Aus der Abteilung Klinisch-Experimentelle Chirurgie Fachbereich klinische Medizin

der Universität des Saarlandes, Homburg/Saar (Direktor: Prof. Dr. M.D. Menger)

Bestimmung der Expression von Adhäsionsmolekülen auf Fibroblasten aus Granulationsgewebe regulär heilender und chronischer Wunden mittels Fluoreszenz Aktiviertem Cell Sorting

Dissertation zur Erlangung des Grades eines Doktors der Medizin

der Medizinischen Fakultät der UNIVERSITÄT DES SAARLANDES 2006

vorgelegt von:

Büsser Frank geb. am: 1. Februar 1974 in Petingen

Meinen Eltern gewidmet.

1. Zusammenfassung	1
1.1.Deutsch	1
1.2. Englisch	3
2. Einleitung	5
2.1. Sozio-Ökonomische Relevanz der Wundheilungsstörungen	5
2.2. Physiologische Wundheilung	7
2.3. Integrine	12
2.3.1. Funktion und Struktur der in der Arbeit untersuchten Adhäsionsmole	eküle
2.3.1.1. β1-Integrinuntereinheit, CD29	15
2.3.1.2. β3-Integrinuntereinheit, CD61	16
2.3.1.3. α 2-Integrinuntereinheit, CD49b	16
2.3.1.4. α4-Integrinuntereinheit, CD49d	17
2.3.1.5. α5-Integrinuntereinheit, CD49e	18
2.3.1.6. αv-Integrinuntereinheit, CD51	19
2.3.1.7 Hyaluronsäure-Rezeptor, CD44	20
2.3.1.8 Bedeutung der Adhäsionsmoleküle in der Wundheilung	21
2.4. Flow-cytometrie (FACS-Analyse)	23
2.5. Eigene Fragestellung	25
3.Material & Methoden	26

3.1. Entwicklung der Methode

3.1.1. Patientenkollektiv	26
3.1.2. Gewinnung der Einzelzellsuspension	26
3.1.3. Zellzahl	28
3.1.4. Flow-cytometrische Analyse	28
3.1.4.1. Antikörpermarkierung	29
3.1.4.2. Flow-cytometrische Analyse	29
3.1.4.3. Computergestützte Auswertung	29
3.1.4.3.1. Anteil adhäsionsmolekülexprimierender Fibroblasten	30
3.1.4.3.2. Mittlere Fluoreszenzintensität	32
3.1.5.Statistische Auswertung	33

3.2. Anwendung der Methode zur Bestimmung der Expression von Adhäsionsmolekülen auf Fibroblasten aus humanem Granulationsgewebe

3.2.1. Patientenkollektiv: Klassifikation der Wunde	34
3.2.2. Gewinnung der Einzelzellsuspension	36
3.2.3. Zellzahl	37
3.2.4. Flow-Cytometrische Analyse	37
3.2.4.1. Antikörpermarkierung	37
3.2.4.2. Flow-cytometrische Analyse	38
3.2.4.3. Computergestützte Auswertung	38
3.2.4.3.1. Anteil adhäsionsmolekülexprimierender Fibroblasten	38
3.2.4.3.2. Mittlere Fluoreszenzintensität	38
3.2.5. Statistische Auswertung	38

4. Ergebnisse	39
---------------	----

4.1. Entwicklung der Methode	
4.1.1. Verlauf	39
4.1.2. Gesamtzellzahl	41
4.1.3. Vitalität	42
4.1.4. Oberflächenantigene	43
4.1.5. Verhältnis der freigesetzten Zellpopulationen	44
4.1.5.1. Fibroblasten	44
4.1.5.2. Leukozyten	45
4.1.5.3 Endothelzellen	46
4.1.5.4. Insgesamt zugeordnete Zellen	47
4.1.6. Zusammenfassung	48

4.2. Anwendung der Methode zur Bestimmung der Expression von Adhäsionsmolekülen auf Fibroblasten aus humanem Granulationsgewebe

4.2.1. Zahl adhäsionsmolekülexprimierender Fibroblasten

4.2.1.1. β1-Integrinuntereinheit, CD29	49
4.2.1.2. β3-Integrinuntereinheit, CD61	50
4.2.1.3. α2-Integrinuntereinheit, CD49b	51
4.2.1.4. α4-Integrinuntereinheit, CD49d	52
4.2.1.5. α 5-Integrinuntereinheit, CD49e	53

5. Diskussion	64
4.2.3. Zusammenfassung	63
4.2.2.7. Hyaluronsäurerezeptor, CD44	62
4.2.2.6. α v-Integrinuntereinheit, CD51	61
4.2.2.5. α 5-Integrinuntereinheit, CD49e	60
4.2.2.4. α 4-Integrinuntereinheit, CD49d	59
4.2.2.3. α 2-Integrinuntereinheit, CD49b	58
4.2.2.2. β3-Integrinuntereinheit, CD61	57
4.2.2.1. β1-Integrinuntereinheit, CD29	56
4.2.2. Mittlere Fluoreszenzintensität adhäsionsmolekülexprimierender Fibra	oblasten
4.2.1.7. Hyaluronsäurerezeptor, CD44	55
4.2.1.6. α v-Integrinuntereinheit, CD51	54

5.1. Entwicklung der Methode	
5.1.1. Diskussion der Methode	64
5.2. Anwendung der Methode zur Bestimmung von Adhäsionsmoleküler blasten aus humanem Granulationsgewebe.	n auf Fibro-
5.2.1. Interpretation der erhobenen Daten	67
5.2.1.1. Integrine	67

-	
5.2.1.2. Hyaluronsäurerezeptor, CD44	72
5.2.2. Erweitertes Modell der gestörten Wundheilung	72
5.2.3. Konsequenzen für die Therapie chronischer Wunden	74

6. Literaturverzeichnis	75

7. Danksagung	104
---------------	-----

8. Lebenslau	f 105

1. Zusammenfassung

1.1. Deutsch

Einführung:

Die Expression von Adhäsionsmolekülen ist eine grundlegende Voraussetzung für die Zellmigration sowie für die Interaktion der Zellen untereinander und mit ihrer Matrix. Zellmigration und Interaktion sind von besonderer Bedeutung bei Proliferationsvorgängen wie z.B. der Bildung von Granulationsgewebe in der proliferativen Phase der Wundheilung. Wesentliche Bestandteile der Interzellularsubstanz des Granulationsgewebes sind Hyaluronsäure, Fibronektin, Vitronektin und Kollagen. Ihr Einfluß auf die Wundheilung besteht hauptsächlich in der Freisetzung von Signalpeptiden aus Makrophagen während der Inflammationsphase sowie in der Induktion der Kollagensynthese und extrazellulären Kollagenorganisation während der Proliferationsphase. Die Hauptsyntheseleistung bei der Bildung von Granulationsgewebe wird von Fibroblasten erbracht, die mit Hilfe der Kommunikation zwischen Interzellularsubstanz und den Zellen über Oberflächenrezeptoren und Adhäsionsmoleküle geregelt wird.

Dennoch ist die Verteilung der Adhäsionsmoleküle in Abhängigkeit der Qualität des Heilungsprozesses bisher ungeklärt. Daher war es Ziel unserer Studie das Expressionsmuster von Adhäsionsmolekülen auf Fibroblasten des Granulationsgewebes von regelrecht heilenden und chronischen Wunden zu bestimmen. Hierfür wurden die α^2 -, α^4 -, α^5 -, α v-, β^1 und β^3 -Integrinuntereinheiten, sowie das CD44 Antigen, das den wesentlichen Hyaluronsäurerezeptor repräsentiert, mittels der FACS-Analyse bestimmt.

Methodik:

An einer Gruppe von 8 Patienten wurde die Herstellung einer Einzelzellsuspension aus Granulationsgewebe einer regelrecht heilenden Wunde optimiert. Verglichen wurden insgesamt 7 verschiedene Kollagenaselösungen mit jeweils unterschiedlichen Anteilen an Kollagenase I, II, III, und IV. Untersucht wurde der Verlauf der Zellfreisetzung, die Anzahl der insgesamt freigesetzten Zellen, sowie deren Vitalität. Mit der FACS-Analyse wurde der Anteil von Fibroblasten, Leukozyten, sowie Endothelzellen an den insgesamt freigesetzten Zellen

Anschließend wurde an zwei Patientengruppen (n=27) mit sekundär heilenden Wunden die Verteilung der Expression von Adhäsionsmolekülen auf der Fibroblastenoberfläche untersucht. Die erste Gruppe (G1: n=15) beinhaltete Patienten mit regelrecht fortschreitender Wundheilung und der Ausbildung von klinisch als gut beurteiltem Granulationsgewebe. Die zweite Gruppe (G2: n=12) bestand aus Patienten mit seit mindestens 8 Wochen sta-

gnierender Wundheilung und der Ausbildung von klinisch als schlecht beurteiltem Granulationsgewebe. Zur Analyse der Verteilung von Adhäsionsmolekülen auf Fibroblasten im Wundgewebe wurde ein Kollagenaseverdau durchgeführt (PBS/Kollagenase I, II, IV -Lösung 100 U/ml, 37°C, 30 min). 10⁴ Zellen der gewonnenen Einzelzellsuspension wurden durch "Double Labeling" in der FACS-Analyse untersucht. Dazu erfolgte die Markierung der Fibroblasten durch einen spezifischen monoklonalen FITC-markierten AK, die der Adhäsionsmoleküle durch spezifische monoklonale PE gelabelte Antikörper. Verwendet wurde ein Becton Dickinson FACS-Scan (Argonlaser 488 nm). Die computergestützte Auswertung beinhaltete die Zahl der antigentragenden Fibroblasten und deren mittlere Fluoreszenzintensität, die ein Maß der Dichte der Oberflächenantigene ist.

Ergebnisse:

Die α^2 -, α^4 -, α^5 - und β^3 -Integrinuntereinheiten waren in chronischen Wunden signifikant häufiger repräsentiert. Die α v- und β^1 -Integrinuntereinheiten wurden in beiden Patientengruppen vergleichbar häufig exprimiert.

Die mittlere Fluoreszenzintensität, und damit die mittlere Integrindichte, lag in chronischen Wunden bei allen untersuchten α - und β -Untereinheiten deutlich über der in regulär heilenden Wunden.

Die Zahl der CD44-positiven Fibroblasten war unabhängig vom Heilungsverlauf einheitlich hoch. Ihre mittlere Fluoreszenzintensität war in gut heilenden Wunden signifikant größer.

Schlußfolgerungen:

Die überdurchschnittliche Expression der α - und β -Integrineinheiten der verschiedenen Rezeptoren in chronischen Wunden kann als Ausdruck eines Regelmechanismus interpretiert werden, ausgelöst durch eine Degeneration der Zellmatrix. Diese entsteht möglicherweise durch die nachgewiesene erhöhte Aktivität von Metalloproteinasen in chronischen Wunden. Der fehlende Proliferationsstimulus durch ungenügende Adhäsion, sowie die Induktion von Apoptose, die über nicht adäquat belegte Matrixrezeptoren ausgelöst werden kann, können überdies zur Chronizität und der bekannt verminderten Zelldichte im Granulationsgewebe chronischer Wunden beitragen.

Die hohe Präsenz der CD44 präsentierenden Fibroblasten könnte eine Erklärung für das in experimentellen und klinischen Studien beobachtete positive Ansprechen auf Hyaluronsäureauflagen in chronischen und normalen Wunden sein.

1.2. Englisch

Expression of adhesion molecules on granulation tissue fibroblasts from regularly healing wounds and chronic wounds determind by fluorescence activated cell sorting.

Introduction:

The expression of adhesion molecules is a basic condition for cell migration and cell-cell and cell-matrix interaction. Cell migration and cellular interaction are important for the formation of granulation tissue in the proliferative phase of wound healing. Hyaluronan, fibronectin, vitronectin and collagen are essential components in the extracellular matrix of granulation tissue. Their main influence on wound healing consists in the liberation of signal peptides from macrophages during the inflammatory phase, and the induction of the collagen syntheses and organization during the proliferative phase. Fibroblasts migrating via adhesion molecules from the wound margin into granulation tissue are mainly responsible for the formation of granulation tissue.

Nonetheless, the distribution of surface receptors and its dependency on the quality of the wound healing process has not been reported yet. Therefore, the aim of our study was to investigate the expression pattern of adhesion molecules on granulation tissue fibroblasts in regularly healing and chronic wounds. We determined the β 1-, β 3-, α 2-, α 4-, α 5- and α v-integrin subunits, as well as the CD44 antigen, which is a hyaluronan receptor, by means of FACS-analysis.

Methods:

We optimized the digestion of granulation tissue into a single cell suspension in a group of 8 patients with regularly healing wounds. We compared collagenase typ I, II, III and IV in 7 different collagenase assays. We analyzed the cell liberation kinetics, the total amount of liberated cells and their viability. The amount of fibroblasts, leukocytes and endothelial cells was analyzed quantitatively by means of FACS.

Then we studied the distribution of adhesion molecule expression on the fibroblast surface in granulation tissue of open healing wounds from 27 patients. The first group (G1: n=15) included patients with regularly healing wounds and appropriate formation of granulation tissue. The second group (G2: n=12) included patients with stagnation in wound healing for at least 8 weeks and poor formation of granulation tissue. A single cell suspension was obtained by collagenase digestion (PBS/collagenase I, II, IV 100U/mI, 37°C, 30 min). 10⁴ of the suspended cells were double labeled and studied by FACS-analysis. Fibroblasts were labeled with a specific monoclonal FITC-antibody, adhesion molecules were labeled with specific PE antibodies. We used a Becton Dickinson FACS-Scan (argonlaser, 488 nm). The sta-

3

tistical evaluation considered the number of antigen expressing fibroblasts and their mean fluorescence intensity.

Results

The expression of α^2 -, α^4 -, α^5 - and β^3 -integrin subunits in chronic wounds was significantly more pronounced than in regularly healing wounds. The expression of α^{v} - and β^1 -integrin subunits were found similar in the two patient groups.

The mean fluorescence intensity and thus the mean integrin density, was significantly higher in chronic wounds for all analysed integrin subunits.

The number of CD44 positive cells and their mean fluorescence was independent of the healing progress of the wound.

Conclusion

The high expression of α - and β - integrin subunits in chronical wounds could be an element of a feedback mechanism induced by the degeneration of the extracellular matrix. This could be triggered by the high activity of metalloproteinases in chronic wounds. The loss of a proliferation stimulus due to inefficient adhesion, and the induction of apoptosis due to inadequat matrix receptor binding, may contribute to the reduced cell density in granulation tissue in chronic wounds.

The overall high expression of CD44 on fibroblasts may explain the benefical effect of hyaluronan on wound healing in impaired and in regularly healing wounds, observed in experimental and clinical studies.

2. Einleitung

2.1. Sozio-Ökonomische Relevanz der Wundheilungsstörungen

Wunden sind eine Unterbrechung der Kontinuität des Gewebes die der Körper in Abhängigkeit der Defektgröße durch reparative Vorgänge in einem angemessenen Zeitraum wieder zu verschließen vermag. Zeigt die Wunde allerdings keine Tendenz zur Heilung, oder heilt sie nur langsam, spricht man von einer chronischen Wunde. Der Begriff der chronischen Wunde ist nicht einheitlich definiert (FALANGA & EAGLSTEIN, 1987). Er schließt alle Wunden ein, die nicht in einem regulären Zeitraum abheilen. So kommt es, daß verschiedene Autoren unterschiedliche Wunden als chronisch bezeichnen.

Chronischen Wunden können folgende pathophysiologischen Veränderungen als Ursachen zugeteilt werden: Mangelnde Blutversorgung (z.B. arterielle Verschlusskrankheit), gestörter Blutabfluß und venöse Stauung (z.B. postthrombotisches Syndrom, chronisch venöse Insuffizienz) oder metabolische Ursachen mit der Folge einer gestörten Infektabwehr (z.B. Diabetes Mellitus).

Hautulzerationen, z.B. das klassische Ulcus cruris, sind das häufigste Erscheinungsbild einer gestörten Wundheilung. Durch die oben aufgeführten Ursachen sind vor allem Menschen in der zweiten Lebenshälfte betroffen, und die Veränderung des demoskopischen Profils der Industrienationen hinsichtlich zunehmender Überalterung der Bevölkerung wird zu einer weiteren deutlichen Zunahme chronischer Wunden führen. Nach Schätzungen von KAHRMANN (1995) litten 1991 (nach Angaben der GKV) in Deutschland fast 2,5 Mio. Menschen an einem Ulcus. Unter diesen chronischen Wunden wurde bei 1,2 Mio. Patienten ein Ulcus cruris venosum, bei 320.000 Patienten ein Ulcus cruris arteriosum, und bei 800.000 Patienten ein Dekubitalgeschwür diagnostiziert. Insgesamt mußten die Ulcus-Patienten fast 2,5 Mio. Tage arbeitsunfähig geschrieben und mehr als 1,6 Mio. Tage im Krankenhaus behandelt werden. Zahlen für das Vereinigte Königreich kommen zu ähnlichen Schätzungen, alleine 24.000 Aufnahmen ins Krankenhaus sind durch diabetische Wunden an den Füssen bedingt, die Kosten belaufen sich hierbei auf £17 Millionen (CURRIE et al., 1998). Offene Wunden die durch venöse Insuffizienen bedingt sind kosten das Vereinigte Königreich geschätzte £400Millionen (RUCKLEY, 1997).

Daher wird die effiziente Wundbehandlung voraussichtlich eine immer stärkere wirtschaftliche Rolle spielen. Die Behandlung chronischer Wunden denen eine ursächlich nicht therapierbare Grunderkrankung, wie arterielle Verschlusskrankheit oder posttrombotisches Syndrom, zugrunde liegt basiert auch heute noch fast ausschließlich auf Erfahrungswerten die nur unzureichend wissenschaftlich überprüft wurden. Insbesondere die Einfühung einer modernen Wundbehandlung, wie der occlusiven Wundtherapie, und der fast täglich hierzu neu erscheinenden Produkten mit Variationen von Behandlungsleitlinien tragen vielmehr zur Verwirrung als zu einer sicher nachgewiesenen Reduktion der Behandlungskosten bei.

Für eine effiziente Wundbehandlung ist eine Klassifikation der Wunde eine grundlegene Voraussetzung. Hierzu dienen die ätiologschen Pathomechanismen wie oben aufgeführt, die im Hinblick einer zielgerichteten Diagnostik, auf die Behebung des ursächlichen Geschehens abzielt, z. B. revaskularisierende Maßnahmen bei arterieller Verschlusskrankheit oder Förderung des venösen Abflusses bei chronisch venöser Insuffizienz, bzw. Normalisierung des Stoffwechsels bei Diabetes Mellitus. Darüber hinaus ist für die lokale Therapie chronischer Wundheilugsstörungen keine Definiton und Klassifikation der Wunde vorhanden, die entsprechend der bekannten Wundheilungsphasen eine phasengerechte Wundbehandlung zuläßt. Wie verschieden die Einschätzung insbesonderer chronischer Wunden und die daraus resultierende therapeutische Konsequenz ist, zeigt eine Umfrage aus dem Jahre 1994 der Abteilung für Unfallchirurgie Universitätskliniken Homburg/Saar, ärztlicher Direktor Prof. W. Mutschler, bei der bundesweit anhand eines Fragebogens und Abbildungen von Wunden um eine Klassifikation mitsamt Behandlungsvorschlag gebeten wurde. Hier zeigte sich, daß im allgemeinen die Einschätzung einer Wunde stark von den klinischen Erfahrungen des Behandelnden abhing, und sich nicht an definierbaren Kriterien orientierte. Mit der Folge, daß ein breites Spektrum verschiedener therapeutischer Maßnahmen für ein und dieselbe Wunde vorgeschlagen wurden.

Makroskopisch sind Veränderungen die eine Klassifizierung zulassen mit den derzeit zur Verfügung stehenden Mitteln nicht erkennbar. In den letzten Jahren wurden eine Vielzahl von Forschungsarbeiten unternommen um auf histologischem oder molekularbiologischem Gebiet Veränderungen zu definieren. Bisher sind jedoch nur unzureichend umsetzbare Ergebnisse erzielt worden, die Charakteristika klassifizieren anhand derer man eine definierte Therapie begründen könnte. Hinzu kommt, daß Untersuchungen die im standardisierten Modell am Versuchstier eine signifikante Verbesserung der Wundheilung erziehlen zum einen nur schwer auf den Menschen übertragbar sind, zum anderen daran scheitern, daß es bisher nicht möglich ist ein chronisches Wundmodell am Tier zu simulieren.

2.2. Physiologische Wundheilung

Jede Wundheilung, unabhängig von der Art der Wunde, verläuft in 3 verschiedenen Phasen, die sich zeitlich überlappen und nicht voneinander zu trennen sind (SCHILLING, 1976, CHODOROWSKA & ROGUS-SKORUPSKA, 2004). Diese Phaseneinteilung beruht auf morphologischen Beobachtungen und versucht nicht die Komplexität der funktionellen Vorgänge widerzuspiegeln. Es gibt drei Grundphasen:

Hämostase und Inflammation

- Proliferation
- Reifung und Remodelling

- Hämostase und Inflammation

Die hämostatisch - inflammatorische Phase ist essentiel für die Heilung. Sie setzt mit dem Moment der Verletzung ein und dauert etwa drei Tage.

Durch die Verletzung der Gefäße werden die Thrombozyten interstitieller Matrix ausgesetzt. Es kommt zur Thrombozytenaggregation und der Aktivierung des intrinsichen Teils der Gerinnungskaskade. Der Kontakt zwischen Thrombozyten und Kollagen, sowie Fibronektin, Thrombin und deren Abbauprodukten, führt zur Freisetzung von Zytokinen und Wachstumsfaktoren aus den α -Granula der Plättchen. Unter anderem werden PDGF (Platelet Derived Growth Factor) (HELDIN & WESTERMARK, 1999), TGF- β (Transforming Growth Factor- β) (ASSOIAN et al., 1983; COWIN et al., 2001), PAF (Platelet-Activating Factor), Fibronektin und Serotonin sezerniert (WAHL et al., 1992; GREENHALGH, 1996). Das gebildete Fibrinnetz dient einwandernden neutrophilen Granulozyten, Monozyten, Fibroblasten und Endothelzellen als Gerüst bei der Migration in die provisorische Matrix der Wunde (KURKINEN et al., 1980). In Abbildung 1 ist die zeitliche Abfolge der Migration der wichtigsten Zellen in das Wundgebiet dargestellt.

Die Entzündungsreaktion beginnt mit dem Einwandern von neutrophilen Granulozyten in das Wundgebiet. Die erhöhte Permeabilität der weitgestellten Gefäße, bedingt durch die Entzündung und die Freisetzung von Prostaglandinen, beschleunigt zusammen mit einem Konzentrationsgradienten chemotaktischer und mitogener Substanzen, wie Komplement Faktoren, Interleukin-1, Interleukin-8, TNF- α (Tumor Necrosis Factor- α), TGF- β , bFGF, platelet factor 4 und verschiedenen bakteriellen Produkten, die Migration der Neutrophilen (TONNESEN et al., 1984; BEVILACQUA et al., 1985; GAMBLE et al., 1985; POHLMANN et al., 1986; RENNEKAMPFF et al., 2000; THEORET et al, 2001 & 2002). Es folgen Monozy-

ten die sich in Makrophagen differenzieren und, wie die Neutrophilen, Bakterien, Fremdkörper und avitales Gewebe phagozytieren.

Abb. 1: Die Infiltration der verschiedenen Zellen während des Wundheilungsprozesses im zeitlichen Verlauf. Makrophagen und Neutrophile sind während der Entzündungsphase aktiv, während Lymphozyten und Fibroblasten in der frühen Proliferationsphase infiltrieren (Witte et al., 1997).

Darüber hinaus nehmen Makrophagen bei der Wundheilung eine gesonderte Stellung ein, ohne ihr regulierendes Eingreifen ist eine Wundheilung nicht möglich. Durch die initiale Faktorenfreisetzung aus den aggregierten Thrombozyten, aber auch die Phagozytose von Fibronektin werden sie aktiviert und nehmen dann starken Einfluß auf das physiologische Debridement, die Matrix Synthese und die Angiogenese (BEEZHOLD et al., 1992).

Zum einen zerstören sie phagozytierte Bakterien, sezernieren aber auch Proteinasen, die für das Debridement der Wunde notwendig sind, und Zytokine, die die Proliferation und Migration von Fibroblasten und Endothelzellen stimulieren.

Weiterhin präsentieren Makrophagen die Antigene den Lymphozyten und stimulieren sie mittels Zytokinen zu immunkompetenten Zellen. Diese Lymphozyten sezernieren ihrerseits Lymphokine (POLVERINI et al., 1977; WAHL et al., 1992) wie Interferon- γ , das seinerseits wieder die Makrophagen beeinflußt, TNF- α und IL-1 zu produzieren (WAHL et al., 1992). Dies scheint einer der Mechanismen zu sein, die dafür sorgen, daß Zytokine länger im Wundmilieu verbleiben, und zeigt gleichzeitig die Komplexität der physiologischen Wundheilung. Die Aktivierung der Makrophagen führt gleichzeitig zur Freisetzung von Zytokinen, die die Angiogenese stimulieren (POLVERINI et al., 1977) und die Migration der ruhenden Fibroblasten aus dem angrenzenden Gewebe induzieren (RAPPOLEE et al., 1988, EHRLICH & KRUMMEL, 1996; SERINI & GABIANI, 1996). Von besonderer Bedeutung scheint hier der von Makrophagen sezernierte bFGF (basic fibroblast growth factor) zu sein, welcher in die Proliferation, Differenzierung und Migration von Keratinozyten, das Recruitment von inflammatorischen Zellen, so wie in die Neovaskularisation des Granulationsgewebes während der Wundheilung eingreift (KIBE et al., 2000). Auch verändern Zytokine den Phenotyp der Fibroblasten im Wundgewebe. Diese zeigen eine verstärkte Kollagensynthese und Kontraktion, aber eine verminderte Proliferation im Vergleich zu ruhenden Fibroblasten der Dermis (REGAN et al., 1991). Allerdings wird der Phänotyp des Fibroblasten auch direkt durch die umgebende Matrix beeinflußt. So verändert die Adhäsion an Fibronektin das Expressionmuster für Kollagen Typ I, Kollagenase, Stromelysin und TIMP (Tissue Inhibitor of Metallo-Proteinases) (COLIGE et al., 1992; DHAWAN & FARMER, 1990).

- Proliferation

Hauptmerkmal dieser Phase ist die Zellproliferation mit dem Ziel der Gefäßneubildung und der Defektauffüllung durch Granulationsgewebe.

Die Gefäßneubildung geht von intakten Blutgefäßen am Wundrand aus. Die Stimulation durch Wachstumsfaktoren (POLVERINI et al., 1977; WAHL et al., 1992) versetzt die Endothelzellen in die Lage ihre Basalmembran abzubauen, sich zu mobilisieren und in das Fibrinnetz einzuwandern. Diese einsprießenden Gefäßknospen vereinigen sich zu Gefäßschlingen und teilen sich immer weiter auf, bis sie auf ein größeres Gefäß treffen, in das sie einmünden können.VEGF (vascular endothelial growthfactor) ist ein Schlüssel-Molekül in der Angioneogenese und der Bildung von Granulationsgewebe, wie Untersuchungen von HOW-DIESHELL et al. (2001) zeigen.

