohman 1997, Carr 2004, Franchini 

and Veneri 2005].  None of the previous guidelines of RTH assay included a clear quality assurance  

protocol [Wenzel 2000, Wienefoet 2003].  Despite the basic improvements of the procedures of RTH 

addressed to RTH-II have eliminated the main sources of the variability and unreliability of this assay 

(p.5-4-1-1), the errors attributed to the delicate mixing of the a.F blood (after passing RTH filter) by  

vortex before performing the a.F measurements seem not to be completely preventable.  The marked 

increases in the 2nd a.F measurements for the reference range of PLT-RI probably linked to the  

unacceptable occurrence of PLT particles (p.5-4-2-2) represent at least a critical example of such  

possible errors.  A quality assurance protocol for RTH-II is therefore essential to enhance the satisfaction 

with its performance especially in the clinical practice in respect to the heavy everyday run and the  

variable experience of the laboratory personnel.  Based on the relevant conclusions of the investigations 

of developing and validating RTH (p.5-1 to 3), we could address a comprehensive protocol for the  

quality assurance of RTH-II measurements considering 3 main axes: 

5-4-6-1. Key directions for the quality assurance and interpretation of RTH-II measurements 

(1) The RIs for the 1st (RI-1) and the 2nd (RI-2) in-double measurements should be calculated and the 

means represent the final values of RIs.  The reference ranges (>30 healthy individuals) of PLT-RI 

and the other RIs as well as the mutual correlation between PLT-RI and the other RIs should  

become available for reliable interpretation.  Alternatively, the user may depend on the reference 

ranges obtained by our study (Tab.4-3-2-2, Fig.4-3-3-2 to 8; p.4-3). 

(2) Elevated level17 of RBC-RI, especially if associated with highly elevated level of PLT-RI and normal 

MPV-RI/PDW-RI values, could be a sign of inadequate mixing of the a.F blood (after passing RTH 

filter) i.e., before performing the 1st a.F measurements.  The a.F blood should be re-mixed  

thoroughly and a second a.F measurement has to be performed.  A significant decline of RBC-RI 

in 2nd measurement compared with the 1st one confirms the initial inadequate mixing especially if 

associated with significant decline of PLT-RI.  In such case, the RTH-II test should be repeated. 

(3) PLT-RI values should be interpreted in view of their reference range and the correlation of  

PLT-RI with the other RIs.  The interpretation of abnormal values should take into consideration the 

occurrence of possible errors (mainly the PLT particles) as well as the pathological variation.  This 

                                                                 
17 The term elevated or reduced RI level refers to the values that are remarkably above or under the upper or the lower  
discriminator of the reference range of the corresponding RI respectively. 
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is specifically important for elevated PLT-RI values, especially when associated with  

reduced WBC-RI and/or MPV-RI/PDW-RI values that could be attributed to the occurrence of PLT 

particles due to aggressive mixing of the a.F blood (p.5-1-2-6) which disrupts the reliability of  

RTH-II measurement. 

(4) Significant increase of the difference between PLT-RI and PLCR-RI (i.e., increase of RI-Diff) could 

be either pathologic or an indicator of possible “PLT particles” error, as explained in p.5-1-2-5-A. 

(5) Significant increase of the PLT-RI-1 values compared with PLT-RI-2 is an indicator for aggressive 

mixing of the blood before the 2nd a.F measurements leading to unacceptable formation of PLT  

particles related to PLT hyperactivation.  Only the 1st measurement (PLT-RI-1) should be  

considered for calculating the final PLT-RI value in such a case (p.5-4-2).  In the case that  

significant trend of systemic or frequent elevation of PLT-RI-1 levels compared with PLT-RI-2 is  

observed, the reliability of performing RTH-II has to be controlled by in-series measurements  

(p.5-4-6-2). 
 

5-4-6-2. Controlling the precision of RTH-II: Significance of the correlations of PLT-RI  

levels and variations with the other RIs 

The protocol for assessing the precision of RTH-II is based on the following observations: 

1. As explained in p.5-1-2-4, 6-A-2 and 6-B, the unacceptably high variability and falsely elevated 

levels of the in-series and horizontal measurements of PLT-RI obtained by using RTH (in stages 1-3 of 

the improving protocol) were negatively correlated with the falsely decreased levels of the secondary RIs.  

These “error patterns” of correlations were attributed to PLT particles phenomenon and they were  

corrected substantially to positive correlations i.e. “correct patterns” by using RTH-II (stage 4) which was 

associated with acceptable variations and accuracy of PLT-RI and the other RIs, as demonstrated in 

Fig.4-1-2-3-2-1 to 6 and Fig.4-1-2-3-2-9 and 10. 

2. PLCR-RI preserved positive correlations throughout the whole stages (1-4) of the improving  

protocol.  The impact of the basic correction of the accuracy and the precision of PLCR-RI by using  

RTH-II compared with RTH was demonstrated by the significant shift of the PLT size distribution to the 

left, as explained in p.5-1-2-5 and shown in Fig.4-1-2-3-2-7. 

3. The significant positive strong correlation between the in-series measurements of PLT-RI and the 

time intervals in RTH converted to insignificant weak negative correlation in RTH-II (Fig.4-1-2-3-2-2; as 

explained in p.5-1-2-1). 

4. Despite the precision study (using RTH-II; p.5-3-1) demonstrated further significant reduction in the 

variability of PLT-RI and the other RIs, the values of PLT-RI preserved the same “correct patterns” of  

correlations – with both the other RIs and the time intervals – compared with stage 4 of the improving 

protocol, as demonstrated in Fig.4-2-4-2-7. 