In zeitlicher Abhängigkeit von der Gefäßneubildung beginnt auch die Defektauffüllung mit neuem Gewebe. Der Aufbau dieses Gewebes, seit 1895 von Billroth als Granulationsgewebe bezeichnet, wird maßgeblich von Fibroblasten initiiert. Sie produzieren zum einen Kollagen, das außerhalb der Zelle zu Fasern ausreift und dem Gewebe seine Festigkeit gibt, zum anderen aber auch Proteoglykane als gallertige Grundsubstanz des extrazellulären Raums. Die Fibroblasten stammen vorwiegend aus dem ortsständigen Gewebe und werden durch Chemotaxis angelockt (EHRLICH & KRUMMEL, 1996; SERINI & GABIANI, 1996) um sich im Wundgebiet zu vermehren. Hauptverantwortlich hierfür sind vor allem Zytokine und Wachstumsfaktoren von Thrombozyten und Makrophagen, wie PDGF und EGF, die im Fibrinnetz gelagert sind. Gleichzeitig werden autokrine Mechanismen in den mesenchymalen Zellen

9

gestartet, die die Proliferation mit aufrecht erhalten und die Fibroblasten zur Synthese verschiedener Bestandteile der Matrix befähigen.

Diese Synthese ist ein weiterer komplexer Vorgang während der Wundheilung. Es zeigt sich nämlich, daß die Synthese verschiedener Matrixproteine einem genauen zeitlichen Verlauf folgt. Initial besteht die Matrix hauptsächlich aus Fibrin und Fibronektin, das von Makrophagen gebildet wird (KURKINEN et al., 1980) und während der Blutgerinnung ausfällt. Ein weiteres früh exprimiertes Protein ist das Thrombospondin 1 (REED et al., 1993), das auch das Einwandern von Zellen begünstigt. Als nächstes erscheinen Gykosaminoglykane, Proteoglykane und SPARC (secreted protein acidic rich in cysteine) welche die weitere Matri-xanlagerung und das Remodelling unterstützen (BENTLEY, 1967; BARBUL & REGAN, 1993; REED et al., 1993). Am Anfang hat das Granulationsgewebe einen erhöhten Anteil Kollagen III (30%) der am Ende der Vernarbung auf die in der Dermis üblichen Werte zurückfällt (10%) (BAILEY et al., 1975; MILLER, 1976; EHRLICH & KRUMMEL, 1996). Gleichzeitig nimmt der Gehalt an Kollagen I ständig zu und gibt der entstehenden Narbe die nötige Stabilität. Der zeitliche Verlauf der Wundmatrix Deposition wird in der Abbildung 2 wiedergegeben.

Abb. 2: Die verschiedenen Wundmatrixkomponenten im zeitlichen Verlauf. Zu Beginn sind Fibronektin und Kollagen Typ III die Hauptbestandteile des frühen Granulationsgewebes. Kollagen I stellt später den Hauptanteil, entsprechend nimmt auch die Festigkeit der entstehendend Narbe zu (Wound breaking strength) (Clark, 1993; Clore et al., 1979; Doillon et al., 1985; Gay et al., 1978; Levenson et al., 1965).

- Remodelling

Mit dem wachsendem Anteil an Kollagen I im Granulationsgewebe beginnt das Remodelling. Während dieser Phase kommt es zur Wundkontraktion und das zellreiche Granulationsgewebe bildet sich in ein faserreiches und zellarmes Narbengewebe um. Zur Entstehung der Wundkontraktion gibt es zwei unterschiedliche Theorien. Die eine geht davon aus, daß eine spezielle Zelle, der Myofibroblast, für die Kontraktion verantwortlich ist (DARBY et al., 1990; DESMOULIERE et al, 2005), die andere davon, daß Zellen die sich in dem Kollagengerüst fortbewegen durch eine gleichzeitige Reorganisation ihres Zytoskeletts und Quervernetzung der Matrix dafür verantwortlich sind (EHRLICH, 1988; DIEGELMANN & EVANS, 2004). Wahrscheinlich spielen beide Theorien eine Rolle.

Die Annäherung der Wundränder aneinander reduziert die Defektfläche und somit die Fläche, die mit neuem Epithel bedeckt werden muß. Hierzu ist die Bildung von Granulationsgewebe eine imperative Voraussetzung, denn zum einen gehen vom Granulationsgewebe chemotaktische Signale zur Auswanderung der Randepithelien aus, zum anderen benötigen die Epithelzellen die gebildete Interzellularmatrix als Gleitfläche für ihre Migration, sowie als Medium für ihre Fixation. Die Stimuli die zur Epithelzellproliferation führen sind noch nicht hinreichend bekannt (CLARK, 1996), aber Makrophagen und die Epithelzellen selbst (ANSEL et al., 1993) scheinen eine wichtige Quelle für Zytokine und Wachstumsfaktoren zu sein, die para- und autokrine Regelkreise bilden. Die starke Durchblutung des Granulationsgewebes gewährleistet dabei die Bereitstellung der Nährstoffe für den erhöhten Stoffwechsel der in Migration und Proliferation begriffenen Epithelien.

Unter dem Epithel wird das Granulationsgewebe immer wasser- und gefäßärmer, festigt sich durch die vermehrte Einlage von Kollagen I, bis es nach etwa 3 Monaten seine maximale Festigkeit, mit etwa 80% gegenüber normaler Haut (LEVENSON et al., 1965) erlangt und sich zu Narbengewebe umbildet. Neutrophile und Fibroblasten starten das Programm zur Apoptose, werden durch die Makrophagen phagozytiert, die über Lymphbahnen das Wund-gebiet verlassen (BELLIGAN et al., 1996, MOODLEY et al., 2003) und Antigene aus den Wundgebiet dem Immunsystem präsentieren. Mit der Herstellung einer weißen Narbe ist die Wundheilung abgeschlossen.

Abb. 3: Struktur der Integrinuntereinheiten am Beispiel des Fibronektinrezeptors (VLA-5). (Alberts et al., 1989)

Die Adhäsion von Zellen an einem Substrat geschieht mit Hilfe spezifischer, biologisch regulierter Moleküle, die in verschiedene Molekülfamilien klassifiziert werden können. Eine wesentliche Klasse von Adhäsionsmolekülen wird unter dem Begriff Integrine zusammengefaßt. Sie sind insbesondere für Zell-Zell und Zell-Substrat Adhäsion und Kommunikation von Bedeutung. Ihre wichtigsten Funktionen übernehmen sie in der Embryogenese, im Immunsystem, der Tumorinvasion und Metastasierung und in der Wundheilung (BUCK & HORWITZ, 1987).

Beim Menschen besteht die Familie der Integrine aus mehr als 20 nicht-kovalent gebundenen $\alpha\beta$ -Heterodimeren (RUOSLAHTI, 1987; HYNES, 1987). Jeder Zelltyp, außer Erythrozyten, exprimiert ein oder mehrere Integrine auf seiner Oberfläche (HEMLER, 1990). Zur Zeit sind 14 α -Untereinheiten und 8 β-Untereinheiten identifiziert worden (siehe Tab.1). Dies ergibt eine große Zahl theoretisch möglicher Integrine. In der Realität ist es allerdings so, daß nicht jede α -Untereinheit sich mit jeder β-Untereinheit verbinden kann. Nur einige α -Untereinheiten, wie $\alpha 4$, $\alpha 6$, αv , sind bekannt, sich mit unterschiedlichen β-Untereinheiten verbinden zu können und verschiedene Funktionen zu übernehmen (BUCK et al., 1986).

Untereinheiten		Liganden	Bindungs-	CD Nomenkla-
			Stellell	
ß1	α1	Kollagen I. IV. Laminin		CD49a/CD29
PT	α2	Kollagen I. IV. Laminin	DGEAf	Cd49b/CD29
	α3	Laminin, Kollagen I, Fibronektin, Epiligrin ^a	RGD ^g	CD49c/CD29
	α4	V-CAM-1, Fibronektin	EILDV ^h	CD49d/CD29
	α5	Fibronektin	RGD	CD49e/CD29
	α6	Laminin		CD49f/CD29
	α7	Laminin		
	α8	unbekannt		
	αν	Vitronektin, Fibronektin⁵	RGD	CD51/CD29
	αE	unbekannt		
β2	αL	ICAM-1, -2, -3,		CD11a/CD18
	αM	iC3b, ICAM-1, Fibronektin, Factor X		CD11b/CD18
	αΧ	Fibrinogen, iC3	GPRP	CD11c/CD18
β3	αllb	Fibrinogen, Fibronektin, vWF, Vitronektin, Thrombospondin	RGD, KQAGDV	CD41/CD61
	αν	Vitronektin, Fibrinogen, vWF, Thrombospondin, Fibronektin, Osteopontin, Kollagen	RGD	CD51/CD61
β4	α6	Laminin und Basement Membrane Protein vermu tet ^c	L	CD49f/CD?
β5	αν	Vitronektin, Fibronektin	RGD	CD51/CD?
2.5			505	
β6	αν		KGD	
β7	α4	VCAM-1,Fibronektin, MAdCAM-1 ^e	EILDV	
	αιει	unbekannt		
β8	αν	unbekannt		

Tab.1: Die gängigen bekannten Integrinuntereinheiten von Wirbeltieren. Klassifiziert werden verschiedene Integrinfamilien, die durch eine bestimmte β -Einheit charakterisiert werden. Einige α -Einheiten können mit verschiedenen β -Einheiten interagieren. Jeder $\alpha\beta$ -Rezeptor bindet an einen oder mehrere spezifische Liganden. Das Bindungsverhalten der Rezeptoren ist abhängig von der Umgebung und seinem Aktivierungszustand. Für die Rezeptoren mit bekannter Bindungssequenz sind die Bindungsstellen angegeben, für die unbekannten ist sicher, daß sie nicht an eine RGD Sequenz binden¹. ^a Carter et al., 1991; ^b Bodary et al., 1990; Vogel et al., 1990; ^c Lotz et al., 1990; Sonnenberg et al., 1990; ^d Busk et al., 1992; ^e Ruegg et al., 1992; Chan et al., 1992; ^f Staatz et al., 1991; ^g Wayner et al, 1988; Hynes et al., 1989; Elices et al., 1991

Die α -Integrinuntereinheiten haben extrazelluläre Domänen die eine Länge von 950-1100 Aminosäuren erreichen. Auf der Basis struktureller Unterschiede werden sie in drei verschiedene Gruppen eingeteilt. Die erste Gruppe - α IIb, α 5, α 6, α v und α 3 - hat vier Bindungsstellen für divalente Kationen und eine membrannahe Spaltung der Proteinkette (DIAMOND

¹ Einstelliger Aminosäure-Code

& SPRINGER, 1994). Die Mitglieder der zweiten Gruppe - α M, α L, α X, α 1 und α 2 - haben alle drei Bindungsstellen für divalente Kationen, sind nicht gespalten, haben aber eine inserierte Domäne (I-Domäne) die eine Länge von 180-200 Aminosäuren hat (DIAMOND & SPRINGER, 1994). Diese I-Domäne ist homolog zu einigen anderen Domänen, die im von Willebrand Faktor und in Regulationsproteinen des Komplement Systems, Faktor B und C2, gefunden wurden. Zudem konnte gezeigt werde, daß dieses Insert eine Bindungstelle für divalente Kationen enthält und in der Erkennung von Liganden mitwirkt (DIAMOND & SPRINGER, 1994; BILSLAND, 1994). Die α 4-Untereinheit ist das einzige Mitglied der dritten Gruppe. Sie hat drei Bindungsstellen für divalente Kationen, keine I-Domäne und hat eine membranferne Spaltung ihrer Proteinkette (TAKADA & HEMLER, 1989).

Die zytoplasmatischen Anteile der α -Untereinheiten sind kurz mit einer Länge von 15-77 Aminosäuren. Ihre Sequenz ist untereinander unterschiedlich, ist zwischen den unterschiedlichen Spezies aber hochgradig konserviert (SASTRY, 1993). Eine membrannahe Aminosäure Sequenz - GFFKR - allerdings ist in allen zytoplasmatischen Domänen der α -Untereinheiten vorhanden und wirkt nach bisherigen Erkenntnissen an der Signaltransduktion oder der Assoziation der α - und β -Einheiten mit (SASTRY, 1993).

Die β -Integrinuntereinheiten haben extrazelluläre Domänen die 675-700 Aminosäuren enthalten, eine hydrophobe transmembranäre Region und einen zytoplasmatischen Abschnitt der, abgesehen von der β 4-Integrineinheit (1000 Aminosäuren), relativ kurz ist (40-60 Aminosäuren) (DIAMOND & SPRINGER, 1994). Die zytoplasmatischen Anteile der β 1, β 2, β 3, β 6 und β 7 Untereinheit sind sehr ähnlich in einer Region, deren Veränderung die Ligandenbindung der β 2-Integrinfamilie beinträchtigt (HIBBS, 1991). Alle β -Untereinheiten haben einen zysteinreichen Abschnitt in der carboxy-terminalen Hälfte der extrazellulären Region, der innere Disulfidbrücken enthält und zur Rigidität der Moleküle beiträgt.

Die verschiedenen Integrine sind in der Lage unterschiedliche Liganden zu binden. Diese können Teile der die Zelle umgebenden Matrix sein, Plasmaproteine die an Verletzungsstellen deponiert wurden oder Oberflächenproteine anderer Zellen. Dabei können verschiedene Integrine mehrere Liganden binden, aber auch Liganden können an verschiedene Integrine binden. Die Bindung erfolgt über spezfische Aminosäuresequenzen, die bekannten sind in der Tabelle 1 aufgelistet. Weiterhin verbinden die Intergrine im Sinne fokaler Adhäsionsaggregate den Extrazellulärraum mit dem Zytoskelett (BURRIDGE et al., 1988)

2.3.1. Funktion und Struktur der in der Arbeit untersuchten Adhäsionsmoleküle

2.3.1.1 β1-Integrinuntereinheit, CD29

CD29 ist ein transmembranäres Glycoprotein mit einem Molekulargewicht von 130 kDa (PIGOTT & POWER, 1993). Das Oberflächenmolekül, das identisch mit der β 1-Untereinheit der VLA Integrine (VLA = Very Late Activated) ist, ist ubiquitär auf allen Zellen repräsentiert. Diese Untereinheit verbindet sich mit verschiedenen α -Untereinheiten und bildet so eine Familie heterodimerer Rezeptoren, VLA-Integrine, die mit verschiedenen Matrix Proteinen interagieren können. Hinzu kommt die Verbindung der intrazellulären Region zum Zytoskelett, über die mechanische Kräfte auf die Matrix übertragen werden können (FELSENFELD et al., 1996; LAUFFENBURGER & HORWITZ, 1996). Da die zytoplasmatische Domäne der β 1-Untereinheit einen Locus zur Tyrosinphosphorylierung aufweist, scheint sie zusätzlich Informationen aus der Matrix in das Zellinnere weiterzugeben (TAMKUN et al., 1986; KORN-BERG et al., 1991, 1992).

In der intakten Haut ist die β 1-Untereinheit sehr stark exprimiert, was als Hinweis auf die vielfältigen physiologischen Funktionen, die dieses Molekül wahrnimmt, gewertet werden kann. Durch blockieren der β 1-Untereinheit mit monoklonalen Antikörpern konnte gezeigt werden, daß die Adhäsion der Fibroblasten gestört, ihre Migration vollständig inhibiert (TAKADA et al., 1987) und die Kontraktion von Kollagengels signifikant verlangsamt wird (LANGHOLZ et al., 1995). Allerdings ist es schwer, Aussagen über zelluläre Fähigkeiten nur anhand der β 1 Expression zu treffen, da diese Untereinheit sich mit einer Vielzahl verschiedener α -Untereinheiten bindet und so unterschiedliche Funktionen erfüllt. Im weiteren Verlauf sei vor allem auf das α 3 β 1 Integrin hingewiesen, das nachgewiesenermassen in die Expression der Metalloproteinase 9 eingreift, und damit die Migration von Zellen durch die Extrazellularmatrix beeinflusst (IYER et al., 2005).

Eine weitere Besonderheit der β 1-Untereinheit ist die scheinbare Überexpression, sodaß, wie in Untersuchungen von Gebauer et al. (1996) gezeigt werden konnte, eine Stimulation der Expression von β 1 durch TNF α , im Gegensatz zu anderen Integrinuntereinheiten, nicht mehr möglich ist. Die diskutierte biologische Konsequenz dieser Überexpression ist eine rasche Verfügbarkeit der Einheiten und damit eine schnelle Anpassungsfähigkeit der Zelle an veränderte Bedingungen. Die Zelle braucht nur die entsprechenden α -Untereinheiten zu synthetisieren.

2.3.1.2. β3-Untereinheit, CD61

Die β 3-Kette hat ein Molekulargewicht von 87 kDa (PIGOT & POWER, 1993) und ist Bestandteil des Vitronektinrezeptors. Sie bindet als $\alpha v\beta$ 3-Integrin an verschiedene Antigene wie Vitronektin (PYTELA, 1985; CHERESH & SPIRO, 1987), Fibrinogen, von Willebrand Faktor (vWF), Thrombospondin, Fibronektin, Osteopontin und Kollagen (ALBELDA & BUCK, 1990; GAILIT & CLARK, 1996). Auch auf Endothelzellen im Granulationsgewebe wird sie exprimiert (BROOKS et al., 1994). Durch Blockade des Vitronektinrezeptors konnte die Migration glatter Muskelzellen in vitro gehemmt werden (STEFANSSON & LAWRENCE, 1996). Auch die Integrin-Matrix Interaktionen konnten nachweislich inhibiert werden durch die Blockade von $\alpha v\beta$ 3 Integrinen (SLEPIAN et al., 1998).

2.3.1.3. α2-Integrinuntereinheit, CD49b

Aus in vitro Experimenten ist bekannt, daß hauptsächlich das $\alpha 2\beta 1$ Integrin (VLA-2) für die Migration von Zellen verantwortlich ist. So konnte an Melanomzellen nachgewiesen werden, daß ihre Fähigkeit zur Invasion stark mit der gesteigerten Expression der VLA-2 Integrine korreliert (ETOH et al., 1993; BYERS et al., 1992). Mit monoklonalen Antikörpern die gegen die $\alpha 2$ - und $\beta 1$ -Ketten gerichtet waren war es möglich, die Migration humaner Keratinozyten und Fibroblasten dosisabhängig zu inhibieren (SCHARFFETTER-KOCHANEK et al., 1992). Auch die Wundkontraktion scheint maßgeblich von diesem Integrin abhängig zu sein. Verschiedene Gruppen konnten durch das Hinzufügen eines gegen $\alpha 2$ gerichteten Antikörpers die Kontraktion eines Kollagengels durch Fibroblasten vermindern (KOZLOWSKA et al., 1993; LANGHOLZ et al., 1995). Die Gruppe um KOZLOWSKA et al. (1993) konnte auch beweisen, daß Fibroblasten während dem Prozeß der Kontraktion vermehrt die $\alpha 2$ und $\beta 1$ Untereinheiten exprimieren.

Außerdem greift das $\alpha 2\beta 1$ Integrin in die Regulation verschiedener Gene ein. MAUCH et al. (1988, 1989) fiel auf, daß die Synthese von Kollagen und Kollagenase in einem dreidimensionalen Kollagengel anders reguliert wird als in einer Zellrasenkultur. LANGHOLZ (1993) konnte beweisen, daß $\alpha 2\beta 1$ für die Regulation der Kollagenase verantwortlich ist, während die Synthese des Kollagens durch $\alpha 1\beta 2$ geregelt wird.

2.3.1.4. α4-Integrinuntereinheit, CD49d

Die Heterodimere aus der α 4-Untereinheit und der β 1-Untereinheit (α 4 β 1) bilden zusammen das VLA-4 Integrin (VLA = Very Late Activated), das zuerst von HEMLER et al. (1987) als predominanter Proteinkomplex auf multiplen T-lymphoblastoiden Zellen beschrieben wurde. Die primäre Struktur der α 4-Kette unterscheidet sich wesentlich von der aller anderen Integrine. Die α -Untereinheiten lassen sich in zwei Gruppen unterteilen, entweder enthalten sie in ihrer N-termialen Hälfte eine I-Domäne bestehend aus ungefähr 200 Aminosäuren (TAKADA et al., 1989), oder über Disulfid-Brücken sind am C-termialen Ende leichte Ketten gebunden (PONCZ et al., 1987; FITZGERALD et al., 1987; UZAN et al., 1988). Die α 4-Untereinheit hat weder eine I-Domäne noch die typische Disulfid-gebundene leichte Kette. Vielmehr kann sie nahe der Mitte ihrer Sequenz gespalten sein und Fragmente von 80 bzw.70 kDa präsentieren (TAKADA & HEMLER, 1989), die nicht kovalent gebunden zusammen bleiben und mit der β 1-Untereinheit das funktionelle Integrin bilden. Bisher sind drei verschiedene VLA-4 Integrine beschrieben.

Auch in der Funktion unterscheidet sich das VLA-4 Integrin stark von anderen Integrinen. Es ist das einzige Integrin das sowohl Zell-Matrix als auch Zell-Zell Adhäsion vermitteln kann. Das Anbinden an Zellen über VCAM-1 ist vor allem bei Lymphozyten nachgewiesen (ELICES et al., 1990). Es erlaubt ihnen die Adhärenz an TNF- α aktivierten Kapillarendothelien und die anschließende Diapedese ins Interstitium, weshalb es zu Anfang auch als "lymphocyte homing receptor" bezeichnet wurde. Mit einer unterschiedlichen Bindungsstelle (ELICES et al., 1990) tritt es über Fibronektin mit der Zellmatrix in Interaktion. Hierfür benutzt es allerdings nicht die von Integrinen häufig verwendete RGD-Sequenz sondern die CS-1 Sequenz (EILDV-Sequenz) eines alternativ gesplicten Fibronektins (WAYNER et al., 1989). Auffallend ist, daß das $\alpha 4\beta 1$ Integrin besser an Fibronektin Fragmente bindet als an natives Fibronektin. Die Bindung an intaktes Fibronektin ist vornehmlich dem $\alpha 5\beta$ 1-Integrin (klassischer Fibronektinrezeptor) vorbehalten, während $\alpha 4\beta 1$ an teilweise abgebautes Fibronektin bindet, auch wenn dieses die RGD-Sequenz nicht mehr enthält (FN-40 Fragment) und somit nicht von dem klassichen Fibronektinrezeptor $\alpha 5\beta 1$ erkannt wird. Es wird diskutiert, daß VLA-4 von Bedeutung bei der Kommunikation zwischen Matrix und Zelle ist, und weniger direkt die Migration und Adhäsion der Zellen in intaktem Gewebe fördert. Bei Verletzungen des Gewebes scheint $\alpha 4\beta 1$ allerdings essentiell für die zielgerichtete Protrusion von Lamellipodien ins Wundgebiet.

2.3.1.5. α5-Integrinuntereinheit, CD49e

Zusammen mit der β 1 Kette bildet die α 5 Untereinheit einen Rezeptor der vornehmlich an Fibronektin bindet. Sie besteht aus einer leichten und einer schweren Kette, die ein Molekulargewicht von 25 kDa bzw. 135 kDa haben (PIGOTT & POWER, 1993). Diese zwei Ketten sind über eine Disulfidbrücke verbunden. Der Fibronektinrezeptor gilt als Schlüsselmolekül der Zellmigration in der Wundmatrix (LARJAVA et al., 1993). Zusammen mit den $\alpha v\beta$ -Dimeren ist er in vitro für die Adhäsion und die Migration der Fibroblasten auf Fibronektin verantwortlich (MARSHALL, 1995). Außerdem ist dieses Integrin zuständig für den Zusammenbau der Fibronektinmatrix. Anti- α 5 β 1 Antikörper blockieren die Formation von Fibrillen (AKIYAMA et al., 1989) und Antikörper gegen die Zellbindungsstellen des Fibronektins oder Fibronektinfragmente verhindern die Bildung der Matrix in vitro (MCDONALD et al., 1987)

Auch in die Regulation verschiedener Gene greift $\alpha 5\beta 1$ ein. Verschiedene seiner Liganden induzieren bei Fibroblasten die Transkription der Gene für Kollagenase und Stromelysin (Werb et al., 1989).

Im Gegensatz zu normalem Hautgewebe ist im Granulationsgewebe viel neu gebildetes Fibronektin enthalten in dem die Fibroblasten eingebettet sind und interagieren (GRINNELL et al., 1981; CLARK 1990). Die Expression des VLA-5 Integrins auf Fibroblasten des Granulationgewebes ist im Vergleich zu ruhenden dermalen Fibroblasten in der Proliferationsphase der Wunde deutlich verstärkt. Eine wichtige Bedeutung kommt dem $\alpha 5\beta 1$ Integrin in der Phase des Remodelling zu, da es aktiv an der Phagocytose von Fibronektin mitwirkt (ZHAO et al., 1999). Auch die Interaktion zwischen Integrin und Zytoskelett wird durch VLA-5 Integrine bewerkstelligt, wie experimentelle Arbeiten (HYNES, 1992; LaFLAMME et al., 1992; SCHWARTZ, 1995) beweisen. Hier wurde nachgewiesen, daß die β 1 Untereinheit über Proteine wie Talin, α -Actin und Vinculin an das Aktin-Zytoskelett bindet (LUNA & HITT, 1992). Nachdem die Rezeptoren an der Zelloberfläche an ihren Liganden gebunden haben, verändert sich die diffuse Verteilung des Rezeptors über die Zellmembran zugunsten von Aggregaten, die fokalen Bindungszentren auf der Zelloberfläche entsprechen (LUNA & HITT, 1992). STEMME et al. (1992) konnten außerdem das $\alpha 5\beta 1$ Integrin mit der Adhäsion aktivierter T-Lymphozyten an Fibroblasten in Zusammenhang bringen, da anti-VLA-5 Antikörper die Adhäsion signifikant beeinträchtigte.

2.3.1.6. αv-Integrinuntereinheit, CD51

Die αv Kette in Kombination mit der β 3 Kette ist als Vitronektinrezeptor bekannt (WAYNER et al., 1991). Sie ist für die Angiogenese (BROOKS et al., 1994a) sowie für migrierende Keratinozyten (LARJAVA et al., 1993) von Bedeutung. Es konnte in vitro gezeigt werden, daß die αv -Untereinheit für die Adhäsion der Fibroblasten auf Vitronektin verantwortlich ist (GAILIT & CLARK, 1996).

In Kombination mit $\alpha 5\beta 1$ spielt $\alpha v\beta 1$ in vitro eine Rolle bei der Ausbreitung d.h. Migration von Fibroblasten auf Fibronektin (MARSHALL et al., 1995).

 αv bildet die alpha-Kette des Vitronektinrezeptors, welcher ein Mitglied der β 3-Integrinfamilie der Zytoadhäsine ist. Die αv Untereinheit kann sich mit mehreren verschiedenen β-Untereinheiten, wie β 1, β 3, β 5 und β 6 verbinden (CHERESH et al., 1989; FREED et al., 1989; BODARY & MCLEAN, 1990; KRISANSEN et al, 1990; SMITH et al., 1990; VOGEL et al., 1990). Einige dieser Rezeptoren binden über RGD-Sequenzen an Vitronektin (CHERESH et al., 1989; BODARY & MCLEAN, 1990), avß3 allerdings erkennt neben Vitronektin verschiedene andere RGD-enthaltende Liganden, wie Fibrinogen und von Willebrand Faktor (CHERESH & SPIRO, 1987; SMITH et al., 1990; CHARO et al., 1990). Zusätzlich sind diese Rezeptoren nicht nur für die Zell-Matrix Interaktion von Bedeutung, sondern auch während der Blutgerinnung (CAGNONI et al., 1993). Mit immunhistologischen Methoden ist dieses Oberflächenmolekül in relativ hoher Konzentration in der Epidermis und auf dem Endothel großer Gefäße nachweisbar (ALBELDA, 1991). PONCE et al. (2001) konnte die Bedeutung von $\alpha 5\beta 1$ und $\alpha \nu \beta 3$ Integrinen in der Angiogenese durch Blockade ihrer Rezeptoren nachweisen. Das $\alpha v\beta 3$ Integrin kann zusätzlich die Matrixmetalloproteinasen Kapillarendothelien, auf denen Vitronektinrezeptoren zunächst nicht nachweisbar sind, präsentieren sie sobald eine Beschädigung oder eine Entzündung auftritt. Diskutiert wird der Einfluß von Zytokinen, unter anderem auch TNF- α . Dieser Effekt konnte auch von GEBAUER et al. (1996) für Fibroblasten in Kultur nachgewiesen werden. So führte die Inkubation von Fibroblasten in einem TNF- α haltigen Milieu zu einer starken Induktion der Expression von αv Untereinheiten. Zusätzlich konnten die Autoren zeigen, daß Fibroblasten die aus Granulationsgewebe regulär heilender Wunden in der Phase der Proliferation gezüchtet wurden, die av-Untereinheit verstärkt exprimieren. Allerdings ist auch bekannt, daß eine übersteigerte Expression von $\alpha 5\beta 1$ zur Entwicklung chronischer Wunden beiträgt (HÅKKINEN et al., 2004). Diese Daten lassen darauf schließen, daß auch dem Vitronektinrezeptor eine entscheidende Bedeutung in der Wundheilung zukommt.

2.3.1.7. Hyaluronsäurerezeptor, CD44

Der Hyaloronsäurerezeptor ist ein weit verbreiteter Oberflächenrezeptor, der stark glycosiliert ist und ein Molekulargewicht zwischen 85 und 160 kDa aufweist (PIGOTT & POWER, 1993). Die große Schwankungsbreite des Molekulargewichtes kommt durch alternatives Splicing, verschiedene Glycosilierungen (GOLDSTEIN et al., 1989), und durch die Verbindung mit Chondroitinsulfat (JALKANEN et al., 1988) und Heparansulfat (BROWN et al., 1991; TANAKA et al., 1993) zustande. Mindestens 12 verschiedene Formen des CD44 Rezeptors sind bisher bekannt und könnten ein Grund für seine unterschiedlichen Funktionen sein (SCREATON et al., 1992). Dies erklärt auch seine Bindungseigenschaften mit Chondroitinsulfat (ARUFFO et al., 1990), Fibronektin (JALKANEN & JALKANEN, 1992; ROMARIS et al., 1995), Laminin (JALKANEN & JALKANEN, 1992), und Kollagen (CARTER & WAY-NER, 1988; LOKESHWAR & BOURGIGNON, 1991; FAASSEN et al., 1992; JALKANEN & JALKANEN, 1992; ROMARIS et al., 1995), die vom Grade der Glycosilierung abhängig sind. Experimentelle Studien zeigten, daß CD44 nicht nur Adhäsionsmolekül für Substrat ist, sondern auch als Ankerplatz für einen weiteren CD44 Rezeptor und andere Adhäsionsmoleküle benachbarter Zellen dient (SHIMIZU et al., 1989). Für Hyaluronsäure und im besonderen langkettige Hyaluronsäure-Moleküle hat er allerdings eine hohe Affinität, so daß sie seinen Hauptliganden darstellen (NAOR, 1997; PEACH et al., 1993; ARUFFO et al., 1990).

In allen hyaluronsäurereichen Geweben herrscht eine starke Migrationsaktivität der Zellen (TOOLE, 1997; KNUDSON & TOOLE, 1988; OKSALA et al., 1995; TOOLE et al., 1979; SY et al., 1991; THOMAS et al., 1992). Da Hyaluronsäure eine Umgebung mit einem geringen Widerstand für migrierende Zellen bietet, scheint dem CD44-Rezeptor dabei eine besondere Bedeutung beschieden zu sein. Der direkte Nachweis, daß CD44 in die Migration der Zellen eingreift, gelang BIRCH et al. (1991) anhand einer Untersuchung von zwei unterschiedlichen Melanomzellklonen. Nur die Zellen mit einer starken CD44 Expression waren in vitro in der Lage zu wandern (FRIEDL et al., 1997). Desweiteren hilft CD44 beim Remodelling der interstitiellen Matrix, indem er z.B. Hyaluronsäure bindet und via Endozytose in die Zelle aufnimmt, wo sie abgebaut wird (UNDERHILL et al., 1992, 1993; HUA et al., 1993; CULTY et al., 1992). Je nach Art der Aktivierung des vorhandenen CD44 Rezeptors, kann er auch die Zusammensetzung der perizellularen Matrix verändern (YEVDOKIMOVA et al., 2005).

Während der Wundheilung ist es vorstellbar, daß CD44 in der frühen Phase für die Aktivierung der Lymphozyten zuständig ist, die Migration aus dem umliegenden Gewebe in die Fibrinmatrix des Wundgebietes ermöglicht (CLARK et al., 2004) und im Granulationsgewebe selbst dann zunehmend an der Interaktion zwischen Zellen und Matrix beteiligt ist. So konnte bereits nachgewiesen werden, daß Fibroblasten aus Granulationsgewebe an Tag 3 nach Wundsetzung signifikant mehr CD44 exprimieren als ruhende Fibroblasten (GEBAUER et al., 1996; PETRI et al., 1997). Auch scheint CD44 die Kontraktion hyaluronsäurehaltiger Kollagengels durch Fibroblasten entscheidend zu beeinflussen (TRAVIS et al., 2001).

2.3.1.8. Bedeutung der Adhäsionsmoleküle in der Wundheilung

Um die komplexe Physiologie der Wundheilung besser zu verstehen, ist es notwendig die Interaktionen zwischen den Zellen einerseits, sowie zwischen Zellen und Interzellularmatrix andererseits zu untersuchen. Besonders wichtig erscheinen hier die unterschiedliche Expression von Adhäsionsmolekülen auf Fibroblasten (CLARK, 1991; KATZ et al., 1991). Heute weiß man, daß Adhäsionsmoleküle nicht nur als Rezeptoren fungieren, sondern entscheidend in die intrazelluläre Signaltransduktion eingreifen. So konnte gezeigt werden, daß einige Adhäsionsmoleküle durch spezifische Verbindungsproteine direkt mit dem Zytoskelett dieser Zelle verbunden sind und dessen Funktion sogar beeinflussen können. (CHEN et al., 1985). Zusammen bilden diese spezialisierte Strukturen, die als fokale Kontakte oder auch als Adhäsions-Plaques bekannt sind. Diese verbinden die Plasmamembran mittels der Integrine mit dem Aktin-Zytoskelett (LUNA & HITT, 1992). Diese Erkenntnisse sind auch für die Wundheilung von Bedeutung, da die Migration der Zellen in das Granulationsgewebe eng mit einer Restrukturierung des Zytoskeletts verbunden ist und für die in der Wundheilung auftretende Wundkontraktion eine Kraftübertragung von der Zelle auf die Matrix erforderlich ist. Für die Migration konnte bereits gezeigt werden, daß die Integrin-Zytoskelett Interaktionen dynamisch und streng reguliert verlaufen (SCHMIDT et al., 1993). Integrine werden schnell zu den Lamellipoden der Zellen transportiert, wo sie sich an das Substrat binden und Makroaggregate bilden. Diese heften sich an das Zytoskelett, das eine zentripedale Kraft auf sie ausübt und so die Zelle nach vorne zieht. An dem der Bewegungsrichtung der Zelle abgewendeten Ende der Zelle fiel eine erhöhte Deformabilität der Zellmembran auf, da sich hier das Zytoskelett von den Integrinen löste. Für das Abtrennen der Zelle vom Substrat, gibt es zwei Möglichkeiten, die aufgegebene Zytoskelett-Integrin Interaktion senkt die Affinität zum Substrat, oder die Integrine werden aus der Zellmembran herausgerissen (SCHMIDT et al., 1993; PALECEK, 1996; REGEN & HORWITZ, 1992).

Hinzu kommt, daß ein Zusammenhang zwischen der Art des Liganden und der Regulation der Synthese von Matrix Proteinen diskutiert wird. In experimentellen Untersuchungen (MAUCH et al, 1988; MAUCH et al., 1989; KOZLOWSKA et al., 1993) zeigte sich, daß kultivierte Fibroblasten in einem dreidimensionalen Kollagengel einen in vivo-ähnlichen Phenotyp aufweisen, mit einer reduzierten Kollagensynthese und einer verstärkten Expression von Kollagenase sowohl auf Protein- als auch auf mRNA-Ebene. Die verminderte Kollagen Synthese wird durch das $\alpha 1\beta 2$ Integrin geregelt, wohingegen die vermehrte Expression der Kollagenase der Regulation durch das $\alpha 2\beta 2$ Integrin zugeschrieben wird (LANGHOLTZ et al., 1995). Zu der sehr feinen Regulation der Proteinsynthese über Zell-Zell Kontakt oder Zell-Matrix Kontakt gibt es bisher nur einige Theorien. Es scheint jedoch klar zu sein, daß sie die zytoplasmatische Domäne der Integrine mit Aktivierung verschiedener Proteinkinasen beinhaltet. Einge davon phosphorylieren ihrerseits DNA-bindende Proteine, die direkt und

21

spezifisch in die Genexpression eingreifen können (SCHWARTZ, 1995). ECKES et al. (1993) konnte beweisen, daß es während einer Kollagenmatrix-Fibroblasten Interaktion zu einer signifikant verminderten Stabilität der Kollagen Typ 1 mRNA kommt und so die Kollagen Translation vermindert wird.

Während den verschiedenen Phasen der Wundheilung kommen den Adhäsionsmolekülen der Fibroblasten auch unterschiedliche Aufgaben zu. Anfänglich ist ihre Hauptaufgabe, eine schnelle Migration der Fibroblasten in die provisorische Matrix der Wunde zu ermöglichen. Im Laufe der Heilung greifen sie in die Regulation der Expression von Matrixproteinen und deren extrazelluläre Organisation, insbesondere die der Kollagene, ein. AKIYAMA et al. (1989) konnten beweisen, daß monoklonale Antikörper, die gegen die α 5 und β 1 Untereinheiten der VLA Integrine gerichtet sind, perizellulär eine verminderte Fibronektin Ablagerung bewirken. CD44 reguliert die Synthese von Hyaluronsäure unterschiedlich abhängig ob die Fibroblasten in chronischen Wunden von Diabetikern oder in akuten Wunden gesunder Personen leben (YEVDOKIMOVA et al., 2005).

Die Wundkontraktion die, im Vergleich zu vielen Versuchstieren, beim Menschen eher eine untergeordnete Bedeutung hat, wird im wesentlichen von Integrinen beeinflußt. SCHIRO et al. (1991) konnte zeigen, daß das $\alpha 2\beta 2$ Integrin direkt an der Kontraktion und Reorganisation von Kollagenmatrix beteiligt ist. So ist nach der Blockierung von $\alpha 2\beta 2$ durch monoklonale Antikörper die Kontraktion eines Kollagengels fast vollständig inhibiert (LANGHOLZ et al., 1993). Auch der CD44 Rezeptor hat Einfluss, eine Blockierung durch monoklonale Antikörper vermindert die Kontraktion von Kollagen-Hyaluronsäurehaltigen Gels (TRAVIS et al., 2001).

Alle diese in vitro Daten legen den Schluß nahe, daß der Expression von Adhäsionsmolekülen eine entscheidende Bedeutung in der Regulation der Wundheilung zukommt und, daß eine Störung unweigerlich zu einem inadäquaten Defektverschluß führt.

2.4. Flow-Cytometrie (FACS-Analyse)

Die Flow-Cytometrie ist eine direkte technische Weiterentwickelung der Mikroskopie. Ihre Wurzeln liegen im 18. Jahrhundert und der Entwicklung verschiedener Farbstoffe (DARZYNKIEWICZ, 1994). Für die Flow-Cytometrie wurden 1938 erste entscheidene Erkentnisse durch die Arbeit von CASPERSON & SCHULTZ (1938) gewonnen. Sie konnten eine Verdopplung der DNA Menge während der Zellteilung mittels der Absorption von ultraviolettem und sichtbarem Licht nachweisen. Ein weiterer Schritt zu modernen flow-cytometrischen Messungen waren die Berichte von COONS & KAPLAN (1950), die die Verwendung von fluoreszierenden Antikörpern zum Nachweis von zellulären Antigenen propagierten. Seitdem ist Fluorescein der gängigste Farbstoff für die quantitative Immunfluoreszenz und die Routineuntersuchungen am Flow-Cytometer in der Hämatologie und der Immunologie.

1956 konnte COULTER (1956) dann den Durchbruch für die maschinellen Flow-Cytometrie erreichen, indem er einen Apparat baute in dem Blutzellen einzeln durch eine schmale Öffnung gesaugt und durch Änderungen der elektrischen Impedanz an der Öffnung detektiert wurden. Dies war der Vorläufer der heutigen Flow-Cytometer die ungefähr zeitgleich in den USA und Europa entwickelt wurden. Ein wesentlicher Faktor für die Verbesserung der Technik war die Entdeckung, daß Krebszellen höhere DNA Dichten als normale Zellen haben, was im Flow-Cytometer gemessen werden konnte. Die Möglichkeit der Bestimmung verschiedener Zellpopulationen, vor allem in der Immunologie, mittels immunofluoreszierender Antikörper, und die rasante Entwicklung der Computertechnologie, beschleunigten die Einführung dieser Technik in die klinische Routine. Zuerst wurden vor allem die Lichtstreuungen der Zellen gemessen und deren Gehalt an DNA mittels stoichiometrischen Färbungen (DAPI [4', 6-diamidino-2-phenylindole-2HCI], PI [Propidium-Jodid]) bestimmt. Seitdem ist die Zahl der Anwendungen der Flow-Cytometrie rasant gestiegen.

Heutige Flow-Cytometer unterscheiden sich in der eigentlichen Technik nur unwesentlich von älteren Modellen. Das neuartige ist die Computerkontrolle. Sie erlaubt eine real-time Visualisierung der Daten, sowie deren Speicherung in ihrer ursprünglichen Reihenfolge, um sie später auszuwerten. Auch die Messung selbst, die früher der Intervention des Menschen bedurfte, konnte automatisiert werden und somit Fehlerquellen reduziert werden. Herzstück des Gerätes ist die Meßkammer, in der die Zellsuspension innerhalb einer coaxial verlaufenden externen Flüssigkeit (sheat fluid) in einen laminären Fluß gezwungen wird. Dadurch werden die Zellen hydrodynamisch in das Zentrum der Meßkammer verlagert. Heute werden Laser als Lichtquelle verwendet. Die neue Generation der Geräte hat den Vorteil Lichtstreuung, Absorption und Fluoreszenz gleichzeitig messen zu können. Gängige Messungen sind die Intensität des Vorwärtsstreulichtes (180°) sowie des Seitwärtsstreulichtes (90°), die mit der Größe und der internen Struktur der Zel len korrelieren. Die Fluoreszenz emission im Winkel von 90° zum einfallenden Licht wird über ein optisches System bestehend aus Linsen, Filtern und Spiegeln gemessen. Die Fluoreszenzintensitäten von bis zu fünf verschiedenen Farben können simultan gemessen werden. Die gemessenen Lichtsignale werden zu elektrischen Signalen konvertiert, die für die Auswertung verstärkt werden. Alle analogen Parameter werden in digitale Signale umgewandelt und computergestützt statistisch ausgewertet.

Die erhobenen Daten werden digital gespeichert, können aber auch zeitgleich mit der Messung analysiert werden. Hierbei werden Fenster (Gates) über die Abbildungen gelegt, um bestimmte Zellpopulationen quantitativ bestimmen zu können. Auch eine Isolation einzelner Zellpopulationen ist mit diesem System möglich. Man bestimmt ein Gate für die zu isolierende Zellpopulation, der Computer teilt den Flüssigkeitsstrom in einzelne Tropfen die jeweils eine Zelle enthalten. Gehört die Zelle zu der zu isolierenden Population wird der Tropfen elektrisch geladen und in einen separaten Zellkollektor umgeleitet. Bis zu 5000 Zellen pro Sekunde können mit dieser Methode isoliert werden, wobei ein Reinheitsgrad von 99% erreicht werden kann. Diese Zellen können dann kultiviert oder Funktionsanalysen unterzogen werden.

Die gängigsten Routine Untersuchungen am Flow-Cytometer sind auch heute noch die Bestimmung des DNA Gehaltes und verschiedener Oberflächenantigene in der Hämoto-Immunlogie. Allgemein kann das Flow-Cytometer allerdings Messungen jeder zellulären Komponente schnell, genau und quantitativ durchführen, sofern geeignete Farbstoffe bzw. geeignete Antikörper zur Verfügung stehen. Zusätzlich können Parameter wie Streulicht, Autofluoreszenz oder Absorption ermittelt werden. Das Hauptpotential der Flow-Cytometrie liegt allerdings in der simultanen Auswertung verschiedener Parameter als Mehrkoordinatenkorrelation. Dank immer leistungsstärkeren Rechnern und einer zunehmenden Zahl verschiedenfarbiger fluoreszierender Farbstoffe ist es derzeit möglich, zusätzlich zu den Streulichtdaten, fünf und mehr verschiedene Fluoreszenzintensitäten simultan zu messen. Dies erscheint insbesondere von großem Intersesse bei der Untersuchung verschiedener Kompartimente einzelner Zellen. So ist es möglich gleichzeitig die DNA, die RNA, verschiedene spezifische zytoplasmatische Proteine und Oberflächenstrukturen von Tausenden von Zellen innerhalb weniger Sekunden darzustellen. In Anbetracht dieser beeindruckenden Zahl an Möglichkeiten, schien es uns sinnvoll eine Methode zur flow-cytometrischen Analyse von Granulationsgewebe zu entwickeln.

2.5. Eigene Fragestellung

Der Arbeit liegt die zentrale Fragestellung zugrunde, ob sich die gestörte Wundheilung, im Sinne einer chronischen Wunde, von der regulären physiologischen Wundheilung auf zellulärer Ebene differenzieren läßt. Aufgrund der entscheidenden Bedeutung von Integrinen und anderen Adhäsionsmolekülen im Rahmen der physiologischen Wundheilung war die Arbeitshypothese, daß in der Expression dieser Moleküle Veränderungen in chronischen Wunden im Vergleich zu regulär heilenden Wunden vorliegen. Die an der Zelloberfläche lokalisierten Strukturen lassen sich durch Antikörper markieren und im Rahmen eines fluoreszenz-aktivierten cell sortings analysieren. Bisher sind jedoch keine Methoden etabliert, die eine solche Analyse an nativem Granulationsgewebe möglich machen. Somit war eine weitere Fragestellung dieser Arbeit, ob eine Analyse von nativem Granulationsgewebe und der auf den Zellen präsentierten Oberflächenantigene quantitativ mittels flow-cytometrischer Techniken möglich ist. Hierbei ist die Untersuchung von nativem Granulationsgewebe von zentralem Interesse, da dies eine zeitnahe Klassifizierung der Wunden ermöglicht.

3. Material und Methoden

3.1. Entwicklung der Methode

Zentrale Aufgabe bei der FACS-Analyse von solidem Gewebe ist die Herstellung einer Einzelzellsuspension. Bei der Untersuchung von Zellkulturen wird durch Zusatz von Trypsin eine Einzelzellsuspension mit weitgehend unveränderten Oberflächenantigenen hergestellt. Wesentlich schwieriger ist dieser Prozeß bei solidem Gewebe. Vergleichbare Untersuchungen wurden bereits an Tumorgewebe und arteriosklerotisch verändertem aortalem Gewebe mittels Kollagenaseverdau durchgeführt (Mattsson et al., 1991). Dieser Kollagenaseverdau muß in seiner Zusammensetzung und Dosierung dem untersuchten Gewebe angepasst werden, um die Zellen zu lösen, jedoch zu vermeiden, daß bestimmte Oberflächeneigenschaften verloren gehen.

3.1.1. Patientenkollektiv

Um die Wirkung verschiedener Kollagenaselösungen auf dieselbe Probe überprüfen zu können, brauchten wir 120-180 mg Gewebe. Diese Gewebemengen werden bei der regulären operativen Wundbehandlung, z.B. durch Hauttransplantation oder Sekudärnähte von der Oberfläche einer gut granulierenden Wunde abgetragen. Dadurch war es nicht erforderlich eine gut heilende Wunde umfangreich zu biobsieren und Risiken für den Patienten zu provozieren. Das Granulationsgewebe der zur Behandlung anstehenden Wunde wurde von zwei unabhängigen Beobachtern als Gewebe einer regelrecht heilenden Wunde klassifiziert. Die entsprechenden Gewebe wurden vor der Entnahme fotodokumentiert.

Insgesamt untersuchten wir Granulationsgewebe aus 8 verschiedenen Defektwunden mit regulärem Heilungsverlauf.

3.1.2. Gewinnung der Einzelzellsuspension

Das biopsierte Gewebe wurde mehrmals in physiologischer NaCl Lösung gewaschen, um es von Erythrozyten zu befreien. Anschließend wurde es fein zerkleinert und das Feuchtgewicht auf einer analytischen Waage bestimmt, nachdem die Probe während drei Minuten auf Laborsaugpapier gelegen hatte. Dokumentiert wurde das Gewicht nach einminütiger Gewichtskonstanz. Das Gewebe wurde dann in 7 etwa gleich große Portionen unterteilt (Abweichung des Gewichtes der einzelnen Proben untereinander < 2mg).

Die gewonnene Biopsie wurde mechanisch zerkleinert und in 20-25 Milligramm schwere Portionen geteilt. Insgesamt untersuchten wir 7 verschiedene enzymatische Verdaulösungen (Tab. 2)

Lösungs Nr.	Collagenase	Hersteller	Dauer	Units* / ml	
Lösung 1	1	Sigma [®] , Product	40 min.	100	
		No. C-9891			
Lösung 2	2	Sigma [®] , Product 40 min.		100	
		No. C-6995			
Lösung 3	4	Sigma [®] , Product 40 min.		100	
		No. C-5138			
Lösung 4	2 und 4	Sigma [®] , Product	40 min.	100	
		No. C-6995			
		No. C-5138			
Lösung 5	1, 2 und 4	Sigma [®] , Product	40 min.	100	
		No. C-9891			
		No. C-6995			
		No. C-5138			
Lösung 6	4	Sigma [®] , Product	20 min.	100	
		No. C-5138			
	1	No. C-9891	20 min.	100	
Lösung 7	3	Sigma [®] , Product	40 min.	100	
		No. C-0255			

Tab. 2 Auflistung der verwendeten Kollagenasen, ihrer Konzentration sowie der Einwirkzeit. Der pH der Lösungen lag bei 7,42. (*Collagen digestion: One unit liberates peptides from collagen equivalent in ninhydrin color to 1.0 micromole of leucine in 5 hours at ph 7,4 at 37°C in presence of calcium ions)

Die zerkleinerten Gewebestücke wurden 40 Minuten bei 37°C unter ständigem Rühren in 3ml Kollagenaselösung behandelt. Nach jeweils 10 Minuten wurde der bereits gelöste Zellüberstand abpipettiert, durch ein 100µm Netz gefiltert und auf Eis gelagert. Bei dieser Temperatur werden die Kollagenasen inaktiviert, was einen weiteren Verdau der vorliegenden Einzelzellen verhindert. Die nach 4 Verdauungszyklen a 10 Minuten gewonnenen Einzelzellsuspensionen wurden einzeln analysiert. Hierzu wurden die verschiedenen Einzelzellsuspensionen zentrifugiert (1200Upm, 4°C, 8min.), in 5ml PBS-Lösung gewaschen und abermals zentrifugiert. Neben den Untersuchungen mit einer festen Kollagenaselösung wurde mit der Lösung 6 ein sequentieller Verdau untersucht, bei der während der ersten 20 Minuten Kollagenase 4 verwendet wurde, das weitere noch nicht verdaute Gewebe während der anschließenden 20 Minuten mit Kollagenase 1 behandelt wurde. Auch hier wurden die 10 Minuten Fraktionen getrennt voneinander untersucht.

3.1.3. Zellzahl

Nach dem Zentrifugieren wurden die Zellsuspensionen in 1 ml PBS resuspendiert. In ein Teströhrchen, das 50µl einer 0.4%igen Trypanblaulösung enthielt, fügten wir 30µl PBS und 20µl der Zellsuspension zu. Nach 5-10 Minuten wurden die Zellen in einer Neubauer Zählkammer ausgezählt. Jedes Quadrat der Zählkammer hat ein Volumen von 10⁻⁴ cm³. So kann die entsprechende Zellzahl pro ml mit Hilfe folgender Gleichung berechnet werden (bei 10 ausgezählten Quadraten) :

Da die Zellen in 1 ml resuspendiert wurden, ist dieser Wert identisch mit der absoluten Menge an freigesetzten Zellen.

Da Trypanblau nur von toten Zellen aufgenommen wird, läßt sich der Prozentsatz vitaler Zellen mit der folgenden Formel bestimmen:

Mit dieser Methode bestimmten wir jeweils die Zellzahl der 10 Minuten Fraktionen der einzelnen Kollagenaselösungen (Lösung 1 bis Lösung 7), womit eine Dynamik der Zellfreisetzung jeder einzelnen Lösung ermittelt werden konnte.

3.1.4. Flow-Cytometrische Analyse

Bei der von uns angewandten Zweifarbenfluoreszenzanalyse können mit der Darstellung Fluoreszenz 1 (FITC: Fluorescein-Isothiocyanat = Grün) gegen Fluoreszenz 2 (PE: Phycoerythrin = Rot-Orange) prinzipiell vier verschiedene Populationen differenziert werden. Folgende Zellpopulationen können quantitativ bestimmt werden: ungefärbte Zellen, nur grün, nur rot und doppelt gefärbte Zellen.

3.1.4.1. Antikörpermarkierung

Um die verschiedenen Zellen und deren Oberflächenantigene im FACS-Gerät identifizieren zu können, müssen diese mit spezifischen Antikörpern markiert werden. Wir wendeten die Methode des "double labeling" (Zweifarbenfluoreszenzanalyse) an, bei der die Zellsuspensionen mit zwei verschiedenfarbigen Antikörpern (FITC [grün], PE [rot]) markiert werden. Wählt man diese Antikörper so aus, daß der eine eine Zellpopulation markiert, während der andere ein Adhäsionsmolekül kennzeichnet, ist es möglich die Zellen dieser Population, die dieses Antigen tragen, zu identifizieren. Folgende Antikörper wurden benutzt:

Assay	FITC-Ma	g	PE-Markierung			
	Antikörperspezifität	Klon	Hersteller	Antikörperspezifität	Klon	Hersteller
1						
2	Fibroblasten-AK [1]	AS02	dianova			
3	Fibroblasten-AK [1]	AS02	dianova	β1 (CD29) [2]	TDM29	CBL
4	Leukozyten-AK	2D1	Becton			
	(CD45)		Dickinson			
5	Endothel-AK (CD34)	581	Immunotech			

Tab. 3: Auflistung der verwendeten Assays, einschließlich der Antikörper, der Klone, sowie der Hersteller.Assay 1 enstpricht der Leerprobe. (CBL: Cymbus Biotechnoloy LTD) ([1] SAALBACH, 1996, 1997; [2] HEMLER, 1990).

Wir versetzten jeweils 10^6 Zellen, suspendiert in 100μ I PBS (Phosphat Buffered Saline), mit 10μ I der jeweiligen Antikörperlösung. Die Inkubation erfolgte während 30 Minuten bei 4°C in absoluter Dunkelheit. Danach wurden die Zellen gewaschen (Zentrifuge: 1200 U/min, 6min, 4°C), und zur Analyse in 200 µI PBS resuspendiert.

3.1.4.2. Flow-Cytometrische Analyse

Die Analyse der Zellsuspension erfolgte mit Hilfe eines FACScan[™] von Becton & Dickinson (Argonlaser 488nm). Die Kalibrierung wurde mit fluoreszierenden Latexbeads (CaliBRITE[™]) der Firma Becton & Dickinson durchgeführt. Die erfaßten Daten wurden so gespeichert, daß die Möglichkeit einer späteren Korrelation aller gemessener Daten möglich ist.