The patterns of the mutual correlations of PLT-RI with these RIs as well as the time intervals may  

therefore, and besides the levels of RIs, be used as useful indicators for controlling the precision and the 

accuracy of RTH-II, as described in the following table: 
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Table 5-4-6-2:  Indicators of the reliability of the serial precision of RTH-II based on the variations of RIs besides 
the patterns of PLT-RI correlations (r) with time and RIs by using cWB. 

  Time PLT-RI PLCR-RI PDW-RI MPV-RI WBC-RI RBC-RI HGB-RI HCT-RI 
SDa: Mean  2.9 4.6 3.7 1.7 2.1 1.0 1.0 1.0 

 Upper limit  4.1 4.9 4.1 2.4 2.2 1.5 1.3 1.5 

Correlation 
with 
PLT-RI “r” b 

Correctc -0.015 – 0.836 0.203 0.195 0.288 0.405 0.454 0.419 

a the means and the upper limits of the standard deviations (SD) of the retention indices (RIs) are based on the results of our 
study of the precision by using cWB (Tab.4-2-4-2-1).  b the correlation coefficient (r: by spearmans’ rho test).  c Correct 
patterns of correlations are based on the data of the in-series measurements associated with acceptable precision and high 
accuracy which were performed on: a) 3 series in stage 4 of the improving protocol (stage 4; p.5-1-2-4, 6-A-2 and 6-B) and 
b.) 3 series in the precision study (p.4-2-4-2). d the “error patterns” of correlations are based on the data of the measure-
ments performed on 9 series from different healthy blood donors in stages 1-3 of the improving protocol using RTH proce-
dures which were associated with unacceptably high variability and seriously false results (p.5-1-2-4, 6-A-2 and 6-B.). 
Note: the “r” values described in this table should be considered as approximate discriminators; the RTH-II measurements are 
more suspicious when the resulting “r” values are closer to the “error patterns” whereas they are supposed to be more 
reliable by pronouncing “r” values closer to the correct patterns. 
 
 

A regular control of the in-series precision of PLT-RI by using blood from healthy individuals is  

necessary to assure the reliability of RTH-II.  This is mandatory especially in the case of frequent  

incidences of the above mentioned potential errors in RTH-II measurements (p.5-4-6-1-b to e).  Two main 

cases could be distinguished in the assessment of the in series precision: 

A. If the variation (SD) of PLT-RI exceeds significantly its acceptable ranges (Tab.5-4-6-2), the reliability 

of performing RTH-II assay is under question.  In such cases, the patterns of the correlations  

demonstrated by PLT-RI with the other RIs may give insights into the reason of the variation as  

follows: (1) Obtaining “negative patterns” of correlations similar to those attributed with the PLT  

particles phenomenon (Tab.5-4-6-2; Fig.4-1-2-3-2-1, 3, 5, 9) indicate inconvenient mixing of the 

blood after passing the filter and consequently unreliable performance of RTH-II by the responsible 

technician (also explained in p.5-1-2-4, 6-A-2 and 6-B).  The performance of RTH-II should be then 

improved to deliver acceptable in-series variation and correct patterns of the RIs correlations with 

PLT-RI.  b.) Obtaining correct patterns of RIs correlation excludes mainly the responsibility of the 

technician.  The quality of RTH filter in that lot of the kit should be then inspected by quantity  

assessment, as described in the next section (p.5-4-6-3). 

B. If the values of PLT-RI are within the reference range (Tab.4-3-2-2) and their variations (SD) are within 

the acceptable limits (Tab.5-4-6-2), the performance of RTH-II is reliable.  The inter-correlation of 

PLT-RI with the other RIs are supposed to be in concordance with the “correct patterns” found in 

healthy individuals (Tab.5-4-6-2), otherwise the reliability of the performance is suspicious.  
 

5-4-6-3. Quantity assessment of the reliability of RTH filter 

The high precision of the weight of RTH filter (CV= 0.8-3.1%) and the weight retention index (wRI)  

(SD= 0.1-0.2) revealed by the precision study (Tab.3-2-4-2-1 and 2) besides their well-defined  

reference ranges with low variability by using cWB as well as EC enhance firmly the reliability of using 

these parameters as essential indicators for possible errors in the integrity of RTH filter and the or the 

reliability of RTH measurements under the centrifugation conditions of 110 g/ 5 min, as described p.5-2-

10-2 and 3.  The quantity assessments of wRI and the weight of RTH filter control mainly: 
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a. In-series precision:  The variations of the in-series measurements (n=10) should not exceed  

significantly the acceptable limits addressed by our precision study (wRI: SD<0.2, RTH filter 

weight: CV<3.1; Tab.4-2-4-2-1 and 2).  The in-series precision of the wRI is controlled preferably 

by using cWB from healthy individuals and possibly by using Eightcheck control (EC). 

b. Accuracy of the measurements: The measurements should be within the upper and lower limits 

of the reference ranges (Tab.4-2-3-2 and Tab.5-2-8). 

Disrupting the precision or the accuracy of these parameters for a given lot of RTH-II kit implicates  

unacceptable quality of the RTH filters in that lot.  In the clinical practice, however, measuring these  

parameters is difficult.  Controlling these parameters is actually mandatory only in the case of serious 

errors in RI measurements that are probably related to RTH filter reliability or integrity rather than to  

mal-performance by the laboratory personnel, as already explained in p.5.4-6-2.   

Additional quality control of RTH-II assay includes the quantity assessment of the blood amount added to 

RTH tube since it enhances the reliability of RTH measurements, as explained in p.5-2-10-1.  The values 

should be within the reference range (Tab.4-2-3-2 and Tab.5-2-8) and not significantly exceed the limits of 

the variations defined in our study (=3%; Tab.4-2-4-2-1 and 2). 

 

 

5-4-7. Excellency and satisfaction in clinical practice and in POC systems 

Compared with RTH, the excellency of RTH-II was substantially improved by the basic development in: 

(1) the reliability (accuracy and precision) of RTH-II, (2) the definition of unified SOP for RTH-II which 

represents itself a prerequisite for the widespread use of the assay.  This was missed in the variable 

procedures in RTH, (3) the clinical significance supported by evidence based and expanded specificity as 

well as well defined reference ranges.  (4) Setting a quality assurance protocol for RTH-II measurements 

for the first time.  This not only enhances the reliability of RTH-II but also attain the satisfaction of its use 

in the clinical laboratory [Carr 2004, Franchini and Veneri 2005]. 

In addition, the development of RTH-II implicated additional basic improvements in the excellency of RTH-

II (Tab.5-4-7) comprising of: A.) basic shortening in the turnaround time (TAT= 35-53 min vs. 5.5-6 min; 

p.5-4-7-1); B.) essential reduction of the performance costs (p.5-4-7-2); and C.) performing the assay 

significantly more simple and with greater convenience (p.5-4-7-3). 

The essential improvements in the promptness, the costs, the convenience, and the simplicity of RTH-II 

improve essentially the cost effectiveness of this assay and address evidently the excellency of RTH-II in 

clinical practice as a simple and reliable assay for screening PLT function in short time.  This is also of 

specific advantage for the application in the ICU (intensive care units) as well as at the POC (point of 

care) methods which are increasingly applied for further excellence in patient care [Despotis 1997,  

Harrison 2000, Calatzis 2003, Gilbert 2004, Kayser 2005, Shore 2005] 
 

5-4-7-1. Basic shortening of the turnaround time 

In association with our fundamental modifications on RTH (SOP-1, 2, 3; p.5-1) addressed to RTH-II, the 

turnaround time (TAT) of RTH (35-53 min: using cPRP; p.3-4-3-2) was basically shortened in  

RTH-II to 5.5-6 min, as shown in Tab.5-4-7.  This essential reduction ranged from 84% up to 89%  
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according to the variable procedures used in RTH (Tab.5-4-7), as described as follows: A.) By using cWB 

as the tested material of choice for applying RTH-II in the clinical practice instead of cPRP for RTH,  

the time required for preparing and transferring cPRP (>16 min; p.5-1-1-1) was excluded from RTH-II.   

B.) The exclusion of the addition of the reactivating reagent saved the time required for preparing and 

applying it (>6 min; p.3-3-3 and p.5-1-1-3).  C.) Avoiding the incubation step (p.4-1-1-5) saved 3-10 min.  

D.) Applying the b.F measurements (in-double) on the materials in the original collecting tube (p.5-1-1-4) 

allowed saving at least 1 min of the time of the assay by performing these measurements during the 

centrifugation of RTH tubes.  E.) Standardizing the centrifugation time at 5 min instead of up to 16 min 

(p.5-1-1-2) shortened 11 min out of the TAT.  F.) Standardizing the vortex steps (p.4-1-2-4 and p.5-1-2-2) 

reduced the requested time from 3 min to =3 sec (p.4-1-2-5).  G.) The possibility of performing the  

a.F measurements for one time (RTH-II) instead of twice (RTH) dropped out the related time (1 min;  

p.5-4-3-2). 

 

Table 5-4-7:  Essential improvements in the excellency of RTH-II compared with RTH. 
.              RTH             . .             RTH-II            . .     Improved Excellency in RTH-II    . 

Procedures 
Time1 
(min) Modifications2 

Time 
(min) 

Saved 
Time 
(min) 

Saved 
Costs/ 
Material 

Greater 
Convenience 

and Ease 

Prepare cPRP3 16 Not used4 0 16 15 min 
Centrifuge 

+++ 

Add 450 µL cPRP or cWB 
in RTH tube2  

“Adjust micropipette” 

0.3 500 µL cWB 0 0.3 Adjustable 
pipette 

+++ 
“Readily  

adjusted pi-
pette” 

Add 50 µL reactivating  
reagent “Preparation, 
Adjust pipette” 

6 Non 0 6 Reagent, 
Pipette, 

Tips 

+++ 

Incubation 3-10 Excluded 0 3-7  +++ 

b.F measurements 
“in-double” 

1 In parallel with 
centrifugation 

1 0  +++ 

Centrifugation 
of RTH tube 

5-16 5 min 5 5-11 +++ +++ 

Vortex of cWB 3 Slight vortex <3 sec 3 +++ +++ 

a.F measurements 
“in-double” 

1 One time 
preferably 

0.5-1 0-0.5 +++ +++ 

Turnaround time (sec)         >35-53 5.5-6 84-89% +++ +++ 
 

1 Time intervals differ according to the variable procedures used in RTH.  2 Relevant modifications on SOP-1, SOP-2 and SOP-3 
addressing the final SOP of RTH (p.5-4-1-2).  3 cPRP was typically used in RTH as the “tested material” of choice in the clinical 
practice, whilst cWB was used occasionally.  4 Not used for the routine application in the clinical practice (p.5-1-1-1). 
+++ = significant improvement in the corresponding field. 
 