3.1.4.3. Computergestützte Auswertung

Die statistische Auswertung der erhobenen Einzeldaten wurde mit dem WinMDI[®] Version 2.7 Programm (Windows Multiple Document Interface; Flow-Cytometry Application) durchgeführt.

3.1.4.3.1. Anteil adhäsionsmolekülexprimierender Fibroblasten

In unserer Analyse wurden die Fibroblasten einheitlich mit FITC konjugierten Antikörpern (grün) markiert, die jeweils untersuchten Oberflächenantigene waren mit PE konjugierten Antikörpern (rot) dargestellt. Fibroblasten, die das zu untersuchende Oberflächenantigen präsentierten, waren grün-rot doppelmarkiert. Diese Ergebnisse wurden in einer korrelierten Zweiparameterdarstellung (Dotplot) dargestellt. Zur Auswertung dieser Darstellung müssen Bereiche definiert werden denen bestimmte Zellpopulationen entsprechen (Gating).

In der Auswertung einer unmarkierten Probe im Vorwärts-Seitwärts-Streulicht werden Erythrozyten und Zellfragmente über Gate 1 ausgeschloßen (R1). Die X-Achse zeigt die lineare Auftragung des Vorwärtsstreulichtes (FSC: forward scatter), die Y-Achse die des 90°-Seitwärtsstreulichtes (SSC: sideward scatter). Die rot dargestellten Zellen werden aufgrund von ihrer Größe und Granularität als Erythrozyten identifiziert und von der Messung ausgeschloßen (Abb. 4).

In Gate 2 werden in der Fluoreszenzlicht Darstellung alle nicht markierten Zellen ausgeschloßen (R2). Die X-Achse zeigt die logarhythmische Auftragung der FITC--Intensität, die Y-Achse die der PE-Intensität. In der Probe befinden sich nur unmarkierte Zellen. Anhand der Eigenfluoreszenz der Zellen werden mit dem Fenster R2 die Grenzen für die FITC-Intensität gelegt (Abb. 5). Die innerhalb der Region R2 liegenden Zellen werden als FITC-neaus der Messung ausgeaativ schloßen, da wir nur Fibroblasten auswerten (FITC-markiert)

Abb.:4. Eine unmarkierte Probe diente dazu, Zellfragmente und Erythrozyten, die innerhalb der definierten Region R1 liegen, auszuschließen.

Abb.:5. Eine unmarkierte Probe dient dazu die Region R2 festzulegen, in der alle nicht markierten Zellen dargestellt werden.

Anhand der Untersuchung einer ausschließlich für Fibroblasten markierten Probe (grün) wird der Bereich definiert in dem sich nur Fibroblasten befinden (R3). Im nächsten Schritt wird eine ausschließlich mit Fibroblasten-Antikörper (FITC) markierte Probe analysiert. In dem Fenster R3 werden alle Zellen die mit dem FITC-Antikörper reagiert haben ausgezählt. Das Fenster wird knapp an die Obergrenze der PE-Eigenfluoreszenz geführt, sodaß bei der Messung nur FITC-positve und PE-negative Zellen gemessen werden. In unserem Fall alle Fibroblasten die keine Integrinuntereinheit tragen (Abb. 6).

In dem nun verbliebenen vierten Bereich (R4), der sich aus der Gesamtfläche abzüglich der Gates 2 und 3 ergibt, liegen alle doppelt gefärbten Fibroblasten (grün-rot). Dies sind Fibroblasten, die das zu untersuchende Oberflächenantigen exprimieren (Abb. 7).

In vergleichbarer Weise gingen wir auch bei der Darstellung der separat markierten Gesamtleukozyten und Endothelzellen vor. Oberhalb der Region 3 wird ein weiteres Fenster, R4, gelegt das alle Zellen einschließt, die sowohl eine FITC-Fluoreszenz, als auch eine PE-Fluoreszenz haben. In unserem Fall wären dies die Fibroblasten, die eine bestimme Integrinuntereinheit exprimieren.

Abb.:6. In der Region R3 befinden sich nur FITC-markierte Fibroblasten

Abb.:7. In der Region R4 zeigen sich alle doppelt markierten Fibroblasten.
3.1.4.3.2. Mittlere Fluoreszenzintensität

Weiterhin bestimmten wir die mittlere Fluoreszenzintensität, die ein Maß für die durchschnittliche Dichte der Oberflächenantigene auf den Zellen ist. Hierzu wurde die Intensität der Fluoreszenz mittels elektrischer Schaltungen gemessen und quantifiziert. Der Detektor erzeugt ein elektrisches Signal proportional zur Fluoreszenzintensität. Ein Verstärker prozessiert dieses Signal durch Multiplikation mit einem logarithmischen Faktor. Dieses gemessene und verstärkte Signal wird zu einem Analog-Digital-Wandler gesendet. Dieser wandelt die Pulshöhe, die analog zur Fluoreszenzintensität ist, in ein digitales, computergerechtes Signal um. Diese Signale wurden zur Auswertung als Histogramm dargestellt, anhand dessen wir die mittlere Intensität computergestützt ermitteln konnten. (Abb. 8 + 9).

Abb. 8: Dargestellt ist die Verteilung nativer unmarkierter Fibroblasten. Die X-Achse gibt die Fluoreszenzintensität für FITC (links) und PE (rechts) an.

Abb. 9: Dargestellt ist die Verteilung nativer Fibroblasten. Auf der linken Seite sind die Fluoreszenzintensitäten FITC-markierter Fibroblasten dargestellt, rechts die Fluoreszenzintensitäten der entsprechenden PE-markierten ß1-Integrinuntereinheiten (CD29). Anhand der korrelierten Zweiparameter Darstellung wurden alle Erythrozyten und Nicht-Fibroblasten aus der Messung ausgeschloßen (wie auf S.37 beschrieben). In den Histogrammen wurden nur Fibroblasten ausgewertet. Im oberen Bild ist eine unmarkierte Probe wiedergegeben. Die X-Achse entspricht der Darstellung der Intensität der Fluoreszenz 1 (FL1, FITC), bzw. der Fluoreszenz 2 (FL2, PE). Die Y-Achse gibt die Zahl der gemessene Impulse wieder. In den unteren Histogrammen wird eine mit Fibroblasten-Antikörpern und CD29-Antikörpern doppeltmarkierte Probe dargestellt. Die X-Achse gibt die Fluoreszenzintensität für Fibroblasten (blau dargestellt) und für die ß1-Integrinuntereinheit (CD29, lila dargestellt). Durch Interpolation einer Gauß'schen Normalverteilung läßt sich computergestützt die mittlere Fluoreszenzintensität berechnen. Die Analyse dieser Daten ist im Auswertungsprogramm WinM-DI[®] implementiert.

3.1.5. Statistische Auswertung

Im ersten Teil der Arbeit, bei der Etablierung der Methode wurden die Ergebnisse der einzelnen Kollagenaselösungen mit einer One Way ANOVA auf ihre Signifikanz überprüft. War keine Normalverteilung gegeben wurde eine ANOVA on Ranks durchgeführt. Bei gegebener Signifikanz wurden die Einzelvergleiche nach der post-hoc Dunnett's Methode durchgeführt, hierbei der x-Fehler entsprechend der multiplen Vergleiche nach B-ferroni korrigiert. 3.2. Anwendung der Methode zur Bestimmung der Expression von Adhäsionsmolekülen auf Fibroblasten aus humanem Granulationsgewebe

3.2.1. Patientenkollektiv: Klassifikation der Wunde:

Die Untersuchungen wurden an humanem Granulationsgewebe durchgeführt. Dabei wurden zwei Gruppen: 1. Patienten mit regelrechtem Heilungsverlauf, 2. Patienten mit chronischen Wunden untersucht. Die Differenzierung erfolgte anhand anamnestischer Daten und anhand des klinischen Befundes. Dieser wurde von zwei getrennten Untersuchern definiert.

Die erste Gruppe (G1; n=15) beinhaltete Patienten mit sekundär heilenden Wunden, deren Heilungsverlauf regelrecht verlief. Begleiterkrankungen die für eine ursächliche Wundheilungsstörung bekannt sind lagen bei keinem dieser Patienten vor. Wie in den Untersuchungen zur Etablierung der Methode (S. 33) handelte es sich um Defektwunden nach Trauma die zum operativen Wundverschluß durch Hauttransplantation, Sekundärnaht oder Lappendeckung anstanden. Das Gewebe wurde perioperativ gewonnen. Die zweite Gruppe (G2; n=12) beinhaltete Patienten die aus der Anamnese mindestens seit 8 Wochen eine stagnierende Wundheilung, d.h. keine Verkleinerung der Wundfläche hatten. Wie in Tabelle 3 dargestellt lag bei diesen Patienten mindestens eine der oben als ursächlich für Wundheilungsstörungen bekannten Erkrankungen vor (Einleitung S. 5).

Abb. 10: Gutheilende Wunde mit regelrechtem Granulationsgewebe eine Woche nach Weichteilverletzung mit anschließendem Débridement und sekundärer Wundheilung.

Abb. 11: 9 Wochen alte schlechtheilende Wunde bei bestehender pAVK Grad Ila nach Fontaine zum Zeitpunkt der ambulanten Vorstellung. Nachdem Fibrinbeläge und Nekrosen entfernt wurden, wurde das bei der Auffrischung der Wundfläche gewonnene Granulationsgewebe zur Untersuchung gebracht.

Ausschlußkriterien waren manifester Infekt, maligne Erkrankungen, Chemotherapie, Steroidtherapie, Autoimmunerkrankungen, Kollagenosen, systemische Bindegewebserkrankungen, rheumatoide Erkrankungen.

	Alter des Pa-	Alter der			
Patient	tienten (Jahre)	Wunde	Enstehungsursache		
	und Geschlecht	(Wochen)			
1	52 m	2	Chirurgisch, Dekubitussanierung		
2	68 m		Sek. Wundheilung nach chirurgischer In-		
		1	tervention,		
3	22 w	4	Z.n. Appendektomie, sek. Wundheilung		
4	17 m	1	Exzision Sinus pieonidalis, sek. Wundheilung		
5	62 m		Exzision Lymphfistel li.Leiste, sek. Wundhei-		
		1,5	lung		
6	58 w	2	Exzision Perianalabzess, sek. Wundheilung		
7	67 m	2,5	Sek. Wundheilung nach Unfall		
8	40 m	3	Sek. Wundheilung nach Fersenverletzung		
9	68 m	5	Sek. Wundheilung nach Wundehiszienz		
10	37 m		Sek. Wundheilung nach Calcaneus osteoyn-		
		2	these		
11	76 w		Sek. Wundheilung nach Hämatomausräu-		
		2	mung		
12	43 w	1	Sek. Wundheilung nach Bursitis		
13	53 w	2	Sek. Wundheilung nach Unfall		
14	67 m	2	Sek. Wundheilung nach FK-Exzision		
	73 m		Sek. Wundheilung nach Acetabulumfraktur		
15		2	und Drucknekrose		

Tab. 4.1: Auflistung der Begleiterkrankungen der Patienten der Gruppe 1 (G1). m = männlich, w = weiblich

Die zur Analyse notwendige Menge an Granulationsgewebe von 20-40 mg wurde im Rahmen des üblichen chirurgischen Wunddebridements (Anfrischen der Wundoberfläche zur Verbesserung der Granulationsgewebebildung) in der interdisziplinär-chirurgischen Wundambulanz entnommen. Das dabei abgetragene Granulationsgewebe wurde zur Untersuchung verwendet, so daß eine spezielle Biopsie der Patienten nicht erforderlich war.

In beiden Gruppen wurde ausschließlich Granulationsgewebe analysiert. Das bei Gruppe 2 häufig auftretende avitale Gewebe am Wundgrund, sowie Nekrosen am Wundrand wurde nicht verwendet.

	Alter des Pa-	Alter der	
Patient	tienten (Jahre)	Wunde	Begleiterkrankungen
	und Geschlecht	(Monate)	
1	69 m	4	DM Typ2
2	71 m	7	AVK, CVI
3	63 w	25	CVI, PTS
4	79 w	10	AVK, CVI
5	75 w	3	AVK, DM Typ2
6	65 m	4	AVK, CVI
7	61m	3	AVK, DM Typ2
8	70 w	4	AVK, DM Typ2
9	59 w	6	DM Typ2, CVI
10	57m	15	AVK, CVI
11	60 m	13	CVI, AVK
12	63 m	7	Raucher, AVK, DM Typ2

Tab. 4.2: Auflistung der Begleiterkrankungen der Patienten der Gruppe 2 (G2). m = männlich, w = weiblich, DM = Diabetes Mellitus; AVK = arterielle Verschlußkrankheit; CVI = chronisch venöse Insuffizienz

Vor dem Wunddebridement wurde den Patienten erklärt, wozu das gewonnene Granulationsgewebe bei unserer Untersuchung verwendet wird. Nur bei Einverständiss der Patienten wurden die Proben anonymisiert und zur weiteren Untersuchung verwendet. Den Patienten wurde erklärt, dass ein Nutzen für Ihre eigene Therapie von unseren Untersuchungen nicht zu erwarten ist.

3.2.2. Gewinnung der Einzelzellsuspension

Das biopsierte Gewebe wurde mehrmals in physiologischer NaCl Lösung gewaschen, um es von Erythrozyten zu befreien. Anschließend wurde es fein zerkleinert und das Feuchtgewicht auf einer analytischen Waage bestimmt, nachdem die Probe während drei Minuten auf Laborsaugpapier gelegen hatte. Dokumentiert wurde das Gewicht nach einminütiger Gewichtskonstanz.

Die gewonnene Biopsie wurde mechanisch zerkleinert. Die zerkleinerten Gewebestücke wurden 40 Minuten bei 37°C unter ständigem Rühren in 3ml Koll agenaselösung behandelt. Verwendet wurde Lösung 6 die zu gleichen Teilen aus Kollagenase 1,2 und 4 mit einer Gesamtaktivität von 100 U/ml bestand. Nach jeweils 10 Minuten wurde der bereits gelöste Zellüberstand abpipettiert, durch ein 100µm Netz gefiltert und auf Eis gelagert. Bei dieser Temperatur werden die Kollagenasen inaktiviert, was einen weiteren Verdau der vorliegenden Einzelzellen verhindert. Die Einzelzell-Suspension wurde zentrifugiert (1200Upm, 4°C, 8min.), in 5ml PBS-Lösung gewaschen und abermals zentrifugiert und resuspendiert.

3.2.3. Zellzahl

Um die Antikörper im Überschuß dosieren zu können, wurde die Zellzahl bestimmt. Hierzu benutzten wir, wie im ersten Teil beschrieben (S. 35), die Trypanblau Färbung und zählten in einer Neubauer Zählkammer die Zellen aus.

3.2.4. Flow-Cytometrische Analyse

3.2.4.1. Antikörpermarkierung

10⁶ Zellen wurden in 100μl PBS resuspendiert und mit 10μl der jeweiligen Antikörperlösung versetzt. Die Inkubation erfolgte während 30 Minuten bei 4℃ und absoluter Dunkelheit. Danach wurden die Zellen gewaschen (Zentrifuge: 1200 U/min, 6min, 4℃), und zur Analyse iin 200μl PBS resuspendiert. Folgende Ansätze wurden benutzt:

Probe	FITC-Labelling			PE-Labelling		
	Antikörperspezifität	Klon	Hersteller	Antikörperspezifität	Klon	Hersteller
1						
2	Fibroblasten-AK [1]	AS02	dianova			
3	Fibroblasten-AK [1]	AS02	dianova	β1 (D29) [3]	TDM29,	CBL
4	Fibroblasten-AK [1]	AS02	dianova	β3 (CD61)	PM 6/13,	CBL
5	Fibroblasten-AK [1]	AS02	dianova	α2 (CD49b) [4,5]	AK7,	CBL
6	Fibroblasten-AK [1]	AS02	dianova	α4 (CD49d) [6]	BU49,	CBL
7	Fibroblasten-AK [1]	AS02	dianova	α5 (CD49e) [7]	SAM-1,	CBL
8	Fibroblasten-AK [1]	AS02	dianova	αv (CD51) [8,9]	13C2,	CBL
9	Fibroblasten-AK [1]	AS02	dianova	HA-Rezeptor	F10-44-2,	CBL
				(CD44) [2]		

Tab.5: Auflistung der verwendeten Antikörper, der Klone, sowie der Hersteller (CBL: Cymbus Biotechnoloy LTD). Probe 1 ist die Leerprobe die zur Bestimmung der Autofluoreszenz diente. Probe 2 ist die Fibroblasten-markierte Probe, die uns erlaubte das Gate für FITC-positive Zellen zu erstellen. Probe 3-9 dienten der Quantifizierung der doppeltmarkierten Zellen (FITC \Rightarrow Fibroblasten; PE \Rightarrow Adhäsionsmoleküle)

[1] SAALBACH et.al., 1996, 1997; [2] GOLDSTEIN & BUTCHER, 1990; [3] HEMLER, 1990; [4] FAVALORO et al., 1990; [5] MAZUROV et al., 1991; [6] Leukocyte typing VI (1997) Oxford University Press; [7] VELDE, 1988; [8] [9] Leukocyte typing IV (1989) Oxford University Press

3.2.4.2.Flow-Cytometrische Analyse

Die Analyse der Zellsuspension erfolgte, wie im ersten Teil beschrieben (Seite 31), mit Hilfe eines FACScan[™] von Becton & Dickinson (Argonlaser 488nm). Die Kalibrierung wurde mit fluoreszierenden Latexbeads (CaliBRITE[™]) der Firma Becton & Dickinson durchgeführt.

3.2.4.3. Computergestützte Auswertung

Die statistische Auswertung wurde mit dem WinMDI[®] Version 2.7 Programm (Windows Multiple Document Interface; Flow-Cytometry Application) durchgeführt.

3.2.4.3.1. Anteil adhäsionsmolekülexprimierender Fibroblasten

Für jeden einzelnen Zweitantikörper (PE = rot markiert auf FITC = grün markierten Fibroblasten) wurde zum einen der Anteil der positiven Zellen, zum anderen die mittlere Fluoreszenzintensität bestimmt. Die anhand der Leerproben festgelegten Gates wurden wie oben beschrieben (S. 30; Abb. 4-7) angelegt.

3.2.4.3.2. Mittlere Fluoreszenzintensität

Zusätzlich bestimmten wir auch hier die mittlere Fluoreszenzintensität der Fibroblasten um Aussagen über die mittlere Dichte der präsentierten Adhäsionsmoleküle treffen zu können. Die computergestützte Auswertung erfolgte für alle untersuchten Adhäsionsmoleküle nach der in Teil 1 beschriebenen Methode. (S. 31; Abb. 8-9).

3.2.5. Statistische Auswertung

Im zweiten Teil der Untersuchung, dem Vergleich der Adhäsionsmolekülverteilung in chronischen und regulär heilenden Wunden wurde der Student's t-Test verwendet. Bei fehlender Normalverteilung der Werte wurde der Mann-Whitney Rank Sum Test angewandt. Die Daten sind als Mittewert mit SEM (Standard Error of the Mean) dargestellt.

4. Ergebnisse

4.1. Entwicklung der Methode

Bei der Analyse des regulär heilenden Granulationsgewebes wurden die Lösungen 1-7 zum Aufschluß der Gewebes herangezogen. Die Auswertung erfolgte zum einen unter Berücksichtigung der insgesamt feigesetzten Zellen, zum anderen unter Berücksichtigung der im Verlauf von 10 Minuten freigesetzten Zellen bei einer maximalen Versuchsdauer von 40 Minuten. Die Ergebnisse sind in Tabelle 6 dargestellt. Hierbei sind die Mittelwerte aller Patientenproben (n=8) wiedergegeben. Ein signifikanter Unterschied zwischen den einzelnen Lösungen besteht nicht. Durch den unterschiedlichen Wassergehalt der einzelnen Proben war es nicht möglich, auch bei Einsetzen gleicher Gewebemengen, einen repräsentativen Mittelwert der Zellen pro Gewebegewicht zu erzielen. Die absoluten Werte hatten zwischen den einzelnen Patienten eine erhebliche Schwankungsbreite.

4.1.1 Verlauf

Die Dokumentation des Verlaufs des Kollagenaseverdaus zeigt, daß alle Enzymlösungen, außer Kollagenase 1, 95% der während eines 40 minütigen Verdaus gewonnenen Zellen innerhalb von 30 Minuten freisetzten (Tab. 6).

Nr.	Kollagenase Lösung	Nach 10 Min.	Nach 20 Min.	Nach 30 Min.	Nach 40 Min.
		Verdau	Verdau	Verdau	Verdau
1	Kollagenase 1	58,2%	22,1%	12,7%	6,97%
2	Kollagenase 2	56,1%	29,1%	10,4%	4,35%
3	Kollagenase 4	62,4%	20,8%	11,9%	4,87%
4	Kollagenase 2+4	63,9%	24,4%	7,80%	3,90%
5	Kollagenase 1+2+4	59,3%	23,7%	12,0%	4,79%
6	Kollagenase 4-1	57,6%	22,7%	16,7%	3,03%

Tab. 6: Anteil der in 10 Minutenschritten freigesetzten Zellen an den insgesamt nach 40 Minuten freigesetzten Zellen, aufgelistet für sechs verschiedene Kollagenaselösungen. (Alle Werte sind Mittelwerte aus 8 verschiedenen Versuchen). Kollagenase-Mischungen sind durch die Addition (+) wiedergegeben, der sequentielle Verdau durch den Bindestrich (-).

Da das Feuchtgewicht, wie in Material und Methoden beschrieben, nicht zuverlässig zu bestimmen war, konnten wir die Zahl der pro Milligramm Gewebe freigesetzten Zellen nicht direkt miteinander vergleichen. Deshalb benutzen wir die Werte der Kollagenase 1 Lösung bei jedem einzelnen Patienten als Referenzwert, und drückten die Ergebnisse der anderen Lösungen in Relation zu diesem aus. Damit werden die Patienten auch untereinander vergleichbar. Die prozentualen Angaben zum Verlauf werden so bestätigt und es zeigt sich in

der graphischen Darstellung eine stetige Abnahme der freigesetzten Zellen (Abb. 12). Eine Signifikanz im Verlauf besteht nicht.

Abb. 12: Zeitlicher Verlauf des Verdaus für sechs verschiedene Kollagenaselösungen. Lösung 1-6 sind entsprechend der Tabelle 6, Seite 42, numeriert. (Alle Werte sind relative Mittelwerte, Referenzwert sind die insgesamt mit Kollagenase 1 freigesetzten Zellen)

4.1.2. Gesamtzellzahl

Um die Werte der innerhalb von 40 Minuten freigesetzten Zellen miteinander vergleichen zu können, haben wir den Wert der freigesetzten Zellen pro Milligramm Gewebe des Kollagenase 1 Verdaus als Referenzwert benutzt und die Ergiebigkeit der anderen Lösungen im Vergleich zu diesem bestimmt. Diese relativen Werte der 8 Patienten haben wir gemittelt und die verschiedenen Kollagenaselösungen untereinander verglichen. Es stellte sich heraus, daß die Kollagenaselösungen die nur Kollagenase 2, 4 oder 2 + 4 enthalten, weniger Zellen freisetzen als eine reine Kollagenase 1 Lösung. Der sequentielle Verdau mit Kollagenase 4 und 1, sowie der Verdau mit der Lösung mit Kollagenase 1, 2 und 4 ermöglichte signifikant mehr Zellen in Suspension zu versetzen als der Referenzverdau. (Abb.13).

Abb. 13: Relative Ergiebigkeit der einzelnen Kollagenaselösungen. Die Lösung mit Kollagenase 1+2+4 konnten signifikant mehr Zellen freisetzen als die übrigen Lösungen. (Mittelwert ± SEM, One way ANOVA on ranks, Einzelvergleiche nach Dunetts Test, * p<0,05 vs. Referenzlösung).

4.1.3. Vitalität

Mit Hilfe der Trypanblau-Färbung bestimmten wir die Vitalität der in Suspension vorliegenden Zellen. Mit allen verwendeten Kollagenaselösungen konnten wir hohe Überlebensraten der Zellen erzielen die über 98% lagen. Nur beim Aufschluß mit der reinen Kollagenase 1 Lösung konnten lediglich 84,5% der Zellen als vital nachgewiesen werden. Es besteht zwischen einzelnen Lösungen eine Signifikanz, festgestellt mit One way ANOVA on ranks, paarweise Einzelvergleiche nach Student-Newman-Keuls Test. Einzelvergleiche nach Dunnett's Test mit der später verwendeten Lösung 5 als Kontrollgruppe ergaben die in der Tabelle 7 dargestellte Signifikanz gegenüber Lösung 1, Lösung 4 und Lösung 6.

	Lösung 1	Lösung 2	Lösung 3	Lösung 4	Lösung 5	Lösung 6
Viablität	84,5	98,8	98,9	98,2	98,7	97,3
SEM	5,00	0,19	0,17	0,15	0,14	0,35
Signif.	P<0,05			P<0,05		P<0,05

Tab. 7: Prozentualer Anteil überlebender Zellen an den insgesamt freigesetzten Zellen, aufgelistet für die verschiedenen Kollagenaselösungen. Mittelwert \pm SEM = Standard Error of the Mean; Signif. = Signifikanz nach Dunnett's Test; p<0,05 vs Lösung 5

4.1.4. Oberflächenantigene

Grundlegende Voraussetzung einer Analyse ist es die Zellen aus ihrem Gewebeverband freizusetzen, ohne dabei wesentliche Oberflächenantigene zu verändern.

Als repräsentatives Oberflächenantigen wurde die Menge vorhandener CD29 Antigene (β 1-Integrinuntereinheit) auf Fibroblasten mittels der mittleren Fluoreszenzintensität bestimmt. Die mittlere Fluoreszenzintensität ist eine relative Angabe der Leuchtstärke bezogen auf eine Kalibrierungslösung. Hierbei zeigen sich die Ergebnisse die mit den verschiedenen Lösungen 1-6 erzielt wurden bei insgesamt hoher Dichte der β 1-Integrinuntereinheit nicht signifikant unterschiedlich (ANOVA on ranks, p = 0,509). Die Ergebnisse sind in Abbildung 14 dargestellt.

Abb. 14: Mittlere Fluoreszenzaktivität der CD29 Antigene auf Fibroblasten (ANOVA on ranks, p=0,509) L= Lösung

4.1.5. Verhältnis der freigesetzten Zellpopulationen

Um die Effizienz der Kollagenaselösungen 1-6 zu evaluieren, bestimmten wir die üblicherweise im Granulationsgewebe vorhandenen zellulären Hauptbestandteile des Granulationsgewebes: Fibroblasten, Leukozyten und Endothelzellen.

4.1.5.1. Fibroblasten

Der Anteil der Fibroblasten an den insgesamt mit FACS detektierten Zellen war für die einzelnen Kollagenaselösungen 1-6 nicht signifikant unterschiedlich (ANOVA on ranks, p = 0,287). Die Ergebnisse sind in Abbildung 15 dargestellt.

Abb. 15: Prozentualer Anteil der Fibroblasten an den insgesamt detektierten Zellen. L = Lösung. Mittelwert \pm SEM, ANOVA on ranks, p= 0,287

4.1.5.2. Leukozyten

Der Anteil der Leukozyten an den insgesamt mit FACS detektierten Zellen war für die einzelnen Kollagenaselösungen 1-6 signifikant unterschiedlich. Es besteht zwischen einzelnen Lösungen eine Signifikanz, festgestellt mit ANOVA on ranks, paarweisen Einzelvergleiche nach Student-Newman-Keuls Test. Einzelvergleiche nach Dunnett's Test mit der später verwendeten Lösung 5 als Kontrollgruppe ergaben die in der Abbildung 16 dargestellte Signifikanz gegenüber Lösung 2 und Lösung 4.

Abb. 16: Prozentualer Anteil der Leukozyten an den insgesamt detektierten Zellen. L = Lösung, Mittelwert \pm SEM, ANOVA on ranks, Student-Newman-Keuls Test * p< 0,05 vs. L5

4.1.5.3. Endothelzellen

Der Anteil der Endothelzellen an den insgesamt mit FACS detektierten Zellen war für die einzelnen Kollagenaselösungen 1-6 signifikant unterschiedlich. Es besteht zwischen einzelnen Lösungen eine Signifikanz, festgestellt mit ANOVA on ranks, paarweisen Einzelvergleiche nach Tukey Test und Student-Newman-Keuls Test. Einzelvergleiche nach Tukey Test und Dunnett's Methode mit der später verwendeten Lösung 5 als Kontrollgruppe ergaben die in der Abbildung 17 dargestellte Signifikanz

Abb. 17: Prozentualer Anteil der Endothelzellen an den insgesamt detektierten Zellen. L = Lösung. Mittelwert \pm SEM, ANOVA on ranks, Student-Newman-Keuls Test * p< 0,05 vs. L5

4.1.5.4. Insgesamt zugeordnete Zellen

Insgesamt konnten die mit den einzelnen Lösungen gewonnenen Zellen unterschiedlich gut zugeordnet werden. Mit Lösung 3 und Lösung 5 konnten insgesamt ca. 95 % der mit FACS detektierten Zellen zugeordnet werden. Alle anderen Lösungen blieben unter einer Quote von 90 % zurück. Es besteht zwischen einzelnen Lösungen eine Signifikanz, festgestellt mit ANOVA on ranks, paarweisen Einzelvergleichen nach Student-Newman-Keuls Test. Einzelvergleiche nach Dunnett's Test mit der später verwendeten Lösung 5 als Kontrollgruppe ergaben die in der Abbildung 18 dargestellte Signifikanz gegenüber Lösung 1 und Lösung 4.

Abb. 18: Prozentualer Anteil der zugeordneten Zellen bezogen auf die insgesamt detektierten Zellen. L = Lösung. Mittelwert \pm SEM, ANOVA on ranks, Einzelvergleiche nach Dunnett's Test * p< 0,05 vs. L5

4.1.6. Zusammenfassung

Insgesamt konnte mit jeder Kollagenaselösung ein suffizienter Verdau mit vergleichbarer Kinetik des Granulationsgewebes herbeigeführt werden. Es konnte nicht bewiesen werden, daß eine einzelne Lösung signifikant mehr vitale Zellen pro Milligramm Gewebe freisetzt. Beim Vergleich der relativen Zahlen (S.47) konnte allerdings eine sigifikant besseres Abschneiden der Lösung 5 gegenüber allen anderen Lösungen bewiesen werden. Auch bei der Beurteilung der Oberflächenrezeptoren konnte kein besonderer Unterschied zwischen den Lösungen bestimmt werden. Bei der Evaluierung der einzelnen nachgewiesenen Zellpopulationen konnte nur für die Endothelzellen (S.49) eine eindeutige Signifikanz bei der Lösung 5 gegenüber allen anderen Lösungen.

4.2. Anwendung der Methode zur Bestimmung der Expression von Adhäsionsmolekülen auf Fibroblasten aus humanem Granulationsgewebe

4.2.1. Anteil der adhäsionsmolekülexprimierender Fibroblasten

4.2.1.1. β1-Integrinuntereinheit, CD29

Der prozentuale Anteil der β 1-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab keinen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich kein höherer Anteil an β 1-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 19 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 19: Prozentualer Anteil der ß1-positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert \pm SEM, p>0,05 vs. RW

4.2.1.2. β3-Integrinuntereinheit, CD61

Der prozentuale Anteil der β 3-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab einen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich ein deutlich höherer Anteil an β 3-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 20 dargestellt. Die Signifikanz wurde mit dem t-Test überprüft.

Abb. 20: Prozentualer Anteil der ß3-positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert \pm SEM, *p<0,05 vs. RW

4.2.1.3. α2-Integrinuntereinheit, CD49b

Der prozentuale Anteil der α 2-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab einen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich ein deutlich höherer Anteil an α 2-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 21 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 21: Prozentualer Anteil der α 2-positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs. RW

4.2.1.4. α4-Integrinuntereinheit, CD49d

Der prozentuale Anteil der α 4-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab einen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich ein deutlich höherer Anteil an α 4-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 22 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 22: Prozentualer Anteil der α 4-positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs. RW

4.2.1.5. α5-Integrinuntereinheit, CD49e

Der prozentuale Anteil der α 5-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab einen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich ein deutlich höherer Anteil an α 5-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 23 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 23: Prozentualer Anteil der α 5-positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs. RW

4.2.1.6. αv-Integrinuntereinheit, CD51

Der prozentuale Anteil der αv-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab keinen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich kein höherer Anteil an αv-positiven Fibroblasten. Die Ergebnisse sind in Abbildung 24 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 24: Prozentualer Anteil der α v–positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, p>0,05 vs. RW

4.2.1.7. Hyaluronsäurerezeptor, CD44

Der prozentuale Anteil der CD44-positiven Fibroblasten an den insgesamt gemessenen Fibroblasten der verschiedenen Granuationsgewebe ergab keinen signifikanten Unterschied zwischen chronischem und regulär heilendem Granulationsgewebe. In chronischen Wunden findet sich kein höherer Anteil an CD44-positiven Fibroblasten. Im Gegenteil, die Zahl der Fibroblasten mit CD44 Expression war gegenüber den Fibroblasten aus regulär heilenden Wunden geringfügig erniedrigt. Die Ergebnisse sind in Abbildung 25 dargestellt. Die Signifikanz wurde mit dem Mann-Whitney U-Test überprüft.

Abb. 25: Prozentualer Anteil der CD44–positiven Zellen von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert \pm SEM, p>0,05 vs. RW

4.2.2. Mittlere Fluoreszenzintensität adhäsionsmolekülexprimierender Fibroblasten

4.2.2.1. β1-Integrinuntereinheit, CD29

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine deutliche Dichtezunahme der β1-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 26 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft

Abb.26: Mittlere Fluoreszenzaktivität der β 1-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

4.2.2.2. β3-Integrinuntereinheit, CD61

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine signifikante Dichtezunahme der β 3-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 27 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft.

Abb. 27: Mittlere Fluoreszenzaktivität der β 3-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert \pm SEM, *p<0,05 vs RW

4.2.2.3. α2-Integrinuntereinheit, CD49b

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine deutliche Dichtezunahme der α2-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 28 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft.

Abb. 28: Mittlere Fluoreszenzaktivität der α 2-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

4.2.2.4. α4-Integrinuntereinheit, CD49d

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine deutliche Dichtezunahme der α4-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 29 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft.

Abb. 29: Mittlere Fluoreszenzaktivität der α 4-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

4.2.2.5. α5-Integrinuntereinheit, CD49e

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine deutliche Dichtezunahme der α5-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 30 dargestellt. Die Signifikanz wurde mit Mann-Whitney U- Test überprüft.

Abb. 30: Mittlere Fluoreszenzaktivität der α 5-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

4.2.2.6. αv-Integrinuntereinheit, CD51

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine deutliche Dichtezunahme der αv-Integrinuntereinheiten auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 31 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft.

Abb. 31: Mittlere Fluoreszenzaktivität der α v-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

4.2.2.7. Hyaluronsäurerezeptor, CD44

Die Bestimmung der mittleren Fluoreszenz, die ein Maß für die durchschnittliche Antigendichte auf den Zellen ist, zeigte eine signifikante Abnahme der Dichte der CD44 Antigene auf Fibroblasten in chronischen Wunden. Die Ergebnisse sind in Abbildung 32 dargestellt. Die Signifikanz wurde mit Mann-Whitney U-Test überprüft.

Abb. 32: Mittlere Fluoreszenzaktivität der CD44-positiven Fibroblasten von allen gemessenen Fibroblasten im Granulationsgewebe von regulär heilenden Wunden (RW, n=15) und chronischen Wunden (CW, n=12). Mittelwert \pm SEM, *p<0,05 vs RW

4.2.3. Zusammenfassung

Abb. 33: Zusammenfassende Darstellung des prozentualen Anteils der antigenpositiven Fibroblasten an den insgesamt gemessene Fibroblasten. In chronischen Wunden konnte ein signifikant höherer Anteil an α^2 -, α^4 -, α^5 -und β^3 - positiven Fibroblasten festgestellt werden. Hellgraue Säulen = regulär heilende Wunden (RW, n=15); dunkelgraue Säulen = chronische Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

Abb. 34: Zusammenfassende Darstellung der mittleren Fluoreszenzintensität als Maß für die durchschnittliche Antigendichte auf den Zellen, zeigte eine deutliche Zunahme der Dichte für die α 2-, α 4-, α 5- und β 3- Integrinuntereinheiten, jedoch eine deutliche Abnahme der Dichte für den CD44 Hyaluronsäurerezeptor. Hellgraue Säulen = regulär heilende Wunden (RW, n=15); dunkelgraue Säulen = chronische Wunden (CW, n=12). Mittelwert ± SEM, *p<0,05 vs RW

5. Diskussion:

Die objektivierbare Analyse einer gestörten Wundheilung als Grundlage der Etablierung einer neuen phasengerechten Wundtherapie ist weiterhin ein nicht gelöstes Problem in der Behandlung. Wissenschaftliche Analysen die zur Klassifizierung von Wundheilung angewendet werden beziehen die Methoden der histologischen Aufarbeitung von Gewebe, die Analyse vorhandener Wachstumsfaktoren und die in vitro Untersuchung von Gewebebiopsien ein. Versuche, den Verlauf der Wundheilung zu erfassen, werden auch mit Hilfe der computergestützten Morphometrie unternommen. Bisher hat noch keine der Methoden eine schlüssige und objektive Klassifizierung chronischer Wunden hervorgebracht. Hinzu kommt, daß alle histologischen Untersuchungen, Bestimmungen von Wachstumsfaktoren und in vitro Analysen von Zellkulturen nur mit einer erheblichen zeitlichen Verzögerung durchzuführen sind. Wesentliche zu fordernde Kriterien einer Analysemethode für die klinische Patientenversorgung sind zum einen, die zeitnahe Durchführbarkeit um aktuelle Therapieentscheidungen treffen zu können, zum anderen muß der Einsatz und Aufwand der technischen Mittel vertretbar sein. Bisher besteht keine solche Analysemöglichkeit. Die von uns ausgewählte Methode des Fluoreszenz-aktivierten cell sortings ist im Rahmen der Hämato-Onkologie eine diagnostische Routinemethode, die an vielen Kliniken angewandt wird. Weiterhin beträgt die Zeitspanne zwischen Gewebeentnahme und Analyse ungefähr 90 Minuten, sodaß zeitnahe Entscheidungen gefällt werden können.

5.1. Entwicklung der Methode

5.1.1. Diskussion der Methode

Die erste Frage, die sich im Rahmen dieser Untersuchungen gestellt hat, war, ob durch Flow-Cytometrie eine Analyse des Granulationsgewebes möglich ist. Hierzu mußte das Gewebe in eine Einzelzellsuspension überführt werden, ohne die Expression der Oberflächenantigene zu beinflussen. Ein zeitnaher Aufschluß des Gewebes ist nicht nur erforderlich um patientenorientierte Entscheidungen zu treffen, sondern auch deshalb, weil sich die Expression der Oberflächenantigene auf den Zellen rasch verändern kann. Diese Tatsache wird bei vielen Untersuchungen nicht berücksichtigt, die humanes Granulationsgewebe in vitro übertragen und durch die Veränderung des Milieus eine veränderte Oberflächenantigenstruktur erzeugen.

Der Gewebeaufschluß sollte zeitnah durchführbar sein, da XU & CLARK (1996) nachweisen konnten, daß Integrine in Abhängigkeit des gebundenen Substrates exprimiert werden. Weitere Arbeitsgruppen (TODD et al., 1984; BAINTON et al., 1987; BORREGAARD et al., 1987; MILLER et al., 1987) beschreiben die Veränderung der Anzahl der präsentierten Oberflächenantigene, sowie eine schnelle Regulation der adhäsiven Fähigkeiten der präsentierten Integrine (WRIGHT & MEYER, 1986; BUYON et al., 1988; LO et al., 1993). Diese Verschiebung im Präsentationsmuster der Adhäsionsmoleküle kann bei der Analyse nativer Zellen nicht toleriert werden und kann nur umgangen werden, wenn der äußere Reiz, wie z.B. der Verlust der Adhäsion, in seiner zeitlichen Dauer beschränkt bleibt und der Metabolismus der Zellen durch die Analyse Technik möglichst gering beeinflusst wird.

Eine weitere Gefahr beim prolongierten Kontakt der Zellen mit Kollagenasen ist der enzymatische Abbau der Oberflächenantigene und damit der Verlust der Bindungsstellen für die farbstoffmarkierten Antikörper. Bei Integrinen geht man davon aus, daß sie durch ihre globuläre Struktur (CARREL et al., 1985; NERMUT, 1988) relativ resistent gegen den Abbau durch Enzyme sind (GEBAUER et al., 1996). Genaue Studien wie lange sie Kollagenase-Exposition tolerieren gibt es bisher jedoch nicht. Wie in unseren Untersuchungen der einzelnen Kollagenaselösungen zur mittleren Fluoreszenzintensität des ubiquitär vorkommenden CD29 Oberflächenantigens gezeigt wird, bestehen bei insgesamt hoher Antigendichte keine signifikanten Unterschiede zwischen den einzelnen Lösungen.

Eine Besonderheit des Kollagenaseverdaus ist die Anwendung von Kollagenase 3, die zu einer Provokation der Autofluoreszenz von Zellen führt die letztlich eine Auswertung im Flow-Cytometer unmöglich macht.

Ein weiteres kritisches Kriterium bei der Herstellung einer Einzelzellsuspension ist die Vitalität der Zellen, da durch die Kollagenasebehandlung auch die Zellmembran geschädigt werden kann. Durch die geschädigte Zellmembran dringt Trypanblau in die Zellen ein, d.h. vitale Zellen sind in der Lage Trypanblau auszuschließen. Die Kollagenaselösungen 1-6 waren dabei nicht signifnikant unterschiedlich wobei die Lösung 1 am unteren Rand der Toleranzgrenze lag.

Die Effizienz der Kollagenaselösungen wurde durch die Verhältnisse der freigesetzten Zellpopulationen überprüft. Hierbei zeigte sich, daß bei den Endothelzellen die Kollagenaselösung 5 (Kollagenase 1 + 2+ 4) signifikant bessere Ergebnisse erzielt. Insgesamt konnte bei der Addition der Mittelwerte ungefähr 96% aller detektierten Zellen zugeordnet werden.

Insbesondere unter Berücksichtigung der Freisetzung von Endothelzellen, sowie der hohen Zahl an Zellen die zuzuordenen waren, haben wir uns für die Kollagenaselösung 5 (Kollagenase 1 + 2+ 4) entschieden, um die Untersuchungen durchzuführen. Auch wenn die Lösung 5 den anderen Lösungen nicht immer überlegen war, so war sie insgesamt doch jene, die die effektivste Zellfreisetzung bewirkte. Außerdem wurde in Voruntersuchungen bereits beschrieben, daß mit Kollagenase 2 und 4 (RODBELL, 1964; SEGLEN, 1976) ein schonender Aufschluß empfindlicher Gewebe möglich ist. 5.2. Anwendung der Methode zur Bestimmung von Adhäsionsmolekülen auf Fibroblasten aus humanem Granulationsgewebe

Die Wundheilung wird bestimmt durch die Kommunikation und Kooperation zwischen ortsansässigen Zellen in dem die Wunde umgebenden Gewebe, wie Fibroblasten, und zirkulierenden Abwehrzellen, wie Makrophagen, Granulozyten, Lymphozyten. Diese Kommunikation kann über Signalstoffe erfolgen oder aber durch direkten Zell-Zell und Zell-Matrix Kontakt übermittelt werden. Adhäsionsmoleküle sind die molekulare Basis für Zell-Zell und Zell-Matrix Interaktionen und bestimmen den Verlauf der Wundheilung. In der ersten Phase der Wundheilung entsteht eine provisorische Wundmatrix vornehmlich aus Fibrin, Fibronektin und Thrombozyten. Die Thrombozyten werden durch den Kontakt mit der Interzellularsubstanz aktiviert und setzen verschiedene Zytokine und biologisch aktive Mediatoren frei. Diese Zytokine aktivieren ruhende Fibroblasten, Endothelzellen und Abwehrzellen und bedingen so die Einwanderung dieser Zellen aus dem umliegenden Bindegewebe in das Granulationsgewebe. Man stellt sich vor, daß diese Aktivierung eng im Zusammenhang mit der Hochregulation verschiedener Adhäsionsmoleküle auf der Zelloberfläche steht, die der Migration und Adhäsion der Zellen vorausgeht. Aus in vitro Experimenten weiß man, daß Zytokine die Expression der Adhäsionsmoleküle modulieren (ROTHLEIN et al., 1989; BARKER et al., 1990; SANTALA & HEINO, 1991; WANG et al., 2005). Die typischen Inflammationsmediatoren IL-1, TNF- α und IFN γ konnten als sehr potente Regulatoren der Expression von Adhäsionsmolekülen bestimmt werden (DUSTIN et al., 1986; ROTHLEIN et al., 1989; BARKER et al., 1990; LEIR et al., 2003). In vivo sind die Regulationsmechanismen allerdings um einiges komplizierter, da einige der Zytokine sowohl synergistisch als auch antagonistisch wirken und ein sehr komplexes Netz aus Inhibition und Stimulation spinnen, welches für das tatsächliche Expressionsmuster der Adhäsionsmoleküle verantwortlich ist.

Bisher wurde dieses Expressionsmuster nur an kultivierten Fibroblasten in vitro untersucht (GEBAUER et al., 1996; PETRI et al., 1997). Dies wirft einige grundsätzliche Probleme auf, da alleine schon das Züchten der Zellen in Kulturschalen die Expression der Adhäsionsmoleküle verändert. Die Zellen müssen sich über künstliche Oberflächen hinwegbewegen, die so im Gewebe nicht vorkommen. Dies führt dazu, daß Zellen mit einem bestimmten Expressionsmuster der Adhäsionsmoleküle einen selektiven Vorteil haben, und damit in der Kultur eine Subpopulation dominant heranwächst. Deshalb war es unser Bestreben eine Methode zu entwickeln, die es erlaubt das tatsächliche Expressionsmuster nativer Fibroblasten als Hauptbestandteil des Granulatiosgewebes zu bestimmen.

5.2.1 Interpretation der erhobenen Daten

5.2.1.1. Integrine

Integrine nehmen während der Wundheilung eine zentrale Rolle in der Kette der Abläufe ein, und, obschon dies in der Literatur allgemein anerkannt wird, gibt es bis jetzt nur wenige Veröffentlichungen, die Integrine auf Zellen des Granulationsgewebes bestimmt haben. Dies geschah dann auch meist gualitativ anhand des histologischen Schnittes und erlaubte keinen Rückschluß auf die Quantität der exprimierten Integrine (LARJAVA et al., 1993). GEBAUER et al. (1996) untersuchten Fibroblasten aus humanem Granulationsgewebe regulär heilender Wunden auf verschiedene migrationsspezifische Integrine und konnten eine vermehrte Expression der Integrinuntereinheiten $\alpha 2$, $\alpha 4$, $\alpha 5$ und αv während der Proliferationsphase der Wundheilung im Vergleich zu dermalen Fibroblasten nachweisen (PETRI et al., 1997). Diese Untersuchung zeigt, daß Integrine situationsabhängig reguliert werden und in der Wundheilung von Bedeutung sind. Allerdings unterliegt die Untersuchung mehreren Einschränkungen: Es wurden nur Fibroblasten untersucht, die selbständig aus dem Granulationsgewebe auswanderten, somit ist eine Mengenangabe der integrinexprimierenden Zellen des gesamten Granulationsgewebes nicht möglich, da keine repräsentative Population untersucht wurde. Weiterhin wurden Fibroblasten der 4. und 5. in vitro Zellpassage untersucht. Es kann daher kaum auf den Zustand nativer Fibroblasten im Granulationsgewebe rückgeschlossen werden und die Ergebnisse müssen deshalb als nicht repräsentativ für natives Gewebe betrachtet werden.

Granulationsgewebe chronischer Wunden wurde bisher nahezu ausschließlich am Tiermodell untersucht. Bei humanen Wunden haben die Untersuchungen sich nahezu ausschließlich auf Wundsekret und dessen Inhaltsstoffe bezogen. Die zellulären Komponenten in chronischen Wunden, deren Verhältnisse zueinander, und deren Phenotyp sind im wesentlichen am Patienten noch nicht untersucht worden.

In einer ersten Untersuchung konnten wir bereits mit der Methode der FACS-Analyse das Verhältnis der Zellpopulationen in chronischen und regulär heilenden Wunden beschreiben (KOSCHNICK et al., 1998; BUSSER et al.,1998). In dieser Arbeit haben wir eine ähnliche Technik mit anderen monoklonalen Antikörpern angewandt um die Präsentation von Integrinen auf Fibroblasten in chronischen und regulär heilenden Defektwunden zu vergleichen. In dieser Untersuchung ist es uns nun gelungen, Oberflächenmerkmale nativer Fibroblasten, sowohl aus regulär heilenden als auch aus chronischen Wunden quantitativ zu bestimmen. Es stellte sich heraus, daß alle von uns untersuchten α -Untereinheiten in chronischen Wunden vermehrt exprimiert wurden. Der Anteil positiver Zellen war bei allen α -Untereinheiten, außer αv , signifikant erhöht.
In unseren Untersuchungen wurde gezeigt, daß die Integrinuntereinheiten ß1 und αv auf gleich vielen Fibroblasten aus chronischen und regulär heilenden Wunden nachgewiesen werden konnte. Für alle übrigen Integrinuntereinheiten (ß3, $\alpha 2$, $\alpha 4$, $\alpha 5$) stellte sich heraus, daß in chronischen Wunden eine signifikant größere Anzahl Fibroblasten diese präsentiert. Es ist jedoch festzustellen, daß auch die mittlere Fluoreszenzintensität für die ß1 und αv Integrinuntereinheit in chronischen Wunden erhöht ist. Aus der Literatur bekannte Ergebnisse zur ß1 Untereinheit zeigt, daß diese im allgemeinen im Überschuß vorliegt (GEBAUER et al. 1996), was im Hinblick auf eine rasche Verfügbarkeit der ß1 Untereinheit interpretiert wurde. Unsere Untersuchungen zeigen allerdings im Gegensatz dazu, daß eine erhöhte Dichte der ß1 Untereinheit auf Fibroblasten chronischer Wunden gefunden werden kann.

Grundsätzlich bestehen drei Erklärungsmöglichkeiten für die vermehrte Rezeptorpräsentation in chronischen Wunden:

Der Fibroblast produziert mehr Integrine Die Adhäsionsstellen werden fehlbesetzt Die Integrine werde langsamer abgebaut

Alle drei Möglichkeiten scheinen bei der chronischen Wundheilung von Bedeutung zu sein.

1. Die erste Feststellung hätte grundlegende Auswirkungen auf das Verständnis der Wundheilung, bedeutet dies doch, daß Fibroblasten im Granulationsgewebe in der Lage sind, auf äußere Reize zu reagieren. Früher ging man davon aus, daß die durch die Begleiterkrankungen bedingte Mangelversorgung im Wundgebiet eine Reaktion der Fibroblasten, die die Synthese neuer Proteine voraussetzt, verhindern oder doch zumindest einschränken würde. Diese Theorie hat sich mittlerweile als nicht vollständig zutreffend erwiesen, da auch andere Gruppen nachweisen konnten, daß in chronischen Wunden eine gesteigerte Synthese von funktionstüchtigen Proteinen in Form von sezernierten Proteasen, möglich ist (BULLEN et al., 1995; YAGER et al., 1996). Unsere Studien zeigen, daß die Präsentation von Integrinen in großer Zahl unabhängig von der Schwere der Begleiterkrankungen möglich ist. Der Fibroblast in chronischen Wunden besitzt einen, im Bezug auf heilende Wunden, veränderten Phenotyp. Inwieweit diese Veränderung ein Teil eines selbständig ablaufenden Wundheilungsprogramms ist, müssen weitere Untersuchungen zeigen. ANDERSON et al. (1995) vertritt die These, daß die Anoxie, die bei der Gewebeverletzung auftritt, ausschlaggebend für den Beginn eines Wundheilungsprogramms im Fibroblasten ist, der den Metabolismus auf Glycolyse umstellt und durch eine vermehrte Sekretion von Proteasen und Nukleasen zum Wunddebridement beiträgt. Die vermehrte Expression von Integrinen auf der Oberfläche der Fibroblasten könnte Teil dieses oder eines ähnlichen Programmes sein.

68

Außerdem könnte es eine Reaktion der Zelle im Sinne eines positiven Regelmechanismus auf einen vermehrten Abbau der Rezeptoren durch Proteasen sein.

GEBAUER et al. (1996) hat gezeigt, daß auch in regulär heilenden Wunden die Integrine im Vergleich zu ruhenden Fibroblasten vorübergehend vermehrt exprimiert werden. Allerdings ist dies nur ein temporärer Effekt, der mit dem Fortschreiten der Heilung verschwindet. Desweiteren kann dies auch lediglich Ausdruck der Versuchsanordnung sein, bei der der Untersucher Zellen in eine Kulturschale übertragen hat und dadurch eine grundsätzliche Veränderung des Integrinmusters provoziert hat. Die Menge an exprimierten Integrinen, die wir in chronischen Wunden beobachten konnten, lag deutlich über der in heilenden Wunden.

Die vermehrte Expression von Integrinen könnte unter physiologischen Bedingungen dadurch Zustande kommen, daß Fibroblasten die in der provisorischen Wundmatrix vorhandenen Bestandteile, wie Fibrin, Fibronektin, Kollagen u.a., erkennen und auf den Reiz von Zytokinen hin die Produktion der korrespondierenden Integrine steigern. Ein vergleichbarer Effekt wurde in vitro für migrierende Fibroblasten nachgewiesen (XU & CLARK, 1996). Die Gruppe um XU & CLARK (1996) konnte zeigen, daß eine Stimulation der Fibroblasten mit PDGF die Expression der Integrine in Abhängigkeit der Matrix reguliert. So wurde in Anwesenheit von Kollagen und PDGF vermehrt die α 2-Untereinheit exprimiert, in fibronektinreichen Gels wurde bei gleichbleibender Stimulation die Synthese von α 5-Untereinheiten induziert. In der provisorischen Wundmatrix sind alle Liganden der von uns untersuchten Untereinheiten vorhanden und die Stimulation durch das von Thrombozyten sezernierte PDGF könnte zu einer initialen vermehrten Expression der Integrin-Untereinheiten als Voraussetzung einer regulären Wundheilung führen. In chronischen Wunden scheint die Expression allerdings noch verstärkt, was durch die bekannte persistierende Inflammation in der chronischer Wunde mit einem Anstieg von unter anderem TNF- α erklärt werden kann.