 
 

5-4-7-2. Substantial reduction in the costs of performing the assay 

This reduction resulted from using less equipment (only the standard disposable RTH tube is required 

with a convenient centrifuge) with no additives and less labor intensive which were attributed to: 
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(1) Using cWB instead of cPRP (5-1-1-1) avoids the costs of operating the centrifuge besides consuming 

the used materials (e.g., extra tips) and saving the required labor.  (2) The exclusion of the addition of the 

reactivating reagent (p.5-1-1-3) saves its relatively expensive costs in addition to the costs of the tips and 

micropipette required for its preparation and application.  (3) By standardizing the amount of the tested 

materials at 500 µL and excluding any additives (p.5-1-1-3 and 4), only one readily adjusted micropipette 

is required instead of a more expensive adjustable one for adding 450 µL of cWB and another  

micropipette for adding 50 µL of the reactivating reagent.  (4) Standardizing the centrifugation and the 

vortex steps reduced the operation costs of these instruments significantly since the time of their  

consumption was essentially shortened in RTH-II compared with RTH e.g., the centrifuge: 5 min vs. up to 

16 min, vortex: 2-3sec. vs. 3 min (Tab.5-4-7).  (5) The basic shortening of the TAT (up to 89%) reduces 

the labor costs relevantly. 
 

5-4-7-3. Greater simplicity and convenient application 

Due to the substantial improvement in the simplicity and convenience of RTH-II compared with RTH, the 

RTH-II assay became less labor and equipment intensive and could be performed with greater ease as 

described as follows: 1.) Using cWB instead of cPRP (p.5-1-1-1) avoids the procedures of preparing and 

transferring cPRP to the test tube and minimizes the amount of tested blood from >1.5 mL to 0.5 mL.   

2.) By applying 500 µL of the tested materials instead of 450 µL due to standardizing their amount in RTH-

II (p.5-1-1-4), a micropipette readily adjusted at 500 µL could be used instead of adjusting an adjustable 

micropipette at 450 µL.  3.)  Excluding any additives and consequently the required preparation procedures 

e.g., the reactivating reagent (p.5-1-1-3).  4.) Performing the b.F measurements in-double on the original 

collecting tubes (SM) (p.5-1-1-3) is practically easier to practice than on RTH tubes in the heavy run of the 

clinical laboratory.  This is attributed to the smaller size of RTH tube compared with the collection one 

(p.3-2-2 and p.3-3-1) as well as to the specific care required in order not to wound the RTH filter.   

5.)  Minimizing the time of the manual vortex of RTH tube from 3 min to 2-3sec (p.4-1-2-4) is essential for 

the convenience of the laboratory personnel.  6.) The Basic shortening (up to 89%) of the TAT of RTH-II 

assay down to 5.5-6 min (Tab.5-4-7).  

 

 

5-4-8. Automation of RTH-II measurements and reporting: Online quality assurance and 

interpretation with greater satisfaction 

The automated cell counters could be set for online reporting of RTH-II measurements including: 

A.) Calculation of RIs based on the means of the b.F and a.F measurements. 

B.) Demonstration of the correlation of PLT-RI with the other RIs on convenient scatters.  Only the normal 

results (e.g., last 100 sample) are kept in these scatters as a “reference chart”.  The demonstration of 

the results (RIs) of a new RTH-II measurement on the reference charts allows direct and rapid online 

interpretation as well as quality assurance of these results. 

C.) In parallel with (B.), the RIs of the 1st and the 2nd in-double measurements which are critical for the  

quality assurance of RTH-II (p.5-4-6-1) are calculated and demonstrated on convenient charts. 
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The automation of RTH-II measurements allows: (1) Online reporting includes the numerical results of RIs 

and the demonstration on their corresponding reference charts. (2) Further satisfaction for the  

patients especially in ICU by shortening the time required for calculating and reporting the results.   

(3) Most importantly, online evaluation of the results that minimizes substantially the time required for the 

rapid interpretation and quality assurance and offers simultaneously greater ease and convenience.  This 

is especially evident by delivering the reference charts along with the charts of the 1st and the 2nd meas-

urements when compared with the inconvenient procedures for similar manual reporting.  (4) Setting the 

cell counter for automated reporting of the in-series measurements of RIs along with the scatters of the 

mutual correlations between the variations of PLT-RI and the other RIs would make performing the  

precision control of RTH-II more convenient and allow therefore for further enhancement of the reliability of 

RTH-II.  (5) The possibility of online display of the results (numerical and charts) on the screen of the 

automated cell counter enhance further the above mentioned advantages. 

The adaptation of the automatic cell counters for RTH-II measurements promises of even further  

essential improvements in the quality assurance and the promptness of RTH-II and enhances further the 

satisfaction and the convenience that are necessary for its performance as a simple and reliable assay 

for the rapid evaluation of PLT function in the clinical practice and especially for the ICU and POC  

applications [Massari 1998, Moris 2001, Gilbert 2004, Shore 2005 and Franchini 2005]. 

 

 

5-4-9. Applicability in researches using different materials (cWB, cPRP, iPLT, EC, PLT Std): 

Providing reliable, informative, and nobel insights into PLT function and characteristics 

The measurements of RTH-II applied on the diverse materials used in our investigations for validating and 

characterizing the specificity, the accuracy and the precision of RTH-II showed evident compatibility with 

the multiple morphological controls as summarized as follows:  

A.) PLT spreading applied on cWB and PLT isolated by gel-filtration (iPLT) (Tab.4-2-2-2-1 and 2 

compared with Tab.4-2-2-3; p.5-2-2). 

B.) Phase contrast microscopy applied on: (1) cWB in the morphological pilot study (Tab.4-1-2-4-3-

a to c; p.5-1-2-3-B) and in the reference range (p.5-2-9-A), and (2) the fixed mediums of 

Eightcheck control (EC; p.5-2-8) as well as the standard of washed (Sw) and unwashed (Suw) 

PLT (Tab.4-2-5-5-1 and 2; p.5-2-3 and 6). 