TNF- α ist ein Mediator von dem bekannt ist, in vitro eine vermehrte Expression der α -Untereinheiten zu verursachen (SANTALA & HEINO, 1991; GEBAUER et al., 1996). Schon seit einiger Zeit wird diskutiert, daß ein bedeutender Mechanismus der verzögerten Wundheilung eine persistierende Entzündungsreaktion im Wundgebiet ist (SHEKHTER et al.,1984). Daraus könnte eine anhaltende Stimulation der Fibroblasten durch TNF- α resultieren, die auch die vermehrte Expression der α -Integrinuntereinheit erklären würde. Allerdings konnte dieser Effekt nicht für die β 1-Untereinheit nachgewiesen werden, da deren Expression in vitro durch TNF- α nicht stimulierbar war. Andere Reize müssen also die Zellen veranlassen auch die β 1-Kette zu synthetisieren bzw. zu externalisieren. Für α 6 β 1, ein in unserer Arbeit nicht untersuchtes Integrin, konnte eine selektive Hochregulation durch Interleukin-1 α bei Pankreascarcinom-Zellen nachgewiesen werden (SAWAI et al., 2005)

2. Neben anderen Zytokinen, deren Effekt auf die Integrine noch untersucht werden muß, kann aber auch die Matrix direkt die Präsentation der Integrine regeln (GAILIT & CLARK,

1994). So ist es vorstellbar, daß Fibroblasten im Granulationsgewebe nur ungenügend adherieren und migrieren können und deshalb immer mehr Integrine produzieren um diesen Nachteil auszugleichen. Diese Insuffizienz der Zellmatrix in chronischen Wunden wurde in verschiedenen Untersuchungen belegt. GRINNELL et all. (1992) konnte im Wundsekret chronischer Wunden hohe Konzentrationen von Fragmenten der Matrixproteine Fibronektin und Vitronektin nachweisen, die die Zelladhesion nicht mehr unterstützen sondern diese vielmehr noch verhindern, indem sie die Rezeptoren belegen und ihren ursprünglichen Liganden gegenüber unerreichbar machen. Diese relative Matrixinsuffizienz ließe sich durch die in chronischen Wunden vermehrt vorhandenen Proteasen (BULLEN et al., 1995; YAGER et al., 1996; VAALAMO et al., 1996) erklären. Der Verlust der fibrillären Struktur wichtiger Matrix Komponenten wie Fibronektin, Vitronektin, Hyaluronsäure und Kollagen III führt dazu, daß Integrine zwar an die Fragmente binden, die Zelle aber ihren Kraftvektor nicht auf die Umgebung anwenden kann, um sich im Raum weiterzubewegen. Um dieses Phänomen zu erreichen braucht nur ein kleiner Teil der Matrix angedaut zu werden, da die freigesetzten Fragmente die Integrine belegen und sie für die Bindung an noch intakten Matrixstrukturen nutzlos machen (GRINNELL et al., 1992). Schon seit längerem ist bekannt, daß man die Adhäsion und Migration mit Proteinfragmenten, die die jeweiligen Bindungsstellen aufweisen, verhindern kann (CHARO et al., 1990; DIAMONDS & SPRINGER, 1994)

Eine andere Möglichkeit die erhöhte Präsenz von Integrinen auf den Fibroblasten zu 3. erklären ist deren verminderter Abbau. Es stellte sich heraus, daß Fibroblasten, im Gegensatz zu neutrophilen Granulozyten, bei der Migration einen großen Teil ihrer β1-Integrine verlieren. REGEN & HORWITZ (1992) beobacheten Integrinaggregate auf migrierenden Hühnerfibroblasten. Dabei bemerkten sie, daß an der der Migratonsrichtung abgewandten Oberfläche der Zellen die Integrine zum einen in Vesikeln ins Zellinnere transportiert wurden, zum anderen aber ein Teil der β 1- und α 5- Integrinuntereinheiten auf dem Substrat zurückblieb. Mit verbesserten Untersuchungsmethoden konnte die Gruppe um PALECEK et al. (1996) nachweisen, daß 81 ± 15 % der Integrine aus den Makroaggregaten aus der Zelle gelöst werden und an den Komponenten der Zellmatrix haften bleiben. Phänomene wie die vorher beschriebene Vesikelbildung oder die Diffusion der Integrine in der Zellmembran wurden ebenfalls beobachtet; der weitaus größte Teil der Integrine ging allerdings bei der Migration verloren. Dieser Verlust wichtiger Zelleigenschaften scheint ökonomisch wenig sinnvoll, und wurde in dieser Art auch nur bei langsam migrierenden Zellen, z.B. Fibroblasten, beobachtet, die in Ruhe residente Zellen des Gewebes sind. Zellen die öfters auf die Migration angewiesen sind, wie Granulozyten oder Keratinozyten, zeigen eine koordiniertere Bewegung bei der Migration und man kann davon ausgehen, daß diese Zellen andere Mechanismen zur Ablösung vom Substrat einsetzen. Für Fibroblasten jedoch ist der Verlust ihrer Adhäsionsaggregate wahrscheinlich ein physiologischer Prozeß. In vivo Untersuchungen von migrierenden Fibroblasten in der Kornea haben ergeben, daß Teile der Zellmembran an der

70

der Migrationsrichtung abgewandten Seite der Fibroblasten zurückgelassen wurden (HAY, 1985). Für unsere Untersuchung würde das bedeuten, daß wir in chronischen Wunden signifikant mehr Integrinuntereinheiten nachweisen konnten, weil die Fibroblasten aufgrund einer eingeschränkten Migration weniger Integrinaggregate in die Zellmatrix abgegeben haben.

Da Integrine nicht nur bei der Migration und Adhäsion der Zellen von Bedeutung sind, sondern auch an zytoplasmatisch interzellulären Kommunikation beteiligt sind, hat eine Veränderung ihrer Zahl Konsequenzen für das Verhalten der Fibroblasten. WERB et al. (1989) konnten nachweisen, daß die Bindung von Fibronektin- bzw. Vitronektin-Fragmenten an ihre jeweiligen Rezeptoren (α 5 β 1 bzw. α v β 1) zu einer Sekretion von Proteasen (Kollagenase und Stromelysin) führt. Intaktes Fibronektin /Vitronektin hatte diese Potenz nicht. Ähnliches gilt für die Hyaluronsäure, Hyaluron-oligosaccharide induzieren die Transkription von Metalloproteasen (FIEBER et al., 2004). Wie die Fibroblasten diese Information an das Zellinnere weiterleiten, ist bisher nicht in allen Einzelheiten geklärt. Allerdings werden verschiedene Second Messenger Kaskaden als wahrscheinlich angesehen (SCHWARTZ, 1995). Somit hätte die Verdopplung der Integrine auf der Zelloberfläche einen exponentiellen Anstieg der Zellantwort zur Folge, in diesem speziellen Fall also eine drastische Steigerung der Proteasensekretion. Diese Proteasen könnten dann die Matrix soweit verdauen, daß eine Adhäsion der Zellen nicht mehr möglich ist und damit eine Reduktion der Integrindichte erschwert wird. Somit scheint die erhöhte Integrinpräsentation einen sich selbst unterhaltenden Proteasenfluß zu induzieren, der für die chronische Wunde bereits beschrieben ist.

Integrine greifen zusätzlich auch in den Zell-Zyklus ein. Die Replikation von normalerweise adhärenten Zellen, wie Fibroblasten und Endothelzellen, braucht die Bindung an ein solides Substrat (FOLKMAN & MOSCONA, 1978; STOKER et al., 1968). Die Apoptose, ein weiterer Parameter der mit dem Zellwachstum zusammenhängt, kann auch durch Integrine induziert werden. Zellen die ohne Kontakt zur extrazellulären Matrix in Suspension bleiben, starten das genetische Programm zum Zelltod (MEREDITH et al., 1993; FRISCH & FRANCIS, 1994). Obschon MEREDITH et al. (1993) in ihrer Studie zeigen konnten, daß Fibroblasten relativ resistent gegenüber diesem Reiz sind, stellte sich heraus, daß Endothelzellen sehr empfindlich reagieren. Dies könnte sich in einer verminderten Neoangionese in chronischen Wunden niederschlagen. BROOKS et al. (1994a, b) konnten dies in einem in vivo Modell für $\alpha v\beta 3$ Integrin nachweisen. Interessanterweise ist die Sekretion von matrixabbauenden Proteasen ein früher Schritt der Apoptose in der Regression verschiedener Organe (RENNIE et al., 1984; SHIMADA et al., 1985; TALHOUK et al., 1992). An der Maus konnte die Blockade der Metalloproteinasen einen Abbau der Matrix und damit die Apoptose bei der Involution der Brustdrüse verhindern. Andererseits war ein Steigerung der Proteasenproduktion ausreichend, um die Apoptose zu induzieren (STREULI et al., 1991; TALHOUK et al., 1992). Dies könnte die geringere Zelldichte in chronischen Wunden erklären.

71

5.2.1.2. Hyaluronsäurerezeptor, CD44

Im Gegensatz zu den Untersuchungen der Integrine ist der Hyaluronsäurerezeptor sowohl in regulär heilenden als auch in chronischen Wunden maximal präsentiert. Auf nahezu allen Fibroblasten ließ sich eine hohe Dichte der Hyaluronsäurerezeptoren nachweisen. Die erhobenen Ergebnisse passen zu Untersuchungen am Tiermodell, bei denen sowohl bei regulärer als auch bei gestörter Wundheilung durch lokale Therapie einer Defektwunde mit einer Hyaluronsäureauflage ein positiver Effekt nachgewiesen werden konnte (SIEBENSCHUH et al. 1998).

Die Dichte der CD44 Rezeptoren auf Fibroblasten chronischer und regulär heilender Wunden war in regulär heilenden Wunden signifikant höher.

Auch wenn diese Beobachtung den bei den Integrinen festgestellten Ergebnissen entgegengesetzt erscheint, läßt sie sich ähnlich erklären. Wenn die Matrix durch in loco produzierte Metalloproteinasen in ihrer fibrillären Struktur zerstört wird, übernehmen CD44 Rezeptoren ihre Aufgabe bei der Wiederaufnahme (UNDERHILL et al., 1993; HUA et al., 1993; CULTY et al., 1992) eines Teils der Hyaluronsäure in die Zelle und ihrem Abbau. Die Internalisation der Rezeptoren führt dazu, daß sie in der Flow-Cytometrie nicht zu entdecken sind.

5.2.2. Erweitertes Model der gestörten Wundheilung

Chronische Wunden sind definitionsgemäß sekundär heilende Wunden die, trotz kausaler und sachgerechter Therapie, innerhalb von 6 Wochen keine Tendenz zur Heilung zeigen. Wie in der Einleitung beschrieben, können mehere Grunderkrankungen (S. 5) als ursächlich für eine gestörte Wundheilung angesehen werden. Zur Zeit bestehen verschiedene Hypothesen zur Pathophysiologie chronischer Wunden, die anhand der eben diskutierten Ergebnisse ergänzt werden können.

Das Versagen der Muskelpumpe bei der venösen Insuffizienz führt zu einer Druckerhöhung bis in die Kapillaren der Endstrombahn im Sinne einer Rückwärtsdekompensation. Dies führt zu einer verschlechterten Stoffwechselsituation und Ödemen. Am Rande von venösen Ulcerationen wurden perivaskuläre Fibrinablagerungen beschrieben, die BROWSE & BURNAND (1982) für eine verminderte Diffusion von Sauerstoff und anderen Nährstoffen in die Dermis verantwortlich machten, und damit eine Anoxie des Gewebes als Ursache der Ulceration postulierten. Experimentell konnte bewiesen werden, daß eine venöse Hypertension zur Leckage von Fibrinogen in das Gewebe führt (BURNAND et al., 1982). Auch eine Gewebehypoxie konnte von den meisten Untersuchungen festgestellt werden (HOPKINS et al., 1983; PARTSCH, 1984; FALANGA et al., 1987), wurde aber nicht mit jeder Untersuchungsmethode bestätigt (DODD & GAYLARD, 1985). Das schärfste Argument gegen diese Hypothese ist, daß die Fibrinbarriere diskontinuierlich ist (PARDES et al., 1990) und daß venöse Ulcerationen auch heilen ohne daß die Ablagerungen verschwinden (FALANGA et al., 1992). Weiterhin führt die venöse Hypertension zur Schädigung der Endothelzellen, Leukozyten bleiben haften und werden aktiviert. Die Aktivierung der Leukozyten mit der anschließenden Freisetzung von Entzündungsmediatoren führt zu der beobachteten gesteigerten kapillären Permeabilität, die ihren Beitrag zur Gewebeschädigung leistet (SCOTT et al., 1991).

In jedem Fall kommt es zu einem Austritt von Fibrinogen und anderen Makromolekülen in das perivaskuläre Gewebe. FALANGA & EAGLESTEIN (1993) behaupten, daß diese Proteine Wachstumsfaktoren oder andere homeostatisch wirksame Substanzen binden und somit der Gewebereparatur entziehen. Im Gewebe um die Kapillaren konnten vor allem Fibrinogen und α 2-Makroglobulin nachgewiesen werden (HIGLEY et. al, 1992), wobei letzteres als Bindungsprotein für Wachstumsfaktoren, einschließlich TGF- β bekannt ist (DANIELPOUR et al.,1990). Ein weiterer Hinweis liefert die Beobachtung, daß Wundflüssigkeit aus venösen Ulcera die Proliferation von Fibroblasten, Endothelzellen, sowie Keratinozyten in vitro nicht zu stimulieren vermag (BUCALO et al.,1989). Mit Wundflüssigkeit akuter Wunden (KATZ et al., 1991) wird jedoch eine Stimulation der Proliferation erreicht.

Die Ursache des Ulcus cruris arteriosum stellt überwiegend die Arteriosklerosis obliterans der großen und mittleren Gefäße dar. Die Plaques stenosieren die Gefäße und führen damit zu einer Mangeldurchblutung die vom Grad der Kollateralisierung abhängig ist. Hinzu kommt, daß Fibrinablagerungen um die Kapillaren herum beschrieben wurden (BALSLEV et al.,1992), die ähnliche Konsequenzen wie bei venösen Ulcerationen haben.

Beim Diabetiker bedingen mechanische Traumata und metabolische Störungen die verzögerte Wundheilung. Ablagerungen um die Kapillaren sind bei dieser Stoffwechselkrankheit schon seit längerem beschrieben, sodaß die Hypoxie im Wundgewebe einerseits durch die beschleunigte Arteriosklerose (CARRICO et al., 1984), andererseits durch die verlängerte und erschwerte Diffusionsstrecke auf Kapillarebene bedingt ist. GOODSON & HUNT (1977) haben am Tiermodel bewiesen, daß die Kollagensynthese bei diabetischen Tieren signifikant vermindert ist, sowie weniger Zellen im Granulationsgewebe zu finden sind. Weitere Untersuchungen (GOODSON & HUNT, 1978; FAHEY et al., 1991) zeigten, daß Insulin nicht direkt in die Kollagensynthese eingreift, sondern in der inflammatorischen Phase eine Ereigniskaskade beeinflußt, an deren Ende eine adäquate Kollagensynthese steht.

Anhand unserer Untersuchungen muß allerdings noch ein neuer Aspekt mit diesen Hypothesen verflochten werden. So kommt es infolge der in chronischen Wunden herrschenden anoxischen Bedingungen zu einer Sekretion von Proteasen, wie sie in regulär heilenden Wunden physiologischerweise nur in der Anfangsphase vorkommen (ANDERSON et al., 1995). Diese andauernde Proteasensekretion verdaut die den Fibroblasten umgebende Matrix und setzt Fibronektin und Vitronektin-Fragmente frei, die in der Wundflüssigkeit chronischer Wunden in hohen Dosen nachgewiesen wurden (GRINNEL et al., 1992). FUKAI et al. (1991) konnte zeigen, daß ein 21kDa und ein 110kDa Fragment des Fibronektins eigentlich chemotaktisch aktiv sind. Hohe Konzentrationen des 21kDa Fragments inhibieren allerdings die chemotaktischen Eigenschaften sowohl des 21kDa als auch des 110kDa Fragmentes. Ausserdem bedingt die Anoxie eine Veränderung der Zusammenstellung der Wundmatrix, so wird die Synthese von Hyaluronsäure durch Laktat gesteuert, das in anoxischen Geweben vermehrt anfällt (STERN et al., 2002).

Die Matrixfragmente belegen außerdem die Bindungsstellen der Integrine, die normalerweise für die Migration der Fibroblasten in das Wundgebiet nötig sind und deren Expression initial durch Faktoren wie TNF- α hochreguliert wird. Diese können nicht mehr an dem Gerüst der Matrix entlang migrieren.

 α 5 β 1 und α v β 3 Integrine, die nur Fragmente ihrer eigentlichen Liganden gebunden haben, stimulieren die Sekretion von Stromelysin und Kollagenase (WERB et al., 1989). Genauso wurde dies für den CD44 Hyaluronrezeptor nachgewiesen, seine Belegung mit Hyaluron-Fragmenten führt zur Sekretion von Metalloproteasen (FIEBER et al., 2004). Dies führt dazu, daß sich ein sich selbst unterhaltender Kreis schließt, der eine andauernde autolytische Aktivität der Fibroblasten zu Folge hat.

Auch die verminderte Zelldichte in chronischen Wunden läßt sich erklären. Um sich teilen zu können brauchen sie ein festes Substrat (FOLKMAN & MOSCONA, 1978; STOKER et al., 1968); finden sie dies nicht, leiten sie die Apoptose ein (MEREDITH et al., 1993; FRISCH & FRANCIS, 1994). Dies vermindert vor allem die Angiogenese (BROOKS et al., 1994a, b) in chronischen Wunden, was eine verminderte Perfusion des Granulationsgewebes nach sich zieht und somit die Wundheilung verzögert.

5.2.3. Konsequenzen in der Therapie schlecht heilender Wunden.

Da die erhöhte Aktivität der Metalloproteasen nicht nur direkten Einfluß auf die mechanische Festigkeit des Granulationsgewebes hat, sondern mit den Abbauprodukten der Matrix auch noch physiologische Abläufe stört, erscheint eine Inhibition der Matrixmetalloproteasen ein sinnvolles Therapiekonzept zu sein. Allerdings ist die wahllose Blockade der enzymatischen Aktivität nicht zu empfehlen, da sie auch physiologischerweise eine wichtige Bedeutung bei der Migration der Zellen, oder bei der Angiogenese spielt. Versuche mit niedrig dosiertem Doxicyclin, wie es in der Parodontosebehandlung angewandt wird, könnten bei Problemwunden die entscheidenden Erkenntnisse liefern (TEKOPPELE et al, 1998).

Weiterhin erscheint es sinnvoll, in der lokalen Therapie die wichtigsten Matrixproteine anzubieten. Wundauflagen, die Hyaluronsäure, Fibronektin und Vitronektin enthalten, könnten mit ihrer gelartigen Struktur den Zellen ein geeignetes Medium zur Proliferation bieten und ein Durchbrechen des autolytischen Prozesses im Granulationsgewebe ermöglichen. Versuche mit Hyaluronsäureauflagen an Mäusen konnten belegen, daß sowohl der Heilungsverlauf akuter als auch chronischer Wunden signifikant verkürzt werden konnte. Am Patienten liegen noch keine aussagefähigen Studien vor.

6. Literaturverzeichnis:

1.	Akiyama, S.K., Yamada, S.S., Chen, W.T.:	Analysis of fibronectin receptor function with monoclonal antibodies: roles in adhesion, migration, matrix assembly and cytosceletal organization. J Cell Biol <u>109</u> , 863-875, 1989
2.	Albelda, S. M.:	Endothelial and Epthelial Cell Adhesion Molecules. Am. J. Respir. Cell Mol. Biol. <u>4</u> , 195-203, 1991.
3.	Albelda, S.M., Buck, C.A.:	Integrins and other cell adhesion molecules. FASEB J <u>4</u> , 2868-2880, 1990
4.	Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., Watson, J.D.:	Molecular biology of the cell. 2 nd edition, 821, 1989
5.	Anderson, G.R., Volpe, C.M., Russo, C.A., Stolper D.L., Miloro, S.M.:	The anoxic fibroblast response is an early-stage wound healing program. J. Surg. Res. <u>59</u> , 666-674, 1995
6.	Ansel, J.C, Tiesman, J.P, Olerud, J.E, et al.:	Human keratinocytes are a major source of coutaneus platelet- derived growth factor. J Clin Invest <u>92</u> , 671-678, 1993
7.	Aruffo, A., Stamenkovic, I., Melnick, M., Underhill, C.B., Seed, B.:	CD44 is the principal cell surface receptor for hyaluronate. Cell <u>61</u> , 1303-1313, 1990
8.	Assoian, A.K., Komoriya, A., Meyers, C.A, Miller, D.M., Sporn, M.B.:	Transforming growth factor-beta in human platelets. Indentification of a major storage site, purification, and characterization. J Biol Chem <u>258</u> , 7155-7160, 1983
9.	Bailey, A.J, Sims, T.J, LeLou, et al.:	Collagen Polymorpism in experimental granulation tissue. Biochem Biophys Res Commun <u>66</u> , 1160-1165, 1975

10.Bainton, D.F., Miller, L.J., Kishimoto, T.K., Springer, T.A.:	Leukocyte adhesion receptors are stored in peroxidase-negative granules of human neutrophils. J. Exp. Med. <u>166</u> , 1641-1653, 1987
11.Balslev, E., Thomsen, H.K., Danielson, L., Warburg, F.:	The occurrence, of, pericapillary fibrin in venous hypertension and ischaemic leg ulcers: a histopathological study. Br. J. Dermatol. <u>126</u> , 582-585, 1992
12.Barbul, A., Regan, M.C.:	Biology of Wound Healing. In Fisher J.A. (ed): Surgical Basic Science. St. Louis, Mosby- Yearbook, 67-89, 1993
13.Barker, J.N.W.N., Sarma, V., Mitra, R.S., Dixit, V.M., Nickoloff, B.J.:	Marked synergism between Tumor necrosis factor-□ and Interferon- □ in regulation of keratinocyte-derived adhesion molecules and chemotactic factors. J Clin Invest <u>85</u> , 605-608, 1990
14.Beezhold, D.H., Personius, C.:	Fibronectin fragments stimulate tumor necrosis factor secretion by human monocytes. J Leukoc Biol <u>51</u> , 59-64, 1992
15.Belligan, G.J., Caldwell, H., Howie, S.E.M., Dransfield, I., Haslett, C.:	In vivo fate of the inflammatory macrophage during the resolution of inflammation. J Immunol <u>157</u> , 2577-2585, 1996
16.Bentley, J.P.:	Rate of chondroitin sulfate formation in wound healing. Ann Surg <u>165</u> , 186-191, 1967
17.Bevilacqua, M.P., Pober, J.S., Wheeler, M.E., et al.:	Interleukin 1 acts on cultured human vascular endothelium to increase the adhesion of polymorhonuclear leukocytes, monocytes, and related leukocyte cell lines. J Clin Invest <u>76</u> , 2003-2011, 1985
18.Bilsland, C.A., Diamond, M.S., Springer, T.A.:	The leukocyte integrin p150,95 (CD11c/CD18) as a receptor for iC3b. Activation by a heterologous beta subunit and localization of a ligand recognition site to the I domain. J Immunol. 1994 May 1;152(9):4582-4589

19.Birch, M., Mitchell, S., Hart, I.R.:	Isolation and characterization of human melanoma cell variants expressing high and low levels of CD44. Cancer Res. <u>51</u> , 6660-6667, 1991
20.Bodary, S.C., Lipari, T., Muir, C., Napier, M., Pitti, R., McLean, J.S.:	Deletion of the cytoplasmic and transmembrane domains of GPIIbII- la results in a functional receptor. J Cell Biol 115, 289a, 1992
21.Bodary, S.C., McLean, J.W.:	The Integrin □1 subunit associates with the vitronectin receptor □v to form a novel vitronectin receptor in a human embryomic kidney cell line. J Biol Chem <u>265</u> , 5938-5941, 1990
22.Borregaard, N., Miller, L.J., Springer, T.A.:	Chemoattractant-regulated fusion of a novel, mobilizable intracellular compartment with the plasma membrane in human neutrophils. Science <u>237</u> , 1204-1206, 1987
23.Brooks, P.C., Clark, R.A.F., Cheresh, D.A.:	Requirement of vascular integrin □v□3 for angiogenesis. Science <u>264</u> , 569-571, 1994a
24.Brooks, P.C., Montomery, A.M.P., Rosenfeld, M., Reisfeld, R.A., Hu, T., et al.:	Integrin □v□3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell <u>79</u> , 1157-1164, 1994b
25.Brown, T.A., Bouchard, T., St. John, T., Wayner, E., Carter, W.G.:	Human keratinocytes express a new CD44 core protein (CD44E) as a heparan-sulfate intrinsic membrane proteoglycan with additional exons. J Cell Biol <u>113</u> , 207-221, 1991
26.Browse, N.L., Burnand, K.G.:	The cause of venous ulceration. Lancet <u>2</u> , 243-245, 1982
27.Brooks,P.C., Clark, R.A.F., Cheresh, D.A.:	Requierement of vascular integrin □v□3 for angiogenesis. Science <u>264</u> , 569-571, 1994

28.Bucalo, B., Eaglstein, W.H., Falanga, V.:	The effect of chronic wound fluid on cell proliferation in vitro. J Invest Dermatol (abstract) <u>92</u> , 408, 1989
29.Buck, C.A., Horwitz, A.F.:	Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol <u>3</u> , 179-205, 1987
30.Buck, C.A., Shea, E., Duggan, K., Horwitz, A.F.:	Integrin (the CSAT antigen): Functionality requires oligomeric integrity. J Cell Biol <u>103</u> , 2421-2428, 1986
31.Bullen, E., Longaker, M.T., Updike, D.L., Benton, R., Ladin, D., Hou, Z., Howard, E.W.:	Tissue inhibitor of metalloproteinases-1 is decreased and activated gelatinases are increased in chronic wounds. J Invest Dermatol <u>104</u> , 236-240, 1995
32.Burnand, K.G., Whimster, I., Naidoo, A., Browse, N.L.:	Pericapillary fibrin in the ulcer bearing skin of the leg: the cause of lipodermatosclerosis and venous ulceration. BMJ <u>285</u> , 1071-1072, 1982
33.Burridge, K., Fath, K., Kelly, T., Nuckolis, B., Turner, C.:	Focal adhesions: transmembrane junctions between the extracellular matrix and the cytoskeleton. Annu Rev Cell Biol <u>4</u> , 487-525, 1988
34.Busk, M., Pytela, R., Sheppard, D.:	Characterization of the integrin $\Box v \Box 6$ as a fibronectin-binding protein. J Biol Chem <u>267</u> , 5790-5796, 1992
35.Busser, F., Rösken, F., Hanselmann, R., Koch, B., Mutschler, W., Koschnick, M.:	Die zelluläre Zusammensetzung von humanem Granulationsgewebe bestimmt mittels Fluoreszenz Aktiviertem Cell Sorting (FACS). 62. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie (abstr.), Berlin, 1821.11.1998

36.Buyon, J.P., Abramson, S.B., Philips, M.R., Slade, S.D., Ross, G.D., Weissman, G., Winchester, R.J.:	Dissociation between increased surface expression of Gp165/95 and homotypic neutrophil aggregation. J Immunol <u>140</u> , 3156-3160, 1988
37.Byers, H.R., Etoh, T., Vink, J., Franklin, N., Gattoni-Celli, S., Mihm, M.C.:	Actin organization and cell migration of melanoma cells relate to differential expression of integrins and actin-associated proteins. J Dermatol <u>19</u> , 847-852, 1992
38.Cagnoni, M.L., Ghersetich, I., Lotti, T.:	Cell adhesion molecules in inflammatory and neoplastic skin diseases. J Eur Acad Dermat Venerol <u>2</u> , 94-112, 1993
39.Carrell, N., Fitzgerald, L., Steiner, B., Erickson, H., Phillips, D:	Structure of human platelet membrane glycoproteines IIb and IIIa as determined by electron microscopy. J Biol Chem <u>260</u> , 1743-1749, 1985
40.Carrico, T.J., Mehrhof, A.I. Jr., Cohen, I.K.:	Biology of wound healing Surg Clin North Am <u>64</u> , 721-733, 1984
41.Carter, W.G., Ryan, M.C., Gahr, P.J.:	Epiligrin, a new cell adhesion ligand for integrin □3□1 in epithelial basement membranes. Cell 65, 599-610, 1991
42.Carter, W.G., Wayner, E.A.:	Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J Biol Chem <u>263</u> , 4193-4201, 1988
43.Caspersson, T., Schultz, J.:	Nucleic acid metabolism of the chromosomes in relation to gene reproduction. Nature <u>142</u> , 294-297, 1938
44.Chan, B.M.C., Elices, M.J., Murphy, E., Hemler, M.E.:	Adhesion to VCAM-1 and fibronectin: comparison of $\Box 4 \Box 1$ (VLA-4) and $\Box 4 \Box 7$ on the human B cell line JY. J Biol Chem, <u>267</u> , 8366-8370, 1992