C.) Electron microscopy applied on cWB and EC (explained in: p.5-2-7 and 9). 

This evident compatibility between the measurements of RTH-II and the multiple morphological  

controls proves the accuracy, the specificity and the precision of RTH-II for analyzing PLT function in the 

materials used in these studies.  Further enhancement to the reliability of using RTH-II for evaluating PLT 

function in research was evident by its ability to:  

1. Triggering and answering the questions addressing to the “PLT-particles” phenomenon: This was 

possible only by the reliable measurements of PLT-RI besides the interacted RIs (WBC-RI, RBC-RI etc.) 

and their compatibility with the associated PLT aggregates/agglutinates and PLT degradation  

investigated in diverse materials/phases (cWB, iPLT, EC, Sw, and Suw), as explained in p.5-1-2-7. 
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2. Exploring the variability of the effect of the reactivating reagent on PLT retention and putting out 

the question of identifying the cut-off point for further studies (p.5-1-2-4):  Identifying this effect by using 

cPRP underlines the reliable applicability of RTH-II on cPRP. 

3. Reflecting the state of tested platelets in different biological phases accurately and precisely:  

An evident example is demonstrating the low and invariable activity of the fixed PLT in EC compared with 

sustained PLT in cWB throughout the study of the in-series precision (Fig.4-2-4-2-1 to 6 ) as well as the 

reference range of RTH-II (Fig.5-2-9-A). 

4. Providing nobel insights into the interaction of blood components with PLT: The measurements of 

RTH-II in our investigations on iPLT and our PLT standards triggered the hypothesis of PLT predisposition 

for hyperactivation by the partial absence of other blood components.  The significance of RTH-II assay 

exceeded, in this case, that of the morphological tests (PLT spreading and phase-contrast microscopy) 

which had just a confirmatory role, as explained in p.5-2-3. 

5. Validation of the precision of the washed and unwashed PLT standard (prepared from fixed 

cPRP) by using RTH-II:  This validation was reliable, informative and more beneficial for the development 

of these standards than the use of CBC (e.g., Fig.4-2-5-5-1 vs. 4; Tab.4-2-5-5-1). 

The crucial role of RTH-II for triggering and answering the key questions addressing these effects in the 

different used materials (cWB, cPRP, iPLT, EC, Sw, and Suw) or putting out key questions for further 

investigations as well as the evidence based compatibility with the different morphological controls  

confirm together strongly the reliability of using RTH-II assay in researches for screening and evaluating 

PLT function specifically, accurately, and precisely in diverse biological phases. 
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VI CONCLUSION 
The evaluation and the development of the variant procedures of RTH led to basic improvements on the 

reliability, the convenience, and the significance of the test implicating the definition of a new standard-

ized assay on citrated whole blood (cWB) which was introduced as RTH-II.  The stepwise investigations 

validating, improving and standardizing the methodology of the procedures of RTH resulted in extensive 

modifications and basic identifications that were set and incorporated in RTH-II (Tab.5-4-1):  
(1) The cWB was defined as the tested material of choice in clinical practice instead of cPRP used 

mainly in RTH.  This was essential to avoid the artifact variability attributed to PLT activation by the  

separation steps as well as to the variability attributed to the diverse interactions of the variant PLT  

gradients (after preparation by centrifugation) with their medium in the plasma.  In addition, the whole 

blood reflects the physiological status more accurately than plasma and reduces the probable errors 

related to PLT hyperactivation (by e.g., aggressive mixing).  (2) The variable amounts of the tested  

materials used in RTH were standardized at 500 µL in RTH-II.  (3) The addition of the “reactivating  

reagent” in RTH (Ca2+ with hirudin) was excluded since it was not justified.  Also the resulted PLT  

reaction was found to be unstandardizable, convertible (from positive to negative) and vary inter-

individually.  (4) The incubation step (3-10 min for the tested materials in RTH tube) was excluded in 

RTH-II to avoid possible PLT activation by long contact with the filter and the consequent variability of 

PLT response related with the variant incubation periods and the inter-individual differences.   

(5) The b.F measurements (before the filter passage filter) were applied on the materials in the collection 

tube (RTH-II) instead of the RTH tube after the incubation step (RTH).  The amount of the tested material 

passing RTH filter was thus standardized at 500 µL by avoiding the variability related to the variant 

amounts of the samples aspirated by the cell counters (100-400 µL).  The blood amount passing the filter 

became subsequently sufficient for performing the a.F measurements (after the passage of the filter)  

“in-double” as well as for additional control tests.  Putting the collection tube on a rotator assure the 

homogeneity of the tested material in contrast to the variant rates of blood sedimentations during the 

stand of RTH tube which leads to unacceptable variability in the measurements.  (6) The extremely 

variable centrifugation conditions used in RTH-I (79-160 g/ 5-16 min) were standardized at 110 g/ 5 min 

which allows acceptable PLT distribution in the filter and delivers reliable measurements.  Surprisingly, 

the centrifugation conditions were inadequately specified in some previous RTH studies.  (7) The blood  

collected in the lower part of RTH tube (after centrifugation) was mixed by vortex (3 min in RTH) before 

performing the measurements.  Standardized slight vortex (=3sec) was applied in RTH-II in order to avoid 

probable unacceptable PLT aggregations, agglutinations, and/or disruption that damage the reliability of 

the measurements.  (8) The a.F measurements should be performed within 2 min after centrifugation to 

assure the accuracy (preserve the blood homogeneity and minimize the errors attributed to probable 

occurrence of “PLT particles phenomenon”).  (9) The measurements should better be performed  