45.Charo, I.F., Nannizzi, L., Smith, J.W., Cheresh, D.A.:	The vitronectin receptor $\Box v \Box 3$ binds fibronectin and acts in concert with $\Box 5 \Box 1$ in promoting cellular attachment and spreading on fibronectin. J Cell Biol <u>111</u> , 2795-2800, 1990
46.Chen, W.T., Hasegawa, E., Hasegawa, T., Weinstock, C., Yamada, K.M:	Development of cell surface linkage complexes in cultured fibro- blasts. J Cell Biol. 1985 Apr;100(4):1103-1114
47.Cheresh, D.A., Smith, J.W., Cooper, H.M., Quaranta, V.:	A novel vitronection receptor integrin ($\Box v \Box 3$) is responsible for distinct adhesive properties of carcinoma cells. Cell <u>57</u> , 59-69, 1989
48.Cheresh, D.A., Spiro, R.C.:	Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem <u>262</u> , 17703-17711, 1987
49.Chodorowska, G., Rogus-Skorupska, D.:	Cutaneous wound healing. Ann Univ Mariae Curie Sklodowska <u>59,</u> 403-7, 2004
50.Clark, R.A.:	Regulation of fibroplasia in cutaneus wound repair [review]. J Pediatr Surg <u>306</u> , 42-48, 1993
51.Clark, R.A.F.:	Wound repair: Overview and general considerations. In The Molecular and Cellular Biology of Wound Repair, ed 2. New York, Plenum Press, p3, 1996
52.Clark, R.A.F.:	Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol <u>94</u> , 128S-134S, 1990
53.Clark, R.A.F.:	Cutaneus wound repair: A review with emphasis on integrin receptor expression. In: Wound Healing; Janssen H., Rooman R., Robertson J.I.S. Wrightson Biomedical Publishng Ltd, 7-17, 1991

54.Clark, R.A., Lin, F., Greiling, D., An, J., Couchman, J.R.:	Fibroblast invasive migration into fibronectin/fibrin gels requires a previously uncharacterized dermatan sulfate-CD44 proteoglycan J Invest Dermatol <u>122</u> , 266-277, 2004
55.Clore, J.N., Cohen, I.K., Diegelmann, R.F.	Quantitation of collagen types I and III during wound healing in rat skin. Proc Soc Biol Med <u>161</u> , 337-340, 1979
56.Colige, A.C., Lambert, C.A., Nusgen, B.V., et al.:	Effect of cell-cell and cell-matrix interactions on the response of fibroblasts to epidermal growth factor in vitro. Expression of Collagen type I, Collagenase, stromelysin and tissue inhibitor of metalloproteinases. Biochem J <u>285</u> , 216-221, 1992
57.Coons, A.H., Kaplan, M.H.:	Localization of antigen in tissue cells. II. Improvements in a method for detection of antigen by means of fluorescent antibody. J Exp Med <u>91</u> , 1-4, 1950
58.Coulter, W.H.:	High speed automatic blood cell counter and cell size analyzer. Proc Natl Electronics Conf <u>12</u> , 1034-1040, 1956
59.Cowin, A.J., Holmes, T.M., Brosnan, P., Ferguson, M.W.:	Expression of TGF-beta and its receptors in murine fetal and adult thermal wounds. Eur J Dermatol <u>11</u> , 424-431, 2001
60.Culty, M., Nguyen, H.A., Underhill, C.B.:	The hyaluronan receptor (CD44) participates in the uptake and degradation of hyaluronan. J Cell Biol <u>116</u> , 1055-1062, 1992
61.Currie, C.J., Morgan, C.L., Peters, J.R.:	The epidemiology and cost of inpatient care for peripheral vascular disease, infection, neuropathy an ulceration in diabetes. Diabetes Care <u>21</u> , 42-48, 1998
62.Danielpour, D., Sporn, M.B.:	Differential inhibition of transforming growth factor beta-1 and beta-2 activity by alpha 2-macroglobulin. J Biol Chem <u>265</u> , 6973-6977, 1990
63.Darby, I., Skalli, O., Gabbiani, G.:	Alpha-smooth muscle actin is transiently expressed by myofibroblasts during experimental wound healing. Lab Invest 63, 21-29, 1990

64.Darzynkiewicz, Z., Robinson, J.P., Crissman, H.A.:	Flow-Cytometrie. Methods in cell biology. 2 nd edn. San Diego: Academic Press, 41-42, 1994
65.Desmouliere, A., Chaponnier, C., Gabbiani, G.:	Tissue repair, contraction, and the myofibroblast. Wound Repair Regen <u>13</u> , 7-12, 2005
66.Dhawan, J., Farmer, S.R.:	Regulation of alpha 1 (I)-collagen gene expression in response to cell adhesion in Swiss 3T3 fibroblasts. J Biol Chem <u>265</u> , 9015-9021, 1990
67.Diamond, M.S., Springer, T.A.:	The dynamic regulation of integrin adhesiveness. Current Biology <u>6</u> , 506-517, 1994.
68.Diegelmann, R.F., Evans, M.C.:	Wound healing: an overview of acute, fibrotic and delayed healing. Front Biosci <u>1</u> , 383- 289, 2004
69.Dodd, H.J., Gaylarde, P.M., Sarkany, I.:	Skin oxygen tension in venous insufficiency of the lower leg. J R Soc Med <u>78</u> , 373-376, 1985
70.Doillon, C.J., Dunn, M.G., Bender, E., Silver F.H.:	Collagen fiber formation in repair tissue: Development of strength and toughness. Coll Relat Res <u>5</u> , 481-492, 1985
71.Dustin, M.L., Rothlein, R., Bhan, A.K., Dinarello, C.A., Springer, T.A.:	Induction by IL-1 and interferon-gamma: tissue distribution, biochemistry and function of natural adherence molecule (ICAM-1) J Immunol <u>137</u> , 245-254, 1986
72.Eckes, B., Mauch, C., Huppe, G., Krieg, T.:	Downregulation of collagen synthesis in fibroblasts within three- dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett. <u>318</u> , 129-133, 1993
73.Ehrlich, H.P., Krummel, T.M.:	Regulation of Wound healing from a connectiv tissue perspective. Wound Repair and Regeneration 4 , 203, 1996

74.Ehrlich, H.P.:	Wound closure: Evidence of cooperation between fibroblasts and collagen matrix. Eye <u>2</u> , 149-157, 1988
75.Elices, M.J., Osborn, L., Takada, Y., Couse, C., Luhowskyj, S., Hemler, M.E., Lobb, R.R.:	VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell <u>60</u> , 577-584, 1990
76.Elices, M.J., Urry, L.A., Hemler, M.E.:	Receptor functions for the integrin VLA-3: Fibronectin, collagen, and laminin binding are differentially influenced by Arg-Gly-Asp peptide and by divalent cations J Cell Biol <u>112</u> , 169-181, 1991
77.Etoh, T., Thomas, L., Pastel-Levy, C., Colvin, R.B., Mihm, M.C., Byers, H.R.:	Role of integrin □2□1 (VLA-2) in the migration of human melanoma cells on laminin and type IV collagen. J Invest Dermatol <u>100</u> , 640-647, 1993
78.Faassen A.E., Schrager, J.A., Klein, D.J., Oegema, T.R., Couchman, J.R., McCarty, J.B.:	A cell surface chondroitin sulfate proteoglycan, immunological related to CD44, is involved in type I collagen-mediated melanoma cell motility and invasion. J Cell Biol <u>116</u> , 521-531, 1992
79.Fahey, T.J., Sadaty, A., Jones, W.G.II, Barber, A., Smoller, B., Shires, G.T.:	Diabetes impairs the late inflammatory response to wound healing. J Surg Res <u>50</u> , 308-313, 1991
80.Falanga, V., Eaglstein, W.H.:	The " trap " hypothesis of venous ulceration. Lancet <u>341</u> , 1006-1008, 1993
81.Falanga, V., Kirsner, R., Katz, M.H., Gould, E., Eaglstein, W.H., McFalls, S.:	Pericapillary fibrin cuffs in venous ulceration: persistence with treatment and during ulcer healing. J Dermatol Surg Oncol <u>18</u> , 409-414, 1992

82.Falanga, V., Moosa, H.H., Nerneth, A.J., Alstadt, S.P., Eaglstein, W.H.:	Dermal capillary fibrin in venous disease and venous ulceration. Arch Dermatol <u>123</u> , 620-623, 1987
83.Favaloro, E.J., Moraitis, N., Bradstock, K., Kutts, J.:	Co-expression of haemopoietic antigens on vascular endothelial cell: a detailed phenotypic analysis. Br J Haematol <u>74</u> , 385-394, 1990
84.Felsenfeld, D.P., Choquet, D., Sheetz, M.P.:	Ligand binding regulates the directed movement of □1 integins on fibroblasts. Nature <u>383</u> , 438-440, 1996
85.Fieber, Ch., Baumann, P., Vallon, R., Termeer, Ch., Simon, J.C., Hofmann, M., Angel, P., Herrlich, P., Sleeman, J.P.:	Hyaluronan-oligosaccharide-induced transcription of metalloprotein- ases J. Cell Sci <u>117</u> , 359-367, 2005
86.Fitzgerald, L.A., Poncz, M., Steiner, B., Rall, S.C. Jr., Bennett, J.S., Phillips, D.R.:	Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochem <u>26</u> , 8158-8165, 1987
87.Folkman, J., Moscona, A.:	Role of cell shape in growth control. Nature <u>273</u> , 345-349, 1978
88.Freed, E., Gailit, J., van der Geer, P., Ruoslathi, E., Hunter, T.:	A novel integrin □ subunit is associated with the vitronectin receptor □ subunit (□v) in human osteocarcinoma cell line and is a substrate for protein kinase C. EMBO J <u>8</u> , 2955-2965, 1989
89.Friedl, P., Maaser, K., Klein, C.E., Niggeman, B., Krohne, G., Zanker, K.S.:	Migration of highly aggressive MV3 melanoma cells in 3-dimensional collagen lattices results in local matrix reorganisation and shedding of alpha2 and beta1 integrins and CD44. Cancer Res <u>57</u> , 2061-2070, 1997

90.Frisch, S.M., Francis, H.:	Disruption of epithelial cell-matrix interactions induces apoptosis. J Cell Biol <u>124</u> , 619-626, 1994
91.Fukai, F., Suzuki, H., Suzuki, K., Tsugita, A., Katayama, T.:	Rat plasma fibronectin contains two distinct chemotactic domains for fibroblastic cells. J Biol Chem <u>266</u> , 8807-8813, 1991
92.Gailit, J., Clark, R.A.F.:	Wound repair in the context of extracellular matrix. Cur Op Cell Biol <u>6</u> , 717-725, 1994
93.Gailit, J., Clark, R.A.F:	Studies in Vitro on the Role of □v and □1 Integrins in the Adhesion of Humann Dermal Fibroblasts to Provisional Matrix Proteins Fibronectin, Vitronectin, and Fibrinogen. J Invest Dermatol <u>106</u> , 102-107, 1996.
94.Gamble, J.R., Harlan, J.M., Klebanoff, S.J., et al.:	Stimulation of the adherence of neutrophils to umbilical vein endothelium by human recombinant tumor necrosis factor. Proc Natl Acad Sci USA <u>82</u> , 8667-8671, 1985
95.Gebauer, S., Saalbach, A., Mittag, M., Neubauer, H., Adelmann-Grill, B., Petri, J.B., Herrmann, K.:	Expression of adhesion molecules during wound healing - Characterization of granulation fibroblasts. Journal für Anästhesie und Intensivbehandlung, <u>3</u> , 32-42, 1996
96.Goldstein, L.A., Butcher, E.C.:	Identification of mRNA that encodes an alternative form of H-CAM (CD44) in lymphoid and nonlymphoid tissues. Immunogenetics <u>32</u> , 389-397, 1990
97.Goldstein, L.A., Zhou, D.F., Picker, L.J., Minty, C.N., Bargatze, R.F., Ding, J.F., Butcher, E.C.:	A human lymphocyte homing receptor, the hermes antigen, is related to cartilage proteoglycan core and link proteins. Cell <u>56</u> , 1063-1072, 1989
98.Goodson, W.H., Hunt, T.K.:	Studies of Wound healing in experimental diabetes mellitus J Surg Res <u>22</u> , 221-227, 1977

99.Goodson, W.H., Hunt, T.K.:	Wound healing in experimental diabetes mellitus: Importance of early surgical therapy. Surg Forum <u>29</u> , 95-98, 1978
100.Greenhalgh, D.G.:	The role of growth factors in wound healing. J Trauma <u>41</u> , 159-167, 1996
101.Grinnell, F., Billingham, R.E., Burgess, L.:	Distribution of fibronectin during wound healing in vivo. J Invest Dermatol <u>76</u> , 181-189, 1981
102.Grinnell, F., Ho, C-H., Wysocki, A.:	Degradation of fibronectin and vitronectin in chronic wound fluid: Analysis by cell blotting, immunoblotting, and cell adhesion assays. J Invest Dermatol <u>98</u> , 410-416,1992
103.Häkkinen, L., Koivisto, L., Gardner, H, Saarialho-Kere, U., Carroll, J.M., Lakso, M., Rauvala, H., Laato, M., Heino, J., Larjava, H.:	Increased Expression of 6-Integrin in Skin Leads to Spontaneous Development of Chronic Wounds. Am. J. of Pathol. <u>164</u> , 229-242, 2004
104.Hay, E.D.:	Interaction of migrating embryonic cells with extracellular matrix. Exp Biol Med <u>10</u> , 174-193, 1985
105.Heldin, C.H., Westermark, B.:	Mechanism of action and in vivo role of platelet-derived growth fac- tor. Physiol Rev <u>79</u> , 1283-1316
106.Hibbs, M.L., Jakes, S., Stacker, S.A., Wallace, R.W., Springer, T.A.:	The cytoplasmic domain of the integrin lymphocyte function-associa- ted antigen 1 beta subunit: sites required for binding to intercellular adhesion molecule 1 and the phorbol ester-stimulated phosphorylati- on site. J Exp Med. <u>174(5)</u> , 1227-1238. 1991
107.Hibbs, M.L., Stacker, S.A., Springer, T.A.:	Regulation of adhesion of ICAM-1 by the cytoplasmic domain of LFA-1 integrin beta subunit. Science. <u>251</u> , 1611-1613. 1991

108.Hemler, M.E., Huang, C., Schwarz, L.:	The VLA protein family. Characterization of five distinct cell surface heterodimers each with a comon 130,000 molecular weight □ subunit. J Biol Chem <u>262</u> , 3300-3309, 1987
109.Hemler, M.E.:	VLA proteins in the integrin family: structures, functions, and their ro- le on leukocytes. Ann Rev Immunol <u>8</u> , 365-400, 1990
110.Higley, H., Ksander, G., Gerhart, C., Kirsner, R., Falanga, V.:	Immunocytochemical analysis of growth factor and growth factor response cells in chronic venous stasis ulcers. Wounds <u>4</u> , 33-34, 1992
111.Hopkins, G.N.F., Spinks, T.J., Rhodes, C.G., Ranicar, A.S.O., Jamieson, C.W.:	Positron emision tomography in venous ulceration and liposclerosis: study of regional tissue function. Br Med J <u>286</u> , 333-336, 1983
112.Howdieshell, T.R., Callaway, D., Webb, W.L., Gaines, M.D., Procter,C.D., Sathyanarayana Pollock, J.S., Brock, T.L., McNeil, P.L.:	Antibody neutralization of vascular endothelial growth factor inhibits wound granulation tissue formation. J Surg Res <u>96</u> ,173-182, 2001
113.Hua, Q., Knudson, C.B., Knudson, W.:	Internalization of hyaluronan by chondrocytes occurs via receptor- mediated endocytosis. J Cell Sci <u>106</u> , 365-375, 1993
114.Hynes, R.O.:	Integrines, a family of cell surface receptors. Cell <u>48</u> , 549-555, 1987
115.Hynes, R.O.:	Specificity of cell adhesion in development: the cadherin superfamily. Curr Opin Genet Dev <u>2</u> , 624-624, 1992

116.Hynes, R.O., Marcantonio, E.E., Stepp, M.A., Urry, L.A., Yee, G.:	Integrin heterodimer and receptor complexity in avian and mammalian cells. J Cell Biol <u>109</u> , 409-420, 1989
117.lyer, V., Pumiglia, K., DiPersio, C.M.:	α3β1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: a novel mechanism of integrin-mediated MMP gene expression. J. Cell Science <u>118</u> , 1185-1195, 2005
118.Jalkanen, S., Jalkanen, M., Bargatze, R., Tammi, M., Butcher, E. C.:	Biochemical properties of glycoproteins involved in lymphocyte recognition of high endothelial venules in man. J Immunol <u>141</u> , 1615-1623, 1992
119.Jalkanen, S., Jalkanen, M.:	Lymphocyte CD44 binds the COOH-terminal heparin-binding domain of fibronectin. J Cell Biol <u>116</u> , 817-825, 1992
120.Pinco, K. A., He, W., Yang, J. T.:	a4b1 Integrin Regulates Lamellipodia Protrusion via a Focal Complex/Focal Adhesion-independent Mechanism Mol Biol Cell, <u>13</u> , 3203–3217, 2002
121.Katz, A.M., Rosenthal, D., Sauder, D.N.:	Cell adhesion molecules structure, function, and implication in a variety of cutaneus and other pathologic conditions. Int J Dermatol <u>30</u> , 153-160, 1991
122.Katz, M.H., Alvarez, A.F., Kirsner, R.S., Eaglstein, W., Falanga, V.:	Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol <u>25</u> , 1054-1058, 1991
123.Kibe, Y., Takenaka, H., Kishimoto, S.:	Spatial and temporal expression of basic fibroblast growth factor protein during wound healing of rat skin. Br J Dermatol <u>143</u> , 720-727, 2000
124.Knudson, C.B., Toole, B.P.:	Epithelial-mesenchymal interaction in the regulation of hyaluronate production during limb development. Biochem Int <u>17</u> , 735-745, 1988

125.Kornberg, L., Earp, H.S., Parsons, J.T., Schaller, M., Juliano, R.L.:	Cell adhesion of integrin clustering increases phosphorylation of a focal adhesion associated tyrosine kinase. J Biol Chem <u>267</u> , 23439-23442, 1992
126.Kornberg, L., Earp, H.S., Turner, C., Prokop, C., Juliano, R.L.:	Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta1 integrins. Proc Natl Acad Sci USA <u>88</u> , 8392-8396, 1991
127.Koschnick, M., Rösken, F., Keller, J., Busser, F., Hanselmann, R., Koch, B., Mutschler, W.:	The cellular composition of human granulation tissue analysed by fluorescence activated cell sorting (FACS). Langenbecks Arch Chir Suppl. 43-44, 1998
128.Kozlowska, E., Eckes, B., Langholz, O., Mauch, C., Klein, E., Krieg, T.:	Alpha2/Beta1 integrins mediate induction of collagenase synthesis, but not downregulation of collagen production in fibroblasts grown in 3D matrices. European Society for Dermatologic Research. 23 rd Annual meeting 3 rd -6 th April, Amsterdam (abstr.). 1993
129.Krissansen, G.W., Elliot, M.J., Lucas, C.M., Stomski, F.C., Berndt, D.A., Cheresh, D.A., Lopez, A.F., Burns, G.F.:	Identification of a novel integrin subunit expressed on cultured monocytes (macrophages): evidence that one subunit can associate with multiple subunits. J Biol Chem <u>265</u> , 823-830, 1990
130.Kurkinen, M., Vaheri, A., Roberts, P.J., et al.:	Sequential appearance of fibronectin and collagen in experimental granulation tissue. Lab Invest <u>43</u> , 47-51, 1980
131.LaFlamme, S.E., Akiyama, S.K., Yamada, K.M.:	Regulation of fibronectin receptor distribution. J Cell Biol <u>117</u> , 437-447, 1992

132.Langholtz, O., Kozlowska, E., Eckes, B., Klein, E.K., Krieg, T.:	Influence of extracellular matrix on matrix synthesis and degradation. 4 Joint Meeting of the ETRS and WHS, Amsterdam (abstr.). 1993
133.Langholz, O., Kozlowska, E., Krieg, T., Eckes, B.:	Involvement of $\Box 1 \Box 1$ and $\Box 2 \Box 1$ integrins in matrix recognition and transmission of extracellular signals by fibroblasts. XXI. Jahrestagung der Arbeitsgemeinschaft dermatologischer Forschung, Zürich (abstr.). 1993
134.Langholz, O., Röckel, D., Mauch, C., Kozlowska, E., Bank, I., Krieg, T., Eckes, B.:	Collagen and collagenase gene expression in three-dimensional collagen lattices are differantially regulated by $\Box 1 \Box 1$ and $\Box 2 \Box 1$ integrins. J Cell Bio <u>131</u> , 1903-1915, 1995
135.Larjava, H., Salo, T., Haapasalmi, K., Kramer, R. H., Heino, J.:	Expression of Integrins and Basement Membrane Components by Wound Keratinocytes. J Clin Invest <u>92</u> , 1425-1435, 1993.
136.Lauffenburger, D.A., Horwitz, A.F.:	Cell migration: a physically integrated molecular process. Cell <u>84</u> , 359-369, 1996
137.Leir, S.H., Holgate, S.T., Lackie, P.M.:	Inflammatory cytokines can enhance CD44-mediated airway epithelial cell adhesion independently of CD44 expression Am J Physiol Lung Cell Mol Physiol <u>285</u> , 1305-1311, 2003
138.Levenson, S.M., Geever, E.F., Crowley, L.V., et al.:	The healing of rat skin wounds. Ann Surg <u>161</u> , 293-308, 1965
139.Lo, S.K., Detmers, P.A., Levin, S.M., Wright, S.D.:	Transient adhesion of neutrophiles to endothelium. J Exp Med <u>169</u> , 1779-1793, 1989
140.Lokeshwar, V.B., Burguignon, L.Y.:	Post-translational protein modification and expression of ankyrin- binding site(s) in GP85 (Pgp-1/CD44) and its biosynthetic precursors during T-lymphoma membrane biosynthesis. J Biol Chem 266, 17983-17989, 1991

141.Lotz, M.M., Korzelius, C.A., Mercurio, A.M.:	Human colon carcinoma cells use multuiple receptors to adhere to laminin: involvement of $\Box 6 \Box 4$ and $\Box 2 \Box 1$ integrins. Cell Regul <u>1</u> , 249-257, 1991
142.Luna, E.J., Hitt, A.L.:	Cytoskeleton - Plasma membrane interactions. Science <u>258</u> , 955-964, 1992
143.Marshall, J.F., Rutherford, D.C., McCartney, A.C.E., Mitjans, F., Goodman, S.L., Hart, I.R.:	□v□1 is a receptor for vitronectin and fibrinogen, and acts with □5□1 to mediate spreading on fibronectin. J Cell Sci <u>108</u> , 1227-1238, 1995
144.Mattsson, L.; Bondjers, G., Wiklund, O.:	Isolation of cell populations from arterial tissue, using monoclonal antibodies and magnetic microspheres. Atherosclerosis <u>89</u> , 25-34, 1991
145.Mauch, C., Adelmann-Grill, B., Hatamochi, A., Krieg, T.:	Collagenase gene expression in fibroblasts is regulated by a three- dimensional contact with collagen. FEBS Lett <u>250</u> , 301-305, 1989
146.Mauch, C., Hatamochi, A., Scharfetter, K., Krieg, T.:	Regulation of collagen syntheses within a three-dimensional collagen gel. Exp Cell Res <u>178</u> , 493-503, 1988
147.Mazurov, A.V., Vinogradov, D.V., Kabaeva, N.V., Antonova, G.N., Romanov, Y.A., Vlasik, T.N., Antonov, A.S., Smirnov, V.N.:	A monoclonal antibody, VM64, reacts with a 130 kDa Glycoprotein common to platelets and endothelial cells: Heterogeneity in antibody binding to human aortic endothelial cells. Thromb Haemost <u>66</u> , 494-499, 1991
148.McDonald, J.A., Quade, B.J., Broekelmann, T.J., LaChance, R., Forsman, K., Hasegawa, E., Akiyama, S.:	Fibronectin's cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellu- lar matrix. J Biol Chem. 1987 Mar 5;262(7):2957-2967

149.Meredith, J.E., Fazeli, B., Schwartz, M.A.:	The extracellular matrix as a cell survival factor. Mol Biol Cell <u>4</u> , 953-961, 1993
150.Miller, E.J.:	Biochemical characteristics and biological significance of genetically distinct collagens. Mol Cell Biochem <u>13</u> , 165-192, 1976
151.Miller, L.J., Bainton, D.F., Borregaard, N., Springer, T.A.:	Stimulated mobilization of monocyte Mac-1 and p150,95 adhesion proteins from an intracellular vesicular compartment to the cell surface. J Clin Invest <u>80</u> , 535-544, 1987
152.Moodley, Y., Rigby, P., Bundell, C., Bunt, S., Hayashi, H., Misso, N., McAnulty, R., Laurent, G., Scaffidi, A., Thompson, P., Knight, D.:	Macrophage Recognition and Phagocytosis of Apoptotic Fibroblasts Is Critically Dependent on Fibroblast-Derived Thrombospondin 1 and CD36. A J P <u>162</u> , 771-779, 2003
153.Naor, D., Sionov, R.V., Ish-Shalom, D.:	CD44: structure, function, and association with the malignant pro- cess. Adv Cancer Res. 1997;71:241-319.
154.Nermut, M., Green, N., Eason, P., Yamada, S., Yamada, K.:	Electron microscopy and structural model of human fibronectin receptor. EMBO J <u>7</u> , 4093-4099, 1988
155.Oksala, O., Salo, T., Tammi, R., Hakkinen, L., Jalkanen, M., Inki, P., Larjava, H.:	Expression of proteoglycans and hyaluronan during wound healing. J Histochem Cytochem <u>43</u> , 125-135, 1995
156.Palecek, S.P., Schmidt, C.E., Lauffenburger, D.A., Horwitz, A.F.:	Integrin dynamics on the tail region of migrating fibroblasts. J Cell Sci <u>109</u> , 941-952, 1996

157.Pardes, J.B., Tonneson, M.G., Falanga, V., Eaglstein, W.H., Clark, R.A.:	Skin capillaries surrounding chronic venous ulcers demonstrate smooth muscle cell hyperlasia and increased laminin type IV collagen. J Invest Dermatol (abstracts) <u>94</u> , 563, 1990
158.Partsch, H.:	Hyperaemic hypoxia in venous ulceration. Br J Dermatol <u>110</u> , 249-250, 1984
159.Peach, R.J., Hollenbaugh, D., Stamenkovic, I., Aruffo, A.:	Identification of hyaluronic acid binding sites in the extracellular domain of CD44. J Cell Biol <u>122</u> , 257-264, 1993
160.Petri, J.B., Saalbach, A., Haupt, B., Pierer, M., Haustein, U.F., Herrmann, K.:	In vitro analysis of adhesion expression and gel contraction of human granulation fibroblasts. Wound Rep Reg <u>5</u> , 1-8, 1997
161.Pigott, R., Power, Ch.:	The adhesion molecule facts book. London, Academic press, 46-48, 1993
162.Pohlmann, T.H., Stanness, K.A., Beatty, P.G., et al.:	An endothelial cell surface factor(s) induced in vitro by lipopolysaccharide, interleukin 1, and tumor necrosis factor-□ increases in neutrophil adherence by CDw18-dependent mechanism. J Immunol <u>136</u> , 4548-4553, 1986
163.Polverini, P.J., Cotran, P.S., Gimbrone, M.A. Jr, et al.:	Activated macrophages induce vascular proliferation. Nature <u>269</u> , 804-806, 1977
164.Ponce, M.L., Nomizu, M., Kleinman, H.K.:	An angiogenic laminin site and its antagonist bind through the avb3 and a5b1 integrins FASEB 15, 1389-1397, 2001