“in-double” to assure their reliability.  The patterns of the variations between the 1st and the 2nd in-double 

measurements were also defined as rapid indicators for probable errors (induced by e.g., inadequate or 

inconvenient mixing).  In-double or in-series measurements should be performed by using new tips for 

each pipetting instead of the same tip in order to avoid unstandardized variation (not specified in RTH 
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related studies).  (10) The formula of calculating the large platelet retention index (PLCR-RI) was  

corrected by using the absolute values of large PLT instead of their ratio (%).  The resulted reference 

range and its correlation with the other retention indices (RIs) provided significant meanings/conclusions 

in contrast to those obtained by using the original formula.  Such errors of RTH put also serious  

questions on the reliability of related previous studies.  (11) Nobel identification of additional retention 

indices (RIs) for leucocytes (WBC-RI), erythrocytes (RBC-RI) and for the PLT size parameters (platelet 

derived width “PDW-RI” and mean platelet volume “MPV-RI”) was set for the first time in any retention 

test system.  Defining these RIs (including PLCR-RI) besides their correlations with the PLT retention 

index (PLT-RI) was essential for: a.) defining the errors and the sources of variability of RTH, b) setting 

and validating necessary modifications, c.) getting comprehensive interpretation for the accuracy, the 

precision and the specificity of RTH-II, and d.) setting for the first time a key protocol for the interpretation 

and the quality assurance of RTH-II measurements. (12) Nobel identification of the weight retention index 

(wRI: the weight of the blood retained in the filter) was set.  This index was essential for standardizing 

and validating the centrifugation conditions as well as the quality assurance of the integrity and the reli-

ability of RTH filter.  (13) “PLT particles” phenomenon was identified as the main source of errors.  PLT 

activated by shear stress passing through RTH filter are opposed to hyper-activation by inconvenient 

vortex (RTH) leading to degradable PLT aggregates/ agglutinates (PLT particles).  These particles are 

misread by the cell counters as large PLT, erythrocytes and/or leucocytes (whenever the PLT particles 

are within their size discriminators) and are thus demonstrated by: (a) proportional false decreases in  

RBC-RI and WBC-RI, (b) a false shift to the left for the RIs of PLT size, and (c) relevant false increase in 

PLT-RI.  Occasional PLT hyperactivation may occur before passing the filter if the blood is inconveniently 

handled leading to inverse patterns of false variations for the RIs.  The final values of the RIs vary accord-

ing to the total of the false variations before and after the passage of the filter.  PLT hyperactivation leads 

also to rosette forms associated with PLT decrease.  The identification of PLT particles phenomenon 

besides the new RIs was crucial for defining RTH errors and setting the related modifications.  The  

correlations between PLT-RI and the other RIs (except PLC-RI) convert from defined positive patterns to 

negative ones by the occurrence of PLT particles after passing the filter.  Despite RTH-II avoids the  

occurrence of this phenomenon, it is not completely preventable.  Understanding the implications of this 

phenomenon is therefore mandatory for the right interpretation and quality assurance of RTH-II measure-

ments.  (14) The room temperature was defined as a standard condition for performing RTH-II.  

(15) The time of performing the assay was standardized at <120 min which preserves the reliability of the 

measurements.  Exceeding this limit up to 180 min used in RTH may be associated with marked  

decrease in the values of PLT-RI. 

The diverse approaches used in our investigations for validating and characterizing the accuracy, the 

precision and the specificity of RTH-II with the use of multiple morphological control (PLT spreading, 

phase-contrast as well as screening and transmission electron microscopy) proved the accuracy,  

confirm the acceptable precision of RTH-II and provided evidence based interpretation for the specificity of 

the assay.  The accuracy of PLT-RI was for the first time studied in normal individuals.  The extreme 

falsely elevated levels (mean=2.2 folds) and their increase by time (up to 61%) were substantially  

corrected.  The unacceptably high in-series variation by RTH was reduced by at least 80% in RTH-II 
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which delivered precise values (SD: >14 vs. 2.9).  The reliability of RTH-II measurements is dependent on 

precise and accurate PLT count and the biological variability, whilst the errors induced by additional 

sources of variability in RTH (e.g., PLT particles) increase the variability and false results unacceptably.  

Using more modern cell counters proved to improve the precision of the measurements remarkably but 

showed no impact on the accuracy.  The day-by-day precision which was evaluated for periods longer 

than ever before (up to 10 days) using normal level Eightcheck control (EC) revealed also acceptable low 

variation for PLT-RI (SD<2.9). 

Thus, in 2004 RTH-II could be established.  For the first time, a reliable reference range for PLT-RI in 

cWB with acceptable biovariability (n= 70: mean= 25.2%, SD=6.25) was defined.  The impact of different 

modes of measurements on the accuracy of the results was inspected.  In parallel with PLT-RI, the  

precision and the accuracy of the other RIs were substantially corrected and reliable reference range for 

each retention index (RI) was for the first time defined.  The accuracy of the RIs of PLT and the other 

blood cells was proved and characterized by phase contrast and electron microscopy.  It was further 

proved that: 

A.) RTH filter is rather athrombogenic in contrast to the other “filter systems” used in previous PLT 

retention assays (e.g., Hellem 1960). 