165.Poncz, M., Eisman, R., Heidenreich, R., Silver, S.M., Vilaire, G., Surrey, S., Schwartz, E., Bennett, J.S.:	Structure of the platelet membrane gycoproteine IIb: homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem <u>262</u> , 8476-8482, 1987
166.Pytela, R.,	A 125/115 kDa cell surface receptor specific for vitronectin interacts with the arginine-glycine-aspartic acid adhesion sequence derived from fibronectin. Proc Natl Acad Sci USA <u>82</u> , 5766-5770, 1985
167.Rappolee, D.A., Mark, D., Banda, M.J., Werb, Z.:	Wound macrophages express TGF-alpha and other growth factors in vivo: analysis by mRNA phenotyping. Science <u>241</u> , 707-712, 1988
168.Reed, M.J., Puolakkainen, P., Lane, T.F., Dickerson, D., Bornstein, P., Sage, H.:	Differential expression of SPARC and thrombospondin 1 in wound repair: Immunolocalization and in situ hybridization. J Histochem Cytochem <u>41</u> , 1467-1477, 1993
169.Regan, M.C., Kirk, S.J., Wasserkrug, H.L., Barbul, A.:	The wound environment as a regulator of fibroblast phenotype. J Surg Res <u>50</u> , 442-448, 1991
170.Regen, C.M., Horwitz, A.F.,:	Dynamics of □1 integrin-mediated adhesive contacts in motile fibroblasts. J Cell Biol <u>119</u> , 1347-1359, 1992
171.Rennekampff, H.O., Hansbrough, J.F., Kiessig, V., Dore, C., Sticherling, M., Schroder, J.M.:	Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res, <u>93</u> , 41-54, 2000
172.Rennie, P.S., Bouffard, R., Bruchovsky, N., Cheng, H.:	Increased activity of plasminogen activators during involution of the rat ventral prostate. Biochem J <u>221</u> , 171-178, 1984

173.Rodbell, M.:	Metabolism of isolated fat cells J Biol Chem <u>239</u> , 375-380, 1964
174.Romaris, M., Bassols, A., David, G.:	Effect of transforming growth facor-beta 1 and basic fibroblast growth factor on the expression of cell surface proteoglycans in human lung fibroblasts. Enhanced glycanation and fibronectin- binding of CD44 proteoglycan, and down-regulation of glypican. Biochem J <u>310</u> , 73-81, 1995
175.Rothlein, R., Czajkowski, M., O'Neill, M.M., Marlin, S.D., Mainolfi, E., Merluzzi, V.J.:	Induction of intercellular adhesion molecule 1 on primary and continuous cell-lines by pro-inflammatory cytokines. J Immunol <u>141</u> , 1665-1669, 1989
176.Ruckley, C.V.,	Socio-economic impact of chronic venous insufficiency and leg ul- cers. Angiology <u>48</u> , 67-69, 1997
177.Rüegg, C., Postigo, A.A. Sikorski, E.E., Butcher, E.C., Pytela, R., Erle, D.J.:	Role of 0407/040p integrin in lymphocyte adherence to fibronectin and VCAM-1 and in homotypic cell clustering. J Cell Biol <u>117</u> , 179-189, 1992
178.Ruoslahti, E., Pierschbacher, M.D.:	New perspectives in cell adhesion: RGD and Integrins. Science <u>238</u> , 491-497, 1987
179.Saalbach, A., Anderegg, U., Bruns, M., Schnabel, E., Herrmann, K, Haustein, U. F.:	Novel fibroblast-specific monoclonal antibodies: Properties and specificities. J Invest Dermatol <u>106</u> , 1314-1319, 1996
180.Saalbach, A., Aust, G., Haustein, U.F., Herrmann, K, Anderegg, U.:	The fibroblast-specific Mab AS02: a novel tool for detection and elimination of human fibroblasts. Cell Tissue Res <u>290</u> , 593-599, 1997
181.Santala,P., Heino, J,:	Regulation of integrin-type cell adhesion receptors by cytokines. J Biol Chem <u>266,</u> 23505-23509, 1991

182.Sastry, S.K., Horwitz, A.F.:	Integrin cytoplasmic domains: mediators of cytoskeletal linkages and extra- and intracellular initiated transmembrane signaling. Curr Opin Cell Biol. 1993 Oct;5(5):819-831
183.Sawai, H., Okada, Y., Funahashi, H., Matsuo, Y., Takahashi, H., Takeyama, H., Manabe, T.:	Interleukin-I α enhances the aggressive behavior of pancreatic cancer cells by regulating the $\alpha 6\beta$ 1–integrin and urokinase plasminogen activator receptor expression BMC Cell Biol <u>7</u> , 8-21, 2006
184.Scharffetter-Kochanek, K., Klein, C.E., Heinen, G., Mauch, C., Schaefer, T., Adelmann-Grill, B.C., Goerz, G., Fusening, N.E., Krieg, T., Plewig, G.:	Migration of a human keratinocyte cell line (HACAT) to interstitial collagen type I is mediated by the D2D1-integrin receptor. J Invest Dermatol <u>98</u> , 3-11, 1992
185.Schilling, J.A.:	Wound healing. Surg Clin North Am <u>56</u> , 859-874, 1976
186.Schiro, J.A., Chan, B.M.C., Roswitt, W.T., Kassner, P.D., Pentland, A.P., Hemler, M.E., Eisen, A.Z., Kupper, T.S.:	Integrin □2□1 (VLA-2) mediates reorganization and contraction of collagen matrices by human cells. Cell <u>67</u> , 403-410, 1991
187.Schmidt, C.E., Horwitz, A.F., Lauffenburger, D.A., Sheetz, M.P.:	Integrin-cytokeletal interactions in migrating fibroblasts are dynamic, asymatric, and regulated. J Cell Biol <u>123</u> , 977-991, 1993
188.Schwartz, M.A.:	Integrins: Emerging paradigms of signal transduction. Annu Rev Cell Dev Biol <u>11,</u> 549-599, 1995

189.Scott, H.J., Coleridge Smith, P.D., Scurr, J.H., Dormandy, J.A.:	Histological study of white blood cells and their association with lipodermatosclerosis and venous ulceration. Br J Surg <u>78</u> , 210-211, 1991
190.Screaton, G.R., Bell, M.V., Jackson, D.G., Cornelis, F.B., Gerth, U., Bell, J.I.:	Genomic structure of DANN encoding the lymphocyte homing receptor CD44 reveals ad least 12 alternatively spliced exons. Proc Natl Acad Sci USA <u>89</u> , 12160-12164, 1992
191.Seglen, P.O.:	Preparation of isolated rat liver cells. Methods Cell Biol <u>13</u> , 29-83, 1976
192.Serini, G., Gabbiani, G.:	Modulation of \Box -smooth muscle actin expression in fibroblasts by transforming growth factor- \Box isoforms: An in vivo and in vitro study. J Wound Repair Regeneration <u>4</u> , 278-282, 1996
193.Shekhter, A.B., Berchenko, G.N., Nikolaev, A.V.:	Granulation tissue: inflammation and regeneration. Ar Pathol <u>46</u> , 20-29, 1984
194.Shimada, H., Okamura, H., Espey, L.L., Mori, T.:	Increase in plasminogen activator in the involuting uterus of postpartum rat. J Endocrinol. <u>104</u> , 295-298, 1985
195.Shimizu, Y., van Seventer, G.A., Siraganian, R., Wahl, L., Shaw, S.:	Dual role of the CD44 molecule in T cell adhesion and activation. J Immunol <u>143</u> , 2457-2463, 1989
196.Siebenschuh I, Rosken F, Koschnick M, Rakers H, Arfors KE, Mutschler W, Menger MD.:	Local administration of hyaluronic acid for improving wound healing in diabetes Langenbecks Arch Chir Suppl Kongressbd. 1998;115(Suppl I):467-8

197.Slepian, M.J., Massia, S.P., Dehdashti, B., Anne Fritz, A., Sle, M.J., Luke Whitesell, L.:	b3-Integrins Rather Than b1-Integrins Dominate Integrin-Matrix Interactions Involved in Postinjury Smooth Muscle Cell Migration Circulation. <u>97</u> , 1818-1827, 1998
198.Smith, J.W., Ruggeri, Z.M., Kunicki, T.J., Cheresh, D.A:	Interaction of integrins $\Box v \Box 3$ and glycoprotein IIb-IIIa with fibrinogen. Differential peptide recognition accounts for distinct binding sites. J Biol Chem <u>265</u> , 12267-12271, 1990
199.Smith, J.W., Vesta, D.J., Irwin, S.V., Burke, T.A., Cheresh, D.A.:	Purification and functional characterization of integrin □v□5: an adhesion receptor for vitronectin. J Biol Chem <u>265</u> , 11008-11013, 1990
200.Sonnenberg, A., Linders, C.J.T., Modderman, P.W., Damsky, C.H., Aumailley, M., Timpl, R.:	Integrin recognition of different cell-binding fragments of laminin (P1, E3, E8) and evidence that $\Box 6 \Box 1$ but not $\Box 6 \Box 4$ functions as a major receptor for fragment E8. J Cell Biol <u>110</u> , 2145-2155, 1990
201.Staatz, W.D., Fok, KF., Zutter, M.M., Adams, S.P., Rodriguez, B.A., Santoro, S.A.:	Identification of a tetrapeptide recognition sequence for the □2□1 integrin in collagen. J Biol Chem <u>266</u> , 7363-7367, 1991
202.Stefansson, S., Lawrence, D.A.:	The serpin PAI-1 inhibits cell migration by blocking integrin □v□3 binding to vitronectin. Nature <u>383</u> , 441-443, 1996
203.Stemme, S., Patarroyo, M., Hansson, G.K.:	Adhesion of activated T lymphocytes to vascular smooth muscle cells and dermal fibroblasts is mediated by 1- and 2-integrins. Scand J Immunol <u>36</u> , 233-243, 1992
204.Stern, R., Shuster, S., Neudecker, B.A., Formby, B.:	Lactate stimulates fibroblast expression of hyaluronan and CD44: the Warburg effect revisited Exp Cell Res <u>276</u> , 24-31, 2002

205.Stoker, M., O'Neil, C., Berryman, S., Waxman, V.:	Anchorage and growth regulation in normal and virus-transformed cells. Int J Cancer <u>3</u> , 683-693, 1968
206.Streuli, C.H., Bailey, N., Bissell, M.J.:	Control of mammary epithelial differantiation: basement membrane induces tissue-specific gene expression in the absence of cell-cell interaction and morphological polarity. J Cell Biol <u>115</u> , 1383-1395, 1991
207.Sy, M.S., Guo, Y.J., Stamenkovic, I.:	Distinct effects of two CD44 isoforms on tumor growth in vivo. J Exp Med <u>174</u> , 859-866, 1991
208.Takada, Y., Elices, M.J., Crouse, C., Hemler, M.E.:	The primary structure of the □4 subunit of VLA-4: Homology to other integrins and a possible cell-cell adhesion function. EMBO J <u>8</u> , 1361-1368, 1989
209.Takada, Y., Hemler, M.E.:	The primary structure of the VLA-2/collagen receptor □2 subunit (Platelet GP Ia): homology to other integrins and the presence of a possible collagen-binding domain. J Cell Biol <u>109</u> , 397-407, 1989
210.Takada, Y., Huang, C., Hemler, M.E.:	Fibronectin receptor structures are included within the VLA family of heterodimers. Nature, <u>262</u> , 11478-11485, 1987
211.Talhouk, R.S., Bissell, M.J., Werb, Z.:	Coordinated expression of extracellular matrix degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J Cell Biol <u>118</u> , 1271-1282, 1992
212.Tamkun, J.W., DeSimone, D.W., Fonda, D., Patel, R.S., Buck, C.A., Horwitz, A.F., Hynes, R.O.:	Structure of integrin a glycoprotein involved in the transmembrane linkage between fibronectin and actin. Cell <u>46</u> , 271-282, 1986

213.Tanaka, Y., Adams, D.H., Hubscher, S., Hirano, H., Siebenlist, U., Shaw, S.:	T-cell adhesion induced by proteoglycan-immobilized cytokine MIP-1 beta. Nature <u>361</u> , 79-82, 1993
214.TeKoppele, J.M., Beekman, B., Verzijl, N., Koopman, J.L., DeGroot, J., Bank, R.A.:	Doxycycline inhibits collagen synthesis by differentiated articular chondrocytes. Adv Dent Res 1998 Nov;12(2):63-67
215.Theoret, C.L., Barber, S.M., Gordon, J.R.:	Temporal localization of immunoreactive transforming growth factor beta1 in normal equine skin and full thickness dermal wounds. Vet Surg <u>31</u> , 264-280, 2002
216.Theoret, C.L., Barber, S.M., Moyana, T.N., Gordon, J.R.:	Expression of transforming growth factor beta(1), beta(3) and basic fibroblast growth factor in full thickness skin wounds of equine limbs and torax. Vet Surg <u>30</u> , 269-277, 2001
217.Thomas, L., Byers, H.R., Vink, J., Stamenkovic, I.:	CD44H Regulates Tumor Cell Migration on Hyaluronate-Coated Substrate. J Cell Biol <u>118</u> , 971-977, 1992
218.Todd, R.F., Arnaout, M.A., Rosin, R.E., Crowley, C.A., Peters, W.A., Babior, B.A.:	Subcellular localization of the large subunit of Mo1 (Mo1 alpha; formerly gp 110), a surface glycoprotein associated with neutrophil adhesion. J Clin Invest <u>74</u> , 1280-1290, 1984
219.Tonnesen, M.G., Smedly, L.A., Henson, P.M.:	Neutrophil-endothelial cell interactions. Modulation of neutrophil adhesiveness induced by complement fragments C5a and C5a des arg and formyl-methionyl-leucyl-phenylalanine in vitro. J Clin Invest <u>74</u> , 1581-1592, 1984
220.Toole, B.P., Biswas, C., Gross, J.:	Hyaluronate and invasiveness of the rabbit V2 carcinoma. Proc Natl Acad Sci USA <u>76</u> , 6299-6303, 1979

221.Toole, B.P.:	Hyaluronan in morphogenesis. J Intern Med <u>242</u> , 35-40, 1997
222.Travis, J.A., Hughes, M.G., Wong, J.M., Wagner, W.D., Geary, R.L.:	Hyaluronan enhances contraction of Collagen by smooth muscle cells and adventitial fibroblasts: Role of CD44 and implications for constrictive remodeling Circ Res <u>88</u> , 77-83, 2001
223.Underhill, C.:	CD44: the Hyaluronan Receptor. J Cell Sci <u>103</u> , 293-298, 1992
224.Underhill, C.B., Nguyen, H.A., Shizari, M., Culty, M.:	CD44 positive macrophages take up hyaluronan during lung development. Dev Biol <u>155</u> , 324-336, 1993
225.Uzan, G., Frachet, P., Lajmanovich, A., Frandini, M., Denarier, E., Duperray, A., Loftus, J., Ginsberg, M., Plow, E., Marguerie, G.:	cDNA clones for human platelet GPIIb corresponding to other Arg- Gly.Asp adhesion receptors. Eur J Biochem <u>171</u> , 87-93, 1988
226.Vaalamo, M., Weckroth, M., Puolakkainen, P., Kere, J., Saarinen, P., Lauharanta, J., Saarialho-Kere, U.K.,:	Patterns of matrix metalloproteinase and TIMP-1 expression in chronic and normally healing human cutaneous wounds. Br J Dermatol, <u>135</u> , 52-59,1996
227.Velde, A.A, Klomp, J.P.G., Yard, B.A., Vries, J.E., Figdor, C.G.:	Modulation of phenotypic and functional properties of human peripheral blood monocytes by IL-4. J Immunol <u>140</u> , 1548-1554, 1988
228.Vogel, B.E., Tarone, G., Giancotti, F.G., Gailit, J., Ruoslathi, E.:	A novel fibronectin receptor with an unexpected subunit composition ($\alpha\nu\beta$ 1). J Biol Chem <u>265</u> , 5934-5937, 1990

229.Wahl, L.M., Wahl, S.M.:	Inflammation. In Wound healing, Biochemical and Clinical Aspects. I. Kelman Cohen, Philadelphia, WB Saunders, 40, 1992
230.Wang, B., Li, S., Southern, J., Cleary, P.:	Streptococcal modulation of cellular invasion via TGF- β 1 signaling PNAS <u>103</u> , 2380-2385, 2006
231.Wayner, E.A., Carter, W.G., Piotrowicz, R.S., Kunicki, T.J.:	The function of multiple extracellular matrix: preparation of monoclonal antibodies to the fibronectin receptor that specifially inhibit cell adhesion to fibronectin and react with platelet glycoproteins Ic-IIa. J Cell Biol <u>107</u> , 1881-1891, 1988
232.Wayner, E.A., Garcia-Pardo, A., Humphries, M.J., McDonald, J.A., Carter, W.G.:	Identification and characterization of the lymphocyte adhesion receptor for an alternative cell attachment domain in plasma fibronectin. J Cell Biol <u>109</u> , 1321-1330, 1989
233.Wayner, E.A., Oriando, R.A., Cheresh, D.A.:	Integrins $\Box v \Box 3$ and $\Box v \Box 5$ contribute to cell attachment to vitronectin but differently distribute on the cell surface. J Cell Biol <u>113</u> , 919-929, 1991
234.Werb, Z., Tremble, P.M., Behrendtsen, O., Crowley, E., Damsky, C.H.:	Signal transduction through the fibronectin receptor induces collagenase and stromelysine gene expression. J Cell Biol <u>109</u> , 877-889; 1989
235.Wright, S.D., Meyer, B.C.:	Phorbol esters cause sequential activation and deactivation of complement receptors on polymorphonuclear leukocytes. J Immunol. <u>136</u> , 1759-1764, 1986
236.Xu, J., Clark, R.A.:	Extracellular matrix alters PDGF regulation of fibroblast integrins. J Cell Biol <u>132</u> , 239-249, 1996
237.Yager, D.R., Zhang, L-Y., Liang, H-X. Diegelmann, R.F., Cohen, I.K.:	Wound Fluids from human pressure ulcers contain elevated matrix metalloproteinase levels and activity compared to surgical wound fluids. J Invest Dermatol <u>107</u> , 743-748, 1996

238. Yevdokimova, N.Y., Podpryatov, S.E.:
Hyaluronic acid production and CD44 expression in cultured dermal fibroblasts of patients with non-insulin-dependent diabetes mellitus with and without chronic ulcers on the lower extremity Wound Repair Regen <u>13</u>, 181-188, 2005
239.Zhao, M.W., Jin, M.L., He, S., Spee, C.,

Ryan, S.J., Hinton, D.R.:
7. Danksagung:

Besonderen Dank gilt Herrn Prof. Dr. M.D. Menger für die geduldige Korrektur der Arbeit und die fruchtbaren Problemdiskussionen. Auch sein zu nahezu allen Tageszeiten offenes Labor erleichterte die Durchführung der technischen Arbeiten wesentlich.

Ein weiteres herzliches Dankeschön geht an Herrn Dr. M. Koschnick und Dr. F. Roesken für die Problementwicklung und Planung der Versuche, sowie die Bereitstellung der erforderlichen Gelder. Sie ermöglichten mir ein weitgehend selbständiges Arbeiten was die Planung, Durchführung und Interpretation der Daten anbelangte.

Herrn J. Keller und Dr. B. Koch gebührt Dank, für die Bereitstellung des FACS-Gerätes und die geleisteten Vorabeiten, insbesondere bei der Kalibrierung des Flow-Cytometers.

Besonderen Dank gilt auch meinen Eltern und meiner Lebendgefährtin, für die Geduld und das Verständnis, das sie mir entgegengebracht haben.

	Curriculum Vi- tae
Persönliche Daten Büsser Frank	
geboren in Pétange (Luxemburg)	01.02.1974
wohnhaft in: L-4735 Pétange, J.B.Gillardin Str., 78 Studienadresse: D-66424 Homburg, Zweibrücker Str., 75	
Schulausbildung	
Gymnasium in Esch Alzette, Luxemburg	1980-86 1986-93
Diplôme de fin d'études secondaires (Abitur)	30.06.1993
Studium Centre Universitaire Luxembourg, Sektion Medizin	1993-94
Universität des Saarlandes, Fachrichtung Humanmedizin	Seit 1994
1. Abschnitt der ärztlichen Prüfung	20.03.1996 25.03.1997
2. Abschnitt der ärztlichen Prüfung 3. Abschnitt der ärztlichen Prüfung	15.09.1999
	27.10.2000
Facharztausbildung Universitätskinderklinik Würzburg Ärztlicher Direktor Prof. Speer	2001
Kinderklinik des Centre Hospitalier Luxembourg Ärztlicher Leiter Dr. Bottu	2002
Abteilung für Kinder- und Jugendmedizin des Mutterhauses der	0000.00
Ärztlicher Leiter Prof. Rauh	2003-06
Zusätzliche Tätigkeiten Ausbildung der Kinderkrankenschwestern des Mutterhauses der Borromaerinen Trier	2004
Beauftragter zur Überwachung nosokomialer Infektionen der Neonatologie des Mutterhauses der Borromaerinen Trier	2004
Konsiliarische Auswertung und Befundung der EKG's, Langzeit- und Belastungs-EKG's sowie Kreislauftests	2003

Publikationsliste Frank Büsser

Orginalarbeiten, Buchbeiträge

A simple and inexpensive screening test for low protein levels in urine. D. Kutter, A. Kremer, F. Bousser, Z. Kambris. Clin.Chim.Acta 258 (1997): 231-239.

M. Koschnick, F. Rösken, J. Keller, F. Busser, RG. Hanselmann, B. Koch, R. Wirbel, W. Mutschler Quantitative Bestimmung der Zellzusammensetzung von humanem Granulationsgewebe durch Fluoreszenz Aktiviertes Cell Sorting (FACS). Langenbecks Arch Chir Suppl. 43-44, 1998

M. Koschnick, F. Busser, F. Rösken, RG. Hanselmann, B. Koch, M.D. Menger W. Mutschler Die Expression des Hyaluronsäurerezeptors CD44 und der Fibronektinrezeptoren a4ß1 und a5ß1 in humanem Granulationsgewebe chronischer Wunden. Langenbecks Arch Chir Suppl., 467-468, 1999

Abstracts

Busser F. Rösken F. Hanselmann RG. Koch B. Mutschler W. Koschnick M (1999) Die zelluläre Zusammensetzung von humanem Granulationsgewebe bestimmt mittels Fluoreszenz Aktiviertem Cell Sorting (FACS). Hefte zur Unfallchirurgie 272: 400 - 401

M. Koschnick, F. Busser, R. Hanselmann (2000) Pathophysiologie der Wundheilung: Integrinpräsenz in chronischen Wunden Hefte zur Wundbehandlung, ISSN1438-3969: 32-33,

Vorträge

M. Koschnick, RG. Hanselmann, F. Busser, W. Mutschler, F. Rösken Die FACS-Analyse eine Methode zur Identifikation von Zellpopulationen im Granulationsgewebe Jahrestagung der Verneigung der Deutschen Plastischen Chirurgen (VDPC), Bochum 02.10.98

Busser F, Rösken F, Hanselmann RG, Koch B, Mutschler W, Koschnick M (1999) Die zelluläre Zusammensetzung von humanem Granulationsgewebe bestimmt mittels Fluoreszenz Aktiviertem Cell Sorting (FACS).

62. Jahrestagung der Deutschen Gesellschaft für Unfallchirurgie, Berlin 18.-21.11.98

M. Koschnick, F. Busser, F. Rösken, RG. Hanselmann, B. Koch, M.D. Menger W. Mutschler Die Expression des Hyaluronsäurerezeptors CD44 und der Fibronektinrezeptoren a4ß1 und a5ß1 in humanem Granulationsgewebe chronischer Wunden.

116. Kongreß der Deutschen Gesellschaft für Chirurgie, Chirurgisches Forum München, 6.-10. April 1999

M. Koschnick, F. Busser, J. Keller, RG. Hanselmann, B. Koch, MD. Menger, W. Mutschler, F. Rösken

The cellular composition of human granulation tissue analyzed by fluorescence activated cell sorting (FACS)

XII Congress Of The International Confederation For Plastic, Reconstructive And Aesthetic Surgery, San Francisco USA, 27. 06. - 02. 07. 1999

M. Koschnick, F. Busser, F. Rösken, R. Hanselmann, G. Germann Der Hyaluronsäurerezeptorstatus im Granulationsgewebe 30. Jahrestagung der Vereinigung der Deutschen Plastischen Chirurgen, Seon, 15.-16.091999

M. Koschnick, F. Busser, R. Hanselmann Pathophysiologie der Wundheilung: Integrinpräsenz in chronischen Wunden 4. Kongress der Deutschen Gesellschaft für Wundheilung und Wundbehandlung Würzburg 30.06.2000

Posterpräsentationen

F. Busser, F. Rösken, RG. Hanselmann, M. Koschnick FACS - Analyse des zellulären Verteilungsmusters im Granulationsgewebe 2. Kongreß der Deutschen Gesellschaft für Wundbehandlung, Ulm 14.-16.05.1998

M. Koschnick, F. Rösken, F. Busser, RG. Hanselmann, R. Wirbel, W. Mutschler Untersuchung der Zellpopulationen im Granulationsgewebe durch FACS-Analyse 3rd European Traumatology Congress, Amsterdam, 17.-20.06.98

M. Koschnick, F. Busser, J. Keller, RG. Hanselmann, B. Koch, W. Mutschler, F. Rösken The cellular composition of human granulation tissue analyzed by fluorescence activated cell sorting (FACS)

8th Annual Meeting of the European Tissue Repair Society, Kopenhagen, 27.-30.8.98

F. Busser, F. Rösken, RG. Hanselmann, M. Koschnick FACS - Analyse des zellulären Verteilungsmusters im Granulationsgewebe 86. Jahrestagung der Vereinigung Mittelrheinischer Chirurgen, Homburg, 17.-19.09.98

F. Busser M. Koschnick, M.D. Menger, F. Rösken RG. Hanselmann
Der Hyaluronsäurerezeptorstatus im Granulationsgewebe
3. Kongreß der Deutschen Gesellschaft für Wundbehandlung, Ulm 17.-19.06.99

Auszeichnungen

3. Posterpreis der Deutschen Gesellschaft für Wundbehandlung:

F. Busser, F. Rösken, J. Keller, R. Hanselmann, B. Koch, W. Mutschler, M. Koschnick FACS - Analyse des zellulären Verteilungsmusters im Granulationsgewebe 2. Kongreß der Deutschen Gesellschaft für Wundbehandlung, Ulm 14.-16.05.98

1. Posterpreis der Deutschen Gesellschaft für Wundbehandlung:

F. Busser M. Koschnick, M.D. Menger, F. Rösken RG. Hanselmann
Der Hyaluronsäurerezeptorstatus im Granulationsgewebe
3. Kongreß der Deutschen Gesellschaft für Wundbehandlung, Ulm 17.-19.06.99