B.) Under the standardized conditions of RTH-II using cWB, the retention values of the leukocytes 

(WBC-RI=4.2%) and erythrocytes (RBC-RI=-3.6%) are related to their sizes which are bigger than the 

pores of the filter.  Whilst platelets which are smaller in size than the pores of the filter interact specifi-

cally with it demonstrating basically higher retention values than the blood cells.  PLT-RI reflects directly 

the response of PLT to activation by shear stress during the passage of the filter.  The PLT activation is 

demonstrated by shape change, extreme adherence and spreading on the filter with remarkable degranu-

lation and excessive formation of wall-bound aggregates that bridge the opposite polyurethane surfaces 

of the interconnected micro pores, especially in the upper part of the filter.  PLT may occasionally form 

free aggregates clumping within the lumina of the pores.  The PLT response to activation is comparable 

to the physiological reaction of circulating PLT at a disturbed endothelium and/or subendothelium.  The 

RTH-II assay may therefore reliably screen the multiple function of PLT in hemostasis and thrombosis.  

The upper and lower limits of the reference range of PLT-RI in cWB allow measuring PLT hyper- and 

hypo-activation which is in contrast to the previous study of Krischek [2000].  The clinical significance of 

RTH-II was further promoted by several observations e.g., the remarkable negative correlation of PLT-RI 

with PLT count suggests that the activity of PLT increases in association with the decrease of their count 

in healthy individuals. 

C.) The specificity and reliability of RTH-II was further established by its ability to demonstrate ac-

curately and precisely the inhibited function of PLT in the fixed medium of EC (PLT-RI= 2.6%; SD=2.1) 

compared with the biovariability of PLT activity in cWB and compatibly with the morphological control.  

Platelets in EC were not activated (spherical) during the passage of the filter and demonstrated no real 

adhesion on it but only occasional agglutinates with selective contacts to the filter.  Whilst RTH studies 

delivered unexplainably high PLT-RI levels in fixed PLT control (>21%; Krischek 2000).  The comparabil-

ity between the retention values of the blood cells in cWB and that in the fixed medium of EC enhances 

linking the retention of these cells in cWB mainly to their size. 
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D.) The determinations of the RIs of PLT size parameters (especially for large PLT “PLCR-RI”)  

expand the significance of RTH-II assay to the PLT size distribution and show PLT functional  

heterogeneity.  This was evident by e.g., demonstrating the lower activity of large PLT compared with 

normal sized PLT in normal individuals and their lower response to hyperactivation. 

E.) The determinations of the RIs of leucocytes (WBC-RI) and erythrocytes (RBC-RI) could  

further extend the significance of RTH-II to the other blood cells which showed some specific signs of 

activation and interaction with the filter.  This may implicate additional hypothetic uses of RTH-II assay 

such as to find out erythrocyte rigidity and deformability. 

The reliability of RTH-II in researches was established by its applicability on the different materials (cWB, 

cPRP, gel-filtered PLT, EC, and washed and unwashed prefixed cPRP) used in our investigations for 

validating the reliability and specificity of RTH-II with evident compatibility with the multiple  

morphological control.  For example, the RTH-II assay was able to demonstrate the influence of the  

partial absence of the normal medium of platelets on their predisposition to hyperactivation and  

stickiness (e.g., forming aggregates and agglutinates) which was basically much less compensated in 

fixed medium than in cWB.  This was proved by the ca. 2 folds increase of PLT-RI levels in gel-filtered 

platelets compared with cWB (57.4% vs. 30.5%) and the basically higher increase of PLT-RI in the 

washed prefixed PLT standards up to 5 folds compared with the unwashed ones (5.7% vs. 33.5%).  The 

RTH-II played essential role in identifying and characterizing different new phenomena of PLT function 

(e.g., PLT particles, PLT response to Ca2+ with hirudin) besides providing specific beneficial insights for 

the development of our standards for washed and unwashed prefixed PLT. 

The development of the reliability of RTH-II compared with RTH was further associated with substantial 

improvement in the excellency and the convenience of the test.  No preparation for plasma or any  

reagent is required and no additives are used in RTH-II.  The blood amount required for the test was  

reduced from >1.5 mL to 0.5 mL.  The turnaround time was shortened extensively up to 89%  

(35-53 min vs. 5.5-6 min).  The assay became significantly simpler and less labor intensive.  It is  

performed with greater ease, less equipment (only the standard disposable RTH tube is required with a 

convenient centrifuge) and higher cost effectiveness (Tab.5-4-7).  In addition, setting a quality assurance 

protocol for RTH-II assay for the first time not only enhances the reliability of RTH-II measurements and 

interpretation but also attains the satisfaction of its use in the clinical laboratory.  Our suggestion to 

automate RTH-II by using conventional electronic cell counter allows on-line reporting, interpretation and 

quality assurance which enhance further the convenience and cost effectiveness as well as the reliability 

and quality assurance of RTH-II measurements with greater satisfaction. 

Despite previous “adhesion and retention” tests proved to be meaningful, they could not be established in 

clinical practice because they are, in contrast to RTH-II, poorly standardized and require experienced 

personnel and additional equipments (e.g., Hellem-II 1970, O´Brien 1987].  Nevertheless, the perspective 

for setting further improvement in the reliability of RTH-II assay could be seen in view of several  

observations in our study: e.g.: a.) the negative correlation of the weight of RTH filter with the weight  

retention index (wRI) and with the PLT-RI, b.) the occasional disruption of PLT after the passage of the 

RTH filter, and c.) the delicacy of mixing the activated PLT in blood after the passage of the filter that 
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represents the main drawback of RTH-II application in clinical practice since it requires experienced 

technicians.  This might be overcome e.g., by developing more standardized filter system. 

In regard of the absence of simple and standardized assays for screening PLT function reliably  

[Breddine 2003, Rand 2003, Tsiara 2003, Haubelt 2005, Levi 2005, Tan 2005, and Reininger 2006], the 

competency of RTH-II assay is evident as a simple and rapid assay for screening PLT function reliably 

and cost effectively.  The essential advantages of RTH-II assay urge for further serious investigations 

addressing its clinical significance including mainly the response of PLT-RI to pathological variations and 

the associated implications on PLT size distribution.  The significance of the RIs of leucocytes and  

erythrocytes in the interpretation and the quality assurance of RTH-II measurements is established, but 

their clinical significance requires further basic researches.  The RTH-II assay can be useful test in  

researches of PLT function as well as in clinical practice as an ideal adjunctive to refine the tools for the 

assessment of PLT response and activity in physiology, pathophysiology, and drug monitoring.  Several 

studies on RTH referred to some beneficial uses for screening PLT function.  But the unreliability and 

variability of RTH assay disrupt the reproducibility of data.  The recent introduction of RTH-II by our  

institute as a standardized, reliable and simple assay implicating reliable reference range and evidence-

based specificity delivers the right platform for further clinical studies.  As a first example for this is the 

recent study of Klinkhardt [2006] on using RTH-II for monitoring “antiplatelet” therapy.  The study  

concluded that RTH-II may be “a simple and easy for monitoring effects on P2Y(12)-inhibitors on platelet 

degranulation”.  The reliability and the convenience of RTH-II promise major improvement in the medical 

care delivered for the satisfaction of the patients in the clinical practice as well as in the point of care 

systems. 
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Faculty of Pharmacy, Damascus University, Syria. 
• 07/1993: Co-supervisor on 3-week voluntary training course for the clinical and the first aid management, 

Faculty of Pharmacy, Damascus University, Syria. 
 
Languages 
Excellent command on Arabic (native language), fluent in English, good in German, understand French fairly. 
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Ab = abandon number. 

a.C = the measurements performed on the blood in 

Eppendorf tubes (p.3-2-2) after centrifugation. 

acc= according to. 

a.F = after centrifugation and passing RTH filter.  

a.F measurements = the measurements performed on 

the tested materials (e.g., blood) in RTH tubes after 

passing RTH filter i.e., after centrifugation. 

Aggr = platelets aggregates or aggregation. 

Aggl = platelets agglutinates or agglutination. 

ATU= Anti-Thrombin Unit. 

BD = blood donor (p.3-1). 

b.F = before centrifugation and passing RTH filter. 

b.F measurements = the measurements performed on 

the tested materials (e.g., blood) before passing RTH 

filter i.e., before centrifugation. 

CBC = the complete blood cell counting (p.3-2-4). 

CH = chapter i.e., the number of t chapter. 

CPRP = citrated platelet rich plasma (p.3-4-2). 

cWB= citrated whole blood (p.3-4-1). 

D.W. = distilled water (p.3-3-4). 

EC = the normal level of Eightcheck control (p.3-3-2). 

e.g., = for example. 

Epp = Eppendorf tube (p.3-2-2). 

Fbr = fibrinogen. 

Fig. = figure. 

HGB = hemoglobine or hemoglobine concentration 

(g/dL). 

HGB-RI = the retention index of HGB (%). 

HCT = hematocrete or hematocrete rate (%). 

HCT-RI = the retention index of HCT (%). 

h.V = relatively high vortex mode (rate). 

ICU = intensive care unit. 

i.e., = that means. 

iPLT = isolated PLT (platelets isolated by gel-filtration 

using Sepharose gel; p.4-2-2-1). 

KS = Kolmogorov-Smirnov test (p.3-6). 

MPV= Mean platelet volume (fL). 

MPV-RI = the retention index of MPV (%). 

m.V = relatively moderate vortex mode (rate). 

N or n = number of a certain group e.g., the number of 

the individuals recruited in the reference range. 

NA = not available e.g., the cell counter was not able 

to determine the value of this measurement. 

ND = not determined by the cell counter. 

p = the probability value (statistics; p. 3-7). 

p. = refer to the respective paragraph/section or chapter. 

e.g., p.4-2-3-1 refers to the first section of chapter 4-2-3. 

PBS = phosphate buffer saline (p.4-2-5-1). 

PDW= platelet distribution width value (fL). 

PDW-RI = the retention index of PDW (%). 

PLCR = the ratio of platelet large cell (%). 

PLCR-RI = the retention index of PLCR. 

PLT = platelet or platelet count (x103/µL). 

PLT-RI = the retention index of PLT. 

POC = point of care systems or methods. 

RBC = red blood cell or red blood cell count (x106/µL). 

RBC-RI = the retention index of RBC. 

RI= = the retention index of a specific parameter. 

RIs= the retention indices of RTH assay. 

RTH measurements= the b.F and a.F measurements. 

RTH tube = the standardized Eppendorf retention tube 

for performing RTH assay (p.3-2-1). 

sec = second. 

SEM= scanning electron microscopy. 

SM = Sarstedt monovettes (used in blood collection;  

p.3-4-1). 

SOP = standard operation procedures. 

SOP-1, SOP-2, SOP-3 = the 1st (p.3-4-3-2), the 2nd  

(p.4-1-1-7) and the 3 rd SOP (p.4-1-2-5) of RTH assay. 

Std = standard. 

s.V = relatively slight vortex mode (rate). 

Tab. = table. 

TEM= transmission electron microscopy. 
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V = mixing the blood by vortex. 

vs.= versus. 

WB = whole blood. 

WBC = white blood cell or white blood cell count 

(x103/µL). 

WBC-RI = the retention index of WBC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

wRI = the weight retention index of RTH (the percentage 

“%” of the weight of the blood trapped in RTH filter;  

p.4-2-3-1-1-B). 

>h.V = applying further high vortex. 

& = and.



 

 

 

 


